
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1984

Concurrent programming with a focus on
concurrent pascal.
Barbara H. Smolowitz

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Smolowitz, Barbara H., "Concurrent programming with a focus on concurrent pascal." (1984). Theses and Dissertations. Paper 2191.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228650757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=preserve.lehigh.edu%2Fetd%2F2191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2191?utm_source=preserve.lehigh.edu%2Fetd%2F2191&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

CONCURRENT PROGRAMMING WITH A FOCUS ON

CONCURRENT PASCAL

by

Barbara H. Smolowitz

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy -for the Degree of

Master o-f Science

in

Computing Science

Lehigh University

1 ?84

ProQuest Number: EP76464

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest

ProQuest EP76464

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

This thesis is accepted and approved in partial fulfillment
of the requirements for the degree of Master of Science.

%£^

Professor in CpaVge

Head of Division

t i

r
TABLE OF CONTENTS

PAGE

TABLE OF CONTENTSMi

LIST OF FIGURES.. iv

ABSTRACT. . 1

I . INTRODUCTION .". 3

II . BACKGROUND .5

III. PROBLEMS OF CRITICAL REGION AND DEADLOCK 11

IV. SEQUENTIAL PASCAL 14

V. CONCURRENT PASCAL 25

VI. OPERATING SYSTEMS AND CONCURRENT PASCAL. 51

VII . EXAMINATION OF THE SOLO OPERATING SYSTEM 54

VIII. CONCLUSION 71

REFERENCES 72

APPENDIX. *■ 73

VITA. . . i 78

i i i

LIST OF FIGURES

FIGURE 1 : Peterson's Al gor i thm 27

FIGURE 2: Implementation o-f Peterson's Algorithm 2?

FIGURE 3: Algorithm For Critical Region Management
Using Semaphores........ 35

FIGURE 4: Implementat

FIGURE 5: Implementat

FIGURE 6: Implementat

FIGURE 7: Implementat

on o-f Semaphores 36

on o-f a PROCESS Decl arat i on43

on o-f a MONITOR Decl arat i on44

on o-f a CLASS Declaration 45

FIGURE 8: Implementation o-f an Initial Process. 48

i v

n

ABSTRACT

CONCURRENT PROGRAMMING UITH A FOCUS ON CONCURRENT

PASCAL

This thesis examines various aspects o-f concurrent

programming. Concurrent programming is presently used

to simulate concurrent processing on sequential

hardware.

Concurrent processing is use-ful in several

applications. It can be utilized to speed up computer

operations and make man-machine interactions more

efficient. It can also serve to more realistically

model real-life situations.

Originally any concurrent programming was done at

the machine or assembly language level. This

programming is difficult to debug and modify.

Structures added to high-level sequential languages

improved the situation. Concurrent Pascal is a

high-level concurrent language extended from sequential

Pascal. It retains the structures of sequential Pascal

while adding structures which manage the problems
■ • ■ ,i

inherent in concurrent programming.

"Critical region" and "deadlock" are the major two

problems in concurrent programming. Critical regions

are regions shared by two or more concurrent processes.'

Deadlock is a situation that occurs when two or more

processes wait indefinitely to use a shared region.

Concurrent Pascal has been shown to be a very

effective tool in the writing of operating systems for

computers. An operating system is the software that

manages the resources of the computer. By using

Concurent Pascal, writing of an operating system is

simpli f i ed.

The goals of Per Brinch Hansen, the developer of

Concurrent Pascal, were simplicity, reliability, and

adaptability. Simplicity results from having

structures that manage the critical region and avoid

deadlock through their design without the direct

intervention of the programmer. Reliability is

attained through comprehensive r error checking by the

compiler. Adaptability is achieved by using a

hierarchical structure for programming in which program

pieces can be studied .individually. Modifications can

then be made without fear of creating errors in other

program pieces.

I. INTRODUCTION

Concurrent processing is a term used to describe

the simultaneous processing of two or more tasks by a

single computer. Actual concurrent processing can only

be achieved with hardware. Concurrency, however, can1

be simulated with appropriate software. For this

paper, the term "apparent concurrent processing" will

be used when referring to simulated concurrency.

There are several levels at which some form of

concurrent processing can be obtained. They range from

portions of instructions within a program to whole

jobs. An example of the former might be computation of

a mathematical formula. In the calculation of the

expression 3*x + 7 * y / z - 5 * z, each of the terms

are independent of each other and they can therefore be

calculated simultaneously. The products would then be

added together.

Similarly, within a program, procedures or other

independent program segments can be executed

simultaneously. An example of this might be a

statistics package,, with various procedures designed to

calculate different analyses on the same data.

