Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1984

A study of the simula 67 language.

Andrew Joseph Tanhauser

Follow this and additional works at: http://preserve lehigh.edu/etd

b Part of the Computer Sciences Commons

Recommended Citation
Tanhauser, Andrew Joseph, "A study of the simula 67 language." (1984). Theses and Dissertations. Paper 2194.

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an

authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2194&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2194&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2194&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=preserve.lehigh.edu%2Fetd%2F2194&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2194?utm_source=preserve.lehigh.edu%2Fetd%2F2194&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

A STUDY QF THE SIMULA 67 LANGUAGE -
by
Andrew Joseph Tanhauser

T

A Thesis
Presented Fo‘the Graduate’Committee
of Lehigh.UniQersity
in Candidacy fof the Degree of
Master of Scienpe‘
in

Computing Science

Lehigh University

1984

ProQuest Number: EP76467

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Pro(Quest.
— _—

ProQuest EP76467
Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106 - 1346

This ‘thesis 1is accepted and approved .in partial

fulfillment of the requirements for the degree of Master of
Science.)

A - I

Professor ‘in Charge

Ll

N

. Head of Division

aa - : TABLE OF CONTENTS

Abstract ' 1

I. SIMULA I

A. Historj/Backgroﬁnd _ v | 2
B. Development Stages ‘3
C. Development Process ' | 6
D. A Detailed éIMULA Example - . 16

I1. SIMULA 67

A. Shortcomings of SIMULA I 21
\B.'Deve16pment . 23
C. Implementation and Standardization 27
D. Simulation Language Objectives = - 36

ITI. SIMULA 67 Constructs and Syntax

A. Statements . . 34

B. Input/Output - Aiu' 41

C. Text o S a4

D. Program Structure/Blocks/Subprograms 52

E. Class Constrﬁct _) | 60

F. Reference Variables ' 75

G. Quési—Paralléi Programs) 79

H. Simulation ‘ : | 7 _ 97‘

I. Files _) 106

t Biblidgraphy ; 110
Vita ' | 112

iii

\

ABSTRACT

SIMULA 67, a direct offshoot of SIMULA I, is a general
purpose language whose main application area has been
simulation. The objectives of SIMULA I was - for system’
description and simulation. The process concep£.was the
basic feature. Various shortcomings of SIMULA I (Nygaard
and Dahl, 1982) led to the creation of SIMULA 67 whiéh had
the same basic objectives of SIMULA I. However, SIMULA 67
was also to be a genlral purpose programming language.
SIMULA 67 allows for the definition of abstract data types.
Class instances may.coexist at run—-time. Réferenées to the
classes enable access to their individual components.

Overall, SIMULA 67 preserves the ALGOL-like tree structure

ofxprOgrams and allows for ALGOL-like control structures and

. procedures. Concurrent execution is simulated -by‘ﬁsing
éoroutines. Procedural abstractions are éupported and data
abstraction can be implemented. Hierarchical éfogram
structures can be defined by class prefixing. The history,
"objectives and shortcomings of SIMULA I are covered

» . .
™initially. This is followed by the history and objectives

of SIMULA 67. Finally, a detailed description of SIMULA 67

syntax and use (Lamprecﬁt, 1983) is presented.

..I. SIMULA I
A. History / Background

SIMULA I or just plain SIMULA is an acronym standing
fqr SIMUlation LAnguege., The language is a true extension
of ALGOL 6@, containing ALGOL éﬁ as a subset. It 1is a
language designed to facilitate formalidescription of‘the
leyout and rules of the eperation of systems with discrete
events or changes of states. SIMULA has extensive list
processing facilities and -an extended coroutine cencept.
Simulation 1is widely used for analysis of a variety of
phenomena: e.g. communication networks, traffic flow,
production rsystems and administrativeVSYStems. Simulation
programs are generally verf difficult to write in assembly
" language or even in a high level langauage like FORTRAN.
Therefere alneed for a simﬁlatidn language, one built‘arqund,
a set of Dbasic concepts and allowing for a formal
deecription of the phenomena, ie heeded to simplify the
generation of a program. This language should enable one to
observe similarities and differences between systems and
alloQ the user to consider all relevent aspects of the
system. This language should aiso contain an algorithmic
language as a. subset for the massive amounts of numbe?]
crunching that..are necessary. Finally, the system

descriptions. should be easy to read and print for the

purpose of communication. Acknowledging a need for such a

simulation language, ‘Ole—Johén Dahl- and Kristen Nygaard
vdesigned and implementéd SIMULA at the Norwegian Coméuting
Center under a contract with" the UNIVAC division’of the
Sperry Rand Corporation. Since SIMULA 67 is a direct
offshoot of,SIMﬁLA, an examination of the development stages
of SIMULA is necessary to understand the concepts of SIMULA
67.

SIMULA's history is actually intertwined with that of
the Norwegién Computing Center (NCC). The iaeas for the
lanquage were originated in 1961. 1In 1962 UNIVAC launched a
campaign for their computers, the UNIVAC 1187 and the UNIVAC
IIT. The NCC got a UNIVAC 1187 in 1963 and this resulted in

a UNIVAC and NCC software contract. As a part 6f this

contract, the SIMULA compiler was completed in 1965.
B. Development Stages

SIMULA went through four main 1language stages. The
fifs£ stage was from mid 1961 to late 1962. 1In this stage,
the initial ideas were basedfupon a "discrete event network"
concept. Tﬁere were no real specific implementation at this
time. The second stage was from late 1962 to late 1963.
This stage built on the ideas of the firstistagé and
int,roduced increased flexibility by the use of the ideas of
ALGOL 64d. This, hbwgver, was somewhat restricting because
of the assumption that SIMULA was to be implemented by means

of a preprocessor to ALGOL 68. The basic concept of SIMULA

at this time was a system.‘consisting of a finite, fixed
number of active components called “stations" and a finite,
variable number of passive coméonents ‘named “customers".
The station also consisted of a queue part and a servicg
part. The service part had associated with it an opératiné
rule wbich described £he actions of the service part by a
sequence of ALGOL statements. The customers did not have an

operating rule, but did have variables associated with them

called "characteristics". The customers were defined by a.
real, continuous function called "time" and a function
called "position". A customer could be generated by a

service part of a station, transferred to thé queue part of
another station, then to the service part of the station and
so on, .until it diséppeared bby not being transfefred to
another queue part by the service part of some station.
These events of the service part of the station were
regarded as instantaneous and occuring‘at discrete points in
tiﬁé. As a resulﬁ, this class of systems came to be known
as a discrete event_network.

| The third deveﬁﬁﬁmeﬁt stage, from late 1963 to early
1964, led to a decisién to implement SIMULA through an
extension of the UNIVAC's ALGOL 6@ compiler, based on a
storagev management scheme developed by O. J. Dahl. This in
turn led to the “"process" concept whiéh utilized the new
storage scheme. The process concept was intended as an aid

for decomposing a discrete event system into components,

which were separately -descfibable. In general, a process
has two aspects. it is a data carrier and it executes
actions. “Declérations used to describe the data, and a
sequence' of statéments, kpé&n‘ as ihe opefation rule,
vdescribed the actions.. Unlike procedures, which are
dynamically nestea, the4felationsﬁip-between processes‘is a
symmetric one. So, the discreté evept system was viewed as
a collection of processes, whose ééﬁions and interactions
éomprised the behavior'of the system. Processes will thus
enter épd leave the syétem as results of actions within the
system . itself. So, the simple'network idea was replaced by
the more power ful concept of models'consisting of processes
operating interactively in “quasi—paralléi“. Processes are
user defined transient objects. They are referenced
individually. Tﬁese processes are declared collectively by
“"activity" declaratiéns. SIMULA wouldAnow be implemented by
extending - the ALGOL compiler and changing parts of the run
time system instead of using the ALGOL preprécessor idegi
Process _queues were now declared explicitly as orderéé
"sets". In order to increase flexibility, sets were allowed
to contain processes of different kindé. The sets were
manipulated by "wait" and "include" sé@tements. Quantities
that were declared local to the process, called
"attributes", were made accessible from the outside by the

"extract—-select" «construct. In other words, the acting

process could, by connecting another process, reference the

attributes of the latter as‘if they were loqallto the acting
one. Tﬁus; the processes were élso_daﬁa carrié:s, like the
customéf of the second development stage. Process pointers
. were introduced és explicit language elements. As a result
of - much "wofk, all of tﬁe major features of SIMULA were now
present at this stage.

The final development stage was from early 1964 to late
1964. This stage resulted in the implementation of SIMULA i

compiler, which was completed in December 1964. °
C. Development Process

SIMULA was regarded as a system description language.
It had six main design objectivés in 1963. First, there
should be a general mathematical structﬁre about which the
language should be built. This struéture should have a few
basic constructs and fufnish the user with —a standardized
approach .so thatm a system can be easily described and
defined in terms of these conceéts. Second, the language
should print out the similarities and differences between
various networks. Third, the /yﬁer shou;d be forced to
consider all aspects of the neﬁwork. Fourth, in addition to
bedng unifying and directing, the language should be general
enough to allow the description "of different classes of
network systems and other systems that can\ be analyzed by

simulation. Therefore, <+the language should contain a very

general dynamic and algebraic language. Fifth, to allow for

communication between users studying networks, the language
should be easy to read and to priht.' Finally, the language
should be problem oriented and not computer oriented. This

sixth design - objective implies increased computer:

-

processiné.;

| A year later, in 1964; however, the design -objectives:
were restated. . vThe main differences"™ bet&een the two
versions were threefold. First, the term "network" had
disappeared from the 1963 “discrete even?ﬂpetwdrk system" to
which SIMULA was related. It was found that there were many.
systems that- could not be regarded as networks. Thus, the
network concept was abandoned and the process concept was-
now introduced as the basic concept. Second, since a systeﬁ
was now understood as a collection of interactive processes
with each process being present in the program execution,
the execution of the program exiSted- as a. dynamic system
within the computer memory. Now, SIMULA was a "dynamic -
language" rather - thah beingy a language buiit around a

"with a few basic constructs.

general mathematical concept
This dynamic language also emphasized a relationship to the
block structﬁred language ALGOL. Finally, while the design
objective in 1964 still stressed being problem orientation,
it now also stressed computer orientation, as it was

believed that the success of SIMULA depended on its compile

and run time efficiency.

