
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1984

A study of the simula 67 language.
Andrew Joseph Tanhauser

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Tanhauser, Andrew Joseph, "A study of the simula 67 language." (1984). Theses and Dissertations. Paper 2194.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2194&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2194&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2194&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=preserve.lehigh.edu%2Fetd%2F2194&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2194?utm_source=preserve.lehigh.edu%2Fetd%2F2194&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

A STUDY OF THE SIMULA 67 LANGUAGE

by

Andrew Joseph Tanhauser

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Computing Science 'N1

Lehigh University

1984

ProQuest Number: EP76467

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest

ProQuest EP76467

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

This thesis is accepted and approved in partia.1

fulfillment of the requirements for the degree of Master of

Science.

Date

Professor in Charge

Head of Division

il

TABLE OF CONTENTS

Abstract 1

I. SIMULA I

A. History/Background 2

B. Development Stages 3

C. Development Process 6

D. A Detailed SIMULA Example 16

II. SIMULA 67

A. Shortcomings of SIMULA I 21

B. Development 23

C. Implementation and Standardization 27

D. Simulation Language Objectives 30

III. SIMULA 67 Constructs and Syntax

A. Statements 34

B. Input/Output • 41

C. Text 44

D. Program Structure/Blocks/Subprograms 52

E. Class Construct 60

F. Reference Variables 75

G. Quasi-Parallel Programs 79

H. Simulation 97

I. Files 106

Bibliography 110

Vita 112

ill

ABSTRACT

SIMULA 67, a direct offshoot of SIMULA I, is a general

purpose language whose main application area has been

simulation. The objectives of SIMULA I was for system

description and simulation. The process concept.was the

basic feature. Various shortcomings of SIMULA I (Nygaard

and Dahl, 1982) led to the creation of SIMULA 67 which had

the same basic objectives of SIMULA I. However, SIMULA 67

was also to be a general purpose programming language.

SIMULA 67 allows for the definition of abstract data types.

Class instances may coexist at run-rtime. References to the

classes enable access to their individual components.

Overall, SIMULA 67 preserves the ALGOL-like tree structure

of programs and allows for ALGOL-like control structures and

procedures. Concurrent execution is simulated by using

coroutines. Procedural abstractions are supported and data

abstraction can be implemented. Hierarchical program

structures can be defined by class prefixing. The history,

objectives and shortcomings of SIMULA I are covered

'initially. This is followed by the history and objectives

of SIMULA 67. Finally, a detailed description of SIMULA 67

syntax and use (Lamprecht, 1983) is presented.

, ..I. SIMULA I

A. History / Background

SIMULA I or just plain SIMULA is an acronym standing

for SIMUlation LAnguage. The language is a true extension

of ALGOL 60, containing ALGOL 60 as a subset. It is a

language designed to facilitate formal description of the

layout and rules of the operation of systems with discrete

events or changes of states. SIMULA has extensive list

processing facilities and an extended coroutine concept.

Simulation is widely used for analysis of a variety of

phenomena: e.g. communication networks, traffic flow,

production systems and administrative systems. Simulation

programs are generally very difficult to write in assembly

language or even in a high level langauage like FORTRAN.

Therefore a need for a simulation language, one built around

a set of basic concepts and allowing for a formal

description of the phenomena, is needed to simplify the

generation of a program. This language should enable one to

observe similarities and differences between systems and

allow the user to consider all relevent aspects of the

system. This language should also contain an algorithmic

language as a subset for the massive amounts of number

crunching that are necessary. Finally, the system

descriptions should be easy to read and print for the

purpose of communication. Acknowledging a need for such a

simulation language, Ole-Johan Dahl and Kristen Nygaard

designed and implemented SIMULA at the Norwegian Computing

Center under a contract with" the UNIVAC division of the

Sperry Rand Corporation. Since SIMULA 67 is a direct

offshoot of SIMULA, an examination of the development stages

of SIMULA is necessary to understand the concepts of SIMULA

67. -

SIMULA'S history is actually intertwined with that of

the Norwegian Computing Center (NCC). The ideas for the

language were originated in 1961. In 1962 UNIVAC launched a

campaign for their computers, the UNIVAC 1107 and the UNIVAC

III. The NCC got a UNIVAC 1107 in 1963 and this resulted in

a UNIVAC and NCC software contract. As a part of this

contract, the SIMULA compiler was completed in 1965.

B. Development Stages

SIMULA went through four main language stages. The

first stage was from mid 1961 to late 1962. In this stage,

the initial ideas were based upon a "discrete event network"

concept. There were no real specific implementation at this

time. The second stage was from late 1962 to late 1963.

This stage built on the ideas of the first stage and

introduced increased flexibility by the use of the ideas of

ALGOL 60. This, however, was somewhat restricting because

of the assumption that SIMULA was to be implemented by means

of a preprocessor to ALGOL 60. The basic concept of SIMULA

at this time was a system consisting of a finite, fixed

number of active components called "stations" and a finite,

variable number of passive components named "customers".

The station also consisted of a queue part and a service

part. The service part had associated with it an operating

rule which described the actions of the service part by a

sequence of ALGOL statements. The customers did not have an

operating rule, but did have variables associated with them

called "characteristics". The customers were defined by a

real, continuous function called "time" and a function

called "position". A customer could be generated by a

service part of a station, transferred to the queue part of

another station, then to the service part of the station and

so on, until it disappeared by not being transferred to

another queue part by the service part of some station.

These events of the service part of the station were

regarded as instantaneous and occuring at discrete points in

time. As a result, this class of systems came to be known

as a discrete event network.

The third devei^fmiBnt stage, from late 1963 to early

1964, led .to a decision to implement SIMULA through an

extension of the UNIVAC's ALGOL 60 compiler, based on a

storage management scheme developed by 0. J. Dahl. This in

turn led to the "process" concept which utilized the new

storage scheme. The process concept was intended as an aid

for decomposing a discrete event system into components,

which were separately describable. In general, a process

has two aspects. It is a data carrier and it executes

actions. Declarations used to describe the data, and a

sequence of statements, known as the operation rule,

described the actions. Unlike procedures, which are

dynamically nested, the relationship between processes is a

symmetric one. So, the discrete event system was viewed as

a collection of processes, whose actions and interactions

comprised the behavior of the system. Processes will thus

enter and leave the system as results of actions within the

system itself. So, the simple network idea was replaced by

the more powerful concept of models consisting of processes

operating interactively in "quasi-parallel". Processes are

user defined transient objects. They are referenced

individually. These processes are declared collectively by

"activity" declarations. SIMULA would now be implemented by

extending the ALGOL compiler and changing parts of the run

time system instead of using the ALGOL preprocessor idea.

Process queues were now declared explicitly as ordered '

"sets". In order to increase flexibility, sets were allowed

to contain processes of different kinds. The sets were

manipulated by "wait" and "include" statements. Quantities

that were declared local to the process, called

"attributes", were made accessible from the outside by the

"extract-select" construct. In other words, the acting

process could, by connecting another process, reference the

attributes of the latter as if they were local to the acting

one. Thus, the processes were also data carriers, like the

customer of the second development stage. Process pointers

were introduced as explicit language elements. As,a result

of much -work, all of the major features of SIMULA were now

present at this stage.

The final development stage was from early 1964 to late

1964. This stage resulted in the implementation of SIMULA I

compiler, which was completed in December 1964.

C. Development Process

SIMULA was regarded as a system description language.

It had six main design objectives in 1963. First, there

should be a general mathematical structure about which the

language should be built. This structure should have a few

basic constructs and furnish the user with "a standardized

approach so that a system can be easily described and

defined in terms of these concepts. Second, the language

should print out the similarities and differences between

various networks. Third, the u'Ser should be forced to

consider all aspects of the network. Fourth, in addition to

being unifying and directing, the language should be general

/enough to allow the description of different classes of

network systems and other systems that can be analyzed by

simulation. Therefore, .the language should contain a very

general dynamic and algebraic language. Fifth, to allow for

communication between users studying networks, the language

should be easy to read and to print. Finally, the language

should be problem oriented and not computer oriented. This

sixth design objective implies increased computer"

processing.

A year later, in 1964, however, the design objectives

were restated. . The main differences between the two

versions were threefold. First, the term "network" had

disappeared from the 1963 "discrete event network system" to

which SIMULA was related. It was found that there were many

systems that could not be regarded as networks. Thus, the

network concept was abandoned and the process concept was

now introduced as the basic concept. Second, since a system

was now understood as a collection of interactive processes

with each process being present in the program execution,

the execution of the program existed as a dynamic system

within the computer memory. Now, SIMULA was a "dynamic

language" rather than being a language built around a

general mathematical concept 'with a few basic constructs.

This dynamic language also emphasized a relationship to the

block structured language ALGOL. Finally, while the design

objective in 1964 still stressed being problem orientation,

it now also stressed computer orientation, as it was

believed that the success of SIMULA depended on its compile

and run time efficiency.

'4-c

A storage allocation package was designed based on a

two-dimensional free area list. In short, each area had a

"used" bit that was used to facilitate the combination of

neighboring fr-ee areas. As a result of this bit, stack

allocation was possible and the entire noncontiguous storage

of the computer could be utilized. Thus, the search space

for dynamic structures was drastically increased bringing

about the process concept and quasi-parallel programs.

Processes in quasi-parallel execution implied that control

could be passed from one process to another as a result of

special sequencing statements. The operation of the system

was now a sequence of active phases of the processes present

in the system. Each process, therefore, had a "reactivation

point", which identified the program statement at which

control would resume next time the process was activated.

The reactivation point created an illusion of a local

sequence control which steps sequentially through the

statements associated with a process. Thus quasi-parallel

processes were parallel in the sense that those processes

which currently are inactive can be thought of as

"executing" a statement which takes system time. The

storage allocation package allowed these sequencing

statements to be placed at any program point since their

data stacks could grow or shrink independently. Also,

processes could be created and destroyed in any order.

8

SIMULA programs also had to provide programming

"security". That is,<~any erroneous program must be rejected

by the compiler, run time checks, or by reasoning based

entirely on the language semantics, independent of the

implementation. The main objective was to achieve compiler

controlled data access. With processes only interacting

through nonlocal data, the ALGOL access rules could be

applied.. All j local references could be checked at compile
i '■■

time fori validity, except subscripts and parameters which

are checked at run time. However, this was not the case

when there was a\ need to obtain access to the contents of an

object from outside the object. In other words, the active

object would need access to its own data as well as those of

the other objects. The automatic storage retrieval mechanism

ensures that a computable reference value refers to a

process currently in the system. The connection mechanism
\ .

provided the required compiler control. The user format for

this mechanism is as follows

INSPECT <reference> WHEN Al DO SI

WHEN An DO Sn
OTHERWISE Sn+1

where Al,...,An are activities and SI,...,Sn+1 are

statements. This forces the user to interrogate class

membership'of the referenced process. For example, if the

process belongs to class Ai the state Si is executed. Si

9

acts'* as a "connection" block having the attributes of the

"connected" process as its local variables. The connection

block contains, a stored reference to the connected process.

This "connection pointer" prevents accidental delation of

the process while it is connected.

Another form of security dealt with deallocation of

storage. This could be done easily by explicitly using a

"destroy" statement or going to the process "end". This

brings about efficiency and simplified implementation.

However, to ensure security,one needed a process referencing

technique ensuring that only one pointer could point to a

process at any time. Unfortunately, such a scheme was not

found. It was finally decided to require that procedures

and subblocks be self destructive on exit. The expression

NEW <class> (<actual parameter list>)

gives a value that is a reference to a process. The list of

actual parameters provides initial values of attributes of

the generated process. Since SIMULA has no delete

statement,) the process will remain part of the system as

long as it can be referenced. The "reference count" of the

process is updated each time a reference is stored or

deleted. When the reference count becomes zero, the process

can no longer be referenced and is deleted. However, this

process does not necessarily leave the system when it has

terminated its own operations. It may remain as a dead

10

object, allowing its attributes to be accessible to other

processes through the connection mechanism. If memory gets

tight, a garbage collectipn routine deletes reference chains

which could not be removed by the reference count mechanism.

However, garbage collection is used as a last resort as it

was costly _ in nature to run. However, combining all these

together led to possible conflicts with respect to data

accessing security. The first conflict that could occur was

that a process could outlive its dynamic parent. In other

words, a block instance containing the generating expression

which gives rise to the process could terminate before the

process., As a result, the process may access nonexisting

data through its formal parameters. To resolve this, all

call by name parameters to processes were disallowed.

Another conflict brought about by the deallocation scheme

was that a process could outlive its textually enclosing

block instance, thereby accessing nonexisting nonlocals.

This problem was solved by having all processes be declared

by "activity" declations local to a special block known as

the "SIMULA block".

SIMULA begin...end

This block is the outermost block or must be embedded in an

ALGOL program. The SIMULA block corresponds to the

simulation model. On entry to the SIMULA block during

execution, the simulation facilities become dynamically

11

available.

A prominent feature of SIMULA was to be the concept of

"process set", along with scanning mechanisms and . the

"selector expressions" as the only means of process

identification. The"process pointer"# however, came into

being as a result of the selector expressions being

inefficient. Efficiency became an important issue. The

implementation of the language should be efficient and,users

should be able to create efficient programs with the

language. For example, the built-in mechanisms should have

run times independent of the size of the model. In this

respect, process referencing became the important issue. An

abstract ordered set concept was included as a new data type

to be used as a list mechanism for queuing purposes. These

ordered sets were implemented as two-way circular lists.

Processes were able to be members of any number of- sets at

the same time by using auxiliary "element" objects to

represent a process in different sets. All process

references were made, indirect by these element objects by

providing only "element pointers" in the language.

