
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1984

Concurrent programming with a focus on
concurrent pascal.
Barbara H. Smolowitz

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Smolowitz, Barbara H., "Concurrent programming with a focus on concurrent pascal." (1984). Theses and Dissertations. Paper 2191.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228650757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=preserve.lehigh.edu%2Fetd%2F2191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2191?utm_source=preserve.lehigh.edu%2Fetd%2F2191&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


CONCURRENT PROGRAMMING WITH A FOCUS ON 

CONCURRENT PASCAL 

by 

Barbara H. Smolowitz 

A Thesis 

Presented to the Graduate Committee 

of Lehigh University 

in Candidacy -for the Degree of 

Master o-f Science 

in 

Computing Science 

Lehigh University 

1 ?84 



ProQuest Number: EP76464 

All rights reserved 

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted. 

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion. 

uest 

ProQuest EP76464 

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author. 

All rights reserved. 
This work is protected against unauthorized copying under Title 17, United States Code 

Microform Edition © ProQuest LLC. 

ProQuest LLC. 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346 



This thesis is accepted and approved in partial fulfillment 
of the requirements for the degree of Master of Science. 

%£^ 

Professor in CpaVge 

Head of Division 

t i 



r 
TABLE OF CONTENTS 

PAGE 

TABLE OF CONTENTS ....Mi 

LIST OF FIGURES.. iv 

ABSTRACT.  . 1 

I .  INTRODUCTION .". 3 

II .  BACKGROUND .5 

III. PROBLEMS OF CRITICAL REGION AND DEADLOCK 11 

IV. SEQUENTIAL PASCAL  14 

V. CONCURRENT PASCAL 25 

VI. OPERATING SYSTEMS AND CONCURRENT PASCAL. 51 

VII .  EXAMINATION OF THE SOLO OPERATING SYSTEM 54 

VIII.  CONCLUSION 71 

REFERENCES 72 

APPENDIX. *■ 73 

VITA. . . i 78 

i i i 



LIST OF FIGURES 

FIGURE 1 : Peterson's Al gor i thm 27 

FIGURE 2: Implementation o-f Peterson's Algorithm 2? 

FIGURE 3: Algorithm For Critical Region Management 
Using Semaphores........ 35 

FIGURE 4: Implementat 

FIGURE 5: Implementat 

FIGURE 6: Implementat 

FIGURE 7: Implementat 

on o-f Semaphores 36 

on o-f a PROCESS Decl arat i on . . . .43 

on o-f a MONITOR Decl arat i on ... .44 

on o-f a CLASS Declaration 45 

FIGURE 8: Implementation o-f an Initial Process. 48 

i v 



n 

ABSTRACT 

CONCURRENT PROGRAMMING UITH A FOCUS ON CONCURRENT 

PASCAL 

This thesis examines various aspects o-f concurrent 

programming. Concurrent programming is presently used 

to simulate concurrent processing on sequential 

hardware. 

Concurrent   processing   is   use-ful   in  several 

applications.   It  can be utilized to speed up computer 

operations   and  make  man-machine  interactions more 

efficient.   It  can  also  serve  to more realistically 

model real-life situations. 

Originally any concurrent programming was done at 

the machine or assembly language level. This 

programming is difficult to debug and modify. 

Structures added to high-level sequential languages 

improved the situation. Concurrent Pascal is a 

high-level concurrent language extended from sequential 

Pascal.   It retains the structures of sequential Pascal 

while   adding  structures which  manage  the  problems 
■ • ■    ,i 

inherent in concurrent programming. 

"Critical  region" and "deadlock" are the major two 

problems  in  concurrent  programming.  Critical regions 



are regions shared by two or more concurrent processes.' 

Deadlock is a situation that occurs when two or more 

processes wait indefinitely to use a shared region. 

Concurrent Pascal has been shown to be a very 

effective tool in the writing of operating systems for 

computers. An operating system is the software that 

manages the resources of the computer. By using 

Concurent Pascal, writing of an operating system is 

simpli f i ed. 

The goals of Per Brinch Hansen, the developer of 

Concurrent Pascal, were simplicity, reliability, and 

adaptability.     Simplicity   results    from   having 

structures  that manage  the  critical region and avoid 

deadlock through their design without the direct 

intervention of the programmer. Reliability is 

attained through comprehensive r error checking by the 

compiler. Adaptability is achieved by using a 

hierarchical structure for programming in which program 

pieces can be studied .individually. Modifications can 

then be made without fear of creating errors in other 

program pieces. 



I.  INTRODUCTION 

Concurrent processing is a term used to describe 

the simultaneous processing of two or more tasks by a 

single computer. Actual concurrent processing can only 

be achieved with hardware. Concurrency, however, can1 

be simulated with appropriate software. For this 

paper, the term "apparent concurrent processing" will 

be used when referring to simulated concurrency. 

There are several levels at which some form of 

concurrent processing can be obtained. They range from 

portions of instructions within a program to whole 

jobs. An example of the former might be computation of 

a mathematical formula. In the calculation of the 

expression 3*x + 7 * y / z - 5 * z, each of the terms 

are independent of each other and they can therefore be 

calculated simultaneously. The products would then be 

added together. 

Similarly, within a program, procedures or other 

independent program segments can be executed 

simultaneously. An example of this might be a 

statistics package,, with various procedures designed to 

calculate different analyses on the same data. 

The  highest  level  of concurrent processing is in 



the handling o-f whole jobs. A single computer can 

service several users at a given time with apparent 

concurrent processing as i n a timesharing system; 

The use o-f concurrent processing in operating 

systems will be discussed in greater depth in the 

-following chapters. There are other areas in which 

concurrent processing is beneficial. Another example 

o-f the timesharing aspect o-f concurrent processing is 

in electronic mail. With electronic mail, many users 

send and receive mail simultaneously. There are other 

systems which are actually parallel processes but due 

to the sequential nature o-f computers, their simulation 

has been modeled sequentially. Concurrent programming 

allows -for modeling in a more realistic -fashion. 

Examples o-f this are manufacturing process control 

systems, train and subway scheduling, and weather 

forecasting. 

This paper will include background information, 

problems involved in concurrent processing, a brief 

description of sequential Pascal, and the use of 

Concurrent Pascal for concurrent, programming and 

specifically operating systems. 



II.  BACKGROUND 

The various technological advances of the past 

forty years have led to the feasibility of concurrent 

programming that is discussed in this paper. In 1944, 

Dr. John von Neumann wrote "Preliminary Discussion of 

the Logical Design of an Electronic Computing 

Instrument" in which he proposed a novel method of 

programming computers. Prior to this time, 

"programming" computers was accomplished by hard-wiring 

the program into the machine. A change in program 

necessitated physical wiring changes. Von Neumann's 

idea was to store the program, in the form of numbers,7 

along with the data. The first computer built to 

utilize this concept was the Electronic Delay Storage 

Automatic Calculator (EDSAC) built by Maurice V. UJilkes 

and his colleagues at Cambridge University, England in 

1949. <She.lly, 1980) 

Another major step in this area is described in 

the abstract of "PILOT - A New Multiple Computer 

System", written in 1959. "The PILOT data processor is 

a high-speed multiple computer system, more than 100 

times  faster  than  SEAC [designed in May, 1950, by the 

5 



National Bureau of Standards]. It contains three 

interconnected computers for rapid processing of data, 

and also contains multiple input-output channels for 

rapid  transfer of data into and out of the system.  All 

of these units operate concurrehYry"T'n a coordinated 

fashion." (Leiner, 1959, p. 313) Each of the three 

computers mentioned had a specific purpose and the 

three were designed to run concurrently to provide the 

high rate of speed desired. 

The first, or primary computer, was designed to 

handle the computations involved within the program. 

It had sixteen basic instructions: seven arithmetic 

operations, two logicalprocessing operations, five 

choice operations, and two control operations. Only 

the two control operations, "transfer between storage 

units" and "regulate secondary computer", deal with 

program management. 

Major program management was handled by the 

secondary comuter. This computer, independently 

programmed, performed procedures useful to the program 

executing on the primary computer. The secondary 

computer performed such tasks as counting iterations, 

sequencing  the program running on the primary computer, 



and manipulating the base registers in secondary 

storage. This computer also had sixteen basic 

instructions: six arithmetic operations, four choice 

operations, -five control operations, and one logical 

processing operation. Working together, the primary 

and secondary computer were designed to handle complex 

sorting  techniques as well as logarithm-tic searches and 

error analyses. 

The third computer was designed to independently 

handle the funcitons of editing, interpreting, and 

modifying data entering or leaving the system. It had 

eight basic instructions: three processing operations, 

three choice operations, and two control operations. 

The control operations that each of the three 

computers could perform1 were the means by which they 

"communicated". The three computers were capable of 

independent execution and were programmed using the 

limited machine language instructions. This initial 

implementation of concurrency, therefore, was 

accomplished by a combination of hardware implemented 

interlocks and independently programmed computers. 
* - ( 

,v        t 

In 'the  early 1960's, the concept of running whole 

jobs   concurrently  was   explored   in  the  form  of 
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time-sharing. While the PILOT project examined using 

different parts of the hardware within the system to 

perform tasks of one job concurrently, the next step 

was better utilization of the system by interacting the 

computer with more than a single user at one time. 

Man-machine interaction is extremely slow in comparison 

with the computational speed of the Computer. Better 

utilization of the equipment was the impetus behind the 

concept of timesharing. 

As programs became more complex, debugging the 

programs became more time consuming. With batch 

processing, the delays between discovering a bug and 

trying a correction could become interminable. One 

solution would have been to allow the programmer 

dedicated access to the computer for debugging. 

However, this would .have been wasteful of computer 

time. Several other problems were inherent in this 

soluti on. 

In "An Experimental Time-Sharing System", the 

solution of having several users at terminals which 

interact with the computer is discussed. 