A storage allocation package was desigqed based' on a
two-dimensional free area list. .I%;short, each area had a
"qsed“-bit that was used to'féciiitate the combination of
qeighboring frge areas. As a result of this bit, stack
allocation yaE pbssible and the entire noncoﬁtigudus storage
of the computer couid be utilized. Thus, the search space
for dynamic.structures was dréstically increased bringing
about the érocess concept and Qquasi-parallel programs.
Processes in quasi—paféilel execution implied that control
could be passed;fgom oné process to another as a resul£ of
special sequencing statementé, The operation of the system
was now a sequence of acﬁive phases of the pfocesses preseht
'in the system. Each process, thérefore, had a "reactivation
point", which identified the program statement at which
control would resume next time the process was activated.
‘The reactivation point created an illusion of a local
sequence control which steps séquentially ’through the
statements associated with a process. Thus quasi-parallel

processes were parallel in the sense that those proéesses

ey

which currently are inactive can be thought of as
"executing" a statement which takes syspem time. The
storage allocation package allowed these sequencing

statements to be placed at any program point since their

data sﬁgcks could grow or shrink - independently. Also,

-

,processes'cbuld be created and destroyed in any order.

SIMULA programs also had to proqidev uprogramming
"security". That is, any erroneous programlmust be rejected
by the compiler, run time 'checks,_ or by reasoning based
entirely on the 1language semanticds, independent ' of the
implementatiogj The main objective was to-acﬂieve compiler
controlled da£§ access. With procésses only interacting
through nonlocai data, the ALGOL access nfules could be!

iappiied. All ;local references could be checked at compile
time forxvalldlﬁy, except subscripts and parameters which
are checked aﬁ run time. However, this was not the case:
when there was a\need to obtain access to the contents of an
objéc£ from outﬁide the object. In other words, the active
object would need‘accessvto ité own data as well as those of
the other objects.\&he automatic storage retrieval mechanism
ensureé that a comﬁytable reference value refers to a
process currently in\the system. The connection mechanism
provided fhe required coﬁpiier control. The user fdrmat“ for

this mechanism is as follows

INSPECT <reference> WHEN Al DO S1

WHEN An DO Sn
OTHERWISE Sn+l

~where 'Al;...,An are activities and Sl,;..,Sn+1 are
statements. .This forces the wuser to 1interrogate class
membership of the referenced process. For example, .if the
process belongs. to clasé Ai the state Si is executed. Si\

9

acts*as a "connection" block having the attributes of the
“éonnected“ process as its local Qériables. The éonnection
block containg a ;toféd reference to the connected process;
This - "conﬁedtion pointer" preventsvaccidental delétion of
the process whilé it is cohnected.

Another form of security dealt with deallocation of

storage. This could be done easily by explicitly using a
"destroy" statement or going to the process "end". This
brings about efficiency and simplified implementation.

How€%er, to ensure security,one needed a process.referenqing
technique ensuring that only one pointeg could point to a
process at any time. Unfortunately{ suéh a scheme was not
found. i1t was finally'décided to require that pfocedgfes

and subblocks be self destructive on exit. The expression
. NEW <class> (<actual.parameter list>)

gives a value that is a reference to a process. The list of
actual parémeters provides initial valueé'oftéttributes of
the generated process. Since SIMULA has no delete
statement,: tﬁe process will remain part of the system as
long as it can be referenced. The "reference count" of the
pfocess ‘is updated each time a reference 1is stored or
deleted. When the reference.count becomes zero, the process
can no longer be referenced and is deletéd. However, this
process does not necessarily leave the systefh when it has

terminated 1its own operations. It may remain as a dead

10

.1

object, allowing its attfibupes ﬁo be vaécesgiblé to otﬁgr
processes through thevconnection mechgpism.‘ If memory geté
tight; a garbage collection routine deletes referencé chains
which could not be'?emovedvby the reference count mechanism:
However, garbége collection is used'as a last resort as it
was costly<.£ﬁ natdre to run. vHowever; combining all these
together led to possible conflicts with respect to data
accessing security. The first conflict that could occur was
that a process could outlive its dynamic'parent. In ‘other
words, a block instance<cpn£aining the generaLing_expression
which gives rise to the proéeéé could terminate before the
process. . As a- result, the process may aécessvnonexisting
data through its formal parametérs. To resolve this, all
call by name parameters -to processes were disallowgd.
Another conflict brdught about by the deallocétion ’scheme
was that a process could outlive its textually enclosing
block instance, thereby accessing nonexisting‘ nonlocals.
This p;oblem was solved by having all processes be declared
by "activity" declations Iocal_to a special block known as

the "SIMULA block".
SIMULA begin...end

This block is the outermost block or must be embedded in an

ALGOL program. The 4 SIMULA block corresponds to the

. :) b
simulation model. On entry to the SIMULA block during.

execution, the simulation facilities become dynamicélly

11

‘available.

A prominent featu;e of SIMULA Qas to be the concept of
"process éet", -along wiﬁh scanning mechanisms -énd . the
“selector expreésions" as ‘the only means of procéss
identification. . .The vfpfoceés pointer", howéver, céme into
being as a result of the selector expressionS' being
inefficient. Efficiency became an. impprfght issue. The
implementation of the language should be efficient and.users
should be able tor create efficient programé, with the
languagé. For example, the'built—in'mechanisﬁs should - have

run times independent of the size of the model. 1In this

. respect, process referencing became the important issue. An

abstract ordered set concept was included as a new data type

ot

to be used as a list mechanism for queuing purposes. These

ordered sets were implemented as two-way circular lists.

"Processes were able to be members of any,numbér‘of~ sets at

the same time by wusing Auxiliqry "element"” objects to
represent a process in diffefent',Sets. | All process
references were méde. indirgct'by these element objects by
providing -only "element pointers" in the language.
Physicaliy,_ the " process reference was a pointefvfoian area
of memory containingnthe data local to the process and some
additional information éefininq; its current staté‘ of
exec&£ioh.v A proceés.woﬁld remain part of the system- as
long as it could be referenc%? £hrougﬁ ; computabie element

expression. The element and set concepts served to

12

.....

Ba

facilitaee and standardize the menipulation of queues and
. other linear lists ef' processes. A-_set is an ordefed‘
sequence of e}ements. Each element consists of a -pointer to
the successor element of the set,. a 'pointere\to the.
predecessof:elemenﬁ of the set and the pointer to a process.
By using defined system procedures, sets can be formed’ and

manipulated. All sets have one dummy element alled the "set
»heed“. An empty set therefore consists of only the set head.
The element concept and the technique of reference
- processes had many desirable properties. First{ the ordered
sets of processes could be manipulated by means of sﬁendard
procedures. Next, when a process was referenced through an
element in a set, its successor and predecessor in the set
were immediately accessible. Also, any given process eog}d
be a member of an unlimited number of sets at the same time.
Andﬁbfinally,’ the members of a set could be processes—of'
different clesses.

Model simulation time is'the time reference used”within
a simulation: model to keep the advancemeﬁt of time under
control in 6rder to allow the competer to simulate
‘concurrent events. The .actions of a process are grouped
together 1in active phases, separated by periods of
ipactivity} Only one prdcess can be actively executing at
any one time. An inactive period of a process is caused by

a deactivating statement executed by that process. Thus,

the current active.phaséhgg the‘wprocess ends and control
\ - eur

13 ot

A

he

leaves the process. A “reactivatioh point" is held until

Ao -

the time of the next active phase of the process and resumes

- I

control at that point. The reactivation point concept
allows the user to string together actions eccurring at
different times into a iogiCal sequence. - This active phase
of a process is called an "event". Deactivating statements
.allow for inactive periods of definite ér indefinite lengths
of time. . An event ~can be scheduled to happen. either
immediately or at .some later time. 'A,process fér'whiéh an
event has been scheduled but not completed ﬁas an associated
"event notice" representing the event. An event notice
contains a reference to the process and a time reference.
Implementation of model time schedﬁling was accomplished by

maintaining a list, called the "“sequencing set, SQS", of

'scheduled event notices sorted by time attributes. The SQS

w;s répregehted by a binaryltree‘ﬁhich preser?ed the ofder»
of ‘'elements with equal time values. ‘%his'implehentation
reduced search times but required space for several pointers
and other information with each element on the list. To
avoid wasting space in processes not on the lisﬁ, the event

notices, as explained previously, are stored on the list.

- Since each process has only one event notice, 'the 1logical

significande of‘the time list is unchanged. Algorithms for

removal and insertion of event notices " were also
implemented. The currently active process is the one which
is at the end of the time list. When the current active

14

Aphase is completed, the current event notice is deleted.
Its successor in the SQS becomes the éurrent'vevent notice,
and controiﬂﬂ enters the associated' process at its
reactivation point.