Physically, the process reference was a pointer to an area

of memory containing the data local to the process and some

additional information defining its current state of

T execution. A process would remain part of the system as

long as it could be referenced through a computable element

expression. The element and set concepts served to

12

facilitate and standardize the manipulation of queues and

other linear lists of processes. A set is an ordered

sequence of elements. Each element consists of a pointer to

the successor element of the set, a pointer to the^

predecessor element of the set and the pointer to a process.

By using defined system procedures, sets can be formed and

manipulated. All sets have one dummy element ailed the "set

head". An empty set therefore consists of only the set head.

The element concept and the technique of reference

processes had many desirable properties. First", the ordered

sets of processes could be manipulated by means of standard

procedures. Next, when a process was referenced through an

element in a set, its successor and predecessor in the set

were immediately accessible. Also, any given process could

be a member of an unlimited number of sets at the same time.

And finally, the members of a set could be processes -of

different classes.

Model simulation time is the time reference used within

a simulation model to keep the advancement of time under

control in order to allow the computer to simulate

concurrent events. The actions of a process are grouped

together in active phases, separated by periods of

inactivity. Only one process can be actively executing at

any one time. An inactive period of a process is caused by

a deactivating statement executed by that process. Thus,

the current active phase|,.p.f the ,process ends and control

13 ■ v

leaves the process. A "reactivation point" is held until

the time of the next active phase of the process and resumes

control at that point. The reactivation point concept

allows the user to string together actions -occurring at

different times into a logical sequence. This active phase

of a process is called an "event". Deactivating statements

allow for inactive periods of definite or indefinite lengths

of time. An event can be scheduled to happen either

immediately or at .some later time. A .process for which an

event has been scheduled but not completed has an associated

"event notice" representing the event. An event notice

contains a reference to the process and a time reference.

Implementation of model time scheduling was accomplished by

maintaining a list, called the "sequencing set, SQS", of

scheduled event notices sorted by time attributes. The SQS

was represented by a binary tree which preserved the order

of elements with, equal time values. This implementation

reduced search times but required space for several pointers

and other information with each element on the list. To

avoid wasting space in processes not on the list, the event

notices, as explained previously, are stored on the list.

Since each process has only one event notice, the logical

significance of the time list is unchanged. Algorithms for

removal and insertion of event notices were also

implemented. The currently active process is the one which

is at the end of the time list. When the current active

14

3-

phase is completed, the current event notice is deleted.

Its successor in the SQS becomes the current event notice,

and control enters the associated process at its

reactivation point.

A process can be in four possible states. As

simulation proceeds, the states of processes will change. A_

process that is "active" can alter the states of other

processes along with its own state. A "suspended" process

has an event notice and a reactivation point. This process

will start when the event notice becomes,the current one. A

process that is "passive" has a reactivation point but lacks

an event notice. It remains passive until another process

changes its state. A "terminated" process reached the end

statement of its process definition. This process has no

reactivation point or event notice. It can no longer change

to any of the other states once terminated. However, a

t
passive or terminated process will remain as it still can l&e

referenced through an element expression. The states of

processes are altered by sequencing statements operating on

the SQS. A sequencing statement may delete an event notice

and/or schedule an event by generating an event notice. In

addition, the statement will specify explicitly either the

time reference of the event notice, or its position in the

SQS. A timing clause specifies the reference of the

generated event notice, and this determines its position in

the SQS. The event notice is normally placed behind all

15

others with the same time reference unless otherwise

specified. t

D. A Detailed SIMULA Example

SIMULA was used to a large extent as a system

description language. It was found that the writing of the

program or system description almost always led to a better

understanding of the system. "After the't introduction of

SIMULA I, many shortcomings were discovered within the

language. These shortcomings, which will be discussed in a

later section, resulted in the development of SIMULA 67.

Below is a complete SIMULA program (See McNeley, 1967) that

could be used to represent a system of a grocery store

checkout, consisting of two checkers and one hundred

customers.

Line Program
0 SIMULA store: BEGIN
1 ACTIVITY customer(n); VALUE n; REAL n;
2 BEGIN REAL stime; INTEGER i;
3 stime:=TIME;
4 IF n<=60 THEN i:=l ELSE i:=2;
5 IF EMPTY(queue(i)) THEN ACTIVATE c(i) AT TIME?
6 INCLUDE(CURRENT,queue(i));
7 PASSIVATE;
8 HIST0(hl,h2,TIME-stime,1);
9 HOLD(0.25);

10 ACTIVATE c(i) AT TIME;
11 ncus:=ncus+l; REMOVE(FIRST(queue(i)); END;
12 ACTIVITY clerk(i), VALUE i; INTEGER i;
13 , BEGIN
14 ' il: IF EMPTY (queued)) THEN GOTO 12;
15 INSPECT FIRST(queue(i)) WHEN customer DO
16 BEGIN HOLD(MAX(0.25,0.l*n));
17 ACTIVATE FIRST(queue(i));
18 PASSIVATE;

V 16

19 GOTO 11; END;
20 12: PASSIVATE;
21 GOTO 11; END;
22 SET queued: 2); INTEGER ncus; ELEMENT c(l,2);
23 ARRAY hi(1:26), h2(1:25);
24 ncus:=0; FOR i:=l STEP 1 UNTIL 25 DO BEGIN'
25 h2(i):=0.25+(i-l)*0.25; h(i):=0; END;. h(26):=0;
26 c(l):=NEW clerk(l); ACTIVATE c(l) AT TIME;
27 c(2):=NEW qlerk(2); ACTIVATE c(2) AT TIME; \
28 11: ACTIVATE NEW customer(draw(1:25)) AT TIME;
29 HOLD(EXPON(0.25);
30 IF ncus<=100 THEN GOTO 11;
31 HPRINT(hl,h2,1,26,0.25, 1);
3 2 END;

The program shows reserved words in capital letters. The

line numbers are not part of the program but only included

for reference purposes. There are two process definitions

in this program. The first is "customer". This process

contains a parameter "n" which is set outside the process

and represents the number of items a particular customer

wants to purchase. There is a customer /process for every

customer in the store. Each customer is described by the

same process description but has different values for its

attributes "n", "stime" and "i"/ Lines 3 thru 11 form the

process description for customer. Line 3 stores the time

when the customer arrives at the checkout. Line 4

determines if the customer has six or less items. This

determines at which checkout the customer waits since of

the two checkouts in the system, one is for six or less

items and the other is for over six items. Line 5 will, if

the queue of clerk c(i) is empty, alert that clerk by

executing a scheduling statement which schedules that

clerk's process to occur at the current point in simulation

17

time. In lines 6 and 7, the customer is entered on the

queue of the clerk and the process of the customer is set to

inactive until the clerk checks his items. The time of

delay depends on the number of customers already in that

clerk's queue. Lines 3 and 9 allow for customers records or

histogram to be kept and also delays the customer one

quarter unit. After the delay, in line 10, the clerk

process is resumed again at line 19. In line 11, the

variable "ncus" is global and is used to tally the number of

customers already processed. The customer is then removed

from the queue and leaves the system.

As stated before, there are 'only two clerks in the

system. Thus, the activity "clerk" will be activated two

times. This process contains a parameter "i" which is set

outside the process and represents the clerk identification

number. Lines 12 thru 21 form the process description for

clerk. Line 14 determines if the specific clerk's queue is

empty. If it is empty, control shifts to line 20 and the

process passivates (becomes passive) otherwise control

continues from line 15. Statement 15 extends through line

19. The form "INSPECT PI WHEN Al DO" is. .the way SIMULA

establishes which process description the process specified

by PI was created. If it came from the process description

specified by Al, the "DO" part of the statement is executed.

Lines. 16 and 17 cause delays for a fixed time and then the

clerk alerts a particular customer process. The customer

18

process resumes at line 8. The clerk process becomes

inactive until the current customer activates it on line 10.

The clerk, when reactivated, resumes at line 19. This in

turn allows the clerk to check for another customer in the

queue. Notice that none of the clerk processes ever

terminate because the "end" statement is never reached.

This is unlike a customer process which does terminate and

leave the system. The clerk process can be termed as a

"permanent process", whereas the customer process is a

"temporary process". Temporary processes can allow vast

amounts of data to pass through the system over a period of

time, but only a limited amount of data will be present at

any one time.

The main part of the program begins at line 22 with the

declaration of set "queue" which is associated with the

process clerk. The array "c" is defined containing members

that are pointers to the clerk processes - for reference

purposes. Line 23 defines histogram variables that will be

used to record the results of the simulation. Lines 24 and

25 initializes the customer counter and the histogram

variables. The two clerks are created and their references

stored into c(l) and c(2) on lines 26 and 27. They are

activated at the current time. Line 28 creates a customer

having one to twenty-five items and is activated at the'

current time. Lines 29 and 30 cause delays for a period of

time to allow for a new customer approximately every quarter

19 !

unit of time. Then a check is made to see if all customers

were created. Line 31 prints out the histogram information

for the simulation run.' On line 32 the end of the SIMULA

block is reached and the simulation is terminated.

20

II. SIMULA 67

A. Shortcomings of SIMULA I

As experience with SIMULA increased, a number of

shortcomings were found. The element/set concept was found

to be rather clumsy as the basic mechanism for list

processing. Single process pointers restricted to one set

at a time proved by experience . to be much easier. The

inspect mechanism, which was used for remote attribute

accessing, also turned out to be very cumbersome. This led

to the idea of record classes. Full Security could be

obtained in constructs like "M'.C" by compile time reference

qualification. The idea of record subclasses turned out to

be a reasonably flexible way of run time referencing.

It was felt that SIMULA'S simulation facilities were a

heavy load to carry for a general-purpose language. Tn~e~

multistack structure worked very well for sequencing, but

quasi-parallel sequencing could be used for other

applications that did not use the simulated time concept.

When writing simulation programs, it was also observed that

many processes shared common properties such as data and

actions. By somehow preprogramming the common properties,

much programming effort could be. saved. Recall, as

explained previously, that call by name parameters were not

allowed for security reasons. As a result, parametrization

would not be as flexibl-e for preprogramming common

21

properties. However, the idea of subclasses being extended

to apply to processes could be used.

Another shortcoming of SIMULA existed in its

implementation. Whenever the number of process activation

records was large, as in most simulation runs, much storage

space was wasted. For very large simulations, this led to

memory space problems. A new compacting garbage collector

was found to be more efficient than the combined reference

count/garbage collector that was being used in SIMULA. This

new garbage collector could take advantage of active

deallocation at exit from procedures and blocks easily by

moving the free pointer back whenever the deletion occured

at the end of the used memory.

Much work went into the feasibility of the record class

construct and how to place it into the language.

"Prefixing" was found to be the answer. It was decided that

prefixing could be done by using a list structure consisting

of a "set head" and a variable number of "links". The

various processes could be in effect glued to a link to make

each link-process pair one block instance. Each process

would be a block instance with two lasers. The prefix layer

would contain a successor and predecessor and other

properties of the two-way list membership. The main layer,

would contain the attributes of the process. This two layer

property of the process must be known at compile time to

obtain attribute referencing security and compiler

22

simplicity. The links are declared separately without any

information about the other process classes which used link

instances as a prefix- layer. Since the processes of these

other process classes were both links and more, the class is

indicated by prefixing their declarations with the process

class identifier, namely^, "link". These process classes

would then- be "subcldsses" of "link". Prefixing leads to

multiple prefixing. This in turn can be used to establish

hierarchies of process classes. The concatenation of a

sequence of prefixes with a ,main part could also be applied

to the action part of a process class.

The class concept led to a completely new language

approach. SIMULA. I's shortcomings brought about SIMULA 67

which woi^ld have the following points. First, the new

general programminglanguage would be designed in terms of

being an improved SIMULA I. The basic concept would be

classes of objects with the prefix feature and subclass

concept included. Finally, direct and qualified references

would be introduced.

B. Development

Development began with the unification of the old

process like objects and the new concept of self-

initializing data/procedure objects. Along with this began

the removal of the model time or simulation time concept.

The term "object" now came about since the term "process"

23

really could not be. applied to the new concept. This object

would be generated like a function procedure by being

invoked by the evaluation of a generating expression. The

object may then set its own local variables as necessary.

The control would return to the generating expression

carrying back a reference to the object as the function

value by either reaching the "end" of the object or as a

result of the "detach" operation. If an "end" was found,

the object terminates and no further actions of the object

can be executed. On the other hand, a "detach" allows the

object to become a "detached object" and be capable of

functioning as a "coroutine": The coroutine call "resume

(<object reference>)" would make control leave the active

object, leaving a corresponding reactivation point at the

end of the resume statement, and enter the reference object

at its reactivation point.

The declaration given to a class of objects is called

"class". The idea of class prefixing and concatenation made

it possible to define classes primarily intended to be used

as prefixes.

Circular list processing, similar to sets in SIMULA I,

were described 'by means of a class heirarchy for list

elements, "class link", and list head, "class list". - These

both had forward and backward pointers contained in a, common

prefix part. This meant that any class prefixed by "link"

could have objects that could go in and out of circular

24

lists. Procedures such as "into" and "out" .dealared within

the class prefix part, together with the 14ft pointers-, make

insertion and deletion possible.

The concatenation mechanism was slightly modified in

order that the process concept as a prefix class could be

used. Originally, the operation rule of the concatenated

class contained the operation rule of the prefix class

followed by the main part. Now, for a process object,

predefined actions must exist at the front and at the end of

the operation rule. Thus, the prefix class had an operation

rule of initial actions and final actions split by the

symbol "inner". This prefix class was named "process". The

term "process class" now was used instead of the."activity"

of SIMULA I.

