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ABSTRACT 

SIMULA 67, a direct offshoot of SIMULA I, is a general 

purpose language whose main application area has been 

simulation. The objectives of SIMULA I was for system 

description and simulation. The process concept.was the 

basic feature. Various shortcomings of SIMULA I (Nygaard 

and Dahl, 1982) led to the creation of SIMULA 67 which had 

the same basic objectives of SIMULA I. However, SIMULA 67 

was also to be a general purpose programming language. 

SIMULA 67 allows for the definition of abstract data types. 

Class instances may coexist at run-rtime. References to the 

classes enable access to their individual components. 

Overall, SIMULA 67 preserves the ALGOL-like tree structure 

of programs and allows for ALGOL-like control structures and 

procedures. Concurrent execution is simulated by using 

coroutines. Procedural abstractions are supported and data 

abstraction can be implemented. Hierarchical program 

structures can be defined by class prefixing. The history, 

objectives and shortcomings of SIMULA I are covered 

'initially. This is followed by the history and objectives 

of SIMULA 67. Finally, a detailed description of SIMULA 67 

syntax and use (Lamprecht, 1983) is presented. 



, ..I. SIMULA I 

A. History / Background 

SIMULA I or just plain SIMULA is an acronym standing 

for SIMUlation LAnguage. The language is a true extension 

of ALGOL 60, containing ALGOL 60 as a subset. It is a 

language designed to facilitate formal description of the 

layout and rules of the operation of systems with discrete 

events or changes of states. SIMULA has extensive list 

processing facilities and an extended coroutine concept. 

Simulation is widely used for analysis of a variety of 

phenomena: e.g. communication networks, traffic flow, 

production systems and administrative systems. Simulation 

programs are generally very difficult to write in assembly 

language or even in a high level langauage like FORTRAN. 

Therefore a need for a simulation language, one built around 

a set of basic concepts and allowing for a formal 

description of the phenomena, is needed to simplify the 

generation of a program. This language should enable one to 

observe similarities and differences between systems and 

allow the user to consider all relevent aspects of the 

system. This language should also contain an algorithmic 

language as a subset for the massive amounts of number 

crunching that are necessary. Finally, the system 

descriptions should be easy to read and print for the 

purpose of communication.  Acknowledging a need for  such  a 



simulation language, Ole-Johan Dahl and Kristen Nygaard 

designed and implemented SIMULA at the Norwegian Computing 

Center under a contract with" the UNIVAC division of the 

Sperry Rand Corporation. Since SIMULA 67 is a direct 

offshoot of SIMULA, an examination of the development stages 

of SIMULA is necessary to understand the concepts of SIMULA 

67. - 

SIMULA'S history is actually intertwined with that of 

the Norwegian Computing Center (NCC). The ideas for the 

language were originated in 1961. In 1962 UNIVAC launched a 

campaign for their computers, the UNIVAC 1107 and the UNIVAC 

III.  The NCC got a UNIVAC 1107 in 1963 and this resulted in 

a  UNIVAC  and  NCC  software  contract.   As a part of this 

contract, the SIMULA compiler was completed in 1965. 

B. Development Stages 

SIMULA went through four main language stages. The 

first stage was from mid 1961 to late 1962. In this stage, 

the initial ideas were based upon a "discrete event network" 

concept. There were no real specific implementation at this 

time. The second stage was from late 1962 to late 1963. 

This stage built on the ideas of the first stage and 

introduced increased flexibility by the use of the ideas of 

ALGOL 60. This, however, was somewhat restricting because 

of the assumption that SIMULA was to be implemented by means 

of  a preprocessor to ALGOL 60.  The basic concept of SIMULA 



at this time was a system consisting of a finite, fixed 

number of active components called "stations" and a finite, 

variable number of passive components named "customers". 

The station also consisted of a queue part and a service 

part. The service part had associated with it an operating 

rule which described the actions of the service part by a 

sequence of ALGOL statements. The customers did not have an 

operating rule, but did have variables associated with them 

called "characteristics". The customers were defined by a 

real, continuous function called "time" and a function 

called "position". A customer could be generated by a 

service part of a station, transferred to the queue part of 

another station, then to the service part of the station and 

so on, until it disappeared by not being transferred to 

another queue part by the service part of some station. 

These events of the service part of the station were 

regarded as instantaneous and occuring at discrete points in 

time. As a result, this class of systems came to be known 

as a discrete event network. 

The third devei^fmiBnt stage, from late 1963 to early 

1964, led .to a decision to implement SIMULA through an 

extension of the UNIVAC's ALGOL 60 compiler, based on a 

storage management scheme developed by 0. J. Dahl. This in 

turn led to the "process" concept which utilized the new 

storage scheme. The process concept was intended as an aid 

for decomposing a discrete  event  system  into  components, 



which were separately describable. In general, a process 

has two aspects. It is a data carrier and it executes 

actions. Declarations used to describe the data, and a 

sequence of statements, known as the operation rule, 

described the actions. Unlike procedures, which are 

dynamically nested, the relationship between processes is a 

symmetric one. So, the discrete event system was viewed as 

a collection of processes, whose actions and interactions 

comprised the behavior of the system. Processes will thus 

enter and leave the system as results of actions within the 

system itself. So, the simple network idea was replaced by 

the more powerful concept of models consisting of processes 

operating interactively in "quasi-parallel". Processes are 

user defined transient objects. They are referenced 

individually. These processes are declared collectively by 

"activity" declarations. SIMULA would now be implemented by 

extending the ALGOL compiler and changing parts of the run 

time system instead of using the ALGOL preprocessor idea. 

Process queues were now declared explicitly as ordered ' 

"sets". In order to increase flexibility, sets were allowed 

to contain processes of different kinds. The sets were 

manipulated by "wait" and "include" statements. Quantities 

that were declared local to the process, called 

"attributes", were made accessible from the outside by the 

"extract-select" construct. In other words, the acting 

process could, by connecting another process, reference  the 



attributes of the latter as if they were local to the acting 

one. Thus, the processes were also data carriers, like the 

customer of the second development stage. Process pointers 

were introduced as explicit language elements. As,a result 

of much -work, all of the major features of SIMULA were now 

present at this stage. 

The final development stage was from early 1964 to late 

1964. This stage resulted in the implementation of SIMULA I 

compiler, which was completed in December 1964. 

C. Development Process 

SIMULA was regarded as a system description language. 

It had six main design objectives in 1963. First, there 

should be a general mathematical structure about which the 

language should be built. This structure should have a few 

basic constructs and furnish the user with "a standardized 

approach so that a system can be easily described and 

defined in terms of these concepts. Second, the language 

should print out the similarities and differences between 

various networks. Third, the u'Ser should be forced to 

consider all aspects of the network. Fourth, in addition to 

being unifying and directing, the language should be general 

/enough to allow the description of different classes of 

network systems and other systems that can be analyzed by 

simulation. Therefore, .the language should contain a very 

general dynamic and algebraic language.  Fifth, to allow for 



communication  between users studying networks, the language 

should be easy to read and to print.  Finally, the  language 

should  be problem oriented and not computer oriented.  This 

sixth   design   objective   implies   increased    computer" 

processing. 

A year later, in 1964, however, the design objectives 

were restated. . The main differences between the two 

versions were threefold. First, the term "network" had 

disappeared from the 1963 "discrete event network system" to 

which SIMULA was related. It was found that there were many 

systems that could not be regarded as networks. Thus, the 

network concept was abandoned and the process concept was 

now introduced as the basic concept. Second, since a system 

was now understood as a collection of interactive processes 

with each process being present in the program execution, 

the execution of the program existed as a dynamic system 

within the computer memory. Now, SIMULA was a "dynamic 

language" rather than being a language built around a 

general mathematical concept 'with a few basic constructs. 

This dynamic language also emphasized a relationship to the 

block structured language ALGOL. Finally, while the design 

objective in 1964 still stressed being problem orientation, 

it now also stressed computer orientation, as it was 

believed that the success of SIMULA depended on its compile 

and run time efficiency. 



'4-c 

A storage allocation package was designed based on a 

two-dimensional free area list. In short, each area had a 

"used" bit that was used to facilitate the combination of 

neighboring fr-ee areas. As a result of this bit, stack 

allocation was possible and the entire noncontiguous storage 

of the computer could be utilized. Thus, the search space 

for dynamic structures was drastically increased bringing 

about the process concept and quasi-parallel programs. 

Processes in quasi-parallel execution implied that control 

could be passed from one process to another as a result of 

special sequencing statements. The operation of the system 

was now a sequence of active phases of the processes present 

in the system. Each process, therefore, had a "reactivation 

point", which identified the program statement at which 

control would resume next time the process was activated. 

The reactivation point created an illusion of a local 

sequence control which steps sequentially through the 

statements associated with a process. Thus quasi-parallel 

processes were parallel in the sense that those processes 

which currently are inactive can be thought of as 

"executing" a statement which takes system time. The 

storage allocation package allowed these sequencing 

statements to be placed at any program point since their 

data stacks could grow or shrink independently. Also, 

processes could be created and destroyed in any order. 

8 



SIMULA programs also had to provide programming 

"security". That is,<~any erroneous program must be rejected 

by the compiler, run time checks, or by reasoning based 

entirely on the language semantics, independent of the 

implementation. The main objective was to achieve compiler 

controlled data access. With processes only interacting 

through nonlocal data,  the  ALGOL  access  rules  could be 

applied..   All j local references could be checked at compile 
i ' ....■■ 

time fori validity, except subscripts  and  parameters which 

are  checked  at  run  time.  However, this was not the case 

when there was a\ need to obtain access to the contents of an 

object  from outside the object.  In other words, the active 

object would need access to its own data as well as those of 

the other objects. The automatic storage retrieval mechanism 

ensures that  a  computable  reference  value  refers  to  a 

process  currently  in the system.  The connection mechanism 
\ . 

provided the required compiler control. The user format  for 

this mechanism is as follows 

INSPECT <reference> WHEN Al DO SI 

WHEN An DO Sn 
OTHERWISE Sn+1 

where Al,...,An are activities and SI,...,Sn+1 are 

statements. This forces the user to interrogate class 

membership'of the referenced process. For example, if the 

process  belongs  to  class Ai the state Si is executed.  Si 

9 



acts'* as a "connection" block having the attributes of the 

"connected" process as its local variables. The connection 

block contains, a stored reference to the connected process. 

This "connection pointer" prevents accidental delation of 

the process while it is connected. 

Another form of security dealt with deallocation of 

storage. This could be done easily by explicitly using a 

"destroy" statement or going to the process "end". This 

brings about efficiency and simplified implementation. 

However, to ensure security,one needed a process referencing 

technique ensuring that only one pointer could point to a 

process at any time. Unfortunately, such a scheme was not 

found. It was finally decided to require that procedures 

and subblocks be self destructive on exit.  The expression 

NEW <class> (<actual parameter list>) 

gives a value that is a reference to a process. The list of 

actual parameters provides initial values of attributes of 

the generated process. Since SIMULA has no delete 

statement,) the process will remain part of the system as 

long as it can be referenced. The "reference count" of the 

process is updated each time a reference is stored or 

deleted. When the reference count becomes zero, the process 

can no longer be referenced and is deleted. However, this 

process does not necessarily leave the system when it has 

terminated  its  own  operations.   It  may remain as a dead 

10 



object, allowing its attributes to be accessible to other 

processes through the connection mechanism. If memory gets 

tight, a garbage collectipn routine deletes reference chains 

which could not be removed by the reference count mechanism. 

However, garbage collection is used as a last resort as it 

was costly _ in nature to run. However, combining all these 

together led to possible conflicts with respect to data 

accessing security. The first conflict that could occur was 

that a process could outlive its dynamic parent. In other 

words, a block instance containing the generating expression 

which gives rise to the process could terminate before the 

process., As a result, the process may access nonexisting 

data through its formal parameters. To resolve this, all 

call by name parameters to processes were disallowed. 

Another conflict brought about by the deallocation scheme 

was that a process could outlive its textually enclosing 

block instance, thereby accessing nonexisting nonlocals. 

This problem was solved by having all processes be declared 

by "activity" declations local to a special block known as 

the "SIMULA block". 

SIMULA begin...end 

This block is the outermost block or must be embedded in an 

ALGOL program. The SIMULA block corresponds to the 

simulation model. On entry to the SIMULA block during 

execution,  the  simulation  facilities  become  dynamically 

11 



available. 

A prominent feature of SIMULA was to be the concept of 

"process set", along with scanning mechanisms and . the 

"selector expressions" as the only means of process 

identification. The"process pointer"# however, came into 

being as a result of the selector expressions being 

inefficient. Efficiency became an important issue. The 

implementation of the language should be efficient and,users 

should be able to create efficient programs with the 

language. For example, the built-in mechanisms should have 

run times independent of the size of the model. In this 

respect, process referencing became the important issue. An 

abstract ordered set concept was included as a new data type 

to be used as a list mechanism for queuing purposes. These 

ordered sets were implemented as two-way circular lists. 

Processes were able to be members of any number of- sets at 

the same time by using auxiliary "element" objects to 

represent a process in different sets. All process 

references were made, indirect by these element objects by 

providing only "element pointers" in the language. 

Physically, the process reference was a pointer to an area 

of memory containing the data local to the process and some 

additional   information  defining  its  current  state  of 

T execution. A process would remain part of the system as 

long as it could be referenced through a computable element 

expression.   The  element  and  set  concepts   served   to 

12 



facilitate and standardize the manipulation of queues and 

other linear lists of processes. A set is an ordered 

sequence of elements. Each element consists of a pointer to 

the successor element of the set, a pointer to the^ 

predecessor element of the set and the pointer to a process. 

By using defined system procedures, sets can be formed and 

manipulated. All sets have one dummy element ailed the "set 

head". An empty set therefore consists of only the set head. 

The element concept and the technique of reference 

processes had many desirable properties. First", the ordered 

sets of processes could be manipulated by means of standard 

procedures. Next, when a process was referenced through an 

element in a set, its successor and predecessor in the set 

were immediately accessible. Also, any given process could 

be a member of an unlimited number of sets at the same time. 

And finally, the members of a set could be processes -of 

different classes. 