"To solve these interaction problems we 
would like to have a computer made 
simultaneously  available  to many users in a 

8 



manner somewhat like a telephone exchange. 
Each user would be able to use a console at 
his own pace and without concern -for the 
activity o-f others using the system. This 
console could as a minimum be merely a 
typewriter but more ideally would contain an 
incrementally modifiable self-sustaining 
display. In any case, data transmission 
requirements should be such that it would be 
no major obstacle to have remote installation 
from the computer proper. 

"The basic technique for a time-sharing 
system is to have many persons simultaneously 
using the computer through typewriter 
consoles with a time-sharing supervisor 
program sequentially running each user 
program in a short burst or quantum of 
computation. This sequence, which in the 
most straightforward case is a simple 
round-robin, should occur often enough so 
that each user program which is kept in the 
high-speed memory is run for a quantum at 
least once during each approximate human 
reaction time <~.2 seconds). In this way, 
each user sees a computer fully responsive to 
even single key strokes each of which may 
require only trivial computation; in the 
non-trivial cases, the user sees a gradual 
reduction of the' response time which is 
proportional to the complexity of the 
response calculation, the slowness of the 
computer, and the total number of active 
users. It should be clear, however, that if 
there are n users actively requesting service 
at one time, each user will"only see on the 
average 1/n of the effective computer speed. 
During the period of high interaction rates 
while debugging programs, this should not be 
a hindrance since, ordinarily the required 
amount of computation needed for each 
debugging computer response is small compared 
to the ultimate production need." (Corbato, 
1962, pp. 335-334) 



While several problems were noted by the authors, 

solutions were suggested. By the mid-1960's, operating 

systems were designed to handle this type of apparent 

concurrent processing. 

At approximately the same time, assembly languages 

were developed which could handle the programming o-f 

concurrent tasks within a program, i.e. programmed 

multiprocessing. The incorporation of programmed 

multiprocessing gives sequential machines the ability 

to perform apparent concurrent processing. The 

programmed multiprocessing was handled through such 

commands as FORK and JOIN. The FORK command begins two 

or more parallel processes and those processes are 

ended and the single parent process continued at the 

JOIN. Melvin E. Conway wrote in his conclusion of "A 

Multiprocessor System Design" in 1963, that the effort 

should be made to incorporate such concurrent concepts 

in "common publication languages, for example, ALGOL." 

<p. 146) 

10 
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III.  PROBLEMS OF CRITICAL REGION AND DEADLOCK 

From the beginning it was recognized that there 

were two major problems in. concurrent processing. The 

■first is termed "deadlock". When concurrent processes 

use shared -resources, there is the problem that two or 

more processes will wait to use the shared resource 

indefinitely, creating a deadlock. If both processes 

are equivalent and are given a part of the shared 

resource, neither process may have enough of the 

resource to complete its process, and therefore neither 

process can continue. Per Brinch Hansen defines 

"deadlock" as a "situation in which two or more 

processes are waiting indefinitely for events that will 

never occur." a<1973, p. 336) 

An example of this would be the problem of the 

banker with a fixed number of monetary units to loan to 

several customers. He wishes to satisfy the maximum 

number of customers whose individual requests do not 

exceed the fixed amount he has to lend. The customers 

may be given only part of the amount requested at any 

given time, but they will not repay the loan until they 

have   received   the  entire  amount  requested.   More 

11 



specifically, suppose the banker has 1000 monetary 

units to lend to customers Custa, Custb, Custc, and 

Custd.  The requests are as follows: 

Custa 375 
Custb 582 
Custc 260 
Custd 386 

The banker has several options. One option is -for him 

to give Custa and Custb their full amounts and Custc 

and Custd a very small portion of their requests. 

Custc and Custd would then receive the remainder of 

their requests from the monetary units repaid by Custa 

and Custb. If, however, he gives each customer 250 

monetary units, he will have a deadlock situation. He 

will be unable to lend anyone his -full request and 

therefore none of the customers will repay his loan. 

Another example of deadlock would be two processes 

<X and Y) that share two files A and B. Process X reads 

from file A and writes to file B, while process Y reads 

from -file B and wr i tes to file A. Process X will not 

give up file A until it has written to file B and 

process Y will not give up file B until it has written 

to file A. Initially process X is given file A and 

process Y is given file B. A deadlock occurs because 

neither   process   can   terminate.   Process X waits 

12 



indefinitely  for  B,  and  process Y waits indefinitely 

for A. 

The second problem that arises is with critical 

regions. Critical regions are regions within a system 

(or program) which are shared by two or more processes 

but should be accessed by only one process at a time. 

Examples might be input/output devices or variables 

common to at least two concurrent processes. Hansen 

suggests three criteria for critical regions as 

fol1ows: 

<1) No, more than one process can be allowed access 

to the critical region at any given time. 

(2) Any process which has access to the critical 

region must finish execution within and exit the 

critical region within a finite amount of time. 

(3) Any process that requests access to the 

critical region may not be blocked from the critical 

region indefinitely. (Brinch Hansen, 1973> 

There are various, methods for managing these 

problems in concurrent programming. They will be 

discussed further in the chapter on Concurrent Pascal. 

13 



IV.  SEQUENTIAL PASCAL 

■Pascal was introduced in ,1971 by Professor 

Ni Klaus Ulirth. His aim was to make available a 

language which would allow programming to be taught as 

a systematic discipline and in which the techniques of 

both 'scientific' and 'commercial' programming could be 

convincingly demonstrated. The adoption of Pascal has 

been rapid and widespread, to the extent that it has 

become the 'lingua franca' of computing science." 

<Findlay, 1981, p. iii) 

In his own words, N. Mirth explained his 

justification for introducing a new language as 

follows: 

"The development of the language Pascal 
is based on two principal aims. The first is 
to make available a language suitable to 
teach programming as a systematic discipline 
based on certain fundamental concepts clearly 
and naturally reflected by the language. The 
second is to develop implementations of this 
language which are both reliable and\ 
efficient on presently available computers.    \ 

"The desire for a new language for the 
purpose of teaching programming is due to my 
dissatisfaction with the presently used major \ 
languages whose features and constructs too 
often cannot be explained logically and 
convincingly and which too often defy 
systematic reasoning. Along with this 
dissatisfaction goes my conviction that the 
language in which the student is taught to 
express  his  ideas  profoundly influences his 

14 
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habits of thought and invention, and that the 
disorder governing these languages directly 
imposes itself onto the programming style of 
the students." <Jensen, 1978, p. 133) 

It was, perhaps, Wirth's desire for an orderly 

high-level language that led to the highly structured 

nature of Pascal. The language is divided into data 

structures and instructions for how the data structures 

are to be manipulated. The following is a brief 

description of the structures in sequential Pascal. 

Concurrent Pascal' (a description of which is found in 

the next chapter) is built upon these structures. 

All of the data used within the program must be 

represented as variables. These variables must be 

declared as previously defined types. It is in these 

type declarations that a great deal of Pascal's 

versatility is evidenced. Once a variable is declared 

of a given type, it may not be given a value of another 

type. "■ 

There are four standard types which are 

predefined. These are INTEGER, REAL, BOOLEAN, and 

CHAR. A variable of type INTEGER may have any integer 

value. Arithmetic operators which would result in 

integer values when used with integer operands would be 

+,  -,  *,  DIV,  and MOD.  Similarly, variables of type 

15 



REAL may have any real number value. The arithmetic 

operators, which result in real values when the 

operands are real or integer values, are +, -, *, /. 

There are constraints placed on maximum and minimum 

values by the hardware on which the software is 

implemented. 

The data type BOOLEAN has only two values: TRUE 

and FALSE* These operands use the logical operators 

AND, OR, and NOT. The standard boolean results are 

obtained using these operators. TRUE and FALSE are 

predefined such that the value of FALSE is less than 

TRUE. 

The last standard data type, CHAR, allows the 

variables declared as CHAR to have the values of a 

predefined set of characters that is finite and 

ordered. Whi1e this set is not standard, it includes 

the alphanumeric characters; 'A'..'Z' and '0'..'9'; the 

blank character; and usually various other characters 

such as '*', '.', "/.' , and '3'. The value of the 

characters is again implementation dependent. 

Pascal  also  allows the user to define new types. 

These  may  be  simple  scalar types, subrange types, or 

complex structured types. 

A  scalar  type is an ordered list of identifiers. 

16 



Once; this list is declared, the identifiers become the 

constant values of that type. An example of this type 

might be the declaration for days as follows: 

DAYS = <SUN, MON, TUES, UED, THURS, FRI, SAT) 

A subrange type, as the name suggests, consists of 

the subrange of a previously declared type <with the 

exception of the REAL type). Two examples of this, the 

first a subrange of INTEGER and the second a subrange 

of DAYS defined above, follow. 

TEMPS = 32..212 

UEEKDAY = MON..FRI 

The relational operators =, <, <=, >, >=, and <> 

apply to all of the simple data types. There are also 

various built-in functions, such as ORD, TRUNC, and ODD 

which have a value of one type as an argument and 

return a value of another type. 

Complex structured data types consist of various 

simple data types (standard, user defined scalar, and 

user defined subrange) and a combination of one or more 

of four structure components. These structure 

components are ARRAY, RECORD, SET, and FILE. 

An ARRAY consists of a collection of components of 

the   same   type.    The   ARRAY  may   be  single  or 

17 
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multi-dimensional. A list of names or the positions on 

a checkerboard are examples o-f structures that could be 

represented by the ARRAY type. The ARRAY type is 

de-fined giving the ranges of the dimensions and the 

type of values of the components. The above examples 

might be declared as follows. 

NAME - ARRAY tl..153 OF CHAR; 

LISTOFNAMES = ARRAY C1..303 OF NAME 

or 

BOARD = ARRAY CO..7,0..73 OF BOOLEAN 

A SET is another of the structured data types. 

Like an ARRAY, a SET is a collection of values of the 

same type. SETs differ from ARRAYS in that a variable 

of this type represents a subset of the powerset of the 

base type. The following is an example of a SET 

declaration: 

SUITS = CCLUBS, DIAMONDS, HEARTS, SPADES] 

Note that there is no order within the SET and the 

empty set is represented by []. The operators +, *, 

and - represent the set operations union, intersection, 

and set difference respectively. There are also 

relational operators for SETs. = and <> test for set 

equality and inequality; <= and >= test for inclusion; 

and IN tests for set membership. 