All of the sequencing statement procedures of SIMULA I

could be implemented by using procedures that worked on the

SQS, the sequencing set. Terminated objects could be

removed from the SQS and control passed to the successor

object. The only problems that remained were the placement

of the SQS pointer and the representation of the main

program of the simulation* model, which in SIMULA I was

accomplished by the SIMULA block. The problems were solved

by taking the prefix classes, procedures, and SQS pointer
0

and putting them into a big class named SIMULA. The initial

actions of this prefix class was to initialize the SQS which

contained the main program actually disguised as a process

25

object. What was important here was the fact that an

instance of a prefixed block is a detached object by

definition. This meant that the main program could function

as a coroutine in quasi-parallel with its local objects. In

June of 1967, the ""SIMULA class" was reorganized as a two

level hierarchy,

CLASS SIMSET
and,

SIMSET CLASS SIMULATION

This now allowed circular list handling for purposes other,

than simulation.

Even though the class/subclass facility could be used

to define general object classes and specialized subclasses

by declaring additional properties, adding details to the

operation rules could not be done. As stated before, call

by name procedure parameters, which could solve this

problem, could not be used because of allocation and

security problems. A "virtual" quantity concept, where the

actual parameters would have to, be declared in the object

itself but at a deeper subclass level than that of the

virtual specification, was adopted. A generalized object

could now be defined whose behavior pattern could be left

unspecified in the prefix class body. Different subclasses

could then contain different actual parameter declarations.

In 1967, another development began to take shape.

String handling and input/output facilities were based on

26

classes and a new type "character". The class "string

descriptor" contains a character array. The class "string"

identifies a substring of a string object and a scan pointer

for sequential access. Both classes contain various

operators declared as procedures. These constructs, provided

much flexibility but also run time data structure and

syntactic overhead. The string type was later changed to

"text" by name. A text could be thought of as either a

string descriptor ("text reference") or a character sequence

("text value"). A new notation was designed to distinguish

them. The operators ":-", "==", and "=/=" were chosen for

reference assignment, reference equality and reference

inequality. These signs were also applied to object

references as well. Input/Output was designed by using a

hierarchy of classes corresponding to different kinds of

files.

G. Implementation and Standardization

SIMULA I was originally a system description and

simulation language, not a general-purpose programming

language. It was mainly implemented for the UNIVAC 1100

computer. SIMULA 67, however, was to be a general

programming language and as a result be made available on

most major computer systems. The Norwegian Computer Center

came on hard times in 1967 and became restricted to new

large long-range projects. However, four people were

27

allocated to the SIMULA 67 implementation. But other,

resources were not made available since arguments against

SIMULA 67 still existed. It was felt that SIMULA 67 would

not be very profitable to the NCC. The NCC felt that a

modern, commercial compiler would require a substantial

investment to become profitable. The NCC was not willing to

put out large amounts of money for SIMULA 67. But, noting

the reputation of SIMULA I and the fact that SIMULA 67 was

to be linked to ALGOL 60, along with the importance of

simulation, the implementation started.

Top priorities were given to implementaion for Control

Data, IBM and UNIVAC computers. Compilation and run time

speeds had to be comparable with ALGOL 60 compilers. This,

coupled with documentation and educational material would

make SIMULA 67 a high standard language. ALGOL 60" was

contained as a subset of SIMULA 67 with only minor

modifications. The name SIMULA 67 was agreed upon with some

reluctance due to the feeling that this language would be

considered as a true simulation language. It was feared

that v it may slow down the language's acceptance as a

general-purpose language. However, the name was accepted

due to the fact that it was a new improved version of SIMULA

I that could be used for simulation.

As of 1976 there were eight different compilers for

SIMULA 67. Implementations existed for the UNIVAC 1100

series, CDC 3000, 6000 and Cyber 70 series, IBM 360/370

28

series along with the DEC system-10 series. Translation

programs to transfer SIMULA 67 programs from one

implementation to another do exist. It has been found that

SIMULA 67 programs were easy to move from One computer to

another. The fact that SIMULA 67 allows for no undefined

elements allowed the SIMULA 67 language itself to cause few

problems. The main problem with moving SIMULA 67 have been

outside the language. A few of these problems include

hardware differences between computers and also operating

system differences mostly in file handling. Also, moving a

program from a batch to an interactive environment caused

problems.

There are a few incompatabilities that exist between

SIMULA 67 systems. First, hardware representation was not

considered when SIMULA 67 was defined. What this means is

that on some SIMULA 67 systems reserved words are used, and

on other systems markers around key operator words are used.

For example, on one system "IF" is a reserved word and on

another system this may be denoted by "'IF'". Even though

translator programs can be used to amend the notations,

trouble would have been saved if the hardware

representations would have been designed with the language

design. Another incompatibility exits because different

operating systems handle files differently. Finally,

different word lengths on different systems leads to

precision problems for real variables.

29

Standardizing SIMULA 67 so that programs can be easily

transported has been difficult due to the desire to add new

features, REPEAT-UNTIL for example. Another reason stems

from the desire to solve certain problems in a better way

then the initial definition of SIMULA 67 allowed them to be

solved. All in all, SIMULA 67 was standardized before and

during the first implementation. This, on the whole, gave

good compatability between the systems and allowed the

SIMULA 67 standardization to-be more successful than other

standardization efforts. The main reason for this is that

the SIMULA 67 language is fully defined and does not, as

many other languages do, contain undefined constructs.

D. Simulation Language Objectives

In this section, simulation languages in general will

be covered. Simulation, in a broad sense, could be defined

as a technique of representing a dynamic system by a model

in order to gain information about the system through

experiments with the model. Digital simulation is widely

used as a tool for studying traffic flow, production

systems, transportation and communication networks, among

others. The simulation language therefore serves the

following purposes. First, it aids the analyst in building

a model by presenting a conceptual framework for identifying

and describing the system components. Next, it provides a

notation for this description of the dynamic model. Finally,

30

it serves as a programming[aid, making changes easy to

modify.

There are two different approaches used in developing a

simulation language. The "continuous approach" is mainly

accomplished using analog computers. But since digital

computers are discrete devices, continuous changes in the

physical system can be represented by a series of discrete

changes in the model. This is called a "discrete approach"

and such a model is called a "discrete event model". In

contrast to the technique of representing the system as a

whole by a set of differential equations, the individual

events of a discrete model are specified in great detail.

Many discrete simulation languages, as a result, are

general-purpose algorithmic languages.

Simulation languages also provide concepts and

programming facilities not found in ordinary general-purpose

programming languages. First, simulation languages enable

concurrency of processes by introducing a system time

concept used for ordering events. Usually, systems are very

large containing vast amounts of data. Dynamic storage

allocation of data is a common feature. Components, thus,

enter and leave the system, only those currently present are

^represented within the computer. Many dynamic systems are

concerned with motion and flow which means that the

configuration of the system changes with time. Therefore,

all simulation languages provide some form of list

31

processing. Interdependence is also present. For example,

conditions for given events to occur may be extremely

complex on account of interdependence between system

components. Most simulation languages, as a result, have

general-purpose logic capabilities including set concepts

and predicate calculus facilities. Algorithms are present

for the generation of random numbers according to various

distributions. Statistical analysis is very important in

simulation. The consecutive changes of state in a model

represent the complete history and outcome of the

experiment. In order to get meaningful results, individual

observations of selected variables need to be analyzed

statistically. Built-in functions to average, histograms

and others are standard in simulation languages. Finally,

continuous phenomena are in principle represented by a

series of discrete changes. Most discrete event languages

provide no aids for treating continuous changes.

Simulation languages. involve systems in which

interrelated processes interact in time. Processes are

modeled by a sequence of discrete "events", each of which is

assumed to occur instantaneously in the time scale of the

system. The effect of an event is to change the "state" of

the system. The total effect of the process is the sum of

the effects of the sequence by which the system is

characterized. A scheduling algorithm determines the event

with the earl'iest time from a list of events which have been

-it

. 32

scheduled and causes execution of that event. "Exogenous

events" are scheduled by a mechanism outside the system

being simulated, while "endogenous events" are scheduled

during the execution of other events. The information

structure on which events operate are referred to as

"entities". An entity forms a single unit with respect to

creation or deletion but may have a number of data fields of

different value1 types. The entities manipulated by event

subroutines of a simulation language include both data

entities, which specify data attributes of the process and

event notice entities, which specify information about

events which have been scheduled for execution at a point in

system time not yet executed. When execution of the event

completes, the scheduler determines the next event to be

executed. Simulation algorithms allow the user to have

explicit control over the order in which simultaneous events

are to be scheduled. Specifics of the scheduling

mechanisms, quasi-parallel processing and the simulation

algorithms will be covered in greater depth in the section

on SIMULA 67 syntax.

33

/

III. SIMULA 67 Constructs and Syntax

A. Statements

As is standard in most languages, SIMULA 67 includes

the numerical data types of REAL and INTEGER. Also included

is the BOOLEAN data type which takes on the value of "true"

or "false". To declare a variable of any one of these

types, the following example shows the syntax'that is used.

REAL x,y;
INTEGER z;
BOOLEAN found;

This example accomplishes! the following task. First,

storage locations are set aside with the names "x", "y",

"z", and "found". The type of the variables "x" and "y" is

fixed as real and "z" as integer. The variable "found" is

fixed as a boolean. Finally, variables "x", "y" and "z"

will have initial values of zero and the variable "found"

will be set as "false". Every variable that is used must be

declared before being used for the first time. The

declarations appear at the top of a block. Variable names
o

must begin with a letter and may be followed by, letters

and/or digits depending on the specific compiler used.

The operations that can be performed on numerical

variables and constants are addition (+), subtraction (-),

multiplication (*), division (/) and exponentiation (**).

Exponentiation has the highest priority of the operators.

34

Multiplication and division share the next rank, followed by

addition and subtraction sharing the lowest rank. The

typical rules for evaluation of an arithmetic expression

hold. That is, left to right evaluation depending on

operator priority. If both operands in an expression are

integer variables, the result is integer, however, if one of

them is a real variable, the result is real. If the

operator is division (/)» the result is real in any case.

For integer division, an operator of double slashes (//) can

be used. If the operator is exponentiation, the result is

real in all cases.

An assignment statement takes a typical form of

variable followed by the ":=" assigning mark, followed by

some expression. For example,

x := y + x;

adds the integer variable "x" to "y" and stores the result

back into "x". Notice also that each assignment statement,

as in the variable declarations, is followed by a semicolon.

The semicolon acts as a separator between statements.

Labels on statements are also possible in SIMULA 67

programs. A label name has the same restrictions as a

variable name. A label name must be different from all

other names assigned to variables. The label is separated

by a colon (:) from additional labels, which may follow, and

from the succeeding statement. The following example,

35

loop: x := X■+ 1;
GOTO loop;

shows a label called "loop". It also shows an

"unconditional" jump by using a "goto" statement. , As a

result of this "goto" statement, the piece of code will be

executed endlessly resulting in an infinite loop. As in

languages such as PASCAL, the "goto" statement is a basic

part of the language, however, due to the nature of the

language being a structured programming language, the "goto"

is seldom used. Other "conditional" jumps are used instead

of the "goto" to allow for a perfectly structured program.

Conditional statements take the form of - '

IF b THEN si ELSE s2;

where "b" is a boolean expression. If this expression has

the value of "true", the statement "si" is executed and the

statement "s2" is . skipped. On the other hand, if the

boolean expression has the value "false", the statement "s2"

is executed and the statement "si" is slcipped. In both

cases, the program is continued with the statement following

the conditional one. The statements "si" and "s2" are

restricted to being only a single statement in each case.

However, it is possible to execute a series of statements in

place of the single statement "si" or "s2" by forming a

"compound statement". A compound statement is formed by

joining a series of statements together as a unit by placing

36

the word BEGIN before the first statement of the group and

the word END after the last statement of the group. In

general, at any place where a single statement is permitted,

a compound statement is also permitted. The IF statement

can also be:, used without the ELSE clause in the following

manner.

IF b THEN sit

In this case, statement "si" is executed if the boolean

expression "b" is "true" otherwise the program control will

continue with the next statement following the conditional

one.

Loops can be handled in another way besides using GOTO

statements. The loop can be carried out using a FOR

statement.

FOR c:="list" DO s;

Here, "list" can be replaced by elements separated from one

another by commas. Each element can have pne of three

forms:

. 1 STEP i UNTIL u
e WHILE b

or, . {

The control is performed for* each element of the FOR

statement, one aftqr the other. The first form,

37

FOR c:=l STEP i UNTIL u DO s;

uses the "c" as a control variable, the "1" as the starting

value, the "u" as the .upper bound land the "i" as the

increment that repeats statement "s". When this form of the

FOR statement is encountered, the control variable "c" is

assigned the lower bound , "1". This control variable is

tested to see that it has not exceeded the upper bound "u".

If is has not, the statement "s" is executed. However, if

the control variable exceeds the upper bound, the program is

continued from the statement following the FOR statement. If

the control variable was not greater than the upper bound,

the control variable is then incremented by the "i" value

and execution loops to check and see if "s" should be

executed again. As long as "c" is not larger than "u", the

statement "s" gets executed and "c" gets incremented by "i""

in a loop. The second form of the FOR statement,

FOR c:=e WHILE b DO s;

works as follows. The control variable "c" is given a value

of some expression "e". The boolean "b" is then tested. If

"true", statement "s" is executed and the loop continues.

If "false", the loop ends and the program is continued with

the statement following the FOR statement. The last form of

the FOR statement is as follows.

