An investigation into the validity of the breakpoint hypothesis.

Gary B. Greene

Follow this and additional works at: http:/ / preserve.lehigh.edu/etd
Part of the Industrial Engineering Commons

Recommended Citation

Greene, Gary B., "An investigation into the validity of the breakpoint hypothesis." (1984). Theses and Dissertations. Paper 2206.

an investigation into the validity of THE BRFAKPOINT HYPOTHESIS
 by
 Gary B. Greene

A Thesis

Presented to the Graduate Committer of Lehigh University in Candidacy for the Degree of

Master of Science $\therefore \quad$ in
x_{1}
Industrial Engineering

Lehigh University 1984

ProQuest Number: EP76479

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest EP76479
Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

This thesis is accepted and approved in partial fulfillment of the requirements for the degree of Master of Science.

$$
0
$$

May 11,1984

Profesplrin Charge

2

TABLE OF CONTENTS

Page
LIST OF TABLES v
LIST OF FICURES vili
ABSTRACT ix
Chapter

1. INTRODUCTION 1
1.1 Theoretical Framework 1
1.2 Research Ouestion 6
1.3 Breakpoint Mypothesis 6
2. LITERATURE REVIEW 9
2.1 Sample Applications 9
2.2 Deterministic Break Curves 14
2:3 Probabilistic Break Curves 20
2.4 Data Issues 41
2.5 Summary 44
3. EXPERIMENTAL DESIGN 45
3.1 Categorization of the Data 17
3.2 Data Sources 56
3.3' Listing of Engagement Data Matrix 5Ω
3.4 Data Elements Contained within the Engagement Data Matrix 100
3.5 Engagement Identification 1173.6 Transformation of the Data1?2
3.7 Methodology 120
3.8 Summary 139
4. RESULTS 140
4.1 Factor Analysis for Data Reduction 141
4.2 Breakpoint Hypothesis Testing 145
4.3 Discriminant Analysis 153
4.4 Discussion of Results 155
4.5 Summary 151
5. CONCLUSIONS 2ヶ?
5.1 Results Summary 16 ?
5.2 Areas for Future Research 163
REFERENCES 165
APPENDICES $16 ?$
A. Mathematical Glossary of Terms 267
B. Nonmathematical Clossary of Terms 172
C. Breakpoint Hypothesis Test Results 180
VITA 191
1.1 Influence of Unit Breakpoints on the Outcome of Rattle for an Attack by X asalnst Y with Battle Dynamics by Lanchester's Equation for Modern Warfare 6
2.1 Typical Breakpoints 13
2.2 Data Elements Contained within, Fngagement Data Base 15
2.3 Deterministic Breakpoint Categories 17
2.4 Methods of Calculating Casualties 1Ω
2.5 Data Elements Contained in Helmbold's Engagement Data Matrix 3.7
2.6 lest Results on the Validity of Lemma I for the Specified Data Sets 39
3.1 Additional Combat Factors 17
3.2A Weapon Effects 51
γ 3.2B Terrain Factors 51
3.2C Weather Factors 52
3.2D Season Factors 52
3.2E Air Superiority Factors 52
3.2F Posture Factors 53
3.2C Mobility Effects 53
3.2H Vulnerability Factors 53
3.2I Tactical Air Effects 54
B
6. 2 J Other Combat Processes 51
3.2K Intangible Factors 55
3.3 Engagement Data Matrix 59
3.4 Data Elements Contained in Engagement Data Matrix 101
3.5 Data Elements and Their Associated Observed Variable Subsets 102
3.6. Number of Engagements for Each War in the Engagement Data Matrix 105
3.7 Possible Transitions to Hfher States 119
3.8 Combined Personnel Strength Summation Intervals 125
3:9 Observed Variables List (Recombined) 126
3.10 Rescarch Methodology Steps 131
3.11 Functional Forms Fit to $\psi_{\text {EMP }}$ Data Set 137
4.1 Defined Factor/Observed Variable Matrix for the First Observed Variable Segment 143
4.2 Defined Factor/Observed Variable Matrix for the Second Observed Variable Segment 144
7. 3 Sample of the Factor/Engagement Matrix Generated for Segment 2 $146^{\prime} 6$
4.4 Defined Factor Combination Prescreening 147
4.5 Number of Engagements Associated with Each Defined Factor for the Two Observed Variable Segments 149
4.6a Breakpoint Hypothesis. Test Results--Identification of "Good" Defined Factor Combination Subsets and Assocíated Equation Fit Results 151
4.6b Breakpoint Hypothesis Test Results-Component Observed Variables for Subsets of "Good" Defined Factor Combinations 152
4.7 Observed Variables Contained in Those Defined Factor Combinations Whose Associated Engagement Subsets Produced ψ^{-1} Fits Which are Superior to that for the Entire fingagement Set 153
4.8 Observed Variables Found to be S.ignificant in Distinguishing Between Winners and Losers in Engagements 155
ω
4.9 Observed Variâbles Effectively Denied Being Explicitly Included in Any Fully Evaluated Defined Factor Combination 158
4.10 Observed Variables Hampered in Being Explicitly Included in Any Fully Evaluated Defined Factor Combination 159
4.11 Comparison Between Observed Variables Found to be Significant via Helmbold Hypothesis Testing and via Discriminant Analysis 159
4.12 Additional Observed Variables Found in Subset of Good Defined Factor Combinations 160

LIST OF FICURES

Figure Page
1.1A A Deterministic Breakcurve 2
1.1B A Probabilistic Breakcurve 3
2.1 Probability of Defending Unit Continuing to Perform Mission 11
2.2 Relationship between L_{x} and L_{y} $? 3$
2.3. Another Possible Relation between L_{x} and L_{V} $? 5$
2.4 Hypothetical Casualty-Fraction Distribution In Battles Won by the Attacker 23
2. 5 Inverse Functional Relat Lonship 35
3.1 Derivation of Data Elements Contalned In the ?
Engagement Data Matrix 50
3.2 Millary Force States 117
3.3 Possible Combinations of Common Factors 132

This master's thesis investigates the validity of the breakpoint hypothesis as used in modelling conflict termination. The breakpoint hypothesis is based upon the concept that a combat force will terminate an engagement after sustaining a sufficiently high percentage of personnel casualties. Despite use of the hypothesis in many combat modelling efforts, there has not yet been a satisfactory validation of the technique.

The current investigation incorporates a series of modifications to a working hypothesis published by Helmbold (1971) and utilizes new data for empirioal testing. This investigation focuses on the identification and examination of the validity of a series of break curves using an engagement data matrix containing 323 engagements; with 24 data elements available for each engagement. The methodology consists of the use of principle components analysis to reduce the initial set of observed variables to an underlying set of defined factors followed by a test procedure to determine the degree to which Helmbold's Theorem holds for the subset of engagements associated with each uniquely defined factor combination. The results are then confirmed using discriminant analysis.

The breakpoint hypothesis testing results indicate a number of engagement subsets which obey the breakpoint hypothesis reasonably well. In addition, several engagement subsets have been found which obey the breakpoini hypothesis better than the full engagement set. These indicate that a series of break curves, rather than a single break curve, may better account for the break behavior of military forces for the set
of possible engagement types. The discriminant analysis confirms the significance of some of the observed variables and, for the most part, reconciles with the results from the breakpoint hypothesis testing.

This investigation is a preliminary empirical validation of the use of probabalistic break curves to model battle termination. Several modifications to the present methodology are suggested to refine the results. In addition, the specification of break curves for particular. groupings of engagement types should be investigated.

Chapter 1

INTRODUCTION

The breakpoint hypothesis is based upon the concept that a combat force will terminate an engagement after sustaining a sufficiently high percentage of personel casualties. Despite use of the hypothesis in many force-on-force attrition studies, there has not yet been a satisfactory validation of the technique•(Taylor, 1980:111). This thesis investigates the validity of the breakpoint hypothesis as used in modelling conflict. termination. It incorporates a series of modifications to a previously-examined working hypothesis and utilizes new data for empirical testing.

1.1 Theoretical Framework

The breakpoint hypothesis concerns the relationship of casualties to a force's decision to terminate a battle. It is the assumption that a military force gives up the battle when its personnel casualty fraction reaches a certain level, which may be either a fixed quantity or one determined on a probabilistic basis. Assumptions of this type are commonly used in war games, field maneuvers and computer simulations.

There are two techniques currently used to apply the breakpoint hypothesis: deterministic and probabilistic break curves. These are illustrated below (Helmbold, 1971:2-3).

Figure 1.1A

A Deterministic Breakcurve

Probability of disconfinuing the engagement

Figure 1.1B
A Probabilistic Breakcurve

Probability of discontinuing the engogement

$?$
\qquad

A study of the battle termination process performed by Clark (1954) demonstrates that the use of deterministic breakpoints is inconsistent with a set of combat data from World War II. More recently, the validity of probabilistic break curves was investigated by Helmbold (1971). His conclusions state that probabilistic break curves, although inherently more flexible, are not valid as currently \because employed.

The use of the breakpoint hypothesis in force-on-force attrition modeling can perhaps best be seen by example. The following is an auxiliary model for combat between two homogeneous forces following Lanchester's Equations for Modern Warfare that was presented by Dr. James Taylor in his book, Force-on-Force Attrition Modelling (Taylor, 1980:63-66):

$$
\begin{align*}
& \frac{d x}{d t}=\left\{\begin{array}{rl}
-a y & \text { for } x>x_{B P} \text { and } y>y_{B P} \\
0 & \text { otherwise } \\
\frac{d y}{d t}=\left\{\begin{aligned}
-b x & \text { for } x>x_{B P} \text { and } y>y_{B P} \\
0 & \text { otherwise }
\end{aligned}\right.
\end{array} . \quad .\right. \tag{1.1}
\end{align*}
$$

where:

$$
\begin{aligned}
& y=\text { The force level for force } y \\
& x=\text { The force level for force } x \\
& a=\text { attrition rate coefficient for } y \text { forces } \\
& b=\text { attrition rate coefficient for } x \text { forces } \\
& x_{B P}=x^{\prime} \text { s breakpoint force level } \\
& y_{B P}=y ' s \text { breakpoint force level }
\end{aligned}
$$

From this it is observed that y would "win" an engagement if and only if:

$$
\begin{equation*}
\frac{x_{0}}{y_{0}}<\sqrt{\left\{\frac{a}{b} \cdot \frac{1-\left(y_{B P}\right)^{2}}{1-\left(x_{B P}\right)^{2}}\right\}} \tag{1.2}
\end{equation*}
$$

As illustrated in Table 1.1 below, the breakpoints selected have a very significant effect on simulated engagement outcomes. This sensitivity of engagement outcome to the breakpoint used points out the need for rigorous justification of the values used. -

Influence of Unit Breakpoints on the Outcome of Battle for an Attack by X against Y with Battle Dynamics by Lanchester's Equations for Modern Warfare
(Taylor, 1980:66)

CASE	$\frac{x_{0}}{y_{0}}$	$\frac{a_{b}}{b}$	$x_{B P}$	$y_{B P}$	$\sqrt{\left\{\frac{a}{b} \cdot \frac{1-\left(y_{B P}\right)^{2}}{1-\left(x_{B P}\right)^{2}}\right\}}$	WINNER	$\frac{x_{f}}{x_{0}}$	$\frac{y_{f}}{y_{0}}$
1	3.0	5.0	0.8	0.5	3.23	y	0.8	0.59
2	3.0	5.0	0.7	0.5	2.71	x	0.76	0.50
3	3.0	5.0	$x_{B P}=y_{B P}$	2.24	x	$>y_{B P}$	$x_{B P}$	

Note: x is the attacker.

1.2 Research Question

Is the breakpoint hypothesis as stated below consistent with the set of historical data available for this investigation?

1.3 Breakpoint Hypothesis

The breakpoint hypothesis used for this investigation is listed below. Elements 1; 3 a and 3b of the hypothesis come directly from Helmbold!s working hypothesis (Helmbold, 1971:7). The second element is unique.

1) Termination of a battle can be considered as governed by the following mechanism, or one that gives the same results: prior to the battle, each side independently and at random selects a casualty-fraction value (breakpoint) from some distribution of casualty fractions. Where either side experiences a casualty fraction equal to the preselected breakpoint, the battle terminates with a loss to the side that broke.
2) The breakpoint distributions (break curves) mentioned above are generally applicable within one or more of the combinations of the observed variables contained within the engagement data matrix available for this investigation.

3a) The losses, and hence equivalently the casualty-fraction, of the forces are deterministically and monotonically related to each other. There is a monotonically increasing function, $\psi(\cdot)$, such that:

$$
f_{x}(t)=\psi \cdot\left[f_{y}(t)\right]_{\underline{O R}}^{0 \leq t \leq T}
$$

36) There is a monotone nondecreasing function ψ such that:

$$
\begin{equation*}
f_{x}=\psi\left(f_{y}\right) \tag{1.4}
\end{equation*}
$$

when the defender wins, while

$$
\begin{equation*}
f_{x}=\psi-1\left(f_{y}\right) \tag{1.5}
\end{equation*}
$$

when the attacker wins.
AlSo: $\psi(s) \geq s$ for all s .

A complete mathematical development of the above relations is contained in subsection 2.3.1.

The modifications embodied in element 2 utilizes many of the factors of combat considered significant in the literature. To a significant extent, the results of this investigation are an important statement on the walidity of many of the Department of Defense sponsored combat models currently in use.

The second chapter reviews several applications of the breakpoint hypothesis in force-on-force attrition studies as well as the empirical validation studies performed by Clark (1954) and Helmbold (1971). It also discusses the applicability of historical
data in the analysis of present and future combat processes. Chapter 3 specifies the experimental design used for the current investigation. This includes a description of the contents of the engagement data matrix, the procedure for break curve construction and the methodology used to examine their validity.
Chapter 4 presents and discusses the results of the investigation. The results of the data reduction process via factor analysis are described. Break curves are presented along with ostatements about their validity. In addition; the results obtained using the Helmbold procedure are then compared with the results obtained via discriminant analysis.
Chapter 5 documents what the results mean in terms of modelling the battle, termination process. The limitations of the study results are reviewed and areas for future research are identified.

[^0]
Chapter 2

LITERATURE REVIEW

The breakpoint hypothesis has been used in many Department of Defense sponsored force-on-force attrition studies for modelling the battle termination process. In spite of its widespread use, however, empirical support for the hypothesis is limited. Further research $+$ found only two empirical validation studies. They consist of a study performed on the validity of deterministic break curves (Clark, 1954) and an investigation into the validity of probabilistic break curves (Helmbold, 1971). Both studies found significant problems with formulations of the breakpoint hypothesis currently in use. A significant obstacle to further investigative work is the question concerning the applicability of historical data in the analysis of present and future combat processes.

This chapter provides a brief review of breakpoint hypothesis applications and its validity.

2.1 Sample Applications

Varying formulations of the breakpoint hypothesis have been used in many force-on-force attrition studies. One representative application is the current U.S. Army's procedures for the control of map exercises (Department of the Army, 1973:FM105-5, Appendix D). The functions and values which they use are based on past Army studies and combat experience. These procedures are considered valid for all
military combat units up to and including battalion-sized units (Department of the Army, 1973:FM105-5, Appendix D). The method for modelling the battle termination process for defending units 13 presented below, as taken verbatim from the Army manual. Note that the procedures provide distinct break curves to be used for attacking and defending units, respectively.

Defending Units
a. Casualties in a defending force can cause one of three results:
(1) The defense is'continued without interruption by the survivors.
(2) The defending unit requires up to 48 hours to recuperate before belng able to resume the defense in another position. (It must withdraw to a rear position.)
(3) The defending unit is totally ineffective and must either be replaced immediately or risk being overrun.
b. If the percentage of casualties is 25% or less, result. a(1) occurs. If the percentage of casualties is 40% or greater, result $a(3)$. . . occurs. If the percentage of casualties is greater than 25% but less than 40% the casualty percentage is used to determine the probability for the unit to continue defending without a delay This probability is used in conjunction with the table of random numbers to determine whether the event occurs. If the decision is affirmative, the unit can continue to defend without interruption.
c. If the decision is negative, result $a(2)$ above occurs. (Department of the Army, 1973:FM105-5, Appendix D)

This procedure utilizes two breakpoints. Result $4(2)$ is controlled by a probabilistic break curve whose boundary conditions. are (see Appendix A for the definitions of the mathematical symbols used):

$$
\begin{align*}
& F_{z}(.25)=0 \tag{2.1}\\
& F_{Z}(.40)=1.0 \tag{2.2}
\end{align*}
$$

For . $25 \frac{1}{4} u \frac{1}{4} .40$, the following break curve is used:

Percentage casualties

Figure 2.1
Probability of Defending Unit Continuing to Perform Mission
(Department of the Army, 1973:FM105-5, Appendix D)

Note that the probability that the unit breaks $=1-P_{P M}$. The discontinuity in the curve occurs at the point where the probability of the defending unit becomes nonzero.

Result $a(3)$ is controlled by a deterministic break curve with the break occurring at 40% casualties. It represents a more serious degradation of the military force.

Another application of deterministic break curves is found in the ATLAS (A Tactical Logistical Air Simulation) model. A key assumption used to model battle termination states:
a division-sized unit in a defensive position is considered combat ineffective and hence withdrawn from combat when its personnel strength falls below 67\%. The level at which an attacking unit becomes combat ineffective is 79%, although it is not withdrawn until the 67% level is reached. (Kerlin \& Cole, 1969:17)

As of ! 977 , this still is one of the most frequently used force-onforce attrition models in Department of Defense studies (Taylor, 1980: 105).

In each of these two studies, the break curves are defined differently, The relevant breakpoints are listed in Table 2.1, along with nominal attacker and defender breakpoints identified by Taylor for company-sized units (Taylor, 1980:63,64).

Table 2.1
Typical Breakpoints

	Applicable Unit Size	Attacker Breakpoint	Defender Breakpoint
Maneuver Control	battalion ór less	N / A	.6
ATLAS Taylor company	.79	.6	

Taylor's values are inconsistent. With those used in Maneuver Control, although both are considered valid for company-sized units. The functional forms employed are different as well. The sample break curves from Maneuver Control are both probabilistic and deterministic while ATLAS and Taylor's are deterministic only. These differences are significant, given the demonstrated sensitivity of the results of a battle termination model to the breakpoint values selected (see Table 1.1 and associated text).

A typical justification for the use of battle termination breakpoints is clearly seen in a study performed by Spring and Miller (1970) entitled: "Fast-Val:, Relationships among Casualties, Suppression and the Performance of Company-Sized Units". It concerns evaluating the effects of air-delivered munitions during a land combat engagement. With respect to ine unit breakpoints used, the study states:

[^1]universal agreement as to the validity of the parameters we have defined, we feel that they serve as a much-needed working starting point . . . these assumptions and relationships are subjective and will undoubtedly undergo modification as empirical data become available. (Spring and Miller, 1970:-11)

Both this and other studiAs.identify the requirement for the functional forms and values used to be empirically based whenever possible.
\star
Two empirical investigations into the validity of the functional forms and values used in break curves were found in the literature. The first concerns deterministic break curves whlle the second investigates probabilistic break curves. The results are documented in the following two sections.

2.2 Deterministic Break Curvos

Clark conducted the principle investigation into the validity of deterministic break curves. Specifically, the study's intent was:

To investigate from actual combat data the validity of the statement that a unit may be considered no longer combat effective when it has suffered N percent casualties. (Clark, 1954:1)

The data compiled for the study consisted of forty-four battalion-level engagements that occurred within seven divisional engagements in the European Theater of Operations during World War II (see Appendix B for Clark's definition of a divisional engagement). Twenty-seven distinct U.S. infantry battalions were used in the analysis.

For each battalion-level engagement, there are eight data elements available. They are listed in Table 2.2.

Table 2.2

> Data Elements Contained Within Clark's Engagement Data Base (Clark, 1954:2)

Data
Element

1
2
3
4
5
6
7
8

Description

Date
Geographic location of engagement
Attacker
Defender .
Initial U.S. force level
Daily U.S. casualties
Daily U.S. replacements
Number of days until breakpoint occurred

Clark collected data from engagements involving battalionlevelinfantry units only. There are two reasons given for this. It was " considered easiest to discern the significance of personnel casualties on combat effectiveness using infantry units since these units typically incurred the highest casualty rate in conventional warfare. In addition, the effects of other combat variables on unit combat effectiveness would be minimized by using data from infantry battalions. Clark notes that this was in contrast to other types of combat battalions. Specifically, "the effectiveness of a tanḱ battalion . . . depends as much on the operability of its tanks as on adequate orews to man them. . . . An artillery battalion may have to change its mission, not because of actual losses of material but because enemy counterbattery fire threatens to produce such losses and
the battery must shift its position to safeguard its weapons." (Clark, 1954:8-9). This lack of qualitative correlation between personnel casualties and combat effectiveness in non-infantry combat units could be a significant problem where combat data consists of engagements between combined arms or wholly non-infantry forces.

Clark took the casualty data for the engagements studied from the daily morning reports of battalion, $H Q$, headquarters company, the three infantry companies, and the heavy weapons company. Data contained in these reponts included casualties, replacements and men returned from hospital or detachment to another unit (Clark, 1954:12).

There are limitations to Clark's data. To the extent that division-related events that occurred outside the battalion's Area of Operations have an effect on the breaking of an individual infantry battalion, the observations within each divisional engagement are not independent. In addition, no information on enemy force strengths, positions or other significant data are included in the data base. This severe drawback is mitigated by World War II (Europe) being selected by Clark as the source for all engagements, since ". . . German equipment and methods accord ed more closely with the U.S. than did Japanese, North Korean or Chinese" (Clark, 1954:8). Other than the casualties inflicted on the U.S. infantry battalions, however, no quantitative statement can be made about the effect of the enemy on a unit breaking.

Clark examined three categories of deterministic break
curves. $)^{\text {They are contained in Table } 2.3 .}$

Table 2.4
Methods of Calculating Casualties
(Clark, 1954:17)

No.	Method	Rationale

The third method of calculation is the most desirable from a practical standpoint since it requires only the initial and final force levels of the units evaluated. (Clark, 1954:17)

The primary result obtained by Clark is negative. The study
concludes:

The statement that a unit can be considered no longer combat effective when i, t has suffered a specific casualty percentage is a gross ${ }^{2}$ oversimplification not supported by combat data. . . . individual differences in the ability of units to carry out their missions cannot be entirely explained on the basis of casualties and replacements alone. (Clark, 1954:3)

Personnel casualties have a significant, but not dominating, influence on a unit's combat effectiveness.

Clark also found that, when calculating casualties for unit
breakpoint determination, cumulative casualties is the best of the three methods listed in Table 2.4. This method suffers, however, from the drawback of not considering the time from the start of the engagement to the unit's breakpoint. This varles significantly between the break types. For Category I breaks, the time to breakpoint ranges from 2 to 11 days. Category II times to breakpoint ranges from 2 to 22 days and Category III from 6 to 17 days (Clark, 1954:20).

In addition to the deficiencies mentioned above, Clark found that at least two additional factors need to be accounted for when specifying a breakpoint for a combat unit. These consist of the type and size of unit(s) involved in an engagement and the presence of ". . . Widely differing ranges of loss percentages (being) associated with a breakpoint from attack to defense and a breakpoint from defense to withdrawal." (Clark, 1954:3)

The specification of unit size is evident in the applications which the investigator found elsewhere in the literature, although these applications are not always consistent. With respect to unit type, combat units whose effectiveness is not proportional to personnel strength limits the ability of personnel casualties to determine when a unit broke. Evidence that loss percentages are signficantly different for attacker and defender breakpoints indicates that breakpoints should be divided, as a minimum, into these two categories. 1

Clark also found that, due to the variations insathe data,
". . . ranges of loss percentages probabilistic break curves adhering to a uniform distribution must be used to give an accurate description of what happens in actual combat." (Clark, 1954:3) Put differently, deterministic break curves were found to be invalid. Probabilistic break curves are required to account for the variations in historical breakpoint data.

2.3 Probabilistic Break Curves

The second investigation by Helmbold examines the validity of probabilistic break curves. Probabilistic break curves provide the necessary randomness in determining the breakpoint for a combat unit. They constitute a generalized, technique for modelling the battle termination process, with the deterministic break curve being contained within the family of potential probabilistic break curves (Helmbold, 1971:3́).

Helmbold's work centered upon determining the, degree of validity contained within the hypothesis which represents common formulations of probabilistic break curves in Department of Defense sponsored studies. The hypothesis consists of the following three elements:

1) Termination of a battle can be considered as governed by the following mechanism, or one that gives the same results: prior to the battle, each side independently and at random selects a casualty-fraction value (breakpoint) from some distribution of casualty fractions. When either side experiences a casualty fraction equal to the preselected breakpoint, the battle terminates with a loss to the side that "broke."
2) The breakpoint distributions (break curves) mentioned above are generally applicable. That is, they are the same for all battles, irrespective of the size of forces involved or when, where, by whom, or with what the battle was fought.
3) The losses, and hence equivalently the casualty fractions, of the forces are deterministically and monotonically related to each other. That is, there is a monotonically increasing function, $\varphi(\cdot)$, such that

$$
\begin{equation*}
f_{x}(t)=\varphi f_{y}(t), \quad 0 \leq t \leq T \tag{2.3}
\end{equation*}
$$

(Helmbold, 1971:7-9)
The complete development of Helmbold's breakpoint model is contained in section 2.3.1, as taken verbatim from Helmbold's report. The reader may skip to section 2.3 .2 for a recitation and discussion of the more significant points without loss of continuity.

2.3.1 Complete Mathematical Development of Helmbold's
 Probabilistic Break Curve Model (Helmbold, 1971:9-16)

If the attacker is to win, then wo must have

$$
\begin{equation*}
f_{x}(t)<L_{x}, \quad 0 \leq t \leq T \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{y}=f_{y}(T)=L_{y} . \tag{2.5}
\end{equation*}
$$

In particular, if the attacker wins, we must have

$$
\begin{equation*}
L_{x}>f_{x}=\varphi\left(f_{y}\right)=\varphi\left(L_{y}\right) \tag{2.6}
\end{equation*}
$$

Conversely, if

$$
\begin{equation*}
\varphi\left(\mathrm{L}_{\mathrm{y}}\right)<\mathrm{L}_{\mathrm{x}}, \tag{2.7}
\end{equation*}
$$

then, since

$$
\begin{equation*}
\mathrm{f}_{\mathrm{y}}(\mathrm{t}) \leq \mathrm{L}_{\mathrm{y}}, \quad 0 \leq \mathrm{t} \leq \mathrm{T}, \tag{2.8}
\end{equation*}
$$

it follows, by the monotonicity of ψ that

$$
\begin{equation*}
\varphi\left(f_{y}(t)\right) \leq \varphi\left(L_{y}\right)<L_{x}, \quad 0 \leq t \leq T \tag{2.9}
\end{equation*}
$$

and then using $f_{x}(t)=\varphi\left(f_{y}(t)\right)$,

$$
\begin{equation*}
\mathrm{f}_{\mathrm{x}}(\mathrm{t}) \leq \varphi\left(\mathrm{L}_{\mathrm{y}}\right)<\mathrm{L}_{\mathrm{x}}, \quad 0 \leq \mathrm{t} \leq \mathrm{T}, \tag{2.10}
\end{equation*}
$$

and the attacker wins. Thus, the attacker wins if, and only if,

$$
\begin{equation*}
\varphi\left(L_{y}\right)<L_{x} . \tag{2.11}
\end{equation*}
$$

Since we intend that battle outcomes be . . . well-defined by our model, we could assign victory to the defender when $\varphi\left(L_{y}\right)=L_{x}$, or we could see to it that this equality has zero probability of occurrence. For some purposes, it may be convenient to adopt the convention that the battle is a toss-up when $\varphi\left(L_{y}\right)=L_{x}$, and to award victory with equal probability to both sides. In any case, we arrange things so that

$$
\begin{equation*}
P\left(W_{x}\right)=1-P\left(W_{y}\right), \tag{2.12}
\end{equation*}
$$

where $P\left(W_{z}\right)$ is the probability of a win for side $z, z=x$ or y.
Let

$$
\begin{equation*}
F_{z}(u)=P\left[L_{z} \leq u\right] \tag{2.13}
\end{equation*}
$$

be the break curve for side z. Now, $\mathrm{F}_{\mathrm{z}}(0) \neq 0$ would imply that there is some positive probability that side z would break while its casualty fraction was zero, which may physically be interpreted as a refusal to engage in battle on the part of side z. Since we wish to consider only cases where the battle has been joined, we take

$$
\begin{equation*}
F_{z}(0)=0 \tag{2.14}
\end{equation*}
$$

Also, $\mathrm{F}_{\mathrm{z}}(1) \neq 1$ would imply that side z might not break even when its casualty fraction was unity. This seems to be intuitively unreasonable, and so we assume that

$$
\begin{equation*}
F_{z}(1)=1 \tag{2.15}
\end{equation*}
$$

[Investigator note: This assumption ignores the situation where a force has had loos of its personnel killed and wounded but at least a percentage of its wounded continue to fight.]