A process can be in four possible' states. As
simulation procéeds, the states of processes will change. A
process that is "active" can alter the states of other
processes along with ité own state. 'A “suspended" process
has an event notice and a reactivation point. This process
will start when the event notice becomes.the current one. A
‘process that is "passive"‘has a reactivation point‘but lacks
an event notice. It remains passive until anothef process
changes %ts state. A "terminated" process reached the end

.o

statement of its prodess definition. This process has no
reactivation point or event notice. It éan no longer changé
to .any of the other states once terminated. HSWeyer, a
éassive or terminated procegsiwill remain as it still can ®e
referenced through 'an element expressioﬁ; ~ The states of
processes are altered by sequencing statements operating on
the 5QS. A sequehcing statement may delete an event notice
and/or schedule an event by generatingvan event notice. In
éddition, the statement will specify expiicitly either the
time reference of the event notice, or its position in the
SQS. A timing clause specifies the reference of the'

generated event notice, and this determines its position in

the SQS. The event notice is normally placed behind all

15

others with the same time reference unless otherwise

-

specified. |
D. A Detailed SIMULA Example

SIMULA was used to a large extent aé a system
description language. It was found that the writing of the~
program or system descriptiQn almost always led to a better
‘understanding - of the system. After thé%introduction of
SIMULA I, many shortcbmings were discove£;a within the
language. These shorthmings, which will be discussed in a
later section, resulted in the deQelopmeht of SIMULA 67.

Below is a complete SIMULA program (See McNeley, 1967) that

could be used to represent a system of a grocery store

¢

checkout, consisting of two checkers and one ‘hundred
customers.
Line ' Program

@8 SIMULA store: BEGIN ‘
1 ACTIVITY customer(n); VALUE n; REAL n;

2 BEGIN REAL stime; INTEGER i;

3 'stime:=TIME;

4 IF n<=6@ THEN i:=1 ELSE i:=2; -
5 IF EMPTY{queue(i)) THEN ACTIVATE c{(i) AT TIME;
6 INCLUDE (CURRENT, queue(i));

7 PASSIVATE;

8 HISTO(hl,h2, TIME-stime, l),

9 HOLD(@.25);
10 ACTIVATE c(i) AT TIME;
11 ncus:=ncus+l; REMOVE(FIRST(queue(i)):; END;

12 ACTIVITY clerk(i), VALUE i; INTEGER i;
13 . BEGIN

14 " I1: IF EMPTY(queue(i)) THEN GOTO 12; '
15 INSPECT FIRST(queue(i)) WHEN customer DO
16 BEGIN HOLD(MAX(9.25,0.1*n));
<17 , ACTIVATE FIRST(queue(i))i

18 PASSIVATE;

l6

19 GOTO 1l1; END;
29 12: PASSIVATE;
21 GOTO 11; END;- , .
22 SET, queue(l:2); INTEGER ncus; ELEMENT c(1,2);
23 ARRAY hl(1:26), h2(1:25); -

" 24 ncus:=0; FOR i:=1 STEP 1 UNTIL 25 DO BEGIN'
25 h2(i):=0.25+(1-1)*@.25; h(i):=@; END; h(26):=9;
26 c(1):=NEW clerk(l); ACTIVATE c{(1) AT TIME;
27 c(2):=NEW clerk(2); ACTIVATE c(2) AT TIME; N
28 11: ACTIVATE NEW customer(draw(l:25)) AT TIME;
29 HOLD(EXPON(@.25); B

30 IF ncus<=19@ THEN GOTO 1l1:
31 HPRINT(hl,hZ,1,26,6.25,1)?
32 END;

The program shows reserved words in capital <letters. The
line numbers are not part of the program buﬁ only included
for reference purposes. There are two process definitions
in this program. The first is "customer". This process
contains a parémeter "n" which is set outside thé process

and represents the number of items a particular customer

wants to purchase. There is a customer /process for every

customer in the store. Each customér ‘is described'by the

same process description but has different values for its

attributes n®, "stime" and "if// Lines 3 thru 11 form the’

process description for customgf. Line 3 stores the time

-“when the customer arrives at the checkout. Line 4

detgrminﬁs‘if the customer has six or less items. This;
detérmines at which checkout the customer waits since of
the two checkouts in the system, one 1is for six or less
items ana the other is for over six items. Line 5 will, if
the queue of clerk c(i) is empty, alert that .clerk by
executing a scheduling statement which schedules that
clerk's process to occur ét the current point in . simulation

17

time. .In lines 6 iand 7,'the customer is entered on the
queue of the clerk and the process of the customer’is.set to
inactive until the clerk checks his items. The time of B
" delay depends on the number of cusﬁomers élready in that

~
I

éiefk;$VQuéﬁé.rvLines 8 andW9 allo& for customers recordé or
histoéram to be kept and also délays‘ the customer one
quarter unit. After the delay, in liner 18, the clerk
process is resumed again at 1line 19. In 1line 11, ’the
variéble “ncus" is global and is used to tally the number of
customers already processed. The customer is then removed
from the queue and leaves the system.

As stated before, there are “only two clerks in the
system. Thus; the activity "clerk" will be activated two
times. This érocesg contains a parameter. “i" which is set
outside the process and represents the clerk identification
number. Lines'12 thru 21 form the procesé description for
clerk. Line 14 detgrmines if the specific clerk's queue is
e%pty{ ‘If it is empty, control shifts to line 28 and the
process passivates (becomes passive) othefwise control
continues from line 15. Statement 15 extends through 1line
19. The form "INSPECT Pl WHEN Al’DO" i%dPhe way SIMULA
establisﬁes which process descriptioé ghe—prg;éss specified
by ‘Pl waé created. If it came froﬁ the process description
specifiéd by Al, the "DO" part of the §tatement'is execuﬁed.
Linés. 16 ;nd 17 cause delays for a fixed time and then the

clerk alerts a particular customer process. The customer

18

process .resumeél at line 8. The q%erk _process bécomes

inactiQe until the current‘cﬁstomef act;vates it bnxline 16.

The clerk, when reactivated, resumes at lihe 19. This in

turn allggs the clerk to check for another customer in the
queue. Notice that nonev of the clerk processes evér

terminate because the "end" statement is never reached.

This is wunlike a customer process which does terminate and

leave the system. The clerk procéss can be termed . as a
"permanent -process", wﬁereas the customer process 1is a

" "temporary procesé"., Temporary processes can allow vast

amounts of daté io“pass through the system err a period of

time, but only a limited amoﬁnt of data will be present at

any one time.

The main paft of the program.begins at line 22 Qith the
declaration of‘.set "queue" which 1is associated with the
process clerk. The array “"c" ‘is def;ned containing members
thét are pointers to the clerk .processesvfor'feferencev
purposes. Line 23 defines histdgram variables that will be

used .to record the results of the simulation. Lines 24 and

25 initializes the customer counter and the histogram

variables. The two clerks are created and their references
stored into c(l) and c¢(2) on lines 26 and 27. They are
activated at . the current time. Line 28 creates a customer

having one to twenty-five items " and 1is activated at the’
current time. Lines 29 and 30 cause delays for a period of

time to allow for a new customer approximately every quarter

19 ' f

unit of time. Then a check is made to see if all customers
were created. Line 31 prints out the‘histbgram information
for +the simulation run.” On line 32 the end of the SIMULA

block is reached and the simulation is terminated.

20

II. SIMULA 67
A. Shortcomings of SIMULA I

As. éxperience with SIMULA increased, a number of
. : .

shortcomings were found. The element/set concept was found
to be rather clumsy as the basic mechanism for list
prOcessing.v Sihg;e process pointers ;estricted to one set
at a time proved by experience. to be much easier; The
inspect mechanism, which was used for remote attributef
éccessing, also turned out to be very cumbersome. This 1led
‘to the idéa of record classes. Full Security could be
optained in constructs like "M.C" by compile time réferehce
qualification. Tﬁe idea of record subclasses turned out to
be a reasonably flexible way of run time referencing.

Itqwas felt that SIMULA's simulation facilities were a
heavy 1load ¢to 'darry for a generalfpurpose language. - THE
multistack structhre worked very well for sequencing, but
quasi—parailel vsequencing Eould be used for other
applications that d4id not usé the simulated time concept.
When writing simulation programs, it was also observed tﬁat
many processes shared common properties such as data and

)
actions. By somehow preprogramming the ¢ommon properties,
much programming effoft, could be. saved. Recall, as
explained previously, that call by name paraheters were nbt

allowed for security reasons. As .a result, parametrization

would not Dbe as flexible for preprogramming common

21

véroperties. Howéver, the idea of subclaﬁses Being extended
to aéply to processes coula‘be used.

Another shortcéming .of SIMULA existed in its
implementation. Whenever the number of process éctivation
records was larée, as in most_siﬁulation runs, much' storage
space was wasted. Fér very larée simulations, this led to
memory space problems. A new compacting' garﬁége gbollector o
was found to be more efficient th;n the combined reference
count/garbage collector that was being used in SIMULA. This
“new garbagé colléctor could take advantage of active
‘deallocation at exit from procedures and blocks easily by
moving the free pointer back.whenever the deletion occured
at the end of the used memor9;-

Much work went into the feasibility of £he record claés
construct and \how to place it into the language.
"Pfefixing“ was found to be the answer. It was decided that
prefixing could be done by using a list étructﬁ:e cénsisting
of a'“§et head" and a variable number of "links".‘~ The
various processes could bevin effect glued to a link to make
each link-process pair one Dblock instance. Each process
would be a block instance with two layers. The'prefix‘léyer'
would contain a successor and prédecessor apd other
properties " of 'thé two;way list membership. The main layer.
would cqntain the attributes of the process.‘ This two layer

property of the process must be known at compile time to

obtain attribute referencing security and compiler

22

simplicity. The 1links aré declared separately without any
information about the other process classes which used: link
instances as a prefix layer. . éinéé the processes of these
other process classes were bothvlinksvand more, the class is
indicated by prefixing theif aeclarations with the process
class identifier, ﬁamely;i "link". These .process classeé
would then - be "subclasses" of "link". Prefixing leads to
multiple prefixing. Thislin turh canvbe‘used . to estabiish
hierarchies of process classes. The ‘concatenation of a
sequence of prefixesvwith a main part could also be applied
to the action part of a process class.