FOR c:=e DO s;

38

The value of the arithmetic expression "e" is assigned to

control variable "c". The statement "s" is then executed.

Finally, the statement following the FOR statement is

executed. As a result, this form of the FOR_s_tatement is

not a loop as the other forms are, as the "s" statement is

executed only once. The following is an example to end the

discussion on FOR statements.

FOR r:=6, 9 STEP 2 UNTIL 17, 20 DO
BEGIN

t := 2 * r;
' g := 3 * r;
END

The loop will calculate values for "t" and "g" for the

values of "r" at 6 (first element), 9, 11, 13, 15 and 17

(second element), and 20 (third element).

■ Another way to generate a loop is by using a WHILE

statement.

WHILE b DO s;

As long as the boolean, expression "b" is "true", the

statement "s" will be executed. The WHILE statement is not

part of the SIMULA standard, however, most compilers accept

it.

Attention will now be turned to relational and logical

operators. The relational operators are less than (<), less

than or equal (< =), greater than (>), greater than or .equal

(> =), equal (=) and not equal (-•=). The result of two

39

1

arithmetic expressions separated by—ar-relational operator is

either "true" or "false", as is typical of most other

languages. The logical operators, in order of highest to-

lowest priority, are negation (NOT), logical AND (AND),

logical OR (OR),, implication (IMP) and equivalence (EQV). A

boolean expression is evaluated on the basis of priorities

of these operators. As an example, the assignment

statement,

m := r<=5 AND r>0;

will set the boolean variable "m" to be "true" if the

integer value "r" is greater than zero and less than or

equal to five.

A vector variable can be stored in memory by using the

ARRAY declaration. This declaration will reserve an area of

locations in memory and attach to it a name. These places

will all have the same specified type. The declarations

also fixes the bounds for the indexes. The following.

INTEGER ARRAY a,b (6:20);
REAL ARRAY c (1:5,10:15);

represents the declaration of two vectors "a" and "b" of

fifteen elements each, both with indexes from 6 to 20.

These two vectors may hold only integer values. The second

declaration sets up a two-dimensional array , "c", with the

first index varying from 1 to 5 and the second index from 10

to 15. The "c" array has thirty elements and only holds
■ - -i.

40

r

real values. Boolean arrays can also be declared.

B. Input/Output

Input and output in SIMULA 67- work according to a

system of card images. For input, the card image of eighty

places is transferred to a buffer, called SYSIN.IMAGE, with

eighty locations by the following command.

INIMAGE;

Therefore, if input is desired, the INIMAGE command must be

given in order to place the external data into the internal

buffer. An integer value can then be i^ead from this buffer

by using the command,

V := ININT; T

This puts-an integer value into the integer variable "v".

In the same respect, a real value can be read from the

buffer by using the comnfancl,

X := INREAL;

This will put a real value into the real variable "x". In

SIMULA 67, a digit must follow the decimal in a real number.

For example, "3." is not allowed as a real value, but "3.0"

is. Both ININT and INREAL are system function names.
i .

Card images can contain several values. To accomplish
__\

this, a position indicator or pointer, called

41

SYSIN.POSITION, is attached to the buffer. When the command

INIMAGE is executed, . the position pointer is set to the

beginning of the buffer. On each reading from the buffer,

the position pointer is also changed. Between each number

on the card image there has to be at least one space. Thus,

after a number is read, the position pointer points to the

space after the number.

The position of the buffer pointer can be set by the

u§er by means of the command,
* .

SYSIN.SETPOS(n);

where "n" is the position location on the buffer. The

pointer may be moved forward or backward with regard to its

present position. This will allow for data or whole card

images to be read any number of times.

1 • ■• If a program is needed to process an unknown number of

data card images, SIMULA 67, as many other languages also

do, provides a boolean name ENDFILE to indicate whether the

end-of-file has already been read or not. ENDFILE will

remain "false" as long as at least one card image can be

moved into the input buffer by the statement INIMAGE.

Therefore, when the end-of-file is reached, ENDFILE will

become "true".

Output also works by using a buffer. This buffer,

called SYSOUT.IMAGE, handles 132 characters. The buffer is
- -i. .

printed to output by using the statement,

42

C-K

OUTIMAGE;

At the beginning of the program and after each OUTIMAGE, a

fresh buffer is set to blanks and the buffer position
r i

pointer, called SYSOUT.POSITION, is set to the beginning of

the buffer. Values can be sent to the buffer by using one

of the following commands,

OUTINT(v,w);
OUTFIX(v,a,w);

or,
OUTREAL(v,a,w);

For the OUTINT command, the "v" stands for the variable to

be printed and "w" is the width of the field that the

variable is to be printed in. If the width that 'is chosen

is too small for the output of the number, the value is not

output. However, a row,of asterisks is output in the field

instead to show that the field width was too small. For the

OUTFIX and OUTREAL commands, the "v" again stands for the

variable to be printed and the "w" again for the field

width. The "a" stands for the number of digits behind the

decimal point that is wanted. OUTFIX transfers the variable

as a fixed-point number 4into the output buffer. OUTREAL

transfers a variable as a floating-point number to the

output buffer. Again, if the width is too small, the. field

will be output with asterisks,. As with the input buffer

position pointer, the output position pointer can also be

positioned by the user by the command,

43

SYSOUT.SETPOS(n)

Here, "n" is a number between 1 and 132.

Text may also be output by using the command,

OUTTEXT("This is text");

The words "This is text", minus the quotes, will be sent to

the output buffer. The text to be output must appear

between two quotation marks.

C. Text

A text, in SIMULA 67, is treated as a three level

instance. The first level, "text reference", refers to the

second level, a "text descriptor". This text descriptor

contains the address "a" of the area of the text, the text

length "1", a pointer "p" to the next character of the text

and the displacement "d". In the third level, the "text

field", the contents of the text is stored and a place "m"

held by a reference to the text descriptor.

The declaration,

TEXT x,y,z;

enables the address of the text descriptors in "x", "y" and

"z". At this point, the text reference is initialized to

the name "NOTEXT". The text descriptor has the value zero

for the items "1", "p" and "d". The text field is empty

except for "m" pointing back to the text descriptor.

44

Although "x", "y" and "z" now have been initialized, along

with a reference to an empty text, no instance is available

to store a text. This is done by using the statement

BLANKS. The relation between the text variable declared and

the instance created is produced by the reference

assignment,

x :- BLANKS (15);

This creates a text instance of a field up to fifteen

characters. The number fifteen can be replaced by any

number, depending on what is needed. This text field is

filled with blanks and variable "x" refers to it. To assign

a text to the text field of "x", the assignment character is

used.

x := "This is a text";

This statement transfers the text on the right side, minus

the quotes, to the area of the text instance to which "x"

refers. Since the length of this text is only fourteen
i

characters, the remaining place of the text area is filled

with a blank.

Another way of setting a text instance is by using the

COPY command,

y :- COPY("This is also text");

This creates a text instance that is referred to by "y" and

45

also transfers the text immediately to the text area of the

instance. This text area will have a length of seventeen

since the text string contains seventeen characters.

A reference to part of a text instance can be assigned

to another variable. The following example explains the

command that is used to accomplish this.

z :- y.SUB(9,4);

This command will assign to variable "z" part of the text

instance "y". This is done by placing a decimal point

behind the variable "y" and following it with the word SUB.

In the parentheses, the displacement from which_the subtext

is to start is nine, and the length of the subtext is four.

This means that the text area of "z" contains the string

"also". To further explain, a graph of the situation is

used,

I— y text reference
1 '

I —1-> a 1 1 17 text descriptor
1
I > m "This is also text" text field
1
I — l-> a 9 15 text descriptor

1
1— z text reference

It is seen by this graph that the text descriptor of "y" and

"z" both have address "a", meaning that both point to the

same text field. However, the variable "y" is a reference to

the whole text since the displacement field is one, the

46

pointer character is one, and the length field is seventeen

in the text descriptor. On the other hand, the text

description of "z" shows that "z" is a reference to only a

subtext of the text field. The displacement field of "z'1 is

nine, the pointer character is one and the length field is

five. . ™ .

To take this a step further, if a text value is

assigned to "z" as follows,

z := "more";

the text field of "y" is also altered since "z" refers to a

subtext of "y". This will then result in changing the text

field to "This is more text". For each text field, any

number of subtexts can be defined. These subtexts may

overlap. Subtexts must not exceed the boundaries of the

original text.

To reiterate, a text reference assignment assigns a

variable to a text desc-ription' that points to a text field.

This is expressed by the ":-" symbol. A text value

assignment assigns new contents to a text field by using the

symbol ":=".

The type CHARACTER can be used to store characters in

variable locations. The declaration, r

CHARACTER a,b;

will provide two single byte storage places with the names

47

"a" and "b" with the type CHARACTER. These places will be

initialized with nonprintable "00". A value can,be assigned

to a variable by using as assignment statement.

b := '*';

S
This will store an asterisk in the variable "b". Notice

that the character is surrounded by single, not double,

quotes. Character arrays can also be declared by using

CHARACTER ARRAY v

along with the variable name and boundary limits. The

function CHAR(n), where "n" is an integer, will return a

character corresponding to the bit pattern of the given

integer. The opposite is accomplished by the function

RANK(c). This will return an integer corresponding to the

bit pattern of the-character "c".

f Other predefined functions besides CHAR and RANK are

present in SIMULA 67. SYSIN.MORE is a function that returns

"true" if the position indicator of the input buffer is not

greater than the length of the buffer. Therefore, if all

the characters of the buffer have been read and no more can

be transmitted, the SYSIN.MORE will be "false". The

function LETTER(c) will be "true" if "c" is a capital letter

and "false" otherwise. The function DIGIT(c) will be "true"

if "c" is a digit and "false" otherwise- If "a" is declared

as a character, a character can be read from the input

48

buffer, SYSIN.IMAGE, by,

a := INCHAR;

and a character can be sent to the output buffer,

SYSOUT.IMAGE, by

OUTCHAR(a);

If "x" is a text variable with a text field of length eighty

characters, the contents of a card image can be transferred

to "x" by.

INIMAGE;
x := INTEXT(80);

First, the card image is sent to the input buffer and then

the entire text of eighty characters is transferred to the

text field referenced by "x". In general, any number of

characters can be transferred from the input buffer by the

INTEXT function.

When reading values from the input buffer, the names

INCHAR, ININT, INREAL, and INTEXT can be used. Values can

also be read from a text variable or a subtext. For

example, suppose "x" is a text variable. The statement,

y := x.GETCHAR;

with "y" being a character variable, will transmit a

character from, which the position indicator of "x" is

pointing, to "y". The position indicator is then

49 |

incremented. The statements

y := x.GETINT;

and,

y := x.GETREAL;

with "y" being an integer in the first case and a real in

the second case, will start at the first position of the

text until the corresponding value is found. If the first

character is not a digit, an error will occur. The position

pointer will be placed following the found number. The

following example,

\
BEGIN

TEXT x,y,z;
CHARACTER c;
INTEGER i;
REAL r;
X :- COPY("MNO-69.37PQR") ;
y :- x.SUB(4,8);
z :- x.-SUB(8,3);
i := z.GETINT;
r := y.GETREAL;
c := X.GETCHAR;

END

can be explained as follows. The text field is shown

graphically below.

MNO-69.37PQR
I 1 IzlI I
II 11
1 I—-y 11
1 1
1 x— 1

The statement "i:=z.GETINT" will set "i" to be 37, while the

50

statement "r:=y.GETREAL" will set "r" to be -67.37 and the

statement "c:=x.GETCHAR" will set "c" to be the letter M.

To note, for example, the statement "i:=z.GETINT" could also

have been written as "i:=x.SUB(8,3).GETINT".

The position indicator of a text variable can be set by

the statement,

i := x.POS; ,

which puts the value of the position indicator of the text

variable' "x" into the integer variable "i". The value, can

be changed by using the command

x.SETPOS(n)

where "n" is a value between 1 and the length of the text.

The length of the text can be put into an integer variable

"i" by the command

i := x.LENGTH;

Values can also be written into text fields by other means

than from the input buffer.

X.PUTCHAR(c);

The above statement will put a character "c" into the text

variable "x" at the position pointed to by the position

pointer. The pointer then gets incremented. The following

statements will put numbers into * text field "x".

51

X.PUTINT(i);
x.PUTREAL(r,a);

and,
x.PUTFIX(r,a);

Here, "i" is an integer variable, "r" is a real variable and

"a" is the amount of digits after the decimal point.
> .'■■■'

The typical relational operators can be used for

characters. Besides the comparison "of text variables with

the relational operators, there are also ways to test

whether a text variable refers to the text field as another

text variable. The operator "==" is used to test the

equality of references, while "=/=" is used to test for

inequality. Therefore, if two text variables "x" and "y"

reference the. same text field, the'comparison,

x==y
. i...

will result in"the value "true".

D. Program structure / Blocks / Subprograms

A SIMULA 67 program is composed of r one large block

consisting of internal blocks. A block is a unit that

contains declarations and statements surrounded by the

keywords BEGIN and END. A block can appear wherever a

typical single statement can be placed. As seen previously,

a compound statement is actually a form of a block which has

no declaration statements. Blocks can be contained within

other blocks. The variables that are declared inside'the

52

block are said to be "local" to that block. All variables

that were declared outside the block are said to be "global"

to the inner block. The following consists of three blocks,

which graphically are labelled A, B and C.

