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ABSTRACT 

In this thesis we studied the error-correcting cap- 
7/ 

ability of a subclass of cyclic codes of composite 

length n=n1 x n„ x ....  such that n.. , n~, ... are pair- 

wise relatively prime.  This study led us to a new de- 

coding procedure for this class of codes.  The algorithm 

is based on the contractions of a binary cyclic code C 

of composite length.  When applied to  a certain sub- 

class of codes of composite lengths for correcting 

burst errors, we found that this decoding procedure is 

optimal asymtotically, and gives considerably good re- 

sults in many other cases,  A study of the minimum 

distance of this class of codes is also conducted.  And 

is shown that this decoding procedure may also be util- 

ized for correcting random errors.  This decoding tech- 

nique is very easy to apply to certain codes of compos- 

ite lengths.  An efficient decoding algorithm for this 

class of codes is also presented.  This work concludes 

by giving some suggestions on this subject for further 

investigations. 



I.  INTRODUCTION 

In recent years, the demand for efficient and re- 

liable digital data communication and storage systems, 

has been increasing.  The recent breakthrough in develop- 

ing large-scale integrated circuits and data transmission 

and storage networks has caused an even greater increase 

in' demand for more reliable and high transmission rate 

channels. 

A good design of these systems must incorporate 

both computer and communication technology.  A major 

task for the designer is the control of error so that 

the data may be reproduced reliably. 

When information is transmitted, noise might cause 

the received data to be slightly different from the 

original data.  As Shannon showed in 1948, the noise 

need not cause any decrease in reliability.  However, the 

noise does introduce some limiting capacity on the through- 

put rate of the channel, although that limit is typically 

above the throughput rate at which real systems operate. 

Error-correcting codes enable a system to achieve a high 

degree of reliability despite the presence of noise.  In 

addition to the data bits that one wishes to transmit, 
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one also must transmit some additional redundant check 

bits, to combat the additive noise.  Even though the 

noise causes some errors in both the transmitted data 

bits and the transmitted check bits, there is usually 

still enough information available to the receiver to 

allow the decoder to correct all the errors unless the 

noise is extremely severe. 

There are two important class of codes in use today, 

block codes and convolutional codes.  The encoder for a 

block code divides the information into messages of k- 

bits each, written as a binary k-tupple U =(u.. , u„, .,,, 

u, ) called a message.  Then the encoder transforms this 

vector   into a binary n-tupple V =(v1, v?, ..., v ) 

which is called a code word.  Thus there are a total of 

k k 2  messages and 2  possible code words. 

k The set of 2  code words form an (n, k) block code. 

(In this work we are only concerned with block codes. 

For more information on both block and convolutional 

codes, please refer to [2]). 

There are two types of errors that can occur in a 

channel.  If the noise affects each transmitted symbol 

independently, then the errors occur randomly and so we 



have random errors.  Codes for correcting random errors 

are called random error correcting codes.  Examples of 

random-error-correcting channels are:  deep space 

channels and many satellite channels.  Most line of 

sight transmission facilities are as well affected by 

random errors. * 

When the error does not affect all bits at random 

but occurs in cluster or bursts, then the channels are 

called burst-error-channels, and codes developed for 

correcting burst errors are burst error correcting codes. 

Examples of burst-error-channels are:  impulsive switch- 

ing noise and crosstalk, errors caused by signal fading- 

due to multipath transmission. 

And finally there are channels that have a combin- 

ation of burst and random errors.  These are called 

compound channels and codes devised for correcting error 

on these channels are called burst-and random-error- 

correcting cedes.  (In this work we are concerned 

primarily with burst errors, although occasionally 

we will also consider random errors) 

Cyclic codes form an important subclass of linear 

codes.  These codes are attractive for two reasons: 



First, encoding and decoding can be implemented easily 

by employing shift registers with feed back connections 

(or linear sequential circuits), and second, because 

they have considerable inherent algebraic structure, it 

is possible to find various practical methods for decod- 

ing them. 
u 
Cyclic codes were first studied in 1957 by Prange. 

Since then, progress in the study of cyclic codes for 

both random-error-correction and burst-error-correction 

has been spurred by many algebraic coding theorists. | o 1 

In our effort to study the bounds on the minimum 

distance of cyclic codes, we came across the most recent 

work by Wilson and Van Lint on this subject.  In which 

they improve all previously known bounds on minimum dis- 

tance of cyclic codes namely BCH bound, Hartmann-Tzeng 

bound and Roos'bound.  Based on part of Wilson and Van 

Lint's recent research, we developed a new decoding 

algorithm for correcting random or burst error.  This 

decoding algorithm applies to a subclass of cyclic codes 

with composite length n=n1 x n„ x ..., where n1, n„, ... 

are relatively prime.  The decoding is based on a set of 

very simple decision makings and can be carried out very 

fast.  When applied to codes for correcting bursts, this 
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algorithm is assymtotically opitmal, and is efficient 

in many other cases. 

Cyclic codes of composite length may be mapped on- 

to codes with shorter lengths ('contractions'), in which 

case these shorter codes can be used to decode errors. 

This is the basic idea that is used in devising this 

new decoding procedure. 

In Chapter II, we will consider some preliminaries 

which prove to be essential to understanding our main 

result and the discussions following it, 

In Chapter III we will describe our main result 

and several examples will be presented as to how this 

procedure can be applied.  At the end of the" chapter we 

discuss some further results which deal with the 

minimum distance of this class of codes and their burst 

and random error correcting capability. 

In Chapter IV, we will present the decoding 

algorithm and will consider  a few examples. 

Chapter V presents the conslusions drawn from 

this investigation and suggests some areas of further 

research. 



II.  PRELIMINARIES 

In this chapter we will present some background 

material for decoding of random-error and/or burst- 

error correcting codes.  A review of cyclic codes and . 

their burst-error correcting capability will conclude 

the chapter. 

Throughout this thesis work, we use the standard 

notations from coding theory.  A cyclic code C of length 

n over the field GF(q) with m as multiplicative order 

of q modulo n, is generated by a polynomial g(x) over 

GF(q), which divides x -1,  The minimum distance of C 

is denoted by d.  In the case of binary codes, the 

distance between two code words is the number of places 

they differ, and hence the minimum distance is the 

minimum of the distances between all code vectors con- 

tained in C. 

If Qf is a primitive n'th root of unity in an exten- 

sion field GF(q ) of GF(q) then g(x) is a product of 

polynomials m.(x) where m.(x) denotes the minimal poly- 

nomial ofQ'  (i.e., the polynomial with smallest degree 

such thatG/  is a zero of m.(x)) over GF(q).  It will be 

convenient to use the following terminology.  If 



A -[a1,a*2, ...,al]±s a set of n'th roots of unity 

such that: 

c(x) £ C<^>v£Aitc(s) - ° ]>  w^ere C is the set of 

all code polynomials in this case.  Then we shall say 

that A is a defining set for C. 

Let C be a binary (n, k) linear code.  Let vy, v2, 

..., v , be the code vectors of C.  Regardless of which 
2* 

code vector is transmitted on a noisy channel, the receiv- 

ed vector r can be any of the 2  n-tuples over GF(2). 

Any decoding algorithm is a way of partitioning the 2 

possible received vectors into 2  disjoint subsets 

S-, S2, ..., S2k, such that there is a one to one corre- 

spondance to a code vector v..  If the received vector r 

is found in the subset S., r is decoded into v..  Correct 

decoding is possible if and only if the received vector 

r is in the subset S. which corresponds to the actual 

code vector transmitted over the noisy channel. 

A scheme to partition the 2 possible received vectors 

into 2  disjoint subsets satisfying the condition that 

each subset contains one and only one code vector is 

described below. 