Model simulation time is the time reference used within 

a simulation model to keep the advancement of time under 

control in order to allow the computer to simulate 

concurrent events. The actions of a process are grouped 

together in active phases, separated by periods of 

inactivity. Only one process can be actively executing at 

any one time. An inactive period of a process is caused by 

a deactivating statement executed by that process. Thus, 

the current active phase|,.p.f the ,process  ends  and  control 

13 ■  v 



leaves the process. A "reactivation point" is held until 

the time of the next active phase of the process and resumes 

control at that point. The reactivation point concept 

allows the user to string together actions -occurring at 

different times into a logical sequence. This active phase 

of a process is called an "event". Deactivating statements 

allow for inactive periods of definite or indefinite lengths 

of time. An event can be scheduled to happen either 

immediately or at .some later time. A .process for which an 

event has been scheduled but not completed has an associated 

"event notice" representing the event. An event notice 

contains a reference to the process and a time reference. 

Implementation of model time scheduling was accomplished by 

maintaining a list, called the "sequencing set, SQS", of 

scheduled event notices sorted by time attributes. The SQS 

was represented by a binary tree which preserved the order 

of elements with, equal time values. This implementation 

reduced search times but required space for several pointers 

and other information with each element on the list. To 

avoid wasting space in processes not on the list, the event 

notices, as explained previously, are stored on the list. 

Since each process has only one event notice, the logical 

significance of the time list is unchanged. Algorithms for 

removal and insertion of event notices were also 

implemented. The currently active process is the one which 

is at the end of the time list.   When  the  current  active 

14 
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phase is completed, the current event notice is deleted. 

Its successor in the SQS becomes the current event notice, 

and control enters the associated process at its 

reactivation point. 

A process can be in four possible states. As 

simulation proceeds, the states of processes will change. A_ 

process that is "active" can alter the states of other 

processes along with its own state. A "suspended" process 

has an event notice and a reactivation point. This process 

will start when the event notice becomes,the current one. A 

process that is "passive" has a reactivation point but lacks 

an event notice. It remains passive until another process 

changes its state. A "terminated" process reached the end 

statement of its process definition. This process has no 

reactivation point or event notice.  It can no longer change 

to any of  the  other  states once terminated.  However, a 

t 
passive or terminated process will remain as it still can l&e 

referenced  through  an  element  expression.  The states of 

processes are altered by sequencing statements operating  on 

the  SQS.  A sequencing statement may delete an event notice 

and/or schedule an event by generating an event notice.   In 

addition,  the  statement will specify explicitly either the 

time reference of the event notice, or its position  in  the 

SQS.   A  timing  clause  specifies  the  reference  of  the 

generated event notice, and this determines its position  in 

the  SQS.   The  event  notice is normally placed behind all 

15 



others  with  the  same  time  reference  unless  otherwise 

specified. t 

D. A Detailed SIMULA Example 

SIMULA was used to a large extent as a system 

description language. It was found that the writing of the 

program or system description almost always led to a better 

understanding of the system. "After the't introduction of 

SIMULA I, many shortcomings were discovered within the 

language. These shortcomings, which will be discussed in a 

later section, resulted in the development of SIMULA 67. 

Below is a complete SIMULA program (See McNeley, 1967) that 

could be used to represent a system of a grocery store 

checkout, consisting of two checkers and one hundred 

customers. 

Line Program 
0 SIMULA store: BEGIN 
1 ACTIVITY customer(n); VALUE n; REAL n; 
2 BEGIN REAL stime; INTEGER i; 
3 stime:=TIME; 
4 IF n<=60 THEN i:=l ELSE i:=2; 
5 IF EMPTY(queue(i)) THEN ACTIVATE c(i) AT TIME? 
6 INCLUDE(CURRENT,queue(i)); 
7 PASSIVATE; 
8 HIST0(hl,h2,TIME-stime,1); 
9 HOLD(0.25); 

10 ACTIVATE c(i) AT TIME; 
11 ncus:=ncus+l; REMOVE(FIRST(queue(i)); END; 
12 ACTIVITY clerk(i), VALUE i; INTEGER i; 
13 , BEGIN 
14 '  il: IF EMPTY (queued) ) THEN GOTO 12; 
15 INSPECT FIRST(queue(i)) WHEN customer DO 
16 BEGIN HOLD(MAX(0.25,0.l*n)); 
17 ACTIVATE FIRST(queue(i)); 
18 PASSIVATE; 

V  16 



19 GOTO 11; END; 
20 12: PASSIVATE; 
21 GOTO 11; END; 
22 SET queued: 2); INTEGER ncus; ELEMENT c(l,2); 
23 ARRAY hi(1:26), h2(1:25); 
24 ncus:=0; FOR i:=l STEP 1 UNTIL 25 DO BEGIN' 
25 h2(i):=0.25+(i-l)*0.25; h(i):=0; END;. h(26):=0; 
26 c(l):=NEW clerk(l); ACTIVATE c(l) AT TIME; 
27 c(2):=NEW qlerk(2); ACTIVATE c(2) AT TIME;       \ 
28 11: ACTIVATE NEW customer(draw(1:25)) AT TIME; 
29 HOLD(EXPON(0.25); 
30 IF ncus<=100 THEN GOTO 11; 
31 HPRINT(hl,h2,1,26,0.25, 1); 
3 2 END; 

The program shows reserved words  in  capital  letters.  The 

line  numbers  are not part of the program but only included 

for reference purposes.  There are two  process  definitions 

in  this  program.   The  first is "customer".  This process 

contains a parameter "n" which is set  outside  the  process 

and  represents  the  number  of items a particular customer 

wants to purchase.  There is a customer /process  for  every 

customer  in  the  store.  Each customer is described by the 

same process description but has different  values  for  its 

attributes  "n",  "stime" and "i"/ Lines 3 thru 11 form the 

process description for customer.  Line 3  stores  the  time 

when   the   customer  arrives  at  the  checkout.   Line  4 

determines if the customer has  six  or  less  items.   This 

determines  at  which  checkout the customer waits  since of 

the two checkouts in the system, one  is  for  six  or  less 

items  and the other is for over six items.  Line 5 will, if 

the queue of clerk  c(i)  is  empty,  alert  that  clerk  by 

executing   a  scheduling  statement  which  schedules  that 

clerk's process to occur at the current point in  simulation 

17 



time. In lines 6 and 7, the customer is entered on the 

queue of the clerk and the process of the customer is set to 

inactive until the clerk checks his items. The time of 

delay depends on the number of customers already in that 

clerk's queue. Lines 3 and 9 allow for customers records or 

histogram to be kept and also delays the customer one 

quarter unit. After the delay, in line 10, the clerk 

process is resumed again at line 19. In line 11, the 

variable "ncus" is global and is used to tally the number of 

customers already processed. The customer is then removed 

from the queue and leaves the system. 

As stated before, there are 'only two clerks in the 

system. Thus, the activity "clerk" will be activated two 

times. This process contains a parameter "i" which is set 

outside the process and represents the clerk identification 

number. Lines 12 thru 21 form the process description for 

clerk. Line 14 determines if the specific clerk's queue is 

empty. If it is empty, control shifts to line 20 and the 

process passivates (becomes passive) otherwise control 

continues from line 15. Statement 15 extends through line 

19. The form "INSPECT PI WHEN Al DO" is. .the way SIMULA 

establishes which process description the process specified 

by PI was created. If it came from the process description 

specified by Al, the "DO" part of the statement is executed. 

Lines. 16 and 17 cause delays for a fixed time and then the 

clerk alerts a particular customer  process.   The  customer 

18 



process resumes at line 8. The clerk process becomes 

inactive until the current customer activates it on line 10. 

The clerk, when reactivated, resumes at line 19. This in 

turn allows the clerk to check for another customer in the 

queue. Notice that none of the clerk processes ever 

terminate because the "end" statement is never reached. 

This is unlike a customer process which does terminate and 

leave the system. The clerk process can be termed as a 

"permanent process", whereas the customer process is a 

"temporary process". Temporary processes can allow vast 

amounts of data to pass through the system over a period of 

time, but only a limited amount of data will be present at 

any one time. 

The main part of the program begins at line 22 with the 

declaration of set "queue" which is associated with the 

process clerk. The array "c" is defined containing members 

that are pointers to the clerk processes - for reference 

purposes. Line 23 defines histogram variables that will be 

used to record the results of the simulation. Lines 24 and 

25 initializes the customer counter and the histogram 

variables. The two clerks are created and their references 

stored into c(l) and c(2) on lines 26 and 27. They are 

activated at the current time. Line 28 creates a customer 

having one to twenty-five items and is activated at the' 

current time. Lines 29 and 30 cause delays for a period of 

time to allow for a new customer approximately every quarter 

19 ! 



unit of time. Then a check is made to see if all customers 

were created. Line 31 prints out the histogram information 

for the simulation run.' On line 32 the end of the SIMULA 

block is reached and the simulation is terminated. 

20 



II. SIMULA 67 

A. Shortcomings of SIMULA I 

As experience with SIMULA increased, a number of 

shortcomings were found. The element/set concept was found 

to be rather clumsy as the basic mechanism for list 

processing. Single process pointers restricted to one set 

at a time proved by experience . to be much easier. The 

inspect mechanism, which was used for remote attribute 

accessing, also turned out to be very cumbersome. This led 

to the idea of record classes. Full Security could be 

obtained in constructs like "M'.C" by compile time reference 

qualification. The idea of record subclasses turned out to 

be a reasonably flexible way of run time referencing. 

It was felt that SIMULA'S simulation facilities were a 

heavy load to carry for a general-purpose language. Tn~e~ 

multistack structure worked very well for sequencing, but 

quasi-parallel sequencing could be used for other 

applications that did not use the simulated time concept. 

When writing simulation programs, it was also observed that 

many processes shared common properties such as data and 

actions. By somehow preprogramming the common properties, 

much programming effort could be. saved. Recall, as 

explained previously, that call by name parameters were not 

allowed for security reasons. As a result, parametrization 

would   not   be   as  flexibl-e  for  preprogramming  common 
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properties.  However, the idea of subclasses being  extended 

to apply to processes could be used. 

Another shortcoming of SIMULA existed in its 

implementation. Whenever the number of process activation 

records was large, as in most simulation runs, much storage 

space was wasted. For very large simulations, this led to 

memory space problems. A new compacting garbage collector 

was found to be more efficient than the combined reference 

count/garbage collector that was being used in SIMULA. This 

new garbage collector could take advantage of active 

deallocation at exit from procedures and blocks easily by 

moving the free pointer back whenever the deletion occured 

at the end of the used memory. 

Much work went into the feasibility of the record class 

construct and how to place it into the language. 

"Prefixing" was found to be the answer. It was decided that 

prefixing could be done by using a list structure consisting 

of a "set head" and a variable number of "links". The 

various processes could be in effect glued to a link to make 

each link-process pair one block instance. Each process 

would be a block instance with two lasers. The prefix layer 

would contain a successor and predecessor and other 

properties of the two-way list membership. The main layer, 

would contain the attributes of the process. This two layer 

property of the process must be known at compile time to 

obtain   attribute   referencing   security   and   compiler 
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simplicity. The links are declared separately without any 

information about the other process classes which used link 

instances as a prefix- layer. Since the processes of these 

other process classes were both links and more, the class is 

indicated by prefixing their declarations with the process 

class identifier, namely^, "link". These process classes 

would then- be "subcldsses" of "link". Prefixing leads to 

multiple prefixing. This in turn can be used to establish 

hierarchies of process classes. The concatenation of a 

sequence of prefixes with a ,main part could also be applied 

to the action part of a process class. 

The class concept led to a completely new language 

approach. SIMULA. I's shortcomings brought about SIMULA 67 

which woi^ld have the following points. First, the new 

general programminglanguage would be designed in terms of 

being an improved SIMULA I. The basic concept would be 

classes of objects with the prefix feature and subclass 

concept included. Finally, direct and qualified references 

would be introduced. 

B. Development 

Development began with the unification of the old 

process like objects and the new concept of self- 

initializing data/procedure objects. Along with this began 

the removal of the model time or simulation time concept. 

The term "object" now came about since  the  term  "process" 
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really could not be. applied to the new concept. This object 

would be generated like a function procedure by being 

invoked by the evaluation of a generating expression. The 

object may then set its own local variables as necessary. 

The control would return to the generating expression 

carrying back a reference to the object as the function 

value by either reaching the "end" of the object or as a 

result of the "detach" operation. If an "end" was found, 

the object terminates and no further actions of the object 

can be executed. On the other hand, a "detach" allows the 

object to become a "detached object" and be capable of 

functioning as a "coroutine": The coroutine call "resume 

(<object reference>)" would make control leave the active 

object, leaving a corresponding reactivation point at the 

end of the resume statement, and enter the reference object 

at its reactivation point. 

The declaration given to a class of objects is called 

"class". The idea of class prefixing and concatenation made 

it possible to define classes primarily intended to be used 

as prefixes. 

Circular list processing, similar to sets in SIMULA I, 

were described 'by means of a class heirarchy for list 

elements, "class link", and list head, "class list". - These 

both had forward and backward pointers contained in a, common 

prefix part. This meant that any class prefixed by "link" 

could have  objects  that  could  go in and out of circular 
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lists. Procedures such as "into" and "out" .dealared within 

the class prefix part, together with the 14ft pointers-, make 

insertion and deletion possible. 

The concatenation mechanism was slightly modified in 

order that the process concept as a prefix class could be 

used. Originally, the operation rule of the concatenated 

class contained the operation rule of the prefix class 

followed by the main part. Now, for a process object, 

predefined actions must exist at the front and at the end of 

the operation rule. Thus, the prefix class had an operation 

rule of initial actions and final actions split by the 

symbol "inner". This prefix class was named "process". The 

term "process class" now was used instead of the."activity" 

of SIMULA I. 