The highest level of concurrent processing is in

the handling o-f whole jobs. A single computer can

service several users at a given time with apparent

concurrent processing as i n a timesharing system;

The use o-f concurrent processing in operating

systems will be discussed in greater depth in the

-following chapters. There are other areas in which

concurrent processing is beneficial. Another example

o-f the timesharing aspect o-f concurrent processing is

in electronic mail. With electronic mail, many users

send and receive mail simultaneously. There are other

systems which are actually parallel processes but due

to the sequential nature o-f computers, their simulation

has been modeled sequentially. Concurrent programming

allows -for modeling in a more realistic -fashion.

Examples o-f this are manufacturing process control

systems, train and subway scheduling, and weather

forecasting.

This paper will include background information,

problems involved in concurrent processing, a brief

description of sequential Pascal, and the use of

Concurrent Pascal for concurrent, programming and

specifically operating systems.

II. BACKGROUND

The various technological advances of the past

forty years have led to the feasibility of concurrent

programming that is discussed in this paper. In 1944,

Dr. John von Neumann wrote "Preliminary Discussion of

the Logical Design of an Electronic Computing

Instrument" in which he proposed a novel method of

programming computers. Prior to this time,

"programming" computers was accomplished by hard-wiring

the program into the machine. A change in program

necessitated physical wiring changes. Von Neumann's

idea was to store the program, in the form of numbers,7

along with the data. The first computer built to

utilize this concept was the Electronic Delay Storage

Automatic Calculator (EDSAC) built by Maurice V. UJilkes

and his colleagues at Cambridge University, England in

1949. <She.lly, 1980)

Another major step in this area is described in

the abstract of "PILOT - A New Multiple Computer

System", written in 1959. "The PILOT data processor is

a high-speed multiple computer system, more than 100

times faster than SEAC [designed in May, 1950, by the

5

National Bureau of Standards]. It contains three

interconnected computers for rapid processing of data,

and also contains multiple input-output channels for

rapid transfer of data into and out of the system. All

of these units operate concurrehYry"T'n a coordinated

fashion." (Leiner, 1959, p. 313) Each of the three

computers mentioned had a specific purpose and the

three were designed to run concurrently to provide the

high rate of speed desired.

The first, or primary computer, was designed to

handle the computations involved within the program.

It had sixteen basic instructions: seven arithmetic

operations, two logicalprocessing operations, five

choice operations, and two control operations. Only

the two control operations, "transfer between storage

units" and "regulate secondary computer", deal with

program management.

Major program management was handled by the

secondary comuter. This computer, independently

programmed, performed procedures useful to the program

executing on the primary computer. The secondary

computer performed such tasks as counting iterations,

sequencing the program running on the primary computer,

and manipulating the base registers in secondary

storage. This computer also had sixteen basic

instructions: six arithmetic operations, four choice

operations, -five control operations, and one logical

processing operation. Working together, the primary

and secondary computer were designed to handle complex

sorting techniques as well as logarithm-tic searches and

error analyses.

The third computer was designed to independently

handle the funcitons of editing, interpreting, and

modifying data entering or leaving the system. It had

eight basic instructions: three processing operations,

three choice operations, and two control operations.

The control operations that each of the three

computers could perform1 were the means by which they

"communicated". The three computers were capable of

independent execution and were programmed using the

limited machine language instructions. This initial

implementation of concurrency, therefore, was

accomplished by a combination of hardware implemented

interlocks and independently programmed computers.
* - (

,v t

In 'the early 1960's, the concept of running whole

jobs concurrently was explored in the form of

and manipulating the base registers in secondary

storage. This computer also had sixteen basic

instructions: six arithmetic operations, four choice

operations, -five control operations, and one logical

processing operation. Working together, the primary

and secondary computer were designed to handle complex

sorting techniques as well as logarithmtic searches and

error analyses.

The third computer was designed to independently

handle the -fund tons o-f editing, interpreting, and

modifying data entering or leaving the system. It had

eight basic instructions: three processing operations,

three choice operations, and two control operations.
i

The control operations that each of the three

computers could perform were the means by which they

"communicated". The three computers were capable of

independent execution and were programmed using the

limited machine language instructions. This initial

implementation of concurrency, therefore, was

accomplished by a combination of hardware implemented

interlocks and independently programmed computers.

In the early 1960's, the concept of running whole

jobs concurrently was explored in the • form of

time-sharing. While the PILOT project examined using

different parts of the hardware within the system to

perform tasks of one job concurrently, the next step

was better utilization of the system by interacting the

computer with more than a single user at one time.

Man-machine interaction is extremely slow in comparison

with the computational speed of the Computer. Better

utilization of the equipment was the impetus behind the

concept of timesharing.

As programs became more complex, debugging the

programs became more time consuming. With batch

processing, the delays between discovering a bug and

trying a correction could become interminable. One

solution would have been to allow the programmer

dedicated access to the computer for debugging.