‘The class concept led to a completely new language
approach. SIMULA I's shortcomings bfought about SIMULA 67
which would have the following points." First, the new
general programming -language would Be designed in terms of
being an improvéd SIMULA I. The basic concept would be
classes of objects with the prefix feature and subclass
concept included. Finally, direct and qualified references

would be introduced.

B. Development

Development began with the unification of the old
process like objects and the 'new concept of self-
initializing data/procedure objects. Along with this began

the removal of the model time or simulation time concept.

The term "object" now came about since the term "prdcess“

23

really could not be applied to the new concept. This object .
would be generated 1like a function procedure by Dbeing

invoked by the evaluation of a'generating expression. The

_object may then set its own local variables as necessary.
The control would return to the generating expression

carrying back a reference to the object as the function

value by either reaching the "end" of the object or as a

result of the "detach" operation. If an "end"' was ' found,
the object terminateé and no fﬁrther actions of the object
can be executed. On the other hand, a “detach" allews the
object to become a "“detached object" aﬁdvbe capable of
functioning as a "coroutine": The coroutine call "resﬁme
(<object reference>)" would make control leave the active
object, lea;ing a cbrfesponding reactivation point at the
end of the resume statement, and enter the reference object
at its reactivation point.

The declaration given to a class of objects is called

"class". The idea of class prefixing and concatenation made

it possible to define cifgées primarily intendéd to be used
as‘prefixes.

Circular list prbcessing, similar to sets in SIMULA I,
were described ‘by means of a class ﬁeirarchy for list
elements, "class link", and list head, "class list". -- These
both had forward and backward‘pointers;contained in a common

prefix part. This meant that any class prefixed by "link"

could have objects that could go in and out of circular

v

24

lists. Procedures;such as‘"into" and "out" .dealared .within
the class prefix ﬁart, tdgether with the list pointers, maké
insertion and déletion'possiblel | |

Thg cbncatenétién mechanism was slightly modified in
order that the process concept~as‘a prefix class could be
used. Originally, the operation rule of the ‘concatenated
class contained the Qperatidn rule of the prefix class
followed by the main part. Now, for ‘a process object,
predefined actions must exist at £he‘front and at the énd of
tﬁe operation rule. Thus, the prefix class had an operation
rule of initial actiéns and bfinal actions split by the
symbol "inner". This prefix class was named "process". The
term "process class" now was used instead of the "activity"”
of SIMULA I.

All of the sequencing statement procedures of SIMULA I
could be implemented by using procedures that worked on the
SQS.'.thé\ séqﬁencing >set.' Terminated objects could be.
 Femoved from the SQS and\coﬁtrol passed to theisuccessor.
object. The only problems that femained were the placement
of £he SQS pointer and the representation of the main
program of the simulation- model, which in SIMULA 1 was
accomplished“ by the SIMULA block; Thekproblems were solved
by taking the prefix classes, procedures, and §SQS pointer
and puttin; them into a big class named SIMULA. The initial
act@ong of this prefii ciass was to initialize the SQS which

s

contained’ the main program actually disguised as a process

25

oﬁject. What'was ’impoftant here was thé fact ,that an
instance .of aFmprefixed block 1is .a detached object by
defin%}ion.w This meant that the ﬁain program could fﬂnction
as a cbroutine in quasi-parallel with its local ijects..~1n_

June of 1967, the "SIMULA class" was réorganized as a two

level hierarchy,

CLASS SIMSE*
and, o . ,
SIMSET CLASS SIMULATION
This now allowed circular list handling for purposes other_
than simulation.

Even though the.class/subclass facility could be used
to define general object classes and specialized subclasses
by deélaring additional properties; adding details to the
'operation rules 'could not be done. As stated before, call
by name procedure pgramefers, which c¢ould solve this
problem, could not be used ' because of allocation ' and
'security problems. A "virtual" quanﬁity concept, where the
actual parameters would have to bé declared in the objéct
itself but at a deeper subclass level than that of the
virtual specification, was adopted. A generalized object
could now be defined whose behavior pattern could Be "1eﬁ£
unspecified in the prefix class body. Different subclasses
could then contain different‘actual parameter declarations. \

In 1967, another development began to take shape.

String handling and input/output facilities were based on

26

classés and a new type ;character"; vTﬁg _class "string
“descriptor“ contains a character afray. The class "stfingh
identifies a substring of a string object and a scan pointer
for sequential access. Both classes contain various
6perators declared as procedures. These cbnstruéts;fpfovided
much flexibility but also run time data structure and
syntactic overhead. The string tyﬁe was later changed to |
"text" by name. A text could be thought of as éither a
string’descriﬁior‘("text reference") or a charactéf sequence
("text wvalue"). A new notation waé designed to distinquish
them. The operators ":-", "==", and "=/=" were chosen fér
reference assianment, referénce equality and reference
inequality. These signs were also vapplied to object
referenqeé as well. Input/Output was designed by using a
hierarchy of classes corresponding to different kinds of

files.
C. Implementation and Standardization

SIMULA I was originally a . system description and
simulation language, not a general—purpose"programming
language. It was mainly implementéd for the UNIVAC 1100
computer. SIMULA 67,' however,v was to be a general
programming language and as a result be made 'availéble on
most major computer systems. The Norwegian Computer Center
came on hard times in 1967 and became restricted to new

large long-range projects. However, four people were

27

-

K

allocéted‘ to the SIMULA 67 ‘implementation. But other.

resources were not made available since arguments against

"SIMULA 67 still existed. It was felt that' SIMULA 67 would

not be very profitable to . the NCC. The NCC felt that a

modern, commercial compiler would require a substantial

investment to become profitable. The NCC was not willing to
put out large amounts of money for SIMULA 67. But, noting

the reputation of SIMULA I and the fact that SIMULA 67 was

to be linked to ALGOL 64, along' with the importance of

simulation, the implementétiop started.

Top priorities were given to implementaion for Control
Data, 1IBM and UNIVAC computers. Compilation and run time
speeds had to be comparable with ALGOL 608 compilers. This,
coupled with documentation and educational material‘would
make‘SIMULA 67 a high standard 'langﬁage. ALGOL 68 was -
contained . as a subset of SIMULA 67 with only minor
modifications. The name SIMULA 67 was agreed upon with spmé

reluctance due to the feeling that this language would be

considered as a true simulatioﬁ language. It was feared
that " it may slow down the langgage's acceptance as a -
general-purpose language. However, the 'name'>was accepted

due to the fact that it was a new improved version of SIMULA
I that could be used for simulation. |

As of-1976 there were eight different compilers for
SIMULA 67. Implementations existed for the UNIVAC 1100

series, CDC 3000, 6000 and Cyber 7@ series, IBM 368/370

28

geries éloﬁg with the DEC syStem—i@ series. Translation
programs to transfer SIMULA 67 programs from one
implementation to another do exist. It has'been'found that
SIMULA 67 programs were easy to move frqﬁw nglHCQmputerV to
"~ another. .&h;m fact that SIMULA 67 allows for no undefined
elements allowed the SIMULA 67 language i%%elf to céuse few
problems. The main problem with moving SIMULA 67 have been
ouﬁSide the language. A few of these problems include
hardware 'differences between computers and also_operating
system differences mostly in file handling. Algo; moving a
program from a batch to an interactive environment caused
problems.

There are a few incompatabilities that exist between
SIMULA 67 systems. First, hardware représentation was not
considered when SIMULA 67 wés defined. What this means is
/that.’on some SIMULA 67 systems reserved words Are used, and
on othef systems harkefs around key opérator words are used.
For examplé,. on one system "IF" is a reserved word/and on
another system this may be denoted by “TIF'M. Even though
trangiétor pfogramé éan be wused +to amend the notations,
trouble would Thave been saved if the hardware
representations would. have been deéigned with the language
design. Another inco&éatibility exits because diffefent
operating systems handle files differently. Finally,

different word 1lengths on different systems leads to

precision problems for real variables.

29

Standardizing SIMULA 67 so that programs can be easily
transported has been difficult due to the desire to add new
features, REPEAT-UNTIL for example. Another reason stemg
from the desire to solve certain problems in a better way .
then the init;gl definition of SIMULA 67 allowed them £o be
solvéd. All in all, SIMULA 67 was standardized before and
during the first'implementation. This, on the whole, gave
good“compatability between the systems and allowed the
SIMULA 67 staﬁdardization toQbe»more successful than eother
standardization efforts; The main reason for this is that

the SIMULA 67 languagevis fully defined and does not, as

many other languages do, contain undefined constructs.
D. Simulation Language Objectives .

In this section, simulation languages in general will
be covered. Simulation, in a broad sense, could be defined
as a technique of representing a dynamic system by a model
in order to gain informatidn‘ about the system through
experiments with the model. Digital :simulation is widely

used as a tool for studying traffic flow, production

systems, transportation and communication networks, among
others. The simulation language therefore serves the
following purposes. First, it .aids the analyst in building

a model by presenting a conceptual framework for identifying
and describing the sysﬁem components. Next, it provides a

notation for this description of the dynamic model. Finally,

30

it serves as a -programmiﬁg“aid, making cnanges easy to
modify. ‘

Thére are two different approaches used in deyeloping a
simulation language.' The "continuousvappfoach" is hainlx.
accomplished using analog cémputers. But since digital
computers are discrete devices, continuous changes in the
physicél 5ystem‘can be represented by a series of discrete

changes in the model. This is called a "discrete apprdach“

e

and such a model is called a "discrete event model”. In”
cbhtrast to the technique of representing the system as a
whéle-by a sét of differential equations, the individual
events of a Vdiécrete‘model are specified in great detail.
Many discrete simulation languages, as a result, .are
general—pufpose algorithmic languages.