All of the sequencing statement procedures of SIMULA I 

could be implemented by using procedures that worked on the 

SQS, the sequencing set. Terminated objects could be 

removed from the SQS and control passed to the successor 

object. The only problems that remained were the placement 

of the SQS pointer and the representation of the main 

program of the simulation* model, which in SIMULA I was 

accomplished by the SIMULA block. The problems were solved 

by taking the prefix classes, procedures,  and  SQS  pointer 
0 

and putting them into a big class named SIMULA. The initial 

actions of this prefix class was to initialize the SQS which 

contained  the  main program actually disguised as a process 
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object. What was important here was the fact that an 

instance of a prefixed block is a detached object by 

definition. This meant that the main program could function 

as a coroutine in quasi-parallel with its local objects. In 

June of 1967, the ""SIMULA class" was reorganized as a two 

level hierarchy, 

CLASS SIMSET 
and, 

SIMSET CLASS SIMULATION 

This now allowed circular list handling for  purposes  other, 

than simulation. 

Even though the class/subclass facility could be used 

to define general object classes and specialized subclasses 

by declaring additional properties, adding details to the 

operation rules could not be done. As stated before, call 

by name procedure parameters, which could solve this 

problem, could not be used because of allocation and 

security problems. A "virtual" quantity concept, where the 

actual parameters would have to, be declared in the object 

itself but at a deeper subclass level than that of the 

virtual specification, was adopted. A generalized object 

could now be defined whose behavior pattern could be left 

unspecified in the prefix class body. Different subclasses 

could then contain different actual parameter declarations. 

In 1967, another development began to take shape. 

String handling  and  input/output facilities were based on 
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classes and a new type "character". The class "string 

descriptor" contains a character array. The class "string" 

identifies a substring of a string object and a scan pointer 

for sequential access. Both classes contain various 

operators declared as procedures. These constructs, provided 

much flexibility but also run time data structure and 

syntactic overhead. The string type was later changed to 

"text" by name. A text could be thought of as either a 

string descriptor ("text reference") or a character sequence 

("text value"). A new notation was designed to distinguish 

them. The operators ":-", "==", and "=/=" were chosen for 

reference assignment, reference equality and reference 

inequality. These signs were also applied to object 

references as well. Input/Output was designed by using a 

hierarchy of classes corresponding to different kinds of 

files. 

G. Implementation and Standardization 

SIMULA I was originally a system description and 

simulation language, not a general-purpose programming 

language. It was mainly implemented for the UNIVAC 1100 

computer. SIMULA 67, however, was to be a general 

programming language and as a result be made available on 

most major computer systems. The Norwegian Computer Center 

came on hard times in 1967 and became restricted to new 

large   long-range  projects.   However,  four  people  were 
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allocated to the SIMULA 67 implementation. But other, 

resources were not made available since arguments against 

SIMULA 67 still existed. It was felt that SIMULA 67 would 

not be very profitable to the NCC. The NCC felt that a 

modern, commercial compiler would require a substantial 

investment to become profitable. The NCC was not willing to 

put out large amounts of money for SIMULA 67. But, noting 

the reputation of SIMULA I and the fact that SIMULA 67 was 

to be linked to ALGOL 60, along with the importance of 

simulation, the implementation started. 

Top priorities were given to implementaion for Control 

Data, IBM and UNIVAC computers. Compilation and run time 

speeds had to be comparable with ALGOL 60 compilers. This, 

coupled with documentation and educational material would 

make SIMULA 67 a high standard language. ALGOL 60" was 

contained as a subset of SIMULA 67 with only minor 

modifications. The name SIMULA 67 was agreed upon with some 

reluctance due to the feeling that this language would be 

considered as a true simulation language. It was feared 

that v it may slow down the language's acceptance as a 

general-purpose language. However, the name was accepted 

due to the fact that it was a new improved version of SIMULA 

I that could be used for simulation. 

As of 1976 there were eight different compilers for 

SIMULA 67. Implementations existed for the UNIVAC 1100 

series, CDC 3000, 6000 and  Cyber  70  series,  IBM  360/370 
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series along with the DEC system-10 series. Translation 

programs to transfer SIMULA 67 programs from one 

implementation to another do exist. It has been found that 

SIMULA 67 programs were easy to move from One computer to 

another. The fact that SIMULA 67 allows for no undefined 

elements allowed the SIMULA 67 language itself to cause few 

problems. The main problem with moving SIMULA 67 have been 

outside the language. A few of these problems include 

hardware differences between computers and also operating 

system differences mostly in file handling. Also, moving a 

program from a batch to an interactive environment caused 

problems. 

There are a few incompatabilities that exist between 

SIMULA 67 systems. First, hardware representation was not 

considered when SIMULA 67 was defined. What this means is 

that on some SIMULA 67 systems reserved words are used, and 

on other systems markers around key operator words are used. 

For example, on one system "IF" is a reserved word and on 

another system this may be denoted by "'IF'". Even though 

translator programs can be used to amend the notations, 

trouble would have been saved if the hardware 

representations would have been designed with the language 

design. Another incompatibility exits because different 

operating systems handle files differently. Finally, 

different word lengths on different systems leads to 

precision problems for real variables. 
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Standardizing SIMULA 67 so that programs can be easily 

transported has been difficult due to the desire to add new 

features, REPEAT-UNTIL for example. Another reason stems 

from the desire to solve certain problems in a better way 

then the initial definition of SIMULA 67 allowed them to be 

solved. All in all, SIMULA 67 was standardized before and 

during the first implementation. This, on the whole, gave 

good compatability between the systems and allowed the 

SIMULA 67 standardization to-be more successful than other 

standardization efforts. The main reason for this is that 

the SIMULA 67 language is fully defined and does not, as 

many other languages do, contain undefined constructs. 

D. Simulation Language Objectives 

In this section, simulation languages in general will 

be covered. Simulation, in a broad sense, could be defined 

as a technique of representing a dynamic system by a model 

in order to gain information about the system through 

experiments with the model. Digital simulation is widely 

used as a tool for studying traffic flow, production 

systems, transportation and communication networks, among 

others. The simulation language therefore serves the 

following purposes. First, it aids the analyst in building 

a model by presenting a conceptual framework for identifying 

and describing the system components. Next, it provides a 

notation for this description of the dynamic model. Finally, 
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it serves as a  programming[ aid,  making  changes  easy  to 

modify. 

There are two different approaches used in developing a 

simulation language. The "continuous approach" is mainly 

accomplished using analog computers. But since digital 

computers are discrete devices, continuous changes in the 

physical system can be represented by a series of discrete 

changes in the model. This is called a "discrete approach" 

and such a model is called a "discrete event model". In 

contrast to the technique of representing the system as a 

whole by a set of differential equations, the individual 

events of a discrete model are specified in great detail. 

Many discrete simulation languages, as a result, are 

general-purpose algorithmic languages. 

Simulation languages also provide concepts and 

programming facilities not found in ordinary general-purpose 

programming languages. First, simulation languages enable 

concurrency of processes by introducing a system time 

concept used for ordering events. Usually, systems are very 

large containing vast amounts of data. Dynamic storage 

allocation of data is a common feature. Components, thus, 

enter and leave the system, only those currently present are 

^represented within the computer. Many dynamic systems are 

concerned with motion and flow which means that the 

configuration of the system changes with time. Therefore, 

all   simulation   languages   provide  some  form  of  list 
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processing. Interdependence is also present. For example, 

conditions for given events to occur may be extremely 

complex on account of interdependence between system 

components. Most simulation languages, as a result, have 

general-purpose logic capabilities including set concepts 

and predicate calculus facilities. Algorithms are present 

for the generation of random numbers according to various 

distributions. Statistical analysis is very important in 

simulation. The consecutive changes of state in a model 

represent the complete history and outcome of the 

experiment. In order to get meaningful results, individual 

observations of selected variables need to be analyzed 

statistically. Built-in functions to average, histograms 

and others are standard in simulation languages. Finally, 

continuous phenomena are in principle represented by a 

series of discrete changes. Most discrete event languages 

provide no aids for treating continuous changes. 

Simulation languages. involve systems in which 

interrelated processes interact in time. Processes are 

modeled by a sequence of discrete "events", each of which is 

assumed to occur instantaneously in the time scale of the 

system. The effect of an event is to change the "state" of 

the system. The total effect of the process is the sum of 

the effects of the sequence by which the system is 

characterized. A scheduling algorithm determines the event 

with the earl'iest time from a list of events which have been 

-it 
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scheduled and causes execution of that event. "Exogenous 

events" are scheduled by a mechanism outside the system 

being simulated, while "endogenous events" are scheduled 

during the execution of other events. The information 

structure on which events operate are referred to as 

"entities". An entity forms a single unit with respect to 

creation or deletion but may have a number of data fields of 

different value1 types. The entities manipulated by event 

subroutines of a simulation language include both data 

entities, which specify data attributes of the process and 

event notice entities, which specify information about 

events which have been scheduled for execution at a point in 

system time not yet executed. When execution of the event 

completes, the scheduler determines the next event to be 

executed. Simulation algorithms allow the user to have 

explicit control over the order in which simultaneous events 

are to be scheduled. Specifics of the scheduling 

mechanisms, quasi-parallel processing and the simulation 

algorithms will be covered in greater depth in the section 

on SIMULA 67 syntax. 
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III. SIMULA 67 Constructs and Syntax 

A. Statements 

As is standard in most languages, SIMULA 67 includes 

the numerical data types of REAL and INTEGER. Also included 

is the BOOLEAN data type which takes on the value of "true" 

or "false". To declare a variable of any one of these 

types, the following example shows the syntax'that is used. 

REAL x,y; 
INTEGER z; 
BOOLEAN found; 

This example accomplishes! the following task. First, 

storage locations are set aside with the names "x", "y", 

"z", and "found". The type of the variables "x" and "y" is 

fixed as real and "z" as integer. The variable "found" is 

fixed as a boolean. Finally, variables "x", "y" and "z" 

will have initial values of zero and the variable "found" 

will be set as "false". Every variable that is used must be 

declared before being used for the first time. The 

declarations appear at the top of a block.   Variable  names 
o 

must begin with a letter and may be followed by, letters 

and/or digits depending on the specific compiler used. 

The operations that can be performed on numerical 

variables and constants are addition (+), subtraction (-), 

multiplication (*), division (/) and exponentiation (**). 

Exponentiation  has  the  highest priority of the operators. 
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Multiplication and division share the next rank, followed by 

addition and subtraction sharing the lowest rank. The 

typical rules for evaluation of an arithmetic expression 

hold. That is, left to right evaluation depending on 

operator priority. If both operands in an expression are 

integer variables, the result is integer, however, if one of 

them is a real variable, the result is real. If the 

operator is division (/)» the result is real in any case. 

For integer division, an operator of double slashes (//) can 

be used. If the operator is exponentiation, the result is 

real in all cases. 

An assignment statement takes a typical form of 

variable followed by the ":=" assigning mark, followed by 

some expression.  For example, 

x := y + x; 

adds the integer variable "x" to "y" and stores the result 

back into "x". Notice also that each assignment statement, 

as in the variable declarations, is followed by a semicolon. 

The semicolon acts as a separator between statements. 

Labels on statements are also possible in SIMULA 67 

programs. A label name has the same restrictions as a 

variable name. A label name must be different from all 

other names assigned to variables. The label is separated 

by a colon (:) from additional labels, which may follow, and 

from the succeeding statement.  The following example, 
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loop: x := X■+ 1; 
GOTO loop; 

shows a label called "loop". It also shows an 

"unconditional" jump by using a "goto" statement. , As a 

result of this "goto" statement, the piece of code will be 

executed endlessly resulting in an infinite loop. As in 

languages such as PASCAL, the "goto" statement is a basic 

part of the language, however, due to the nature of the 

language being a structured programming language, the "goto" 

is seldom used. Other "conditional" jumps are used instead 

of the "goto" to allow for a perfectly structured program. 

Conditional statements take the form of - ' 

IF b THEN si ELSE s2; 

where "b" is a boolean expression. If this expression has 

the value of "true", the statement "si" is executed and the 

statement "s2" is . skipped. On the other hand, if the 

boolean expression has the value "false", the statement "s2" 

is executed and the statement "si" is slcipped. In both 

cases, the program is continued with the statement following 

the conditional one. The statements "si" and "s2" are 

restricted to being only a single statement in each case. 

However, it is possible to execute a series of statements in 

place of the single statement "si" or "s2" by forming a 

"compound statement". A compound statement is formed by 

joining a series of statements together as a unit by placing 
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the word BEGIN before the first statement of the group and 

the word END after the last statement of the group. In 

general, at any place where a single statement is permitted, 

a compound statement is also permitted. The IF statement 

can also be:, used without the ELSE clause in the following 

manner. 

IF b THEN sit 

In this case, statement "si" is executed if the boolean 

expression "b" is "true" otherwise the program control will 

continue with the next statement following the conditional 

one. 

Loops can be handled in another way besides using GOTO 

statements. The loop can be carried out using a FOR 

statement. 

FOR c:="list" DO s; 

Here, "list" can be replaced by elements separated from one 

another by commas. Each element can have pne of three 

forms: 

. 1 STEP i UNTIL u 
e WHILE b 

or,   . { 

The control  is  performed  for* each  element  of  the  FOR 

statement, one aftqr the other.  The first form, 
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FOR c:=l STEP i UNTIL u DO s; 

uses the "c" as a control variable, the "1" as the starting 

value, the "u" as the .upper bound land the "i" as the 

increment that repeats statement "s". When this form of the 

FOR statement is encountered, the control variable "c" is 

assigned the lower bound , "1". This control variable is 

tested to see that it has not exceeded the upper bound "u". 

If is has not, the statement "s" is executed. However, if 

the control variable exceeds the upper bound, the program is 

continued from the statement following the FOR statement. If 

the control variable was not greater than the upper bound, 

the control variable is then incremented by the "i" value 

and execution loops to check and see if "s" should be 

executed again. As long as "c" is not larger than "u", the 

statement "s" gets executed and "c" gets incremented by "i"" 

in a loop.  The second form of the FOR statement, 

FOR c:=e WHILE b DO s; 

works as follows. The control variable "c" is given a value 

of some expression "e". The boolean "b" is then tested. If 

"true", statement "s" is executed and the loop continues. 

If "false", the loop ends and the program is continued with 

the statement following the FOR statement. The last form of 

the FOR statement is as follows. 

FOR c:=e DO s; 
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The value of the arithmetic expression "e" is assigned to 

control variable "c". The statement "s" is then executed. 