BEGIN
INTEGER x,y,z;

(statements)

BEGIN
REAL r;

• . (statements)

END;

(statements)

BEGIN
BOOLEAN b;

(statements)

END

(statements)
• - —-—

END

<

(A)

<

(B)

(c)

It is seen that blocks A and B are inside block C. Block A

has variable "r" declared. After entrance into the BEGIN,

this variable will be created somewhere in storage. This

variable is local to block A. As soon as the END statement

is reached, variable "r" will no longer exist. Block B has

variable "b" declared. Again, after entrance into the BEGIN

of this block, the variable will be created somewhere in

storage. This variable is local to block B. Again the

variable will disappear upon ending of the block. Block C

53

has' three variables, "x", "y" and "z", declared. These

variables are local to block C. Since blocks A and B are

contained in block C, these three variables are global to

blocks A and B. As a result, blocks A and B have access to

these variables and can i use them in any way. On exit of

block C by the END statement, these three variables will

disappear.

The definition of blocks allow for what is called

"dynamic array declaration". This is accomplished by setting

the dimension of an-array in an outer block and working with

the array in an inner block. The following is an example of

dynamic array declaration.

BEGIN
INTEGER i;
INIMAGE?
i := ININT;
BEGIN
CHARACTER ARRAY ch(1:i);

(statements)

END;
END

Here, an integer "i" is read in from the input in the outer

block. This means that "i" may change each time this piece

of code is executed. The inner block then creates a

character array "ch" of "i" elements. Therefore, since the

"i" can change, the array may have a different number of

elements at different times. This is a dynamic array since

the size of the array is not pre-set before the compilation

54

of the program.

-\ Suppose now, that a particular task is to be executed a

number of times in various parts of a program. For example,

the average of twelve, numbers is to be found at ten

different locations within the program. A block, which

contains the code to do the averaging, could be placed at

each* of the ten locations within the program. This tends to

make the program very redundant and large. A more efficient

way to accomplish this task is to create a subprogram that

contains the averaging code. The subprogram appears only

once and can be called from any point of the program.

However, before it is called, it must be declared. This

declaration, as was the case with variable declarations,

must appear at the beginning of the block, and is usually at

the beginning of the program so that the entire program may

have access to the subprogram. There are two types of

subprograms. The first is called a "function procedure".

This type returns a value to the calling statement. The

second type is called a "proper procedure". This type does

not return a value to the calling statement as the function

procedure does, but, performs a specified task.

55

The declaration of a function procedure has the

following structure:

type PROCEDURE procname (formal);
formal parameter specification

BEGIN
variable declarations
.statements
procname : = . ..;

END;

procedure
head

procedure
body

The procedure head contains the type of -procedure. The type

can be BOOLEAN, CHARACTER, INTEGER, REAL or TEXT. The

keyword PROCEDURE is followed by a procedure name. This is

then followed by a list of formal parameters. The formal

parameters are substitutes for the actual parameters of the

calling statements, replacing them when the subprogram is

called. The formal parameters are then specified by type in

the next line. The procedure body lies between the BEGIN

and END. It contains declarations of any other variables

that are used and also all the statements needed to perform

the specific desired task. Finally, a statement returning

the value wanted to the calling statement must be present,

as indicated by

procname := ...;

The following example is a function procedure named

"average" that will compute the average of a twelve element

real array. Since the value returned is a real value, the

subprogram is a real function procedure. The only formal

56

parameter is the array. Note, that there is no boundary

given in the formal parameter specification since it will

have the same boundaries as the actual parameter.

i

REAL PROCEDURE average(arr);
REAL ARRAY arr?

BEGIN
INTEGER i, sum;
sum := 0;
FOR i:=l TO 12 DO

sum := sum + i;
average := sum / 12;

END;

In this example, the call to the subprogram is carried out

by the statement,

result :>= average(avgarr) ;
" ~i

where "result" is a real variable and "avgarr" is a real

array of at least twelve elements. The value returned from

the subprogram "average" will thus be placed in the variable

"result".

A "proper procedure" does not return a single value but

executes statements with the intent of using actual

parameters to perform a specified task. Therefore, a type

does " not have to be defined for a proper procedure. The

main structure of a proper procedure is the same as a

function procedure accept no type is defined in the first

line.

PROCEDURE procname(formal);

57

Also, there must be no line "procname := ..." present in the

procedure body.

There are three ways that actual parameters can be

transferred. They are "call by value", "call by name", and

"call by reference". Keywords are VALUE, for "call by

valu,e", and NAME, for "call by name". Call by reference

does not have a keyword, but is automatically used for TEXT

and ARRAY types.

A proper procedure is shown below that will swap the

contents of two integer variables.

PROCEDURE swap(x,y);
INTEGER x,y;

BEGIN
INTEGER tempT
temp := x;
x := y;
y := temp;

END ;

In this example, the call of the subprogram is carried out

by the statement,

swap(a,b);

where "a" and "b" are integer values .v After execution of

this statement, the contents of "a" and "b" will be

switched.

SIMULA 67 also has the capability of allowing a

procedure to call itself. This type of procedure is called

a "recursive procedure". Recursive programming is a subject 1

all to itself and will not be covered in this paper.

58

Finally, predefined subprograms are also supplied for

SIMULA 67. They can be called as if they had been declared

as procedures at the beginning of the program. Many of

these deal with" mathematical functions like ABS(x) for

absolute value, SIN(x) for sine of an angle, and SQRT(x) for

square root of a number. Other predefined subprograms deal

with handling texts and characters. These include functions

that were already explained, like, BLANKS(n), COPY(n),

t.LENGTH, and ININT.

In conclusion, blocks and procedures have the following

useful properties. First, a block defines an entity that

has properties and performs-actions. A block where- only

local quantities are referenced is a completely contained

program component. A block is itself a statement, which is

a syntactic category of the language. Finally, a block

instance is permitted to outlive its calling statement, and

to remain in existence for as long as the program needs to

refer to it. As a result, storage allocation cannot be

administered as.a simple stack. A garbage collector, using

a scan-mark operation, is required to detect and reclaim

those areas of storage which can no longer be referenced by

the running program. Such a procedure which is capable of

giving rise to block instances which survive its call is

known as a "class" and will be addressed in the next

section.

59

E. Glass Construct

The notion of "class" and "object" can be traced to the

notions of "block" and "block instance" in ALGOL 60. A

"block" in ALGOL contains the description of a data

structure and associated algorithms. When the block is

executed, a dynamic ."block instance" containing the local

variables of the block along with information for dynamic

., linkage of this block to other blocks, is generated. By

using "class", it is possible to generate multiple "objects"

of the same class. Each object generated is a class

instance. An object may suspend .its execution and start the

execution of a different object. When a class contains no

algorithms, the class is a "record class" with its objects

being "records". Objects are really records to which

algorithms are associated. Different objects can exist in

memory at the same time. These objects may be of the same

or different classes.

A class is defined and used in three phases. The first

phase is the description or declaration of the class. This

phase declares all the variables with their types that are

needed for the class bearing the name provided. Along with

the variables, a list of the instructions of the class are

defined. The second phase is the realization or incarnation

of the class. In this phase, a real copy of the class is

created in working storage. A reference to the incarnation

is also established and stored in a variable. The final

60

phase is the actual use of the Incarnation of the class.

Here, the elements of the incarnation get values which can

be used again later. A class declaration has the following

form,

CLASS name(formal); < class
formal parameter specifications < 1 head

BEGIN < 1
declarations
initial statements class
INNER; body
final statements s

END; < 1

The class head consists of the Keyword CLASS followed by the

name of thie class and any parameters which this class is to

use. Variable declarations, along with subprogram

declarations, can be made is the class body. First, an

instance of the class must be created,* only then can a

declared procedure be called by a reference variable. The

class body also consists of initial statements or operations

and final operations. Any kind of statements are allowed.

These can include assignments, input/output, subprogram

calls, or even creation of new class instances. The symbol

INNER represents a dummy instruction acting as a separator

between both sets of operations. More on INNER will be

discussed later. The parameters or the variable declared

are attributes of the class and also attributes of any

object of that class. Also, another class declaration may

be one of. the declarations of this class. This new class

would then be a class attribute of the original class. •

,61

The first example of a class declaration is one in

which the class contains no operational statements.

CLASS a;
BEGIN

REAL x;
INTEGER y,z;

END;

This class declaration links to a class unit "a" the

variables "x", "y", and "z". If this class is to be used,

it must be incarnated. This is accomplished by the

statement NEW in the following way.

NEW a;

This statement will set aside an area in memory for a real

variable "x" and two integer variables "y" and "z". This

area may be referenced by a variable by using a reference

statement.

r :r NEW a;

The variable "r" will as a result be pointing to the new

incarnated area of class "a". The NEW statement thxls

creates an object which is an instance of class "a" and also

starts executing any operational statements that appear

inside class "a". This execution continues until the end of

the class body or until, a "detach" statement, which will be

defined later, is encountered. Prior to the NEW statement,

however, there must be a declaration defining "r" to be a

62

reference to class "a". The declaration statement,

REF(a) r;

will declare "r" as a reference to an incarnation of "a".

It will reserve a storage location for "r" in memory of type

reference. This area will be initialized as NONE meaning

that no reference to an incarnation was established yet.

The incarnation is then accomplished by "r :- NEW a;" as

previously described.

At this point, values can now be assigned to the

variables in this area. Suppose that a real value from input

is to be placed in "x". This can be done by

r.x := INREAL;

■I „ H This transfers a real value from input to the variable "x'

in the incarnation of class, ■'-a'', to which the variable "r"

refers.

To summarize the discussion to this point, access to a

class is available only via reference variables. A class

instance is generated by a NEW statement. Each class

instance has no name, only a reference. An array of class

instances of class "a" can be accomplished by first

declaring the array as follows.

REF(a) ARRAY arr(l:100);

This defines an array "arr" of one hundred elements, each of

63

which is a reference to a class instance "a". Now, one

hundred class instances can be incarnated by a FOR

statement.

FOR i:=l TO 100 DO
BEGIN

arr(i) :- NEW a;
arr(i).y := i;

END;

Here, each incarnation of a class instance is formed with

the "y" variable in each being set to the value "i". Now

consider the following statement.

arr(l) :- r;

This will assign the reference of the incarnation of class

"a" that was pointed to by "r" to the reference "arr(l)".

In other words, Soth "arr(D" and "r" reference the exact

same incarnation of instance.

Consider the next class declaration.

CLASS box(length,width,height);
INTEGER length,width,height;

BEGIN
REAL PROCEDURE volume;

volume := length * width * height;
IF length<=0 OR width<=0 OR height<=0 THEN

error;
END;

64

Also, suppose the following reference statement and

incarnation was given.

REF(box) boxr;
boxr :- NEW box(3,4,5);

For the instance or incarnation of "boxr", the length, width

and height are given the values three, four and five

respectively through parameter passing. Also declared . in

this instance is a procedure name "volume". Finally, the

operational statement, which checks to see that the length,

width and height are greater than zero in this case, is

executed. Every instance of this class will execute this

operational statement. Each instance will have its own set

of data (length, width and height). But, now turning back

to the "instance of "boxr", if the statement,

h :- boxr.height;

is executed, the previously declared integer variable "h"

will be given the value of the attribute "height" of the

reference "boxr", which in this case is the number five.

Now, if the statement,

v := boxr.volume;

is executed, the following will occur. The procedure

"volume" operates on the data of the instance "boxr". This

means that the "integer variable "v" will receive the value

sixty.

65

A chain of instances of a class can be created by

declaring a reference to the class inside the class itself.

For example, consider the following piece of code.

BEGIN
REAL ml;
REF(c) x,y,first;
CLASS c(m);

REAL r;
BEGIN

INTEGER i; . '
REF(c) next;

END;
ml : = 1;
first :- x :- NEW c(ml);
x.next :- NEW'c(ml);
x :- x.next;
x.next :- NEW c(ml);
x :- jc.next;

END; j "

■■■r

Here, a class "c" can be referenced by "x" and "first"

external to the class and by "next" internal to the class.

Also shown is a multiple assignment "first :- x :- NEW

c(ml);". The piece of code will generate a chain-like list

as shown graphically below.

first > mi
next- 1

1
I 1
1
i- > m i

next 1
. I .

I _ 1
1

x > I— > m i
next---—>NONE

It is seen that the reference "first" always points to the

66

first instance of the class and "x" points to the last

instance created. Also, the reference value "next" of the

last instance will have the empty reference constant NONE.

A loop can bevJssd to run through the list by testing until

an empty references, is found. The following code performs

such a loop.

y :- first;
WHILE y =/= NONE DO

BEGIN

y :- y.next;
END;

A "prefix" may be added to the front of a class

declaration. This prefix is in fact another class name.

The prefixed class is called a "subclass" of the prefix.

This is shown below.

CLASS one;
BEGIN

INTEGER il;
il := 9;
INNER;
il := 10;

END;
one CLASS two;

BEGIN
INTEGER i2;
il := i2 := 20;

END;

When class "two" is incarnated, every instance will get all

the properties of class "one" plus the properties of class

"two". When execution passes to class "two", the code

before the INNER statement in class "one" is first executed.

67

The code of class "two" is then executed followed by the

code after the INNER statement of class "one". A. subclass

is thus said to be "inner" to its prefixes. Therefore "two",

is inner to "one". . A heirarchy of subclasses can be formed

by introducing a succession of declarations of subclasses.

This can be shown as.

CLASS one ...;
one CLASS two ..
two CLASS three
one CLASS HFour .