This partition is dependent on the linear structure 

of the code.  First, the 2  code vectors of C are written 
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in a row with the all zero code vector v- = (0, 0, ,.., 

0) as the first left most) element.  From the remaining 

n   k 2 __ 2  n-tuples, an n-tuple e? is selected and written 

under the zero vector v.. .  Next, the second row is form- 

ed by adding e  to each vector v1, in the first row and 

writing the sum e„ + v.. under v.. .  When the second row 

is completed, the procedure continues until all 2 n- 

tuples are partitioned  Each partition is called a co- 

set.  Thus we have a*, array of rows and columns shown " 

below.  This is called the standard array of the given 

linear code C.[8] 

v1=0     v2     v.        v2k 

?2        e2+V2   e2+Vi      ?2+V2k 

el el+V2       el+Vi e£+V2k 

* • » • 
e   ,     e  , +vn  e  , +v.  e  , +v0k 
2n-k     9        pD-k  l   ?n-k  2 

Theorem 1.1. [8], (a version of Lagrange's theorem).  No 

two n-tuples in the same row of a standard array are i- 

dentical.  Every n-tupee appears in one and only one row. 



II 

Proof.  The first part of the theorem follows from the 

fact that all the code vectors.of C are disjoint.  Sup- 

pose that two n-tuples in the I'th row are identical, 

say e»+v.=e»+v. with i f  j.  This means that v.=v . , which 
^  J-  ^-  J i  J 

is impossible.  Therefore, no two n-tuples in the same 

row are identical. 

It follows from the construction rule of the stand- 

ard array that every n-tuple appears at least once.  Now, 

suppose that an n-tuple appears in both £'th row and the 

m'th row with Z<^m.     Then this n-tuple must be equal to 

e„+v. for some i and equal to e +v. for some i.  As a 
-c  i .      m j ^ 

result, e„+v.=e +v..  From this equality we obtain 
'C  1  m  j 

e =e»+(v.+v.).  Since v. and v. are code vectors in C, 

v.+v. is also a code vector in C, say v .  Then e =e»+v . 
J-    J o III -V-    o 

This implies that the n-tuple e  is in the £'th row of m 

the array, which contradicts the construction rule of 

the array that e  the first element of the m'th row, m ' 

should be unused in any previous row.  Therefore, no 

n-tuple can appear in more than one row of the array, 

"r 1 concludes the proof of the second part of the theorem, Q 

□ 
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As was discussed in chapter I there are communication 

channels which are affected by disturbances that cause 

transmission errors to cluster into bursts.  For example, 

on telephone lines, a stroke of lightning or a human- 

made electrical distrubance frequently affects many 

adjacent transmitted digits.  On magnetic storage sys- 

tems, magnetic tape defects may last up.to several miles 

and cause clusters of errors.  Therefore, it is desir- 

able to design codes specifically for correcting burst 

errc^.  Codes of this kind are called burst-error- 

correcting codes. 

Cyclic codes arc effective not only for burst error 

detection, but they are also very effective for burst- 

error correction.  Many effective cyclic codes for cor- 

recting burst-errors have been discovered for the past 

20 years.  Cyclic codes for single-burst-error correc 

tion were first studied by Abramson;[ J  In an effort to 

generalize Abramson's results, Fire discovered a large 

class of burst-error-correcting cyclic codes.  Fire 

codes can be decoded with very simple circuitry.  Besides 

the Fire codes.  Many other effective burst-error-cor- 

recting cyclic codes have been constructed and analyzed 

both analytically and with the aid of a computer, 

11 



Such as Burton codes, product codes, interleavel codes, 

" r etc. 8. 
A burst of length I  is defined as a vector whose 

non-zero components are confined to I  consecutive digit 

positions; the first and last of which are non-zero. 

For example e=(0000 0110100000) is a burst of length 6. 

A linear code that is capable of correcting all error 

burst of length I  or less but. not all error bursts of 

length l+l  is called an I  burst-error-correcting code, 

or the code is said to have burst-error-correcting cap- 

ability £.  It is clear that for give code length n and 

burst-error-correcting capability I,     we must construct 

an (n,k) code with as small a redundancy (n-k) as poss- 

ible; next, we will prove a number of theorems which 

prove to be helpful in presenting our main result. 

Theorem 2.1.  A linear block code that has no burst 

of length I  or less as a code word must have at least 

I  parity-check symbols.  For a proof refer to [2 ] 

Theorem 2.2.  For detecting all burst error of length 

I  or less with a linear block code of length n, I  parity- 

check symbols ace necessary and sufficient.  For a proof 

refer to [2 ] 

Theorem 2.3, (Reiger, 1960, [2])  In order to correct 

12 



all burst errors of length b or less, a linear block 

code must have at least 2b parity-check symbols.  In 

order to correct all bursts of length b or less and 

simultaneously detect all burst of length I \b or less, 

the code must have at least b+£ parity-check symbols. 
n 

Proof.  Any vector that has the form of a burst of 

length 2b or less can be written as the difference of 

two bursts of length b or less (except in the degener- 

ate case of a burst consisting of a single non-zero 

element).  Since, in order to correct all burst of 

length b or less these must be in different cosets, 

their difference cannot be a code word.  The first part 

of the theorem then follows from theorem (2.1). 

Similarly, every burst of length b+£ or less can be 

written as the difference of a burst of length I  or less 

and a burst of length b or less.- If the code is simul- 

taneously to correct bursts of length b or less and to 

detect all bursts of length t,   the burst of length b and 

the burst of length I  must be in different cosets, and 

their sum must not be a code word, this theorem then 

follows from theorem 2.1. P?l j | 

For a given n and k, theorem 2.3 implies that the 

burst-error-correcting capability of an (n,k) code is at 

13 



h-k at most  (n-k)/2 , that is,   —*— .  This is an upper 

bound on the burst-error-correcting capability of an 

(n,k) code and is called the Reiger bound.  Codes that 

meet the Reiger bound are said to be optimal.  The ratio 

n-k 

is used as a measure of the burst correcting efficiency 

of a code.  An optimal code has burst correcting effi- 

ciency equal to 1. 

14 



III.  A STUDY OF CYCLIC CCDES OF COMPOSITE LENGTH VIA CONTRACTIONS 

In this chapter we will discuss a new decoding meth- 

od for cyclic codes of composite lengths and we shall 

show that for correcting bursts this new method meets 

the Reiger bound asymtotically in many cases and proves 

to be efficient in other cases. 

All the codes that we will consider in this section 

are binary cyclic codes with composite lengths n=n_. , 

n2, ... where n-, n„, ... are relatively prime. 

Let C be a cyclic code over the field GF(q) and 

generated by g(x), and let m be the multiplicative order 

of q modulo n.  Let n=n.. . n„.  Next we define a homo- 

morphism with operation addition over the field GF(2) 

s a from C to C  (cyclic code of length n1 ), which i n     II ^ x 

mapping of the codes in C onto the codes in C v. This 
n nl 

homomorphism is called contraction, and C  is a contrac- 

tion of C .  Now we are ready to prove a theorem (due 

to Wilson and Van Lint [5]) which is the basis of our 

work. 

Theorem 3.1,  Let C be a binary cyclic code of 

length n= n  for which the defining set contains 

I. I. I. 

Ct       , Ot       ,    . . ,Ci , (Of is a primitive n' th root of 

15 



unity).  Let C  be a cyclic code of length nn (a 
n0 u 

"contraction" of C) with defining set: 

.'     [£&£2,   ••■SH   £=ch  then  if 

bJ  "Cj  +  CJ+nQ 
+ Cj=2no 

+   ■'•   + Cj=a-l)V 

c£ C       b  =   (b   ,    . . . ,   b )£   C 
° 0-1 0 

Proof.  Note that Ct  is a primitive n'th root of 

unity and therefore^ =Q!     is a primitive n ' th root of 

unity. 

let c = (c0, c]_, . . . , cn_1)6 C 

j=0 

£i This follows because^ V    \/  l/^ k are the roots 

of the generator polynomial.  Therefore they must satis- 

fy the code polynomial. 