Finally, the statement following the FOR statement is 

executed. As a result, this form of the FOR_s_tatement is 

not a loop as the other forms are, as the "s" statement is 

executed only once. The following is an example to end the 

discussion on FOR statements. 

FOR r:=6, 9 STEP 2 UNTIL 17, 20 DO 
BEGIN 

t := 2 * r; 
' g := 3 * r; 
END 

The loop will calculate values for "t" and "g" for the 

values of "r" at 6 (first element), 9, 11, 13, 15 and 17 

(second element), and 20 (third element). 

■ Another way to generate a loop  is  by  using  a WHILE 

statement. 

WHILE b DO s; 

As long as the boolean, expression "b" is "true", the 

statement "s" will be executed. The WHILE statement is not 

part of the SIMULA standard, however, most compilers accept 

it. 

Attention will now be turned to relational and logical 

operators. The relational operators are less than (<), less 

than or equal (< = ), greater than (>), greater than or .equal 

(> = ),  equal  ( = )  and  not  equal  (-•=).  The result of two 
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arithmetic expressions separated by—ar-relational operator is 

either "true" or "false", as is typical of most other 

languages. The logical operators, in order of highest to- 

lowest priority, are negation (NOT), logical AND (AND), 

logical OR (OR),, implication (IMP) and equivalence (EQV). A 

boolean expression is evaluated on the basis of priorities 

of these operators. As an example, the assignment 

statement, 

m := r<=5 AND r>0; 

will set the boolean variable "m" to be "true" if the 

integer value "r" is greater than zero and less than or 

equal to five. 

A vector variable can be stored in memory by using the 

ARRAY declaration. This declaration will reserve an area of 

locations in memory and attach to it a name. These places 

will all have the same specified type. The declarations 

also fixes the bounds for the indexes.  The following. 

INTEGER ARRAY a,b (6:20); 
REAL ARRAY c (1:5,10:15); 

represents the declaration of two vectors "a" and "b" of 

fifteen elements each, both with indexes from 6 to 20. 

These two vectors may hold only integer values. The second 

declaration sets up a two-dimensional array , "c", with the 

first index varying from 1 to 5 and the second index from 10 

to  15.   The  "c"  array has thirty elements and only holds 
■ - -i. 
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real values. Boolean arrays can also be declared. 

B. Input/Output 

Input and output in SIMULA 67- work according to a 

system of card images. For input, the card image of eighty 

places is transferred to a buffer, called SYSIN.IMAGE, with 

eighty locations by the following command. 

INIMAGE; 

Therefore, if input is desired, the INIMAGE command must be 

given in order to place the external data into the internal 

buffer. An integer value can then be i^ead from this buffer 

by using the command, 

V := ININT; T 

This puts-an integer value into the integer variable "v". 

In the same respect, a real value can be read from the 

buffer by using the comnfancl, 

X := INREAL; 

This will put a real value into the real variable "x". In 

SIMULA 67, a digit must follow the decimal in a real number. 

For example, "3." is not allowed as a real value, but  "3.0" 

is.  Both ININT and INREAL are system function names. 
i . 

Card images can contain several values.  To  accomplish 
__\ 

this,    a    position    indicator   or   pointer,   called 
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SYSIN.POSITION, is attached to the buffer. When the command 

INIMAGE is executed, . the position pointer is set to the 

beginning of the buffer. On each reading from the buffer, 

the position pointer is also changed. Between each number 

on the card image there has to be at least one space. Thus, 

after a number is read, the position pointer points to the 

space after the number. 

The position of the buffer pointer can be  set by the 

u§er by means of the command, 
* . 

SYSIN.SETPOS(n); 

where "n" is the position location on the buffer. The 

pointer may be moved forward or backward with regard to its 

present position. This will allow for data or whole card 

images to be read any number of times. 

1 • ■• If a program is needed to process an unknown number of 

data card images, SIMULA 67, as many other languages also 

do, provides a boolean name ENDFILE to indicate whether the 

end-of-file has already been read or not. ENDFILE will 

remain "false" as long as at least one card image can be 

moved into the input buffer by the statement INIMAGE. 

Therefore, when the end-of-file is reached, ENDFILE will 

become "true". 

Output also works by  using  a  buffer.   This  buffer, 

called  SYSOUT.IMAGE, handles 132 characters.  The buffer is 
- -i. . 

printed to output by using the statement, 
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OUTIMAGE; 

At the beginning of the program and after each OUTIMAGE, a 

fresh buffer  is  set  to blanks  and  the buffer position 
r i 

pointer, called SYSOUT.POSITION, is set to the beginning of 

the buffer. Values can be sent to the buffer by using one 

of the following commands, 

OUTINT(v,w); 
OUTFIX(v,a,w); 

or, 
OUTREAL(v,a,w); 

For the OUTINT command, the "v" stands for the variable to 

be printed and "w" is the width of the field that the 

variable is to be printed in. If the width that 'is chosen 

is too small for the output of the number, the value is not 

output. However, a row,of asterisks is output in the field 

instead to show that the field width was too small. For the 

OUTFIX and OUTREAL commands, the "v" again stands for the 

variable to be printed and the "w" again for the field 

width. The "a" stands for the number of digits behind the 

decimal point that is wanted. OUTFIX transfers the variable 

as a fixed-point number 4into the output buffer. OUTREAL 

transfers a variable as a floating-point number to the 

output buffer. Again, if the width is too small, the. field 

will be output with asterisks,. As with the input buffer 

position pointer, the output position pointer can also be 

positioned by the user by the command, 
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SYSOUT.SETPOS(n) 

Here, "n" is a number between 1 and 132. 

Text may also be output by using the command, 

OUTTEXT("This is text"); 

The words "This is text", minus the quotes, will be sent to 

the output buffer. The text to be output must appear 

between two quotation marks. 

C. Text 

A text, in SIMULA 67, is treated as a three level 

instance. The first level, "text reference", refers to the 

second level, a "text descriptor". This text descriptor 

contains the address "a" of the area of the text, the text 

length "1", a pointer "p" to the next character of the text 

and the displacement "d". In the third level, the "text 

field", the contents of the text is stored and a place "m" 

held by a reference to the text descriptor. 

The declaration, 

TEXT x,y,z; 

enables the address of the text descriptors in "x", "y" and 

"z". At this point, the text reference is initialized to 

the name "NOTEXT". The text descriptor has the value zero 

for the items "1", "p" and "d". The text field is empty 

except  for  "m"  pointing  back  to  the  text  descriptor. 
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Although "x", "y" and "z" now have been initialized, along 

with a reference to an empty text, no instance is available 

to store a text. This is done by using the statement 

BLANKS. The relation between the text variable declared and 

the instance created is produced by the reference 

assignment, 

x :- BLANKS (15); 

This creates a text instance of a field up to fifteen 

characters. The number fifteen can be replaced by any 

number, depending on what is needed. This text field is 

filled with blanks and variable "x" refers to it. To assign 

a text to the text field of "x", the assignment character is 

used. 

x := "This is a text"; 

This statement transfers the text on the right side, minus 

the  quotes,  to  the area of the text instance to which "x" 

refers.  Since the length of  this  text  is  only  fourteen 
i 

characters, the remaining place of the text area is filled 

with a blank. 

Another way of setting a text instance is by using  the 

COPY command, 

y :- COPY("This is also text"); 

This creates a text instance that is referred to by "y"  and 
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also transfers the text immediately to the text area of the 

instance. This text area will have a length of seventeen 

since the text string contains seventeen characters. 

A reference to part of a text instance can be assigned 

to another variable. The following example explains the 

command that is used to accomplish this. 

z :- y.SUB(9,4); 

This command will assign to variable "z" part of the text 

instance "y". This is done by placing a decimal point 

behind the variable "y" and following it with the word SUB. 

In the parentheses, the displacement from which_the subtext 

is to start is nine, and the length of the subtext is four. 

This means that the text area of "z" contains the string 

"also".  To further explain, a graph  of  the  situation  is 

used, 

I— y text reference 
1 ' 

I —1-> a 1 1 17 text descriptor 
1 
I > m "This is also text"   text field 
1 
I — l-> a 9 15 text descriptor 

1 
1— z text reference 

It is seen by this graph that the text descriptor of "y" and 

"z" both have address "a", meaning that both point to the 

same text field. However, the variable "y" is a reference to 

the  whole  text  since  the  displacement field is one, the 
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pointer character is one, and the length field is seventeen 

in the text descriptor. On the other hand, the text 

description of "z" shows that "z" is a reference to only a 

subtext of the text field. The displacement field of "z'1 is 

nine, the pointer character is one and the length field is 

five. . ™ . 

To take this  a  step  further,  if  a  text  value  is 

assigned to "z" as follows, 

z := "more"; 

the text field of "y" is also altered since "z" refers to a 

subtext of "y". This will then result in changing the text 

field to "This is more text". For each text field, any 

number of subtexts can be defined. These subtexts may 

overlap. Subtexts must not exceed the boundaries of the 

original text. 

To reiterate, a text reference assignment assigns a 

variable to a text desc-ription' that points to a text field. 

This is expressed by the ":-" symbol. A text value 

assignment assigns new contents to a text field by using the 

symbol ":=". 

The type CHARACTER can be used to store characters in 

variable locations. The declaration, r 

CHARACTER a,b; 

will provide two single byte storage places with  the  names 
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"a" and "b" with the type CHARACTER. These places will be 

initialized with nonprintable "00". A value can,be assigned 

to a variable by using as assignment statement. 

b := '*'; 

S 
This will store an asterisk in  the  variable  "b".   Notice 

that the character is surrounded by single, not double, 

quotes.  Character arrays can also be declared by using 

CHARACTER ARRAY v 

along with the variable name and boundary limits. The 

function CHAR(n), where "n" is an integer, will return a 

character corresponding to the bit pattern of the given 

integer. The opposite is accomplished by the function 

RANK(c). This will return an integer corresponding to the 

bit pattern of the-character "c". 

f Other predefined functions besides CHAR and RANK are 

present in SIMULA 67. SYSIN.MORE is a function that returns 

"true" if the position indicator of the input buffer is not 

greater than the length of the buffer. Therefore, if all 

the characters of the buffer have been read and no more can 

be transmitted, the SYSIN.MORE will be "false". The 

function LETTER(c) will be "true" if "c" is a capital letter 

and "false" otherwise. The function DIGIT(c) will be "true" 

if "c" is a digit and "false" otherwise- If "a" is declared 

as  a character,  a  character  can be read from the input 
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buffer, SYSIN.IMAGE, by, 

a := INCHAR; 

and  a  character  can be  sent  to  the   output  buffer, 

SYSOUT.IMAGE, by 

OUTCHAR(a); 

If "x" is a text variable with a text field of length eighty 

characters, the contents of a card image can be transferred 

to "x" by. 

INIMAGE; 
x := INTEXT(80); 

First, the card image is sent to the input buffer and then 

the entire text of eighty characters is transferred to the 

text field referenced by "x". In general, any number of 

characters can be transferred from the input buffer by the 

INTEXT function. 

When reading values from the input buffer, the names 

INCHAR, ININT, INREAL, and INTEXT can be used. Values can 

also be read from a text variable or a subtext. For 

example, suppose "x" is a text variable.  The statement, 

y := x.GETCHAR; 

with "y" being a character variable, will transmit a 

character from, which the position indicator of "x" is 

pointing,  to "y".        The   position   indicator   is   then 
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incremented.  The statements 

y := x.GETINT; 

and, 

y := x.GETREAL; 

with "y" being an integer in the first case and a real in 

the second case, will start at the first position of the 

text until the corresponding value is found. If the first 

character is not a digit, an error will occur. The position 

pointer will be placed following the found number. The 

following example, 

\ 
BEGIN 

TEXT x,y,z; 
CHARACTER c; 
INTEGER i; 
REAL r; 
X :- COPY("MNO-69.37PQR") ; 
y :- x.SUB(4,8); 
z :- x.-SUB(8,3); 
i := z.GETINT; 
r := y.GETREAL; 
c := X.GETCHAR; 

END 

can be explained  as  follows.   The  text  field  is  shown 

graphically below. 

MNO-69.37PQR 
I 1   IzlI I 
II 11 
1  I—-y 11 
1 1 
1 x— 1 

The statement "i:=z.GETINT" will set "i" to be 37, while the 
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statement "r:=y.GETREAL" will set "r" to be -67.37 and the 

statement "c:=x.GETCHAR" will set "c" to be the letter M. 

To note, for example, the statement "i:=z.GETINT" could also 

have been written as "i:=x.SUB(8,3).GETINT". 

The position indicator of a text variable can be set by 

the statement, 

i := x.POS;    , 

which puts the value of the position indicator of the text 

variable' "x" into the integer variable "i". The value, can 

be changed by using the command 

x.SETPOS(n) 

where "n" is a value between 1 and the length of the text. 

The length of the text can be put into an integer variable 

"i" by the command 

i := x.LENGTH; 

Values can also be written into text fields by other means 

than from the input buffer. 

X.PUTCHAR(c); 

The above statement will put a character "c" into the text 

variable "x" at the position pointed to by the position 

pointer. The pointer then gets incremented. The following 

statements will put numbers into * text field "x". 
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X.PUTINT(i); 
x.PUTREAL(r,a); 

and, 
x.PUTFIX(r,a); 

Here, "i" is an integer variable, "r" is a real variable and 

"a" is the amount of digits after the decimal point. 
> .'■■■' 

The  typical  relational  operators  can be  used  for 

characters.   Besides  the comparison "of text variables with 

the relational  operators,  there  are  also ways  to  test 

whether  a text variable refers to the text field as another 

text variable.  The  operator  "=="  is  used  to  test  the 

equality of  references,  while  "=/="  is used to test for 

inequality.  Therefore, if two text variables  "x"  and  "y" 

reference the. same text field, the'comparison, 

x==y 
. i... 

will result in"the value "true". 

D. Program structure / Blocks / Subprograms 

A SIMULA 67 program is composed of r one large block 

consisting of internal blocks. A block is a unit that 

contains declarations and statements surrounded by the 

keywords BEGIN and END. A block can appear wherever a 

typical single statement can be placed. As seen previously, 

a compound statement is actually a form of a block which has 

no declaration statements. Blocks can be contained within 

other blocks.   The  variables that are declared inside'the 
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block are said to be "local" to that block. All variables 

that were declared outside the block are said to be "global" 

to the inner block. The following consists of three blocks, 

which graphically are labelled A, B and C. 