18 



The  third structured data type is RECORD.  RECORDS 

are  the  most  -flexible  o-f  the  Pascal data types.  A 

RECORD  is  a  collection  b-f  components, but unlike an 

ARRAY,  the  components  need  not- be  the  same.   The 

components  are  called  -fields of the RECORD.  A single 

RECORD may,  -for  example,  contain  an ARRAY field, an 

INTEGER  field,  and a REAL field.  In this example, the 

declaration might be as follows: 

PERSON = RECORD 
NAME: ARRAY II..15] OF CHAR; 
AGE:  INTEGER; 
PAY:  REAL ^ 

END \ 

In  this  example,  NAME,  AGE,  and  PAY  are the field 

i dent i f i ers. 

RECORDS can  also be defined as variant RECORDS by 

using  the CASE statement.  This allows a given field to 

have  different  structures  depending on the value of a 

given  component  (the  tag  field).   An  example  of a 

variant RECORD declaration follows. 

DATE - ARRAY U..9] of CHAR; 
AUTO = RECORD 

MAKE: <GM, CHRYS, FORD, AM, FOREIGN); 
YEAR: 1900..2000; 
CASE PASSEDINSPECT: BOOLEAN OF 

TRUE: (STICKERNO: INTEGER); 
FALSE: (LIGHTSFAIL: BOOLEAN; 

BRAKESFAIL: BOOLEAN; 
EMITSFAIL: BOOLEAN; 
EXPDATE: DATE); 

END 

19 
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The last of the structured data types is the type 

FILE. A FILE is a sequence of components which are the 

same. Again, a FILE is similar to an ARRAY, but there 

are two major differences. The length of a FILE is not 

fixed as it is in an ARRAY and components of a FILE can 

only be accessed by progressing through the FILE from 

the beginning. An empty FILE is a FILE with no 

components. Components are written to or read from 

FILEs. There are four operators for FILE variables. 

RESET returns to the beginning of the FILE for the 

purpose of reading from the FILE. REWRITE, likewise, 

returns to the beginning of the FILE for the purpose of 

writing to the FILE. The GET operator "gets" the next 

component (if it exists) from the FILE and puts it in a 

buffer variable, and the PUT,operator "puts" the next 

component into the file. EOF is a built-in BOOLEAN 

function that becomes TRUE when the last component in 

the FILE is read. The procedure READ (or WRITE) is 

composed of an assignment and a GET (or PUT). 

One type of FILE is the text FILE or FILE OF CHAR. 

For this type of FILE, two special procedures READLN 

and WRITELN are defined in terms of GET and PUT 

respectively.   A  built-in  function EOLN is defined to 

20 



be  TRUE  only , when  an  end-of-line  marker  has  been 

reached. 

The preceeding data types are all static data 

types. Pascal also has a dynamic data type called a 

POINTER <t>. With a variable of a static data 

type, space is allotted in memory -for the value of the 

variable. This space is reserved during the entire 

execution. Space for a variable of a dynamic data type 

is allocated and destroyed during execution with the 

use of NEW and DISPOSE. POINTERS refer to the location 

of a value rather than actually being the location of 

the value. 

A  linked  list  is  one  example  of  the  use  of 

POINTERS.   In  a linked list each component is "linked" 

by  a  POINTER  to  the next component.  An example of a 

declaration for such a linked list is: 

NAMEPOINTER = t NAMENODE; 
NAMENODE = RECORD 

NAME: ARRAY C1..15J OF CHAR; 
NEXT: NAMEPOINTER 

END 

There  are  four  types  of  instructions  used  to 

manipulate  the  data': assignment, compound, repetitive, 

and  conditional.   The  assignment statement is used to 

give  a  variable a value.  It is of the form <variable> 

:=  <expression>.   The  second  type  is  the  compound 
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statement.   This  consists of other statements with the 

delimiters  BEGIN  and  END.  The statements between the 

BEGIN  and  END may be o-f any type and there may be any 

number o-f them. 

The  three  types  o-f  repetitve statements are the 

FOR  loop, the WHILE loop, and the REPEAT loop.  The FOR 

loop   per-forms   the   statements within  the  loop  a 

predetermined  number  o-f  times.   It  uses  a  control 

variable  to  count  the iterations.  The FOR loop is.of 

the form: 

FOR <variab1e> := <expression> TOSDOWNTO 
<expression> DO <statement> 

The  WHILE  loop  per-forms the statement within the loop 

as  long as a given condition is TRUE.  The test for the 

condition  appears  at  the  beginning of the loop.  The 

WHILE loop has the following form: 

WHILE <expression>' DO <statement> 

The  REPEAT  loop  is  similar  to the WHILE loop except 

that 

<1>  the  test  is performed at the end of the loop 

which  results  in  the statements within the loop being 

executed at least once, 

(2)  the  statements within the loop are performed 

until the given condition becomes TRUE, and 
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<3>  any  number  of  statements may be within the 

1 oop. 

The REPEAT loop is of the -form: 

REPEAT <statement> i;   <statement>> UNTIL 
<expression> 

The  last  type  o-f instructions is the conditional 

instruction.   There  are  two  o-f this type, the IF and 

the  CASE  statements.   With  the  IF statement, o-f the 

■form: 

IF <expression> THEN <statement>! IF <expression> 
THEN <statement> ELSE <statement> 

The  statement  -following  the THEN is executed only i-f 

the  expression  is  true.  If it is FALSE, and there is 

an  ELSE,  then  the  statement  following  the  ELSE is 

executed.   There  is  an  ambiguity here which results 

from a statement of the form: 

IF <expression> THEN IF <expression> THEN 
<statement> ELSE <statement> 

The  ambiguity  is  resolved  by  the convention that in 

such  a  case,  the ELSE statement goes with the closest 

IF  that  is  not  already terminated (by a semicolon or 

closer ELSE). 

The  CASE  statement  is designed  for  situations 

which  would  otherwise  necessitate  the use of several 

nested  IF  statements.   The  CASE  statement is of the 
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■form: 

CASE <expression> OF 
<case label> {, <case label>) : <statement> 
C; <case label> C, <case label>> : <statement>> 

END 

The  statement  associated with a particular case 1abe 

is  executed when  the  case  label is the value of the 

expression. 

The UITH statement, of the -following form, 

WITH <record variable> C, <pecord variable)) DO 
<statement> 

allows  fields  of a record to be denoted by their field 

identifier  only.      Pascal  also  allows  the user to 

define  PROCEDURES and FUNCTIONS.  With the exception of 

their  headings,  these  have  a  form similar  to  the 

program  itself  and are  used as  subroutines  of the 

program.   There  is also a  GOTO statement in Pascal 

which  can be used to jump the execution to another part 

of the program. 

For  a more in  depth  explanation  of  sequential 

Pascal,  the  reader  is  referred to PASCAL User Manual 

and Report <Jensen, 1978). 
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V.  CONCURRENT PASCAL 

Concurrent programming can be achieved with an 

extended Pascal by the addition of structures that 

perform the tasks of FORK and JOIN mentioned 

previously. COBEGIN, which has the effect of beginning 

two or more concurrent processes, is simulated by 

interleaving the statements of the concurrent 

processes. COEND delays continuation of the main 

process until all of the concurrent processes have 

termi nated. 

It is the responsibility of the programmer to 

handle the problems of the critical region and 

deadlock. There are two main methods for managing 

critical regions and avoiding deadlock. The first is 

"busy waiting" and the second is with "semaphores". 

With "busy waiting", any process needing the 

critical region enters an indefinite loop Just before 

entering the critical region. It exits the loop when 

it meets the condition that (a) it is the only process 

requesting access to the critical region which is 

currently free or <b> it is the process' turn for the 

critical region and the critical region is currently 

free. 
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Peterson's algorithm, shown in Figure 1, 

<Peterson, 1981) is an example o-f this type of 

management o-f critical regions. This algorithm 

protects a critical region while having a "-fair11 system 

o-f accessing the region. Each of the concurrent 

processes will eventually be given access to the 

critical region and at no time will more than one 

process be given access to the critical region. This 

is accomplished by establishing several conditions for 

entering the critical region. For a process to enter 

the critical region, the value of its conditional 

expression in the REPEAT loop proceeding the critical 

region must be TRUE. Only one process will have a set 

of individual conditions with a pattern of values such 

that the entire expression is TRUE. 
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THE SOLUTION FOR TWO PROCESSES. 

<* trying protocol -for PI *) 

Ql := TRUE; 

TURN := 1 ; 

wait until NOT Q2 OR TURN = 2; 

Critical Section; 

<* exit protocol for PI *) 

Ql := FALSE. 

<* trying protocol -for P2 *) 

Q2 := TRUE; 

TURN := 2; 

wait   until   NOT  Ql   OR TURN =1; 

Cri t i cal   Sect ion; 

<* exit protocol -for P2 *> 

Q2 := FALSE 

FIGURE 1:  Peterson's Algorithm 
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THE SOLUTION FOR n PROCESSES. 