Simulation languages also provide concepts and
programming facilities not found in ordinary general-purpose
programming languages. bFirét, simulatién languages enable
concurrenéyk of processes by"'introducing a 'system £ime
concept used for ordering events. Usually, systems are very
large containing vést amounts of data. Dynamic storage
allocation of data is a common feature. Components, thus,

enter and leave the system, only those currently present are

represented within the computer. Many dynamic systems are

concerned with motion and flow which means that the

configuration of the system changes with time. Therefore,

all simulation languages provide some form of 1list
31

éroéessing. Interdependence is also present? Fof example,
Aconditions, for ‘given events to occur may be extremely
complex on account of interdependehce between systeﬁ
éomponents. Most simulation languages, as a resu1£, have
'general-purpose logic capabilities including set concepts
and predicate calculus facilities. Algofithms are present
for the generation of random numbers .according to various
distributions. Statistical analysis 1is very impo;tant in
simulation. The ¢oﬂsécutive changes of state 1in a model
represent the complete history and outcome of the
éxperiment. In order to get meaningful fesults, individual
observations of selected variables need to Dbe analyzed
statistically. Built—in functions to .averagé, histograms
and others are standard in simulation languages. Finally,
continuous phenémena are in principfg. represented by a

series of discrete changes. Most discrete event languages

provide no aids for treating continuous changes.

Simulation languages. involve systems in which
interrelated processes interact in time. Processes are
modeled by a sequence of discrete "events", each of which is

-

assumed to ‘occur instantaneously in the time scale of the
system. Tﬁé effect of an event is to change the "state" of
the System. The total effect of the process is the sum‘Qf
the effects of the sequence Dby which the system is
characterized. A scheduling algorithm determines the event

1

with the earlliest time from a list of events'which have been

-

32

scheduled and causes"execution of that eVEnt.. "Exoéenous
events" are scheduled’by a mechanism outside the system
being simulated, whilé "endogenous events" are scheduled
during tﬁe execution of other . events: The information
structuré on which events operate are referred to as
“"entities". An entity fbrms,a single unit with respect to
creation or deletion but may have a number of data fields of
different valué types. The entities manipulated by event
subroutines of a .simulation language include Dboth data
. entities, which specify data attributes of the process and
event notice' entities, which specify information about
events Which have been scheduled for execution at a point in |

system time not ye£ executed. When ekecution of the event
completes, the scheduler determines the vnext event to Dbe
executed. Simulation algorithms allow the user to have
explicit control over the oréer in which simultaneous evehts
are to be scheduled. | Specifics ;f the scheduling
mechanisms, quasi—éarallel processing and .the simul&tion
algorithms will bbe covered in greater depth in the section

on SIMULA 67 syntax.

33

I1I. SIMULA 67 Constructs-and Syntax

A. Statqgﬁpts

As is standard in most languages, SIMULA. 67 includes
the numerical data types of REAL aﬁd INTEGER. Also included
is the BOOLEAN data type whicﬁitakes on the value of “true".
or "false". To declare a variable of any one of these

[' .
types, the following example shows the syntax that is used.

REAL X,¥:
INTEGER z;
BOOLEAN found;

This example accomplishe&'! the following task. First,
storage locations are set aside with the names "x", "y",
“z", and "found". The type of the variables "x" 'and "y" is

fixed as real and "z" as integer. The variable "found" is
fixed as a boolean. Finally, variables "x", "y" and "z"

will have 4initial values of zero and the variable " found"

will be set as “"false". Every variable that is used must be
declared before being used for the first time. The
declarations appear at the top of a block. Variable names

Q

hust begin with a letter and may be followed by letters
and/or digits depending on the specific compiler usea.

| Themoperations that can be performed on numerical
variables and constants are addition (+), subtraction (f),
multiplication (*), division (/) and exponentiation (**).

Exponentiation has the highest priority of the operators.

34

Multiplication and division share the next rank, followed by

additien xand subtraction sharing the - lowest fénk. The
typicaL rqles for evaluation of an arithmetic "expression
hold. That 1is, left to right Vevaluation depending on
operator priority. If 5oth operands in an ‘expression are
integer variables, the result isvinteger, however, if Qne‘of‘
them is a real variable, the ‘'result 1is real. If the
operator is division (/), the result is real in any case.
For integer division, an opeéator.of double slashes (//) can
be used. If the operatdr is exponentiation, the result is
real in all cases.

An assignmént statéﬁent takes a typical form of
variable followed by the o=t assigning mark, foliowed by.

some expression. For example,
X =Yy + X;

adds the integer variable "x" to "y" and stores the result

back into "x". Notice also that each assignment statement,

as in thé variable declarations,fis followed by a semicolon.
The semicolon'acts as a separator between statements.)
Labels on statements are also .possible in SIMULA 67
programs. A label name has the same restrictions as a
variable name. A label name must be different from all
other .names gssigned to variables. The label is separated

by a colon (:) from additional labels, which may follow, and

‘from the succeeding statement. The following example,

35

loop: x := X +-l;

GOTO loop;
shows a label called "loop". It aiso shows an
"unconditional" Jjump by using a "goto" statement.. As a

result of this "goto" statement, the piece of code will be

executed endlessly resulting in an infinite loop. As in

languages such as PASCAL, the "goto" statement is a basic -

~part of the 1language, however, due to the nature of the
language beiné a structured programming language, the "goto"
is seldom used. Other "conditional” jumps are used instead

of the "goto" to alléw for a perfectly strﬁctured program.

Conditional statements take the form of -

IF b THEN sl ELSE s2;

- >
where "b" is a boolean expression. If this expression has

the value of "true", the statement "sl" is executed and the
statement "sé“ is . skipped. Onlﬂihe other hand, 1if the
boolean éxpression has the value "false", ﬁhe statément “SZF
is executed and the statement "sl1" is sXipped. In both
cases, the program is continued with the statement following
the conditional one. The statemeﬁts "sl" and "s2" are
restricted to Dbeing only a single sta;ement in each case.
However, it is possible to execute a series of statements in
place of the single statement “sl" or "s2" by forming a
"compound statement". A compound statement is formed by

joining a series of statements together as a unit by placing

' 36

the word BEGIN before the first statement of the Igroﬁp and
thej word END after the_ last statement of the group. In
generai; at any piace where a single statement is permitted,
a compound statement isAalso permitted.' The IF statement
can also béiused witﬁout the ELSE clause in the following

manner.
IF b THEN sl:

In‘this case, §t3tement "sl" ié executed if -the .boolean
expre;;ion'-"b“ is "true" otherwise the‘éfogram control will
continue with the next statement following the conditional
one. a

Loops can be handled in aﬁother way besides using GOTO
statements. The 1loop can be carried out ‘using' a FOR

statement.
FOR c:="1ist" DO s

Here, "list" can be replaced by elements separated from one
another by commas. Eaéh element can have one of three

forms:

R U

1 STEP i UNTIL u
e WHILE b

or, . ' : /
e . o

The control is performed for: each element of the FOR

!

statement, one after the other. The first form,
. k‘ .

0

37

FOR c:=1 STEP i UNTIL u DO s;

uses the "c" as a control variable, the "1" as the. starting
value, ‘the "u" as the upper bound ‘and the "i" as the
increment that repeats statement "s". When this form ofithe
FOR statemént is encountered, the control variable "c" is
assighed theblower bound A "1". This control variable is
tested to see that it has not exceeded the upper bound "u".
If is has not, the statement "é“ is executed. However, if
the control variable eXcéedg the upper bouna; the pfogram is
continued from the statement following the FOR stateﬁent. If
the. control variable was not greater than the upper bound,
the coﬁtrOlvvariable is thén incrementediby the "i"® value
and execution 1loops to cheék and see if "s" should be
executed again. As long as "¢" is not larger than "u", the
statement fé" gets executed and "c" gétsvincremented by "i'™

in a loop. The second form of the FOR statement,:
FOR ¢c:=e WHILE b DO s;

works as follows. The control variable “c; is given a value
of éome expression "e". .The boolean "b" is then tested. 1If
_"true", statement "s" isvexecuted and the 1loop ' continues.
If "false", the loop ends and the program is continued with
I”the statement fol;owing the-FOk statement. The last form of

the FOR statement is as follows.
FOR c:=e DO s:;

38

The value of tﬁé'arithmeﬁic expression “e" is aésighed to
qbntrol variéble "o". 'The statement “"s" is then'executéa,
Finally, the statement following the FOR statement is
eXecutea.‘ As a vresult,”this form of the FOR_statement is
not a loop as the othgr forms are, as the "s" statement ié
executed only once. The’following is ;n e?ample to end the
discussion on FOR statements. |
.’FOR r:=6, 9 STEP 2 UNTIL 17, 28 DO

BEGIN
t

g
END

[

e - W

-y W@

2 *r
3 % ¢

The loop will calculate values for "t" and "g" for the
values of "r" at 6 (first element), 9, 11, 13, 15 and 17
(second element), and 28 (third element).

Another way to generate a loop 1is by wusing a WHILE

statement.