We now wish to express $P\left(W_{y}\right)$ in terms of the F_{z} 's. To do this we begin by noting that the preceding discussion of the conditions under which the defender wins yields the following relationship

$$
\begin{equation*}
P\left(W_{y}\right)=P\left[L_{x} \leq \varphi\left(L_{y}\right), \quad 0 \leq L_{y} \leq 1\right], \tag{2.16}
\end{equation*}
$$

Figure 2.2
Relationship between L_{X} and L_{y}

（91•2）$\quad\left[1 ラ K_{7}>0 \cdot\left(K_{7}\right) \varnothing ラ \mathrm{x}_{\mathrm{T}}\right] \mathrm{d}=\left(\kappa_{M}\right) \mathrm{d}$
 we begin by noting that the preceding discussion of the conditions
 percentage of its wounded continue to fight．］

 $(S \downarrow \cdot Z) \quad \cdot l=(1)^{2} \beth$
since $L_{x}>\varphi\left(L_{y}\right)$ if, and only if, the attacker wins. To calculate $P\left(W_{y}\right)$, we consider the schematic diagram shown as [Figure 2.2$]$. The set of points $\left(L_{y}, L_{x}\right)=(u, v)$ for which the attacker wins is marked by W_{x}, and similarly for defender wins by W_{y}. 'The joint density of . $\left(L_{y}, L_{x}\right)$ is, by $[E l e m e n t$ of the Hypothesis 1 , given by

$$
d F_{x}(v) d F_{y}(u)
$$

and so,

$$
\begin{align*}
P\left(W_{y}\right) & =\int_{u=0}^{1} \int_{v=0}^{\Psi(u)} d F_{x}(v) d F_{y}(u) \tag{2.17}\\
& =\int_{0}^{1} F_{x}(\psi(u)) d F_{y}(u),
\end{align*}
$$

where we have truncated $\varphi(u)$ by setting

$$
\begin{equation*}
\varphi(u)=\operatorname{Min}[\varphi(u), 1] \tag{2.18}
\end{equation*}
$$

where $\varphi(u)$ is assumed to be monotonically increasing and defined for ail $0 \leq u \leq 1+0$.

Similarly,

$$
\begin{equation*}
P\left(W_{x}\right)=\int_{v=0}^{1} \int_{u=0}^{\psi^{-1}(v)} d F_{x}(v) d F_{y}(u) \tag{2.19}
\end{equation*}
$$

which becomes

$$
\begin{equation*}
P\left(W_{x}\right)=\int_{0}^{1} F_{y}\left(y^{-1}(v)\right) d F_{x}(v) \tag{2.20}
\end{equation*}
$$

Figure 2.3
Another possible relation between L_{x} and L_{y}
If $\varphi(1)<1$, as illustrated in [Figure 2.3], then we define $\psi^{-1}(v)=1$ for $\varphi(1) \leq v \leq 1$. This manner of defining the inverse function preserves the correctness of the formulae just given.

By integrating in the reverse order with respect to the
variables u and v, we obtain formulae equivalent to those that would result from an integration by parts, thus,

$$
\begin{align*}
P\left(W_{y}\right) & =\int_{v=0}^{1} \int_{-1(v)=u}^{1} d F_{y}(u) d F_{x}(v) \\
& =\int_{0}^{1}\left[1-F_{y}\left(\psi^{-1}(v)\right)\right] d F_{x}(v) \tag{2.21}
\end{align*}
$$

and

$$
\begin{align*}
P\left(W_{x}\right) & =\int_{u=0}^{1} \int_{\psi(u)=v}^{1} d F_{y}(u) d F_{x}(v) \\
& =\int_{0}^{1}\left[1-F_{x}(\psi(u))\right] d F_{y}(u) . \tag{2.22}
\end{align*}
$$

From Figures 2.2 and 2.3 , we see that the conditional joint density of (L_{y}, L_{x}), given W_{x}, is

$$
\frac{d F_{y}(u) d F_{x}(v)}{P\left(W_{x}\right)}, \quad \text { for }(u, v) \in W_{x}
$$

So the conditional density of L_{y}, given W_{x}, is

$$
\begin{align*}
d D_{y}\left(u \mid W_{x}\right) & =\int_{v=\psi(u)}^{1} \frac{d F_{y}(u) d F_{x}(v)}{P\left(W_{x}\right)} \\
& =\frac{\left[1-F_{x}(\varphi(u))\right] d F_{y}(u)}{\left(P\left(W_{x}\right)\right.} \tag{2.23}
\end{align*}
$$

Integration of this expression with respect to u from $u=0$ to $u=1$ and comparing the result with. Equation 2.22 shows that it represents a proper probability density.

We now find the conditional distributions of casualty fractions on each side when the attacker wins. We begin by recalling that when x wins, $L_{y}=f_{y}$. But we have just found the density of L_{y} when x wins. Hence,

$$
\begin{align*}
P\left(f_{y}<q \mid w_{x}\right) & =\int_{0}^{q} d D_{y}\left(u \mid w_{x}\right) \\
& =D_{y}\left(q \mid w_{x}\right) . \tag{2.24}
\end{align*}
$$

Since $f_{x}=\psi\left(f_{y}\right)$, the conditional distribution of the attacker's casualty fraction when the attacker wins is:

$$
\begin{align*}
P\left(f_{x} \in s \mid W_{x}\right) & =P\left(w\left(f_{y}\right)<s \mid W_{x}\right) \\
& =D_{y}\left(w^{-1}(s) \mid W_{x}\right) \tag{2.25}
\end{align*}
$$

In similar fashion we find the conditional density of L_{x} given W_{y} as

$$
\begin{align*}
d D_{x}\left(v \mid W_{y}\right) & =\int_{u}^{1} \frac{d F_{y}(u) d F_{x}(v)}{P\left(W_{y}\right)} \\
& =\frac{\left[1-w_{y}(v)\right.}{P\left(W_{y}\right)} \tag{2.26}
\end{align*}
$$

Since $L_{x}=f_{x}$ whenever y wins, the conditional distribution of the attacker's casualty fraction when the defender wins is just:

$$
\begin{equation*}
P\left(f_{x}<s \mid W_{y}\right)=D_{x}\left(s \mid W_{y}\right) \tag{2.27}
\end{equation*}
$$

Since $f_{x}=w\left(f_{y}\right)$, the conditional distribution of the defender's casualty fraction when he wins is

$$
\begin{align*}
P\left(f_{y}<q \mid W_{y}\right) & =P\left(f_{x}<\psi(q) \mid W_{y}\right) \\
& =D_{x}\left(\psi(q) W_{y}\right) \tag{2.28}
\end{align*}
$$

2.3.2 Review of Helmbold's Probabilistic Break Curve Model

Section 2.3 .1 contains a complete development of Helmbold's mathematical framework for the breakpoint hypothesis. This section reviews the important aspects of Helmbold's model.

The three elements of the hypothesis contain certain underlying principles. The first element states that the casualty-fraction is the principle parameter used in the break curve. In addition, Helmbold assumes that the battle is fought with the forces available at the start of the engagement. This is analytically convenient ". . since this provides a well-defined (if not precise) base for
establishing the casualty fraction" (Helmbold, 1971:7). The limitations to this approach are discussed in Chapter 3 of the current investigation.

With regards to element 2 , there is no inherent reason for only one break curve to be included. Helmbold states that:

The appropriate break curve could be made to depend on any condition that could be known at the time the break curve is sampled, such as whether the force is initially attacking or defending, its state of training, experience, morale, physical weariness, etc. . . . The approach adopted. here is in keeping with the spirit of Richardson's Principle to the effect that 'formulae are not to be complicated without evidence'. (Helmbold, 1971:8)

Later in the investigation, Helmbold altered element 2 by defining break curves on the basis of who won the engagement and the nature of the engagement.

Element 3 of the hypothesis is an outgrowth of previous work performed by Weiss (1966). Weiss postulated that the casualty fractions were proportional to one another, or:

$$
\begin{equation*}
f_{x}(t)=R f_{y}(t) \tag{2.29}
\end{equation*}
$$

This became a special case contained within Helmbold's hypothesis (Helmbold, 1971:10).

In order to completely specify the probabilistic break curve model outlined in the hypothesis, Helmbold developed the mathematical characteristics of the probabilistic break curve. This includes its boundary conditions, the relationship between each force's probability of winning and the relationship between the break curves of the two opposing.sides.

Helmbold specified physical meanings for the upper and lower
boundary conditions for the probabilistic break curves. Letting:

$$
\begin{equation*}
F_{z}(u)=P\left[L_{2} \leq u\right] \tag{2.30}
\end{equation*}
$$

be the break curve for force 2 , he established the lower and upper boundary values for the function. In the case of the lower boundary,
$F_{z}(0)=0$ would imply that there fs some positive probability that side z would break whlbe its casualty fraction was zero, which math physically be finterpreted as a refusal to engage in battle on the part of'side z. Since we wish to consider only cases where tie battle has been joined, we take $\mathrm{F}_{\mathrm{z}}(0)=0$. (Helmbold, 1971:11)

The argument for the upper bound was as follows:
$\quad \mathrm{F}_{\mathrm{z}}(1)=1$ would imply that side 2 might not break even
when its casualty fraction was unity. This seems to be
intuitively unreasonable since the unwounded personnel
strength of the unit $=0$, and 30 we assume that $F_{z}(1)=1$.
(Helmbold, $1971: 12$)

In addition, Helmbold proved a theorem stating that the
two ψ functions relating the attacker and defender conditional
casualty fraction distributions curves to each other are mathematical
inverses (Helmbold, 1971:15-16). He also proved that the following
two lemmas are true:

LEMMA I. If

$$
\begin{equation*}
\Delta_{X X}(u)=\Delta_{y y}(u) \tag{2.31}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta_{y x}(u)=\Delta_{x y}(u) \tag{2.32}
\end{equation*}
$$

then

$$
\begin{equation*}
\psi=\psi^{-1}=I \text {, where } I \text { is the identity function } \tag{2.33}
\end{equation*}
$$

where:

$$
\begin{align*}
& \Delta_{x x}(s)=P\left(f_{x}<s \mid W_{x}\right)=D_{y}\left(\psi^{-1}(s) \mid W_{x}\right) \tag{2.34}\\
& \Delta_{y y}(s)=P\left(f_{y}<s \mid W_{y}\right)=D_{x}\left(\psi(s) \mid W_{y}\right) \tag{2.35}\\
& \Delta_{y x}(q)=P\left(f_{y} q \mid W_{x}\right)=D_{y}\left(q \mid W_{x}\right) \tag{2.36}\\
& \Delta_{x y}(q)=P\left(f_{x}<q \mid W_{y}\right)=D_{x}\left(q \mid W_{y}\right) \tag{2.37}
\end{align*}
$$

LEMMA II. If $\psi(s) \geq s$ for some s, then:

$$
\begin{equation*}
\Delta_{y y}(3) \geq \triangle_{x y}(3), \tag{2.38}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta_{x x}(s) \leq \triangle_{y x}(s) \tag{2.39}
\end{equation*}
$$

Conversely, if $\psi(s) \leq s$ for some s, then:

$$
\begin{equation*}
\triangle_{y y}(s) \leq \triangle_{x y}(s) \tag{2.40}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta_{x x}(s) \geq \Delta_{y x}(s) \tag{2,41}
\end{equation*}
$$

The theorem, and to a lesser extent, the lemmas, were incorporated by Helmbold into his test procedure (Helmbold, 1971:18-20).

2.3.3 Test Procedure

Helmbold's test procedure is based upon whether the inverse relationship of the ψ and $\psi-1$ curves is consistent with the observed casualty fraction distributions. Recall that:

$$
\begin{equation*}
u(u)=\operatorname{MIN}[\varphi(u), 1] \tag{2.18}
\end{equation*}
$$

where: $\varphi=$ a strictly increasing monotonic function relating $f_{x}(t)$ to $f_{y}(t)$ via the formula:

$$
\begin{equation*}
\mathbf{f}_{\mathbf{x}}(\mathrm{t})=\varphi\left[\mathbf{f}_{\mathbf{y}}(\mathrm{t})\right] \tag{2.3}
\end{equation*}
$$

And:

$$
\begin{align*}
& \triangle_{x x}(s)=\triangle_{y x}\left(Y^{-1}(s)\right) \tag{2.42}\\
& \left.\Delta_{y y}(s)=\triangle_{x y}(s)\right)
\end{align*}
$$

The validity of the breakpoint hypothesis would then be dependent upon equations 2.42 and 2.43 holding true for the data set tested. Specifically:

> If ψ and $\psi-1$ obey the inverse functional relationship, then this would tend to support the breakpoint hypothesis. If ψ and $\psi-1$ do not obey the necessary mathematical relationship between inverse functions, then the breakpoint hypothesis would be definitely disproven. (Helmbold, $1971: 16$)

Helmbold developed a graphical procedure for obtaining the ψ and ψ^{-1} functions independently from the observed casualty fraction distributions. The following subsection describing the procedure is taken verbatim from Helmbold's report.

2.3.4 Graphical Procedure for Obtaining ψ and $\psi-1$ Functions from Casualty-Fraction Distributions (Helmbold, 1971:16-17)

We have set down in explicit terms the breakpoint hypothesis
Elements 1, 2 and 3 and have shown how to derive from these elements formulae that purport to describe empirical casualtyfraction distributions. In carrying out this derivation, we have been careful to maintain the essential distinction between a break curve, which is a distribution of L_{z} breakpoint values and a casualtyfraction distribution, which is a distribution of f_{2} values. In this paragraph we show how observed casualty-fraction distributions can be used to test the breakpoint hypothesis.

We begin by recalling relations 2.34 and 2.36 , which are $P\left(f_{X}<s \mid W_{X}\right)=D_{Y}\left(\psi^{-1}(s) \mid W_{X}\right)=\Delta_{X X}(s)$,
and

$$
\begin{equation*}
P\left(f_{y}<q \mid W_{x}\right)=D_{y}\left(q \mid W_{x}\right)=\Delta_{y x}(q) \tag{2.36}
\end{equation*}
$$

where the $\triangle_{y x}$ and $\triangle_{x x}$ notation is introduced as an abbreviation. Combining relations 2.34 and 2.36 yields

$$
\begin{align*}
\Delta_{x x}(s) & =P\left(f_{x}<s \mid W_{x}\right) \\
& =P\left(f_{y}<\psi^{-1}(s) \mid W_{x}\right)=\Delta_{y x}\left(\psi^{-1}(s)\right), \tag{2.44}
\end{align*}
$$

with a dual result obtainable by the usual transposition $x \rightarrow y$, $y \rightarrow x, \psi^{-1} \longrightarrow \psi, \psi \longrightarrow \psi^{-1}$.

Now suppose that we haf a graphical plot of the observed casualty fractions for a collection of battles that were won by the attacker. A hypothetical plot is shown in [Figure 2.4]-- and there will be a dual plot whose labels are obtainable from [Figure 2.4] by the usual transposition, although the curves may, of course, be differently shaped on the dual. We have indicated by the dashed lines how, using [equation 2.44], the value of $\psi^{-1}\left(q_{1}\right)$ can be graphically read off this plot. An exactly analogous procedure applied to the dual plot will yield the value of $\psi\left(q_{1}\right)$. By repeating the process for several values of q_{1} and interpolating, it is thus possible to determine suitable approximations to the functions ψ and ψ^{-1}.

Figure 2.4
Hypothetical Casualty-Fraction Distribution in Battles Won by the Attacker

Now, ψ is the functional relation between f_{x} and f_{y}, since from the definition of ψ, we may write without loss of generality

$$
\begin{equation*}
\mathbf{f}_{x}(t)=\psi\left[f_{y}(t)\right] \tag{2.45}
\end{equation*}
$$

Having determined ψ and $\psi-1$ by the graphical procedure just described, we may plot these functions on a graph and see whether or not they obey the necessary mathematical relationship between inverse functions, that is, whether or not ψ is a reflection of $\psi-1$ in the 45-deg line through the origin, as illustrated in Figure 2.5 . If ψ and $\psi-1$ obey the inverse functional relationship, then this would tend to support the breakpoint, hypothesis. If ψ and ψ^{-1} do not obey the necessary mathematical relationship between inverse functions, then the breakpoint hypothesis would be definitely disproven.

Figure $2: 5$
Inverse Functional Relationship

2. 3.5 Data

The quantity and, more importantly, the type of historical combat data available to Helmbold severely restricted the complexity of the hypotheses capable of being tested. Helmbold used data from two of his earlier studies (Helmbold, 1961 and 1964) as well as a data set extracted from Bodart's Kriegs-Lexicon (Bodart, 1908) by Willard (Willard, 1962). There are 173 engagements from Helmbold's earlizer studies and 1,080 engagements in Willard's data set. The data elements in the engagement data matrix for the probabilistic break curve investigation are listed in Table 2.5.

Data Elements Contained in Helmbold's Engagement Data Mátrix (Helmbold, 1971:5-6)

Data
Element Number Description

1
2
3
4
5
6
7
8
9
10
11
12
13

Date
Battle
Source
Whar or campaign
i
Identification of attacker Identification of defender Initial attacker strength Initial defender strength Attacker casualties Defender casualties Duration (in hours)
Nominal victor Engagement type categories*

* Helmbold's engagement types are a slight modification of categories first developed by Willard. Helmbold's categories are as follows: Category I battles denote open battles in the sense that both sides could, with about equal facility, disengage and conduct an orderly withdrawal. Category II battles denote closed battles in the sense that one of the parties in the battle is encipcled or otherwise in a position
- from which an orderly withdrawal can't readily be made, and whose options for maneuver are correspondingly markedly more restricted than those of his opponent. This categorization of the data is not available for the data sets from Helmbold's earlier studies (1961 and 1964).

2.3.6 Results

Helmbold initially tested the data using four groupings of the
data. They include:

1) The set of data from Helmbold's earlier studies.
2) Willard's complete data set. This consists of all Category I and Category II engagements.
3) A subset of Willard's data set containing only all Category I engagements.
4) A subset of Willard's data set containing only all Category II engagements.

In none of these groups of the data are the associated ψ and $\psi-$? curves mathematical inverses of each other (Helmbold, 1971:21-32).

Upon visually examining the casualty-fraction distribution curves for each of the 4 data sets, it appeared to Helmbold that the following might hold true:

$$
\begin{align*}
& \Delta_{x x}(u)=\Delta_{y y}(u) \tag{2.46}\\
& \Delta_{y x}(u)=\Delta_{x y}(u) \tag{2.47}
\end{align*}
$$

(Helmbold, 1971:26)
According to Lemma I, this signifies that $\psi=\psi^{-1}=I$. However, the ψ and ψ^{-1} curves do not reflect this for any of the four data sets. The presence of relations 2.46 and 2.47 in the data, however, indicates that a force's break behavior might be'significantly dependent upon whether it won or lost the engagement (Helmbold, 1971:26).

As a further test of the validity of equations 1 and 2 , Helmbold used the Kolmogorov/Smirnov test for testing the equivalence of the appropriate casualty-fraction distributions for each of the four data sets. The results are shown in Table 2.6.

Table 2.6
Test Results on the Validity of Lemma I
for the Specified Data Sets (Helmbold, 1971:28-30)

No. Description	$\Delta_{\mathrm{xx}}(\mathrm{u})=\Delta_{\mathrm{yy}}(\mathrm{u})$	$\Delta_{\mathrm{yx}}(\mathrm{u})=\Delta_{\mathrm{xy}}(\mathrm{u})$	
1	Data Set from Helmbold's Earlier Studies	.30	.30
2	Willard's Complete		
Data Set	.10	.10	
3	Category I Battles; Willard's Data Set	.05	.03
4	.99	.98	

* The value indicates the probability that the deviation between the two distributions would be greater than at present, ". . . given that the empirical distribution functions actually are obtained from independent random samples from a common continuous distribution function."

With the exception of the fourth data set, the appropriate casualtyfraction distribution curves were not found by Helmbold to be equivalent for a reasonable level of confidence. The results of the visual examination are not, in general, confirmed by the statistical results (Helmbold, 1971:28-30).

Another inconsistency between the breakpoint hypothesis and Helmbold's data is the failure of the empirical casualty-fraction distribution curves to exhibit the behavior mandated by Lema II. Helmbold developed an alternative element 3 of the hypothesis to correct for this. It consists of the following:

There is a monotonic non-decreasiug function such that:

$$
\begin{equation*}
f_{x}=\psi\left(f_{y}\right) \tag{2.48}
\end{equation*}
$$

when the defender wins, while:

$$
\begin{equation*}
f_{x}=\psi^{-1}\left(f_{y}\right) \tag{2.49}
\end{equation*}
$$

when the attacker wins.

$$
\psi(s) \geq s, \text { for all } s
$$

This results in the following significant change in Lemma II:
When the defender wins,

$$
\begin{equation*}
\Delta_{y y}(s)>\Lambda_{x y}(s) \tag{2.50}
\end{equation*}
$$

for all 3. When the attacker wins,

$$
\begin{equation*}
\Delta_{x x}(s) \geq \Delta_{y x}(s) \tag{2.51}
\end{equation*}
$$

for all s. (Helmbold, 1971:33-35)
The modified Lemma II is consistent with the empirical casualtyfraction distribution curves for Helmbold's data. Despite this improvement, however, the division of the data into winner and loser groupings does not result in the ψ and. r^{-1} functions being mathematically inverse (Helmbold, 1971:36).

On the basis of his results, Helmbold also demonstrated that the second element of the hypothesis needs to be altered to allow for specified subsets of the universe of possible types of engagements to be handled separately. For Helmbold's set of data, the division of the data into two subsets consisting of Category I and Category II, while an improvement, is not sufficient in defining subsets of data Within which a break curve would be universally applicable (Helmbold, 1971:45).

Helmbold listed several properties which he believed should be contained in any theory for the battle termination process. A listing
of the properties applicable to this investigation is given below:

1) The theory should have a simplicity and "naturalness" of form in consonance with the principle of "Ocknam's Razor". . . that "multiplicity ought not to be posited without necessity."
2) The theory must address the "separate casualty distribution curves observed for the category I and the category II battles.
3) The theory must not produce an estimate of the iv function relating casualty fractions via the relations:

$$
\begin{equation*}
f_{x}=w\left(f_{y}\right) \tag{2.48}
\end{equation*}
$$

or

$$
\begin{equation*}
f_{1}=\psi\left(f_{W}\right) \tag{2.52}
\end{equation*}
$$

that is at variance with the actual relations between these quantities.
4) The theory ought to explain why the loser's and the winner's casualty-fraction distributions are very nearly the same, independent of the attack/defense status of forces. (Helmbold, 1971:60-61)

In regards to the battle termination models in use today, Helmbold concludes that ". . . the soundness of models of combat that make essential use of breakpoint hypotheses must be considered suspect until a better theoretical understanding of the battle termination process is obtained" (Helmbold, 1971:61).

2.4 Data Issues

Other analysts in the profession (Dupuy, 1979:143; Taylor, 1980:110,111) share Helmbold's doubts about the validity of the breakpoint hypothesis currently used, and deplore the lack of empirical work. In particular it is felt that the inadequacies
contained within the data currently used in combat models seriously
degrade the utility of the output of force-on-force attrition
models. According to Stockfish:
. . . the unverified findings of modelling conducted by one organization can be taken as fact by another organization and used as inputs for the latter's model. Another aspect is that a number or a set of numbers constituting data can be an admixture of subtle concepts, subjective evaluations, and limited but hard evidence based on actual physical testing. The particular testing, however, may have been undertaken for purposes remote from the use that another study makes of the data. (Stockfish, 1975:vi,vii)

The inadequacies of available data is also illustrated by the incompleteness of the data utilized in both empirical validation studies.

The danger of unsuitable data is reinforced by a warning given by Dupuy on the interpretation of historical combat data. He demonstrated how seemingly contradictory statements based on the same set of historical events could each have a basis in fact (Dupuy, 1979:4-18). He concluded by stating:

To some extent, they illustrate why it is both vain and dangerous to seek immutable lessons from the records of the past; the facts are too contradictory, too specialized, too subject to misinterpretation, to support unequivocal conclusions. Certain generalized principles can be substantiated usually. But the specifics of combat processes and relationships are elusive. (Dupuy, 1979:18)

As an extrapolation of this, some military operations research analysts believe that ". . . the changes in weapons and technology of the past few decades have made all milifary history - even that as recent as World War II - irrelevant" (Dupuy, 1979:141). If this is the case, it would be incorrect to attempt to validate a battle
termination technique using historical combat data since the combat processes that the data came from would be significantly different from present and אuture combat processes.

Howeve:, there $1 s$ considerable disagreement with that suggestion. For example, Clark has successfully laten combat data from conventional ground warfare and, admittedly with considerable limitations, applied it to atomic warfare (Clark, 1954:27-28). Dupuy investigated historical trends in weapon lethality and their effect on warfare. He found that the technological change that most affected modern ground warfare, in contradiction to the assumption in the statement above, was the large-scale transition from the smoothbore infantry musket to rifled small arms that occurred between 1850 and 1860 (Dupuy, 1979:6).

The desirability of using historical combat data in investigative work is further indicated by Stockfish, who stated:

The output or assertions of current campaign models are of questionable worth because of inadequate empirical work, which should consist of both operational testing . . . and empirical study of past wars. . . . Without increased and definitive operational testing and empirical studies, the use of detailed models to treat larger force aggregations is probably of limited value in the analysis of conventional wars. Overall, we are left with faulty concepts, such as the firepower indexes, as empirical inputs for aggregative models, and an abundance of unverified - or only partially verified detailed models. This condition results from an imbalance between empirical and theoretical endeavor in DoD analysis and study. The image of scientific activity - an image that depicts theories and models as being independently tested by experiment or appeal to experience, with the empirical work in turn casting up new insight that contributes to theoretical advance - does not seem to prevail in the military establishment. (Stockfish, 1975:vi,vii)

In addition to its desirability, Dupuy felt historical combat
data remains applicable since ". . . the principle weapon of war is . . . man himself. . . . the nature of warfare has changed only in its detalls (sometimes dramatically, but always relatively slowly) as man adapts himself and his thinking to new weapons and technology." combat models is defensible.

2.5 Summary

The breakpoint hypothesis is used in many Department of Defense sponsored force-on-force attrition studies to model the battle termination process. Empirical support for these models, however, is limited.

Clark found that deterministic break curves were not validated by combat data. Individual differences in the ability of units to carry out their missions could not be explained on the basis of casualties and replacements alone. Furthermore, when using casualties as a measure of loss of combat effectiveness the type and size of the unit must be specified, different breakpoints must be specified for attacking and defending forces, and the time basis for loss percentages must be specified.

Helmbold found that probablistic break curves, although inherently more flexible, are not valid as presently used. Six groupings of the data were evaluated. In each case, the theorem and/or lemmas mandated by the breakpoint hypothesis are violated by the empirical data. Suggested improvements included a more detailed
categorization of the data when constructing combat unit break curves. The negative results of past validation studies raise considerable doubt about the validity of current battle termination models. One criticism of these results has been to question the applicability of historical data to present and future combat. On the basis of statements made by Dupuy (1979), Stockfish (1975) and Clark (1954), however, this investigation finds their use in validating combat models to be defensible.