BEGIN 
INTEGER x,y,z; 

(statements) 

BEGIN 
REAL r; 

• .   (statements) 

END; 

(statements) 

BEGIN 
BOOLEAN b; 

(statements) 

END 

(statements) 
•   - —-—  

END 

<  

(A) 

<  

(B) 

(c) 

It is seen that blocks A and B are inside block C. Block A 

has variable "r" declared. After entrance into the BEGIN, 

this variable will be created somewhere in storage. This 

variable is local to block A. As soon as the END statement 

is reached, variable "r" will no longer exist. Block B has 

variable "b" declared. Again, after entrance into the BEGIN 

of this block, the variable will be created somewhere in 

storage. This variable is local to block B. Again the 

variable will disappear upon ending of the block.   Block C 
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has' three variables, "x", "y" and "z", declared. These 

variables are local to block C. Since blocks A and B are 

contained in block C, these three variables are global to 

blocks A and B. As a result, blocks A and B have access to 

these variables and can i use them in any way. On exit of 

block C by the END statement, these three variables will 

disappear. 

The definition of blocks allow for what is called 

"dynamic array declaration". This is accomplished by setting 

the dimension of an-array in an outer block and working with 

the array in an inner block. The following is an example of 

dynamic array declaration. 

BEGIN 
INTEGER i; 
INIMAGE? 
i := ININT; 
BEGIN 
CHARACTER ARRAY ch(1:i); 

(statements) 

END; 
END 

Here, an integer "i" is read in from the input in the outer 

block. This means that "i" may change each time this piece 

of code is executed. The inner block then creates a 

character array "ch" of "i" elements. Therefore, since the 

"i" can change, the array may have a different number of 

elements at different times. This is a dynamic array since 

the size of the array is not pre-set before the  compilation 
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of the program. 

-\ Suppose now, that a particular task is to be executed a 

number of times in various parts of a program. For example, 

the average of twelve, numbers is to be found at ten 

different locations within the program. A block, which 

contains the code to do the averaging, could be placed at 

each* of the ten locations within the program. This tends to 

make the program very redundant and large. A more efficient 

way to accomplish this task is to create a subprogram that 

contains the averaging code. The subprogram appears only 

once and can be called from any point of the program. 

However, before it is called, it must be declared. This 

declaration, as was the case with variable declarations, 

must appear at the beginning of the block, and is usually at 

the beginning of the program so that the entire program may 

have access to the subprogram. There are two types of 

subprograms. The first is called a "function procedure". 

This type returns a value to the calling statement. The 

second type is called a "proper procedure". This type does 

not return a value to the calling statement as the function 

procedure does, but, performs a specified task. 
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The  declaration  of  a  function procedure has   the 

following structure: 

type PROCEDURE procname (formal); 
formal parameter specification 

BEGIN 
variable declarations 
.statements 
procname : = . ..; 

END; 

procedure 
head 

procedure 
body 

The procedure head contains the type of -procedure. The type 

can be BOOLEAN, CHARACTER, INTEGER, REAL or TEXT. The 

keyword PROCEDURE is followed by a procedure name. This is 

then followed by a list of formal parameters. The formal 

parameters are substitutes for the actual parameters of the 

calling statements, replacing them when the subprogram is 

called. The formal parameters are then specified by type in 

the next line. The procedure body lies between the BEGIN 

and END. It contains declarations of any other variables 

that are used and also all the statements needed to perform 

the specific desired task. Finally, a statement returning 

the value wanted to the calling statement must be present, 

as indicated by 

procname := ...; 

The following example is a function procedure named 

"average" that will compute the average of a twelve element 

real array. Since the value returned is a real value, the 

subprogram  is  a  real function procedure.  The only formal 
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parameter is the array. Note, that there is no boundary 

given in the formal parameter specification since it will 

have the same boundaries as the actual parameter. 

i 

REAL PROCEDURE average(arr); 
REAL ARRAY arr? 

BEGIN 
INTEGER i, sum; 
sum := 0; 
FOR i:=l TO 12 DO 

sum := sum + i; 
average := sum / 12; 

END; 

In this example, the call to the subprogram is carried out 

by the statement, 

result :>= average( avgarr) ; 
" ~i 

where "result" is a real variable and "avgarr" is a real 

array of at least twelve elements. The value returned from 

the subprogram "average" will thus be placed in the variable 

"result". 

A "proper procedure" does not return a single value but 

executes statements with the intent of using actual 

parameters to perform a specified task. Therefore, a type 

does " not have to be defined for a proper procedure. The 

main structure of a proper procedure is the same as a 

function procedure accept no type is defined in the first 

line. 

PROCEDURE procname(formal); 
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Also, there must be no line "procname := ..." present in the 

procedure body. 

There are three ways that actual parameters can be 

transferred. They are "call by value", "call by name", and 

"call by reference". Keywords are VALUE, for "call by 

valu,e", and NAME, for "call by name". Call by reference 

does not have a keyword, but is automatically used for TEXT 

and ARRAY types. 

A proper procedure is shown below that will swap the 

contents of two integer variables. 

PROCEDURE swap(x,y); 
INTEGER x,y; 

BEGIN 
INTEGER tempT 
temp := x; 
x := y; 
y := temp; 

END ; 

In this example, the call of the subprogram is carried out 

by the statement, 

swap(a,b); 

where "a" and "b" are integer values .v After execution of 

this statement, the contents of "a" and "b" will be 

switched. 

SIMULA  67  also  has  the  capability  of  allowing  a 

procedure  to call itself.  This type of procedure is called 

a "recursive procedure".  Recursive programming is a subject 1 

all to itself and will not be covered in this paper. 
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Finally, predefined subprograms are also supplied for 

SIMULA 67. They can be called as if they had been declared 

as procedures at the beginning of the program. Many of 

these deal with" mathematical functions like ABS(x) for 

absolute value, SIN(x) for sine of an angle, and SQRT(x) for 

square root of a number. Other predefined subprograms deal 

with handling texts and characters. These include functions 

that were already explained, like, BLANKS(n), COPY(n), 

t.LENGTH, and ININT. 

In conclusion, blocks and procedures have the following 

useful properties. First, a block defines an entity that 

has properties and performs-actions. A block where- only 

local quantities are referenced is a completely contained 

program component. A block is itself a statement, which is 

a syntactic category of the language. Finally, a block 

instance is permitted to outlive its calling statement, and 

to remain in existence for as long as the program needs to 

refer to it. As a result, storage allocation cannot be 

administered as.a simple stack. A garbage collector, using 

a scan-mark operation, is required to detect and reclaim 

those areas of storage which can no longer be referenced by 

the running program. Such a procedure which is capable of 

giving rise to block instances which survive its call is 

known as a "class" and will be addressed in the next 

section. 
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E. Glass Construct 

The notion of "class" and "object" can be traced to the 

notions of "block" and "block instance" in ALGOL 60. A 

"block" in ALGOL contains the description of a data 

structure and associated algorithms. When the block is 

executed, a dynamic ."block instance" containing the local 

variables of the block along with information for dynamic 

., linkage of this block to other blocks, is generated. By 

using "class", it is possible to generate multiple "objects" 

of the same class. Each object generated is a class 

instance. An object may suspend .its execution and start the 

execution of a different object. When a class contains no 

algorithms, the class is a "record class" with its objects 

being "records". Objects are really records to which 

algorithms are associated. Different objects can exist in 

memory at the same time. These objects may be of the same 

or different classes. 

A class is defined and used in three phases. The first 

phase is the description or declaration of the class. This 

phase declares all the variables with their types that are 

needed for the class bearing the name provided. Along with 

the variables, a list of the instructions of the class are 

defined. The second phase is the realization or incarnation 

of the class. In this phase, a real copy of the class is 

created in working storage. A reference to the incarnation 

is also established and stored in  a  variable.   The  final 
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phase is the actual use of the Incarnation of the class. 

Here, the elements of the incarnation get values which can 

be used again later. A class declaration has the following 

form, 

CLASS name(formal); <  class 
formal parameter specifications < 1 head 

BEGIN < 1 
declarations 
initial statements class 
INNER; body 
final statements                s 

END; < 1 

The class head consists of the Keyword CLASS followed by the 

name of thie class and any parameters which this class is to 

use. Variable declarations, along with subprogram 

declarations, can be made is the class body. First, an 

instance of the class must be created,* only then can a 

declared procedure be called by a reference variable. The 

class body also consists of initial statements or operations 

and final operations. Any kind of statements are allowed. 

These can include assignments, input/output, subprogram 

calls, or even creation of new class instances. The symbol 

INNER represents a dummy instruction acting as a separator 

between both sets of operations. More on INNER will be 

discussed later. The parameters or the variable declared 

are attributes of the class and also attributes of any 

object of that class. Also, another class declaration may 

be one of. the declarations of this class. This new class 

would then be a class attribute of the original class.      • 
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The first example of a  class  declaration  is  one  in 

which the class contains no operational statements. 

CLASS a; 
BEGIN 

REAL x; 
INTEGER y,z; 

END; 

This class declaration links to a class unit "a" the 

variables "x", "y", and "z". If this class is to be used, 

it must be incarnated. This is accomplished by the 

statement NEW in the following way. 

NEW a; 

This statement will set aside an area in memory for a real 

variable "x" and two integer variables "y" and "z". This 

area may be referenced by a variable by using a reference 

statement. 

r :r NEW a; 

The variable "r" will as a result be pointing to the new 

incarnated area of class "a". The NEW statement thxls 

creates an object which is an instance of class "a" and also 

starts executing any operational statements that appear 

inside class "a". This execution continues until the end of 

the class body or until, a "detach" statement, which will be 

defined later, is encountered. Prior to the NEW statement, 

however,  there must be a declaration defining "r" to be a 
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reference to class "a".  The declaration statement, 

REF(a) r; 

will declare "r" as a reference to an incarnation of "a". 

It will reserve a storage location for "r" in memory of type 

reference. This area will be initialized as NONE meaning 

that no reference to an incarnation was established yet. 

The incarnation is then accomplished by "r :- NEW a;" as 

previously described. 

At this point, values can now be assigned to the 

variables in this area. Suppose that a real value from input 

is to be placed in "x".  This can be done by 

r.x := INREAL; 

■I „ H This transfers a real value from input to the variable "x' 

in the incarnation of class, ■'-a'', to which the variable "r" 

refers. 

To summarize the discussion to this point, access to a 

class is available only via reference variables. A class 

instance is generated by a NEW statement. Each class 

instance has no name, only a reference. An array of class 

instances of class "a" can be accomplished by first 

declaring the array as follows. 

REF(a) ARRAY arr(l:100); 

This defines an array "arr" of one hundred elements, each of 

63 



which is a reference to a class instance "a". Now, one 

hundred class instances can be incarnated by a FOR 

statement. 

FOR i:=l TO 100 DO 
BEGIN 

arr(i) :- NEW a; 
arr(i).y := i; 

END; 

Here, each incarnation of a class instance is formed with 

the "y" variable in each being set to the value "i". Now 

consider the following statement. 

arr(l) :- r; 

This will assign the reference of the incarnation of class 

"a" that was pointed to by "r" to the reference "arr(l)". 

In other words, Soth "arr(D" and "r" reference the exact 

same incarnation of instance. 

Consider the next class declaration. 

CLASS box(length,width,height); 
INTEGER length,width,height; 

BEGIN 
REAL PROCEDURE volume; 

volume := length * width * height; 
IF length<=0 OR width<=0 OR height<=0 THEN 

error; 
END; 
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Also,  suppose  the  following   reference   statement  and 

incarnation was given. 

REF(box) boxr; 
boxr :- NEW box(3,4,5); 

For the instance or incarnation of "boxr", the length, width 

and height are given the values three, four and five 

respectively through parameter passing. Also declared . in 

this instance is a procedure name "volume". Finally, the 

operational statement, which checks to see that the length, 

width and height are greater than zero in this case, is 

executed. Every instance of this class will execute this 

operational statement. Each instance will have its own set 

of data (length, width and height). But, now turning back 

to the "instance of "boxr", if the statement, 

h :- boxr.height; 

is executed, the previously declared integer variable "h" 

will be given the value of the attribute "height" of the 

reference "boxr", which in this case is the number five. 

Now, if the statement, 

v := boxr.volume; 

is executed, the following will occur. The procedure 

"volume" operates on the data of the instance "boxr". This 

means that the "integer variable "v" will receive the value 

sixty. 
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A chain of instances of a class can be created by 

declaring a reference to the class inside the class itself. 

For example, consider the following piece of code. 

BEGIN 
REAL ml; 
REF(c) x,y,first; 
CLASS c(m); 

REAL r; 
BEGIN 

INTEGER i; . ' 
REF(c) next; 

END; 
ml : = 1; 
first :- x :- NEW c(ml); 
x.next :- NEW'c(ml); 
x :- x.next; 
x.next :- NEW c(ml); 
x :- jc.next; 

END;       j  " 

■■■r 

Here, a class "c" can be referenced by "x" and "first" 

external to the class and by "next" internal to the class. 

Also shown is a multiple assignment "first :- x :- NEW 

c(ml);". The piece of code will generate a chain-like list 

as shown graphically below. 

first > mi 
next- 1 

1 
I 1 
1 
i- > m i 

next 1 
. I . 

I _ 1 
1 

x > I— > m i 
next---—>NONE 

It is seen that the reference "first" always points  to  the 
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first instance of the class and "x" points to the last 

instance created. Also, the reference value "next" of the 

last instance will have the empty reference constant NONE. 

A loop can bevJssd to run through the list by testing until 

an empty references, is found. The following code performs 

such a loop. 

y :- first; 
WHILE y =/= NONE DO 

BEGIN 

y :- y.next; 
END; 

A "prefix" may be added to the front of a class 

declaration. This prefix is in fact another class name. 

The prefixed class is called a "subclass" of the prefix. 

This is shown below. 