However, this would .have been wasteful of computer

time. Several other problems were inherent in this

soluti on.

In "An Experimental Time-Sharing System", the

solution of having several users at terminals which

interact with the computer is discussed.

"To solve these interaction problems we
would like to have a computer made
simultaneously available to many users in a

8

manner somewhat like a telephone exchange.
Each user would be able to use a console at
his own pace and without concern -for the
activity o-f others using the system. This
console could as a minimum be merely a
typewriter but more ideally would contain an
incrementally modifiable self-sustaining
display. In any case, data transmission
requirements should be such that it would be
no major obstacle to have remote installation
from the computer proper.

"The basic technique for a time-sharing
system is to have many persons simultaneously
using the computer through typewriter
consoles with a time-sharing supervisor
program sequentially running each user
program in a short burst or quantum of
computation. This sequence, which in the
most straightforward case is a simple
round-robin, should occur often enough so
that each user program which is kept in the
high-speed memory is run for a quantum at
least once during each approximate human
reaction time <~.2 seconds). In this way,
each user sees a computer fully responsive to
even single key strokes each of which may
require only trivial computation; in the
non-trivial cases, the user sees a gradual
reduction of the' response time which is
proportional to the complexity of the
response calculation, the slowness of the
computer, and the total number of active
users. It should be clear, however, that if
there are n users actively requesting service
at one time, each user will"only see on the
average 1/n of the effective computer speed.
During the period of high interaction rates
while debugging programs, this should not be
a hindrance since, ordinarily the required
amount of computation needed for each
debugging computer response is small compared
to the ultimate production need." (Corbato,
1962, pp. 335-334)

While several problems were noted by the authors,

solutions were suggested. By the mid-1960's, operating

systems were designed to handle this type of apparent

concurrent processing.

At approximately the same time, assembly languages

were developed which could handle the programming o-f

concurrent tasks within a program, i.e. programmed

multiprocessing. The incorporation of programmed

multiprocessing gives sequential machines the ability

to perform apparent concurrent processing. The

programmed multiprocessing was handled through such

commands as FORK and JOIN. The FORK command begins two

or more parallel processes and those processes are

ended and the single parent process continued at the

JOIN. Melvin E. Conway wrote in his conclusion of "A

Multiprocessor System Design" in 1963, that the effort

should be made to incorporate such concurrent concepts

in "common publication languages, for example, ALGOL."

<p. 146)

10

While several problems were noted by the authors,

solutions were suggested. By the mid-1960's, operating

systems were designed to handle this type of apparent

concurrent processing.

At approximately the same time, assembly languages

were developed which could handle the programming o-f

concurrent tasks within a program, i.e. programmed

multiprocessing. The incorporation o-f programmed

multiprocessing gives sequential machines the ability

to perform apparent concurrent processing. The

programmed multiprocessing was handled through such

commands as FORK and JOIN. The FORK command begins two

or more parallel processes and those processes are

ended and the single parent process continued at the

JOIN. Melvin E. Conway wrote in his conclusion o-f "A

Multiprocessor System Design" in 1963, that the effort

should be made to incorporate such concurrent concepts

in "common publication languages, for example, ALGOL."

(p. 146)

10

III. PROBLEMS OF CRITICAL REGION AND DEADLOCK

From the beginning it was recognized that there

were two major problems in. concurrent processing. The

■first is termed "deadlock". When concurrent processes

use shared -resources, there is the problem that two or

more processes will wait to use the shared resource

indefinitely, creating a deadlock. If both processes

are equivalent and are given a part of the shared

resource, neither process may have enough of the

resource to complete its process, and therefore neither

process can continue. Per Brinch Hansen defines

"deadlock" as a "situation in which two or more

processes are waiting indefinitely for events that will

never occur." a<1973, p. 336)

An example of this would be the problem of the

banker with a fixed number of monetary units to loan to

several customers. He wishes to satisfy the maximum

number of customers whose individual requests do not

exceed the fixed amount he has to lend. The customers

may be given only part of the amount requested at any

given time, but they will not repay the loan until they

have received the entire amount requested. More

11

specifically, suppose the banker has 1000 monetary

units to lend to customers Custa, Custb, Custc, and

Custd. The requests are as follows:

Custa 375
Custb 582
Custc 260
Custd 386

The banker has several options. One option is -for him

to give Custa and Custb their full amounts and Custc

and Custd a very small portion of their requests.

Custc and Custd would then receive the remainder of

their requests from the monetary units repaid by Custa

and Custb. If, however, he gives each customer 250

monetary units, he will have a deadlock situation. He

will be unable to lend anyone his -full request and

therefore none of the customers will repay his loan.