<* protocols for PI *) 

FOR j := 1 TO n - 1 DO 

BEGIN 

Qt i 3 := j; 

TURNCj] := i ; 

wait until ([-for all] k * i, Q[k] < j) OR 

TURN [j] * i 

END; 

Cr i t ical Sect i on; 

Q[i] := 0 

FIGURE 1 (continued) 
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<* DECLARATIONS FOR THE PROGRAM SEGMENTS *) 

TYPE 
KINDTRANSACT = <CR, DEB); 
TRANSACT = RECORD 

KIND: KINDTRANSACT; 
-' AMOUNT: REAL; 

BRANCHNUM: INTEGER; 
END; 

ACCT = RECORD 
NAME: ARRAY C1..25] OF CHAR; 
SSNUM: INTEGER; 
NUMTRANSACTIONS: INTEGER; 
TRANSACTIONS: ARRAY C1..MAXNUM] OF 

TRANSACT; 
BALANCE: REAL 

END; 
ACCOUNTS = ARRAY U.iNUMACCTS] OF ACCT; 

VAR : 
ACCTS: ACCOUNTS; 
Bl, B2: BOOLEAN; 
TURN: INTEGER; 

FIGURE 2:  Implementation of Peterson's Algorithm 
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PROCEDURE RECORD-TRANSACTION <NUM: INTEGER; AMTi 
REAL; K: KINDTRANSACT; BRNUM: INTEGER); 

BEGIN — 
WITH ACCTS CNUM3 DO 

BEGIN 
NUMTRANSACTION& ,:= NUMTRANSACTIONS + 1; 
WITH TRANSACTIONS [NUMTRANSACTIONS] DO 

BEGIN 
KIND := K; 
AMOUNT := AMT; 
BRANCHNUM := BRNUM 

END; 
BALANCE := BALANCE + AMT; 

END 
ENDf 

FIGURE 2 (continued) 
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PROCEDURE BRANCH1; 

VAR 
ACCTNUM: INTEGER; 
AMNT: REAL; 
KND: KINDTRANSACT; 

BEGIN 
REPEAT 

<* THE GETINFO PROCEDURE GETS THE INFORMATION 
NEEDED FOR RECORDING THE DEBITS AND CREDITS.  FOR 
THIS EXAMPLE WE NEED NOT BE CONCERNED WITH THE 
DEFINITION OF THIS PROCEDURE. *i 

GETINFO <ACCTNUM, AMNT); 
IF AMNT >   0 THEN 
KND := CR 

ELSE 
KND := DEB; 

Bl := TRUE; 
TURN := 1; 
REPEAT UNTIL <<NOT B2) OR (TURN = 2)>; 
RECORD-TRANSACTION (ACCTNUM, AMNT, KND, 1); 
Bl := FALSE 

UNTIL FALSE; 
END; 

FIGURE 2 (continued) 
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PROCEDURE BRANCH1; 

VAR 
ACCTNUMz INTEGER; 
AMNTz REAL; 
KND: KINDTRANSACT; 

BEGIN 
REPEAT 

<* THE GETINFO PROCEDURE GETS THE INFORMATION 
NEEDED FOR RECORDING THE DEBITS AND CREDITS.  FOR 
THIS EXAMPLE UE NEED NOT BE CONCERNED WITH THE 
DEFINITION OF THIS PROCEDURE. *) 

.GETINFO (ACCTNUM, AMNT); 
IF AMNT > 0 THEN 
KND := CR 

ELSE 
KND := DEB; 

Bl := TRUE; 
TURN := 1; 
REPEAT UNTIL ((NOT B2> OR (TURN = 2)); 
RECORD-TRANSACTION (ACCTNUM, AMNT, KND, 1); 
Bl := FALSE 

UNTIL FALSE; 
END; 

FIGURE 2 (continued) 
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PROCEDURE BRANCH2; 

VAR 
ACCTNUM: INTEGER; 
AMNTs REAL; 
KND: KINDTRANSACT; 

BEGIN 
REPEAT 
GETINFO (ACCTNUM, AMNT); 
IF AMNT > 0 THEN 

KND := CR 
ELSE 

KND := DEB; 
B2 := TRUE; 
TURN := 2; 
REPEAT UNTIL <<NOT Bl) OR (TURN =1)); 
RECORD-TRANSACTION (ACCTNUM, AMNT, KND, 2); 
B2 := FALSE; 

UNTIL FALSE; 
END; 

BEGIN <* MAIN *> 
Bl := FALSE; 
B2 := FALSE; 
TURN := 1; 
COBEGIN 

BRANCH1; 
BRANCH2; 

COEND; 
END. <* MAIN *) 

FIGURE 2 (continued) 
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Figure 2 is a set of program segments showing an 

implementation of Peterson's algorithm for two 

concurrent processes. In the hypothetical situation, a 

bank has two branches which concurrently record debits 

and credits. The critical region is the 

RECORD-TRANSACTION procedure. In this example, the 

critical region is managed through the variables TURN, 

Bl, and B2. 

While "busy waiting" manages the critical region, 

it is wasteful o-f CPU power. The waste arises in the 

constant checking in the REPEAT UNTIL „ <(NOT B2) or 

(TURN = 2)) and REPEAT UNTIL ((NOT Bl) or (TURN =1)) 

statements. This method of ' management is also 

cumbersome. For several concurrent processes the 

implementation of the algorithm becomes quite 

complicated. 

In 19^5, E. W. Dijkstra proposed using semaphores 

to simplify the management of critical regions. The 

additional structures WAIT and SIGNAL are used with the 

new data type, SEMAPHORE. A SEMAPHORE is an variable 

of type INTEGER. It is only operated upon by WAIT and 

SIGNAL. WAIT and SIGNAL are defined as follows: 

(Ben-Ari, 1982) 

WAIT  (s>:   If  s  > 0 then s := s - 1 else the 
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execution  of  the  process  that  called WAIT  (s)  is 

suspended. 

SIGNAL <s): If some process P has been 

suspended by a previous WAIT (s) on this SEMAPHORE s 

then wake up P else s := s + 1, 

The critical region ' is then managed by the 

algorithm given in Figure 3 for n processes. It is 

possible for "lockout" to occur using this algorithm 

unless a "fair" method is designed for determining 

which process is woken by STGNAL. Figure 4 shows the 

program segment in Figure 2 rewritten using SEMAPHORES. 
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VAR 
S: SEMAPHORE; 

PROCEDURE Pi; 
BEGIN 

REPEAT 
WAIT (S); 
Critical Region (Pi); 
SIGNAL <S>; 
Remote Region (Pi); 

UNTIL FALSE; 
END; 

BEGIN (* MAIN *) 
S := 1; 
COBEGIN 

Pi; 
P2; 

Pn 
COEND 

END. (* MAIN *) 

FIGURE 3:  Algorithm For Critical Region Management 
Using Semaphores 
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<* SEE FIGURE 2 FOR THE TYPE DECLARATIONS AND 
DECLARATION OF RECORD-TRANSACTION PROCEDURE *> 

VAR 
ACCTS: ACCOUNTS; 
S: SEMAPHORE; 

PROCEDURE BRANCH1; 
BEGIN 
REPEAT 

GETINFO <ACCT, AMNT); <* REFER TO FIGURE 2 FOR 
COMMENT ON GETINFO *) 

IF AMNT > 0 THEN 
KND := CR 

ELSE 
KND := DEB; 

WAIT <S> 
RECORD-TRANSACTION (ACCTNUM, AMNT, KND, 1); 
SIGNAL <S> 

UNTIL FALSE; 
END; 

PROCEDURE BRANCH2 
BEGIN 

REPEAT 
GETINFO (ACCTNUM, AMNT); 
IF AMNT > 0 THEN 

KND := CR 
ELSE 

KND := DEB; 
WAIT <S>; 
RECORD-TRANSACTION (ACCTNUM, AMNT, KND, 1); 
SIGNAL <S>; 

UNTIL FALSE; 
END; 

FIGURE 4: Implementation o-f Semaphores 
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BEGIN <* MAIN *> 
S i= 1 ; 
COBEGIN 

BRANCH1; 
BRANCH2 

COEND 
END. <* MAIN *) 

FIGURE 4 (continued) 
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While  on  the  surface  the  problem  o-f  critical 

region  managment  appears  to  be  solved by the use of 

SEMAPHORES  in  a  relatively  straight—forward manner, 

Brinch  Han sen  (1973)  points  out  the  -flaws  in this 

reasoning. 

"If we replace this structured notation 
[shared regions] with semaphores, this will 
have grave consequences: 

(1) Since a semaphore can be used to 
solve arbitrary synchronizing problems, a 
compiler  cannot   conclude  that  a  pair of 

. wai t and si onal operations on a given 
semaphore initialized to one delimits a 
critical region, nor that a missing member of 
such a pair is an error. A compiler will 
also be unaware of the correspondence between 
a semaphore and the common variable it 
protects. In short, a compiler cannot give 
the programmer any assistance whatsoever in 
establishing critical regions correctly. 

(2) Since a compiler is unable to 
recognize critical regions, it, cannot make 
the distinction between critical regions and 
disjoint processes. Consequently, it must 
permit the use of common variables 
everywhere. So a compiler can no longer give 
the programmer any assistance in avoiding 
time-dependent errors in supposedly disjoint 
processes." 

The   deadlock  problem  has  been  only  partially 

solved.   Deadlock  can occur through poor management of 

the  critical region, but it can also occur when any one 

(or more) of the following conditions exist. 
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"<1> Mutual exclusion: A resource can only be 
acquired by one process at a time. 

<2> Non-preempti ve schedulino; A resource can 
only be released by the process which has acquired 
it. 

<3> Part i al al1ocat i on: A process can acquire its 
resources piecemeal. 

<4> Circular wai t ino; The previous conditions 
permit concurrent processes to acquire part o-f their 
resources and enter a state in which they wait 
indefinitely to acquire each other's resources."(Brinch 
Hansen, 1973) 

Brinch Hansen (1977) outlines a hierarchical 

resource system to prevent deadlock. A hierarchical 

system consists o-f a sequential ordering for requesting 

and releasing resources. When concurrent programs are 

written using hierarchical ordering -for system 

components, other benefits are realized. The major 

additional benefit is in program testing and 

correctness. Once a program component has been shown 

to be correct, errors in newer components cannot make 

older components fail because old components do not 

call newer components. 

Brinch Hansen developed Concurrent Pascal (from 

1972 - 1975) with the goal of creating a language for 

concurrent programs that satisfies three requirements: 

simplicity, reliability, and adaptability. Simplicity 

is achieved through the use of small, well-defined 

program  pieces.   Reliability  is  aided  by  extensive 
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compilation checks of type compatibility. Hierarchical 

structure also aids correctness testing. Adaptability 

comes in being able to modify existing programs. By 

using abstract language and small wel 1 -def i ned program 

components* modifications become easier. 