CLASS one; 
BEGIN 

INTEGER il; 
il := 9; 
INNER; 
il := 10; 

END; 
one CLASS two; 

BEGIN 
INTEGER i2; 
il := i2 := 20; 

END; 

When class "two" is incarnated, every instance will get all 

the properties of class "one" plus the properties of class 

"two". When execution passes to class "two", the code 

before the INNER statement in class "one" is first executed. 
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The code of class "two" is then executed followed by the 

code after the INNER statement of class "one". A. subclass 

is thus said to be "inner" to its prefixes. Therefore "two", 

is inner to "one". . A heirarchy of subclasses can be formed 

by introducing a succession of declarations of subclasses. 

This can be shown as. 

CLASS one ...; 
one CLASS two .. 
two CLASS three 
one CLASS HFour . 

By using subclasses, an organization of systems can be 

formed in different levels of abstraction. A subclass is 

equivalent to the class obtained by the concatenation of 

those classes that are on its prefix sequence. An object of 

a class resulting from a concatenation is a ''compound 

object". The space occupied by the data structure of a 

compound object is the union of the spaces occupied by the 

data structures of the various classes in the prefix 

sequence.  Suppose that the reference variable is declared, 

REF(one) r; 

h 

The statement, 

r :- NEW one; 

is executed by placing a real copy of only "one" in storage 

with all the variables declared within class "one". The 

variable "r" then refers to this incarnation.   However,  if 
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the statement, 

r :- NEW two; 

is executed, , first an incarnation of class "one" is created. 

The subclass "two" is embedded in thi,s incarnation. This is 

done by replacing the INNER statement of "one" by the 

initial operations of "two" followed by an INNER statement 

and the final operations of "two". This is thus the role of 

the INNER statement. In one case INNER is a dummy 

instruction when executed and in the other case it specifies 

where code may be inserted for a compound object. Likewise, 

the statement, 

r :- NEW three; 

will create an incarnation of class "three" embedded in 

class "two". Both of these classes are'embedded in class 

"one".  This is shown graphically below. 

incarnation 

incarnation 
I _ ; 

 __ 1 
incarnation 
of "three" 

of  "two" 

of  "one" 

As indicated in the graph above, the subclasses are embedded 

in  the  incarnation  of the comprehensive ones.  This means 

69 



that each incarnation is a relatively self-contained unit in 

the general structure of the compound object created. Any 

variables of class "one" can be referenced by the variable 

reference "r" directly.  For example, 

r.i  or _ r.b 

However, variables in subclasses "two" and "three" must have 

additional "qualifications" to connect the name of the 

subclass to which the variable belongs. Two examples are 

shown below using the keyword QUA. 

(r QUA two).m   or   (r QUA three).1 

Here, variable "m" is from subclass "two" and variable "1" 

is from subclass "three". More qn referencing variables 

will be covered in a later section. 

Now, an example is presented which will define a stack. 

(See Ghezzi, 1982) This definition of a stack will allow 

the user to look at the top of the stack, insert an element 

on the stack, delete an element from the stack and check if 

the stack is empty. These operations are independent of the 

type of the elements that are stacked together. First, a 

class is used to describe the items that can be stacked. 

CLASS stack_member; 
BEGIN 

REF(stack_member) next_member; 
next_member :- NONE 

END 
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All stackable objects will share an attribute, namely, a 

reference to the next item in-the stack. The class "stack" 

describes only the operations applicable to all stackable 

objects. 

CLASS stack; 
BEGIN 

REF(stack_member) first; 
REF(stack_member) PROCEDURE top; 

top :-. first; 
PROCEDURE pop; 

IF NOT empty THEN 
first :- first.next_member; 

PROCEDURE push(e); 
REF(stack member) e; 

BEGIN      " 
IF first=/=NONE THEN 

e.next_member :- first; 
first :- e; 

END; 
BOOLEAN PROCEDURE empty; 

empty := first==NONE; 
first :- NONE; 

END; 

The "stack" class contains a reference "first" to a stack 

member. The only statement in the class is the one that 

sets the reference "first" to point to NONE. Thus, when a 

class instance is incarnated, the result is an empty stack. 

The subprogram "top" is a function procedure that returns a 

reference. The reference is the stack member at the top of 

a nonempty stack. The subprogram "pop" is a proper 

procedure that simply deletes the top member of a nonempty 

stack. Procedure "empty" returns a "true" value if the 

stack is empty. Finally, procedure "push" will place a new 

stack member on the starck. 
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Stackable objects of a particular type can now be 

defined. For example, a stack of boxes can be defined as 

follows. 

stack_member CLASS box(length,width,height); 
BEGIN 

» • • 

END; 

The class "box", as defined previously, is prefixed by 

"stack_member".  Therefore, objects generated by 

NEW box(...); 
  .JL,-... 

will have all the attributes of "stack_member", as well as 

the attributes of "box". "Box" is a subclass of 

"stack_member". Now, to create a stack of boxes, a variable 

reference of type "stack" must be declared by 

s :- NEW stack; 

This will create an empty  stack.   To  push  several  boxes 

(bl,b2,b3) on the stack, 

s.push(bl); 
s.push(b2); 
s.push(b3); 

"s.top" will return the reference of the top element of  the 

stack.  "s.pop" will remove the top element from the stack. 

A block in SIMULA 67 can also be prefixed by a^ class. 

Prefixing a block with a class name makes the attributes of 

the class visible to the block.  For  example,  if  a  block 
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starts with 

stack BEGIN 

END; 

the block has access to procedures "empty", "push", "pop", 

and "top". Thus, prefixing supports top-down modular 

design. The top-level class can contain only the global 

design decisions. Successive subclasses of this el-ass can 

contain design decisions at lower levels of abstraction. At 

the lowest level, the program is prefixed by the detailed 

class. Thus, the different classes correspond to the 

different levels from which a given problem can be viewed. 

The prefixed classes of SIMULA 67 bring this mode of 

leveling design into a programming language. This feature 

can also be used as a powerful kernel language for the 

design of problem oriented languages. 

The last topic to be covered in this section is the 

topic of virtual entities. A class has common attributes. 

But at times, an attribute may take a different meaning Hbr 

different subclasses of the class considered. This can be 

accomplished by adding a virtual part to the declaration. 

The way this is done is by using the keyword "VIRTUAL:" 

followed by a proper or functional procedure. If, for 

example, ah object of class "c" is given. Now suppose that 

an attribute "v" is specified as . virtual in class "m" 

belonging to a prefix sequence of "c".  An occurrence of "v" 

7 3 



is interpreted as virtual in "m" and in all classes inner to 

"m". The matching definition for the virtual attribute "v" 

is the innermost definition of "v" . Below is an example 

program which shows the virtual concept. (See Ichbiah, 

1972) 

BEGIN 
CLASS real(real_part) ; 

REAL real_part; 
VIRTUAL: PROCEDURE show; 

BEGIN 
PROCEDURE show; 
BEGIN 

outfix(real part,2,5); 
outimage; ~~ 

END 
END; 
real CLASS complex"! image_part) ; 

REAL image_part; 
BEGIN 

PROCEDURE show; 
BEGIN 

outfix(real_part,2, 5); 
IF SIGN(image_part)>0 THEN 
outfixC+i') 

ELSE 
outtext('-i'); 

outfix(ABS(image_part),2,5); 
END 

END; 
REF(real) x; 
REF(complex) y; 
x s--  NEW real(3); 

>y :- NEW complex(2,4); 
x.show; 
y.show; 

END   ■      ■      - 

The procedure "show" is a virtual procedure in class "real". 

However, it is defined in both class "real" and class 

"complex". The definition in class "real" is used when 

"show"  is  called  for "x".  When "show" is called for "y", 
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two definition exist, __The innermost definition, the one in 

class "complex", is the one that is used. Thus, the 

statement "x.show" will print "3.00" and the statement 

"y.show" will print "2.00+i4.00". 

There are several points that should be made concerning 

the implementation of a dynamic object like a class. First, 

dynamic objects involve dynamic allocation which implies 

that some form of dynamic memory management must be provided 

by the compiler. This is no longer a simple stack 

allocation system since each object's existence is 

independent of all others. As a result, some form of memory 

recovery is needed. Another implementation point concerns 

pointer variables. These pointers can be implemented with 

almost no run-time checking. By having only one pointer to 

each data object, simultaneous multiple access is avoided 

without incurring the overhead of some synchronization 

mechanism. The only question at run-time is whether or not 

the pointer is empty. 

F. Reference Variables 

This section will deal with reference variables and 

remote identifiers in greater detail. First, the difference 

between "local" and "remote" access will be covered. 

'Actions performed involving attributes of a particular 

object during the execution of the object deal with the 

local  accessing  of  attributes.   Accessing  attributes of 
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other objects is termed remote accessing. However, since 

several instances of the same class may exist in memory at 

the same time, a given attribute is not uniquely specified 

by the name of its attribute identifier. Thus a remote 

access is accomplished by first selecting the particular 

object and then determining the attribute of that object. 

This is partly accomplished by the "reference"variable, 

which points to an object. A refernce to a newly created 

object is obtained by the execution of an object generator. 

This is done by using a NEW statement. 

SIMULA 67 allows for the calculation of references and 

for their assignment to reference variables. This could 

bring about a reference to an object which belongs to a 

class other than the one intended. This is a very subtle 

error. In the majority of cases, except for this one, 

referencing errors are detected at compile time. That is 

why a qualification must be included in the declaration of 

each reference variable. This qualification indicates the 

class of an object to which the variable may belong. This 

qualification also is used to test for validity of reference 

assignments to that variable. Suppose first that the 

following piece of class code is given. 

CLASS one; 
• • • 
one CLASS two; 

one CLASS three; 
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Now suppose the following code is defined, 

REF(one) a; 
REF(two) b; 
b :- NEW two; 
a :- b; 

The compiler will check to see if the previous code is 

valid. In the first assignment, "b" refers to the object 

that was intended. The next assignment, "a" is qualified by 

"one" and serves for remote access to attributes o-f that 

class. Also, each of these attributes are also present in 

an object of any subclass of "one", so "b" can be assigned 

to "a".  If the statement, 

b :- a; 

were executed, the object referred to by "a" would have to 

be checked at run-time to see if it was actually a member of 

or subclass of "two". If it was, the assignment will not 

result is a run-time error. An assignment that would be 

rejected at compile time appears below. 

REF(three) c; 
c :- b; 

Note here that "b" is qualified by "two" and "c" by "three". 

Trouble occurs since "two" and "three" are not in the same 

prefix sequence. 

Remote accessing must be carried out without  ambiguity 

and  without loss of security.  To do this, an object and an 

7 7 



attribute along with the qualification of the object must be 

known. This can be carried out in two ways. The first is 

by a "remote identifier" which consists of a* reference 

variable and an attribute. For example, if "o" is an 

attribute of class "one" and "t" is an attribute of subclass 

"two" prefixed by "one", the remote identifiers "a.o",,"b.o" 

and "b.t" are valid. However, "a.t" is not permitted since 

"t" is not in the scope of "one", the qualification of "a". 

Finally, a local qualification can be placed on a reference 

variable for accesses which ordinarily are not permitted. 

a QUA two.t; 

where "a" is given the local qualification of "two", is a 

legal reference. 

The second way to accomplish-remote accessing is by the 

"connection" mechanism.  The format is, 

INSPECT <object reference> 
WHEN <class identifier> DO <connection block> 

WHEN <class Adentifier> DO <connection block> 
OTHERWISE .<•; 

The qualification of the object is compared to the class 

identifiers in each WHEN clause until a class is found that 

belongs to the prefix sequence of the qualification. When 

found, the corresponding connection block is executed. This 

block contains the attributes of the object referred to by 

only mentioning  their  identifiers,  exactly as with local 

78 



access.  The connection mechanism therefore permits the same 

validity checks as for formal referencing. 

In conclusion, in every assignment to a reference 

variable, it is possible to check that the assignment is 

valid, by comparing the qualifications of the left hand and 

right hand sides. Design specifications of SIMULA 67 

ensured that this check could be carried out entirely at 

compile time, thus avoiding "the inefficiency of run-time 

checking. Furthermore all remote identifiers can be checked 

at compile time to ensure that the combination of reference 

variable and attribute identifier is valid, so that the only 

error that has to be detected at run time is a reference 

variable has the value NONE. 

G. Quasi-Parallel Programs 

The need may arise for different processes to act in 

parallel. Many simulations require parallel processes. 

However, since a single processor is used to carry out 

simulation, a quasi-parallel representation of a parallel 

program is used. This is accomplished by treating each 

process sequentially and using the system time to create the 

illusion of parallelism. The sequencing of events was 

accomplished in SIMULA by a list of event notices. The 

event notice contained..^.as previously explained, a reference 

to a process and a time when the process must be activated. 

The list was ordered in regards to time  and  the  processes 
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were executed in order of event notice placement on the 

list. SIMULA 67 uses a class called SIMULATION to do the 

sequencing. This class will be explained in the next 

section.  SIMULA 67 also provides  the  procedures  "detach" 

-and  "resume" to accomplish quasi-parallel processing.  This 

^  section will be  devoted  to  this  form  of  quasi-parallel 

processing. 

The execution of a SIMULA 67 program involves the 

generation and execution of blocks,, prefixed blocks, and 

objects. An object remains until the delimiter END is 

encountered or until a call to the procedure "detach"■is 

issued inside the execution of the object. Once an END is/ 

encountered, the object is no longer active but still 

remains in memory. The object is said to be in a 

"terminated"  state.   If  a  "detach"  is  encountered, the 

- object becomes "detached" from the component to which it 

belonged. This process^ then" becomes an independent 

component. Thus, the main program and alj. detached objects 

are components, and these components are what form a 

"quasi-parallel program". 

Unlike a subroutine, which is subordinate to its 

caller, a "coroutine" is a module coordinate with other 

modules. A coroutine is represented by an object of some 

class, cooperating by means of resume instructions with 

objects of the same or another class, which are named by 

means of the reference variables.  A producing coroutine may 
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assign values to any variables and the consuming coroutine 

can access them. Coroutines may also change any global 

variables. When an object is generated, it has a 

procedure-like relationship to the block which generated it. 