Further empirical work in this area has been, and is, hampered by a relative scarcity of avallable historical data. A significant amount of historical data has been obtained for the current investigation, however. Chapter 3 contains a list of the data used and a description of its contents, in addition to documenting the experimental design for the current investigation.

Chapter 3

EXPERIMENTAL DESIGN

This investigation focuses on the identification and examination of the validity of a series of break curves using an engagement data matrix. The matrix contains 323 engagements; with" 24 data elements available for each engagement. The data elements contained In the engagement data matrix represent those combat factors deemed significant in the literature for which data is avallable. In addition to the data required to specify an engagement's time and geographic location in history, the data elements consist mostly of environmental and operational factors significant to the combat process. The conditions under which an engagement terminates are listed and described. Other considerations include the size and unity of mission of the respective combat forces in the engagement.

The break curves are identified and their validity examined using the following methodology. Note that a more detailed discussion of the methodology is contained in section 3.7 . The data elements from the engagement data matrix are transformed into a set of observed variables in order to obtain variables having an appropriate level of measurement for the techniques to be used. The observed variables are reduced to a set of defined factors using factor analysis. All possible combinations of one or more defined factors are identified with each combination representing a specific break curve. For each possible defined factor combination, a test procedure is performed
which determines the degree to which Helmbold's Theorem holds for the combination's associated engagement subset. The break curves whose associated engagement subsets obey Helmbold's Theorem reasonably well are identified. The results of this procedure are then confirmed using discriminant analysis. Discriminant analysis identifies those observed variables which are significant in distinguishing between winners and losers in an engagement using the engagements contained in the engagement data matrix. The observed variables found to be significant are compared to the observed variables which specify the break curves whose associated engagement subsets reasonably well.

3.1 Categorization of the Data

The formulation of break curves is based upon those factors that are significant to the battle termination process. These factors are used in the modification of the second element of the hypothesis, thereby allowing the break curves to vary depending on the battle type under study. Helmbold (1971) first suggested this potential modification. He stated:

The appropriate break curve could be made to depend on any condition that could be known at the time the break curve is sampled, such as whether the force is attacking or defending, its state of training, experience, morale, physical weariness, etc. (Helmbald, 1971:8)

Those combat factors identified in the literature as significant, and for which relatively accurate and precise data is available, are used in the current investigation.

The number of personnel casualties incurred by a combat force
are considered to be a very influential factor. Clark (1954) gave two reasons for the frequent use of personnel casualties in determining the residual combat effectiveness of a unit. They are:

1) Casualties are . . . a factor always present in battle, and their magnitude may be assumed to reflect to some degree the magnitude of other less tangible factors.
2) . . . of all possibly significant factors affecting a unit's combat effectiveness, casualties alone can be directly quantified. (Clark, 1954:7)

Both Clark (1954) and Helmbold (1971), however, found that personnel casualties, while necessary, are not sufficient in explaining combat unit break behavior.

Other factors significant to the combat process are identified in the literature. Clark (1954) offered the list of combat factors given in Table 3.1.

Table 3.1
Additional Combat Fačtors
(Clark, 1954:2)

Factor Number Description

1	casualty rate level of training and battle experience of the
3	troops
3	the influence of inclement weather or other
4	unusual environmental stress
5	the importance of the mission
6	troop morale
7	quality of leadership
8	knowledge and intelligence on the enemy's
9	intentions
10	perceived vigor of enemy opposition 11
scale of friendly fire support and troop reinforcement	
	logistical supply situation command, control and communications

More recently, the Historical Evaluation and Research Organization (HERO) compiled a more comprehensive, but nonexhaustive, list of factors which it determined have a significant effect on combat (Dupuy, 1979:33). They are included in Figure 3.1. Figure 3.1 also includes a listing of the data elements contained in the engagement data matrix for the current investigation. These data elements are described in greater detail in section 3.4. A more detailed listing of HERO's factors is provided in Tables 3.2 A through K .

Figure 3.1
Derivation of Data Elements Contained
in the Engagement Data Matrix

Table 3.2A

Neapons Effects

Variable Number	Description
1	Rate of fire
2	Potential targets per strike
3	Relative incapacitating effect
4	Effective range (or muzzle velocity)
5	Accuracy
6	Reliability
7	Battlefield mobility
8	Radius of action
9	Punishment (vulnerability) factor
$10-13$	Armor performance factors (4)
14	Helicopter
$15-21$	Special weapons effects factors (7+)*
22	Dispersion factor

* The armor performance factors consist of the rapidity of fire effect, the fire control effect, the ammunition supply effect and the wheel/halftracks effect.
* HERO accounts for seven types of special weapons effects. They consist of factors for self-propelled artillery, missile guidance, multi-barreled weapons, multiple charge artillery weapons, armored personnel carriers, fixed-wing aircraft and vehicles with amphibious capabilities. HERO indicates that this set is not exhaustive.

Table 3.2B
Terrain Factors

	Terrain Factors
Variable Number	Description
1	Mobility effect 2
Defense posture effect 4	Infantry weapons effect Artillery weapons effect Air effectiveness effect

Table 3.2C
Weather Factors
-
Variable
Number \quad Description

1 Mobility effect
2 Attack posture effect
3 Artillery effect
4 Air effectiveness effect
5 Tank effect

Table 3.2D
Season Factors

Variable Number	Description
1	Attack posture effect
2	Artillery effect
3	Air effectiveness effect
	Table 3.2E
	Air Superiority Factors
Variable Number	Description
1	Mobility effect
2	Artillery effect
3	Air effectiveness effect
4	Vulnerability effect

Table 3.2F
Posture Factors

Variable Number	Description
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Force strength effect Vulnerability effect
	Table 3.2G Mobility Effects
Variable Number	Description
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Characteristics of mobility Environmental effect
	Table 3.2H Vulnerability Factors
Variable Number	Desoription
1	Exposure consideration, general
2	Environmental effects, general
3	Across beach
4	Across major unfordable river
5	Across major fordable or minor unfordable river

Table 3.2 I
Tactical Air Effects

* Probably calculable; not yet calculated

Table 3.2K

Intangible Factors

Variable Number	Description
1	Combat effectiveness**
2	Leadership**
3	Training/experience**
4	Morale****
5	Togistics**
6	Time****
7	Space*****
8	Momentum***
9	Technology***
10	Initiative**

- Sometimes calculable
* Probably calculable; not yet calculated
** Intangible; probably individually incalculable

The HERO factor set represents the nominal effects on combat of the weaponry used and the environmental and operational factors that affect their employment. The majority of the factors are considered quantifiable at a sufficient level of detail and established validity.

Although HERO's listing is the basis for the factors tested in this investigation, only a limited number of combat factors are represented by the data elements included in the engagement data matrix. In large measure, this is due to the limited amount' of verified historical combat data available. The significance of the limitation is seen in a statement by Taylor who felt that ".. . the nature and quality of the available combat data is so extremely poor
that (there is) no reliắble benchmark against which to "calibrate" our combat models" (Taylor, 1980:110). While a substantial amount of compiled combat data is available for this investigation, it is small when compared to the amount of historical combat data that exists in raw form in the open literature in the United States.

3.2 Data Sources

The data for this investigation consists of 323 engagements, with 24 data elements representing each engagement. A listing of the complete engagement data matrix is given in section 3.3.

Roughly one-half of the engagements are obtained from an nistorical combat data base compiled by HERO (Dupuy, 1976-1978, 1979). It is the source of all the engagements from World War II, the Korean conflict and the 1948, 1956, 1967 and 1973 Arab/Israeli Wars. It contains sufficient data for each engagement to specify the data elements used in the current investigation. The availability of this data is significant in the determination of the data elements to be included in the engagement data matrix.

Additional compiled data sources of varying degrees of utility are available. They conslst of the engagement data base which Helmbold (1961, 1964, 1971) used in his investigations, Clark's (1954) engagement data base and the engagement data base complled by Willard (1962) from Bodart (1905).

Helmbold's data base consists of 173 engagements contained in two papers published by Helmbold in 1961 and 1964. The engagement
data matrix consists of the elements contained in Table 2.5. The primary limitation is the lack of many of the data elements used in the current investigation. Where possible, an engagement's data is augmented from additional sources and included in the current investigation's data matrix. Further details will be given in section 3.3.

Clark's investigation (1954) also provides an historical combat data base. A listing of the component data elements is provided in Table 3.1. Its limitations are severe. It does not include many of the data elements in the current investigation. Data is available for only one side in each engagement. In addition, the independence of some of the engagements is in doubt. Due to these limitations, none of the engagements are included in the current engagement data matrix.

Another complled data source is that extracted by W1llard (1962) from Bodart's Kriegs-Lexicon (1905). As in the Clark data, the data for each engagement does not include many of the data elements for the engagement data matrix used in the current investigation. Extracting additional data from the Kriegs-Lexicon is not possible for the investigator since it has never been translated into English. In addition, HERO feels that ". . . the Bodart data was not necessarily reliable or verifiable from other sources." (Dupuy, 1979:149). For these reasons, the data set is not used in the investigation.

In addition to the HERO and Helmbold data sources, combat data was compiled by the investigator from historical sources for this
investigation. Where applicable, classification of the data is based upon guidelines developed by HERO (Dupuy, 1979). These guidelines, together with the meaning and limitations for each data element in the engagement data matrix shown in section 3.3, are discussed in section 3.4.

3.3 Listing of Engagement Data Matrix

This section contains a listing of the data used in the current investigation. The engagement data matrix is followed by documentation of the data encoding scheme, footnotes pertaining to specific data entries and a listing, by war, of the sources used. The utility of each of the data elements with respect to the current Investigation is discussed in section 3.4 .

Engagement Data Matrix

1.1	Boston	Bunker $H 111$	Bumker H111	$\begin{aligned} & 17 \text { Jun } \\ & 1775 \end{aligned}$	1	British	American	British	2400	1500	1050	440/A	I	3	6	2	Spring	$\begin{aligned} & A-E x \\ & D-G d \end{aligned}$	No	No N/A N/A N/A
1.2	Canadian	Quebec	Quebec	$\begin{gathered} 31 \mathrm{Dec} \\ 1775 \end{gathered}$	1	American	British	British	800	1800	490	18	I	4	14	12	Winter	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Qd} \end{aligned}$	No	No N/A N/A N/A
1.3	New York	Long Island	$\begin{gathered} \text { Long } \\ \text { Island/B } \end{gathered}$	$27 \text { Aug }$ 1776	1	British/ Hessian	American	British/ Hessian	20000	3500	390	1500/C	I	2	5	2	Summer	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	Sub- starr tal (A)	No N/A N/A N/A
1.4	New York	Harlem Heights	Harlem Helghts	$\begin{gathered} 16 \text { Sept } \\ 1776 \end{gathered}$	1	American	British/ Hessian	American	5000	5000	120	270	I	1	2	2	Summer	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	Subs. (A)	No N/A N/A N/A
1.5	New York	White Plains	Chatterton's H11	$\begin{gathered} 28 \text { Oct } \\ 1776 \end{gathered}$	1	British/ Hessian	American	British/ Hessian	4000	1600	240	250	I	2	5	2	Fall	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{n}-\mathrm{Fr} \end{aligned}$	No	No N/A N/A N/A
1.6	New York	Ft. Washington	Ft. Washington	16 Nov 1776	1	British/ Hessian	American	British/ Hessian	8000	3000	460	150/D	II	3	1	2	Fall	$\begin{aligned} & \mathrm{A}-\mathrm{Cd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$		No N/A N/A N/A
1.7	Delaware	Trenton	Trenton	$\begin{gathered} 26 \mathrm{DeC} \\ 1776 \end{gathered}$	1	American	Hessian	American	2400	1400	4	110/E	II	2	14		Whater	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	Major (A)	No N/A N/A N/A
1.8	Delaware	Princeton	Princeton/E	$\begin{gathered} 3 \mathrm{Jan} \\ 1777 \end{gathered}$	1	Amertican	British	American	520	1200	40	100/G	I	2	6	3	Winter	$\begin{aligned} & \mathrm{A}-\mathrm{Cd} \\ & \mathrm{D}-\mathrm{Ex} \end{aligned}$	Minor (A)	No N/A N/A N/A
1.9	Saratoga	Hubbardton	Hubbardton	$\begin{aligned} & 7 \mathrm{Jul} \\ & 1777 \end{aligned}$	1	British	American	British	850	700	150	96/H	I	2	4		Surmer	$\begin{aligned} & \text { A-Ex } \\ & \text { D-Gd } \end{aligned}$	Subs. (A)	No N/A N/A N/A
1.10	Saratoga	Bemington	Bennington/I	16 Aug 1777	1	Ancrican	Hessian/ British	American	1500	2500	60	610	II	2	13	2	Summer	$\begin{aligned} & \text { A-Gd } \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	Minor (A)	Yes N/A N/A N/A
1.11	Philadelphta	Brandywine	Brandywine/J	$\begin{gathered} 11 \text { Sep } \\ 17 \% \% \end{gathered}$	1	British/ Hessian	American	British/ Hessian	13000	12000	580	1350	I	2-3	5	2	Summer	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	Minor (A)	No N/A N/A N/A

1.12	Philadelphia	Paoli	Paold	$\begin{aligned} & 19 \mathrm{Sep} \\ & 1777 \end{aligned}$	1	British	American	British	700/K	1500	7	150	I	2	7	5	Summer	$\begin{aligned} & \mathrm{A}-\mathrm{Ex} \\ & \mathrm{D}-\mathrm{Ex} \end{aligned}$	Major (A)	$\text { No } \mathrm{N}$	N/A N/A N/A
1.13	Philladelphia	Gemmantown	Germantown/L	$\begin{gathered} 4 \text { Oct } \\ 1777 \end{gathered}$	1	Anerican	British	British	11000	8000	1070	530	I	2	8	8	Fall	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	Subs. (A)		N/A N/A N/A
1.14	Philadelphda	Fort Mercer		$\begin{gathered} 22 \text { Oct } \\ 1777 \end{gathered}$	1	Hessian	American	American	2000	400	400	10/M	II	4	9	2	Fall	$\begin{aligned} & \text { A-Gd } \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No N	N/A N/A N/A
1.15	Saratoga	Freman's Farm	Freeman's Farm	$\begin{aligned} & 19 \text { Sep } \\ & 1777 \end{aligned}$	1	American	British/ Hessian	British/ Hessian	3000	3250	320	600	I	2	4	2	Fall	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	No	No	N/A N/A N/A
1.16	Saratoga	Bentis Helghts	Bemls Heights/L	$\begin{aligned} & 7 \text { Oct } \\ & 1777 \end{aligned}$	1	American	British/ Hessian	American	5000	2500/N	150	600		2-4	4	2	Fall	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	No	No N	N/A N/A N/A
1.17	Monmouth	Monmouth Courthouse	Monmouth Courthouse/L	$\begin{gathered} 28 \mathrm{Jun} \\ .1778 \end{gathered}$	1	British/ Hessian	American	American	13000	14000	720/0	720/0	I	2	13	1	Summer	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	No	No	N/A N/A N/A
1.18	Southern	lst Battle of Savarmah	1st Battle of Savannah	$\begin{gathered} 29 \mathrm{Dec} \\ 1778 \end{gathered}$	1	British	American	British	3500	1000	20	250	II	3	38	2	Winter	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	Subs. (A)	No	N/A N/A N/A
1.19	Southern	Kettle Creek	Kettle Creek	$\begin{gathered} 14 \mathrm{Feb} \\ 1779 \end{gathered}$	1	American	Tory	American	300	700	30	120	I	2	- 6	2	Winter	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	Major (A)	No	N/A N/A N/A
1.20	Southern	2nd Battle of Savannah	2nd Battle of Savannah	$\begin{aligned} & 9 \text { Oct } \\ & 1779 \end{aligned}$	1	American/ French	British	British	4550	3300	830	170	II	4	13	2	Winter	$\begin{aligned} & \text { A-Gd } \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No	N/A N/A N/A
1.21	Hudson Hyghlands	Stony Point	Stony Point	$\begin{gathered} 16 \mathrm{Jul} \\ 1779 \end{gathered}$	1	American	British	American	1300	700	100	190/P	II	4	13	5	Surmer	$\begin{aligned} & \text { A-Ex } \\ & \text { D-Gd } \end{aligned}$	Major (A)	No	N/A N/A N/A
1.22	Observation of New York	Paulus Hook	Paulus Hook	$\begin{aligned} & \text { Aug } \\ & 1779 \end{aligned}$	1	American	British/ Hessian	American	350	260	5	210	II	4	413	2	Surmer	$\begin{aligned} & \text { A-Gd } \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	Major (A)	No	N/A N/A N/A

2.1	$\begin{gathered} \text { Italy } \\ (1796-97) \end{gathered}$	Lodi	Lodi	$\begin{aligned} & 10 \text { May } \\ & 1796 \end{aligned}$	1	French	Austrian	French	25200	10000	350	450/0	I	2	5	2	Spring	$\begin{aligned} & \mathrm{A}-\mathrm{Ex} \\ & \mathrm{D}-\mathrm{Fr} \end{aligned}$	No	No N/A N/A N/A
2.2	$\begin{gathered} \text { Italy } \\ (1796-97) \end{gathered}$	Castiglione	Castiglione	$\begin{aligned} & 5 \text { Aug } \\ & 1796 \end{aligned}$	1	French	Austrian	French	28750	25000	1500	$\begin{gathered} 2000 \\ I Y \\ \hline \end{gathered}$	I	2	5	2	Surmer	$\begin{aligned} & \text { A-Gd } \\ & \text { D-Gd } \end{aligned}$	Subs. (A)	No N/A N/A N/A
2.3	$\begin{gathered} \text { Italy } \\ (1796-97) \end{gathered}$	Arcola	Arcola	$\begin{gathered} 15 \mathrm{Nov} \\ 1796 \end{gathered}$	3	French	Austrian	French	20000	17100	4500	7000	I	2	13	2	Fall	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	No	No N/A N/A N/A
2.4	$\begin{gathered} \text { Italy } \\ (1796-97) \end{gathered}$	Rivoli	Rivoli	$14 \mathrm{Jan}$ 1797	2	French	Austrian	French	20400	28000	5000	$\begin{gathered} 3000 \\ / 2 \end{gathered}$	I	2	2	2	Winter	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & . \mathrm{D}-\mathrm{Cd} \end{aligned}$		No N/A N/A N/A
2.5	Egyptian.	Aboukir	Abouktr	$\begin{gathered} 25 \mathrm{Jul} \\ 1799 \end{gathered}$	1	French	Egyptian	French	10000	15000	970	$\begin{array}{r} 2000 \\ / \mathrm{AA} \\ \hline \end{array}$	II	3	10	2	Summer	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No N/A N/A N/A
2.6	$\begin{gathered} \text { Italian } \\ (1799-1800) \end{gathered}$	Marengo	Marengo	14 Jun 1800	1	Austrian	French	French	31000	28000	14000	7000	I	2	5	2	Surmer	$\begin{aligned} & \text { A-Gd } \\ & \text { D-Gd } \end{aligned}$	Minor (A)	No N/A N/A N/A
2.7	Third Coalition	Durrenstein	Durrenstein	$11 \mathrm{Nov}$ 1805	1	Russian	French	French	40000	5000	. 4000	3000	II	2	5	2	Fall	$\begin{aligned} & \text { A-Gd } \\ & D-G d \end{aligned}$	No	No N/A N/A N/A
2.8	Third Coalition	Austerlitz	Austerlitz	$\begin{gathered} 2 \mathrm{Dec} \\ 1805 \end{gathered}$	1	French	Austrian/ Russian	French	75000	89000	8820	$\begin{gathered} 15000 \\ \hline \text { /BB } \\ \hline \end{gathered}$	I	2	5	8	Fall	$\begin{aligned} & \mathrm{A}-\mathrm{Cd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	Subs. (A)	No N/A N/A N/A
2.9	Prussian $(1806-7)$	Saalfeld	Saalfeld	100 ct 1806	1	French	Prussian	French	14000	8300	172	900/OC	I	2	4	2	Fall	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	No	No N/A N/A N/A
2.10	Prussian (1806-7)	Jena/ Auerstadt	Jena	14 Oct 1806	1	French	Prussian	French	96000	53000	5000	$\begin{gathered} 10000 \\ \hline \text { /DD } \\ \hline \end{gathered}$	I	2	1	2	Fall	$\begin{aligned} & A-E x \\ & D-\operatorname{Pr} \end{aligned}$	Minor (A)	No N/A N/A N/A
2.11	Prussian $(1806-7)$	Jena/ Auerstadt	Auerstadt	$\begin{aligned} & 14 \text { Oct } \\ & 1806 \end{aligned}$	1	Prussian	French	Prussian	63500	27000	13000	7000	I	2	4	8	Fall	$\begin{aligned} & \mathrm{A}-\mathrm{Fr} \\ & \mathrm{D}-\mathrm{Ex} \end{aligned}$	Minor (A)	No N/A N/A N/A

Table 3.3 (continued)

2.12	Prussian (1806-7)	Eylau	Eylau	$\begin{aligned} & 8 \text { Feb } \\ & 1807 \end{aligned}$	01	French	Russian	French	75000	76×100	25000	15000	I	2	5		Winter	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	No		N/A N/A N/A
2.13	Prussian $(1806-7)$	Heilsburg	Heilsburg	$10 \mathrm{Jun}$ 1807	1	French	Russian	Russian	50000	68000	10570	8000	I	3	5	2	Spring	$\begin{aligned} & \text { A-Gd } \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No		$\mathrm{N} / \mathrm{A} \mathrm{N/A} \mathrm{N/A}$
2.14	Prussian (1806-7)	Friedland	Friedland	14 Jun 1807	1	French	Russian	French	80000	60000	8000	$\begin{gathered} 20000 \\ \text { /EE } \end{gathered}$	I	2	5	2	Spring	$\begin{aligned} & A-\mathrm{Cd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No N	N/A N/A N/A
2.15	Peninsular (1808)	Pancorbo	Pancorbo	31 Oct 1808	1	French	Spanish	French	21000	19000	200	600	I	2	6	2	Fall	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	No	No N	N/A N/A N/A
2.16	$\begin{aligned} & \text { Peninsular } \\ & \text { (1808) } \end{aligned}$	Corunna	Conunna	$\begin{gathered} 16 \mathrm{Jan} \\ 1809 \end{gathered}$	1	French	British	British	19500	15200	1500	800	II	2	5	3	Winter	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No N	N/A N/A N/A
2.17	$\begin{aligned} & \text { Danube } \\ & \text { (1809) } \end{aligned}$	Ecknuhl	Eckmuhl	$\begin{aligned} & 22 \mathrm{Apr} \\ & (1809) \end{aligned}$	1	French	Austrian	French	60000	35000	6000	$\begin{gathered} 12000 \\ / \mathrm{FF} \\ \hline \end{gathered}$	I	2	5	2	Spring	$\begin{aligned} & \text { A-Gd } \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No N/	N/A N/A N/A
2.18	Darnube (1809)	Asspernessling	Asspernnessling	21 May 1809	2	Austrian	French	Austrian	95800	70000	23400	21000	I	2	8	2	Spring	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	Minor (A)	No N	N/A N/A N/A
2.19	$\begin{aligned} & \text { Danube } \\ & \text { (1809) } \end{aligned}$	Wagram	Wagram	$\begin{gathered} 5 \mathrm{Jul} \\ 1809 \end{gathered}$	2	French	Austrian	French	170500	146600	39500	40000	I	2	5	1	Summer	$\begin{aligned} & \mathrm{A}-\mathrm{Cd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No 1	No	N/A N/A N/A
2.20	Russian	Borodino	Borodino	$\begin{aligned} & 7 \mathrm{Sep} \\ & 1812 \end{aligned}$	1	French	Russian	French	133000	120000	30000	44000	I	2	2	2	Summer	$\begin{aligned} & \text { A-Gd } \\ & \text { D-Gd } \end{aligned}$	No	No N	N/A N/A N/A
2.21	Germany (1813)	Lutzen	Lutzen	$\begin{gathered} 2 \text { May } \\ 1813 \end{gathered}$	1	Prussian	French	French	73000	110000	18000	20000	I	2	4	2	Spring	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Cd} \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { /OG } \\ & \hline \end{aligned}$	No N	N/A N/A N/A
2.22	Cermany (1813) (1813)	Bautzen	Bautzen	$\begin{gathered} 20 \text { May } \\ 1813 \end{gathered}$	2	French	Prussian/ Russian	French	200000	96000	20000	20000	I	3	2	2	Spring	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No	N/A N/A N/A

2.23	Cermany (1813)	Dresden	Dresden	26 Aus 1813	2	French	Allied	French	120000	170000	10000	38000	I	2	14		Summer	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	Subs. (A)		N/A N/A N/A
2.24	Germany (1813)	Kulm	Kulm/till	$30 \text { Aug }$ 1813	1	Allied	French	Allied	54000	32000	11000	$\begin{gathered} 16000 \\ \text { /II } \end{gathered}$	II	2	5	2	Summer	$\begin{aligned} & \mathrm{A}-\mathrm{Fr} \\ & \mathrm{D}-\mathrm{Ex} \end{aligned}$	Subs. (A)		N/A N/A N/A
2.25	Germany (1813)	Dennewitz	Dernewitz	$\begin{aligned} & 6 \text { Sep } \\ & 1813 \end{aligned}$	1	French	Swedish	Suedish	55000	80000	10000	7000	I	3	5	2	Summer	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	Subs. (D)	No N	N/A N/A N/A
2.26	Gemany (1813)	Leipsig	Leipsig (Part I)	$\begin{aligned} & 16 \text { Oct } \\ & 1813 \end{aligned}$	1	Allies	French	French	257000	177000	30000	25000	I	2	13	2	Fall	$\begin{aligned} & \text { A-Gd } \\ & \text { D-Gd } \end{aligned}$	Minor (A)	No	N/A N/A N/A
2.27	Cermany (1813)	Leipsig	Leipsig (Part II)	$18 \text { Oct }$ 1813	2	Allies	French	Allies	365000	195000	24000	13000	I	5	14	2	Fall	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	No	No	N/A N/A N/A
2.28	France (1814)	Brieme	Brienne	$\begin{gathered} 29 \mathrm{Jan} \\ 1814 \end{gathered}$	1	French	Allied	French	43000	28000	3000	4000	I	2	8	3	Winter	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	No	No	N/A N/A N/A
2.29	France (1814)	La Rothiere	La. Rothiere	$\begin{aligned} & 1 \mathrm{Feb} \\ & 1814 \end{aligned}$	1	Allied	French	Allied	110000	40000	6000	6000	I	2	8	12	Winter	$\begin{aligned} & A-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No	N/A N/A N/A
2.30	France (1814)	Champaubert	Champaubert	10 Feb 1814	1	French	Allied	French	24000	5000	200	$\begin{aligned} & 4000 \\ & \text { /JJ } \\ & \hline \end{aligned}$	I	2	8	11	Winter	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	No	No N	N/A N/A N/A
2.31	France (1814)	Montmirail	Montmirail	11 Feb 1814	1	Allied	French	French	21000	20000	$\begin{aligned} & 4000 \\ & / \mathrm{KK} \\ & \hline \end{aligned}$	2000	I	2	8	11	Winter	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No	N/A N/A N/A
2.32	France (1814)	Vauchamps	Vauchamps	$\begin{gathered} 14 \mathrm{Feb} \\ 1814 . \end{gathered}$	1	French	Prussian	French	25000	22000	600	7000	1	2	8	11	Winter	$\begin{aligned} & A-C d \\ & D-G d \end{aligned}$		No	N/A N/A N/A
2.33	France (1814)	Montereau	Montereau	18 Feb 1814	1	French	Allied	French	45000	40000	2500	6000	I	3	5	11	Winter	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	No	No	N/A N/A N/A