Concurrent Pascal is an extension of sequential 

Pascal. The -following is a brief description of the 

extended data structures and manipulation instructions 

in Concurrent Pascal. This information is taken from 

The _, Arch i tecture of Concurrent Proorams <Brinch 

Hansen, 1977). 

Concurrent Pascal contains all of the data types 

of Pascal plus two additional data types, QUEUE and 

system. The majority of the manipulation instructions 

are the same, i.e. assignment, compound, FOR, WHILE, 

REPEAT, IF, CASE, and WITH. There are, however, also 

CYCLE statements and INIT statements in Concurrent 

Pascal. Concurrent Pascal also has procedure and 

function capabilities, but these differ slightly from 

sequential Pascal. 

The two new data types, QUEUE and system, are 

called active types. Any type containing system types 

or QUEUEs is an active type. The remainder are passive 

types.   QUEUE is a simple data type like CHAR, INTEGER, 
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BOOLEAN,  REAL,  subrange,  and  scalar  types.   System 

types  are  structured  and  consist  of other component 

types. 

There  are  three kinds o-f system types: PROCESSes, 

MONITORS,  and CLASSes.  A concurrent program is made up 

o-f  these  three types.  A system type declaration is o-f 

the the -following -form: 

PROCESS  !  MONITOR  !  CLASS  <empty> ! <parameters>; 
<block> 

A PROCESS type consists o-f a data structure and a 

sequential statement for manipulation o-f that 

structure. Within the parameter list, the MONITORS to 

which the PROCESS has access are declared. A PROCESS 

has access only to MONITORS or CLASSes. PROCESSes do 

not have direct access to shared data. They must 

access the shared data through a MONITOR. 

MONITORS consist o-f data structures and operations 

that PROCESSes can per-form on these data structures, 

the operations are in the form of functions or 

procedures which, the PROCESSes call. These operations 

manage the synchronization of the calling PROCESSes and 

the exchange of data among them. 

A CLASS is a system component that can only be 

accessed  by  a  single other system component <PROCESS, 
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MONITOR, or another CLASS). It consists o-f a data 

structure and operations that can be performed on the 

data structure (similar to a MONITOR). 

Examples of PROCESS, MONITOR, and CLASS 

declarations are shown in Figures 5, 6, and 7 

respectively. The problem o-f hypothetical bank with 

its concurrent branch recording, processes is continued. 

For passive type declarations, see Figure 2. 

r 
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TYPE BRANCHPROCESS = PROCESS (MANAGER: 
RECORDMANAGER); 

VAR 
ACCTNUM: INTEGER; 
AMNT: REAL; 
BRAMCHNO: INTEGER; 
KND: KINDTRANSACT; 

BEGIN 
CYCLE 

(* SEE COMMENT IN FIGURE 2 CONCERNING GETINFO. 
THIS PROCEDURE REQUIRES AN ADDITIONAL PARAMETER: 
BRANCHNO *> 

GETINFO (ACCTNUM, AMNT, BRANCHNO); 
IF AMNT > 0 THEN 

KND := CR 
,•        , ..-.. .ELSE ...   -.,    .      . , *.,.,*.. . 

KND := DEB; 
MANAGER. SEND (ACCTNUM, AMNT, KND, BRANCHNO); 

END; 
END; 

FIGURE 5: Implementation of a PROCESS Declaration 
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TYPE SENDERQUEUE = ARRAY C1..23 OF QUEUE; 

TYPE RECORDMANAGER = MONITOR; 

VAR 
SENDING: (ONE, TWO); 
SENDER: SENDERQUEUE; 
RECORDER: RECORD-TRANSACTION; 

PROCEDURE ENTRY SEND <ACCTNUM: INTEGER; AMNT: 
REAL; KND: KINDTRANSACT; BRANCHNO: INTEGER); 

BEGIN 
IF BRANCHNO = 1 THEN 
BEGIN 

IF SENDING = TWO THEN DELAY (SENDER [13); 
RECORDER.ENTER (ACCTNUM, AMNT, KND, 

BRANCHNO); 
SENDING := ONE; 
CONTINUE (SENDER [23); 

END 
ELSE 

BEGIN 
IF SENDING = ONE THEN DELAY (SENDER £23); 
RECORDER.ENTER (ACCTNUM, AMNT, KND, 

BRANCHNO); 
SENDING := TWO; 
CONTINUE (SENDER C1]); 

END; 
END ; 

BEGIN 
SENDING := ONE; 
INIT RECORDER; 

END; 

FIGURE 6:  Implementation o-f a MONITOR Declaration 
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TYPE RECORD-TRANSACTION = CLASS; 

VAR 
ACCTS: ACCOUNTS; 

PROCEDURE ENTRY <NUM: INTEGER; AMT: REAL; K: 
KINDTRANSACT; BRNUM: INTEGER); 

BEGIN 
UITH ACCTS tNUM] DO 

BEGIN 
NUMTRANSACTIONS := NUMTRANSACTIONS + 1; 
WITH TRANSACTIONS tNUMTRANSACTIONS3 DO 

BEGIN 
KIND := K; 
AMOUNT := AMT; 
BRANCHNUM := BRNUM; 

END; 
BALANCE := BALANCE + AMT; 

END; 
END; 

BEGIN 
<* INITIALIZE ACCTS *> 
END; 

FIGURE  7:      Implementation   o-f   a  CLASS  Declaration 
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The QUEUE type is a standard type in Concurrent 

Pascal. It is declared within a MONITOR type and is 

used to delay and resume PROCESSes. There is a 

standard function EMPTY which has a QUEUE variable as 

its argument and results in a BOOLEAN value. The value 

is TRUE when there is no PROCESS delayed in the QUEUE. 

There are also two procedures de-fined -for QUEUEs. 

DELAY results in the. calling PROCESS losing its 

exclusive access to the MONITOR. Other PROCESSes can 

then call the MONITOR variables. CONTINUE is called by 

the PROCESSes returning from the MONITOR. If another 

PROCESS is waiting in the QUEUE,^it immediately regains 

its exclusive access to the MONITOR variables. 

As mentioned previously, there are two statements 

in Concurrent Pascal which are not in sequential 

Pascal. The first is the CYCLE statement. This 

statement is equivalent to: 

REPEAT <statement> I;   <statement>> UNTIL FALSE 

It has the syntax: 

CYCLE <statement> i; <statement>> END y 

The CYCLE statement may only be used in a PROCESS. 

The  INIT  statement  is  used to initialize system 

components.   The  initial  PROCESS, the outermost level 
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of the program, contains an INIT statement which 

initializes the other PROCESSes and MONITORS and 

de-fines their access rights to one another through 

their parameters. The INIT statement also allocates 

space -for the system components variables. Once a 

system component is initial zed, its variables and 

parameters become permanent variables. 

Routines, in Concurrent Pascal, are procedures, 

-functions, and sequential programs. They consist o-f a 

set o-f parameters and a compound statement that 

operates on the parameters. While a system component 

may not refer to the variables o-f another system 

component, it may call routine entries defined within 

another system type. There are four, types of routine 

entries: process entry, monitor entry, class entry, 

and initial statement. The last of these has been 

discussed previously. The initial statement does not 

have an identifier and is simply called using the INIT 

statement. Figure 8 shows an 

initial process for the types declared in Figures 5-7. 
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VAR 
MANAGER: RECORDMANAGER; 
BRANCH1, BRANCH2: BRANCHPROCESS; 

BEGIN 
INIT 
MANAGER, 
BRANCH1 (MANAGER), 
BRANCH2 (MANAGER); 

END. 

FIGURE 8: Implementation o-f an Initial Process 
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The other three kinds of routine entries appear in 

system components bearing their name. A process entry, 

de-fined within a process type, can only be called by a 

sequential program within a process type. It cannot be 

called by a system component. A monitor entry, on the 

other hand, can be called by any system component that 

wishes to operate on that monitor. Calls made 

simultaneously -for monitor routines which operate on 

the same permanent variables will be handled singlely. 

A , class entry can only be called by- one system 

component, the system component that has access to that 

CLASS. 

The  syntax -for the procedure and function routines 

are as -fol lows: T 

PROCEDURE ENTRY ! <empty> < identified 
<parameters>; <block> 

FUNCTION ENTRY ! <empty> <identified 
<parameters> : < i dent i-f i er> ; <b1ock> 

A  sequential  program  routine  is  controlled by a job 

PROCESS.   The  parameters  o-f  the  program must be o-f 

passive  types  and  the  rightmost parameter represents 

the  variable  in  which  the  compiled  program code is 

stored.   The  program may  call other routines de-fined 

within  the  job  PROCESS  as  long  as  these are lised 

-following  ENTRY  in the program definition.  The syntax 
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for a sequential program routine is as -follows: 

PROGRAM <ident i-f ier> <parameters> 
<access rights) ! <empty> 

where (access rights> has the -following syntax: 

; ENTRY < i dent i -f i ers> 

The use o-f the MONITOR, PROCESS, and CLASS, as 

de-fined in Concurrent Pascal, removes the necessity -for 

the programmer to manage the problems of critical 

region and deadlock. This management is built into the 

interaction of these data structures. The limited 

accessing among the data structures and their "one-way" 

nature also allows for greater compiler checking. This 

aids in ensuring program correctness. 

This characteristic of Concurrent Pascal 

facilitates the writing of operating systems as will be 

discussed in the next two chapters. 

V 
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.VI.  OPERATING SYSTEMS AND CONCURRENT PASCAL 

An operating system is a software system designed 

to manage the sharing o-f computer resources. As 

mentioned previously,, the sharing of resources can be 

by several users as in a time-sharing system. An 

operating system is also necessary for a single user to 

efficiently use a computer system. The problem of 

managing a system for several users is, therefore, an 

extension of the problem of managing the system for a 

single user. 

A great deal of efficiency can be gained for a 

single user system by running computer processes 

concurrently. Ben-Ari (1982) gives the example of a 

computer that can execute one million instructions per 

second. This computer is connected to a card reader 

which reads 300 cards per minute. While one card is 

read (1/5 of a second), 200,000 instructions could be 

executed. A large percentage of the time the CPU will 

be idle if the card reading process and CPU execution 

take place sequentially. 