Control automatically returns to the generator upon passage 

through the end of the object. The object does not 

necessarily know the identity of its generating block. As a 

result, a resume instruction can not be used to a<Shieve the 

effect of a coroutine exit.  The statement, 

DETACH; 

is provided by which a generated object can return to the 

generator. . When a new instance of this class is created by 

the NEW statement, the sequence of operational statements 

will be executed as far as the statement DETACH. The DETACH 

statement causes this incarnation to be interrupted and 

execution to continue at the ' part of the' program which 

caused the class to be incarnated. As a consequence of 

DETACH, the unit behaves as a coroutine that can be resumed 

and, in turn, can resume other coroutines. A detached class 

can be resumed by the statement, 

RESUME(r); 

where "r" is a variable that refers to a detached class. 

Now, the object is again in a subroutine position with 

respect to the caller and has an  obligation  to  return  to 
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either ■ by  a DETACH instruction or by going through its own 

END. -      . " 

A main program, therefore, can establish a coroutine 

relationship with an object that it has generated using the 

RESUME/DETACH mechanism instead of the more symmetric 

RESUME/RESUME mechanism. In the RESUME/RESUME mechanism, 

control of one generated object is passed by using a RESUME 

instruction to another generated object. In turn, that 

generated object resumes another generated object and so on. 

The generated objects do not return control back to the 

generator since a DETACH statement is not present. On the 

other hand, in the RESUME/DETACH mechanism, the generated 

object remains subordinate to the generator, or the main 

program. As a result, this mechanism is sometimes referred 

to as a "semi-coroutine". But, this can still act as a full 

coroutine with respect to a group of other generated objects 

with which it communicated by means of RESUME statements. 

If any of the group issues a DETACH, control returns to the 

master program which originally called the particular member 

of the group. Thus, the coroutine issuing the RESUME 

imposes on the resumed coroutine its own responsibility to 

eventually pass control back to the original caller by means 

of a DETACH. 

In summary, a typical coroutine object goes through the 

/       following  history.   First,  the  object,  upon generation, 

performs the operations  of  its  class  body.   The  object 
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eventually executes a DETACH which returns control to the 

point at which the object was generated. The object is 

detached, but not terminated. The object becomes suspended 

with its state preserved. Control then returns to the 

object on a RESUME, to the point where the object left off. 

The object may again relinquish control, either by a DETACH 

or by a RESUME, and become detached again. Finally, the 

object terminates by executing its END statement. This has 

the same effect as a DETACH, except that the object may not 

be reactivated by a RESUME.- However, if the RESUME/RESUME 

mechanism is used without,using a DETACH, the object must 

not terminate itself directly since all other objects are 

suspended,, By this, no .other objects will'be_able to be 

reactivated. An object, once it is terminated, remains in 

existence as an -item of data, which may be referenced by 

remote identification of its attributes, including procedure 

and function attributes. 

At any one time only one component in the program is 

being executed. All other components are temporarily 

suspended. A quasi-parallel program has two types of 

control that effect sequencing when a DETACH or RESUME is 

encountered. The "outer sequence control" points to the 

statement that is being executed at the given time. The 

"local sequence control" of a component of the program 

points to the actual executing statement if the component is 

active, or points at the statement which execution  will  be 
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resumed  if  the component is detached.  A graphical example 

appears below. 

outer 
sequence —> 
control 

1 

I  local        I 
1  sequence  >1  detached component 
1  control      1 

1  local .      1 
I  sequence -—>1  detached component 
1  control      I 

1  local        I 
I  sequence -—>1  active component . 
1  control      1 

*? 

Here it is seen that the local sequence control of the 

active component is the exact same as the outer sequence 

control of the quasi-parallel program. 

Using these two controls, the effects of the DETACH and 

RESUME will be covered. When an object calls DETACrf for the 

first time after being initially attached, the object 

becomes an independent component. The execution of the 

object is suspended and its local sequence control is placed 

after the DETACH statement. On the other hand, the outer 

sequence control is placed after the instruction that caused 

the generation of the object. The RESUME(c) statement will 

cause the execution, of the object referenced by  "c"  to  be 
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resumed. The component containing the RESUME will have its 

local sequence control placed after the RESUME statement. 

The outer sequence control is placed at the local sequence 

control of the referenced object "c". Finally, a terminated 

object cannot be resumed since it has no local sequence 

control. Therefore, the reference of a RESUME statement 

must refer to a detached object. 

In SIMULA 67, coroutines are executed immediately as 

they are created. When the instance is created, its 

activation record is placed on a stack. A problem occurs in 

the RESUME/RESUME mechanism where the communication-between 

coroutines is symmetric. Since this type of coroutine is 

symmetric and the management of. a stack is asymmetric, 

coroutine activation records cannot share a stack. Instead, 

each coroutine activation record occupies the bottom of its 

own stack, which grows and shrinks as the coroutine enters 

BEGIN/END blocks, activates other coroutines, or terminates. 

Thus, the execution-time representation of this type of 

coroutine requires multiple stacks. 

The  RESUME/DETACH  coroutine  mechanism   uses   semi- 
T 

symmetric communication between coroutines. Here, a set of 

coroutines exists, but the coroutines do not pass control 

between each other as in the RESUME/RESUME mechanism. 

Instead, these all pass control between themselves and the 

main program, which acts as a controller program. A popular 

way to implement this  type  of  coroutine  is  by  using  a 
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"spaghetti" stack. This stack contains activation records 

needed for coroutine reactivation. These records include 

•* pointers to the coroutine's creator, its activator, its 

reactivation point, a pointer to the start of the activation 

record and other temporary values. The number of references 

to an activation are kept during the execution. When this 

number becomes zero, the activation record is removed. 

Usually, a coroutine only contains one pointer to its body 

which indicates where it will resume execution when 

activated. This pointer is termed a "moving" activation 

point. A pointer to its body for each coroutine which 

activates this coroutine can be saved. These pointers are 

termed "static" activation pointers. The coroutine may 

resume at different places depending, upon which coroutine 

reactivates it. When a typical procedure ends, its 

...,., activation record must be removed from the stack. But, when 

a coroutine ends, the activation record must not be removed. 

By keeping this record on the stack, another coroutine or 

procedure may be blocked if there is not enough room for the 

stack to grow. As a result, the part of the activation 

record which is used for coroutine information is copied to 

another part of the stack where there is enough space. This 

copying leaves gaps in the stack. Because of these gaps, 

the name "spaghetti" stack came about. 

An example of a quasi-parallel program using coroutines 

is  now presented. (See Ghezzi, 1982)  The program is a card 

86 



game in-which four players will use the same strategy. 

BEGIN 
BOOLEAN gameover; 
INTEGER winner; 
CLASS player(n,hand); 

INTEGER n; 
INTEGER ARRAY hand(1:13); 

BEGIN 
REF(player) next; 
DETACH; 
WHILE NOT gameover DO 

BEGIN 
create a move; 
IF gameover THEN 
winner := n; 

ELSE 
RESUME(next); 

END 
END; 
REF(player) ARRAY p(l:4); 
INTEGER i; 
INTEGER ARRAY cards(l:13); 
FOR i:=l STEP 1 UNTIL 4 DO 

BEGIN 
generate cards for player i in array card; 
p(i) :- NEW player(i,cards); 

END; 
FOR i:=l STEP 1 UNTIL 3 DO 

p(i).next :- p(i+l); 
p(4).next :- p(l); 
RESUME p(l); 
print winner's name; 

END 

Four players are created by the first FOR loop, "p(i) :- NEW 

player(i,cards)". Each player is detached on initial 

generation. These players are then linked together by the 

next FOR loop. This link is closed by linking the fourth' 

player back to the first player. Finally, player number one 

is resumed from the point he was detached. The four players 

will function in parallel of each other but their statements 

will  actually  be  carried  out piece by piece in sequence. 
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Therefore, four coroutines, the players, exist. These 

coroutines are incarnations of the same class, however, in 

general, coroutines may be incarnations of different 

classes. The first player will start the game by performing 

some move. The procedure to perform a move is not shown. 

The player will then check the "gameoyer" variable. If it 

is "false", the player will resume the next player in the 

linked list. The next player will then continue the game 

and so on. All four players will continue to play with no 

control from the outside. As soon as a player wins the 

game, variable "gameover" is set to "true". The execution 

of the coroutine instance will then terminate. ' Control will 

return back to the main program at the instruction after the 

resumption of the first player. ' As a result, the main 

program will then print out the name of the winner and halt. 

In the game 'playing program it was seen that a closed 

linked list was created. This was done by linking together 

various class incarnations by reference variables. Each 

player was an individual incarnation. Each player was an 

element of the "list. Linked lists come in various types. 

Each linked list usually has a "head", pointer which points 

to the first element of the list. A typical "singularly 

linked list" would appear as, 

head -> element > element > element > NONE 
1 2 3 

Here,  there  are  three  elements  linked  together.   Each 
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element, therefore, has contained in it a reference to 

another element. "Head" points to the first element and the 

last element points to NONE. If the last element would have 

pointed back to the first element, 

1  
V 

head  > element — 
1 

•> element 
2 

 > element 
3 

— 1 
1 

-—I 

a "singularly circular linked list" would have been created. 

Another form of a linked list is a "doubly circular linked 

list". Here each element contains a reference to the 

succeeding element and also to the preceeding element. 

1 Lj. ;—  

V 
head  > element  > element  > element   

1--     1    <     2    <     3    <-- 
1 
1 .. ;_■ ._  

Here, "head" is only a reference to the first element. 

However, it may be necessary in some instances to create a 

dummy element called the "set head". This set head would 

actually be an incarnation of a class and would be at the 

head of the list. '." 

— > set   > element > element > element ! 
 head <     1    <     2    <     3    < — 
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SIMULA 67 provides a mechanism, in the form of a class, 

to handle list processing. The class is named "simset" and 

contains the following. 

CLASS simset; 
BEGIN 

CLASS linkage; 
BEGIN 

REF(linkage) succ,pred; 
REF(link) PROCEDURE sue; ... 
REF(link) PROCEDURE pre; ... 

END; 
linkage CLASS link; 
BEGIN 

PROCEDURE out; ... 
PROCEDURE follow(x); 

REF(linkage) x; ... 
PROCEDURE precede(x); 

REF(linkage) x; ... 
PROCEDURE into(s); 

REF(head) s; ... 
END; 
linkage CLASS head; 
BEGIN 

REF(link) PROCEDURE first; . 
REF(link) PROCEDURE last; .. 
BOOLEAN PROCEDURE empty; ... 
INTEGER PROCEDURE clear; ... 
INTEGER PROCEDURE cardinal; 
s\acc :-• pred :- THIS head; 

END; 
END; 

By using "simset", a doubly linked list will be created with 

a "set head" element. When the list is created but still 

^mpty, the only element of the list will be the "set head" 

which will have both succeeding and preceding references 

pointing to itself. A created element that is not in a list 

will have its succeeding arid preceding references pointing 

to NONE. 
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The class "simset" contains three classes as 

attributes. The class "linkage" contains two reference 

variables "sue" and "pre". The two procedures that are 

defined are used to get the references for the two reference 

variables. Details of these and all other procedures used 

in class "simset" are not presented but rather a brief 

explanation of what each does is included. The subclass 

"head" creates an incarnation which is the head of the 

linked list. This is done by the statement "succ :- pred :- 

THIS head". The expression "THIS head" is a reference to 

tj/e "head" object being executed. Procedure "first" will 

establish a reference to the first element of the list. 

Procedure "last" will establish a reference to the last 

element of the list. If no elements are present, the "set 

head" references will be NONE. Procedure "empty" will be 

set to "true" if there are no elements in the linked list. 

Procedure "clear" will delete all the elements of the list. 

Finally, procedure "cardinal" will return the total number 

of elements in the linked list. The subclass "link" 

contains procedures to view an element of the list. All the 

attributes of this class are procedures.., These attributes 

are accessible by means of remote identifiers. The 

procedure "into(s)" places an incarnation of a class at the 

end of the list "s". The procedure "follow(x)" will place 

an incarnation behind the list element "x". The procedure 

"preced(x)"  will  place an incarnation in front of the list 
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element  "x".    Finally,   procedure   "out"   removes   an 

incarnation from the linked list. 

Now that the class "simset" has been defined, it can be 

used to manipulate lists in the following way. To have the 

capabilities of class "simset" inside a block, the name 

"simset" must prefix the block. 

simset BEGIN 
• • • 

END; 

If a variable "1" refers to a "head" by, 

REF(head) 1; 

a new head of a list can be created by. 

1 :- NEW head; 

This will  create  an  instance  that  contains both class 

"linkage" and class "head". 
i" • 

1 —> 

first 
last 
empty 
cardinal 
clear 

incarnation of 
class "linkage" 

— 1 
1 
1 incarnation of 
1 subclass "head" 
1 
1 

— I 
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Any of the procedures  of  these  classes  can be  used by 

referencing  through variable  "1".   An example of this is 

"1.first" or "l.pred".  Now the linked list is created. To 

add  elements  to  this  linked  list,  an  element must be 

defined. The elements of the list must be a subclass of 

class "link".  This is shown below. 

link CLASS element; < 
BEGIN 

• • • 

END; s/ 

This class represents an element that may be placed in the 

list. An element may be of any type. Class "simset" works 

independent of the types of elements. The following 

statements will create a reference to a "link" and create an 

incarnation of tin element. 

REF(link) e; 
e :- NEW element; 

Graphically, this•creates an object that contains both class 

"linkage" and "link" along with class "element". 
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e -> I ■ • -1 —] 

succ 
pred 
sue 
pre 

incarnation of 
class "linkage" 

out 
•follow 
precede 
into. 

hS\ 

incarnation of 
subclass   "link" 

— 1 
1 incarnation of 
1 subclass "element" 

— I 
—_^ ,.___— —~ 1 —i 

Again, any procedures or variables in either "linkage" or 

"link"  can be  referenced by using the reference "e". -An 
*    ■ * «    ■ 

example of this is "e.into".  However, to reach variables or 
A   

procedures in the "element" class, the qualified "e QUA 

element" must be used. Suppose now, that ' the incarnation 

pointed to by "e" is to be put in the list "1". This is 

accomplished by the statement, 

e.into(1); t 
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Graphically this  is  shown. 