And since ^r-*      C-(Q{   1^')J=0, we can write 

j=0 j=0 j=nQ 

16 



j=(£-l)n0 

let  bj = c . + cj+nQ + cJ+2no +...+• cj + a_1)n( 

j=0 j=0 

This follows because In     = n = 0. mod n.  Then (tiy  xj ) 
I 

repeats a cycle, that is,Q^  has order n~ and hence, 

b = (bn, b1, ..., b    ) 6 C  .  Therefore b is a code 
u   ±       n0-l    n0 

word in Cn0. □ 

Example 3.1.  Let C be a binary cyclic code of 

length n = n. x n„ such that (n1, n„) = 1.  (i.e., n1 

and n„ are relatively prime).  Suppose that the defining 
n   n2 

set of C contains (QC    , C£     ) where Qf is a primitive n'th 
nl root of unity.  This implies that (X       is a primitive 

n?'th root of unity and has order n„, hence it can 

generate a code of length n„.  Thus C can be contracted 

to a code of length n„.For the same reason C can also be 

contracted to a code of length n.. , where its defining 
n 

set containsQf 

The purpose of this example was to show that by 
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selecting properly the defining set of the code C we can 

contract it to one or both of its factors.  In this work 

however, we are primarily concerned with simultaneous 

contractions, thfe' reason being that we do not gain very 

much by looking at only one contraction alone.  Although 

this can be used for error detection. 

We will make the term simultaneous contraction 

more clear by considering an example. 

Example 3.2.  Let C be a binary cyclic code of 

length n = 15 and defining set: 

s -[a11 i= 3>5 ]■ 
3 

Notice that^y is primitive 5'th root of unity and has 
5 

order 5, and d      is a primitive 3'rd root of unity and 

hence has order 3. 

Consider a code word cf C n 

c — ^o' ^1' ^2 ' ■••' ^14 

the contractions are formed as follows: 

-...,.;::» 
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I.  CONTRACTION OF C15 to C5 

C0 + C5 + C10 = b0 

Cl + C6 + Cll = bl 

C2 + C7 + C12 = b2 

C3 + C8 + C13 = b3 

c4 + c9 + c14 = b4 

II.  CONTRACTION OF C15 to Cg 

C0 + C3 + C6 + C9 + C12  = b'0 

cx + c4 + c7 + c10 + c13 = b^ 

c2 + c5 + c8 +,Cll + c14 = b-2 

19 



As was shown in theorem 3.1. b = (b0, b1 , . .., b.) is 

a code word in C,- and b'=(b' , b' , b'2) is a code word 

in C„. 

The important point to note is the following: 

Each row of table I has at most one element in common 

with each row of table II i.e., they are orthogonal on 

one element.  Of course this  property holds as long as 

n can be factored into two relatively prime factors. 

While studying the properties of simultaneous 

contractions, we thought that since each row of tables 

I and II are orthogonal on one element, we might be 

able to correct and/or detect errors.  As it turns out 

and will be shown later, this procedure can best deal 

with bursts of error. 

At this point there are two questions that must be 

answered before proceeding any further.     ( 

(1) How is the code word c related to its contra- 

tions? (i.e., if c is an odd or even weight code word, 

what is the parity of its contractions?) 

(2) What should the error correcting capability 

of the two contractions be, to ensure maximum efficiency? 

The first question may be answered by proving the follow- 

lemma. 

20 



Lemma 3.2.  A code word c£C , (where C  is a binary 

cyclic code of length n = n- x n„) with odd parity con- 

tracts to a code word b C , with odd parity, and a code 

word c(£C with even ^parity contracts to a code word b C ., ^- n ^ J nl 

with even parity. 

Proof.  Consider code word c£C      N 

c = (cQ> clt   . . . , cn_1) 

and consider the contraction of c to b with length n1 

c0 + cn, + c2n, + ... + c    = b„ 
1     1        'n=ni    ° 

c1 + c    .., = b., .1 n-n.,+1   1 1 

c2 

c   .. + cn   .. + ...+ c    1+c1=b   ., 
n--l    2n--l n-n--l    n-1    ni-1 

Case I.  c has odd parity, i.e., [c_.+c- +. . . +c  - ) = 1] ^   J ' '01     n-1 

(cn+c  +...+C     ) + (C-+C,   ,i\+...+C,     ,H) + ^ 0  n1      n-n1'        v 1  (n-+l)      (n-n1+l
/ 

... + (c   -.=c0   .. + ...+c  -) = 1 v n--l  2n--l     n-ly 

or bn+b-+...+b   - = 1 0  1     nx-l 

This follows because c_ + c + ...+c   =b_. is the first 
0 n1      n-n1  0 

row of the contraction table and therefore as shown 
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(b^+b-+...+b   .) = 1 which concludes the proof of case v 0  1     ni~1 

I. 

Case II. can be proven similarly and hence the 

proof is omitted. Q 

Therefore lemma 3.2. shows that the even weight 

codes in c  are contracted to even weight codes in c n n.. 

and odd weight codes in c  are mapped onto odd weight 

codes in c    A corollary from lemma 3.2. is the 

following:  In the case of two simultaneous contractions, 

the odd weight codes in c  are contracted to odd weight 

codes in c   and simultaneously odd weight codes in c 

are mapped onto odd weight codes in c  .  Of course the 
n2 

result holds for even weight codes. 

We are still conducting further research to answer 

the second question, namely, how many contractions are 

needed, or how the length of the contractions should be 

chosen to ensure maximum efficiency.  Although of all the 

cases that we studied, contracting the code C to two 

trivial (repetition) codes leads to very simple decoding 

and ensures optimality in asymtotic sense, in many cases. 

Where as contracting to two or more non-trivial codes 
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results in more complex decoding and at the same time 

does not guarantee maximum efficiency for correcting 

bursts. 

It is possible to show that by selecting the defin- 

ing set S of a binary cyclic code C of length n=n1 x n„ 

properly, we can always contract it to two trivial codes 

of lengths n.. and n?. 

We are now ready to discuss the decoding procedure 

for single bursts.  It will be much easier to present 

the algorithm by way of an example. 

Example 3.3.  Let C be a binary cyclic code of 

r  3 5? length n=15.  Let the defining set of C be S =W ,£v }, 
3 

where Qf is a primitive 15'th root of unity,d     is a 

primitive 5'th root of unity and has order 5.  Its 

minimal polynomial has degree 4 and therefore the 

contraction of C to C   (n1 = 5) is a trivial code. n    n., v 1    ' 
5 

OL      is a primitive 3'rd root of unity and its minimal 

polynomial has degree 2.  Hence the contraction of C 

to C -f (n„ = 3) is also a trivial code.  Let us consider n2 
the two tables as in ex.3.2 
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I.  CONTRACTION OF C,,- to CK 15     5 

C0 + C5 + C10 = b0 

Cl + C6 + Cll = bl 

C2 + C7 + C12 = b2 

C3 + C8 + C13 = b3 

C  + C +   C       = b 11    14    4 

II.  CONTRACTION OF C1C- to C„ 15     3 

C0 + C3 + CG + C9 + C12  = b'0 

Cl + C4 + C7 + C10 + C13 = b'l 

C2 + C5 + C8 + Cll + C14 = b'2 

Suppose there is a single burst of length 1  and further- 

more assume that C has odd parity.  Lemma 3.2 implies 

that b = bQ) ..., b.   and b' = (b'n> b'i' b>2^ must b°th 

be all l's vectors.  Let us say that C„ has been received 

incorrectly.  Then the vectors b and b' are: 

b = (10111) 

b' = (Oil) 
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Since both b and b' must be all l's vectors we know that 

there is an incorrect bit in the second row of table I 

and the first, row of table II but the two rows mentioned 

above are orthogonal on c~.  Hence the error is identi- 

fied and can be corrected. 