By using subclasses, an organization of systems can be

formed in different levels of abstraction. A subclass is

equivalent to the class obtained by the concatenation of

those classes that are on its prefix sequence. An object of

a class resulting from a concatenation is a ''compound

object". The space occupied by the data structure of a

compound object is the union of the spaces occupied by the

data structures of the various classes in the prefix

sequence. Suppose that the reference variable is declared,

REF(one) r;

h

The statement,

r :- NEW one;

is executed by placing a real copy of only "one" in storage

with all the variables declared within class "one". The

variable "r" then refers to this incarnation. However, if

68

the statement,

r :- NEW two;

is executed, , first an incarnation of class "one" is created.

The subclass "two" is embedded in thi,s incarnation. This is

done by replacing the INNER statement of "one" by the

initial operations of "two" followed by an INNER statement

and the final operations of "two". This is thus the role of

the INNER statement. In one case INNER is a dummy

instruction when executed and in the other case it specifies

where code may be inserted for a compound object. Likewise,

the statement,

r :- NEW three;

will create an incarnation of class "three" embedded in

class "two". Both of these classes are'embedded in class

"one". This is shown graphically below.

incarnation

incarnation
I _ ;

 __ 1
incarnation
of "three"

of "two"

of "one"

As indicated in the graph above, the subclasses are embedded

in the incarnation of the comprehensive ones. This means

69

that each incarnation is a relatively self-contained unit in

the general structure of the compound object created. Any

variables of class "one" can be referenced by the variable

reference "r" directly. For example,

r.i or _ r.b

However, variables in subclasses "two" and "three" must have

additional "qualifications" to connect the name of the

subclass to which the variable belongs. Two examples are

shown below using the keyword QUA.

(r QUA two).m or (r QUA three).1

Here, variable "m" is from subclass "two" and variable "1"

is from subclass "three". More qn referencing variables

will be covered in a later section.

Now, an example is presented which will define a stack.

(See Ghezzi, 1982) This definition of a stack will allow

the user to look at the top of the stack, insert an element

on the stack, delete an element from the stack and check if

the stack is empty. These operations are independent of the

type of the elements that are stacked together. First, a

class is used to describe the items that can be stacked.

CLASS stack_member;
BEGIN

REF(stack_member) next_member;
next_member :- NONE

END

70

All stackable objects will share an attribute, namely, a

reference to the next item in-the stack. The class "stack"

describes only the operations applicable to all stackable

objects.

CLASS stack;
BEGIN

REF(stack_member) first;
REF(stack_member) PROCEDURE top;

top :-. first;
PROCEDURE pop;

IF NOT empty THEN
first :- first.next_member;

PROCEDURE push(e);
REF(stack member) e;

BEGIN "
IF first=/=NONE THEN

e.next_member :- first;
first :- e;

END;
BOOLEAN PROCEDURE empty;

empty := first==NONE;
first :- NONE;

END;

The "stack" class contains a reference "first" to a stack

member. The only statement in the class is the one that

sets the reference "first" to point to NONE. Thus, when a

class instance is incarnated, the result is an empty stack.

The subprogram "top" is a function procedure that returns a

reference. The reference is the stack member at the top of

a nonempty stack. The subprogram "pop" is a proper

procedure that simply deletes the top member of a nonempty

stack. Procedure "empty" returns a "true" value if the

stack is empty. Finally, procedure "push" will place a new

stack member on the starck.

71

Stackable objects of a particular type can now be

defined. For example, a stack of boxes can be defined as

follows.

stack_member CLASS box(length,width,height);
BEGIN

» • •

END;

The class "box", as defined previously, is prefixed by

"stack_member". Therefore, objects generated by

NEW box(...);
 .JL,-...

will have all the attributes of "stack_member", as well as

the attributes of "box". "Box" is a subclass of

"stack_member". Now, to create a stack of boxes, a variable

reference of type "stack" must be declared by

s :- NEW stack;

This will create an empty stack. To push several boxes

(bl,b2,b3) on the stack,

s.push(bl);
s.push(b2);
s.push(b3);

"s.top" will return the reference of the top element of the

stack. "s.pop" will remove the top element from the stack.

A block in SIMULA 67 can also be prefixed by a^ class.

Prefixing a block with a class name makes the attributes of

the class visible to the block. For example, if a block

72

starts with

stack BEGIN

END;

the block has access to procedures "empty", "push", "pop",

and "top". Thus, prefixing supports top-down modular

design. The top-level class can contain only the global

design decisions. Successive subclasses of this el-ass can

contain design decisions at lower levels of abstraction. At

the lowest level, the program is prefixed by the detailed

class. Thus, the different classes correspond to the

different levels from which a given problem can be viewed.

The prefixed classes of SIMULA 67 bring this mode of

leveling design into a programming language. This feature

can also be used as a powerful kernel language for the

design of problem oriented languages.

The last topic to be covered in this section is the

topic of virtual entities. A class has common attributes.

But at times, an attribute may take a different meaning Hbr

different subclasses of the class considered. This can be

accomplished by adding a virtual part to the declaration.

The way this is done is by using the keyword "VIRTUAL:"

followed by a proper or functional procedure. If, for

example, ah object of class "c" is given. Now suppose that

an attribute "v" is specified as . virtual in class "m"

belonging to a prefix sequence of "c". An occurrence of "v"

7 3

is interpreted as virtual in "m" and in all classes inner to

"m". The matching definition for the virtual attribute "v"

is the innermost definition of "v" . Below is an example

program which shows the virtual concept. (See Ichbiah,

1972)

BEGIN
CLASS real(real_part) ;

REAL real_part;
VIRTUAL: PROCEDURE show;

BEGIN
PROCEDURE show;
BEGIN

outfix(real part,2,5);
outimage; ~~

END
END;
real CLASS complex"! image_part) ;

REAL image_part;
BEGIN

PROCEDURE show;
BEGIN

outfix(real_part,2, 5);
IF SIGN(image_part)>0 THEN
outfixC+i')

ELSE
outtext('-i');

outfix(ABS(image_part),2,5);
END

END;
REF(real) x;
REF(complex) y;
x s-- NEW real(3);

>y :- NEW complex(2,4);
x.show;
y.show;

END ■ ■ -

The procedure "show" is a virtual procedure in class "real".

However, it is defined in both class "real" and class

"complex". The definition in class "real" is used when

"show" is called for "x". When "show" is called for "y",

74

two definition exist, __The innermost definition, the one in

class "complex", is the one that is used. Thus, the

statement "x.show" will print "3.00" and the statement

"y.show" will print "2.00+i4.00".

There are several points that should be made concerning

the implementation of a dynamic object like a class. First,

dynamic objects involve dynamic allocation which implies

that some form of dynamic memory management must be provided

by the compiler. This is no longer a simple stack

allocation system since each object's existence is

independent of all others. As a result, some form of memory

recovery is needed. Another implementation point concerns

pointer variables. These pointers can be implemented with

almost no run-time checking. By having only one pointer to

each data object, simultaneous multiple access is avoided

without incurring the overhead of some synchronization

mechanism. The only question at run-time is whether or not

the pointer is empty.

F. Reference Variables

This section will deal with reference variables and

remote identifiers in greater detail. First, the difference

between "local" and "remote" access will be covered.

'Actions performed involving attributes of a particular

object during the execution of the object deal with the

local accessing of attributes. Accessing attributes of

75

other objects is termed remote accessing. However, since

several instances of the same class may exist in memory at

the same time, a given attribute is not uniquely specified

by the name of its attribute identifier. Thus a remote

access is accomplished by first selecting the particular

object and then determining the attribute of that object.

This is partly accomplished by the "reference"variable,

which points to an object. A refernce to a newly created

object is obtained by the execution of an object generator.

This is done by using a NEW statement.

SIMULA 67 allows for the calculation of references and

for their assignment to reference variables. This could

bring about a reference to an object which belongs to a

class other than the one intended. This is a very subtle

error. In the majority of cases, except for this one,

referencing errors are detected at compile time. That is

why a qualification must be included in the declaration of

each reference variable. This qualification indicates the

class of an object to which the variable may belong. This

qualification also is used to test for validity of reference

assignments to that variable. Suppose first that the

following piece of class code is given.

CLASS one;
• • •
one CLASS two;

one CLASS three;

76

Now suppose the following code is defined,

REF(one) a;
REF(two) b;
b :- NEW two;
a :- b;

The compiler will check to see if the previous code is

valid. In the first assignment, "b" refers to the object

that was intended. The next assignment, "a" is qualified by

"one" and serves for remote access to attributes o-f that

class. Also, each of these attributes are also present in

an object of any subclass of "one", so "b" can be assigned

to "a". If the statement,

b :- a;

were executed, the object referred to by "a" would have to

be checked at run-time to see if it was actually a member of

or subclass of "two". If it was, the assignment will not

result is a run-time error. An assignment that would be

rejected at compile time appears below.

REF(three) c;
c :- b;

Note here that "b" is qualified by "two" and "c" by "three".

Trouble occurs since "two" and "three" are not in the same

prefix sequence.

Remote accessing must be carried out without ambiguity

and without loss of security. To do this, an object and an

7 7

attribute along with the qualification of the object must be

known. This can be carried out in two ways. The first is

by a "remote identifier" which consists of a* reference

variable and an attribute. For example, if "o" is an

attribute of class "one" and "t" is an attribute of subclass

"two" prefixed by "one", the remote identifiers "a.o",,"b.o"

and "b.t" are valid. However, "a.t" is not permitted since

"t" is not in the scope of "one", the qualification of "a".

Finally, a local qualification can be placed on a reference

variable for accesses which ordinarily are not permitted.

a QUA two.t;

where "a" is given the local qualification of "two", is a

legal reference.

The second way to accomplish-remote accessing is by the

"connection" mechanism. The format is,

INSPECT <object reference>
WHEN <class identifier> DO <connection block>

WHEN <class Adentifier> DO <connection block>
OTHERWISE .<•;

The qualification of the object is compared to the class

identifiers in each WHEN clause until a class is found that

belongs to the prefix sequence of the qualification. When

found, the corresponding connection block is executed. This

block contains the attributes of the object referred to by

only mentioning their identifiers, exactly as with local

78

access. The connection mechanism therefore permits the same

validity checks as for formal referencing.

In conclusion, in every assignment to a reference

variable, it is possible to check that the assignment is

valid, by comparing the qualifications of the left hand and

right hand sides. Design specifications of SIMULA 67

ensured that this check could be carried out entirely at

compile time, thus avoiding "the inefficiency of run-time

checking. Furthermore all remote identifiers can be checked

at compile time to ensure that the combination of reference

variable and attribute identifier is valid, so that the only

error that has to be detected at run time is a reference

variable has the value NONE.

G. Quasi-Parallel Programs

The need may arise for different processes to act in

parallel. Many simulations require parallel processes.

However, since a single processor is used to carry out

simulation, a quasi-parallel representation of a parallel

program is used. This is accomplished by treating each

process sequentially and using the system time to create the

illusion of parallelism. The sequencing of events was

accomplished in SIMULA by a list of event notices. The

event notice contained..^.as previously explained, a reference

to a process and a time when the process must be activated.

The list was ordered in regards to time and the processes

79

were executed in order of event notice placement on the

list. SIMULA 67 uses a class called SIMULATION to do the

sequencing. This class will be explained in the next

section. SIMULA 67 also provides the procedures "detach"

-and "resume" to accomplish quasi-parallel processing. This

^ section will be devoted to this form of quasi-parallel

processing.

The execution of a SIMULA 67 program involves the

generation and execution of blocks,, prefixed blocks, and

objects. An object remains until the delimiter END is

encountered or until a call to the procedure "detach"■is

issued inside the execution of the object. Once an END is/

encountered, the object is no longer active but still

remains in memory. The object is said to be in a

"terminated" state. If a "detach" is encountered, the

- object becomes "detached" from the component to which it

belonged. This process^ then" becomes an independent

component. Thus, the main program and alj. detached objects

are components, and these components are what form a

"quasi-parallel program".

Unlike a subroutine, which is subordinate to its

caller, a "coroutine" is a module coordinate with other

modules. A coroutine is represented by an object of some

class, cooperating by means of resume instructions with

objects of the same or another class, which are named by

means of the reference variables. A producing coroutine may

80

assign values to any variables and the consuming coroutine

can access them. Coroutines may also change any global

variables. When an object is generated, it has a

procedure-like relationship to the block which generated it.

Control automatically returns to the generator upon passage

through the end of the object. The object does not

necessarily know the identity of its generating block. As a

result, a resume instruction can not be used to a<Shieve the

effect of a coroutine exit. The statement,

DETACH;

is provided by which a generated object can return to the

generator. . When a new instance of this class is created by

the NEW statement, the sequence of operational statements

will be executed as far as the statement DETACH. The DETACH

statement causes this incarnation to be interrupted and

execution to continue at the ' part of the' program which

caused the class to be incarnated. As a consequence of

DETACH, the unit behaves as a coroutine that can be resumed

and, in turn, can resume other coroutines. A detached class

can be resumed by the statement,

RESUME(r);

where "r" is a variable that refers to a detached class.

Now, the object is again in a subroutine position with

respect to the caller and has an obligation to return to

81

either ■ by a DETACH instruction or by going through its own

END. - . "

A main program, therefore, can establish a coroutine

relationship with an object that it has generated using the

RESUME/DETACH mechanism instead of the more symmetric

RESUME/RESUME mechanism. In the RESUME/RESUME mechanism,

control of one generated object is passed by using a RESUME

instruction to another generated object. In turn, that

generated object resumes another generated object and so on.

The generated objects do not return control back to the

generator since a DETACH statement is not present. On the

other hand, in the RESUME/DETACH mechanism, the generated

object remains subordinate to the generator, or the main

program. As a result, this mechanism is sometimes referred

to as a "semi-coroutine". But, this can still act as a full

coroutine with respect to a group of other generated objects

with which it communicated by means of RESUME statements.