WHILE b DO s;

.
b

As long as the ‘boolean . eipression "b* is “true“,E the
statement “s" will be executed. The WHILE statement is not
part of the SIMULA standard, however, most compilers accept
it.
Atteption will now be turned to relational and logical
operators. The relational operators are less than (<), less
'than or equal (<=), éreater;than (>), greater than or-:.equal

(>=), equal (=) and not equal (-=). The result of "two

39

. .)
arithmetic expfessions separated bya-relational operator is

either "true" or “false", as . is typical of most other
'languaées. The logical 6pera£orsL in order of highést to.
lowést priority, are negation (NOTS. ldgical AND (AND),
'ylogical OR (OR), implication (IMP) and equivaleﬁcé (EQqv). A
1'bqolean expression -‘is evaluated on the basis of priérities
of these operators. As an example, - the assignmént

statement,
m := r<=5 AND r>@;

will set the boolean variable "m" to Dbe "true" if the

integer value r"* is greater tﬁan zero and less than or
equal to'five. |

A vector variable can be stored in memory by using the
ARRAY declaration. This declaration will reserve an area of
locations in memory and attach to it ; name. These 'placesv
will all have the .same specified type. The deciarations
also fixes the bounds for the indexes. The following,
INTEGER ARRAY a,b (6:20);
REAL ARRAY ¢ (1:5,10:15);
represents thé déclaration_of two vectors "a" and ‘"b“ of
fifteep elements each, both . with indexes from 6 to 240.
Thése two vectors may hoid only integer values. The second
declaration - sets up a two-dimensioqal a%fay',‘“c“,'with the
first index varying grgm 1 to 5 and the second index from 10

to 15. The "c" array has thirty elements and only holds

49

real values. Boolean arrays can also be declared. .
B. Input/Output

Input and output in SIMULA 67~ work according to a
system of card images. For input, the card image of eighty
places is transferred to a buffer, called SYSIN.IMAGE, with

e;ghty locations by the following command.
INIMAGE;

Therefore, if 'input is desired, the INIMAGE command must Dbe
given in order to place the external data into the internal
buffer. An integer value can then be read from this buffer

by using the command,

This puts-an integer value into the integer variable “v".

In the same respect, a real value can be read from the

ot

buffer by using the command,

This will put a real valué into thé real variable "k".. In
SIMULA 67, a digit must follow the decimal ih a real numper.
For exémple, "3." is not allowed as a real Qalue, but "3.0"
is. Both ININT and INREAL are system function names.

Card images can contain several values. To accomplish

N\

-t

this, a position indicator or pointer, called
41

a

SYSIN.POSITION, is attached to the buffer. When the command

INIMAGE is executed, . the position pointer is set to the

beginning of the buffer. On each reading from the Dbuffer,

- P

the position pointer is also changed. Between each.number
on the card image there has to be at least one space. Thus,

after a number is read, the position pointer points to the

space after the number.

The position of the buffer pointer can be set Dby the

user by means of the command,

_ SYSIN.SETPOS(n);

¢

wheré n" is the position location on the buffer. The
pointer = may be moved forward or backward Qith regard to its
present position. This will allow for data or whole card
images to be read any number of times.

If a program is needed to process an unknown number of
data card images, SIMULA 67, as ﬁany other languages also
do, provides a boolean name ENDEILE to indicate whether the
end-of-file has already been read or not. ENDF ILE will
remain "false" as long as at least one card image can Dbe
moved into the input bﬁffer by the statement INIMAGE.
Therefore, when the end-of-file is reached, ENDFILE will
‘become "true”.

Output also works by wusing a buffer. This buffer,
cal}?g‘ SYSOUT.IMAGE, handles 132 characters. The buffer is

printed to output by using the statement,

42

(-

OUTIMAGE;

At the beginning of the program and after each OUTIMAGE, a
f;esh buffer 1is se£ to blanks and the buffer position
pointer, callea‘SYSOUT.PdEITION, is set to the beginniné of
the buffer. Values can be sent to the buffer by using one
of the following commands,
OUTiNT(v,w‘) ;
OUTFIX(v,a,w);

or, . .
OUTREAL(v,a,w);

For the OUTINT comméﬁd, the "Q“ sténds for the Qariable to
be printed and "w" is the width of the field that the
variable is to be printed in. If the width that -is chosen
is too small for the output of the ndmber,’the valué'is not
output. However, a row.of asteriské is output in the field
‘instead to show that the field width was too small. For the
QUTFIX and OUTREAL commands, the "v" agaiq stands for the
- variable to Dbe: printed and the "w" again for the field
width. The "a“ standslfor the number.of digits behind the
decimal point that is wanted. OUTFIX transfers the variable
as a fixed-point number %nto the output buffer. OUTREAL
transfers a variable as a floatingjpoint number to the
output buffer. Again, if the width is too small, the field
will be output with asterisks,. As with the input buffer
position pointer; the ougput positioh péinter can also be

positioned by the user by the command,

43

SYSOUT.SETPOS(n)

Here, "n" is a number between 1 and 132.

Text may also be output by using the command,

OUTTEXT("This is text"):

The words "This is text", minus the quotes, will be sent to
the output buffer. = The text to vbe output must appear

between two quotation marks.
C. Textv

A text, in SIMULA 67, 1is treated as a three level
instance. The first level, "text refereﬂce“, refers to the
second level, a "text descriptor". This text descriptor
contains the address "a" of the area of the text, the téxt
1gngth "1", a pointer "p" to the next cﬁaracter of the text
and the displacement "4d"“. In.thé third level, theA"text
field", the contents of the tex£ is stored and a place "m"
held by a refe:ence to the text descriptor.

The declaratian,

TEXT X,Y,Z;

enables the address of the text desériptors in "x", "y" and
vz, At this point, the text reference is initialized to
the name "NOTEXT". The text descriptor has the value zero!
for the items "1", "p" and “d". The text field is empty

except for m

pointing back to the text descriptor.

44

Although "x", "y" and "z" now have been initialized, along
with a reference to an empty text, no instance is evailable
to store a - text. This is done by usiné the statement
BLANKS. The relation between the text variable declared and

the instance created is produced by the reference

assignment,
X :—- BLANKS(15);

This creates a text 'instance of a field up to fifteen
characters. The _numbér fifteen can Dbe replaced by any
number depending on what is needed. AThis text field is
filled with blanks and verieble "x" refers to it. To assign

a text to the text field of "x", the assignment character is

used.
X = "This is a text":

This statement transfers the text on the right side, minus
N

the quoteé, to the area of the text instance to which "x"

refers. Since the length of this text 1is only fourteen

1
characters, the remaining place of the text area is filled

with a blank.

Another way of setting a text instance is by usihg the

COPY command,
y :- COPY("This is also text");
This creates a text instance that is referred to by "y" and

45

also ‘transfers the text immediately to the text area of the
instance. This text area will have a length of seventeen
since théﬁféxt_strihg containS'sevedteen cha:acters;

A reference to part of a téxt instance can be assigned
to “another variable. The following éxample explains the

command that is used to accomplish this.
z i~ y-SUB(9,4);

This command will assign to variable "z" part of the text
iﬁstance "y". This is done Dby >blacing a decimal point
behind the variable “y“ and following it with the word SUB.
In the parentheses, the displacement ffoﬁ whiqh“the subtext
is to start is nine, and the length of the subtext is four.

This means that the text area of "z" contains the string

"also". To further explain, a graph of the situation 1is
used. |
l—— vy : ~ text reference
1—;i—> alll7 ‘text descriptor
':————> m "This is also text" text field
i——l—>~a 915 text desé;iptor
14— z | - text reference

It is seen by this graph that the text descriptor of "y" and
""z" Dboth have address "a", meaning that both point to the
"same text field. Howéver, the variable "y" is a reference to

the whole text since the displacement field is one, the

. 46

pointer character is one, and the length field is éeVénteen'
in the text descriptor. - On the other hand, the text
description of "z" shows that "z" is a reference to only a
subtext of the téit'field.‘ The displacement field of "“z" is

nine, the pointer character is one and the length field is

five. | | e
To take this a step further, if a text value is -
assigned to "z" as follows,
z := “"more":;

refers to a

the text ﬁield of "y" is also altered since "z
subtext of "y". This wili>then result.in changing the text
field to "This is more text". For each texﬂ; field, any
number' of 'subtexts can be 'defined. fhese subtexts may
overlap. Subtexté must not exceed the boundaries of the
original text.

To reiterate, a text reférence'.assignment assigns a
variable to a text description' that points to a text field.
This is Hexpressed by the ":-" symbol. A textv value
assignment assigns new contents to a text field by using the
symbol ":=".

The type CHARACTER can be used to‘store characters in

. variable locations. The declaration, ‘ ©
CHARACTER a,b;
will provide two single byte storaée places with the names

47

"a" and "b" with the type CHARACTER. These places will be
initialized with nonprintable "@@8". A value can beé assigned

to a variable by using as assignment statement.

b 1= l*‘l:

AN o
This will store an asterisk in the variable "b". Notice

that the character is surrounded by single, not double,

quotes. Character arrays can also be declared by using
CHARACTER ARRAY

along with the variable name and boundary limits. The
functioh CHAR(n), where "n“ is an integer, will return a
charécter corresponding to the bit pattern of the given
integer. The opposite 1is accomplished by the function
RANK(c). This wili return an integer corresponding to the
bitbpattern of the-character "c".

{ Other predefined functions besides-CHAR and RANK are
present in SIMULA 67. SYSIN.MORE is a function that returns
"true" if the ppsitibh indicator of the input buffer 'is not
greater than the (1ength of the buffer. %herefore, if all
the characters of the buffer'have been read and no more can
be traﬁsmitted,- the SYSIN.MORE will be ""false". The

function LETTER(c) will be "true" if "c" is a capital letter

and - "false" otherwise. The function DIGIT(c) will be "true"

t if "c" is a digit and "false" otherwise. If "a" is declared

as d character, a character can be read from the input

48

buffer, SYSIN.IMAGE, by,

and a character can be sent to the output pbuffer,

SYSOUT. IMAGE, by
OUTCHAR(a) ;

If "x" is a text variéble with a text fiela of length eighty
characters, the contents of a card image can be transferred
to "x" by,

© INIMAGE; ,

~ x := INTEXT(80):
First, the card image is sent to the input puffer and then
'the entire text of éighty characters is transferred to the
text field referenced by “x“. In general, any number of
characters can De trahgferred froﬁ the input buffér by the
INTEXT function,

‘ When reading'vaﬁues~from the input buffer, the names

.INCHAR, ININT, INREAL,-and INTEXT can be used. Values can
also be read from a text variable or a subtext. For

xll

example, suppose is a text variable. The statement,

Yy := x.GETCHAR;

with "y" being a character variable, will transmit a
character from which the position indicator of "x" is
- pointing, to "y". The position indicator is then

-

49 |

incremented. The statements

Yy : x.GETINT;
avnd '

Y := X.GETREAL;

with "y" being an integer in the first case and a real in
the second case, will start at the first position of the
_ text until the corresponding.value is found. If the first
character is not a digit, an error will ocdur. 'The'position“
pointer will be placed following the found number. The
following example,
BEGIN
TEXT X,Y,2Z;
- CHARACTER c;
INTEGER i;

REAL r;
X :- COPY("MNO-69.37PQR");

y :- x.SUB(4,8);
z :- X.SUB(8,3);
1 := z.GETINT;
r := y.GETREAL;
- ¢ 3= X.GETCHAR;
END
can be explained as follows. The text field 1is shown

graphically below.