Now suppose there is a burst of length 2.  Say 

c2 and c„ are received incorrectly, in which case b and 

b' are 

b = (11001) 

b' = (010). 

From this we can see that the burst is contained in 

third and fourth row of table I, and first and third 

row of table II.  We can form the following array: 

row (3) of I and row (1) of II are orthogonal on C. 2 

row (3) of I and row (3) of II are orthogonal of C^ 

row (4) of I and row (1) of II are orthogonal of C, 

row (4) or I and row (3) of II are orthogonal of CR 

Assuming that the burst error correcting capability of 

this code is less than or equal to 3.  Then the bits in 

error must be consecutive and therefore c? and c„ must 

be the errors.  The decoding is exactly the same if we 

have a burst of length 3.  Such that, the burst has the 
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for. (101). But the problem arises as soon a solid burst 

of length 3 has corrupted the received code vector. Say 

c0, c- , c„ are corrupted bits, then b and b' could be: 

b = (00011) 

b* = (000) if c£C has odd parity 

The burst is contained in row one, two and three of 

table I and rows one, two and three of table II.  But 

there are three possible error patterns 

(CQ, C1> C2)   or 

(C5, C6> C?)   or 

(C10' Cll' C12)" 

Hence considering any of these error patterns as the 

error -pattern and changing the corresponding bits in , 

the code word would satisfy the two contractions of 

C .  Hence an  incorrect decoding might result.  The 

interested reader must bear in mind that the problem 

arises as soon as we have a solid burst of length equal 

to the length of the shorter contraction code. (In this 

case 3). 

Lemma 3.3.  A solid burst of length equal to the 

length of the shorter contraction of C  (that is C  ) 
n n2 

cannot be decoded. 
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Proof.  Let us assume that the burst has length (n„) 

then its polynomial representation will be: 

n2-l  n2-2 

e (x) = x   +x   +...+X+1. 

This follows because the code is cyclic and the corres- 

ponding error vector is 

e= (000...00111...11)   • \ 

n-n2     n2 

\ 
and furthermore all such errors can be represented by: 

nl  P U  )  . e (x); o^p^n2 

Let us consider a polynomial consisting of two of these 

bursts.  Say, 
nl v(x) = e(x) + x   e(x), that is we have: 

nl nl v(x) = e(x) + x  e(x) = e(x)-[x  +1] 

np-l   n9-2 n 
v(x) = (x z ^ + x ■   + . „ + x+l).(x 1  - l) and 

g2(x) 

ru-l   n.,-2 
(x    +X1   + ... + x + 1) = g1(x) but 

g^(x) and g2(x) are the generator polynomials of the t 

trivial codes which are the contractions of C .  This n 
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implies that if we receive a code vector with an error 

pattern e(x), and furthermore, we decode it incorrectly 
n1 r> 

to (x  ) , 1/ p/ n„ the syndrome will be zero, and de- 

coder cannot know that an incorrect decoding has occured.Q 

Therefore this is a limitation on this decoding 

algorithm.  For this particular example that is the 

(15,9) BCH code, (n-k) is 6.  Therefore to achieve the 

Reiger bound this code must correct a burst of length 3. 

However all the bursts of length 3 can be corrected 

except the solid burst of length 3. 

Next we decided to try an alternative way which is 

to transform the solid burst to a double error and use 

the random error correcting capability of C to locate n 

the burst. 

The procedure is as follows: 

Let e be a solid burst of length n„.  Therefore 

we can represent the burst as a polynomial of degree 

(n?-l) as shown in the previous example.  That is 

n2-l   
n2~2 

e(x) = x   + x   +...+X+1 

Suppose: the received vector r = v+e that is, the code 

vector v has been corrupted by e and r has been received. 

In polynomial form we have  r(x) = v(x) + e(x) 
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let us multiply r(x) by (x+1), which gives 

(x+l).r(x) = (x+1) v(x) + (x+1) e(x) 
n2 = (x+1) v(x) + (x z+l) = (x+1) v(x) + 

e'(x) 

thus the solid bursts is transformed into a burst of 

length (n2+l) such that only its beginning and end bits 

are 1.  Therefore theoretically one can correct this 

burst using the random error correcting capability of 

the code, and this information can be used to locate 

the burst, and hence the proper decoding follows.  How- 

ever we found that if the defining set of these codes 

(i.e., cyclic codes with length n = n.. x n„ such that 

(n-, n„) = 1) is formed by selecting only the roots that 

are necessary to form the contractions, the minimum 

distance of the code will be 4.  Therefore the code is 

not capable of correcting all combinations of double 

errors and in particular for the cases that there is a 

tie we have: 

e(x) is a solid burst of length n„ 

(x  ) . e(x) is another solid burst of same length 

that would result in the same syndrome, where 0<^P/  n„ 

let us consider a combination of two of these bursts 
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that are transformed using the procedure that was pre- 

sented,  w.l.o.g. we have: 
-"■=• n  ' 

e"(x) = (x+l).e(x) + (x+l).(x x)   . e(x) 
n        n     n        n„      n  p 

. = (x z+l) + (x x).  (x A+l)  =   (x z+l).((x X) +1) 

ich is divisable by g(x) = g-.(x) •g„(x) where g.. (x) wh 
n„-l    no~2 "      "   nl~1    n--2 

x    +x    +...+X+1 and g?(x) = x    + x    + 

... + x + l are the generator polynomial of the two 

contractions of c  of lengths n„ and n.. respectively, 

and g(x) is the generator polynomial of c .  Hence e"(x) 

is a code word polynomial therefore if &n   incorrect de- 

coding results the syndrome will be zero.  Hence the 

double errors of such form cannot be corrected. 

Let us define the following, S   and S   are the 
nl      n2 

defining sets for the two contractions of C with defin- b n 

ing set S , such that S  I j S   = S  and S f~)  S  = <±) &     n' n1 w  n„    n     n ' '  n„  T 

and the two contractions are trivial codes.  Then the 

burst error correcting capability of this class of 

codes is one less than the length of the shorter 

contraction of C , and furthermore all bursts of length 

equal to n„ can be corrected except the solid burst of 

such length.  Hence to achieve the best efficiency on 

this class of codes, n- and n„ must be as close as 
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possible. 

If n1 = ru+2 then to meet the Reiger bound the code 

of length n = n- . n„ must correct a burst of length up 

to n9.  However our procedure limits this capability to 

(n„-l) therefore this decoding procedure meets the Reiger 

upper bound asymtotically.  The interested reader must 

also bear in mind that only one combination of a burst 

of length n? cannot be corrected.  (i.e., the solid 

burst of length n„). 