3.5	Valley Canpaign (Jacksoh)	Kernstown	Kernstown	$\begin{gathered} 23 \mathrm{Mar} \\ 1862 \end{gathered}$	1	Confect erate	Union	Union	4200	9000	700	550	I	2	5	2	Spring	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	No	No N/A N/A N/A
3.6	Valley Compaign (Jackson)	McDowell	McDowell	$\begin{gathered} 8 \text { May } \\ 1862 \end{gathered}$	1	Union 1	Confed erate	Confed erate	4000	9000	250	500	I	2	5	2	Spring	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	Subs. (A)	No N/A N/A N/A
3.7	Valley Campaign (Jackson)	Winchester	Winchester	$\begin{gathered} 25 \text { May } \\ 1862 \end{gathered}$	1	Confederate	Union	Confed erate	16000	7000	350	1800	I	2	5	2	Spring	$\begin{aligned} & \text { A-Gd } \\ & \text { D-Gd } \end{aligned}$	No	No N/A N/A N/A
3.8	Valley Campaign (Jackson)	Cross Keys/ Port Republic	Cross Keys	$\begin{gathered} 8 \text { Jum } \\ 1862 \end{gathered}$	1	Union	Confederate	Confederate	15000	6500	650	300	I	2	5	2	Spring	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No N/A N/A N/A
3.9	Valley Campaign (Jackson)	Cross Keys/ Port Republic	Port Republic	$\begin{gathered} 9 \text { Jun } \\ 1862 \end{gathered}$	1	Confederate	Union	Confederate	6000	5000	800	1000	I	2	5	8	Spring	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No N/A N/A N/A
3.10	Valley Campatgn (Jackson)	Front Royal (I)	Front Royal (I)	$23 \text { May }$ 1862	1	Confederate	Union	Confederate	16000	1000	50	800/RR	II	2	5	2	Spring	$\begin{aligned} & \text { A-Gd } \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No N/A N/A N/A
3.11	Valley Campaign (Jackson)	Front Royal (II)	Front Royal (II)	$\begin{aligned} & 30 \text { May } \\ & 1862 \end{aligned}$	1	Union	Confed erate	Union	500	300	14	200	I	2	5	2	Spring	$\begin{aligned} & \text { A-Gd } \\ & \text { D-Gd } \end{aligned}$	Minor (A)	No N/A N/A N/A
3.12	Penninsula	WHlliams burg	WH1liams burg	$\begin{gathered} 4 \text { May } \\ 1862 \end{gathered}$	2	Union	Confederate	Union	43840	$34090{ }^{\text {' }}$	2240	1700	I	2	8	2	Spring	$\begin{aligned} & \text { A-Gd } \\ & \text { D-Gd } \end{aligned}$	No	No N/A N/A N/A
3.13	Penninsula	Fair Oaks	Fair Oaks	31 May 1862	2	Confed erate	Union	$\begin{gathered} \text { Confed- } \\ \text { erate } \\ \text { (Marginal) } \end{gathered}$	44960	44940	6130	5030	I	2	8	2	Spring	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	Minor (A)	No N/A N/A N/A

Table 3.3 (continued)

															-	7					
3.14	Penninsula	Seven Day's	Mechanicsville	$\begin{gathered} 26 \text { Jun } \\ 1862 \end{gathered}$	1	Confer erate	Union	Confed crate	17590	16810	1480	360	I	2	5	2	Summer	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$		No N/	N/A N/A N/A
3.15	Peminsula	Seven Day's	Gaine's MLll	$\begin{gathered} 27 \mathrm{Jum} \\ 1862 \end{gathered}$	1	Confederate	Union	Confederate	36790	60410	8750	4040		2	8	2	Summer	$\begin{aligned} & A-\mathrm{Cd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$		No N/	N/A N/A N/A
3.16	Peminsula	Seven Day's	Peach Orchard through Malvern HH11/SS	$\begin{gathered} 29 \mathrm{Jun} \\ 1862 \end{gathered}$	3	Confederate	Union	Confed erato	92520	105860	9480	8040	I	2	5	2	Surmer	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Fr} \end{aligned}$		No N/	N/A N/A N/A
3.17	Second Bull Ram	Cedar Moumtain	Cedar Mountain	$\begin{aligned} & 9 \text { Aug } \\ & 1862 \end{aligned}$	1	Union	Confederate	Confed erate	8750	18260	2350	1140	I	2	5	2	Summer	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$		No N/	N/A N/A N/A
3.18	Second Bull Rum	$\begin{aligned} & \text { Second } \\ & \text { Bull Ram } \end{aligned}$	$\begin{gathered} \text { Manasas \& } \\ \text { Chantilly/TT } \end{gathered}$	$\begin{aligned} & 29 \text { Aug } \\ & 1862 \end{aligned}$	5	Confederate	Union	Confect erate	81390	54330	16050	9200		2	2	2	Summer	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$		No N	N/A N/A N/A
3.19	Antietam	South Mountain	South Mountain/KU	$\begin{aligned} & 14 \text { Sep } \\ & 1862 \end{aligned}$	1	Union	Confederate	Union	30490	19570	1810	2690		2	2	2	Surmer	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$		No N	N/A N/A N/A
3.20	Antietam	Antietam	Antietam/L	$\begin{gathered} 17 \mathrm{Sep} \\ 1862 \end{gathered}$	1	Union	Confect erate	Confed erate	87160	55220	13720	12410		2	5	2	Summer	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$		No N/	N/A N/A N/A
3.21	Confederate Kentucky Offensivé	Richnond, Kentucky	Richmond, Kentucky	30 Aug 1862	1	Confed erate	Union	Confed erate	7450	6990	450	$\begin{aligned} & 1050 \\ & \text { N } \\ & \hline \end{aligned}$	II	2	5	2	Summer	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$		No N	N/A N/A N/A
3.22	Conferate Kentucky Offensive	Perryville	Perryvilue	$\begin{gathered} 8 \text { Oct } \\ 1862 \end{gathered}$	1	Union	Confederate	Confederate	39720	17200	4210	3400	I	2	5	1	Fall	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$		No N	N/A N/A N/A
3.23	Iuka/ Corinth	Iuka	Iuka	$\begin{gathered} 19 \mathrm{Sep} \\ 1862 \end{gathered}$	1	Union	Confert erate	Confed erate	13000	17000	790	540	I	2	4	2	Sumer	$\begin{aligned} & \text { A-Gd } \\ & \text { D-Gd } \end{aligned}$	Minor (A)	$\text { No } \mathrm{N}$	$\mathrm{N} / \mathrm{A} \mathrm{~N} / \mathrm{A} \mathrm{~N} / \mathrm{A}$

3.24	Iuka/ Corinth	Corinth	Corinth	$\begin{aligned} & 3 \text { Oct } \\ & 1862 \end{aligned}$	1	Confed erate	Union	Union	23660	23080	4230	2520		2-3	5	2	Fall	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	No		N/A N/A N/A
3.25	Vicksturg	Chickasaw Bluffs	Chickasaw Bluffs	$\begin{gathered} 27 \mathrm{Dec} \\ 1862 \end{gathered}$	3	Union	Confed erate	Confed erate	40000	14000	1780	210	I	4	2	2	Winter	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	No	No	N/A N/A N/A
3.26	Arkansas	Pralrie Grove	Prairie Grove	$\begin{aligned} & 7 \text { Dec } \\ & 1862 \end{aligned}$	1	Confed erate	Union	Union	11830	13180	1320	1250	I	2	6	2	Fall	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No	N/A N/A N/A
3.27	Fredericksburg	Fredericksburg	Fredericksburg/WW	$13 \mathrm{Dec}$ 1862	1	Union	Confed erate	Confederate	113990	78510	12650	5310	I	4	2	6	Fall	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No	N/A N/A N/A
3.28	Mirfreesboro	Murfreesboro	Murfreesboro/L	31 Dec ' 1862	2	Confed erate	Union	Union	37710	44800	11740	12910	I	2	4	3	Winter	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Cd} \end{aligned}$	No	No	N/A N/A N/A
3.29	Vicksburg	Arkansas Post	Arkansas Post	$\begin{gathered} 11 \mathrm{Jan} \\ 1863 \end{gathered}$	1	Union	Confed erate	Union	31120	4910	1060	110/XX		4	13	3	Winter	$\begin{aligned} & \text { A-Cd } \\ & D-G d \end{aligned}$	No	No	N/A N/A N/A
3.30	Chancel- lorsville	Chancel- lorsville	Chancel- lorsville/YY	$\begin{aligned} & 2 \text { May } \\ & 1863 \end{aligned}$	3	Confect erate/ZZ	Union	Confed erate	60840	104890	12760	16850	I	2	5	2	Spring	$\begin{aligned} & \text { A-Ex } \\ & \text { D-Gd } \end{aligned}$	Major (A)	No	N/A N/A N/A
3.31	Vicksburg	Champion's H11	Crampion's Hill	$\begin{gathered} 16 \text { May } \\ 1863 \end{gathered}$	1	Union	Confederate	Union	31700	21510	2440	4360	I	2	5	2	Spring	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No	N/A N/A N/A
3.32	Vicksburs'	Seige of Vicksburg	Assault on May 22	$\begin{gathered} 22 \text { May } \\ 1863 \end{gathered}$	1	Union	Confed erate	Confed erate	47170	23800	3200	130	II	4	2		Spring	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	No	No	N/A N/A N/A
3.33	Vicksburg	Port Hudson	Assault on May 27	$\begin{gathered} 27 \text { May } \\ 1863 \end{gathered}$	1	Union	Confed erate	Confed erate	13980	4790	2000	240	II	4	5	2	Spring	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No	N/A N/A N/A
3.34	Vicksburg	Port Hudson	$\begin{aligned} & \text { Assault on } \\ & \text { June } 14 \end{aligned}$	$\begin{aligned} & 14 \mathrm{Jun} \\ & 1863 \end{aligned}$	1	Union	Confed erate	Confed erate	6000	3750	1790	50	II	4	5	2	Spring	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	No	No	N/A N/A N/A

3.35	Gettysburg	Gettysburg	Gettysburg /AMA	$\begin{aligned} & 1 \text { Jul } \\ & 1863 \end{aligned}$	3	Confed crate	Union	Union	81840	90620	23050	28060	I	2	5	1	Summer	$\begin{aligned} & \text { A-Ex } \\ & \text { D-Gd } \end{aligned}$	No	No N/A N/A N/A
3.36	Coastal Blockade (1863)	Fort Wagner	Fort Wagner	$\begin{gathered} 18 \mathrm{Jul} \\ 1863 \end{gathered}$	1	Union	Confed crate	Confederate	5680	1920	1520	170	II	4	8	7	Summer	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No N/A N/A N/A
3.37	Chickamaugua	Chickar maysua	Chickamaugua/L	$\begin{gathered} 19 \mathrm{Sep} \\ 1863 \end{gathered}$	2	Confed erate	Union	Confed erate	72760	63420	18470	16170	I	2	4	2	Summer	$\begin{aligned} & \text { A-Ex } \\ & \text { D-Gd } \end{aligned}$	No	No N/A N/A N/A
3.38	Chattanooga	Chatyp nooga	Chattar nooga/BBB	$\begin{gathered} 25 \mathrm{Nov} \\ 1863 \end{gathered}$	2	Union	Confed erate	Union	60600	50100	5820	6670	I	4	2	2	Fall	$\begin{aligned} & \text { A-Ex } \\ & \text { D-Gd } \end{aligned}$	No	No N/A N/A N/A
3.39	Red River	Sabine Crossing	Pleasant HII	$\begin{aligned} & 9 \mathrm{Apr} \\ & 1864 \end{aligned}$	1	Confed erate	Union	Confed erate	15450	13730	1500	1370	I	2	4	2	Spring	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	Minor (A)	No N/A N/A N/A
3.40	Mine Rum	Mine Ran	Mine Rum	27 Nov 1863	5	Union	Confed erate	Confed erate	75760	40750	1190	1650	1	2	4	2	Fall	$\begin{aligned} & \text { A-Gd } \\ & D-G d \end{aligned}$	No	No N/A N/A N/A
3.41	Coastal Blockade (1864)	Olustee, Florida	Olustee, Florida	$\begin{gathered} 20 \mathrm{Feb} \\ 1864 \end{gathered}$	1	Union	Confed erate	Confederate	5500	5590	1860	930	1	4	7	2	Winter	$\begin{aligned} & \text { A-Gd } \\ & \text { D-Gd } \end{aligned}$	No	No N/A N/A N/A
3.42	Wilderness/ Spotsylvania/Cold Harbor	Spotsylvanfa	Drewry's Bluff	$\begin{aligned} & 12 \text { May } \\ & =1864 \end{aligned}$	5	Union	Confed erate	Confed erate	16990	19380	4160	3070	I	2	1	8	Spring	$\begin{aligned} & \text { A-Gd } \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No N/A N/A N/A
3.43	Wilderness/ Spotsylvanda/Cold Harbor	Cold Harbor	Cold Harbor	$\begin{gathered} 3 \mathrm{Jun} \\ 1864 \end{gathered}$	1	Union	Confed erate	Confed, erate	50000	34000	6500	1500	I	3	6	2	Spring	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No N/A N/A N/A

3.54	Aslanta	Aslanta	Ezra Church	$\begin{gathered} 28 \mathrm{Jul} \\ 1864 \end{gathered}$	1	Confect erate	Union	Union	19520	14170	4300	630	I	- 2	4	2	Summer	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	No	No N/A N/A N/A
3.55	Atlanta	Jonesboro	Jonesboro (lst)	$\begin{gathered} 31 \mathrm{Aug} \\ 1864 \end{gathered}$	1	Confed erate	Union	Union	25600	15240	1730	180	I	2	5	2	Surmer	$\begin{aligned} & \mathrm{A}-\mathrm{Fr} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No N/A N/A N/A
3.56,	Valley Campalgn (1864)	Opequon Creek	Opequon Creek	$\begin{aligned} & 19 \text { Sep } \\ & 1864 \end{aligned}$	1	Union	Confed erate	Union	41300	18910	5020	3920	I	2	5	2	Summer	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No N/A N/A N/A
3.57	Vạley Campaign (1864)	Monocacy	Mbrocacy	$\begin{aligned} & 9 \mathrm{Jul} \\ & 1864 \end{aligned}$	1	Confed erate	Union	Confed erate	8000	8750	700	1800	I	5	5	2	Sumer	$\begin{aligned} & \mathrm{A}-\mathrm{Fr} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No N/A N/A N/A
3.58	Whimington	Ft. Fisher	Ft. Flisher	$\begin{gathered} 15 \mathrm{Jan} \\ 1865 \end{gathered}$	1	Union	Confect erate	Union	10000	2500	1340	500	II	4	11	3	Winter	$\begin{aligned} & \text { A-Ex } \\ & \text { D-Ex } \end{aligned}$	No	No N/A N/A N/A
3.59	Carolinas	Bentorville	Bentorville/L	19 Mar 1865	l	Confect erate	Union	Union	18170	18590	2120	1100	I	2	4	2	Whiter	$\begin{aligned} & \text { A-Gd } \\ & \text { D-Gd } \end{aligned}$	Subs. (A)	No N/A N/A N/A
4.1	Natal	Eland slaagte	Elandslaagte	21 Oct 1899	1	British	Boer	British	3150	650	280	$\begin{gathered} 210 \\ \text { /EEE } \end{gathered}$	I	2	6	2	Spring	$\begin{aligned} & \text { A-Gd } \\ & D-G d \end{aligned}$	No	No N/A N/A N/A
4.2	Naral	Colenso	Colenso	15 Dec 1899	1	British	Boer	Boer	14100	5500	1120	30	I	3	3	2	Spring	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No N/A N/A N/A
4.3	Cape Colory	Modder River	Belmont	$\begin{gathered} 23 \mathrm{Nov} \\ 1899 \end{gathered}$	1	British	Boer	British	7500	2000	370	100	I	5	6	2	Spring	$\begin{aligned} & \mathrm{A}-\mathrm{Cd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No N/A N/A N/A
4.4	Cape Colony	Magers fontein	Magersfontein/L	$\begin{aligned} & 10 \text { Dec } \\ & 1899 \end{aligned}$	2	British	Boer	Boer	11300	8500	970	250	I	3	6	1	Spring	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No N/A N/A N/A
4.5	Cape Colony	Paardeberg	Assault on the $18 \mathrm{th} / \mathrm{FFF}$	18 Feb 1900	1	British	Boer	Boer	17300	4100	1200	300	II	2	6	2	Summer	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No N/A N/A N/A

5.1	Yalu	Yalu River Crossing	Yalu River Crossing	30 Apr 1904	2	Japanese	Russian	Japanese	40000	6100	1100	2500	I	5	2	2	Spring	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	No		$\mathrm{N} / \mathrm{A} \mathrm{N} / \mathrm{A} \mathrm{N} / \mathrm{A}$
5.2	Central Manchuria	Telissu	Tellssu	$14 \mathrm{Jum}$ 1904	2	Japanese	Russian	Japanese	35000	29500	1160	3480	I	3	3	8	Spring	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	No	No	N/A N/A N/A
5.3	Port Arthur	Nanshan	Nanshan	25 May $1904{ }^{\text {" }}$	1	Japanese	Russlan	Japanese	30000	3000	4500	1500	I	4	3	2	Spring	$\begin{aligned} & A-G d \\ & A-G d \end{aligned}$	No	No	N/A N/A N/A
5.4	Central Manchurla	Liaoyang	Laoyang	$25 \text { Aug }$ 1904	10	Pussian	Japanese	Japanese	158000	125000	19000	23000	I	2	3	2	Summer	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	No	No	N/A N/A N/A
6.1	Invasion of Italy	Salerno	Port of Salemo	$\begin{aligned} & 9 \text { Sep } \\ & 1943 \end{aligned}$	3	British; 46th INF DIV	German; 16th PZ DIV	German	12920	4250	1360	120	I	3	5	2	Summer	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	Minor (A)	No	A) No Yes
6.2	Invasion of Italy	Salerno	Amphitheater	$\begin{gathered} 9 \text { Sep } \\ 1943 \end{gathered}$	3	British; 56th INF DIV	German; 16th PZ DIV	German	12920	4250	1040	100	I	3	5	2	Sumner	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	Minor (A)	No	(A) No Yes
6.3	Invasion of Italy	Salerno	Sele-Calore Corrfor	11 Sep 1943	1	U.S.; 45th INF DIV	German; 16th PZ DIV	German	12450	8390	240	160	I	2	5	2	Surmer	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	Minor (A)	No	(A) Yes Yes
6.4	Invasion of Italy	Salerno	Vietri I	12 Sep 1943	3	German; HG PZ DIV	British; 46th INF DIV	British	15000	12920	670		$\begin{gathered} \mathrm{II} \\ \text { /FFF } \\ \hline \end{gathered}$	2	5	2	Summer	$\begin{aligned} & \text { A-Gd } \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No		(D) Yes Yes
6.5	Invasion of Italy	Salemo	Battipaglia	$\begin{aligned} & 12 \text { Sep } \\ & 1943 \end{aligned}$	4	German; 16th PZ DIV	British; 56th INF DIV	British	14730	11230	830		$\begin{gathered} \text { II } \\ \text { /GOG } \\ \hline \end{gathered}$	2	5	2	Summer	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No		(D) Yes Yes
6.6	Invasion of Italy	Salerno	Tobacco Factory	$\begin{gathered} 13 \text { Sep } \\ 1943 \end{gathered}$	2	German; 6th \& 29th PZ DIV	U.S.; 45th INF DIV	U.S.	14730	12690.	630	390	$\begin{gathered} \text { II } \\ \text { /GOG } \\ \hline \end{gathered}$	2	5	2	Summer	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No	(D) Yes Yes
6.7	Invasion of Italy	Salemo	Vietri II	$\begin{gathered} 17 \mathrm{Sep} \\ 1943 \end{gathered}$	2	Cerman; HG PZ DIV	British; 46th INF DIV	British	13300	18910	390	250	$\begin{gathered} \text { II } \\ \text { /OOG } \\ \hline \end{gathered}$	2	5	2	Summer	$\begin{aligned} & \text { A-Gd } \\ & \text { D-Gd } \end{aligned}$	No	No	(D) Yes Yes

6.30	Anzio	Aprilia I	Aprilia I	$\begin{gathered} 25 \mathrm{Jan} \\ 1944 \end{gathered}$	2	British; lst INF DIV	German; 3rd PZ GR DIV	British	19350	6750	1140	100	I 2	8	11	Winter	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	Minor (A)	No (A) No Yes
6.31	Anzio	The Factory	The Factory.	$\begin{gathered} 27 \mathrm{Jan} \\ 1944 \end{gathered}$	1	German; 3rd PZ GR DIV	$\begin{aligned} & \text { British; } \\ & \text { lst INF DIV } \end{aligned}$	British	15320	17980	70	60	I 2	8	3	Winter	$\begin{aligned} & A-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Cd} \end{aligned}$	Minor (D)	No (D) Yes Yes
6.32	Anzio	Campoleone	Campoleone	$\begin{gathered} 29 \mathrm{Jan} \\ 1944 \end{gathered}$	3	British; 1st TNF DIV	German; 3rd PZ GR DIV	German	17770	15100	740	220	I 3	8	3.	Winter	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	Minor (A)	No (A) Yes Yes
6.33	Anzio	Campoleorve Counterattack	Canpoleone Counterattack	$\begin{gathered} 3 \mathrm{Feb} \\ 1944 \end{gathered}$	3	German; Comr bat Cormand Gredzer	$\begin{aligned} & \text { British; } \\ & \text { 1st INF DIV } \end{aligned}$	British	26030	9730	1950	2150	I 2-3	8	8	Winter	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No (D) Yes Yes
6.34	Anzio	Carroceto	Carroceto	7 Feb 1944	2	German; 3rd PZ CR DIV	$\begin{aligned} & \text { British; } \\ & \text { lst INF DIV } \end{aligned}$	British	26490	4520	340	370	I 2-3	8	3	Winter	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No (D) Yes Yes
6.35	Anzio	Moletta River Defense	Moletta River Defense	$\begin{aligned} & 7 \mathrm{Feb} \\ & 1944 \end{aligned}$	3	German; 65th INF Div	U.S.; 45th INF DIV	U.S.	7420	5000	250	120	I 2-3	8	3	Winter	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	No	No (D) Yes Yes
6.36	Anzio	Aprilia II	Aprilia II	$\begin{gathered} 9 \mathrm{Feb} \\ 1944 \end{gathered}$	1	German; Corr bat Command Greizer	British; lst INF DIV	German	27520	17730	230	310	I 2-3	8	3	Winter	$\begin{aligned} & \text { A-Gd } \\ & D-G d \end{aligned}$	No	No (D) Yes No
6.37	Anzio	Factory Counterattack	Factory Comnterattack	11 Feb 1944	2	U.S.; 45th INF DIV	German; 715th LT INF DIV	German	13400	7080	120	210	I 2-3	8	9	Winter	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No (A) No Yes
6.38	Anzio	Bowling Alley	Bowling Alley	$\begin{gathered} 16 \mathrm{Feb} \\ 1944 \end{gathered}$	4	German; 4 Divisions	$\begin{gathered} \text { U.S.; } \\ \text { 45th INF DIV } \end{gathered}$	U.S.	41980	20505	1900	1300	II 2-3	8	3	Winter	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No (D) Yes Yes
6.39	Anzio	Moletta River II	Moletta Rdver II	16 Feb 1944	4	German; 65th INF \& 45h PARA DIV	British; 56th INF DIV 3	German (Marginal)	21480	9760	1430	1670	II 2-3	8	3	Winter	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	Major (A)	No (D) Yes Yes

6.40	Anzio	Fioccia	Fiocela	21 Feb 1944		German; 114th LT INF DIV	U.S.; 45th LNF DIV	U.S.	15640	19610	570	260	II	3	8	9	Winter	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No (D) Yes Yes
6.41	Rame	Santa Maria Infante	Santa Marla Infante	12 Mzy 1944	2	U.S.; 88th INF DIV	German; 94 th \& 71st INF DIV	U.S.	18700	9250	550	960	I	4	3	2	Spring	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	No	No (A) Yes No
6.42	Rome	San Martino	San Martino	12 May 1944	2	U.S.; 85th INF DIV	German; 94th INF DIV	U.S. (Marginal)	17970	8140	1150	680	I	4	3	2	Spring	$\begin{aligned} & \text { A-Gd } \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No (A) Yes No
6.43	Rome	Spigno	Spigno	14 May 1944	2	U.S.; 88th INF DIV	Cerman; 94th \& 71st INF DIV	U.S.	18310	8220	340	720	I	5	3	2	Spring	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	No	No (A) Yes No
6.44	Rome	Castello novato	$\begin{aligned} & \text { Castello- } \\ & \text { novato } \end{aligned}$	14 Mxy 1944	2	$\begin{gathered} \text { U.S.; } \\ \text { 85th INF DIV } \end{gathered}$	German; 94th INF DIV	U.S.	16460	7500	540	440	I	4	3	2	Spring	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	No	No (A) Yes No
6.45	Rome	Formia	Formia	$16 \text { May }$ 1944	3	$\begin{aligned} & \text { U.S.; } \\ & \text { 85th INF DIV } \end{aligned}$	German; 94th INF DIV	U.S.	23190	7630	400	720	I	5	5	2	Spring	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	No	No (A) No No
6.46	Rome	Monte Grande	Mbnte Grande	17 May 1944	3	$\begin{gathered} \text { U.S.; } \\ \text { 88th INE DIV } \end{gathered}$	German; 94th INF DIV	U.S.	13100	4560	300	490	I	2	3	2	Spring	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	No	No (A) Yes No
6.47	Rone	Itri-Fonde	Itri-Fonde	20 May 1944	3	U.S.; 88th INF DIV	German; 94th INF DIV	U.S.	17910	6650	270	380	I	5	3	2	Spring	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	No	No (A) Yes Yes
6.48	Rone	Terracina	Terracina	$\begin{gathered} 22 \text { May } \\ 1944 \end{gathered}$	3	$\begin{gathered} \text { U.S.; } \\ \text { 85th INF DIV } \end{gathered}$	German; 94th INF DIV	U.S.	18030	6650	270	380	I	2	2	2	Spring	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	No	No (A) Yes No
6.49	Rome	Moletta Offensive	Mbletta Offensive	23 May 1944	2	British; 5th INF DIV	German; 4th PARA DIV	British	17350	12570	230	470	I	4	8	8	Spring	$\begin{aligned} & \text { A-Gd } \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No (A) Yes No
6.50	Rome	Anzio Albano Road	Anzio Albano Road	$\begin{aligned} & 23 \text { May } \\ & 1944 \end{aligned}$	2.	British; lst INF DIV	German; 65th INF DIV	British	17310	11340	190	480	I	4	8	8	Spring	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	No	No (A) Yes No

Table 3.3 (continued)

6.71	Sigfreid Line	Burbach- Durstel	Burbach- Durstel	27 Nov 1944	3	$\begin{aligned} & \text { U.S.; } \\ & \text { 4th ARM DIV } \end{aligned}$	German; PZ Lehr DIV	German	16230	6710	80	220	I	5	5	9	Fall	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No (A) No	No
6.72	Sigfreid Line	Sarre- Union	Sarre- Union	$\begin{gathered} 1 \text { Dec } \\ 1944 \end{gathered}$	2	U.S.; 4th ARM DIV	German; 11th PZ, PZ Lehr, 25th PZ GR DIV	U.S.	19770	6040	280	130	I	3	5	5	Fall	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No (A) No	No
6.73	Sigfreid Line	SinglingBining	SinglingBinlng	$\begin{gathered} 6 \text { Dec } \\ 1944 \end{gathered}$	2	$\begin{aligned} & \text { U.S.; } \\ & \text { 4th ARM DIV } \end{aligned}$	German; 25th PZ CR DIV, 11th PZ DIV	German	15220	5040	160	120	I	4	5	8	Fall	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No (A) Yes	
6.74	Sigfreid Line	SeilleNHed	SeilleNHed	$\begin{gathered} 8 \text { Nov } \\ 1944 \end{gathered}$	5	$\begin{aligned} & \text { U.S.: } \\ & \text { XII CORPS } \end{aligned}$	Ceman; XIII \& LXXXIX CORPS	U.S.	99580	23590	4280	4870	I	4	5	12	Fall	$\begin{aligned} & \text { A-Gd } \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No (A) Yes	No
6.75	Sigfreid Line	Morhange-Fanlquemont	Morhange-Faulquemont	$\begin{aligned} & 13 \text { Nov } \\ & 1944 \end{aligned}$	4	U.S.; XII CORPS	Cerman; XIII \& LXXXIX CORPS	Incon- lusive (Arbi- trarlly German)	92390	28380	3220	3670	t	5	5	3	Fall	$\begin{aligned} & \text { A-Gd } \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No	No (A) No	No
6.76	Sigfreid Line	SerreSt. Avold	SerreSt. Avold	$\begin{gathered} 20 \text { Nov } \\ 1944 \end{gathered}$	8	$\begin{aligned} & \text { U.S.; } \\ & \text { XII CORPS } \end{aligned}$	$\begin{aligned} & \text { German; XIII } \\ & \& \text { LXXXIX } \\ & \text { CORPS } \end{aligned}$	U.S.	88940	32400	3270	4950	I	5	5	6	Fall	$\begin{aligned} & \text { A-Gd } \\ & D-G d \end{aligned}$	No	No (A) Yes	No
6.77	Sigfreid Line	Durstel- Farebersvilles	Durstel-Farebersvilles	$\begin{gathered} 28 \mathrm{Nov} \\ 1944 \end{gathered}$	2	$\begin{aligned} & \text { U.S.; } \\ & \text { XII CORPS } \end{aligned}$	$\begin{aligned} & \text { German; XIIII } \\ & \& \text { LXXXXX } \\ & \text { OORPS } \end{aligned}$	German	90080	30710	490	810	İ	5	5	'9	Fall	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Cd} \end{aligned}$	No	No (A) No	No
6.78	Sigfreid Line	Sarre- Singling	Sarre- Singling	5 Nov 1944	3	$\begin{aligned} & \text { U.S.; } \\ & \text { XII ORRPS } \end{aligned}$	German; XII \& XI CORPS	U.S.	89980	31500	1130	1170	I	5	5	6	Fall	$\begin{aligned} & \text { A-Gd } \\ & \text { D-Gd } \end{aligned}$	No	No (A) Yes	No