MNO-69.37PQR
1l 1zl

The statement "i:=z.GETINT" will set "i" to be 37, while the

50

statement "r:=y.GETﬁEAL" ‘will éet "r" to be -67.37 and thé,
statement "c:=x.GETCHAR" will set "c" to be the letter M.
To nbte, for example, the:statement "i:=z.GETINT" §ou1d also
have beeﬁ written as “i:=x.SUB(8,3){GETINT“.>

The position indicator of a text variable can be.set by

the statement,

which puts the value of the position indicator of the text

variable "x" into the integerfvariable “i". The value can

Al

be changed by usiﬁg the cohmandv

X.SETPOS(n)

where "n" is a "valuée between 1 and the length of the text.
The length of the text can be put into an integer variable

- "i" by the command
i := x.LENGTH;

Values can also be written into text fields by other means

than from the input buffer.
x.PUTCHAR(c);

The above statement will put a character “"c" into the text

. variable x" at the position pointed to by the position

pointer. The pointer £hen gets incremented. The following

statements will put numbers into a text field “x“.

[}

51

Xx.PUTINT(1i);

x.PUTREAL(r,a);
and, A '
' Xx.PUTFIX(r,a);: T

wse

Here, "i" is an integer variable, "r" is a real variable and

a" is the amount of digits after the decimal point.
Y - ’ ’ .
The typical relational operators can 'be used for
characters. Besides the comparison of text variables with

the relational operators, there are also ways to test

whether a text variable refers to the text field as another

text variable. The operator "==" 1is used to test the
equality of references, while "=/=" is used to test for
inequality. Therefore, if two text variables “x" and "“y"

reference the same text field, the' comparison,

will result in the value "true".
' \
D. Program structure / Blocks / Subprograms

A SIMULA 67 prbgram.is ‘composed .of.roneb large block
consisting of internal Dblocks. A block— is a unit that
contains declarations ’ana statements surrounded by ‘the
keywords' BEGIN' and END. A blbck _can appear wherever a
.typical single ;tatement can be placed. As seen pre§i§usly;'
a compound statemeﬁt is actually a form of a block which has
po declaration statements. Blocks can.bé contained within

other bDlocks. The variébles that are decltared inside’ the

t

52

block are said to be "locai" to that block. All - wvariables

that were declared outside the block are said to be "global"

to the inner block. The following consists of three blocks,

which graphically are labelled A, B and C.

BEGIN ‘ |

INTEGER X,Y.2: i
L . 4' l
. (statements) l
[- ' l
BEGIN . SRR Joouay | 1
REAL r; 1} i
. (statements) 1 (A) 1
. .) 1 [}
. END; . <-——1 1
- [
. (statements) I (c)
. C I
BEGIN === |
BOOLEAN b; ! {
. ' : ' ! l
. (statements) ' ! (B) |
. | 1}
END <——=] i
L l -
. (statements) |
END . ' - <—==1 N

It is seen that blocks A and B are inside block C. Block A
‘has variable "r“:declared. After entranée into the BEGIN,
this variable will be created somewhere in storage. This

variable - is local to block A. As soon as the END statement

is reached, vériable r" will no longer exist. Block B has
variable "b" declared. Agaiﬂ, after entrance into the BEGIN
of this block, the variable will be created somewhere in
storage. This variable is llocal to block B. Again the
variable will disappear upoh ending of the bléck. Block C

53

has ' three variables, “x“, "y“ and "z", declared. ‘These

variables are local to block C. Since‘blocks A and B are

contained in block C, these three variables are global to
blocks A and B. As a result, blocks A and B have access to
these wvariables and can ;use them in ahy‘way., On exit of

block C by the END statemeht,n these three variables ‘will

disappear.

The definition of blocks allow for what is called

- "dynamic array declaration". This is accomplished by setting

the dimension of an-array in an outer block and working with
the array in an inner block. The following is an example of

dynamic array declaration.

BEGIN b
INTEGER 1i; '
INIMAGE;
i := ININT;
BEGIN » ,
CHARACTER ARRAY ch(l:i);

. (statements)

END

Here, an idﬁeger i" is read in from the input in the outer
block. This means that "i" may change each time this piece
of code is executed. The inner Dblock then creates a

character array "ch" of "i" elements. Therefore, since the

"i" can change, the array may have a different number of
elements at different times. This is a dyhamic array since

the size of the array is not pre-set before the compilation

54

of the program.

'~ Suppose now, that a particulaf task is to be executed a
number of times in various péris of a progrém. For.exAmpIe,
the average of twelve. numbers is ﬁo be found at ten
different locations within the’ program. A block, which
contai;s tﬁe code to do the averaging, could be placed at
each of the ten locations within tﬂé program. This tends to
make the program very redundant and large. A more efficient
way té accomplish thisitgsk is to create é subprogram that
contains theAaveraging’code. The subﬁroéram appears only
once and can be called from any point of the program.
However, before it is called, it must be declared. This
declaration, as was the case with variable declarations,
must appeér at the beginning of the block, and is usually at

the beginning of the program so that the -entire program may

P3|

have access to the subprogram. There' are two types of
subprograms. ' The first is called a "function procedure”.
This type returns a value to the calling statement. The

second -type is called a "proper procedure". This type does

not return a value to the calling statement as the function

procedure does, but, performs a specified task.

55

The declaration of a function procedure has the

following structure:

type PROCEDURE procname (formal);: ---1 procedure

formal parameter specification fm——1 head
BEGIN ‘ ’ et |

variable declarations |

.statements I procedure

procname := ...; l body
-END; g -—-1

The procedure head contains the type of procedure. The type
can Dbe BOOLEAN; CHARACTER, INTEGER," RﬁAL or TEXT. The
Keyword PROCEDURE is followed by a procedure name. This 1is
then followed by a list of formal parameters. The formal
parameters are substitutes for tﬁe actual parameters of the
calling statements, replacing them when the subprogram is
called. The formal parameters are then specified by type in
the next 1line. The procedure body lies between the BEGIN
and END. It contains declarations of any other variables
that =~ are used and aléo all the statements needed to perform
the specific desired task. Finally, a statement returning

the value wanted to the calling statement must be present,

as indicated by

B

procname := ...;

The following example is a function procedure named
"average" that will compute the average of a twelve element
real array. Since the value returned is a real value, the

subprogram is a real function procedure. The only formal

56

parémeter is the array. Note, that"there is no Dboundary
given in the formal parameter specification since it will

have the same boundaries as the actual parameter.

REAL PROCEDURE average(arr);
REAL ARRAY arr;
BEGIN
INTEGER i, sum;
sum := @; i
FOR i:=1 TO 12 DO
' sum := sum + i;
average := sum / 12;
END; :
In this example, the call to the subprogram is carried out

by the statement,

result %é average(avgarr);

where “"result" is a real variable and "avgarr" is a real
array of at least twelve elements. . The value returned from

the subprogram "average" will thus be placed in the variable

"result"”.

A "proper procedure" does not return a single value but
executes statements with the intent of wusing actual
parameters to perform a specified task. Therefore, a type
does * not have to be defined for a proper procedure. The
ﬁain-structure of a proper procedure is the same as a

function procedure accept no type is defined in the first

line.

PROCEDURE procname(formal);

57

i

Also, there must be no line "procname := ..." present in the
‘procedure body.

There are three ways that actual parameters can be

transferred. They are "call by value", "call by name", and
"call by reference". Keywords are VALUE, for "call by
valug", and NAME, for “"call by name". Call by reference

does not have a keyword, but is automaticafly‘used for TEXT
and ARRAY types.
A proper probedure is shown below that. will swab the
contents of'twb integer variables. |
PROCEDURE sWap(x;y):
INTEGER x,Vy:

INTEGER temp;
temp := Xx;

In this example,hthe call of the subprogram is carried out

1

by the statement,
swap(a,b);

where "a"'and‘"b" are integer values. After execution of
this statement, the contents of "a" and "b" will be
switched.

SIMULA 67 also has the capability of ‘allowing a
procedure to call_iﬁself. This type of procedure is called
a "recursive procedure". Recursive ptogramming is a subject‘{:“"’l
all to itself and will not be covered in this paper.

58

Finally, p:edefined subprograms are also supplied for
SIMULA 67; They can be called as if they had been declared
as pfocedﬁres at the beginning of the program. kMany of
these deal with™ mathematical functions 1like ABS(x) for
ébsolute‘Value, SIN(x) for sine of an anglg, and SQRT(x) for
square root of‘a number. ”bther predefined subprograms deal
with handling texts and charactérs. These include functions
that -were already explainéd, like, BLANKS(n), COPY(n),
t.LENGTH, and ININT.

In conclusion, blocks and procedures have the following
useful propertiés. First, a block defines an entity that
has properties ard perform5uéctions. A Dblock where - only
" local quantities are referenced is a completely contained
program component. A block is itself a statement, which is
a syntactic .category of the language. Finally, a block
instance is permitted to outlive its calling statement, ‘and
to remain in existence for asllong as the program needs to
refer to it. As a result, storage allocation cannot be
administered as a simple stack. A garbage collector, using
a scan-mark operation, is required to detect and reclaim
those areas of storage which can no longer be referenced by
the running program. Such a procedure which is capable of
giving rise to Dblock instances which survive its call is
known as a ‘"class" and will be addressed in the next

section.