However sometimes it is possible to achieve the 

Reiger bound, by adding one extra root to the defining 

set of C .  The idea is to increase the minimum dis- n 

tance, so that we can transform the solid burst into a 

double error and use the random error correcting capa- 

bility of the code to correct it.  One example that we 

found is the.(15.9) code with the defining set S  = 

O > Ct       i by adding Q- to the defining set the minimum 

distance increases to 8, so the code c'  with defining ' n & 

set S' ={CX   >CX   >Ci is capable of correcting any 

combinations of three random errors.' C  is 'a (15,5) n        ' ' 

code, hence according to Reiger bound it must be capable 

of correcting a burst of length 5.  Let us consider the 

(15,5) code. 
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Example 3.4.  Let c'  be cyclic code of length 15 

13  5 with defining set S'  = (Q/ , £y , £Y ), and two contraction 

tables as in example 3.3.  We have already considered a 

burst of length 3.  Notice that a solid burst of length 

3 can be transformed to a double error and hence can be 

corrected. 

I.  CONTRACTION OF C, K to CK 15     5 

C0 + C5 + C10 = b0 

Cl + C6 + Cll = bl 

C2 + C7 + C12 = b2 

C3 + C8 + C13 = b3 

C4 + C9 + C14 = b4 

II.  CONTRACTION OF C15 to Cg 

c0 + c3 + c6 + c9 + c12 = b-0 

Cl + C4 + C7 + C10 + C13 = b'l 

C2 + C5 + C8 + Cll + C14 = b'2 

Let us consider a solid burst of length 4 say, the 

solid burst corrupts (c0> c. , c„, c„) then if the code 

had odd weigth before being corrupted, we would have 
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b = (00001) and b' = (100).  In this case an incorrect 

decoding might result because from the tables it seems 

that the error is contained in row 5 of table I and row 

1 of table II so one might pick c~ as the possible 

candidate, however according to a well known theorem 

considered in chapter II a burst of length (n-k) cannot 

be a code word, that is in this case a burst of length 

10 cannot be a code word, therefore if c„ is picked 

as the corrupted bit, the syndrome will not be zero. 

Hence the decoder will know that the error is contained 

in rows 1 through 4 of table I hence a solid burst, and 

to decode. Either one can transform the burst or simply 

compare the two tables as discussed in""example 3.3. 

However one can easily show that all 'the bursts of length 

up to 5 can be corrected, and the procedure involves 

checking the syndrome.  However for this particular 

code we can meet the Reiger bound using error trapping 

decoding, etc. of all the other codes that we considered, 

the (15,5) code was the only one which we were success- 

ful in reaching the Reiger theoretical upper bound. 

In contracting the (15,5) code our intension was to 

increase the minimum distance of the code, which was 

done by adding more roots to its defining set. 
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Next we considered the code of length 45 that 

contracts to 9 and to 5, based on this we formed the 

(45,33) code for which Reiger bound guarantees that a 

burst of length 12 cannot be a code word.  The defining 

f 5   9   15 ") 3   21 set of this code is S =j£y ,£v , Q , we addedQf , Q{ 

to S , hence the new defining set is S' =W ,Qf ,Q( ,rj   ,ry 

(where Ct is a primitive root of unity).  This did not 

increase the minimum distance of the code (d=4) so, 

the code is only capable of correcting one random error 

as guaranteed by the Hamming bound.  Hov/ever, this is a 

(45,25) code, and the roots are chosen such that this 

code can be contracted to length 3, 5, 9 and 15.  For 

this code Reiger bound guarantees a burst of length 20 

is not a code word, therefore to meet the Reiger bound 

this code must be capable of correcting any burst of 

length 10. 

We now consider an example which shows the burst- 

error-correcting capability of this code. 

Example 3.5.  Let c be a cyclic code of length 45, 

for this code if only the contractions of length 5 and 

9 are considered, our procedure guarantees that any 

burst of length 4 can be corrected, and in this case this 

code is only (4/6 = .67) 67% efficient.  However when 
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3      21 * Ql   and^   are added to the defining set of this code 

we have also the contraction of c  of length 15 and that n      ° 

of length 3.  Let us consider the tables (labeled as I, 

II, III and IV): 

. I. 3, 9, 15, 21  »- 15 | Code of length 15 

II. 5, 15 *■    9 | Code of length 9 

III. 9  *► 51 Code of length 5 

IV. 15 * 31 Code of length 3 

TABLE I: CODE OF LENGTH 
' T 

15 

0 15 30 
1 16 31 
2 17 32 
3 18 33 
4 19 34 
5 20 35 
6 21 36 
7 22 37 
8 23 38 
9 24 39 

10 25 40 
11 26 41 
12 27 42 
13 28 43 
14 29 44 
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TABLE II:  CODE OF LENGTH 9 

0 9 18. , 27 36 
1 10 19 28 37 
2 11 20 29 38 
3 12 21 30 39 
4 13 22 31 40 
5 14 23 32 41 
6 15 24 33 42 
7 16 25 34 43 
8 17 26 35 44 

TABLE III:  CODE OF LENGTH 5 

0 5 10 15 20 25 30 35 40 
1 6 11 16 21 26 31 36 41 
2 7 12 17 22 27 ■ 32 37 42 
3 8 13 18 23 28 33 38 43 
4 9 14 19 24 29 34 39 44 

TABLE IV:  CODE OF LENGTH 3 

0 3  6   9  12  15 18 21 24 27  30  33  36  39  42 
1 4  7  10  13  16 19 22 25 28  31  34  47  40  43 
2 5  8  11  14  17 20 23 26 29  32  -35  48  41  44 

Using tables "II and III we can correct a burst of length 

4,  If tables I and_IV are also used it is very easy to 

see that a burst of length 8 can be corrected,  But 
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suppose a code vector is corrupted by a solid burst of 

length 9, say that the burst covers cn through cR. 

This burst is not distinguishable from another solid 

burst covering c^,-  through c2„ or the burst covering 

c„0 through c3g.  In polynomial form we have: 

e^x) + e2(x) = x
8 + x7 + + 1 + x23 + 

22 . x  + + X 15 

(x+l).e1(x) + e2(x) = x
9 + 1 + x24 + x15 

(x9 + 1) + x15(x9 +.1) 

= (x9 + l)-(x15 + 1) 

however LCM m„(x).mg(x).m15(x).m2](x) (x15+l) and 

LCM m5(x)Jm15(x) 
9 

(xy+l) 

and this implies that the sum of two such bursts is a 

code word, and hence, they result in the same syndrome, v 

thus such bursts cannot be corrected.  Please note that 

all bursts of length 9 can be corrected except a solid 

burst of such length.  To conclude the example we must 

3     21 mention that by addingQf  andQf  to the defining set 

c and hence forming the contractions to length 21 and 3, 

The efficiency of this code jumped to (8/10 = ,80) 80% 

an  increase of 13 percent.  Therefore sometimes we can 

37 



gain more by looking at several contractions in parallel. 

So far in .all our examples we considered parallel contrac- 

tions.  However sometimes it is possible to consider 

sequential contractions or parallel contractions in con- 

junction with sequential contractions. 

Next we tried to apply this to cyclic code of length 

45, we selected the defining set of this code such that 

it contracts to trivial codes of lengths 5 and 9,  Next 

3 3 we addOf to the defining set, and sinceQf has order 15 
3 

it can generate a code of length 15.  If onlyQ?  is in 

the defining set, it forms a (15,11) code.  However in 

15      9 
conjunction withC/  andO'  which have order 3 and 5 

respectively, the set Q   ,C'l   > CX generates a (15,5) 

code which was considered in one of the examples and it 

was shown that this code is capable of correcting a 

burst of length 5.  This will enable the decoder to 

break the tie when a solid burst of length 5 occurs. 

45 

3 5 9 15 

two parallel    four parallel 
contractions    contractions       ,. ,   ,    ,, , sequential and parallel 

contraction together 
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All the codes that we have considered so far have length 

n =(n1. n2]>where (n-, n„) = 1.  In many cases however, 

it is possible to form 3 or more contractions such that 

all are relatively prime to each other. 