12.9	Sinai	Chinese Farm II	Chinese Farm II	$16 \text { Oct }$ 1973		$\begin{aligned} & \text { Israeli; } \\ & \text { Adan DIV (+) } \end{aligned}$	Egyptian; 16th (-) \& 21st (-) DIV	Isracli	28700	36840	950	2400	I 2-3 6	2	Fall	$\begin{aligned} & A-G d \\ & D-G d \end{aligned}$	Minor No (A) Yes Yes (A)
12.10	Sinai	Deversoir Hest	Deversoir West	$\begin{aligned} & 18 \text { Oct } \\ & 1973 \end{aligned}$	1	Israely; Adan DIV	$\begin{aligned} & \text { Egyptian; } \\ & \text { 2nd ARMY }(-) \end{aligned}$	Israeli	16200	18180	800	230	$\text { I } 2-36$	2	Fall	$\begin{aligned} & \text { A-Gd } \\ & \text { D-Gd } \end{aligned}$	Minor No (A) Yes Yes (A)
12.11	Sinat	Jebel Genelfa	Jebel Geneifa	$\begin{aligned} & 19 \text { Oct } \\ & 1973 \end{aligned}$	3	Israell; Adan DIV	Egyptian; 3rd ARMN (-)	Israeld	16200	35630	300	1650	I 66	2	Fall	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No No (A) Yes Yes
12.12	Sinai	Ismailla	Ismatlia	$\begin{aligned} & 19 \text { Oct } \\ & 1973 \end{aligned}$	4	Israeli; Sharon DIV	Egyptian; and ARM (-)	Egyptian (Marginal)	17000	23860	150	1800	I 2-3 6	2	Fall	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Cd} \end{aligned}$	No No (A) Yes Yes
12.13	Sinai	Adablya	Adabiya	$21 \text { Oct }$ 1973	2	Israell; Magen DIV	Egyptian; 3rd Apay (-)	Israeli	10900	14630	150	800	I 66	2	Fall	$\mathrm{A}-\mathrm{Gd}$ D-Gd	No No (A) Yes Yes
12.14	Sinai	Shąulufa I	Shallufa r	$\begin{aligned} & 22 \text { Oct } \\ & 1973 \end{aligned}$	1	Israell. Adan DIV	Egyptian; 3rd ARMX (-)	Israel	16200	25600	150	1100	I 26	2.	Fall	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No No (A) Yes Yes
12.15	Sinal	Suez	Suez	$\begin{gathered} 23 \text { Oct } \\ 1973 \end{gathered}$	2	Israell; Adan DIV (-)	Egyptian; 3rd ARMY (-)	Egyptian (Marginal)	14680	22570	340	1100	II 2-3 14	2	Fall	$\begin{aligned} & \text { A-Gd } \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	MinorNo (A)YesYes (D)
12.16	Stinai	Shallufa II	Shallufa II	$\begin{gathered} 23 \text { Oct } \\ 1973 \end{gathered}$	2	Israell; Adan DIV (-)	$\begin{aligned} & \text { Egyptian; } \\ & \text { 3rd ARM (}- \text {) } \end{aligned}$	Israeli	11700	27570	150	1350	I 26	2	Fall	$\begin{aligned} & \mathrm{A}-\mathrm{Gd} \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	No No (A) Yes Yes
12.17	Golan	Ahmadiyeh	Ahmadiyeh	$\begin{aligned} & 6 \text { Oct } \\ & 1973 \end{aligned}$	2	Syrian; 7th INF BDE (+)	Israell; 7th ARM BDE (-)	Israeli	22750	5750	700	250	I 3-4 3	2	Fall	$\begin{aligned} & \text { A. Gd } \\ & \text { D-Gd } \end{aligned}$	Subs. Yes Nei-Yes Yes (A) ther
12.18	Golan	Kuneitra	Kuneitra	$\begin{gathered} 6 \text { Oct } \\ 1973 \end{gathered}$	2	Syrian; 9th INF BDE (+)	Israeli 7th \& 188th ARM BDE (-)	Syrian	17750	3630	350	200	$\begin{aligned} & 1 \quad 3 \\ & i \leqslant Q Q \end{aligned}$		Fall	$\begin{aligned} & \text { A-Gd } \\ & \mathrm{D}-\mathrm{Gd} \end{aligned}$	Subs. Yes Nei-Yes Yes (A) ther

DATA. El.EMENT ENCODLNG SCHENE:

In order to conserve space, the data for three data elements are numerically encoded in the matrix. Their meanings are provided below.
Data Element State Code
Engagement Type Meeting engagement 1
Attack on n hasty defense 2
Attack on a prepared defense 3
Attack on a fortified defense 4
Attack on a delaying force 5
Attack on a withdrawing force 6
Terrain Rugged-heavily wooded 1
Rugged-mixed (or extra rugged-bare) 2
Rugged-bare 3
Rolling-heavily wooded 4
Rolling-mixed 5
Rolling-bare 6
Flat-heavily wooded 7
Flat-mixed 8
Flat-bare 9
Hard; Flat-desert 10
Rolling dunes 11
Swamp-jungled 12
Swamp-mixed or open 13
Urban 14
Weather Dry-sunshine-extreme heat 1
Dry-sunshine-temperate 2
Dry-sunshine-extreme cold 3
Dry-overcast-extreme heat 4
Dry-overcast-temperate 5
Dry-overcast-extreme cold 6
Wet-light-extreme heat 7
Wet-light-temperate 8
Wet-light-extreme cold 9
Wet-heavy-extreme heat 10
Wet-heavy-temperate 11
Wet-heavy-extreme cold 12

FOOTNOTES:
/A Most casualties were incurred during the retreat of the American force.
/B This action contains four distinct engagements. They consist of the Gowanus Road, Flatbush Pass, Bedford Pass and Jamatca Pass engagements. Sufficient data is not available to represent each engagement separately, however.

r

/C This includes 1,100 captured personnel, of whom many were wounded.
/D This does not include 2,722 unwounded personnel which were captured in a mass surrender after the breakpoint occurred.
/E This does not include 948 unwounded personnel which were captured in a mass surrender after the breakpoint occurred.
/F This action contains two distinct engagements. They consist of the Stoney Brook and Princeton engagements. Sufficient data is not available to represent each engagement separately, however.
/G This does not include 200 unwounded personnel which were mostly captured in a mass surrender after the breakpoint occurred. No further detalls as to when the personnel which were captured were found.
/H This does not include 228 unwounded personnel which were captured in a mass surrender after the breakpoint occurred.
/I This action consists of two sequentially distinct engagements. Sufficient data is not available to represent each engagement separately, however.
1
/J This action contains two distinct engagements. They consist of the Chadd.'s Ford and Birmingham Meeting House engagements. Sufficient data is not avallable to represent each engagement separately, however.
/K This is estimated from the typical sizes of the units which made up the 8ritish force.
/L This action consists of several distinct engagements. Sufficient data is not available to represent each engagement separately, however.
/ M This value is estimated. Casualties were said to be negligible.
/N This value is estimated from the approximate sizes of the units
which made up the Amerlcan force.
$10 \quad$ This value is estimated.
/P This does not include approximately 410 unwounded personnel which were captured in a mass surrender after the breakpoint occurred.

Q This does not include approximately 80 unwounded personnel which were captured in a mass surrender after the breakpoint occurred.
/R The British are suspected of having significantly undergtated their casualties.
/S This does not include approximately 500 unwounded personnel which were captured after the breakpoint occurred.
/T This does not include approximately 300 unwounded personnel which were captured after the breakpoint occurred.
/U Some of the casualties occurred after the Tory forces surrendered. The casualty figure does not include approximately 700 unwounded personnel which were captured in a mass surrender after the breakpoint occurred.

This dbes not include approximately 570 unwounded personnel which were captured in mass surrenders after the breakpoint occurred.
/W This is the reported casualty figure. Actual casualties are probably higher.
/X This does not include approximately 8,090 unwounded personnel which were captured in a mass surrender after the breakpoint occurred.
/Y This does not include 1,000 unwounded personnel which were captured after the breakpoint occurred.

12 This does not include 11,000 unwounded personnel which were captured after the breakpoint occurred.
/AA This includes casualties which occurred during the Egyptian retreat.

This, does not include 12,000 personnel (some wounded) which were captured primarily during the Austrian retreat. No further details about this were found.
/CC
This does not include 1,800 unwounded personnel which were
primarily captured after the breakpoint occurred.
/DD This does not include 6,500 unwounded personnel which were primarily captured after the breakpoint occurred.
/EE This includes casualties incurred during the Russian retreat.
/FF This includes a sizable number of unwounded captured personnel. No further details about this were found.
/GG Both sides achieved surprise to some degree. The effects are assumed to cancel each other out.
/HH This action consists of two distinct engagements (Priesten and Kulm). Sufficient. data $1 s$ not avallable to represent each engagement separately, however.
/LI This includes a significant number of unwounded captured personnel, which may or may not have, occurred after the breakpoint was reached. No further details as to when the personnel which were captured were found.
/JJ This includes casualties incurred during the French retreat.
/KK This does not include Yorck's casualties.
/LL This includes Prussian reinforcements.
/MM This is a Prussian victory primarlly due to the French being unable to break the resistance of the Prusslan force (low French mission accomplishment).
/NN This action contains two distinct engagements. They consist of the Bloody Hill and Sharp's Creek engagements. Data is not avallable in sufficient detail to represent them separately, however.

100 This action contains several distinct engagements. These include the Confederate breakout attempt and the Union seige operations. Data is not available in sufficient detall to represent them separately, however.
/PP This does not include approximately 14,620 unwounded captured personnel since these primarily occurred in a mass surrender after the breakpoint was reached.
/QQ This action contains three distinct engagements. The engagements consist of Leetown, Elkhorn Tavern (firet day) and Elkhorn Tavern (second day). Data is not available in sufficient detail to represent them separately, horever.

$$
94
$$

engagements include Lookout Mountain, Missionary Ridge (Nov. 24), Missionary Ridge (Nov. 25; Union left flank) and Missionary Ridge (Nov. 25 ; center). Data is not avallable in sufficient detail to represent them separately, however.
/CCC This does not include 1,620 unwounded personnel which were captured after the breakpoint occurred.

This does not include 180 unwounded personnel which were captured after the breakpoint occurred.

This acton contains several distinct engagements. The engagements consist of the North Bank, the South Bank and the Eastern River Valley. Data is not avallable in sufficient ' detall to represent them separately, however.

Although amphibious withdrawal was possible, it would have been extremely risky in the face of German attacks.
/HHH The engagement starts as an attack by the American force against a fortified German defense, but soon changes to the recorded engagement type.
/III The engagement starts as an attack by the American force against a German hasty defense, but soon changes to the recorded engagement type.
/JJJ The action contains several distinct engagements. These engagements include the Vietminth attack and the French relief attack. Data is not available in sufficient detall to represent them separately, however.
/KKK The engagement is characterized by HERO as an Israeli attack on an Arab prepared'defense which later changes to an Arab attack on an Is raeli hasty defense. It is treated as an Israeli attack on an Arab prepared defense.
/LLL The engagement is characterized by HERO as an Israeli attack on an Arab fortified defense which later changes to an Arab attack on an Israeli prepared defense. It is treated as an Arab attack on an Israeli prepared defense.
/MMM The engagement is characterized by HERO as an Arab attack on an Israeli prepared defense which later changes to an Israeli attack on an Arab prepared defense. It is treated as an Israeli
attack on an Arab prepared defense.
/NNN The engagement is characterized by HERO as a fortified defense which later changes into a delaying action. It is treated as a defense of a fortifled position.

1000 The engagement is characterized by HERO as a delaying action which becomes a defense of a prepared position. It is treated as a defense of a prepared position.
/PPP The attack involves crossing a major water obstacle.
/QQQ The engngement involves an attack on a prepared defense by the Is racils which later changes into a withdrawal in the face of continuing Syrian pressure. The engagement is treated as an attack on a prepared defense.

SOURCES:

War

1. American Revolutionary War
2. Napoleonic War
3. American Civil War
4. Boer War
5. Russo/Japanese War
6. World War II
7. Korean War
8. First Indochinese War

Author, Title, Date of Source

1) Alden, John R., A History of the American Revolution, lst ed., 1969.
2) Dupuy, T.N., Compact History of the Revolutionary War, 1963.
3) Britt, Albert Sidney, The Wars of Napoleon, 1973.
4) Chandler, David G., Dictionary of the Napoleonic Wars, 1979.
5) Chandler, David G., The Campaigns of Napoleon, 1966.
6) Dupuy, T.N., Compact History of the Civil War, 1960.
7) Livermore, T.L. Numbers and Losses of the Civil War, 1957.
3). Simulations Publications, Inc., Strategy and Tactics Magazine, nos. 67;76;80;86;87;89, 1978-1981.
8) Belfield, E.M.G., The Boer War, 1975.
9) Pakenham, T., The Boer War, 1979.
10) Prussia. Armee. Grosser Generalstab, The Russo-Japanese War, 1908-1914 (7 vols).
11) Blumenson, Martin, Breakout and Pursuit, 1961.
12) Dupuy, T.N., Numbers, Predictions and War: Using History to Evaluate Combat Factors and Predict the Outcome of Battles, 1979.
13) HERO, Combat Data Subscription Service, vol. 1, no. 2, 1975.
14) Jackson, W.G.F., The Battle for Italy, 1967.
15) Pupuy, T.N., Numbers, Predictions and War, 1979.
16) Fall, Bernard B., Hell in a Very Small Place: The Siege of Dien Bien Phu, 1966.

War
9. First Arab/Israeli War (1948)
10. Second Arab/Israell War (1955)
11. Third Arab/Israeli War (1967)
12. Fourth Arab/Israeli War (1973).

Author, Title, Date of Source

1) HERO, Combat Data Subscription Service, vol. 1 , no. $3,1975$.
2) Kurzman, Dan, Genesis 1948, The First Arab-Israeli War, 1970.
3) Lorch, Netanel, Isracl's War of Independence, 1947-1949, 1968.
4) Barker, A.J., Arab-Isracli Wars, 1981.
5) HERO, Combat Data Subscription Service, vol. 1, no.3, 197.5.
6) 0'Ballance, E., The Sinal Campaign of 1956, 1960.
7) Dayan, David, Strike First. A Battle History of Israel's Six Day War, 1968.
8) Dupuy, T.N., Numbers, Predictions and War, 1979.
3)- HERO, Combat Data Subscription Service, vol. 2, no. 1, 1976.
9) Young, Peter, The Israell Campaign 1967, 1967.
10) Dupuy, T.N., Numbers, Predlctions and. War, 1979.
11) HERO, Combat Data Subscription Service, vol. 2, no. 2, 1977.
12) Herzog, Chaim. The War of Atonement, October, 1973, 1975.

Note: In addition to the sources listed, the following document was used as a general reference for each of the wars listed: Dupuy, R.E. and T.N., Encyclopedia of Military History, 1970.

3.4. Data Elements Contained within the Engagement Data Matrix

Each engagement in the engagement data matrix is represented by 24 data elements. The set contains those factors identified in the literature as being significant. It is further constrained by the availability of suitable data. The data elements this investigation uses are listed in Table 3.4. The sources of all engagement data are. included in section 3.3.
a

i

Table 3.4

Data Elements Contained in Engagement Data Matrix

Table 3.5 gives the variables contained within each of the
elements listed above.

Table 3.5
Data Elements and Their Associated Observed Variable Subsets

Data Element No.	Name	Observed Variables
1	WAR	American Revolutionary War Napoleonic Wars American Civil War Boer War Russo/Japanese War World War II First Indochịnese War Korean War First Arab/Israell War (1948) Second Arab/Israeli War (1956) Third Arab/Israeli War (1967) Fourth Arab/Israeli War (1973)
9	VICTOR.	Winner, Loser
14	WILLIARD'S CATEGORY	Category I, Category II
15	ENGAGEMENT TYPE	Meeting Engagement Attack on a Hasty Defense Attack on a Prepared Defense Attack on a Fortifled Defense Attack on a Delaying Force Attack on a Withdrawing Force
16	TERRAIN	Rugged-Heavily Wooded, Rugged-Mixed (or Extra Rugged-Bare), Rugged-Bare, Rolling-Heavily Wooded, Rolling-Mixed, Rolling-Bare, Flat-Heavily Wooded, Flat-Mixed, Flat-Bare, Hard, Flat-Desert, Rolling-Dunes, Swamp-Jungled, Swamp-Mixed or Open, Urban

Table 3.5 (continued)

\qquad Data Element No.	Name	Observed Variables
17	WEA THER	Dry-Sunshine-Extreme Heat Dry-Sunshine-Temperate Dry-Sunshine-Extreme Cold Dry-Overcast-Extreme Heat Dry-Overcast-Temperate Dry-Overcast-Extreme Cold Wet-Light-Extreme Heat Wet-Light-Temperate Wet-Light-Extreme Cold Wet-Heavy-Extreme Heat Wet-Heavy-Temperate Wet-Heavy-Extreme Cold
18	SEASON	Winter, Spring, Summer, Fall
19	MORALE	Excellent, Attacker; Good, Attacker; Fair, Attacker; Poor, Attacker; Panic, Attacker; Excellent, Defender; Good, Defender; Fair, Defender; Poor, Defender; Panic, Defender;
20	-SURPRISE	Major, Attacker; Substantial, Attacker; Minor, Attacker; Major, Defender; Substantial, Defender; Minor, Defender; None
21	SETPIECE EFFECT	Present, Absent
22	OVERALL AIR SUPERIORITY	Neither Side, Attacker Defender, None

Table 3.5 (continued)

Table 3.6
Number of Engagements for Each War in the Engagement Data Matrix

War	Number of Engagements
American Revolutionary War	
Napoleonic Wars	33
American Civil War	40
Boer War	59
Russo/Japanese War	5
World War II	4
First Indochinese War	88
Korean War	3
First Arab/Israeli War (1948)	1
Second Arab/Israeli War (1956)	29
Third Arab/Israeli War (1967)	9
Fourth Arab/Israeli War (1973)	19

Elements 2, 3, 4 and 5 specify the precise time and geographic location in which the engagement takes place. All observations in the data matrix are at the engagement level. One or more engagements are contained within a battle and one or more battles are contained within a campaign (see Appendix 8 for precise definitions of these terms). The identification of an engagement within a battle is discussed in further detail in section 3.5. Element 5, start date, specifies the starting time of the engagement to the nearest day.

Element 6 specifies the duration of the engagement to the nearest day. The values are relatively imprecise, however. Engagements which occur over portions of a two-day period are recorded as being two days in length. In addition, no distinction is made
engagements.
Elements 7 and 8 specify the identity of the attacker and defender in the engagement. In addition to the nationality(ies) of the respective forces, the individual units involved are sometimes identified.

Element 9 indicates the victor in the engagement. The victor is determined on the basis of three criteria developed by HERO. The criteria consist of mission accomplishment, spatial effectiveness and casualty effectiveness. Mission achomplishment is a numerical tassessment of ". . . the extent to which each side in an engagement x accomplished its assigned or perceived mission." (Dupyy, 1979:48). Spatial effectiveness is a quantitative assessment of ". . . the extent to which each side was able to gain or hold ground." (Dupuy, 1979:48). Casualty effectiveness consists of a quantitative comparison of the casualties incurred by one force to those incurred by the opposition. Upon obtaining the three scores for each side, they are summed and compared to determine the victor §Dupuy, 1979:4749).

This victor determination procedure was rigorously performed 1 by HERO for all engagements contained in the, HERO data base. For the remaining engagements, the guidelines are used but the judgements are qualitative.

Elements 10 and 11 contain the initial strengths for the attacking and defending forces. The addition of significant reinforcements and replacements are accounted for by attempting to ensure
that this does not occur within a specified engagement. A more detailed discussion of this is contained in section 3.5 .

There is error associated with the initial troop strengths for the opposing forces in an engagement. With regards to both available troop strengths and casualty data, Helmbold (1971) stated that:

- . there 13 often much scope for human error and for capriciousness in selecting the forces to be included in establishing troop strength or casualties, as well as in arriving at an accurate inventory of these quantities. (Helmbold, 1971:6)

The initial force levels, as well as other engagement data, obtained from the HERO data base are considered very acourate. Data for the other engagements has been collected by the investigator from those outlined earlier.

Elements. 12 and 13 specify the casualties suffered by the attacking and defending forces; respectively. These values include the personnel killed, wounded, captured or otherwise missing prior to the breakpoint in the engagement. Helmbold's statement concerning the inaccuracies in inftial force personnel strengths also holds for casualties. In addition:
> - . personnel casualties consist of not necessarily only those inflicted prior to reaching a breakpoint. In some cases, a portion of the historically reported casualties may have occurred after the break; For example, routs sometimes degenerate into massacres, and on occasion troops that have' surrendered may have been slain. (Helmbold, 1971:5)

With respect to the current investigation, attempts are made to ensure that personnel killed, wounded, captured or who become otherwise missing after'the breakpoint occurs are not included in the casualty values. In particular, mass surrenders by unwounded personnel after
the breakpoint occurs in an engagement are excluded wherever possible.
Element 14 indicates which of the two Willard categories the engagement is classified under. This is a relatively crude categorization of the engagements first developed by Willard (1962:2) and slightly modified by Hélmbold (1971:25-26) (see Appendix B for a concise definition of each category).

Element 15 represents a categorization of engagement types on the basis of the postures of the two respective forces in the engagement. The strength of a military force is enhanced by a defensive posture and its vulnerability decreases proportional to its increase in defense readiness. Although the categories used in the investigation are obtained from work published by HERO (Dupuy, 1979:210-211,230), similar categories have been in common usage in the field prior to that time. The categories consist of a meeting engagement, an attack on a hasty defense, an attack on a prepared defense, an attack on a fortified defense, an attack on a delaying force, an attack on a withdrawing force and a holding engagement.

A meeting engagement consists of both forces moving to contact followed by predominantly offensive actions by each side against the other. This category is seldom used since, upon two forces making contact, one force usually assumes a defensive posture. These engagements are properly classified as attacks on a hasty defense.

Attacks on hasty, prepared or fortified defenses consist of an attack by one force against the other in a defensive position. The three categories differentiate among the possible relative strengths
of the defensive position, independent of the size of the defending force. It is a function of the concentration of the defending force, its time in the defensive position and the presence of attached engineering troops to aid in the preparation of the defenses. Relatively precise quantitative rules are developed by HERO for distinguishing between these categories (Dupuy, 1979:210-211). The engagements from the HERO data base are classified according to these rules. For the remaining engagements in the engagement data matrix, the guidelines are used but the judgements are qualitative. This represents a significant limitation to 44% of the data contained in element 15 of the engagement data base. This is unavoidable, however, given the scope of the current investigation.

Attacks on a delaying or withdrawing force consist of an attack by one force against a force which is deliberately engaged in permanent retrograde movement. The two categories differ in the degree of resistance offered to the pursuing force. A delaying force actively resists an advancing force while it moves rearward to a new position. A withdrawing force attempts to avoid combat, if possible, during the retrograde movement. It does defend as a coherent military force if attacked but, it attempts to disengage as rapidly as possible.

The seventh category specified by HERO, holding, is not used. Holding is defined as the occupation of a position or area by a military force for the purpose of defending it but in the absence of any significant enemy attack. Contact is maintainer with an opposing
military force, however'. It is an engagement in the sense that both forces incur losses as a result of their interactions. Furthermore, it is possibile for a military force that is holding to break because it is unable to sustain the losses incurred by the low-intensity combat interactions. However, a set of such low-intensity engagements would contain many instances where the breaking of one of the two forces is determined by primarily external events. Due to this drawback, the holding category is not used in the current investigation. This is further discussed in section 3.5. Element 16 is a categorization of the various types of battlefield terrain. The terrain has an effect on the weapon effectiveness, mobility and posture of a military force. The set of terrain types used were developed by HERO (Dupuy, 1979:228). A complete listing is included in Table 3.5.

Elements 17 and 18 represent the various types of climate which can be present during an engagement. These categories were developed by HERO (Düpuy, 1979:229). A complete listing is included in Table 3.5. The following distinction is made between the two factors. Weather (element 17) pertains to the specific conditions at the time of the engagement while the season indicates the long-term climatic effects that the forces are operating under. Weather has an effect on the weapon effectiveness, mobility and posture of a military force. The season affects weapon effectiveness and reflects the significance of changes in the hours of daylight and darkness in the Temperate Zore.

Element 19 accounts for the various levels of morale which can be present in the two respective forces in the engagement. The categories used were defined by HERO (Dupuy, 1979:231). A listing of the levels is included in Table 3.5.

Due to the imprecision in this behavioral variable, conservative classification rules are adopted. 'Good' morale is assumed for a military force unless historical evidence clearly indicates otherwise. In addition, only two groupings of the five categories are used. The first consists of good and excellent morale while the second contains fair morale, poor morale and panic. Based on these groupings, the presence or absence of significant differences in morale are identified. This is discussed in more detail in section 3.6. These guidelines are adopted in order to ensure that only significant differences in morale are considered.

Element 20 indicates the level of surprise achieved by the attacking or defending force. The levels were developed, and their significance verified, by HERO (Dupuy, 1979:63-64,231). A listing of the surprise levels is included in Table 3.5.

The engagements in the HERO data base are already classified with respect to the level of surprise achieved by the attacking or defending force. Conservative classification rules are adopted for the remaining engagements. Surprise is not recorded unless the historical record clearly indicates that it has been achieved by the attacking or defending force. In addition, only the presence, not the level, of surprise is used in the analysis. This is discussed in
further detail in section 3.6.
Element 21 indicates the presence or absence of a setpiece effect. This represents the advantage that an attacking force has as a result of intensive preparations against a specific defensive position. These preparations may include a rehearsal of the assault against dummy positions. This effect is applicable only to an attacking force which is, otherwise, inferior to the defending force. This effect was proposed and verified by HERO (Dupuy, 1979:203).

Element 22 indicates the presence or absence of overall air superiority for one of the two sides in an engagement. The presence of overall air superiority has four effects on the engagement. The achievement of air superiority for a military force:

1) Enhances the effectiveness of its own tactial air support while degrading the opposition's.
2) Silghtly enhances the effectiveness of its artillery while degrading the effectiveness of hostile artillery.
3) Slightly enhances its own ground mobility while substantially degrading the mobility of the opposing military force.
4) Reduces the vulnerability of its own force while increasing that of the hostile force. (Dupuy, 1979:77)

Four categories, or conditions, are used in this investigation. The first two conditions, attacker air superiority or defender air superiority, are present when one side's combat airpower dominates. The third condition, air superiority not being achieved by either side in an engagement, exists when, despite the presence of combat airpower on both sides, neither side has achieved overall air
superiority. The fourth category indicates that no combat aircraft are available to either military force. This primarily consists of cases where militarily-significant airpower is not present in the time period within which the engagement occurs.