59

E. Class Construct

The notion of "“class" and>"object“ can be traced to the-
notions of "block" and Ablock instance” in ALGOL 608. A
"block" in ALGOL contains the description of a data
structure and agsociated algorithms. When the block is
éxecuted,'a dynamic ."block instance"b contéining the local

variables of the block along with information for dynamic

linkage of.this block to other blocks, 1is generated. By

using "class", it is possible to generate multiple "objects”
of the same class. Each object genergted is a . class
instance. An object may suspend its execution and start the

‘ Py ' : : - : o
execution of a different ‘'object. When a class contains no

_algorithms, the class is-a "record class" with its objects

being “records". .Objects are really records to which

[

algorithms are associated. Different objects can exist in

memory at the same time. These objects may be of the same

.or different classes.

A class is defined and used in three phases. The first
phase is the description or declaration of the class. This

phase declares all the variables with their types that are

needed for the class bearing the name provided. Along with

the variables, a list of the instructions of the class are

defined. The second phase is the realization or incarnation

of the class. In this phase, a real copy of the class is
created in working storage. A reference to the incarnation
is also established and stored in 'a variable. The final

60

- “"“"i"’ L
e By

t

phase is the actual wuse of the incarnation of the class.
Here, the elements of the incarnation get values which can

be used again later. A class declaration has the following

form,

CLASS name(formal); <---1 class
formal parameter specifications <---1" head

BEGIN ===
declarations , , l
initial statements 1 class
INNER; ; ! body
final gtatements N l

END; - ===

» i
The class head consists of the keyword CLASS followed by the

name of the class and any parameters which this class 1is to

P Eatan TR

o T R . . . et e . o
use. Variahle: declarations, - ‘along ‘with subprogram
declarations, can be made is the.class body. First, an

instance of the class must »be createdy only then can a
declared procedure Dbe called by»a‘reference_variable. The
ciass body also consists of initiél statements or operations
and final 6perations.h Aﬁy kind of statements are allowed.
These can include assignments, input/output, subprogram
calls, or even creation of new class instances. The‘symbol
INNER represents a duﬁmy instruction acting as a separator
between both sets of operations. More on INNER will be
discussed later. The parameters or the variable declared
are attributes of" thev class and also attributes of any
object of that class. Also, another class declaration may
be,g?ne of. the declarations of ﬁhas class..iThis new class
would then be a class attribute of the original class. .

, 61

P

The first example of a class declaration is one in

- which the class contains no operational statements.

CLASS a;
BEGIN
REAL Xx;
INTEGER v, z;
END;

This class declaration 1links to a class unit "é“ the

_variables "x", “y“, and "z". If this class is to be used,
it must be incarna&gg. This 1is accomplished by the

statement NEW in the following way.
NEW a;

This statement will set aside an area in memory for a real

variable ' “x" and two integer variables "y" and "z". This

area may be referenced by a variable by using a reference

statement.

r :- NEW aj;

The variable “r" will as a result be - pointing to the new

.incarnated area = of 'clgss "a". The NEW statement this
creates an object which is an instance of class "a" and also

starts ekecuting' any operational statements that appear

inside class “a This execution continues until the end of
the class body or until a "detach" statement, which will be
defined later, is encountered. Prior to the NEW statement,

however, there must be a declaration defining "r" to be a

62

reference to class "a The declaration statement,

REF(a) r; -

—

will declare "r" as a reference to gh incarnation of "a".
-It will reserve a storaée location for "r" in memory of tyé;“
reference: This area will bé initialized as NONE meahing
that no reference to an incarnation was established yet.
The iﬁcarnation is then accomplished by "r :-= NEW a;" as
previoﬁsl§ described.

At this point, values can now be aséigned to the
variables in this area. Suppose that a real valuévfrom input

is to be placed in "x". This can be done by -

This transfers a real value from input to the variable "yt
in the incarnation of class.'™a", to which the variable "r"
refers.

To summarize the discussion to tﬁis point, accessm§o>wa

class 1is available only via reference variables. A class

instance is generated by a NEW statement. Each class
instance has no name, only a reference. An array of class
instances of <class "a" can be accomplished by first

declaring the array as follows.

REF(a) ARRAY arr(1:100);

This defines an array "arr" of one hundred elements, each of

63

which is a referénce +to a class instance "a". Now, one

hundred class instances can be incarnated by a - FOR

statement.

FOR i:=1 TO 180 DO
BEGIN
‘arr(i)y :- NEW a:
arr(i).y := 1i;
END;

Here, each incarnation of a class instance is formed with
the "y" wvariable in each being set to the value "i". Now

consider the following statement.
arr(l) :- r;

This will assign the reference of the'incarnatioh of class

a

that was pointed to by "r" to the reference "arr(l)".
In other words, Both "arr(l)" and "r" reference the exact
same incarnation or instance.

Consider the next class declaration.

CLASS box(length,width,height);
‘ INTEGER length, wldth height;
BEGIN
REAL PROCEDURE volume,
volume := length * width * height;
IF length<=0 OR width<=0 OR helght< =@ THEN
error;
END;

64

Also, suppose the following reference statement and
incarnation was given.

REF{box) boxr;

boxr :- NEW box(3,4,5); , . -7
For the instance or incarnation of "boxr", the length, width
and height are given the values three, four and five
respectively through parameter passing. Also declared . in
this instance is a procedure name "volume".. Finally, the
operational statement, which checks to see that the length,

width and height are greater than zero in this case, is

. executed. Every instance of this class will execute this

‘operational statement. Each instance will have its own set

of data (length, width and height). But, now turning back

to the ‘instance of "boxr", if the statement,
T h = boxr;height; \\\\\\

is executed, the previously declared integer variable "h"

will be given . the value of the éttribute "height" of the

reference "boxr", which in this case 1is the number five.

Now, 1if the statement,

v := boxr.volume:;
. ‘

IS

is executed, the following‘ will occur. The procedure
“volume" operates on the data of the instance "boxr". This
means that the "integer variable "v" will receive the value
sixty. ~v

65

A chain of instances of a class can be created by

declaring a reference to the class inside the class itself.

For example, consider the following piecefof code.

BEGIN
REAL ml;
REF(c) x,y,first;
CLASS c(m);
REAL r;
BEGIN
INTEGER i:
REF(c) next;
END:
ml := 1;
first :-= x :- NEW c(ml);
x.next :— NEW c(ml);
X := X.next:;
Xx.next :- NEW c(ml);
X :- X.next;
END; 1

oft
I

Hefe, a class "c" can be referenced by "x" and "first"
external to the class and by "next" internal to the class.

Y

. i 1 .
Also shown is a multiple - assignment "first :- x :—= NEW
c(ml);". The piece of code will generate a chain-like list

as shown graphically below.

first -——-- >m i
next-—~—~-— l
' l
e e \
i
l-==->m i
v © next----- !
. ' 1 !
R e l
|
X ====> l=c==> m i
next-—~—--- >NONE

It is seen that the reference "first" always points to the

66

first instance of the class and "x" pqihts to the last
instance created. Also, the reference value “next“ of the
last - instance will have the empty reference constant NONE.

A loop can be

ed to run through the list by testing. until

an empty referend is found. The‘foilowing code performs

such a loop.

y - first;
WHILE y =/= NONE DO
BEGIN
 y :- y.next;
END: ’

A "prefix" may be added to ~"the front of a class
declaration. This prefix is in fact another class name.

The‘prefixed class is called a ‘"subclass" of the prefix.

This is shown below.

CLASS one;
- BEGIN
' "INTEGER il;
il := 9;
-INNER:
il := 19;
END:; b
one CLASS two; -
BEGIN
INTEGER 12:
il = 12 := 20;
END;

When class "two" is incarnated, every instance will .get all
the properties of class "one" plus the properties of class
"two". When execution passes to class "two", the code"

before the INNER statement in class "one" .is first executed.

67

 The code.éf class "two" is then executed folloWed by the
éode after the INNER statement of class “one“. A. subclass
is'thus'said.to'be Jinner“ to its prefixés.‘ Therefore "two"
i; innef>to "one". A heirarchy of subclasses can be .formed
by intréducing a succession of declarations df subclasses.
This can be shown as,

CﬁASS one‘f..; "o

one CLASS two ...:

two CLASS three ..
one CLASS “four ...

~e

-y [

By using subclasses}' an _Qrganization of -systems can be
formed in different -levels of abstraction. A subclass is
equivalent to the class obtained by the concaten;tion of
those classes that are on. its prefix-sequence; An object .of
a class ‘fesulting'”ffom"a éoncatenation is a "compound
objectJ. The space oééupied by the data stfucture of a
coﬁpound object is‘the union of the spaces occupied by the

data structures of the various classes in the . prefix

sequence. Suppose that the reference variable is declared,

REF(one) r; -
The statement,’
r :— NEW one;

is executed by placing a real copy of oniy "one" in storage

with all the variables declared within class "one". The

variable "r" then refers to this incarnation. However, if

68

the statement ’ - . R O O S
r :— NEW two;

is executed, B first an inéarnation of class "one" is created;
The subclass "two" is émbedded in £his incarnation. This is.
done by'replaciﬁg the INNER statement of' "one" by £hé
initial operations of "two" followed by an INNER statement
and the final opérationé of "two". This is thus the roie of
£he INNER statement. in one case INNER is ; dummy-
instructibnﬂwhen executed and in the other case it specifies-'
where code may be inserted fér a compound object. Likewise,

the statement,
r :~- NEW three;

will create an incarnation of class "three" e