Example 3.6.  Consider the binary cyclic code c of 

length n = 105 = n^ . n„ . n„, where (n-, n„) = 1, (n-, 

n„) = 1 and (n2, n„) = 1, hence by selecting the defining 

set properly, we can form the contractions of c to c  , n    n 1 

c  and c  , where n1 =7, nQ = 5 and n„ = 3 respectively, 
n2      3 

To meet the Reiger bound this code must be capable of 

correcting a burst of length 6. 

Let us consider the contraction tables of this code. 

Note that the elements in each row represent the positions 

of a code word of length 105 in c . 
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(3, 5, 7)    n = 105 

I.  (3, 1)  CODE CONTRACTION 

0  3  6  9  12  15  18  21  24  27  30  33  36  39  42 
45  48  51  54  57  60  63  66  69  72. 75  78 

81  84  87  90  93  96  99  102 

1  4  7  10  13  16  19  22  25  28  31  34  37  40 
43  46  49  52  55  58  61  64  67  70  73  76 

79  82  85  88  91  94  97  100  103 

2  5  8  11  14  17  20  23  26  29  32  35  38  41 
44  47  50  53  56  59  62  65  68  71  74  77 

80  83  86  89  92  95  98  101  104 

0 

II.  (5, 1)  CODE CONTRACTION 

5 10 15 20 25 30 35  40 45 50 55 60 65 
70 75 80 85 90 95 100 

6 11 16 21 26 31 36  41 46 51 56 61 66 
71 76' * 81 86 91 96 101 

7 12 17 22 27 32 37  42 47 52 57 62 67 
72 77 82 87 92 97 102 

8 13 18 23 28 33 38  43 48 53 58 63 68 
73 78 83 88 93 98 103 

9 14 19 24 29 34 39  44 49 54 59 64 69 
74 79 84 89 94 99 104 
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III.  (7, 1)  CODE CONTRACTION 

0 7  14  21  28  35  42  49  56  63  70  77  84  91 
98 

1 8  15  22  29  36  43  50  57  64  71  78  85  92 
99 

2 9  16  23  30  37  44  51  58  65  72  79  86  93 
100 

3 10  17  24  31  38  45  52  59  66  73  80  87  94 
101 

4 11  18  25  32  39  46  53  60  67  74  81  88  95 
102 

5 12  19  26  33  40  47  54  61  68  75  82  89  96 
103 

6 13  20  27  34  41  48  55  62  69  77  83  90  97 
104 

and the roots of the generator polynomial are 

whereQfis a primitive 
c _ l" 35   21 _15   45? 

105'th root of unity.  Any 3 rows that belong to differ- 

ent tables are orthogonal on one element and hence we 

3   5-7 have a total of (-.) (^) (^) = 105 possible combinations 

thus we can use this property for error correction. 

Since any combination of three rows of different 

tables are orthogonal on one element then obviously 

any single burst of length one can be corrected.  Now, 
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let us assume that a burst of length two occurs, say that 

bits 0 and 1 are erased, by refering to the table, one 

can easily see that the two bits in rows one and two 

of tables I, II and III are bit zero and bit one.  The 

reader should note that we are considering a burst of 

length two.  However, let us assume, that a solid burst 

of length 3 occurs say that it covers bits 0, 1, and 

2.  In this case table I would not give us any infor- 

mation and the bits in common between the first three 

rows of tables I, II and III are (0, 1, 2), (35, 36, 37) 

and (70, 71, 72), hence the decoder fails.  In polynomial 

representation we have: 
l 

£2(x) = x
2 + x + 1,  £2(x) = x

37 + x36 + x35 

£x(x) + ^2(x) = x
35 (x2 + x + 1) + (x2 + x + 1) 

= (x2 + x + 1) (x35 + 1) 

g(x) = (x2 + x + l)(x4 + x3 + x2 + x + l)(x6 + x5 

+ x4 + x3 + x2 + X + 1) 

and since g(x)  (£-(x) + £„(x)) these two error patterns 

have the same syndrome, and. hence...thf*.decoding pf_._this 

error pattern is not possible.  However, all other 

bursts of length three can be corrected. 

For this code we were not able to find any set of 
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consecutive roots and hence BCH bound, says that min. 

dist. is 2,  HT and Roos bounds also did not show any- 

thing more. 

As to what the actual minimum distance is, we do 

not know.  However this method is very simple for random 

error correction.  Especially, since it does not involve 

any kind arithmatic over finite fields. 

One may also- contract a code of length 105 to 

trivial codes of length 35, 21 or 15.  If these are 

simultaneous contractions the defining set contains 

j Cl    ,Ct      ,Ct     ,Ci which generate the code of 

length 15 and [CAG'15 ,Q25, a35 ,Q45  j that generate 

the code of length 21 and f inally JQ'3 ,Cf9 ,Q25 .Q21', &45\ 

which generate the code of length 35.  The number of 

.parity checks equals 68.  Hence to meet the Reiger 

bound, decoder must correct bursts of up to length 34. 

Note that Lemma 3.2. also applies to three or more 

simultaneous contractions.  The contraction tables 

for this code are shown below: 

15—£-7, 21, 35, 49    [length 15 code 

21 5-2, 15, 25, 35",r"«J"| length 21 code 
35- -^-3, 9, 15, 21, 45 I length 35 code 

where the numbers in the bracket represent powers of 
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in an extension field. 

(15, 1)  CODE 

0 15 30 45 60 75 90 
1 16 31 46 61 76 91 
2 17 32 47 62 77 92 
3 18 33 48 63 78 93 
4 19 34 49 64 79 94 
5 20 35 50 65 80 95 
6 21 36 51 66 81 96 
7 22 37 52 67 82 97 
8 23 38 53 68 83 98 
9 24 39 54 69 84 99 

10 25 40 55 70 85 100 
11 26 41 56 71 86 101 
12 27 42 57 72 87 102 
13 28 43 58 73 88 103 
14 29 

\ 
\ 

44 59 74 89 104 

(21, 1)  CODE 

0 \21 42 63 84 
1 ^2 43 64 85 
2 23 44 65 86 
3 24 45 66 87 
4 25 46 67 88 
5 26 47 68 89 
6 27 48 69 90 
7 28 49 70 91 
8 29 50 71 92 
9 30 51 72 93 

10 31 52 73 94 
11 32 53 74 95 
12 33 54 75 96 
13 34 55 76 97 
14 35 (iJ 56 77 98 
15 36 j 57 78 99 
16 37 ' 58 79 100 
17 38 59 80 101 
18 39 60 81 ,  102 
19 40 61 82 103 
20 41 62 83 104 
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(35, 1)  CODE 

0 ' 35 -: 70 
1 36 71 
2 37 7 
3 38 73 
4 39 74 
5 40 75 
6 41 76 
7 42 77 
8 43 78 
9 44 79 

10 45 80 
11 46 81 
12 47 82 
13 48 83 
14 49 84 
15 50 85 
16 51 86 
17 52 87 
18 53 88 
19 54 89 
20 55 90 
21 56 91 
22 57 92 
23 58 93 
24 59 94 
25 60 95 
26 61 96 
27 62 97 
28 63 98 
29 64 99 
30 65 100 
31 66 101 
32 67 102 
33 68 103 
34 69 104 

If one does not wish to use the decoding procedure for 

correcting bursts, instead correcting random errors are 
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intended.  The following considerations are to be taken 

into account. 

1) This algorithm best handles single random 

error or a single burst of length one. 

2) For correcting a single burst of length one 

there is no need to contract the original code that 

has composite lengths c to trivial codes.  It is 

necessary and sufficient if the contractions of c 

are capable of correcting a single error. 

To clarify this let us consider an example. 