Elements 23 and 24 indicate the presence or absence of close air support for the attacking or defending forces, respectively. On the basis of work performed by HERO (Dupuy, 1979:71-76), this represents only close air support sorties actually flown in support of engaged ground troops.

Data for each of the 24 elements for each engagement is included in the engagement data matrix. The identification of which interactions between military forces constitute engagements is discussed in the following section.

3.5 Engagement Identification

All observations in the data matrix are at the engagement level. The identification of an engagement within a battle is performed or the basis of two factors. A significant degree of Independence of the actions of the engaged forces on both sides must exist with respect to the remainder of the batte. In addition, the military units for each side are required to have unity of mission for the engagement's duration.

The termination of an engagement represents a change in the state of at least one of the two military forces involved in the engagement. Five states are identified for a military force involved

Abstract

in active combat operations. The effects of temporary pauses in operations and the addition of reinforcements and replacements to the initial forces are also accounted for.

The following subsection describes the importance of unity of mission in engagement identification.

3.5.1 Unity of Mission

The aggregation of units into an engagement is performed, in part, on the basis of the unity of mission exhibited. For example, a U.S. infantry battalion in World War II is an aggregation of three infantry companies, a headquarters company and a heavy weapons company (Clark, 1954:12). Each of these companies are subdivided into platoons, sections, squads and, lastly, individual soldiers. Within a particular battalion-level operation, if a high degree of dependence is present among the subordinate units in carrying out their respective missions, then their combination into a single battalionlevel operation is required. In this instance, the identification of the operation of the subordinate units as separate engagements would bias the results of the analysis since the engagements would contain a high degree of interdependence. The proper level of aggregation is dependent on the nature of the operation being conducted by the overall military force.

It is also necessary to account for changes in military operations which occur during the course of the battle. It is conceivable for a military unit to be involved in a number of operations during a battle, each of which possibly constitutes an
engagement. Military units could be involved in a series of engagements each having the same objective or be involved in a series of engagements each having different objectives. The following example illustrates the identification of distinct engagements within a particular battle. The battle consists of two primary operations. The first consists of one component battalion of a three-battalion infantry regiment, force X, having the objective of blocking the line of retreat of a reduced enemy infantry regiment, force Y, consisting of two infantry battalions. Guarding force Y's line of retreat is one component infantry company. Concurrent with this operation, the remainder of force X (two infantry battalions plus support) is to attack the bulk of force Y (two infantry battalions plus support less one infantry company). The enciroling attack by force X's infantry battalion is successful and force Y 's line of retreat closed. Force X's main assault, however, fails. As a result of this, the battle ends with the encircling battalion of force X being forced to withdraw from its exposed position.

At least two sufficiently independent engagements occur, the first being a success and the second a failure from the perspective of force X. Dependencies such as the bulk of force Y being surrounded as a result of the success of force X 's encircling attack are accounted for by classifying force X's main attack as a Willard category II engagement. A possible third engagement, the withdrawal of the encircling force X infantry battalion, is strongly influenced by the failure of force X 's main attack. Since this is an external event,
the operation is not included as an engagement in the engagement data matrix. If the infantry battalion is forced to withdraw as a result of an attack against it by part or all of force Y, however, then it is treated as a third distinct engagement.

3.5.2 Engagement Termination

In addition to unity of mission, the complete identification of, an engagement requires a precise termination point. The termination point used by Clark consists of ". . . the beginning of a period of relative inactivity following definite success or failure in achieving the mission." (Clark, 1954:9). A similar approach was used by Helmbold (1971:1,2). The current investigation uses a more precise structuring of these concepts coupled with the incorporation of the set of engagement types developed by HERO (Dupuy, 1979:230).

The termination of an engagement represents a change in the state of at least one of the two military forces involved in the engagement. Five possible states are identified for a military force involved in active combat operations. These are depicted in Figure 3.2.

$$
\int
$$

Figure 3.2
Military Force States

A military force is in a state of attack when it is engaged in an offensive operation against an opposing military force. This holds true regardless of the state of the opposing military force.

The second possible state consists of a military force in a fixed defensive posture. The defensive posture is fixed in the sense that permanent retrograde movement by the defending force is not envisioned. A mobile defense, however, is included in this state. The distinction between defend and hold is that a unit defends against an enemy attack while holding consists of the occupation of a position or area for the purpose of defending it but in the absence of any significant enemy attack. In both cases, however, contact is maintained with the opposing military force. The importance of this distinction is made later in this section.

The delay and withdraw states consist of military forces engaged in permanent retrograde movement with respect to an initial
position, usually the initial line of contact with the opposing military force. These states differ in the degree of resistance offered to the pursuing force. A delaying force actively resists the opposing military force while it moves rearward. A withdrawing forqe avoids combat, if possible, during the retrograde movement. If attacked, it defends as a coherent military force, but attempts to disengage as rapidly as possible. In both cases, it is assumed that the opposing military force is attempting to engage the delaying or withdrawing force.

Lastly, the routed state consists of military units which, at least temporarily, have lost all ability to function as a coherent military force. Within this state it is possible for small, relatively insignificant, subsets of the military force to remain combat effective.

In both Clark's and Helmbold's studies, engagement termination is synonymous with one of the two military forces moving from a higher to a lower state. If the victor is the attacker, the defender moves from the defend to a lower state. If the victor is the defender, the attacker moves from the attack to a lower state.

These movements are included in the set of possible state changes for the, current investigation. In addition, there are If movements associated with the delay, withdraw and routed states. It is not necessary for a military force to drop to the next lower state, given that it does drop. For example, there have been historical engagements where an unsuccessful attack has led directly to the
attacking force's withdrawal or rout.
The termination of an engagement could also occur as a result of a military force moving upward in'state. This may, or may not, occur with a simultaneous movement downward in state by the opposing military force. The possible state changes are indicated in Table 3.7.

Table 3.7
Possible Transitions to Higher States

Initial State	Final State				
		Withdrawal	Delay	Defend (or hold)	Attack
Routed	x	x	x	x	
Withdrawal	N/A	x	x	x	
Delay	N/A	N/A	x	x	
Defend (or hold)	N/A	N/A	N/A	x	

```
x = possible higher state
N/A = not applicable
```

If the upward movement of the military force to a state other than the attack state is coupled with a movement downward from the attack state by the opposing military force, then no second engagement occurs. If the upward movement in state of the military force is coupled with no change in the attack state of the opposing military force, this results in the start of a new engagement. The initial engagement is considered terminated and the new engagement begun because the change in posture in one of the military forces significantly changes the nature of the engagement.

There are three additional situations which need to be accounted for when identifying the conditions under which an engagement is terminated. These consist of temporary pauses in operations, the replacement of losses in currently engaged military forces and the addition of reinforcements to one or both military forces in the engagement. The occurrence of any of the three conditions represents a significant change in the engagement. To account for this, guidelines are employed which ensure that none of the three conditions occur within an engagement. The guidelines for each situation are discussed below.

A temporary pause in combat operations of any significant length constitutes a termination of the engagement. This usually occurs in concert with the addition of reinforcements or replacements for the military force.

The addition of significant reinforcements to one or both engaged military forces significantly changes the nature of the engagement. Reinforcements are previously uncommitted military forces with respect to the particular engagement.

To account for this, HERO (1979) employs a rule stipulating that, when significant reinforcements enter into an engagement, in effect it becomes a new engagement, with the original engagement coming to an end. This is in recognition of the occurrence of either of two conditions:

1) A military force moving to a higher state upon the addition of reinforcements, This is already accounted for since an upward movement in state by one of the engaged military forces indicates the termination of the engagement.
2) A military force drops to a lower state if not for the addition of reinforcements. This does not coincide with a change in state. In this event, the addition of reinforcements at least alters the duration of the engagement and the personnel casualties incurred by each side, if not the outcome of the engagement itself.
P. The third situation concerns the replacement of losses incurred by a military force during an engagement. Clark found that the effects of replacements on a military force conducting military operations are significant. In the case of military units which eventually break, replacements enable the military unit to remain in its initial state for a significantly longer period of time than would otherwise be the case (Clark, 1954:34-35). It appears reasonable to infer that, given less adverse conditions, replacements allow a military force to move to a higher state or maintain its initial state for the duration of the military operation.

The possibility of the replacement of losses incurred by a military force while still engaged in a particular engagement as defined in this study is slim, however. Clark noted that, for the set of World War II data, replacements did not reach the military unit during the first week of operations (Clark, 1954:20). Much faster replacement rates were observed in the 1973 Arab-Israeli conflict (Barker, 1974:123). For example, as of 16 October 1973, the Israeli 14 th Armored Brigade had suffered nearly 100% casualties in tanks, along with a percentage of the tanks' personnel, in each of the following three engagements:

7 October 1973, (Egyptian) Third Army Buildup
8 October 1973, Kantara/Firdan
15/16 October 1973, Chinese Farm I.

The brigade was replenished with respect to men and equipment between engagements. However, no instances where losses incurred by a military unit in a particular engagement being replaced during the same engagement were found in the literature for that war. Furthermore, this situation does not occur in any of the engagements included in the engagement data matrix. In the event that significant replacement of losses in a combat unit within an otherwise singular engagement does occur, however, it would be handled in a fashion identical to that for reinforcements.

3.5.3 The Effect of Data Limitations

The ability to identify engagements is constrained by the available historical combat data. In many cases, the engagements in the engagement data matrix contain levels of data aggregation not based on the procedures ennunciated in the previous sections. These are used because sufficient data at a lower level of data aggregation is not available to the investigator. These limitations have an effect on essentially all of the guidelines for identifying military engagements. The engagement data matrix for the current investigation contains 29 cases where unavoidable aggregation of engagements occurred due to aggregated force strength and/or force casualty data alone. For further details concerning these limitations, please refer to section 3.3 .

These constraints on the availability of nistorical combat
data affect the type and quantity of data included in the engagement data matrix. The next section discusses its impact on the methodology used for this investigation.

3.6 Transformation of the Data

The research question stated in Chapter 1 for this investigation is answered with respect to the set of engagements as identified by the combat data elements used to specify the engagements. The data elements within the matrix, however, can not be directly used. The set of values within almost all of the data elements are at the nominal level of measurement. This level of measurement is not suitable for the methodology used.

In order to correct for this, the variables used in the investigation are based on the different values contained in a data element. These are referred to as observed variables. The observed variables are indicator variables (taking on values of 0 or 1) by virtue of the fact that they indicate the absence or presence of a particular condition in a specified engagement. The variables are also dichotomous and provide a ratio level of measurement. This is based on the following:

Although a rank order may not be inherent in the category definitions, either arrangement of the categories satisfies the mathematical requirements of ordering which is the requirement for ordinal-level measurement. The requirement of a distancgmeasure based on equal-sized intervals is also satisfied because there is only one interval naturally equal to itself which is the requirement for interval-level measurement. (SPSS, 1975:5).

The ration level of measurement requires that all the properties of an
interval scale be obeyed and, in addition, that the zero point is inherently defined by the measurement scheme. The observed variables contain ratio-level measurements that meet this requirement (a value of 0 for an indicator variable means the absence of the effect). This level of measurement is adequate for all of the statistical techniques used in the investigation, in particular since it is the highest level of measurement in the traditional classification of measurement levels developed by S.S. Stevens (1946).

The group of observed variables contained within a data element is co 保据ively referred to as the subset of observed variables for that data element. The data elements treated in this fashion include war (1-- the number refers to the number of the data element in Table 3.3), victor (9), Willard's category (14), engagement type (15), terrain (16), weather (17), season (18), morale (19), surprise (20), setpiece effect (21), overall air superiority (22), close air support for attacker (23) and close air support for the defender (24). Please refer to Table 3.5 for a complete listing of the observed variables for each data element.

The remaining data elements are employed differently. The campaign (2), battle (3), engagement (4), starting date (5), attacker (7), and defender (8) data elements are used for engagoment identification purposes only. The attacker initial strength (10), defender initial strength (11), attacker casualty (12) and defender casualty (13) data elements are used in constructing cumulative casualty fraction distribution curves.

The attacker and defender initial strengths are also used to represent the magnitude of the engagement. This requires two transformations of the data elements. The first concerns the sum of the personnel strengths of the two opposing military forces. The range of the combined personnel strengths are divided into several intervals. The interval boundaries are arrived at by dividing the engagements in the engagement data matrix into five equal groupings. The intervals are listed in Table 3.8 .

Table 3.8
Combined Personnel Strength Summation Intervals

Interval	Combined Personnel Strength Range
2	$0-20,000$
3	$68,001-68,000$

Observed variables are defined for each interval.

The second transformation concerns the force ratio. It is commonly believed that a personnel strength ratio of $3: 1$ is sufficient fQr an attacker to overcome a defender in a wide range of circumstances (Dupuy, 1979:5). In accordance with this, the observed variable subset contains two observed variables. These consist of the force ratio less than 3:1 and the force ration 3:1 or greater. These observed variables are indicator variables as well.

Due to the techniques used in the present analysis, the set of observed variables just described are recombined into a smaller set
for the sake of data managability. The set of recombined observed variables is listed and described in Table 3.9. This recombined set of observed variables is the basis for the specification of the break curves tested in the investigation. This is elaborated upon in the following subsections.

Table 3.9
Observed Variables List (Recombined)

Number	Variable \qquad	Description
1	ENGN1	Indicates that the engagement occurred in the American Revolutionary or Napoleonic wars.
2	ENGN2	Indicates that the engagement occurred in the American Civil, Russo-Japanese, or Boer wars.
3	ENGN3	Indicates that the engagement occurred in WW II, Korean war, First Indoohinese war or one of the four Arab/Isreall wars.
4	DURDAY 1	engagement lasting one day or less
5	DURDAY2	engagement lasting one day or less
6	DURDAY3	engagement lasting one day or less
7	DURDAY4U	engagement lasting one day or less
8	WILCAT 1	indicates a category 1 Williard engagement
9	WILCAT2	indicates a category 2 Williard engagement
10	ENGTYP1	indicates a meeting engagement or an attack on a hasty defense
11	ENGTYP2	indicates an attack on a pepared defense

Table 3.9 (continued)

Number	\qquad	Description
12	ENGTYP3	indicates an attack on a fortified defense
13	ENGTYP4	indicates an attack on a delaying or withdrawing force
14	TERR1	Indicates a rugged-type terrain
15	TERR2	indicates a rolling-type terrain
16	TERR3	Indicates a flat-type terrain
17	TERR4	indicates an urban-type terrain
18	TERR5	indicates a very soft type of terrain (i.e. sand dunes, swamp)
19	WEAT1	indicates dry-sunshine-extreme heat weather conditions
20	WEAT2	indicates dry-temperate weather conditions
21	WEAT3	indicates dry-estreme cold weather conditions
22	WEAT4	indicates wet-extreme heat weather conditions
23	WEAT5	indicates wet-temperate weather conditions
24	WEAT6	indicates wet-extreme cold weather conditions
25	SEASN1	indicates that the engagement was fought in the winter
26	SEASN2	indicates that the engagement was fought in the spring
27	SEASN3	indicates that the engagement was fought in the summer
28	SEASN4	indicates that the engagement was fought in the fall

127

Table 3.9 (continued)

Number	$\begin{gathered} \text { Variable } \\ \text { Name } \\ \hline \end{gathered}$	Description
29	MOR 1	indicates a significant morale adyantage existed for the attacker
30	MOR2	indicates a significant morale advantage existed for the defender
31	MOR3	indicates that no significant morale advantage existed for either the attacker or the defender
32	BTHSURN	indicates that neither side achieved surprise against the other
33	ATTSURY	indicates that the attacker achieved surprise
34	DEFSURY	indicates that the defender achieved surprise
35	SETEFFO	indicates the absence of the setpiece effect
36	STEFF 1	indicates the presence of the setpiece effect
$37 \cdots$	AIRSPRO	indicates the absence of air superiority for either side in the engagement
38	AIRSPR1	indicates the presence of air superiority for the attacker
39	AIRSPR2	indicates the presence of air superiority for the defender
40 \cdots.	AIRSPR3	indicates that military-significant airpower was not a factor in the historical period within which the engagement took place
41	CAIRO	indicates that close air support was not available to either side in the engagement

Table 3.9 (continued)

Number	$\begin{aligned} & \text { Variable } \\ & \text { Name } \\ & \hline \end{aligned}$	Description
42	CAIR1	indicates that close air support was available to the attacker in the engagement
43	CAIR2	Indicates that close alr support was available to the defender in the engagement
44	CAIR3	indicates that military-significant airpower was not present in the historical period within which the engagement took place
45	TPERSTR1	indicates that the combined personnel strength of both sides in the engagement totaled less than 20,000 men
46	TPERSTR2	indicates that the combined personnel strength of both sides in the engagement totaled between 20,001 and 68,000 men
47	TPERSTR3	indicates that the combined personnel strength of both 31 des in the engagement totaled more than 68,000 men
48	Fratiol	Indicates that the attacking forces in the engagement had a personnel strength greater than or equal to triple that of the defending forces
49	Fratio2	indicates that the attacking forces in the engagement had a personnel strength less than triple that of the defending forces

3.7 Methodology

An outline of the procedure followed in the analysis is given in Table 3.10. Following that is a more detailed discussion of the steps taken.

Table 3.10
Research Methodology Steps

Step	Description	Name of Program(s) Where This is Implemented
1	The reduction of the set of observed variables to a simplified set of defined factors using factor analysis.	SSPS Subprogram FACTOR, FACTCOM
2 a	The identification of all possible combinations of one or more factors together with their associated engagement subsets.	HLMBD
2 b	Construction of the attacker and defender cumulative casualty fraction distributions for each engagement subset.	HLMBD
2c	Generation of data points for the $\psi_{\text {EMP }}$ and ψ^{-1} EMP functions.	HLMBD
2d	Using regression, fit the best functional form to the $\psi_{\text {EMP }}$ data set.	HLMBD
2 e	Obtain the inverse to the $\psi_{\text {CALC }}$ curve obtained in step 2d. Defined as ψ^{-1} CALC.	HLMBD
2 f	Determine the probability that the set 9^{f} discrete data points for EMP are contained within the continuous distribution represented by CALC. Identify those factor combinations whose associated engagement subsets obey Helmbold's Theorem reasonably well.	HLMBD

In this investigation it is necessary to examine all possible combinations of one or more types of factor combinations within the particular types of engagements identified by the observed variables. Unfortunately, this results in the identification of a very large number of observed variable combinations. Figure 3.3 depicts the number of possible combinations as a function of the number of observed variables. •

This problem is alleviated by using factor analysis to achieve the reduction of the set of observed variables to a set of underlying factors which accounts for most of the variation present in the data. The factor analysis is performed using the Statistical Package for the Social Sciences (SPSS, 1975). The initial extraction of factors is performed using the principle components method. The primary motivation for this is that the observed variables are each dichotomous, and that dichotomous variables should not be used in classical factor analysis (Kim and Mueller, 1978:74). Nevertheless, it is acceptable to use dichotomous variables in principle components analysis, since it is an exact mathematical transformation of the data and does not hypothesize factorial causation and the specification of common and unique components.

The rotation to a terminal solution is performed using one of the three methods of orthogonal rotation available in SPSS. These methods consist of Quartimax, Varimax and Equimax. Quartimax minimizes the complexity of the observed variables with respect to the number of defined factors upon which it loads. Varimax minimizes the complexity of the defined factors with respect the number of observed variables which each contains. Equimax is a compromise between the first two. The method used is the one which best represents the significant differences between the engagements in the engagement data matrix.

The rotated factor matrix is then reduced via the identification of those observed variables which load significantly on
the rotated factor matrix. This is accomplished for each observed variable by identifying the smallest set of defined factors which ensures that at least 75% of the variance accounted for in the original rotated factor matrix be accounted for in the reduced rotated factor matrix. This is performed in program FACTCOM. FACTCOM then explicitly relates the defined factor set to its significant component variables and the engagements within which they are presented via the Defined Factor/Observed Variable matrix and the Defined Factor/Engagement matrix.

These matrices are then input to program HLMBD where the main portion of the analysis 13 performed. Program HLMBD evaluates all potential combinations of the defined factors, or factor combinations, that have been identified as a result of the factor analysis. Each factor combination is identified and undergoes preliminary screening to determine its suitability. "'These matrices are then input to program HLMBD where the main portion of the analysis is performed. Program HLMBD evaluates all unique combinations of the defined factors, or defined factor combinations, that have been identified as a result of the factor analysis. Each defined factor combination is identified as a result of the factor analysis. Each defined factor combination is identified and undergoes preliminary prescreening to

There are two reasonsfor the prescreening of the unique defined factor combinations that are identified. The first is the removal from consideration those defined factor combinations whose
evaluation adds little to the results of the analysis. The second is the reduction in defined factor combinations to a number which is realistic from the standpoint of computer resources. There are three prescreening techniques identified for use in this investigation. All three are based on the associated engagement subset being key tio the evaluation of a defined factor combination. Note that, regardless of the prescreening techniques used, the set of all engagements is evaluated to serve as a baseline against which to compare the results of the evaluation of the other selected defined factor combinations.

The first prescreening technique involves the rejection of all defined factor combinations whose associated number of engagements meets or exceeds a maximum number of engagements specified as a fraction of the total engagement set. This technique is based upon the logic that, beyond a certain engagement subset size, the results of its evaluation differs little from the results obtained by evaluating the entire engagement set. This is the initial. prescreening technique to be employed and uses a cutoff value of 0.80 , or 80% of the total engagement set. .

The second prescreening technique consists of the rejection of all defined factor combinations whose associated number of engagements is less than a specified minimum number of engagements. The basis for this technique is that, below a certain number of engagements, the ${ }^{4}$ CALC equation fits and their associated descriptive statistics become invalid. This technique is used only if the first prescreening technique is not sufficient in reducing the number of defined factor
combinations with respect to available computer resources.
The third prescreening technique rejects any defined factor combination whose associated engagement subset is not unique with respect to the other defined factor combinations to be evaluated. This prescreening technique is the most demanding in terms of computer resources and is used only if the first two prescreening techniques are not sufficient.

For each defined factor combination which is not rejected by the prescreening process, the following procedure is performed. The attacker and defender cumulative casualty fraction curves are generated for the attacker-win and defender-win portions of the associated engagement subset. The attacker and defender cumulative casualty fraction curves for the attacker-win portion are used to generate data points for the ψ^{-1} EMP data set. The attacker and defender cumulative casualty fraction curves for the defender-win b portion are used to generate data points for the $\psi_{\text {EMP }}$ data set. Given the $\psi_{\text {EMP }}$ and ψ^{-1} EMP data sets, the test is made to determine whether the inverse is, in fact, inverse. Using bivariate regression, the best available functional form is then fit to the $\psi_{\text {EMP }}$ data, set. The three functional forms evaluated for this investigation are listed in Table 3.11.

Table 3.11 Functional Forms Fit to 4 EMP Data Set

Form	Mathematical Description
linear	$y=b_{0}+b_{1} x$
power	$y=B_{0} x b_{1}$
\log	$y=b_{0}+b_{1}(\log x)$

The best of the three functional forms is then selected on the basis of each fitted equation's multiple correlation coefficient squared and
its associated F ratio. The multiple correlation coefficient squared shows the amount of variance in the ψ^{-1} EMP data set accounted for by the fitted equation. The F ratio judges the significance of the value of the multiple correlation coefficient squared statistic. The fitted equation is defined as ψ calc.

The mathematical inverse to $\psi_{\text {CALC }}$, or ψ^{-1} CALC, is then examined to determine the degree to which the ψ^{-1} CALC represents the variation present in the ψ^{-1} EMP data set. The basic quality of the fit is again performed using the multiple correlation coefficient squared and associated F ratio statistics relating the ψ^{-1} CALC equation and the ψ^{-1} EMP data set. The subset of defined factor combinations are identified whose associated engagement subsets best obey Helmbold's Theorem. In particular, the results obtained for each associated engagement subset is compared to the full engagement set evaluation results.

The results are then checked using discriminant analysis. The
discriminant analysis is performed using the subprogram DISCRIMINANT available in SPSS. The full set of observed variables are entered into a single run of subprogram DISCRIMINANT. Using two groupings; the winners and losers of the engagements contained in the engagement data matrix, the subset of observed variables which are significant in determining the winner and loser in an engagement are identified. Observed variable selection is performed using a stepwise procedure using th Wilks lambda oriterion.

This criterion is described as follows:
The Wilks criterion is the overall multivariate F ratio for the test of differences among the group centroids. The variable which maximizes the F ratio also minimizes Wilks' lambda, a measure of group descrimination. This test takes into consideration the differences between all centroids and the cohesion (homogeneity) within the groups (SPSS, 1975:447).

Coupled with this criterion is the specification of the minimum level of significance for an observed variablle to be designated (and remain designated) significant during the stepwise procedure... This is indicated by a minimum partial F ratio, which is: the likelifhood ratio of equality of the test variable over all groups, given the distribution produced by the variables already entered. Expressed another way, this is a test for the statistical significance of the amount of centroid separation added by this variable above and beyond the separation produced by the previously entered variables (SPSS, 1975:453).

For this investigation the default minimum partial F value $=1.0$ is used. This is associated with a minimum significance level of 0.50 . This ensures that any observed variables with discriminatory power is included in the set of significant observed variables.

The set of significant observed variables found using
discriminant analysis is compared to the original results. The degree to which the observed variables used in the construction of good breakourves are found to be significant in deterimining the winner and loser in a specified type of engagement strengthens the validity of the initial results.

3.8 Summary

This chapter describes the basis for the current investigation. The type, quantity and limitations of the data contained in the engagement data matrix are discussed. In addition, the analytical steps contained in the methodology are described. The next chapter documents the results of the analysis. This includes the results of the data reduction process, the construction, testing and identification of meaningful breakcurves, their aggregation into breakcurve sets and the independent examination of their validity using discriminant analysis.

Chapter 4

RESULTS

In this chapter the results obtained by following the procedure contained in chapter 3 are described and discussed. Factor analysis is used to reduce the set of 49 observed variables specifying each engagement to a total of 21 underlying defined factors. Of the potential defined factor combinations, prescreening results in the identification of 125 defined factor combinations for further evaluation of their associated engagement subsets. With respect to hypothesis testing, it is found that many of the defined factor combinations' associated engagement subsets have ψ^{-1} CALC curves which fit the ψ^{-1} EMP data set reasonably well. Using the set of all engagements as a baseline for comparison, 22 defined factor combinations achieved ψ^{-1} CALC curve fits fich are better on the basis of their multiple correlation coefficient squared and associated F statistics. The observed variables contained within these defined factor combinations are identified and the implications-of their presence briefly discussed. Discriminant analysis to distinguish between winners and losers in an engagement using the engagement data matrix results in some agreement, but some differences as well, in the observed variables which are significant in determining the outcome of the engagement. These areas of agreement and differences are discussed.

4.1 Factor Analysis for Data Reduction

Factor analysis is performed on the observed data set in order to reduce the number of combinations to be evaluated during the testing of the breakpoint hypothesis. As mentioned in section 3.7 , in order to meet the requirement that the observed variables entered into the factor analysis be independent, then for the set of observed variables there must be a subset of joint reference category variables identiried and kept separate. The factor analysis is, therefore, performed in two segments. The first segment consists of the reduction of the subset of 14 joint reference category variables to 6 defined factors. The second segment consists of the reduction of the remaining 35 observed variables to 15 defined factors. With regards to which factor rotation method to use, for each of the two factor runs the VARIMAX and QUARTIMAX rotational methods are used to rotate the factors initially extracted to a terminal solution. Within each of the two segments the rotated factor matrix produced by the factor analysis is the same. Given this, the VARIMAX rotational method is selected and used since it is the default method for subprogram FACTOR.