If any of the group issues a DETACH, control returns to the

master program which originally called the particular member

of the group. Thus, the coroutine issuing the RESUME

imposes on the resumed coroutine its own responsibility to

eventually pass control back to the original caller by means

of a DETACH.

In summary, a typical coroutine object goes through the

/ following history. First, the object, upon generation,

performs the operations of its class body. The object

82

eventually executes a DETACH which returns control to the

point at which the object was generated. The object is

detached, but not terminated. The object becomes suspended

with its state preserved. Control then returns to the

object on a RESUME, to the point where the object left off.

The object may again relinquish control, either by a DETACH

or by a RESUME, and become detached again. Finally, the

object terminates by executing its END statement. This has

the same effect as a DETACH, except that the object may not

be reactivated by a RESUME.- However, if the RESUME/RESUME

mechanism is used without,using a DETACH, the object must

not terminate itself directly since all other objects are

suspended,, By this, no .other objects will'be_able to be

reactivated. An object, once it is terminated, remains in

existence as an -item of data, which may be referenced by

remote identification of its attributes, including procedure

and function attributes.

At any one time only one component in the program is

being executed. All other components are temporarily

suspended. A quasi-parallel program has two types of

control that effect sequencing when a DETACH or RESUME is

encountered. The "outer sequence control" points to the

statement that is being executed at the given time. The

"local sequence control" of a component of the program

points to the actual executing statement if the component is

active, or points at the statement which execution will be

83

resumed if the component is detached. A graphical example

appears below.

outer
sequence —>
control

1

I local I
1 sequence >1 detached component
1 control 1

1 local . 1
I sequence -—>1 detached component
1 control I

1 local I
I sequence -—>1 active component .
1 control 1

*?

Here it is seen that the local sequence control of the

active component is the exact same as the outer sequence

control of the quasi-parallel program.

Using these two controls, the effects of the DETACH and

RESUME will be covered. When an object calls DETACrf for the

first time after being initially attached, the object

becomes an independent component. The execution of the

object is suspended and its local sequence control is placed

after the DETACH statement. On the other hand, the outer

sequence control is placed after the instruction that caused

the generation of the object. The RESUME(c) statement will

cause the execution, of the object referenced by "c" to be

84

resumed. The component containing the RESUME will have its

local sequence control placed after the RESUME statement.

The outer sequence control is placed at the local sequence

control of the referenced object "c". Finally, a terminated

object cannot be resumed since it has no local sequence

control. Therefore, the reference of a RESUME statement

must refer to a detached object.

In SIMULA 67, coroutines are executed immediately as

they are created. When the instance is created, its

activation record is placed on a stack. A problem occurs in

the RESUME/RESUME mechanism where the communication-between

coroutines is symmetric. Since this type of coroutine is

symmetric and the management of. a stack is asymmetric,

coroutine activation records cannot share a stack. Instead,

each coroutine activation record occupies the bottom of its

own stack, which grows and shrinks as the coroutine enters

BEGIN/END blocks, activates other coroutines, or terminates.

Thus, the execution-time representation of this type of

coroutine requires multiple stacks.

The RESUME/DETACH coroutine mechanism uses semi-
T

symmetric communication between coroutines. Here, a set of

coroutines exists, but the coroutines do not pass control

between each other as in the RESUME/RESUME mechanism.

Instead, these all pass control between themselves and the

main program, which acts as a controller program. A popular

way to implement this type of coroutine is by using a

85

"spaghetti" stack. This stack contains activation records

needed for coroutine reactivation. These records include

•* pointers to the coroutine's creator, its activator, its

reactivation point, a pointer to the start of the activation

record and other temporary values. The number of references

to an activation are kept during the execution. When this

number becomes zero, the activation record is removed.

Usually, a coroutine only contains one pointer to its body

which indicates where it will resume execution when

activated. This pointer is termed a "moving" activation

point. A pointer to its body for each coroutine which

activates this coroutine can be saved. These pointers are

termed "static" activation pointers. The coroutine may

resume at different places depending, upon which coroutine

reactivates it. When a typical procedure ends, its

...,., activation record must be removed from the stack. But, when

a coroutine ends, the activation record must not be removed.

By keeping this record on the stack, another coroutine or

procedure may be blocked if there is not enough room for the

stack to grow. As a result, the part of the activation

record which is used for coroutine information is copied to

another part of the stack where there is enough space. This

copying leaves gaps in the stack. Because of these gaps,

the name "spaghetti" stack came about.

An example of a quasi-parallel program using coroutines

is now presented. (See Ghezzi, 1982) The program is a card

86

game in-which four players will use the same strategy.

BEGIN
BOOLEAN gameover;
INTEGER winner;
CLASS player(n,hand);

INTEGER n;
INTEGER ARRAY hand(1:13);

BEGIN
REF(player) next;
DETACH;
WHILE NOT gameover DO

BEGIN
create a move;
IF gameover THEN
winner := n;

ELSE
RESUME(next);

END
END;
REF(player) ARRAY p(l:4);
INTEGER i;
INTEGER ARRAY cards(l:13);
FOR i:=l STEP 1 UNTIL 4 DO

BEGIN
generate cards for player i in array card;
p(i) :- NEW player(i,cards);

END;
FOR i:=l STEP 1 UNTIL 3 DO

p(i).next :- p(i+l);
p(4).next :- p(l);
RESUME p(l);
print winner's name;

END

Four players are created by the first FOR loop, "p(i) :- NEW

player(i,cards)". Each player is detached on initial

generation. These players are then linked together by the

next FOR loop. This link is closed by linking the fourth'

player back to the first player. Finally, player number one

is resumed from the point he was detached. The four players

will function in parallel of each other but their statements

will actually be carried out piece by piece in sequence.

87

Therefore, four coroutines, the players, exist. These

coroutines are incarnations of the same class, however, in

general, coroutines may be incarnations of different

classes. The first player will start the game by performing

some move. The procedure to perform a move is not shown.

The player will then check the "gameoyer" variable. If it

is "false", the player will resume the next player in the

linked list. The next player will then continue the game

and so on. All four players will continue to play with no

control from the outside. As soon as a player wins the

game, variable "gameover" is set to "true". The execution

of the coroutine instance will then terminate. ' Control will

return back to the main program at the instruction after the

resumption of the first player. ' As a result, the main

program will then print out the name of the winner and halt.

In the game 'playing program it was seen that a closed

linked list was created. This was done by linking together

various class incarnations by reference variables. Each

player was an individual incarnation. Each player was an

element of the "list. Linked lists come in various types.

Each linked list usually has a "head", pointer which points

to the first element of the list. A typical "singularly

linked list" would appear as,

head -> element > element > element > NONE
1 2 3

Here, there are three elements linked together. Each

88

element, therefore, has contained in it a reference to

another element. "Head" points to the first element and the

last element points to NONE. If the last element would have

pointed back to the first element,

1
V

head > element —
1

•> element
2

 > element
3

— 1
1

-—I

a "singularly circular linked list" would have been created.

Another form of a linked list is a "doubly circular linked

list". Here each element contains a reference to the

succeeding element and also to the preceeding element.

1 Lj. ;—

V
head > element > element > element

1-- 1 < 2 < 3 <--
1
1 .. ;_■ ._

Here, "head" is only a reference to the first element.

However, it may be necessary in some instances to create a

dummy element called the "set head". This set head would

actually be an incarnation of a class and would be at the

head of the list. '."

— > set > element > element > element !
 head < 1 < 2 < 3 < —

89

SIMULA 67 provides a mechanism, in the form of a class,

to handle list processing. The class is named "simset" and

contains the following.

CLASS simset;
BEGIN

CLASS linkage;
BEGIN

REF(linkage) succ,pred;
REF(link) PROCEDURE sue; ...
REF(link) PROCEDURE pre; ...

END;
linkage CLASS link;
BEGIN

PROCEDURE out; ...
PROCEDURE follow(x);

REF(linkage) x; ...
PROCEDURE precede(x);

REF(linkage) x; ...
PROCEDURE into(s);

REF(head) s; ...
END;
linkage CLASS head;
BEGIN

REF(link) PROCEDURE first; .
REF(link) PROCEDURE last; ..
BOOLEAN PROCEDURE empty; ...
INTEGER PROCEDURE clear; ...
INTEGER PROCEDURE cardinal;
s\acc :-• pred :- THIS head;

END;
END;

By using "simset", a doubly linked list will be created with

a "set head" element. When the list is created but still

^mpty, the only element of the list will be the "set head"

which will have both succeeding and preceding references

pointing to itself. A created element that is not in a list

will have its succeeding arid preceding references pointing

to NONE.

90

*"

The class "simset" contains three classes as

attributes. The class "linkage" contains two reference

variables "sue" and "pre". The two procedures that are

defined are used to get the references for the two reference

variables. Details of these and all other procedures used

in class "simset" are not presented but rather a brief

explanation of what each does is included. The subclass

"head" creates an incarnation which is the head of the

linked list. This is done by the statement "succ :- pred :-

THIS head". The expression "THIS head" is a reference to

tj/e "head" object being executed. Procedure "first" will

establish a reference to the first element of the list.

Procedure "last" will establish a reference to the last

element of the list. If no elements are present, the "set

head" references will be NONE. Procedure "empty" will be

set to "true" if there are no elements in the linked list.

Procedure "clear" will delete all the elements of the list.

Finally, procedure "cardinal" will return the total number

of elements in the linked list. The subclass "link"

contains procedures to view an element of the list. All the

attributes of this class are procedures.., These attributes

are accessible by means of remote identifiers. The

procedure "into(s)" places an incarnation of a class at the

end of the list "s". The procedure "follow(x)" will place

an incarnation behind the list element "x". The procedure

"preced(x)" will place an incarnation in front of the list

91

element "x". Finally, procedure "out" removes an

incarnation from the linked list.

Now that the class "simset" has been defined, it can be

used to manipulate lists in the following way. To have the

capabilities of class "simset" inside a block, the name

"simset" must prefix the block.

simset BEGIN
• • •

END;

If a variable "1" refers to a "head" by,

REF(head) 1;

a new head of a list can be created by.

1 :- NEW head;

This will create an instance that contains both class

"linkage" and class "head".
i" •

1 —>

first
last
empty
cardinal
clear

incarnation of
class "linkage"

— 1
1
1 incarnation of
1 subclass "head"
1
1

— I

92

Any of the procedures of these classes can be used by

referencing through variable "1". An example of this is

"1.first" or "l.pred". Now the linked list is created. To

add elements to this linked list, an element must be

defined. The elements of the list must be a subclass of

class "link". This is shown below.

link CLASS element; <
BEGIN

• • •

END; s/

This class represents an element that may be placed in the

list. An element may be of any type. Class "simset" works

independent of the types of elements. The following

statements will create a reference to a "link" and create an

incarnation of tin element.

REF(link) e;
e :- NEW element;

Graphically, this•creates an object that contains both class

"linkage" and "link" along with class "element".

93

e -> I ■ • -1 —]

succ
pred
sue
pre

incarnation of
class "linkage"

out
•follow
precede
into.

hS\

incarnation of
subclass "link"

— 1
1 incarnation of
1 subclass "element"

— I
—_^ ,.___— —~ 1 —i

Again, any procedures or variables in either "linkage" or

"link" can be referenced by using the reference "e". -An
* ■ * « ■

example of this is "e.into". However, to reach variables or
A

procedures in the "element" class, the qualified "e QUA

element" must be used. Suppose now, that ' the incarnation

pointed to by "e" is to be put in the list "1". This is

accomplished by the statement,

e.into(1); t

94 *

Graphically this is shown.

JS£>

succ
pred
sue
pre

first
last
empty
cardinal
clear

<

9et head

, _. 1
succ
pred
sue
pre

out
follow
precede
into

■)

Thus, in general, each element of the List gdyes rise to

incarnations of the comprehensive class "linkage" and

subclass "link" along with their variables and procedures.

The section on list processing is completed with a

program to sort words given in the input. A linked list

will be used to store the words as they come in.

95

BEGIN
simset BEGIN

REF(head) 1;
REF(link) nextword,current;
TEXT inputword;
link CLASS word(t);
VALUE t;
TEXT t;

BEGIN
END;
1 :- NEW head;
INIMAGE;
inputword :- SYSIN.IMAGE;
nextword :- NEW word(inputword);
nextword.into(1);
INIMAGE;
WHILE NOT ENDFILE DO

BEGIN
current :- 1.first;
inputword :- SYSIN.IMAGE;
WHILE current =/= NONE DO

BEGIN
IF inputword<(current -QUA word).t THEN
BEGIN

nextword :- NEW word(inputword);
IF nextword =/= NONE THEN
nextword.precede(current)

ELSE !
" nextword.. into(1);

INIMAGE;
END

ELSE
current :- current.sue;

END
WHILE NOT 1.empty DO

BEGIN
current :- 1.first;
OUTTEXT((current QUA word).t);
OUTIMAGE;
current.out;

END; •

The progranp/contains one big "simset" block. Inside this

block, a list referenced by "i" and two link references

"nextword" and "current" are declared. The elements are

words. The prefixed class "word" is an empty class as shown

96

by nothing being in the BEGIN/END delimiters. Only a

parameter "t", which is a word of text, is inside the class

"word". The program then creates a set head incarnation,

1 :- NEW head;

followed by the incarnation of the first element,

nextword :- NEW word(inputword);

This word is then placed into the list by the statement

nextword.into(1);

The WHILE loop will continue to read words from the input

and create corresponding incarnations for each word. This

incarnation of an element will be placed into the list in

alphabetical order. Finally, the last WHILE loop will go

through the list and print out each word. The incarnation

will be deleted after the word is printed.