Example 3.7.  Let C be a binary cyclic code of 

length n = 21.  If the defining set of this code is 
T  3   7  9 7 

s =) C/.   >CL   >CX   \>   we can contract it to two trivial 

codes of length 3 and 7 in which case it has minimum 

distance four, as will be shown later.  Therefore the 

random error correcting capability of this code is one. 

However if the defining set of this code does not con- 
9 

tainQf , then the contraction of c to length 7 will not 

be a trivial code, rather it is a (7,4) Hamming code 

which has minimum distance 3 which is the minimum 

distance of the code C.  Which is capable of correcting 

any single burst of length one. 
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Example 3.8.  Let C be a binary cyclic code of 

length n = 35, let the defining set of this code be 

[5       7       15 7 s =j Ci   >Ct   yd       j   in which  case the code C  can be 

contracted to trivial codes of length 5 and 7.  But if 

15 Ql     is omitted from the defining set, the code of 

length 7 will not be trivial, rather it is a (7, 4) 

hamming code with minimum distance 3, which is also 

the minimum distance of C. 

Example 3.9.  Let c be a binary cyclic code of 

length n =.63.  Let the defining set of this code be 
r 7   g   21   271 

^ = \C£ >Ci   'Ci     > Ci       •  Thus code C can be contracted 

to two trivial codes of length 7 and 9.  The minimum 

21 distance of the code is 4.  Now suppose that Qf -  and 

29 CX       are omitted from the defining set of C.  In which 
\     7       9 ? case S =\(y   ,(y       and thus C contracts to a (7,4) 

hamming code and a (9, 3) code, which both have mini- 

mum distance 3.  The new minimum distance of C is also 

3.  Therefore C can correct any single burst of length 

one. 
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ON THE MINIMUM DISTANCE Of CYCLIC CODES OF LENGTH 11=1^. n2 

In this section we are going to prove that if c 

is a cyclic code of length n = n.. . n„ and defining set 

n ~ nJ^ n„  a   nJ  I n„ = f) and the two contractions 

are trivial codes: S  and S  are the defining sets 
nl     n2 

for the two contractions of c of lengths n1 and nQ 

respectively.  Then c has minimum distance equal to 4, 

Before presenting the formal proof, we are going to 

state some theorems without proof.  However these 

results prove to be both informative and helpful in 

the derivation of our proof, the interested reader 

could refer to [2], [5], [6], [7] for formal proofs. 

Theorem 4.1.  (BCH Bound)  If a defining set A 

for a cyclic code contains a consecutive set of length 

(5-1, then dA^ §. 

Theorem 4.2.  (Hartmann-Tzeng Bound).  If 

A = \{J     ,/j  , . . . , fl      I is a defining set for a cyclic 

code and if fj  is a primitive n'th root of unity such 

that A contains the consecutive sets 

£i+Jaf£l+l+ja(   _f£H<5-2+daj   ,   0 N< J N< S ,   and 

if   (5 ,   n)  =  1 and  (a,   n)  =  1 then  dA  ^ 5 +S. 
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Theorem 4.3.  (Roos bound).  If A is a defining 

set for a cyclic code with minimum distance d. and if 

B is a set of n'th roots of unity such that M<|B' 
d. -2, then the code with defining set AB has minimum 

containing B 

+ d." - 1 where B is a consecutive set distance d\  B 

ining B. 

Theorem 4.4.  (Wilson and VanLint)  Let n = I, n 
0 

Let d be the minimum distance of the binary cyclic code 

C of length n for which the defining set contains 

[d   1 Ct   2^ ^ ^ . C/ kj(where Cy is a primitive n'th root 

of unity).  Let d~ be the minimum distance of the cyclic 

code C of length n„ (contraction of c) with defining 

set I £ 1, i;   2, . . . , £ k] , ( % = Cll)   then d is even 

or d  d0. 

Proof.  In theorem 3.1.  we showed that b = (b , 

V ■••• bnQ-l> * C where b. = Cj + c.^ + c.^ + 

... + c. + , _1xn ; c£C therefore/ if b. =0 for 0^J/nQ - 1 
u § 

then c has even weight.  Otherwise at least d_ of the, 

coordinates c. are 1 . O 

To translate this result to be useful in our pro- 
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blem, consider the following:  Since we are contracting 

the code c of length n = n1 . n_ to two trivial codes 

c  and c  of lengths n1 and nQ respectively the mini- 
nl     n2 . 

mum distance of c  is D„, we also showed that the odd 
n2    2' 

weight vectors contract to all one vector of length n- 

and all one vector of length n? hence in the simultan- 

eous contraction the minimum distance of the odd weight 

vectors is at least n„ (suppose that n y n1),  We also 

showed that the even weight vectors contract to all zero 

vectors of length n.. and n„,  Therefore the minimum 

distance of the even weight codes is even and hence, 

the minimum distance of c  is even or d  "S n„.  (Assum- n c v   2 

ing n2 >n1). 

If S  and S  are the defining sets that generate 
nl     n2 

£+ic 
the two contractions of c and if Ct is a set of 

consecutive roots in the defining set of c , for 

0^ i^ dQ - 2 and (n, c) = 1 then we have d\dQ, however 

since (n- , n2) = 1? dQ  must equal three otherwise (n ,c) 

f 1 and hence BCH does not apply.  Therefore according 
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to BCH bound we have d"S3. but theorem 4.4. implies 

that either d^n„ of d is even therefore d\4, and 

in fact d = 4 for all the cases that we considered. 

□ 
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IV.  A DECODING ALGORITHM FOR CYCLIC CODES OF LENGTH n=n1.n2.n3 

In the previous sections we very briefly discussed 

the decoding algorithm for this class of binary cyclic 

codes of composite lengths.  However we mentioned that 

this decoding algorithm has the advantage of being very 

simple, and furthermore that no arithmetic has to be 

carried out over finite field. 

The algorithm can best be presented1 by considering 

an example. 

Example 4.1.  Let C be a binary cyclic code of 

length n = 15 =(&-,   . no) = (^ x 3j>let the defining set 

for this code be S = \Gt   ,OC     , where Ci is a primitive 

15'th root of unity.  The contraction tables for this 

code are: 

TABLE I 

0 5 10 
1 6 11 
2 7 12 
3 8 13 
4 9 

TABLE II 

14 

0 3 6 9 '  12 
1 . 4 7 10 13 
2 5 8 11 14 
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where the numbers correspond to digits of a code in C. 

Consider the following permutation of the elements of 

the rows of table II 

TABLI 

\ 
0 3 6 9 12 
0 13 1 \ 4 7 
5 8 11 \ 14 2 

This permutation in fact combines the two tables into 

one, because the rows of table III are the rows of table 

II, and the columns of III are the rows of table I. 

Furthermore, consider any column berween any two 

consecutive element in any column (including the wrap 

around), there is a jump of 10 mod 15; for instance 

T consider the third column, which is (6  1  11)  then we 

have : 

I = 6 + 10 mod (15) \ 

II = 1 + 10 mod (15) 

6 = 11 + 10 mod (15) 

Also between consecutive elements of any row there is a 

jump of 3.  Therefore if the decoder is intelligent, there 

is no need to save these tables. 

At this point the decoding is only as complex as the 
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old multiplication tables that primary school students 

use to learn how to multiply. 

Let us assume that an error changes the parity of 

the second row and third column .  But the second row 

and third column meet on position 1 and hence that is 

the error. 

Now let us assume that the error changes the parity 

of the first two rows and colums one and three.  These 

two rows and columns meet on the following positions. 

(0, 1, 6, 10) but since the burst error correcting capa- 

bility of this code is 2 plus all the non-solid bursts of 

length 3.  Decoder knows that bits zero and one are the 

errors. 