In  the  l?60's  autonomous peripheral devices were 

designed which  could- operate independent of the CPU. 

This meant  that  a  computer could execute one program 
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while reading in a second program and possibly print 

out a third program. The problem arose, though, of 

synchronizing the CPU and the peripheral devices. 

One method devised to handle the synchronization 

problem was the interrupt concept. With -this method, a 

peripheral device sends a signal to a register 

connected to the CPU. When the signal is received, the 

CPU stop^s executing the current program and can then 

switch to a program that is waiting -for the peripheral 

device. The program managing the action between the 

peripheral device and the CPU is the operating system. 

The same concept used to permit concurrent 

operation of the peripheral devices and the CPU could 

be used to manage a system with several users. 

Most operating systems are. written in low-level 

languages. These programs are large and unwieldly. 

Several problems arise with these systems. Because of 

their size these programs are difficult to understand 

and modify. They are also prone to time-dependent 

errors. This makes the system unreliable and prone to 

crashing. Once an error has occurred, it is difficult 

to locate the problem. 

Concurrent Pascal is an effective tool for writing 

operating  system  programs.  Its structure is such that 

52, 

X 



shared resources are managed by independent components. 

It also allows for systematic testing o-f the system 

through hierarchical design. The Solo Operating 

System, which will be examined in detail in the next 

chapter, was written in Concurrent Pascal. Its author, 

Per Brinch Hansen, reported that it took approximately 

two man-years to develop the entire system. He 

estimates that it would have taken twenty to thirty 

man-years to develop the same system in machine 

language. (Brinch Hansen, 1977). 

^. 
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VII.  EXAMINATION OF THE SOLO OPERATING SYSTEM 

This chapter examines the Solo Operating System 

written by Per Brinch Hansen <1977). The purpose of 

this analysis is to show how the system was constructed 

using the concurrent structures of Concurrent Pascal. 

This examination will also show how the system was 

developed using a hierarchical structure. 

The Solo Operating System was the first operating 

system written in Concurrent Pascal. It was 

implemented on the PDP 11/45 computer and was in use in 

May, 1975. It is unusual in that it is written almost 

entirely in Concurrent Pascal with only a small 

percentage of machine language code. Protection of the 

system is achieved through extensive compile-time 

checks of type compatabi1ity and access rights instead 

of execution-time checking with hardware mechanisms. 

The operating system manages the processing of 

programs, written in sequential or Concurrent Pascal, 

for a single user. The user is able to edit, compile, 

and store these programs. The user intereacts with the 

computer through the use of a console. Through the 

console, the user can access a card reader, tape and 

disk  devices,  and  a  printer.   The handling of these 
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-functions is managed through concurrent processes in 

the operating system. 

The main body of the operating system program is 

the INITIAL PROCESS (Brinch Hansen, 1977, pp. 140 - 

141). This process, when executed, initializes six 

PROCESSes of -five PROCESS types and -fourteen MONITORS 

o-f seven MONITOR types. This INITIAL PROCESS has 

access only to those PROCESSes and MONITORS. Once it 

terminates execution, these structures remain as 

permanent variables. It is this INITIAL PROCESS that 

begins all o-f the concurrent processes necessary -for 

the operating system. 

The Appendix shows the hierarchical structure o-f 

the remainder o-f the program. I-f the program is 

considered in terms of "bottom up" design, the highest 

layer (that layer which no other components access) 

consists o-f the -five other PROCESSes. These PROCESSes 

then have access to various MONITORS and CLASSes, as 

shown, which are either declared as parameters or 

variables within the PROCESS declaration. That layer 

of MOITORs and CLASSes then have access to MONITORS and 

CLASSes in a similar manner, and so on. The lowest 

layer of active types are those MONITORS and CLASSes 

that   do   not   declare  any  other  active  types  as 
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parameters  or  variables.   They  there-fore do not have 

access to any other active types. 

There are six CLASSes and MONITORS that do not 

access any other CLASSes or MONIORs. These are FIFO 

CLASS, TYPEWRITER CLASS, LINEBUFFER MONITOR, PAGEBUFFER 

MONITOR, AR6BUFFER MONITOR, and PROGSTACK MONITOR. 

-The FIFO CLASS (Brinch Hansen, 1977, p. 103) is 

used to manage a -fi-fo (-first in, -first out) QUEUE. It 

consists o-f four ENTRY functions: ARRIVAL, DEPARTURE, 

EMPTY, and FULL. It is through these •functions that 

this CLASS is accessed. The -functions ARRIVAL and 

DEPARTURE are INTEGER -functions and return the values 

at which the next QUEUE element can take or leave -from 

respectively. The -functions EMPTY and FULL return 

BOOLEAN values depending on the value o-f the INTEGER 

variable length. A value o-f 0 -for length would return a, 

value o-f TRUE -for EMPTY and a value o-f limit <a 

parameter, value -for the size o-f the QUEUE) would return 

a  value  o-f  TRUE  -for  FULL.   A variable of type FIFO 
V.' 

CLASS  is  initialized with the head and tail variables 

having a value of 1 and a length of 0. 

The TYPEWRITER CLASS (Brinch Hansen, 1977, pp. 107 

- 108) is used to transfer a line of text to or from 

the  console.   An  10  procedure  is  used to delay the 
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calling process while a single character is 

transferred. This type consists of two ENTRY 

procedures WRITE and READ. The WRITE procedure 

consists mainly of a REPEAT loop that calls a WRITECHAR 

procedure until an entire line has been written to the 

console (using the 10 procedure). The READ procedure 

begins by ringing the bell on the console. The 

remainder of the procedure is consists mainly of a 

REPEAT loop. In the REPEAT loop, a single character is 

read from the console until an entire line is read. 

The end of line is determined by a linefeed character 

or by reaching the limit for the line array. Within 

the loop a test is made for either a "control c" 

character or a "control 1" character. If a "control c" 

is read, a "?" is written on the console and the index 

of the line array is decremented by 1. If a "control 

l"j is read, a linefeed character followed by a "?" are 

written on the console. 

The TYPERESOURCE MONITOR <Brinch Hansen, 1977, pp. 

105 - 106) is used to gain exclusive access to the 

console. It consists of two ENTRY procedures: REQUEST 

and RELEASE. This type uses the FIFO CLASS to manage a 

QUEUE. The REQUEST procedure tests whether or not 

another  process  is currently using the console.  If it 

57 



is, - the  process  requesting  access  is  placed on the 

QUEUE.   The  process  accessing  the  console  is  then 

identified   on  the  console.   The  RELEASE  procedure 

checks  the  QUEUE to see i-f any processes are currently 

waiting  to  use  the  console.   If the QUEUE is empty, 

then  the  console  becomes ' free.   Otherwise, the next 

process  is  taken  off  of  the  QUEUE  and  allowed to 

continue.    The  main   body   of   this   declaration 

initializes  the  FIFO  CLASS  variable  in  addition to 

initializing its passive type variables. 

A  TYPERESOURCE parameter and a TYPEWRITER variable 

are  accessed by a variable of the TERMINAL CLASS type 

<Brinch  Hansen,  1977,  p.  109).   This  type uses the 

previous  two  types  to gain  exclusive  access to the 

console,   to  identify  its  calling  process,  and  to 

transfer  the  line  of  text  either  to  or  from  the 

console.   Two  ENTRY  procedures are used to accomplish 

this:  READ  and WRITE.   The  READ  procedure requests 

access  to the console through a TYPERESOURCE parameter. 
/ 

If  the process requesting the console is different than 

the   one   that  most  recently  accessed  the  console 

previously,  the process name is written on the console. 

The  line  of  text  is  then  read from the console and 

access  to the console is released.  The write procedure 
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differs  only  in that instead o-f reading a line of text 

from  the  console,  it  writes  a  line  of text on the 

console.   The main body of this declaration initializes 

the TYPEWRITER CLASS variable. 

The  RESOURCE MONITOR <Brinch Hansen, 1977, pp. 104 

105)  type  is  very  similar  to  the  TYPERESOURCE 

MONITOR.   It  has  two  ENTRY  procedures,  REQUEST and 

RELEASE,  which  per-form  like  those  described' above. 

This MONITOR, however, gives a process exclusive access 

to  any  o-f  the  computers resources as opposed to only 

the  console.   It there-fore does not need to in-form the 

resource  as  to which  process  has  accessed  it.  It 

simply  tests  to  see  i-f the resource is available and 

delays  or continues the processes accordingly. For this 

declaration,  another  active  declaration  is  needed. 

This is for an ARRAY o-f QUEUE as follows: 

1 CONST 
PROCESSCOUNT = 7; 

TYPE 
PROCESSQUEUE = ARRAY C1..PROCESSCOUNT] OF UUEUE; 

The  main  body of this declaration initializes the FIFO 

CLASS  variable  and initializes the BOOLEAN variable to 

TRUE. 

A  single  character is written onto or read from a 

TERMINAL   CLASS   parameter   by   a  variable  of  the 
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TERMINALSTREAM CLASS type <Brinch Hansen, 1977, pp. 110 

- 111). This type consists o-f three ENTRY procedures: 

READ, WRITE, and RESET, and a procedure used only by 

variables o-f that CLASS type. The local procedure is 

an initialization procedure used to initialize the 

header variable. The READ and WRITE procedures are 

used to read and write Respectively) a character to a 

variable of type TERMINAL CLASS. In the READ procedure 

the end o-f a 1 ine has been reached then the TERMINAL 

CLASS variable procedure READ is called and the coufft 

is reset to 0. If it is not the end of the line, then 

the next character -from the text line array is assigned 

to the variable parameter c. The WRITE procedure 

executes in a similar manner. It increases the count 

and then stores a single character in an array of type 

line. When the, end of the line is reached, the 

TERMINAL CLASS variable procedure WRITE is called and 

the text line array is passed to it. The- procedure 

RESET is used to reinitialize the line of text. The 

main body of this declaration is a procedure call for 

the INITIALIZE procedure. 