The rotated factor matrix produced for each of the two observed variable segments are then separately input into the factor combination program (program FACTCOM). A listing of the computer source code for FACTCOM, written in the FORTRAN IV computer language, is available in the Industrial Engineering department office located at Lehigh University. As stated in section 3.7, program FACTCOM reduces the rotated defined factor matrix by identifying the least
number of defined factors which, for a specified observed variable, account for most of the observed variable's variance. For this investigation, it is required that 75% of the variance accounted for In the original rotated factor matrix be accounted for in the reduced rotated factor matrix.

For each segment, at the conclusion of this reduction process, two matrices are generated to be used later in the analysis. These Include the Defined Factor/Observed Variable matrix and the Defined Factor/Engagement matrix.

The Defined Factor/Observed Variable matrix is a direct result of the reduction process of the rotated factor matrix discussed above. The Defined Factor/Observed Variable matrices for each of the two observed variable segments are shown in Tables 4.1 and 4.2, respectively. A number one in the cell for a particular observed variable/defined factor pair indicates that the observed variable is represented by that defined factor. A blank in the cell for a particular observed variable/defined factor pair indicates that the observed variable is not represented by that defined factor. The Defined Factor/Observed Variable matrices for each of the two observed variable segments contain the net reduction of the data in the observed variable set that is achieved through factor analysis.

The observed variable/defined factor relationships identified in the Defined Factor/Observed Variable matrices are used to generate the Defineç Factor/Engagement matrix for each of these two observed variable segments. As mentioned in section 3.7 , engagements are identified with specific defined factors according to the following

Table 4.1

> Defined Factor/Observed Variable Matrix for the First Observed Variable Segment

Table 4.2
Defined Factor/Observed Variable Matrix for the Second Observed Variable Segment

rule:

> If any of the observed variables that are present in an engagement are represented by a given defined factor, then that engagement is included in that defined factor's associated engagement subset.

A sampling of the Defined Factor/Engagement matrix generated for the second segment of observed variables is given in Table 4.3. The contents of this matrix are used by program HMBLD in identifying the associated engagement subsets for each of the factor combinations evaluated. A complete listing of the Defined Factor/Engagement matrices for each of the two observed variable segments is not provided since the relationship between an engagement and a defined factor can be identified using one of the Defined Factor/Observed Variable matrices, the relationships between observed variables and combat factors (Table 3.9), and the engagement data matrix (Section 3.3).

4.2 Breakpoint Hypothesis Testing

This portion of the analysis involves the identification and evaluation of the validity of the breakpoint hypothesis for all unique defined factor combinations, subject to defined factor prescreening requirements. This is performed using program HMBLD. A listing of the computer source code, written in the FORTRAN IV computer language, is also located at the Industrial Engineering department office at Lehigh University. Using the Defined Factor/Engagement matrix generated in program FACTCOM, program HMBLD identifies, prescreens and evaluates the unique defined factors in accordance with the methodology presented in section 3.7. All unique defined factor

Table 4.3
Sample of the Factor/Engagement Matrix Generated for Segment 2

Engagement	Factor														
	1	$\underline{2}$	3	4	$\underline{5}$	6	7	$\underline{8}$	$\underline{9}$	10	11	$\underline{12}$	13	14	15
1					1			1	1						
2		1			1			1	1					1	
3			1	1	1	1	1				1				1
-	\bullet	\bullet	-	-	\bullet	\bullet	\bullet	-	-	\bullet	-	\bullet	-	\bullet	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\bullet
$\stackrel{7}{ }$	-	-	$\stackrel{-}{*}$	-	-	-	-	-	-	-	-	-	-	-	-
の 321	1	1	1	1	1	1	1	1	1	1		1		1	1
322	1	1	1	1	1		1	1		1				1	
323	1	1	1	1	1		1	1		1				1	

combinations are identified and examined to at least a certain extent. The extent to which a defined factor combination is examined is dependent upon whether or not it passes the initial prescreening. As discussed in section 3.7 , three types of prescreening are identified for potential use in this investigation. The use of one of the prescreening techniques, the specification of a waximum number of engagements (as a fraction of the total engagement set) contained in any defined factor combination to be defined further, results in the number of defined factor combinations to be evaluated indicated in Table 4.4.

Table 4.4
Defined Factor Combination Prescreening

\(\left.$$
\begin{array}{ccc}\text { Observed Variable } \\
\text { Segment }\end{array}
$$ $$
\begin{array}{c}\text { Potential } \\
\text { Defined Factor } \\
\text { Combinations }\end{array}
$$ \quad \begin{array}{c}Defined Factor

Combinations Selected

For Further

Evaluation\end{array}\right]\)| 1 | 63 | 123 |
| :---: | :---: | :---: |
| 2 | 32,767 | |

* In addition, the set of all engagements is evaluated to serve as a baseline for comparison.

This degree of prescreening is achieved using a maximum engagement cutoff of 80% of the total engagement set.

Given this reduction in the number of defined factor combinations to be evaluated to a reasonable number, no further reduction of the number of combinations to be evaluated need be made from the p巾int of view of available computer resources. Also, 147
additional reductions in the number of defined factor combinations to be evaluated resulting from the remaining two prescreening techniques appears to be negligible. Based on the number of engagements associated with each of the individual factors listed in Table 4.5, a requirement for a reasonable minimum number of engagements would result in no additional defined factor combinations being dropped. Additional testing for the uniqueness of each defined faotor combination's associated engagement subset is not profitable, either, given that the results shown in Appendix C indicate that only a few defined factor combinations are redundant from the standpoint of their associated engagement subsets.

The results of evaluating the associated engagement subsets of . the prescreened set of defined factor combinations show the breakpoint hypothesis being obeyed reasonably well. When evaluating the entire engagement set, the ψ^{-1} CALC equation fitted the ψ^{-1} EMP data set With a multiple correlation coefficient of .8653 and an associated F statistic of 292.00 with 98 degrees of freedom. The $\psi_{\text {CALC }}$ equation from which ψ^{-1} CALC is obtained has a multiple correlation coefficient of 0.9876 with an associated F statistic of 3696.40 with 98 degrees of freedom.

The all-engagement case is used as a baseline with which to compare the results of the associated engagement subsets of the romainins 124 defined factor combinations. Twenty-two of the combinations have associated engagement subsets which result in ψ^{-1} CALC equation fits to $\psi_{\text {EMP }}^{-1}$ data, sets that have multirle correlation coefficient squared greater than 0.8653. Ths relevant

Table 4.5
Number of Engagements Assocfated with Each Defined Factor for the Two Observed Variable Segments

Observed Variable Segment	Factors														
	1	$\underline{2}$	$\underline{3}$	4	5	$\underline{6}$	1	$\underline{8}$	$\underline{9}$	10	11	12	13	14	15
1	220	321	305	321	258	278									
2	283	171	257	291	299	215	237	211	150	118	156	112	127	132	149

合
data concerning each of these "good" defined factor combinations is
listed in Table 4.6a. Table $4.6 b^{\prime}$ presents the same results, but
explicitly displays the observed variables present in each of the 22
"good" defined factor combinations. The results for all evaluated
defined factor combinations are listed in Appendix C. Table 4.7 lists
the component observed variable for each of the defined factor
combinations which are better than the case where all engagements are
evaluated. The implications of these results are discussed in section
4.4.*

Breakpoint Hypothesis Test Results-Identification of "Good" Defined Factor
Combination Subsets and Associated Equation Fit Results

[^2]
Table 4.6 b

Breakpoint Hypothesis Test Results－－ Component Observed Variables for Subsets of＂Good＂Defined Factor Combinations

Rank Order	Multiple Correlation Coefficient	$\begin{aligned} & \text { O } \\ & \text { Z } \\ & \text { 呆 } \end{aligned}$					$\begin{aligned} & \text { N } \\ & \underset{G}{C} \\ & \underset{3}{3} \end{aligned}$			$\begin{aligned} & \text { N } \\ & \underset{y y}{c} \\ & \underset{\sim}{z} \end{aligned}$		$\begin{aligned} & \text { 丷్ } \\ & \text { 岂 } \\ & \text { H } \end{aligned}$		$\begin{aligned} & \text { n } \\ & \underset{\sim}{\mu} \\ & \mu \\ & H \end{aligned}$			$\begin{gathered} \stackrel{\rightharpoonup}{4} \\ \stackrel{y}{4} \end{gathered}$					$\stackrel{-1}{0}$	N $\underset{2}{O}$ 2			-1 4 4 4 4 4	0 0 0 0 2 	$\begin{aligned} & \vec{\alpha} \\ & 0 \\ & 0 \\ & 0 \\ & \underset{4}{4} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \sim \\ & \text { N } \\ & \underset{\sim}{\mu} \\ & \underset{4}{4} \end{aligned}$	$\stackrel{\text { 岂 }}{\stackrel{y}{U}}$	$\stackrel{\text { y }}{\stackrel{y}{4}}$	$\stackrel{\underset{\sim}{\mathcal{G}}}{\underset{U}{\mathbf{B}}}$			$\underset{\sim}{\text { No }}$
1	0.9241			1	1		1				1		1	1			1	1					1												
2	0.9184			1	1		1				1		1	1			1	11					1						1		1				
3	0.9182			1	1		1				1		1					11					1						1		1				
4	0.9181			1	1		1											1					1						1		1				
5	0.9170						1				1		1	1.			1	1																	
6	0.9167						1				1		1	1.			1	11											1		1				
7	0.9164			1	1		1				1			1			1	1					1						1		1				
8	0.9146						1				1		1					1																	
9	0.9099						1				1			1			1	1											1		1				
10	0.9097			1	1		1		－		1		1					1.				．	1												
11	0.9010			1	1			1		1		1						1					1												
12	0.8987																						1										1	1	
13	0.8959						1											1											1		1				
14	0.8942						1				1		1					11											1		1				
13	0.8929			1	1																		1										1	1	
16	0.8903						1				1			1			1																		
17	0.8773			1	1		1				1			1			1			．			1												
18	0.8717							1		1	1	1				1		1	1										1						
19	0.8717			1	1			1		1	1	1				1		$\cdots 1$	1.				1						1						
20	0.8702							1	＇1		1	1				1		$1: 1$	1										1						
21	0.8673			1	1			1.	1		1							1.					1												
22	0.8667							1	1	1	1	1						1．． 1														1			

Table 4.7
Observed Variables Contained in Those Defined Factor Combinations Whose Associated Engagement Subsets Produced ψ^{-1} CALC Fits Which are Superior to that for the Entire Engagement Set

Nominal Order	Variable \qquad
1	DURDAY2
2	durday 3
3	WILCAT2
4	ENGTYP2
5	ENGTYP3
6	ENGTYP4
7	TERR1
8	TERR3
9	TERR 4
10	TERRS
11	WEAT3
12	WEAT4
13	WEAT5
14	WEAT6
15	SEASN 1
16	MOR2
17	AIRSPR2
18	CAIR2
19	TPERSTR3
20	TPERSTR2

4.3 Discriminant Analysis

The results of the Helmbold hypothesis testing are partially checked using discriminant analysis on the full engagement data set. As discussed in section 3.7 , discriminant analysis is used to determine which observed variables are significant in determining the winner and loser in an engagement. SSPS subprogram DISCRIMINANT is used to perform the stepuise selection of observed variables using the WILKS lambda criterion. The default value for minimum selection
criteria for variable selection is used to ensure that all observed variables having discriminatory power are included. The significant variables identified are contained in Table 4.8. In section 4.4, this set of significant observed variables is compared to the observed variables found in order to identify the associated engagement subsets Which obey the breakpoint hypothesis best.

Observed. Variables Found to be Significant in Distinguishing Between Winners and Losers in Engagements

Nominal Ordering	Observed Variable
1	ENGN2
2	ENGN3
3	DURDAY1
4	ENGTYP4
5	WEAT1
6	WEAT3
7	WEAT6
8	SEASN1
9	MOR1
10	ATTSUR1
11	DEFSUR1
12	AIRSPR1
13	AIRSPR2
14	CAIR1
15	CAIR2
16	FRATIO1

4.4 Discussion of Results

The discussion of the results is comprised of several parts. The first concerns the degree to which the various associated engagement subsets, as well as the complete engagement set, obey, or do not obey, element three of the breakpoint hypothesis. Secondly, the implications of those existing subsets of the engagement data base which obey the breakpoint hypothesis to a greater extent are discussed. Lastly, as a partial check of the validity of the 1

- breakpoint hypothesis testing, the set of observed variables found to be significant in the diseriminant analysis are compared with those "
observed variables contained within the defined factor combinations 1.55
whose associated engagement subsets obeyed element three of the breakpoint hypothesis to a better extent than the complete engagement data set.

The results presented in section 4.2 show that element three of the breakpoint hypothesis is obeyed reasonably well by the complete engagement data set and the breakpoint hypothesis obeyed better by 22 of the 124 defined factor combinations that are evaluated. The multiple correlation coefficient squared for those 22 defined factor combinations ranged from a high of 0.9241 to a low of 0.8667 . All of the defined factors which fall in this "good" category come from the second observed variable segment. Note that, except for the combination ranked 17 th, the power functional form is consistently selected as best fitting the $\psi_{\text {EMP }}^{-1}$ data set. This holds true for the vast majority of the remainder of the 124 defined factor combinations.

The existence of a number of defined factor combinations whose associated engagement subsets obey element three of the breakpoint hypothesis better than the entire engagement data matrix, suggests that a series of break curves should be used to account for the universe of possible engagement types. The observed variables contained in those defined factor combinations which fit well are candidates for specifying the types of engagements grouped within the individual break curves.

Comparison between the observed variables found to be significant in distinguishing between winners and losers in an engagement, and the observed variables inferred to be significant in determining the outcome of an engagement by virtue of their being 156
contained in "good" defined factor combinations, however, results in differences between the two.sets of observed variables. Only. 6 of the 16 observed variables found to be significant in the discriminant analysis are contained in the "good" groups of defined factor combinations. In addition, 14 variables inferred to be significant in the results for the breakpoint hypothesis testing are not found to be significant by the discriminant analysis for the complete engagement data set. Many of these discrepancies, however, can be attributed to drawbacks in the prescreening technique used for defined factor combinations as well as reduction of the set of observed variables to a smaller get of defined factors which represent more than one observed variable each.

The impact of the prescreening technique on denying or hampering the ability of observed variables to enter into fullyevaluated factor combinations is significant. Table 4.9 lists the observed variables effectively denied being explicitly included in any fully evaluated defined factor combination. Table 4,10 lists the observed variables hampered in any fully evaluated defined factor combination. Table 4.11 presents a matching of the two sets of observed variables and shows how 13 of the 16 observed variables found via the discriminant analysis can be accounted for. Of the remaining three observed variables, two of them (ENGN1 and DURDAY1) are in the joint reference category observed variable segment where the number of potential combinations they can enter into is limited. The last observed variable, DEFSURY, may be deemed insignificant due to the small number of engagements (3%) where this observed variable is

Observed Variables Effectively Denied Being Explicitly Included in Any Fully Evaluated Defined Factor Combination

First Observed Variable Segment	Second Observed Variable Segment
WILCAT1	ENGN2
TERR2	ENGN3
WEAT2	WEAT1
SEASN2	MOR1
MOR3	SETEFF1
BTHSURN	AIRSPR1
SETEFFQ	CAIR1
CAIRO	CAIR3
TPERSTR1	FRATIO2
FRATIO1	

Table 4.10
Observed Variables Hampered in Being Explicitly Included in Any Fully Evaluated Defined Factor Combination

First Observed Variable Segment	Second Observed Variable Segment
ENGTYP1	DURDAY2
	DURDAY3
	WILCAT2
	TERR 1
	TERR3
	WEAT5
	SEASN4
	ATTSURY
	AIRSPRO
	AIRSPR2
	TPERSTR2

Table 4.11
Comparison Between Observed Variables Found to be Significant via Helmbold Hypothesis Testing and via Discriminant Analysis

Significant Variables via	Subset of Good Defined Factor Combinations			
Discriminant Analysis	Present	Denied Access	Hampered	Other
ENGN1				X
ENGN2		X		
DURDAY1				X
ENGTYP4	X			
- WEAT 1		X		
- WEAT3	X			
WEAT6	X			
SEASN1	X			
MOR1		X		
ATTSURY			X	
DEFSURY				X
AIRSPR 1		X		
AIRSPR2	X			
CAIR1		X		
CAIR2	X			
FRATIO2		X		1

- $\quad x=$ indicates yes
present.
There are additional observed variables found in the subset of good defined factor combinations which are not considered significant by the discriminant analysis. These can be partially explained by the reduction of the observed variables to a set of defined factors during the factor analysis step. Table 4.12 shows that the presence of half of the 14 observed variables can be explained in this fashion. The presence of the other seven observed variables (coming from five combat factors) can not be readily explained and should be the subject of further research.

Table 4.12

Additional Observed Variables Found in Subset of Good Defined Factor Combinations
$\left.\begin{array}{ll}\text { Additional Observed Variables } \\ \text { Found in Subset of Good Defined } \\ \text { Factor Combinations }\end{array} \quad \begin{array}{l}\text { Located in Same Defined } \\ \text { Factor as Observed Variable } \\ \text { Deemed Significant via } \\ \text { Factor Analysis }\end{array}\right]$

4.5 Summary

Results from testing of the breakpoint hypothesis have been presented here. They clearly indicate a number of engagement subsets which obey element'three of the breakpoint hypothesis reasonably well. In addition, engagement subsets have been found which obey element three of the breakpoint hypothesis better than the full engagement set. These indicate that a series of break curves, rather than a single break curve, may better account for the break behavior of military forces for the universe of possible engagement types. The discriminant analysis confirmed the significance of some of the observed variables and, for the most part, reconciles with the results from the breakpoint hypothesis testing. The differences which remain concern the determination of which observed variables are significant in determining the outcome of an engagement and should be considered When specifying multiple break, curves. Those differences do not diminish the degree to which the breakpoint hypothesis has been seen to hold. Additional areas of research indicated by these results are identified in the next chapter.

Chapter 5

CONCLUSIONS

This chapter includes a reaffirmation of the degree of validity found for the breakpoint hypothesis and, by extension, the validity of the use of probabalistic break curves in modelling probibalistic break curves. In addition, areas for future research are discussed.

5.1 Results Summary

The Helmbold Theorem appears to be obeyed reasonably well by the full engagement data base, as well as being better in certain additional subsets of the engagement data base.

The presence of specific subsets of the engagement data base Which result in better fits by the ψ^{-1} CALC curve are an indication that a series of break curves might be better able to deal with the battle termination behavior of the universe of possible engagement types.

The observed variables found to be significant by discriminant analysis and those inferred as being significant by virtue of their being contained in the subset or good defined factor combinations in the Helmbold Theorem testing are in many cases different. However, many of these differences can be accounted for by the fact that the prescreening technique used for hypothesis testing precluded or hampered many of those observed variables from being in the defined factor combinations which survived the prescreening. In addition, a number of the observed variables inferred as being significant are 162
contalned in the same defined factors as observed variables which are found to be significant by the discriminant analysis. Therefore, it is not possible to distinguish between which of the observed variables In the defined factor is significant in identifying the associated engagement subset which produced the good fit.

5.2 Areas for Future Research

This investigation can be viewed as a preliminary empirical validation of the use of probabilistic break curves to model battle termination. Additfonal research needs to be performed in order to refine these results as well as investigate the specification of break curves for particular groupings of engagement types.

One improvement would be the use of discriminant analysis to identify significant observed variables followed by testing of the breakpoint hypothesis using combinations of the significant variables. The use of discriminant analysis for significant observed variable selection would eliminate the need for segmenting the observed variable set and provide the ability to examine the observed variables directly during the testing of the breakpoint hypothesis. Prescreening of the combinations could be performed by more restrictive variable selection in the discriminant analysis, which would overcome the drawbacks encountered in the current prescreening problems.

Another improvement would be to use additional functional forms for fitting the ψ EMP data. This could permit greater precision in identifying the degree to which particular engagement subsets
obeyed element three of the breakpoint hypothesis.
The validity of specifying multiple breakcurves, as opposed to a single breakcurve, to properly model the battle termination process of all possible engagement types should also be investigated. Two points can be made concerning the specification of such a set of breakcurves.

1) Each observed variable combination within a breakcurve set must contain at least one observed varlable whose exclusion is mandated by each of the other observed variable combinations within the breakcurve set. This precludes the possibility of an engagement being contained within the engagement subsets of two or more observed variable combinations. The occurence of this would infer that the break behavior of a combat force in a specified engagement could be represented by two or more breakcurves. For modelling purposes, however, it is necessary to ensure that only one unique breakcurve is associated with a combat force in a specified situation.
2) It is essential that a fully specified breakcurve set is capable of accounting for all possible types of engagements. Lastly, the addition of more engagements to the engagement data base used in any future research, as well as the quantification of additional combat factors, would add to the validity of any results achieved in that research.

Alden, John Richard. A History of the American Revolution. lst Edition. New York: Knopf, 1969.

Barker, A.J. Arab-Israeli Wars. New York: Hippocrene Books, 1981.
\qquad - The Yom Kippur War. New York: Random House, 1974.

Belfield, Eversley Michael Gallimore. The Boer War. Hamden, Connecticut: Archon Books, 1975.

Blumenson, Martín. Breakout and Pursuit. Washington, D.C.: Office of the Chief of Military History, Department of the Army, 1961.

Bodart, Gaston. Militar-Historisches Kriegs-Lexicon, (1618-1905). Vienna and Leipsig: C.W. Stern, 1908.

Britt, Albert Sidney. The Wars of Napoleon. West Point, New York: U.S. Military Academy, Department of History, 1973.

Chandler, David G. The Campalgns of Napoleon. New York: MacMillan, 1966.

- Dictioñary of the Napoleonic Wars. New York: MacMillan, 1979.

Clark, Dorothy K. Casualties as a Measure of the Loss of Combat Effectiveness of an Infantry Battalion. Operations Research Office, ORO-T-289. John Hopkins University, 1954.

Clausewitz, Karl von. On War. Translated by O.J. Matthijs Jolles. New York: Random House, 1943.

Dayan, David. Strike First. A Battle History of Israel's Six nay War. Translated from the Hebrew by Dov Ben-Abba. New York: Pittman Publishing Corp., 1968.

Department of the Army, Maneuver Control. Field Manual (FM) 105-5. Washington, D.C.: Department of the Army, 1973.

Dupuy, R. Ernest and Trevor N. Encyclopedia of Military History. Revised Edition. New York: Harper and Row Publishers, 1970.

Dupuy, T.N. Compact History of the Civil War. New York: Hawthorne Books, 1960 .
. Compact History of the Revolutionary Har. New York: Hawthorne Books, 1963.

- Numbers, Predictions and War: Using History to Evaluate Combat Factors and Predict the Outcome of Battles. Indianapolis/New York: Bobbs-Merrill, 1979.

Fain, Janice B. The Lanchester Equation and Historical Warfare: an Analysis of Sixty World War II Land Engagements. Arlington, Virginia, 1975.

Fall, Bernard B. Hell in a Very Small Place: The Siege of Dien Bien Phu. New York: J.B. Lippincott, 1966.

Goldstein, Mathew. Discrete Discriminant Analysis. New York: Wiley, 1978.

Grove, Philip Babock, Editor in Chicf. Webster's Third New International Dictionary. Springfield, Massachussetts: G. \& C. Merriam Company, 1971.

Harman, Harry II. Modern Factor Analysis. 3rd Edition, Revised. Chicago/London: University of Chicago Press, 1976.

Helmbold, K.L. Decision in Battle: Breakpoint Hypotheses and Engagement Termination Data. Santa Monica: RAND, R-772-PR, 1971.

- Historlcal Data and lanchester's Theory of Combat. Fort
. Belvoir, Virginia: Combat Operations Research Group, Technical Operations, CORG-SP-128, 1961.
- Mistorical Data and Lanchester's Theory of Combat, Part II.

Fort Belvoir, Virginia: Combat Operations Research Group, Technical Operations, CORG:-SP-190, 1964.

Herzog, Chaim. The War of Atonement, October, 1973. Ist American Edftion. Boston: Little, Brown, 1975.

Historical Evaluation and Research Organization, Dunn Loring, Virginia. Combat Data Subscription Service. Vol. I, Nos. 2 and 3 (1975), Vol. II, Nos. 1 and 2 (1976-77).

Jackson, William Godfrey Fothergill. The Battle for Italy. New
York: Harper and Row, 1967.
Kim, Jae-On, and Charles W. Mueller. Factor Analysis:
Statistical Methods and Practical Issues. Beverly Hills: Sage
Publications, c. 1978.
$\stackrel{\rightharpoonup}{2}$
Kim, Jae-On, and Charles W. Mueller. Introduction to Factor Analysis: What It Is and How To Do It. Beverly Hills: Sage Publications, c. 1978.

Kim, Jae-On, N. Nie and S. Verba. "A Note on Factor Analyzing Dichotomous Variables: the Case of Political Participation" Political Methodology. $4: 39-62$, 1977.

Kerlin, E.P., and R.H. Cole. ATLAS: A Tactical, Logistical and Air - Simulation. McLean, Virginia: Rescarch Analysis Corporation, 1969.

Kurzman, Dan. Genests 1948, The First Arab-Israeli. War. New York and Cleveland: The World Publishing Co., 1970.

Lachenbruch, Peter A. Discriminant Analysis. New York: Hofner Press, 1975.

Livermore, T.L. Numbers and Losses of the Civil War. Reprint, Bloomington: University of Indiana, 1957.

Lorch, Netanel. Israel's War of Independence, 1947-1949. 2nd Revised Edition. Hartford, Connecticut: Hartford House, Inc., 1968.

Nie, Norman H. and Others. Statistical Package for the Social Sciences. New York: NcGraw-H111 Book Company, 1975.

O'Ballance, Edgar. The Sinal Campaign of 1956. New York: Praeger, 1960.

Pakenham, Thomas The Boer War. Ist American Edition. New York: Random House, c. 1979.

Prussia. Armee. Grosser Generalstab: The Russo-Japanese War. Prepared in the Histurical Section of the German General Staff. Authorized translation by Karl von Donat. London: H. Rees, 19081914, 7 vols.

Schmieman, William A. The Use of Lanchester-Type Equations in the Analysis of Past Military Engagements. Doctoral Thesis, Georgia Institute of Technology, 1967.

Simulations Publications, Inc. Strategy and Tactics Magazine. Nos. 67, 76, 80, 86, 87, 89. New York: 1978-1981.

Spring, S.G., and S.H. Miller. FAST-VAL: Relationships Among Casualties, Suppression, and the Performance of Company-Sized Units. Santa Monica: RAND, RM-6268-PR, 1970.

Stevens, S.S. "On the Theory of Scales of Measurement" Science. 103:677-680, 1946.

Stockfish, J.A. Models, Data and War: A Critique of the Study of Conventional Forces. Santa Monicat RAND, 1975.

Taylor, J.G. Force-on-Force Attrition Modelling. Arlington, Virginia: The Operations Research Society of America, 1980.

Weiss, Herbert K. "Combat Models and Ilistorical Data: The U.S. Civil War" Operations Research. 14.4:. 759-790, 1966.

Willard, Daniel. Lanchester as Force in History: an Analysis of Land Battles of the Years 1618-1905. RAC-TP-74, AD297375L. Mclean, Virginia: Research Analysis Corporation, 1962.

Young, Peter, Brigadier. The Israel Campaign 1967. London: Kimber, 1967.