Let us consider another example to make the algorithm 

more clear. 

Example 4.2.  Let c be a binary cyclic code of 

\    5   7   15( length n = 35 with defining set S = S(y  ,Q(   ,Q£     j > the 

contraction tables are: 
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TABLE I 

0 7 14 21 28 
1 8 15 22 29 
2 9 16 23 30 
3 10 17 24 31 
4 11 18 25 32 
5 12 19 26 33 
6 13 26 27 34 

TABLE II — ~~ ■ 

0 5 10 15 20 25 30 
1 6 11 16 21 26 31 
2 7 12 17 22 27 32 
3 8 13 18 23 28 33 
4 9 14 19 24 29 34 

to combine the two tables we must shift row two of II by 

4 and row 3 of II by 8 and so on, then we have: 

TABLE III 

0 5 10 15 20 25 30 
21 26 31 1 6 11 16 
7 12 17 22 27 32 2 

28 33 3 8 13 18 23 
14 19 24 29 34 4 9 

In this case the jumps between the consecutive elements 

of any column is 21.  We will now show how the jumps be- 

tween elements of rows and columns can be used for decoding 

the burst.  Assume that a burst of length one occurs and 
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changes the parity of say third row and fourth column. 

The decoder labels the rows and columns differently, the 

first row is labeled as row zero, and the first column 

is labeled as column zero.  Decoder also knows that row 

zero and column zero meet on position zero.  Thus decoder 

sees that the parity of row two and column 3 has changed. 

Since the jump in columns is 21 then row two and column 

three must meet on 15 + (2x21) mod (35) = (15 + 42) _ = 

(57)35 = 22 

which is indeed the correct position.  Therefore if the 

decoder has some intelligence it need not save the table 

in memory.  However for codes of considerably short length, 

it might be advantageous to use' a table   look up pro- 

cedure for decoding. 

Now let us consider a burst of length 4 and sssume 

that the burst corrupts bits (0, 1, 3) hence the parity 

of row zero, row one and row three changes, along with 

that the parity of columns zero, two and three. 

Using table, look up or taking advantage of the jumps, we 

find out that the burst is hidden in the following sequence 

of the positions: 

0, 21, 28, 10, 31, 3,,15, 1, 8 
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At this point decoder must sort the sequences which 

results in: 

0, 1, 3, 8, 10, 15, 21, 28, 31 

decoder knows that three bits are in error as can be seen 

from the total number of columns that changed parity, and 

furthermore the burst error capability of'this code is 4. 

Hence a burst of larger length is not decoded as the 

error pattern.  Thus, decoder must find a sequence of at 

most four consecutive numbers in the above sequence which 

represent the positions in a code word in C.  The only 

consecutive subset of the above sequence and cardinality 

less than 4 is fO, 1, 3 ) which is in fact the correct 

error pattern. 

The speed of the decoder is only limited by the 

search method used.  Hence by implementing an efficient 

search algorithm in software or hardware, the decoding 

time and speed increases substantially. 

For three or more contractions, a similar procedure 

can be devised, for instance for the code of length 105 

which contracts to trivial codes of length 3, 5, and 7, 

the contraction tables can be combined in a cube form. 

However, in the cube the error bits is recognized as the 
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intersection of thre*e planes, which meet on one point, a 

position in this case.Therefore in the three contraction 

tables, each row is represented as a plane in the cube. 

Hence if the parity of some row changes, it will cause 

a change in the parity of jar plane. 

Furthermore, since each combination of 3 rows are 

orthogonal on one element, this implies that any three 

non-parallel planes intersect on one code position, thus 

the decoding can be carried out easily.  Please refer to 

■the contraction tables in example 3.6. and compare with 

the cube shown below, and notice how the rows of contrac- 

tion tables are arranged as planes in the cube. 
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A block diagram for the decoder is shown below: 

register of length n 

contraction of 
c to length n- 

standard decoder for: 
the code of length j 

n. 

contraction c to 
length n„ 

standard decoder for 
the code of length 

decoding algorithm 
(based on jumps or talbe look up) 

Corrected code word 
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"\ 

V.  CONCLUSION 

In this thesi§_, we considered the random and burst 

error correcting capability of a certain class of cyclic 

block codes. --*■---'*"* 

The main work was based on our study of a subclass 

of cyclic codes, namely, the cyclic codes of composite 

length n = n1 x n„ x ....  Such that n-, n2, ... are 

pair-wise relatively prime.  Based on simultaneous con- 

tractions of a code of composite length to its factors, 

we developed a new decoding technique.  Furthermore, it 

was shown in this thesis that for correcting bursts, 

this technique is efficient because it meets the Reiger 

theoretical upper bound  asymtotically, when applied to 

a certain subclass of codes of composite length.  And 

gives considerably good results in other cases.  We also 

considered the application of this decoding algorithm to 

random error-correction, and showed that the algorithm 

can easily be implemented in software and/or hardware. 

In this work we mainly considered two simultaneous 

contractions of a code C.  And occasionally we considered 

three contractions.  Further research on this subject, in 
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our opinion must concentrate on error-correcting capabil- 

ity of codes that contract to several shorter codes. 

How to increase the efficiency of these codes, and what 

are the possible limitations of this procedure when appli- 

ed to codes with multiple contractions. a* 

62 



REFERENCES 

[1] E.R. Berlekamp, Algebraic Coding Theory, New York: 
McGraw-Hill, 1968. 

[2] W.W. Peterson and E.J. Weldon, Jr., Error-Correcting 
Codes, 2d edition., Cambridge, Mass.: MIT Press, 
1972. 

[3] N. Abramson, "A Class of Symmetric Codes for Non- 
independent Errors,"  IRE Trans. Inf. Theory 
IT-4(4): 150-157, December, 1959* 

[4] H.0. Burton, Some Asymtotically Optimal Burst-Correct- 
ing Codes and Their Relation to Single-Error- 
Correcting Reed-Solomon Codes, Bell Laboratories, 
1968. 

[5] J.H. VanLint and R.M. Wilson, "On the Minimum Distance 
of Cyclic Codes," pre-published paper. 

[6] C. Roos, "A New Lower Bound for the Minimum Distance of 
a Cyclic Codes,"  IEEE Trans. Inform. Theory, 
IT-29, pp.330-332, May, 1983. 

[7] C.R.P. Hartmann and K.K. Tzeng, "Generalizations of 
the BCH bound," Inform. Contr. 30:489-498, 1972. 

[8] S. Lin and D.J, Costello, Error Control Coding: Funda- 
mentals and Applications,  Prentice-Hall, 1983, 

[9] F.J. McWilliams and N.J.A. Sloan, The Theory of Error- 
Correcting Codes, Amsterdam: North-Holland, 1977. 

[10] V.C. DaRocha, "Efficient Burst-Correcting Cyclic Codes," 
Electronics Letters, 19(2), 20 January^ ,1983. 

63 



VITA 

Homayoun Shahri was born in Iran on November 13, 

1960.  He graduated from Alborz High School in 1977 in 

Iran.  He attended Hofstra University from 1978 until 

1980 and the State University of New York at. Stony Brook 

from 1980 until 1982 from which he received with honors 

•the B.E. degree in Electrical Engineering.  Since 1982, 

he has attended Lehigh—University, where he has been 

a Teaching Assistant in the department of Computer 

Science and Electrical Engineering,  Homayoun Shahri 

is a member of IEEE. 

64 


	Lehigh University
	Lehigh Preserve
	1-1-1984

	On the error-correcting capability and decoding of cyclic codes of composite length.
	Homayoun Shahri
	Recommended Citation


	tmp.1451580486.pdf.CcSTq