H. Simulation

All models dealing with simulation can be described by

the quasi-parallel coroutine mechanism, along with the list

class '^simset". However, SIMULA 67 provides the class

"simulation" in order to simplify the running of simulation

models. , In a simulation model, multiple processes interact

at any given instant of time. These processes must be

scheduled in order to activate at a certain time. Each

97

process is tagged by the scheduler with an event notice

which will contain the name of the process and the time the

process is to activate. The event notice of all processes

are then put into a list which is sorted in chronological

order with the process to be activated next at the head -of

the list. The class "simulation" therefore is declared as a

subclass of class "simset". This allows the "simulation"

class to use the list processing capabilities of class

"simset" for queuing event notices and processes. To

achieve quasi-parallelism, the scheduling mechanism uses the

"detach" and "resume" procedures.

The contents of class "simulation" will be discussed by

first showing a rough, outline form of the class. (See

Ichbiah, 1972)

simset CLASS simulation;
BEGIN

link CLASS event__ndtice(evtime, proc);
REAL evtime;
REF(process) proc;

BEGIN

END ;
link CLASS process;
BEGIN

REF(event_not j.ce) event;
DETACH;
INNER;
PASSIVATE;
error;

END;
REF(head) SQS;
procedure hold ...;
procedure passivate ...;
procedure activate ...;
process CLASS main;
BEGIN

1: detach;

98

GOTO 1;
END ;
REF(main) m;
SQS :- NEW head;
m :- NEW main;
ra.event :- NEW event_notice(0rm);
m. event.into(SQS);

END

Inside class "simulation" is defined a class "event_notice"

which is a subclass of class "link". These event notices,

therefore, are allowed to be placed on a list. The list is

called the "sequencing set" of the simulation model. The

parameter "proc" represents the process that this event

notice refers to. The parameter "evtime" represents the

time the corresponding process is to' be activated. The

sequencing set is sorted by increasing value of variable

"evtime". Thus, the sequencing set represents the

simulation time axis. The head of the sequencing set is

referenced by the variable "SQS". Also in class

"simulation" is the class "process" which again is a

subclass of class "link". This allows processes to be put

in lists. The reference variable "event" will point to the

corresponding event notice of the process. The rest of

class "simulation" defines the sequencing set head "SQS" and

creates the sequencing set.

If simulation is needed, the block of the program is

prefixed by class "simulation".

simulation BEGIN

END;

99

Once this is done, processes may be activated or

interrupted. Thus, there are no longer coroutines being

detached or resumed. A process is defined in a declaration

of a class as follows.

process CLASS name(formal);
BEGIN

END;

A reference variable to the process can be declared by

REF(name) p;

Finally, a process "p" can be incarnated by

p :- NEW name(parameters);

To reiterate, a process of a simulation run is declared by

prefixing the class name by the class "process". This newly

declared process can now be referenced as any other class by

using REF and incarnated by NEW.

Now that the declarations of processes are included in

the simulation block, the simulation will be accomplished by

the main program, or block, generating incarnations of

processes and interacting with them. To provide for this

interaction, it is necessary to be able to schedule the main

program. Since the main program is not a process, the

process "main",.which appears in class "simulation", as

shown, is used to accomplish the interaction. A simulation

then progresses as follows. It was seen before that the

100

initial operations , of class "simulation" will create the

sequencing set and initialize it to contain the event notice

for the process "main". Thus, when the main program is

being executed, the process "main" will correspond to the

first event notice in the sequencing set. The main program

will generate and schedule other processes by using the

scheduling procedures. These procedures will be covered

later. Notice that the first instruction of class "process"

is a DETACH. This sends control immediately back to the

main program after the main program generates a process.

Trie main program can pass control back to the created

process by performing a scheduling procedure such as

ACTIVATE. Control will then be passed back to the process

next scheduled for execution. Simulation will continue with

the passing of control between the main program and

processes until the end of the block is found. At that

point, the simulation will end.

In SIMULA 67, a process can be in one of four different

states. The first event of a sequence set points to the

process that is currently executing. This process is

"active". Only one process can be active at any moment of

time. The other processes whose event notices of the

sequence set are scheduled to be executed at some later time

are said to be "suspended". A process that has no event

notice in the sequencing set is "passive" unless it has

reached the end of its execution. In that case, the process-

101

has executed the END statement of its class process body and

is said to be "terminated".

When a process is incarnated by a NEW statement, the

state of the process becomes passive. A process, for

example "p", can be switched from a passive state to an

active state by the statement,

ACTIVATE p;

This process "p" will become active immediately, at the

present simulation time. A process also can be activated at

a later time by the statement,

ACTIVATE p AT t;

where "t" is a real value that is greater than the current

simulation time variable "TIME". Process "p", as a result,

will be entered in the sequencing set with a value "t" as

starting time "evtime". The process will now be in a

suspended state until time "t" arrives. .. At that time,

process "p" will automatically be started. Another way to

accomplish this is by, j>

ACTIVATE p DELAY dt;

where "dt" is added to the current TIME to get the starting

time of process "p". In either case, suppose that there are

other processes with the-same activation time.v The process

"p" would be placed after the other processes with the same

102

activation time on the sequence set. Therefore, process "p"

would activate only after all the other processes with the

same activation time were finished. If process "p" was to

be activated before all the other processe with the same

activation time, the statement,

ACTIVATE p AT t PRIOR;
or,

ACTIVATE p DELAY dt PRIOR;

will place process "p" on the sequence set before all the

processes with the same activation time. To place a process

"p" somewhere in between the processes with the same

activation time, the statement,

ACTIVATE p BEFORE pi;
or,

ACTIVATE p AFTER pi;

can be used. These statements place process "p" on the

sequence set either before or after the process "pi". If

the process is to be started right after the current process

is inactivated, the statement

ACTIVATE p AFTER CURRENT;

is used. The procedure CURRENT returns a reference to the

active process.

All the above ACTIVATE statements work only if the

process "p" is passive. If "p" is suspended or active, the

ACTIVATE statements are ignored. IF "p" is terminated, the

103

program will abort. To set up an event notice for an active

or suspended process, any one of the following statements

can be used.

REACTIVATE p;

or,

REACTIVATE p;
REACTIVATE p AT t [PRIOR];
REACTIVATE p DELAY dt [PRIOR];
REACTIVATE p BEFORE pi;

REACTIVATE p AFTER pi;

Because, at any istant of time, only one process can be

active, an active process can only be interrupted by itself.

Thus, no inactive process, not even the main program, can

activate an inactive process. An active process becomes

passive by the following statement,

PASSIVATE; '~~

The process can become active again if another process

executes an ACTIVATE statement for that process. For

example, if process "p" becomes passive by executing a

PASSIVATE statement, it can be activated by an "ACTIVATE p"

statement in the current active process. Another statement,

HOLD(dt);

changes the active process into a suspended process. The

process will be reactivated automatically at "dt + TIME".

The last way to interrupt an active process is to terminate

it. The process is terminated when the END statement of the

class process incarnation is executed. Once terminated, a

104

process can never be reactivated. Any attempt to reactivate

it will result in a program abort. Even though a process is

terminated, all process attributes can be accessed though

remote variables. «

A process "p" which is suspended canbe made passive by

the statement, -

CANCEL(p) ;

This, as a result, removes the event notice of process "p"

from the sequencing set.

A simulation program is now presented. The card game

program, as presented previously using coroutines, is now

presented using the simulation mechanism. Notice that only

a few changes were made. First, the word "simulation" now

prefixes the entire block. The class "player" is now a

process. The DETACH statement inside the process is no

longer needed. Finally, both RESUME statments have been

changed to ACTIVATE statements.

simulation BEGIN
BOOLEAN gameover;
INTEGER winner;
process CLASS player(n,hand);

INTEGER n;
INTEGER ARRAY hand(l:13);

BEGIN
REEL(player) next;

. WHILE NOT gameover DO
1 BEGIN

create a move;
IF gameover THEN
winner : = n;

ELSE
BEGIN

105

. ACTIVATE next AFTER CURRENT;
PASSIVATE;

END;
END

END; .
REF(player) ARRAY p(l:4);
INTEGER i;
INTEGER ARRAY cards(l:13);
FOR i:=l STEP 1 UNTIL 4 DO
BEGIN

generate cards for player i in array card;
p(i) :- NEW player(i,cards);

END;
FOR i:=l STEP 1 UNTIL 3 DO
p(i).next :- p(i+l);

p(4).next :- p(l);
ACTIVATE p(l);
print winner's name;

END

I. Files

Up until this paint, all examples dealing with input or

output dealt with standard input/output. However, there are

times when information must be placed in a file or must be

read from a file. SIMULA 67 coordinates each file to an

incarnation of a class. The procedures belonging to the

class enable records to be transmitted from the program to

the file or vice versa. The class is called "basicio".

This comprehensive class contains many procedures already

described, such as ININT, INTEXT, OUTFIX, SETPOS, POS, and

INIMAGE, yjust to name a few.

By the declaration,

- 5?

REF(outfile) f;

the following statement,

106

f :- NEW outfileC'myfile");

can be executed. This creates an incarnation of an "output"

class. The parameter of this output class is the actual

file, called "myfile" in this case, that will be created.

Every file that is created must first be opened. This is

accomplished by

f.OPEN(BLANKS(80));

which opens the output file and also creates an output

/ buffer of eighty characters. To place values in the buffer,

the same commands as used for_ standard output are used..

However, the commands are prefixed by the reference to the

specified outfile. The following shows an example of this.

f.OUTFIX(r,a,w);
or

f.OOTTEXT('This is a text"1);

To place the contents of the buffer into the actual buffer,

the statement,

f.OUTIMAGE;

is used. Finally, the file must be closed when finished.

The statement,

f.CLOSE;

will close the file referenced by."f".

107

An input file is manipulated in exactly the same way

except that the reference is to arxJ'infile" instead of an X

"outfile".

The above definitions work on sequential files. Two

restrictions on sequential files are present. The first is

that a file must either be for reading, an "infile", or for

writing, an "outfile". At any instant, only one record can

be manipulated.

SIMULA 67 can also handle direct access files stored on

disk. Here, records can be read from or written directly to

a specified location. However, all records are restricted

to being the same length. Each record is numbered and can

be addressed. A direct access file, called "mydirect" in

this example, is referenced and incarnated by the following

statements. . . «.

REF(directfile) d;
d :- NEW directfile("mydirect");

As with a sequential file, a direct file must also be opened

before it is used and closed when finished. The file is

manipulated by using the addresses of wanted records. For

example,

*

d.LOCATE(n);

will address record at address "n". This inturn will set

the value of the record counter, "d.LOCATION", to be "n".

As a result, the statement,

108

d.INIMAGE?

will transfer that record into the buffer, "d.IMAGE". On

the other hand, the statement,

d.OUTIMAGE

will transfer the buffer contents to the file at address

"n". ;

In general, access to records is accomplished by only

using one key, the numerical address of the location of the

record that is wanted. <—

109

BIBLIOGRAPHY

Dahl, O-J. "Discrete Event Simulation Languages".

Programming Languages, F. Genuys, Academic Press, 1968

: 349-395.

Dahl, 0-J., Dijkstra, E. W. , and Hoare, C. A. R. Structured

Programming, Academic Press, 1972.

Dahl, 0-J. and Nygaard, K. J'SIMULA-An ALGOL-Based Simulation

Language", Communications of the ACM, Vol. 9, 9,

September 1966 : 671-678.

Ghezzi, C. and Jazayeri, M. Programming Language Concepts,

New York: John Wiley, 1982.

Horowitz, E. Fundamentals of Programming Languages,

Computer Science Press, 1983.

Ichbiah, J. D. and Morse, S. P. "General Concepts of the

SIMULA 67 Programming Language", Annual Review in

Automatic Programming, Vol. 7, 1972 : 65-93.

Lamprecht, G. Introduction to SIMULA 67, Freidr. Vieweg &

Sohn*, 1983.

McNeley, J. "Simulation Languages", Simulation, Vol. 9, 2,

August 1967 : 93-98.

110

Nygaard, K. and Dahl, 0-J. "The development of the 'SIMULA

Language", History of Programming Languages,- R.

Wexelblat, Academic Press, 1981 : 439-493..

Palme, J. "Experience from the Standardization of the SIMULA

Programming Language", Software-Practice And

Experience, Vol. 6, 1976 : 405-409.

Palme, J."Uses of the SIMULA Process Concept1', Software-

Practice And Experience, Vol. 12, 1982 : 153-161.

Wegner, P. Programming Languages, Information Structures,

and Machine Organization, McGraw-Hill, 1968. ■

111

VITA

Andrew Joseph Tanhauser was born in Bethlehem,

Pennsylvania on December 13, 1958 of the parents Joseph and

Caroline Tanhauser.

Mr. Tanhauser received a Bachelor of Science degree

with a double major in Computer Science and Mathematics in

1980 from Moravian College. He began his graduate studies

on a part-time basis while remaining fully employed.

However, he finished his degree on a full-time basis in his

final semester.

Mr. Tanhauser was employed at the Bethlehem Steel

Corporation as a research technician from 1980 to 1983.

After that, he was employed at National Systems Analysts as

a system design engineer in 1983. He is. presently teaching

computer science courses at Moravian College as a part-time

instructor. He also taught computer science courses at the

Northampton County Area Community College.

112

	Lehigh University
	Lehigh Preserve
	1-1-1984

	A study of the simula 67 language.
	Andrew Joseph Tanhauser
	Recommended Citation

	tmp.1451580486.pdf.Y9t2s