JS£> 

succ 
pred 
sue 
pre 

first 
last 
empty 
cardinal 
clear 

<  

9et head 

, _. 1 
succ  
pred 
sue 
pre 

out 
follow 
precede 
into 

■) 

Thus, in general, each element of the List gdyes rise to 

incarnations of the comprehensive class "linkage" and 

subclass "link" along with their variables and procedures. 

The section on list processing is completed with a 

program to sort words given in the input. A linked list 

will be used to store the words as they come in. 
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BEGIN 
simset BEGIN 

REF(head) 1; 
REF(link) nextword,current; 
TEXT inputword; 
link CLASS word(t); 
VALUE t; 
TEXT t; 

BEGIN 
END; 
1 :- NEW head; 
INIMAGE; 
inputword :- SYSIN.IMAGE; 
nextword :- NEW word(inputword); 
nextword.into(1); 
INIMAGE; 
WHILE NOT ENDFILE DO 

BEGIN 
current :- 1.first; 
inputword :- SYSIN.IMAGE; 
WHILE current =/= NONE DO 

BEGIN 
IF inputword<(current -QUA word).t THEN 
BEGIN 

nextword :- NEW word(inputword); 
IF nextword =/= NONE THEN 
nextword.precede(current) 

ELSE ! 
" nextword.. into(1); 

INIMAGE; 
END 

ELSE 
current :- current.sue; 

END 
WHILE NOT 1.empty DO 

BEGIN 
current :- 1.first; 
OUTTEXT((current QUA word).t); 
OUTIMAGE; 
current.out; 

END; • 

The progranp/contains one big "simset" block. Inside this 

block, a list referenced by "i" and two link references 

"nextword" and "current" are declared. The elements are 

words.  The prefixed class "word" is an empty class as shown 
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by nothing being in the BEGIN/END delimiters. Only a 

parameter "t", which is a word of text, is inside the class 

"word".  The program then creates a set head incarnation, 

1 :- NEW head; 

followed by the incarnation of the first element, 

nextword :- NEW word(inputword); 

This word is then placed into the list by the statement 

nextword.into(1); 

The WHILE loop will continue to read words from the input 

and create corresponding incarnations for each word. This 

incarnation of an element will be placed into the list in 

alphabetical order. Finally, the last WHILE loop will go 

through the list and print out each word. The incarnation 

will be deleted after the word is printed. 

H. Simulation 

All models dealing with simulation can be described by 

the quasi-parallel coroutine mechanism, along with the list 

class '^simset". However, SIMULA 67 provides the class 

"simulation" in order to simplify the running of simulation 

models. , In a simulation model, multiple processes interact 

at any given instant of time. These processes must be 

scheduled in order to activate  at  a  certain  time.   Each 
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process is tagged by the scheduler with an event notice 

which will contain the name of the process and the time the 

process is to activate. The event notice of all processes 

are then put into a list which is sorted in chronological 

order with the process to be activated next at the head -of 

the list. The class "simulation" therefore is declared as a 

subclass of class "simset". This allows the "simulation" 

class to use the list processing capabilities of class 

"simset" for queuing event notices and processes. To 

achieve quasi-parallelism, the scheduling mechanism uses the 

"detach" and "resume" procedures. 

The contents of class "simulation" will be discussed by 

first showing a rough, outline form of the class. (See 

Ichbiah, 1972) 

simset CLASS simulation; 
BEGIN 

link CLASS event__ndtice( evtime, proc); 
REAL evtime; 
REF(process) proc; 

BEGIN 

END ; 
link CLASS process; 
BEGIN 

REF( event_not j.ce) event; 
DETACH; 
INNER; 
PASSIVATE; 
error; 

END; 
REF(head) SQS; 
procedure hold ...; 
procedure passivate ...; 
procedure activate ...; 
process CLASS main; 
BEGIN 

1: detach; 
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GOTO 1; 
END ; 
REF(main) m; 
SQS :- NEW head; 
m :- NEW main; 
ra.event :- NEW event_notice(0rm); 
m. event.into(SQS); 

END 

Inside class "simulation" is defined a class "event_notice" 

which is a subclass of class "link". These event notices, 

therefore, are allowed to be placed on a list. The list is 

called the "sequencing set" of the simulation model. The 

parameter "proc" represents the process that this event 

notice refers to. The parameter "evtime" represents the 

time the corresponding process is to' be activated. The 

sequencing set is sorted by increasing value of variable 

"evtime". Thus, the sequencing set represents the 

simulation time axis. The head of the sequencing set is 

referenced by the variable "SQS". Also in class 

"simulation" is the class "process" which again is a 

subclass of class "link". This allows processes to be put 

in lists. The reference variable "event" will point to the 

corresponding event notice of the process. The rest of 

class "simulation" defines the sequencing set head "SQS" and 

creates the sequencing set. 

If simulation is needed, the block of  the  program  is 

prefixed by class "simulation". 

simulation BEGIN 

END; 
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Once this is done, processes may be activated or 

interrupted. Thus, there are no longer coroutines being 

detached or resumed. A process is defined in a declaration 

of a class as follows. 

process CLASS name(formal); 
BEGIN 

END; 

A reference variable to the process can be declared by 

REF(name) p; 

Finally, a process "p" can be incarnated by 

p :- NEW name(parameters); 

To reiterate, a process of a simulation run is declared by 

prefixing the class name by the class "process". This newly 

declared process can now be referenced as any other class by 

using REF and incarnated by NEW. 

Now that the declarations of processes are included in 

the simulation block, the simulation will be accomplished by 

the main program, or block, generating incarnations of 

processes and interacting with them. To provide for this 

interaction, it is necessary to be able to schedule the main 

program. Since the main program is not a process, the 

process "main",.which appears in class "simulation", as 

shown, is used to accomplish the interaction. A simulation 

then progresses as follows.  It was  seen  before  that  the 

100 



initial operations , of class "simulation" will create the 

sequencing set and initialize it to contain the event notice 

for the process "main". Thus, when the main program is 

being executed, the process "main" will correspond to the 

first event notice in the sequencing set. The main program 

will generate and schedule other processes by using the 

scheduling procedures. These procedures will be covered 

later. Notice that the first instruction of class "process" 

is a DETACH. This sends control immediately back to the 

main program after the main program generates a process. 

Trie main program can pass control back to the created 

process by performing a scheduling procedure such as 

ACTIVATE. Control will then be passed back to the process 

next scheduled for execution. Simulation will continue with 

the passing of control between the main program and 

processes until the end of the block is found. At that 

point, the simulation will end. 

In SIMULA 67, a process can be in one of four different 

states. The first event of a sequence set points to the 

process that is currently executing. This process is 

"active". Only one process can be active at any moment of 

time. The other processes whose event notices of the 

sequence set are scheduled to be executed at some later time 

are said to be "suspended". A process that has no event 

notice in the sequencing set is "passive" unless it has 

reached the end of its execution.  In that case, the process- 
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has executed the END statement of its class process body and 

is said to be "terminated". 

When a process is incarnated by a NEW statement, the 

state of the process becomes passive. A process, for 

example "p", can be switched from a passive state to an 

active state by the statement, 

ACTIVATE p; 

This process "p" will become active immediately, at the 

present simulation time. A process also can be activated at 

a later time by the statement, 

ACTIVATE p AT t; 

where "t" is a real value that is greater than the current 

simulation time variable "TIME". Process "p", as a result, 

will be entered in the sequencing set with a value "t" as 

starting time "evtime". The process will now be in a 

suspended state until time "t" arrives. .. At that time, 

process "p" will automatically be started. Another way to 

accomplish this is by, j> 

ACTIVATE p DELAY dt; 

where "dt" is added to the current TIME to get the starting 

time of process "p". In either case, suppose that there are 

other processes with the-same activation time.v The process 

"p"  would be placed after the other processes with the same 
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activation time on the sequence set. Therefore, process "p" 

would activate only after all the other processes with the 

same activation time were finished. If process "p" was to 

be activated before all the other processe with the same 

activation time, the statement, 

ACTIVATE p AT t PRIOR; 
or, 

ACTIVATE p DELAY dt PRIOR; 

will place process "p" on the sequence set before all the 

processes with the same activation time. To place a process 

"p" somewhere in between the processes with the same 

activation time, the statement, 

ACTIVATE p BEFORE pi; 
or, 

ACTIVATE p AFTER pi; 

can be used. These statements place process "p" on the 

sequence set either before or after the process "pi". If 

the process is to be started right after the current process 

is inactivated, the statement 

ACTIVATE p AFTER CURRENT; 

is used. The procedure CURRENT returns a reference to the 

active process. 

All the above ACTIVATE  statements  work  only  if the 

process  "p" is passive.  If "p" is suspended or active, the 

ACTIVATE statements are ignored.  IF "p" is terminated, the 
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program will abort. To set up an event notice for an active 

or suspended process, any one of the following statements 

can be used. 

REACTIVATE p; 

or, 

REACTIVATE p; 
REACTIVATE p AT t [PRIOR]; 
REACTIVATE p DELAY dt [PRIOR]; 
REACTIVATE p BEFORE pi; 

REACTIVATE p AFTER pi; 

Because, at any istant of time, only one process can be 

active, an active process can only be interrupted by itself. 

Thus, no inactive process, not even the main program, can 

activate an inactive process. An active process becomes 

passive by the following statement, 

PASSIVATE; '~~ 

The process can become active again if another process 

executes an ACTIVATE statement for that process. For 

example, if process "p" becomes passive by executing a 

PASSIVATE statement, it can be activated by an "ACTIVATE p" 

statement in the current active process.  Another statement, 

HOLD(dt); 

changes the active process into a suspended process. The 

process will be reactivated automatically at "dt + TIME". 

The last way to interrupt an active process is to terminate 

it. The process is terminated when the END statement of the 

class process incarnation is executed.  Once  terminated,  a 
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process can never be reactivated. Any attempt to reactivate 

it will result in a program abort. Even though a process is 

terminated, all process attributes can be accessed though 

remote variables.       « 

A process "p" which is suspended canbe made passive by 

the statement, - 

CANCEL(p) ; 

This, as a result, removes the event notice of process "p" 

from the sequencing set. 

A simulation program is now presented. The card game 

program, as presented previously using coroutines, is now 

presented using the simulation mechanism. Notice that only 

a few changes were made. First, the word "simulation" now 

prefixes the entire block. The class "player" is now a 

process. The DETACH statement inside the process is no 

longer needed. Finally, both RESUME statments have been 

changed to ACTIVATE statements. 

simulation BEGIN 
BOOLEAN gameover; 
INTEGER winner; 
process CLASS player(n,hand); 

INTEGER n; 
INTEGER ARRAY hand(l:13); 

BEGIN 
REEL(player) next; 

. WHILE NOT gameover DO 
1 BEGIN 

create a move; 
IF gameover THEN 
winner : = n; 

ELSE 
BEGIN 
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. ACTIVATE next AFTER CURRENT; 
PASSIVATE; 

END; 
END 

END;   . 
REF(player) ARRAY p(l:4); 
INTEGER i; 
INTEGER ARRAY cards(l:13); 
FOR i:=l STEP 1 UNTIL 4 DO 
BEGIN 

generate cards for player i in array card; 
p(i) :- NEW player(i,cards); 

END; 
FOR i:=l STEP 1 UNTIL 3 DO 
p(i).next :- p(i+l); 

p(4).next :- p(l); 
ACTIVATE p(l); 
print winner's name; 

END 

I. Files 

Up until this paint, all examples dealing with input or 

output dealt with standard input/output. However, there are 

times when information must be placed in a file or must be 

read from a file. SIMULA 67 coordinates each file to an 

incarnation of a class. The procedures belonging to the 

class enable records to be transmitted from the program to 

the file or vice versa. The class is called "basicio". 

This comprehensive class contains many procedures already 

described, such as ININT, INTEXT, OUTFIX, SETPOS, POS, and 

INIMAGE, yjust to name a few. 

By the declaration, 

- 5? 

REF(outfile) f; 

the following statement, 
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f :- NEW outfileC'myfile"); 

can be executed. This creates an incarnation of an "output" 

class. The parameter of this output class is the actual 

file, called "myfile" in this case, that will be created. 

Every file that is created must first be opened. This is 

accomplished by 

f.OPEN(BLANKS(80)); 

which opens the output  file  and  also  creates  an output 

/   buffer of eighty characters.  To place values in the buffer, 

the same commands as used  for_ standard  output  are  used.. 

However,  the  commands are prefixed by the reference to the 

specified outfile.  The following shows an example of this. 

f.OUTFIX(r,a,w); 
or 

f.OOTTEXT('This is a text"1 ); 

To place the contents of the buffer into the actual buffer, 

the statement, 

f.OUTIMAGE; 

is used. Finally, the file must be closed when finished. 

The statement, 

f.CLOSE; 

will close the file referenced by."f". 
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An input file is manipulated in exactly  the  same way 

except  that  the  reference is to arxJ'infile" instead of an  X 

"outfile". 

The above definitions work on sequential files. Two 

restrictions on sequential files are present. The first is 

that a file must either be for reading, an "infile", or for 

writing, an "outfile". At any instant, only one record can 

be manipulated. 

SIMULA 67 can also handle direct access files stored on 

disk. Here, records can be read from or written directly to 

a specified location. However, all records are restricted 

to being the same length. Each record is numbered and can 

be addressed. A direct access file, called "mydirect" in 

this example, is referenced and incarnated by the following 

statements. .  .  «. 

REF(directfile) d; 
d :- NEW directfile("mydirect"); 

As with a sequential file, a direct file must also be opened 

before it is used and closed when finished. The file is 

manipulated by using the addresses of wanted records. For 

example, 

* 

d.LOCATE(n); 

will address record at address "n". This inturn will set 

the value of the record counter, "d.LOCATION", to be "n". 

As a result, the statement, 
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d.INIMAGE? 

will transfer that record into the buffer,  "d.IMAGE".   On 

the other hand, the statement, 

d.OUTIMAGE 

will transfer the buffer contents to  the  file  at  address 

"n". ; 

In general, access to records is accomplished by only 

using one key, the numerical address of the location of the 

record that is wanted. <— 
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