Appendix A
 MATHEMATICAL GLOSSARY OF TERMS

a		attrition rate coefficient for y forces
b		attrition rate coefficient for x forces
$C_{z}=C_{z}(T)$	$=$	total casualties suffered by side z during the combat encounter $\left(C_{z}=z_{o}-z\right)$
$C_{z}(t)$	$=$	casualties sustatned by side z as of time t into the combat encounter; $C_{z}(t)=z_{o}^{-z(t)}$
$D_{x}\left(v \mid W_{y}\right)$	=	conditional distribution of $\mathrm{l}^{\prime} \mathrm{x}$, given W_{y}
$\mathrm{D}_{\mathrm{y}}\left(\mathrm{u} \mid W_{x}\right)$	$=$	conditional distribution of L_{y}, given W_{x}
$\mathrm{F}_{\mathrm{z}}(\mathrm{u})$		break curve for side z, given the probability that the side's breakpoint threshold, L_{z}, will not exceed u; $\operatorname{Pr}\left[L_{z}<u\right]$
$\mathrm{f}_{\mathrm{z}}=\mathrm{f}_{\mathrm{z}}(\mathrm{T})$	$=$	casualty fraction sustained by side z in the combat encounter
$\mathrm{f}_{z}(t)$	$=$	casualty fraction for side z as of t ime t into the combat encounter; $\left(f_{z}(t)=C_{z}(t) / z_{0}\right)$
L_{z}	$=$	```preselected (breakpoint) casualty-fraction level which, if met or exceeded, results in side z's losing the combat encounter```
$\mathrm{P}_{\text {PM }}$	=	the probability of a military force performing a specified mission
$P\left(W_{x}\right)$	$=$	probability that force x wing a specified combat encounter
$P\left(W_{y}\right)$	$=$	probability that force y wins a specified combat encounter
R	$=$	```a proportionality constant relating the force y casualty fraction to the force x casualty fraction at time t```
'	$=$	duration of the combat encounter
x	$=$	the force level for force x

X_{BP}	$=$	force x^{\prime} s breakpoint force level
x_{0}	$=$	the initial force level for force ${ }^{\text {x }}$
y	$=$	the force level for force y
$y_{B P}$	$=$	force y^{\prime} s breakpoint force level
y_{0}	$=$	the initial force level for force y
z	$=$	general symbol denoting a value of either x or y, depending on context
$z=z(T)$	$=$	surviving troop strength of side z at the end of the combat encounter
z_{0}	=	Initial troop strength of side z at the start of the combat encounter
$z(t)$	$=$	surviving troop strength of side z as of time t into the combat encounter
$\Delta_{2 z^{\prime}}(\mathrm{u})$	$=$	$P\left(\mathrm{f}_{2}<u \mid W_{z}{ }^{\prime}\right)$
φ	$=$	a strictly increasing monotonic function relating $f_{x}(t)$ to $f_{y}(t)$ via the formula $f_{x}(t)=\varphi f_{y}(t)$
$\psi(u)$	=	$\operatorname{Mn}[\varphi(u), 1]$
$\psi_{\text {CALC }}^{-1}$	$=$	the ψ function assoclated with the defender cumulative casualty-fraction distribution, which is obtalned by taking the inverse to a fitted curve representing the ψ function for the attacker cumulative casualtyfraction curve. This curve, in turn, is obtained by fitting an appropriate functional form to the data points contained in $\psi_{E M P}$.
$\psi_{E M P}$	$=$	the set of data points which lie on the ψ curve associated with the attacker cumulative casualtyfraction distribution
$\psi_{E M P}^{-1}$	$=$	the set of data points which lie on the ψ^{-1} curve associated with the defender cumulative casualtyfraction distribution
dual	$=$	the result of applying the usual transposition to a formula, expression, etc.

"usual
transpo-
sition" $=x \rightarrow y, y \rightarrow x, \psi^{-1} \rightarrow \psi, \psi \rightarrow \psi^{-1}$

NONMATHEMATICAL GLOSSARY OF TERMS

Active combat operations - refers to a military force engaged in combat detivities against an opposing military force.

Area of operations - the area that a specified military force is responsible for in a particular military operation. This area efther changes during the course of an operation or remains constant for more than one operation.

Associated engagement subset - the engagements in the engagement data matrix which are classifled under a specified factor combination. These engagements constitute the subset of engagements which is associated with the factor combination.

ATLAS - an acronym representing the title "A Tactical, Logistical, Air Simulation." This is a combat model which represents theater-level operations (Taylor, 1980:11).
*
Attacker - the military force in an engagement which conducts primarily offensive operations.

Attack on a positional defense - An attack by a military force against an opposing military force in a defensive posture. The defense is positiunal, or fixed, in the sense that permanent retrograde movement by the defender is not envisioned. The defending military force occupies one of three operational states. These consist of, in the order of increasing strength, the Hasty Defense, the Prepared Defense and the Fortified Defense. The differences between these states are a function of the concentration of the defending force, time in the defensive position and the presence of attached engineering troops to aid in the preparation of the defenses (Dupuy, 1979:210-211):

Attack on a delaying force - an attack by a military force against an opposing military force which attempts to delay it. The delaying military force actively resists the advancing force while it moves rearward to a new position.

Attack on a withdrawing force - an attack by a military force against an opposing military force which attempts to withdraw. The withdrawing force attempts to avoid combat during the retrograde movement. It defends as a coherent military force if attacked, but attempts to disengage as rapidly as possible.

Auxilliary model - a model which is a simplification of a large-scale

- operational model. It is used to investigate the system dynamics of the more complex model by considering alternative assumptions and data estimates (Taylor, 1980:15-17).

Battle - a combat encounter between two opposing military forces. Each force has opposing aims or objectives (assigned or implicit) and each seeks to impose its will on the opponent by achicving its objective, while preventing the enemy from achieving his. A battle terminates when one side or the other clearly achieves its objective or when one side (or both) clearly fails to achieve its objective. It is considered possible for modern battles between large forces to last many days (Dupuy, 1979:187).

Battle termination process - the militarily-significant events and activities in a battle which result in its conclusion.

Break curve - a curve which indicates the probability that a military force will discontique the engagement as a function of the personnel casualties it sustains (Helmbold, 1971:2).

Break curve set - an aggregation of break curves, which is capable of accounting for the unlverse of possible engagement types.

Breakpoint - the casualty fraction at which a specified military force discontinues the engagement. Alternatively, the casualty fraction at which a specified military force 'breaks,' or moves to a lower operational state (Helmbold, 1971:2).

Campaign - usually an aggregation of several battles. A campaign usually lasts longer than a battle and encompasses a larger geographic area. It concludes when either a strategic objective is achieved or when a lull or stalement in combat operations occurs (Dupuy, 1979:187).

Casualty effectiveness - a quantitative comparison of the casualties incurred by the opposing military forces in an angagement (Dupuy, 1979:49).

Close air support - aircraft (fixed-wing or helicopter) used against ground targets in direct support of friendly ground forces.

- This represents only close air support sorties actually flown in support of engaged ground troops (Dupuy, 1979:72).

Coherent military force - a force capable of fighting in an organized fashion, as opposed to a military force for which the command and control structure has broken down.

Combat ineffective - a condition which exists in a military force when it is unable to carry out its mission (Clark, 1954:9).

Common factor ${ }^{-}$an unmeasured (or hypothetical) underlying variable which is the source of variation in at least two observed variables under consideration (Kim and Mueller, 1978:76).

Conflict termination - the end of a specified milltary operation.
Current investigation - refers to the thesis work performed by the author.

Data elements - the distinct types of data for each engagement contalned in the engagement data matrix.

Defender - the military force in an engagement which conducts primarily defensive operations.

Defensive position - refers to the geographic area which a defending, force occuples (either temporarily or permanently) while in a defensive posture.

Defensive posture - the manner in which a defending (and coherent) military force is organized to resist an attack. Possible defenses includes a positional defense of specified strength, a delay or a withdrawal.

Defined factor combination - a set of one or more defined factors. Each combination provides the basis for identifying a break curve to be tested.

Defined factors - a set of variables, or principle components, which is obtained via the mathematical transformation of an original variable set. The transformed variables are orthogonal to each other. No assumptions are made about the general structure of the original variable set.

Deterministic break curve - a break curve which contains one breakpoint to be used for any condition for which the curve is defined. This constitutes a special case of the probabilistic break curve.

Discriminant analysis - a data analysis technique which calculates the effects of a collection of interval-level independent variables on a nominal dependent variable (classification). The linear combinations of independent variables that best distinguish between cases in the categories of the dependent variable are then found (SPSS, 1975:435).

Divisional engagement - the period of combat during which a division
fights to carry out a specific mission, the termination being marked by the beginning of a period of relative inactivity following definite success or failure in achieving the mission (Clark, 1954:8).

Engagement - a combat encounter between forces smaller than an army. A battle between two armies usually contains several engagements involving subordinate units. The duration of an engagement is usually shorter tian a battle. A modern divisional engagement rarely lasts more than two or three days (Dupuy, 1979:187).

Engagement data matrix - the data base which contains the set of engagement data used in the current investigation.

Engagement identification - the specification of an engagement on the basis of geographic location, start date, duration, termination and the unity of mission within each of the two respective military forces.

Engagement magnitude - the size of the engagement with respect to the number of personnel engaged. For the current investigation, an engagement's magnitude is represented by the total number of personnel engaged and the ratio of attacker co defender personnel, or force ratio.

Engagement type - the classification of engagements on the basis of the postures of the opposing military forces (Dupuy, 1979:230).

Environmental factors - those physical conditions which affect the effectiveness of weapons. These include terrain, weather and seasonal factors (Dupuy, 1979:34).

Factor analysis - a variety of statistical techniques for the location and definition of dimensional space among a relatively large group of variables. Its primary uses include the location of a smaller number of valid dimensions, clusters, or factors contained in a larger set of independent items or variables and the determination of the degree to - which a given variable or several variables are part of a common underlying phenomenon (SPSS, 1975:469).

Factor combination - any possible combination of one or more of the defined factors obtained from the factor analysis in the current investigation.

Fixed defensive posture - a defensive posture where permanent
retrograde movement by the defender is not envisioned. This includes a mobile defense.

Force-on-force attrition modelling - the representation of combat between two military forces with respect to temporal force levels and engagement outcome (Taylor, 1980:1).

Helmbold's Theorem - a theorem stating the expected mathematical behavior between related attacker and defender break curves first developed by Helmbold (Helmbold, 1971:7-9). Refer to section 2.3 for detalis.

Holding - the occupation of a position or area by a military force for the purpose of defending it but in the absence of any significant enemy attack. Contact is maintained with an opposing military force, however.

Initial strength - the number of personnel in a military force at the start of an engagement.

Investigator - the author of the thesis.
Mass surrender - the capitulation of large numbers of personnel relative to the initial strength of the military force.

Meeting engagement - an engagement which consists of both military forces moving to contact followed by predominantly offensive actions by each side against the other.

Mission accomplishment - an assessment of the extent to which each side in an engagement accomplishs its assigned or perceived mission (Dupuy, 1979:48).

Morale - a sense of common purpose or a degree of dedication to a common task regarded as characteristic of or dominant in a particular group or ogganization (Webster's, 1971:1469).

Nominal level of measurement - a measurement scheme where no assumption has been made about the values assigned to the
17. data. Each value represents a distinct category and no assumptions are made concerning the ordering or distances between categories (SPSS, 1975:4).

Observed variable - a variable which partially specifies an engagement and whose values are at the ratio level of measurement.

Observed variable subset - the observed variable associated with a spectfied common factor combination.

Operational factor (combat) - a factor which influences the employment of weapons and military forces. The set of
operational factors includes air superiority, tactical air, force posture and mobility factors (Dupuy, 1979:34).

Open literature - literature whose distribution is not significantly restricted.

Operational state - one of five states which categorizes the activities of a military force during active combat operations. These consist of the attack, defend/hold, delay, withdraw and routed states.

Orthogonal rotation - in factor analysis, the operation through which a simple structure is sought under the restriction that the factors must be orthogonal (uncorcelated). Factors obtained through this rotation are by definition uncorrelated (Kim and Mueller, 1978:78).

Postulate of factorlal causation - the assumption that the observed variables are linear combinations of underlying factors, and that the covariation between observed variables is solely due to their common sharing of one or more of the common factors (Kim and Mueller, 1978:78).

Probabilistic break curve - a break curve contains a set of breakpoints, each having a nonzero probability of occurrence.

Quartimax - a method of rotation to a terminal solution in factor analysis, the emphasis being on the simplification of the rows of the factor pattern matrix. In other words, the emphasis is on reducing the complexity of the observed - variables. For further details, please consult Statistical Package for the Social Sciences, 2nd edition (SPSS, 1975:484485).

Ratio level of measurement - a measurement where the distances between the categories is defined in terms of fixed and equal units and where the zero point is inherently defined by the measurement scheme (SPSS, 1975:5).

Reinforcements - the addition of previously uncommitted military units to an ongoing military operation. To be classified as reinforcements, it is required only that the military units be uncommitted with respect to the particular operation.

Replacements - the replacement of losses incurred by military units during a military operation.

Rotation to a terminal solution - in factor analysis, the simplification of the structure once the initial set of common factors have been obtained in the factor-extraction
phase (Kim and Mueller, 1978:49).
Rout - an operational state which represents military units which, at least temporarily, have lost all ability to function as a coherent military force. Within this condition, however, it is possible for small, relatively insignificant, subsets of the military force to remain combat effective.

Season - a data element indicating the climatic season within which the, engagement took place. The season affects weapon effectiveness and reflects the significance of changes in the hours of daylight and darkness in the Temperate Zone (Dupuy, 1979:35).

Setpiece effect - a data element which represents the advantage that an attacking force has as a result of intensive preparations agatnst a specified defensive position. These preparations may include a rehearsal of the assault against dummy positions. This effect is applicable only to an attacking force which is otherwise inferior to the defending force (Dupuy, 1979:203).

Spatial effectiveness - a quantitative assessment of the extent to which each side is able to gain or hold ground (Dupuy, 1979:48-49).

Surprise- a data element which•indicates the level of surprise achieved by the attacking or defending force (Dupuy, 1979:63).

Termination point - the point in time at which an engagement ended. This is indicated by one or more of the following conditions occurring: a change in the state of at least one of the two military forces involved in the engagement, a temporary pause in operations, and the addition of reinforcements or replacements to one or both military forces in an engagement.

Terrain - a data element which indicates the type of terrain upon which the engagement is fought. Terrain has an effect on the weapon effectiveness, mobility and the posture of a military force (Dupuy, 1979:34-35,228).

Unity of mission - the degree of interdependence among military units in carrying out their respective missions. This is one of the criteria used in engagement identification.

Victor - the military force which wins the engagement. This is determined on the basis of three criteria. Each military force was evaluated and compared on the basis of mission accomplishment, spatial effectiveness and casualty
effectiveness (Dupuy, 1979:47-49).

Vulnerability - the vulnerability of a force to hostile firepower. The considerations which affect a force's vulnerability include its personnel strength, combat deployment exposure (in terms of terrain and posture), the relative firepower of the opposing forces, the presence or absence of air superiority, and increased exposure in amphibious and river crossing situations (Dupuy, 1979:36-37).

Weapon effectiveness (lethality) - the inherent capability of a given weapon to kill personnel or to make material ineffective for a given period of time. Capability includes weapon range, rate of fire, accuracy, radius of effects, and battlefield mobility factors (Dupuy, 1979:19).

Weather - a data element which indicates the specific climatic conditions at the time of the congagement. Weather has an effect on the weapon effectiveness, mobility and the posture of a military force (Dupuy, 1979:35,229).

Willard's Category I engagement - a category which contains open engagements in the sense that both sides could, with about equal facility, disengage and conduct an orderly withdrawal (Willard, 1962:2; Helmbold, 1971:25).

Willard's Category II engagement - a category which contains closed engagements in the sense that one of the forces in the engagement is encircled or otherwise in a position from which an orderly withdrawal can not readily be made, and whose options for maneuver are correspondingly markedly more restricted than those of his opponent (Willard, 1962:2; Helmbold, 1971:25).

Appendix C

BREAKPOINT HYPOTHESIS TEST RESULTS

Table C. 1	Identification of All Evaluated Defined Factor Combination Subsets and Associated Equation Fit Results (Second Observed Variable Segment)
Table C. $2 \quad$Component Observed Variables for Subsets of All Evaluated Defined Factor Combinations (Second Observed Variable Segment)	
Table C.3	Identification of All Evaluated Defined Factor Combination Subsets and Associated Equation Fit Results (First Observed Variable Segment)
Table C.4	Component Observed Variables for Subsets of All Evaluated Defined Factor Combinations (First
	Observed Variable Segment)

Table C. 1
Breakpoint Hypothesis Test Results--
Identification of All Evaluated Defined Factor
Combination Subsets and Associated Equation Fit Results (Second Observed Variable Segment)

[^3]Table C.I (cont.)
Brakpoint Hypothesis Test Results--
Identification of All Evaluated Defined Factor
Combination Subsets and Associated Equation Fit Results (Second Observed Variable Segment)

[^4]182

Table C. 1 (cont.)

Breakpoint Hypothesis Test Results-

Identification of All Evaluated Defined Factor
Combination Subsets and Associated Equation Fit Results (Second Observed Variable Segment)

[^5]Table C. 1 (cont.)
Breakpoint Hypothesis Test Results-Identifleation of All Evaluated Defined Factor Combination Subsets and Associated Equation Fit Results (Second Observed Variable Segment)

Rank Order	Factors Present								Total No. of Engag.	Won by Attk	Won -by Def.	Func- tional Form*	\underline{b}_{0}	$\psi_{\text {CaIc }}$ \underline{b}_{1}	Mult. Corr. Coeff.	F		
111		1	1				1		254	162	92	2	0.0672	0.9001	0.9805	2438.34	0.8214	203.18
112			1		1	1			241	150	91	2	0.0654	0.9245	0.9833	2856.18	0.8190	199.61
113				1	1		1	1	247	160	87	2	0.0173	0.9458	0.9949	9548.32	0.8163	195.72
114					1	1		1	239	153	86	2	0.0190	0.9541	0.9957	11255.57	0.8156	194.78
115					1		1	1	233	149	84	2	0.0162	0.9435	0.9948	9418.23	0.8141	192.58
116					1		1		221	137	84	2	0.0176	0.9392	0.9944	8606.36	0.8130	191.13
117			1		1				228	149	79	2	0.0341	0.9411.	0.9939	7899.82	0.8091	$185.80{ }^{\circ}$
118			1						231	150	81	2	0.0895	0.8904	0.9713	1631.32	0.8086	185.05
119	1			1				1	249	163	86	2	0.0622 .	0.9174	0.9854	3272.37	0.8030	177.85
120						1			240	152	88	2	0.0621	0.9761	0.9897	4667.96	0.7928	165.76
121								1	250	157	93	1 .	0.0123	0.9837	0.9996	$100000+$	0.7846	156.91
122			1			1			251	163	88	1	0.0465	0.9493	. 0.9963	13039.99	0.7582	132.51
123	1			1			1		242	153.	89	1	0.0418	0.9532	0.9962	12964.84	0.7286	110.87

* 1--Linear Form; 2--Power Form; 3--Log Form

Breakpoint Hypothesis Test Results--
Component Obeerved Variables for Subsets
of All Evaluated Defined Factor Combinations (Second Observed Variable Segment)

Table C. 2 (cont.)

Breakpoint Hypothesis Test Results--
Component Observed Variables for Subsets
of A11 Evaluated Defined Factor Combinations (Second Observed Variable Segment)

T	I						I		I				I		I		I	I	I				8258.0	02
I	I		¢	I					I										I				$0 ¢ 58{ }^{\circ} 0$	69
									I	I		I			I		I	I	I				$9 \mathrm{9} 58^{\circ} 0$	89
T	I	I	I	1					I					I		I		I	I				$6 \mathrm{6} 8^{\circ} 0$	$\angle 9$
							I		I				I		I		I	I	I				โ758．0	99
							I	，					I	I	［	I		I	I				で5 $8^{\circ} 0$	59
	I	I	I	I															I		I	I	$5758{ }^{\circ}$	79
I	I								I					I		I		I	I				$9758{ }^{\circ}$	$\varepsilon 9$
	I					I	I				I		I	I	I	I		I	I				$0558{ }^{\circ} 0$	29
	I	T	τ	I			I							I		I		I	I				2558．0	19
I	τ	I	t	I					T	I		τ			τ				I				L558．0	09
I	I	T	I	I		，			I										I		I	I	855 $8^{\circ} 0$	65
							I			I		โ	τ	τ	I	I		I	I				$8558^{\circ} 0$	85
	I					I	I				I			I	I									$\angle 5$
							I			I		τ		I	I	I		I	I				£958．0．	95
							I		τ	I		I	τ		τ		I	I	I				7958.0	¢S
I							I	．	I	I		I	τ		I		I	I	I				$5958{ }^{\circ}$	75
	I	I	I	I						I		I			I						I	I	$\angle 958{ }^{\circ}$	ES
						τ	I			I	I	I	I	τ	I	I		I	I				$0 \angle 58^{\circ} 0$	25
				I			I						I	I	I	I		I	I		I	I	ZLS8．0	IS
									I						I		I	ᄃ					$7 \angle 58^{\circ} 0$	05
	I	I	I	I			I						I		I				I				$\angle L 58^{\circ} 0$	67
	I					I		I		τ	I	τ		I	I	I		I	I				$8 L 5.8^{\circ} 0$	8.7
I	I		I	I					I	I		I，			τ				I				8L5 $8^{\circ} 0$	$\angle 7$
I	I	I	τ	T	－		I		τ			－	τ		I				I				$6 \angle 58^{\circ} 0$	97
I	I	I	I	I					I	τ		I			I				I				$0858^{\circ} 0$	57
I	I					i			I		I		I	T	T	I		I	I				0858．0	カワ
I	I					I	I		I		I			I	I	I		I	I				L858．0	$\varepsilon 7$
I	I					1	I		I		I		ז	I	I		I		I				L858．0	で
	I					I	I		I		I		I	I	I		I	I	I				$\angle 858^{\circ} 0$	［7
	I	I	I	I						τ		1	I		I				I				$9658^{\circ} 0$	07
	I						I		I				I	I	I	I		I	I				$9658^{\circ} 0$	6ε
1	I					I	I		I		I			I	I		I	τ	I				$9658^{\circ} 0$	8ε
I	T	I	I	I			I		I	I		I	I		I				I				$8658^{\circ} 0$	$\llcorner\varepsilon$
I	I		I	I					τ										I		I	I	L098．0	9ε
			I	I						I		I	．		I				I		I	I	2098.0	$\varsigma \varepsilon$

ENGN2
ENGN3
DURDAY2
DURDAY 3
DURDAY4U
wilcat2
EnGTYP2
EngTYP3
ENGTYP4
terrl＊
TERR3
TERR4
TERR5
WEAT1
WEAT3
WEAT4
WEATg
WEAT6
SEASN1
SEASN3
SEASN4
MOR1
MOR2
Attsury
defsury
SETEFF1
AIRSPRO
AIRSPR1
AIRSPR2
CAIR1
CAIR2
CAIR3
TPERSTR 3
TPERSTR2
FRATIO2

[^6]Table C. 2 (cont.)
Breakpoint Hypothesis Test Results--
Component Observed Variables for Subsets
of All Evaluated Defined Factor Combinations (Second Observed Variable Segment)

Table C． 2 （cont．）
Breakpoint Hypothesis Test Results－－
Component Observed Variables for Subsets
of All Evaluated Defined Factor Combinations（Second Observed Variable Segment）

Rank Order	$\begin{aligned} & \text { Multiple } \\ & \text { Correlation }^{\text {N }} \\ & \text { Coefficient } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { N } \\ & \text { 呆 } \\ & \text { 吕 } \end{aligned}$	$\begin{aligned} & \vec{y} \\ & \text { 条 } \\ & 0 \\ & \text { 号 } \end{aligned}$	N E U 3 3	$\begin{aligned} & N \\ & \stackrel{y}{H} \\ & \text { H } \\ & \text { 备 } \end{aligned}$			$\begin{aligned} & \text { 式 } \\ & \text { 总 } \end{aligned}$		$\begin{aligned} & \text { 热 } \\ & \text { 出 } \\ & \underset{\mu}{2} \end{aligned}$			$\underset{\substack{\underset{4}{4} \\ \hline \\ \hline}}{\substack{2}}$		䉆	$\begin{aligned} & \circ \\ & \substack{4 \\ \hline \\ \hline} \end{aligned}$	$\begin{aligned} & \text { 穿 } \\ & \text { 出 } \end{aligned}$	$\begin{aligned} & \underset{\sim}{Z} \\ & \text { N } \\ & \text { 告 } \end{aligned}$		$\begin{aligned} & \text {-1 } \\ & \text { O } \end{aligned}$	N		弟 足 品		$\begin{aligned} & \text { O} \\ & \text { N } \\ & \text { 喿 } \\ & \text { 呆 } \end{aligned}$			$\begin{aligned} & \text {-1 } \\ & \hline \mathbf{y} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { 岂 } \end{aligned}$	M A 4		
107.	0.8383	（			1				1			1			1							1	1	1				1					
108	0.8382	1	1		1				1	1	1			1			1	1				1						1					
109	0.8377			1	1																	1	1										
110	0.8256															1			1	1			1			1							
111	0.8214				1	1	1	1	1	1	1		－			1	1																
112	0.8190	L		1	1	1		1		1						1	1	1				1	1					1		1			
113	0.8163			1	1				1		1	1.			1		1	1				1	1	1				1					
114	0.8156	1	1	1	1											，mix						1	1	1				1					
115	0.8141			1	1				1		1		－				1					1	1	1				1					
116	0.8130			1	1				1		1.						1					1	1										
117	0.8091			1	1	1.		1		1							1					1	1										
118	0.8086					1		1		1							1																
119	0.8030				1				1	1.		1		1	1		1	1				1	1	1				1					
120	0.7928		1																			1											
121	0.7846				1																	1	1	1				1					
122	0.7582	1	1		1	1		1	1	1.		1			1		1					1											
123	0.7286				1				1	1	1	1		1	1		1	1										1					

*

Table C 3

Breakpoint Hypothesis Test Results--
Identification of All Evaluated Defined Factor Combination
Subsets and Associated Equation Fit Results (First Observed Variable Segment)

* 1--Linear Form; 2--Power Form; 3--Log Form
ξ

Breakpoint Hypothesis Test Results-Component Observed Variables for Subsets of $\Lambda 11$ Evaluated Defined Factor Combinations (First Observed Variable Segment)

Rank Order	Multiple Correlation 2 Coeffictoont	$\begin{aligned} & \underset{U}{Z} \\ & \underset{y y}{Z} \end{aligned}$		$\begin{aligned} & \text { E } \\ & \text { S } \\ & \text { B } \\ & \underset{3}{2} \end{aligned}$	$\begin{aligned} & -1 \\ & { }_{2}^{2} \\ & 0 \\ & 0 \\ & z \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{\sim}{\sim} \\ & \underset{\sharp}{\mu} \\ & \underset{H}{2} \end{aligned}$	$\stackrel{\sim}{\mathrm{H}}$	$$	$\begin{aligned} & \text { M } \\ & \underset{\sim}{0} \\ & \underset{\sim}{0} \end{aligned}$				呂		
1	0.8377	1	1		1							1			

\qquad

The investigator was also an undergraduate of Lehigh Universityr He recelved his Bachelor of Science in Industrial Engineering in 1976, also completing the AFROTC program there. He was born in New York City, New York on May 8, 1954, the son of Robert and Margaret (nēe Hayes) Greene, and presently resides in Virginia. Mr. Greene has worked for the Santa. Fe Corporation and the Adler Corporation as a military operations research analyst. His assignments at the Adler Corporation included the development of several tactical and campaign-level naval engagement models and the evaluation of naval weapon, sensor and other ship sjatems. At the Santa Fe Corporation his project work included the development of several campaign-level simulation models to evaluate alternative future U.S. naval nuclear force structures, a discrete timeevent simulation for the analysis of drydock utilization, and a comprehensive resource allocation model for analyzing ship and aircraft resource requirements. Currently he is employed as a System Engineer at the MITRE Corporation in their Command, Control and Communications Division.

In addition Mr. Greene is an Active Reserve Captain, USAF, serving as an Imagery Analysis Officer attached to the Air Force Intelligence Service.

[^0]: . ts.

[^1]: . . . because of the lack of available data or relevant reference materials, we have relied heavily on the judgement and experience of RAND's military consultants throughout this study . . . while it must be emphasized that there is no

[^2]: * 1--Linear Form; 2--Power Form; 3--Log Form

[^3]: * 1--Linear Form; 2--Power Form; 3-Log Form

[^4]: * 1--Linear Form; 2--Power Form; 3--Log Form

[^5]: * 1--Linear Form; 2--Power Form; 3--Log Form

 183

[^6]: 웅