There are three buffer type MONITORS used in this 

program: ARGBUFFER, LINEBUFFER, and PAGEBUFFER <Brinch 

Hansen,  1977,  pp. 125 - 126).  They are different only 
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in the type of the buffer used. There are two ENTRY 

procedures: READ and WRITE. The READ procedure tests 

to see if the buffer is -full. If it is, the message is 

assigned to a text variable and full is then assigned 

the value FALSE.. The sending process then continues. 

If the buffer is not full, the receiving process is 

delayed before completing the procedure. The WRITE 

procedure is similar only that the operations are in 

reverse. The PAGEBUFFER MONITOR type also checks for 

the end of the file. 

There are several CLASSes and MONITORS pertaining 

to disk use. The first, the DISK CLASS type <Brinch 

Hansen, 1977, pp. 112 - 113), transfers a page to or 

from a disk device. It also accesses the console to 

report a disk failure and to communicate with the 

operator concerning this error. This type consists of 

three procedures, two of which are ENTRY procedures. 

The TRANSFER procedure, which is local to this CLASS, 

either reads or writes a page from or to the disk. The 

page is identified by its absolute page address. 

Whether the procedure reads or writes, using a TERMINAL 

CLASS type variable is determined by a parameter. The 

page address - is also passed as a parameter. The 10 

procedure  is  used by this TRANSFER procedure as it was 
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in the TYPEWRITER CLASS type. The two remaining 

procedures: READ and WRITE, simply have calls to 

TRANSFER. The only difference between the two is in 

one of the parameters. The READ procedure passes input 

as a parameter and the WRITE procedure passes output. 

The type page is a universal type. This allows the 

DISK CLASS to transfer pages of different types. 

The DISK CLASS type is accessed by the DISKFILE 

CLASS type (Brinch Hansen, 1977, pp. 1.14 - 115). The 

purpose « of 'this -type -is.--1 to make it possi bl e for -'***" 

process to access a disk file. If a disk failure 

occurs, the TYPERESOURCE CLASS parameter is accessed to 

communicate exclusively with the console. This type 

has a BOOLEAN function INCLUDES which is TRUE only if a 

given page number is within the proper range and a file 

is to be accessible. There are also four ENTRY 

procedures: OPEN, CLOSE, READ, and WRITE. The READ and 

WRITE procedures use the DISK CLASS type variable to 

transfer a page from or to a disk. The OPEN procedure 

assigns a page map to a file and makes it accessible. 

The CLOSE procedure makes the file inaccessible and 

resets the length of the file to 0. The main body of 

the type declaration sets the length to 0, the 

accessabi1ity  variable  to  FALSE,  and initializes the 
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DISK CLASS variable. It should also be noted that the 

variable length in this declaration is an ENTRY 

variable. This allows it to be used outside the CLASS. 

Its value, however, can only be changed within the 

CLASS. 

The DISKTABLE CLASS type <Brinch Hansen, 1977, pp. 

116 - 117) uses both a TYPERESOURCE type parameter and 

a DISKFILE type variable. The TYPERESOURCE parameter 

is again accessed to report disk -failure as mentioned 

above. It uses the DISKFILE to gain access to locate a 

catalog on a disk. The main body o-f the declaration 

cosists o-f initializing the DISKFILE variable, 

accessing the DISKFILE procedure OPEN, and initializing 

the local variables. The one ENTRY procedure in this 

declaration, procedure ENTRY READ, uses the DISKFILE to 

read an entry at a given location in the catalog. 

Catalog lookup is managed by the DISKCATALOG 

MONITOR type (Brinch Hansen, 1977, pp. 117-118). A 

TYPERESOURCE parameter is used as mentioned above -for 

disk failure. A RESOURCE type parameter is used to 

gain exclusive access to the disk. This type also uses 

a DISKTABLE variable to search -for a -file identifier. 

There is a local function HASH which returns a value 

for  the  hash  key.  There is also one ENTRY procedure, 
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LOOKUP. The LOOKUP porcedure- is a search procedure 

using the hash key. A variable BOOLEAN parameter 

returns the appropriate value indicating i-f the 

identifier was found. I-f the identifier was found, the 

procedure also returns the file attributes. The body 

of the declaration initializes the DISKTABLE variable. 

The   last   of  the  disk  accessing  CLASSes  and 

MONITORS  is  the  DATAFILE  CLASS  type (Brinch Hansen, 

1977,  pp.  11?  -  121).   It is with this CLASS that a 

process  accesses a file, of a given identifier name.  It 

accesses  a parameter of type RESOURCE to gain access to 

the  disk and a parameter of type DISKCATALOG to look up 

the  file.   A parameter of type TYPERESOURCE is used to 

access  the  console to report disk failure.  A variable 

of  type  DISKFILE  is  used  to  open and close files. 

There  are four ENTRY procedures: OPEN, CLOSE, READ, and 

.WRITE.   The  READ  and WRITE procedures simply request 

access  to  the  disk using the RESOURCE parameter, read 

or  write  to  the file using the DISKFILE variable, and 

release  the  disk  again using the RESOURCE parameter. 

The  CLOSE  procedure  closes  a file using the DISKFILE 

procedure  CLOSE and reinitializes the local variables. 

The  OPEN  procedure  accesses the DISKCATALOG parameter 

to  perform  a  lookup.   If the file is found, then the 
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procedure requestis use o-f the disk through the RESOURCE 

parameter, opens the -file using the DISKFILE procedure 

open, resets the length variable, and releases the disk 

through the RESOURCE parameter. The main body of this 

type initializes the DISKFILE variable and the local 

variables. 

The PROGFILE CLASS type (Brinch Hansen, 1977, p. 

122) is used to transfer a sequential Pascal program 

from disk into core. It accesses a TYPERESOURCE 

parameter to communicate with the console in the case 

of disk failure, a RESOURCE parameter to gain exclusive 

access to the disk, and a DISKCATALOG parameter to 

lookup the file on the disk. A DISKFILE variable is 

used to read the program from the file. This type 

consists of a single ENTRY procedure, OPEN. After the 

file is looked up, tests are performed to make sure it 

is found and and that the file contains sequential 

code. If both of these conditions are satisfied then 

the disk is requested, the file is opened, and the 

program is read. Another test is made to ensure that 

the length of the file does not exceed the space 

allotted in core. The main body initializes the 

variable of type DISKFILE. 

The  PROGSTACK type (Brinch Hansen, 1977, pp. 123 - 
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124) is a MONITOR used to manage the nested calls of 

programs -from one to another. It maintains a Li-fo 

(last in, -first out) stack. Two BOOLEAN ENTRY 

-functions, SPACE and ANY, are used to determine if the 

stack has run out o-f space or is empty (respectively). 

There are also three ENTRY procedures: PUSH, POP, and 

GET. PUSH is used to put an identifier on the stack. 

The POP procedure, in addition to removing an 

identifier from the stack, returns the attributes of 

the termination of the program. The GET procedure 

identifies the program at the top of the stack. The 

main body of this type initializes the top of the stack 

to 0. No other CLASSes or MONITORS are accessed by 

th is type. 

PROCESSes communicate with each other through 

access to the CHARSTREAM CLASS (Brinch Hansen, 1977, 

pp. 126 - 127). Messages are passed character by 

character and a PAGEBUFFER parameter is used to send 

and receive a page of characters. There are four ENTRY 

procedures: INITREAD, INITWRITE, READ, and WRITE. The 

INITREAD and INITURITE open the CHARSTREAM for reading 

and writing respectively. Once a PROCESS has opened 

the CHARSTREAM, it can then READ or WRITE a single 

character.   The  PAGEBUFFER  MONITOR  is used to manage 
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the reading and writing. 

The remainder o-f the declarations are the PROCESS 

declarations. They are accessed only by the 

initialization PROCESS. There are -five types o-f 

concurrent PROCESSes used: LOADERPROCESS, CARDPROCESS, 

PRINTERPROCESS, JOBPROCESS, and IOPROCESS. 

The purpose o-f the LOADERPROCESS (Brinch Han sen, 

1977, pp. 139 - 140) is to reinitialize the Solo 

operating system. The process interrupts the operating 

system and waits -for a signal < the BEL key) -from the 

console. It receives the signal through the 10 

procedure. When the signal is received, the PROCESS 

requests access to the disk through the RESOURCE 

parameter. It reloads the the system and then releases 

the disk. 

The  CARDPROCESS  (Brinch  Hansen,  1977, pp. 137 - 

138) and PRINTERPROCESS (Brinch Hansen, 1977, pp. 138 - 

139) are similar processes. The CARDPROCESS sends data 

■from a card reader to a variable o-f type IOPROCESS. 

The PR INTERPROCESS sends data -from an IOPROCESS to a 

lineprinter. The program has only one variable o-f each 

type. This is to ensure that each o-f these devices is 

controlled by a single process. These PROCESSes use a 

LINEBUFFER  parameter  to  send  and receive the data to 
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and -from the IOPROCESS. A TYPERESOURCE parameter and a 

variable o-f type TERMINAL are used to inform the 

console that an error has been detected. The 

declarations begin by initializing the TERMINAL 

variable. They then enter in-finite loops in which the 

CARDPROCESS reads any o-f the cards in the card reader 

and the PR INTERPROCESS writes any data received -from 

the IOPROCESS to the lineprinter. This is accomplished 

using the 10 procedure. Each type uses a standard 

procedure WAIT to delay the process if either in the 

case o-f CARDPROCESS there are no cards to read or, in 

the case o-f PR INTERPROCESS, there is no data to be sent 

to the lineprinter. 

The J0BPR0CESS <Brinch Hansen, 1977, pp. 12? - 

132) and the IOPROCESS (Brinch Hansen, 1977, pp. 133 - 

136) are similar in structure. The JOBPROCESS is used 

to execute sequential Pascal programs which can call 

other sequential Pascal programs recursively. The 

IOPROCESS executes sequential Pascal programs that send 

(or receive) data to (or from) the JOBPROCESS. They 

both can implement interface procedures between the 

programs and the operating, system. Each PROCESS has 

parameters of type TYPERESOURCE, RESOURCE, and 

DISKCATALOG.   The results of accessing these parameters 
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has  been explained previously.  The JOBPROCESS uses two 

PAGEBUFFER  parameters  and -four ARGBUFFER parameters to 

interact  with   two   IOPROCESSes.    Similarly,   the 

IOPROCESS   has   one   PAGEBUFFER   parameter  and  two 

ARGBUFFER  parameters  to interact with the JOBPROCESS. 

Both  PROCESSes  use a PROGSTACK parameter to manage the 

nested   program   calls  mentioned   previously.    In 

addition,  the IOPROCESS  uses a LINEBUFFER parameter to 

access   an   10  device.   These  PROCESSes  also  have 

variables   of   type   TERMINAL,   TERMINALSTREAM,  and 

DATAFILE which  have  also  previously been discussed. 

The  PROCESSes  each  have  a PROGFILE variable which is 

used   to  store  the  currently  executed  program  and 

CHARSTREAM  variables -for communicating with each other. 

The  declarations  each  contain  a  sequential  program 

routine  which  spec i-Ties  the routine entries called by 

the  program-.   Each  ENTRY  routine  is also declared. 

These  are  simple procedures and functions which access 

other  CLASSes  and  MONITORS  within the system.  These 

inter-face   routines   can   only  be  accessed  by  the 

sequential  program.   A-fter initializing its variables, 
i 

/■ 

each  PROCESS  calls  a CALL procedure which is local to 

the  PROCESS.  The CALL procedure loads the program from 

the  disk into core using he PROGSTACK parameter and the 
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PROGFILE variable. Initially, the JOBPROCESS executes 

a sequential program DO which reads the users program 

identifier from the console. The IOPROCESS initially 

executes the 10 program which begins the reading o-f 

cards for an input PROCESS and the writing to a 

lineprinter for an output PROCESS. The PROCESSes send 

a termination message to the console upon completion of 

their respective initialization procedures. 

The declarations descibed here, along with the 

INITIAL PROCESS make up the Solo Operating System. The 

redundancy of the parameters and variables allows the 

system to check the access rights during compilation. 

A component can access only those components it has 

declared as parameters or variables. Access rights are 

restricted by the rules of the Concurrent Pascal 

Language. By using these access rights, critical 

regions are managed. By not allowing components to 

call each other recursively, deadlock is avoided. 

Debugging  is  facilitated  by  bottom-up testing. 

For  example,  once  the  FIFO component is debugged, it 

will  not  cause  errors in the TYPERESOURCE component. 

Any  errors  encountered  there  are  specific  to  that 

component. 
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VIII.  CONCLUSION 

This thesis has examined various aspects of 

concurrent programming. The problems inherent in 

simulating concurrent processes through software were 

discussed and several solutions were given. While a 

slight extension o-f sequential Pascal may be sufficient 

.to manage simulated concurrent processing, more elegant 

and efficient solutions result from a set of formal 

structures as in Concurrent Pascal. The introduction 

of the structures of this language also provide 

extended compiler error checking (through type 

checking), and a means for hierarchical' programming. 

The example used throughout the chapter on Concurrent 

Pascal demonstrates the differences in the structures 

used in the three extensions of Pascal. The Solo 

Operating System shows Concurrent Pascal to be an 

effective tool for facilitating the writing of 

operating systems. 

As  concurrent  programming becomes more extensive, 

abstract   languages,   like   Concurrent  Pascal,  will        ^ 

provide  the  means  for  creating simple, reliable, and 

adaptable programs. 
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APPENDIX 

HIERARCHICAL OUTLINE OF THE SOLO OPERATING SYSTEM 

CARDPROCESS 
TYPERESOURCE MONITOR 

FIFO CLASS 
LINEBUFFER MONITOR 
TERMINAL CLASS 

TYPERESOURCE MONITOR 
FIFO CLASS 

TYPEWRITER CLASS 
PRINTERPROCESS 
TYPERESOURCE MONITOR 

FIFO CLASS 
LINEBUFFER MONITOR 
TERMINAL CLASS 

TYPERESOURCE MONITOR 
FIFO CLASS 

TYPEWRITER CLASS 
IOPROCESS 
TYPERESOURCE MONITOR 

FIFO CLASS 
RESOURCE MONITOR 

FIFO CLASS 
DISKCATALOG MONITOR 
TYPERESOURCE MONITOR 

FIFO CLASS 
RESOURCE MONITOR 

FIFO CLASS 
DISKTABLE CLASS 
TYPERESOURCE MONITOR 

FIFO CLASS 
DISKFILE CLASS 
TYPERESOURCE MONITOR 

FIFO CLASS 
DISK CLASS 
TYPERESOURCE MONITOR 

FIFO CLASS 
TERMINAL CLASS 
TYPERESOURCE MONITOR 

FIFO CLASS 
TYPEWRITER CLASS 
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LINEBUFFER MONITOR 
PAGEBUFFER MONITOR 
AR6BUFFER MONITOR 
PR06STACK MONITOR 
TERMINAL CLASS 

TYPERESOURCE MONITOR 
FIFO CLASS 

TYPEURITER CLASS 
TERMINALSTREAM CLASS 

TERMINAL CLASS 
TYPERESOURCE MONITOR 

FIFO CLASS 
TYPEWRITER CLASS 

CHARSTREAM CLASS 
PAGEBUFFER MONITOR 

DATAFILE CLASS 
TYPERESOURCE MONITOR 

FIFO CLASS 
RESOURCE MONITOR 

FIFO CLASS 
DISKCATALOG MONITOR 
TYPERESOURCE MONITOR 

FIFO CLASS 
RESOURCE MONITOR 

FIFO CLASS 
DISKTABLE CLASS 
TYPERESOURCE MONITOR 

FIFO CLASS 
DISKFILE CLASS 

TYPERESOURCE MONITOR 
FIFO CLASS 

DISK CLASS 
TYPERESOURCE MONITOR 

FIFO CLASS 
TERMINAL CLASS 

TYPERESOURCE MONITOR 
FIFO CLASS 

TYPEURITER CLASS   PROGFILE CLASS 
TYPERESOURCE MONITOR 

FIFO CLASS 
RESOURCE MONITOR 

FIFO CLASS 
DISKCATALOG MONITOR 
TYPERESOURCE MONITOR 

FIFO CLASS 
RESOURCE MONITOR 

FIFO CLASS 
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DISKTABLE CLASS 
TYPERESOURCE MONITOR 

FIFO CLASS 
DISKFILE CLASS 
TYPERESOURCE MONITOR 

FIFO CLASS 
DISK CLASS 
TYPERESOURCE MONITOR 

FIFO CLASS 
TERMINAL CLASS 
TYPERESOURCE MONITOR 

FIFO CLASS 
TYPEWRITER CLASS 

DISKFILE CLASS 
TYPERESOURCE MONITOR 

FIFO CLASS 
DISK CLASS 
TYPERESOURCE MONITOR 

FIFO CLASS 
TERMINAL CLASS 

TYPERESOURCE MONITOR 
FIFO CLASS 

TYPEWRITER CLASS 
LOADERPROCESS 

RESOURCE MONITOR 
FIFO CLASS 

JOBPROCESS 
TYPERESOURCE MONITOR 

FIFO CLASS , 
RESOURCE MONITOR 

FIFO CLASS 
DISKCATALOG MONITOR 
TYPERESOURCE MONITOR 

FIFO CLASS 
RESOUCE MONITOR 

FIFO CLASS 
DISKTABLE CLASS 
TYPERESOURCE MONITOR 

FIFO CLASS 
DISKFILE CLASS 
TYPERESOURCE MONITOR 

FIFO CLASS 
DISK CLASS 
TYPERESOURCE MONITOR 

FIFO CLASS 
TERMINAL CLASS 

TYPERESOURCE MONITOR 

75 



FIFO CLASS 
TYPEWRITER CLASS 

PAGEBUFFER MONITOR 
ARGBUFFER MONITOR 
PROGSTACK MONITOR 
TERMINAL CLASS 
TYPERESOURCE MONITOR 

FIFO CLASS 
TYPEURITER CLASS 

TERMINALSTREAM CLASS 
TERMINAL CLASS 

TYPERESOURCE CLASS 
FIFO CLASS 

TYPEWRITER CLASS 
CHARSTREAM CLASS 
PAGEBUFFER MONITOR 

DATAFILE CLASS 
TYPERESOURCE MONITOR 

FIFO CLASS 
RESOURCE MONITOR 

FIFO CLASS 
DISKCATALOG MONITOR 
TYPERESOURCE MONITOR 

FIFO CLASS 
RESOURCE MONITOR 

FIFO CLASS 
DISKTABLE CLASS 
TYPERESOURCE MONITOR 

FIFO CLASS 
DISKFILE CLASS 
TYPERESOURCE MONITOR 

FIFO CLASS 
DISK CLASS 
TYPERESOURCE MONITOR 

FIFO CLASS 
TERMINAL CLASS 

TYPERESOURCE MONITOR 
FIFO CLASS 

TYPEWRITER CLASS 
PROGFILE CLASS 
TYPERESOURCE MONITOR 

FIFO CLASS 
RESOURCE MONITOR 

FIFO CLASS 
DISKCATALOG MONITOR 
TYPERESOURCE MONITOR 

FIFO CLASS 
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RESOURCE MONITOR 
FIFO CLASS 

DISKTABLE CLASS 
TYPERESOURCE MONITOR 

FIFO CLASS 
DISKFILE CLASS 
TYPERESOURCE MONITOR 

FIFO CLASS 
DISK CLASS 
TYPERESOURCE MONITOR 

FIFO CLASS 
TERMINAL  CLASS 
TYPERESOURCE MONITOR 

FIFO CLASS 
TYPEWRITER CLASS 

DISKFILE CLASS 
TYPERESOURCE MONITOR 

FIFO CLASS 
- DISK CLASS 

TYPERESOURCE MONITOR 
FIFO CLASS       ' 

TERMINAL CLASS 
TYPERESOURCE MONITOR 

FIFO CLASS 
TYPEWRITER CLASS 
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