Another example of deadlock would be two processes

<X and Y) that share two files A and B. Process X reads

from file A and writes to file B, while process Y reads

from -file B and wr i tes to file A. Process X will not

give up file A until it has written to file B and

process Y will not give up file B until it has written

to file A. Initially process X is given file A and

process Y is given file B. A deadlock occurs because

neither process can terminate. Process X waits

12

indefinitely for B, and process Y waits indefinitely

for A.

The second problem that arises is with critical

regions. Critical regions are regions within a system

(or program) which are shared by two or more processes

but should be accessed by only one process at a time.

Examples might be input/output devices or variables

common to at least two concurrent processes. Hansen

suggests three criteria for critical regions as

fol1ows:

<1) No, more than one process can be allowed access

to the critical region at any given time.

(2) Any process which has access to the critical

region must finish execution within and exit the

critical region within a finite amount of time.

(3) Any process that requests access to the

critical region may not be blocked from the critical

region indefinitely. (Brinch Hansen, 1973>

There are various, methods for managing these

problems in concurrent programming. They will be

discussed further in the chapter on Concurrent Pascal.

13

IV. SEQUENTIAL PASCAL

■Pascal was introduced in ,1971 by Professor

Ni Klaus Ulirth. His aim was to make available a

language which would allow programming to be taught as

a systematic discipline and in which the techniques of

both 'scientific' and 'commercial' programming could be

convincingly demonstrated. The adoption of Pascal has

been rapid and widespread, to the extent that it has

become the 'lingua franca' of computing science."

<Findlay, 1981, p. iii)

In his own words, N. Mirth explained his

justification for introducing a new language as

follows:

"The development of the language Pascal
is based on two principal aims. The first is
to make available a language suitable to
teach programming as a systematic discipline
based on certain fundamental concepts clearly
and naturally reflected by the language. The
second is to develop implementations of this
language which are both reliable and\
efficient on presently available computers. \

"The desire for a new language for the
purpose of teaching programming is due to my
dissatisfaction with the presently used major \
languages whose features and constructs too
often cannot be explained logically and
convincingly and which too often defy
systematic reasoning. Along with this
dissatisfaction goes my conviction that the
language in which the student is taught to
express his ideas profoundly influences his

14

\

habits of thought and invention, and that the
disorder governing these languages directly
imposes itself onto the programming style of
the students." <Jensen, 1978, p. 133)

It was, perhaps, Wirth's desire for an orderly

high-level language that led to the highly structured

nature of Pascal. The language is divided into data

structures and instructions for how the data structures

are to be manipulated. The following is a brief

description of the structures in sequential Pascal.

Concurrent Pascal' (a description of which is found in

the next chapter) is built upon these structures.

All of the data used within the program must be

represented as variables. These variables must be

declared as previously defined types. It is in these

type declarations that a great deal of Pascal's

versatility is evidenced. Once a variable is declared

of a given type, it may not be given a value of another

type. "■

There are four standard types which are

predefined. These are INTEGER, REAL, BOOLEAN, and

CHAR. A variable of type INTEGER may have any integer

value. Arithmetic operators which would result in

integer values when used with integer operands would be

+, -, *, DIV, and MOD. Similarly, variables of type

15

REAL may have any real number value. The arithmetic

operators, which result in real values when the

operands are real or integer values, are +, -, *, /.

There are constraints placed on maximum and minimum

values by the hardware on which the software is

implemented.

The data type BOOLEAN has only two values: TRUE

and FALSE* These operands use the logical operators

AND, OR, and NOT. The standard boolean results are

obtained using these operators. TRUE and FALSE are

predefined such that the value of FALSE is less than

TRUE.

The last standard data type, CHAR, allows the

variables declared as CHAR to have the values of a

predefined set of characters that is finite and

ordered. Whi1e this set is not standard, it includes

the alphanumeric characters; 'A'..'Z' and '0'..'9'; the

blank character; and usually various other characters

such as '*', '.', "/.' , and '3'. The value of the

characters is again implementation dependent.

Pascal also allows the user to define new types.

These may be simple scalar types, subrange types, or

complex structured types.

A scalar type is an ordered list of identifiers.

16

Once; this list is declared, the identifiers become the

constant values of that type. An example of this type

might be the declaration for days as follows:

DAYS = <SUN, MON, TUES, UED, THURS, FRI, SAT)

A subrange type, as the name suggests, consists of

the subrange of a previously declared type <with the

exception of the REAL type). Two examples of this, the

first a subrange of INTEGER and the second a subrange

of DAYS defined above, follow.

TEMPS = 32..212

UEEKDAY = MON..FRI

The relational operators =, <, <=, >, >=, and <>

apply to all of the simple data types. There are also

various built-in functions, such as ORD, TRUNC, and ODD

which have a value of one type as an argument and

return a value of another type.

Complex structured data types consist of various

simple data types (standard, user defined scalar, and

user defined subrange) and a combination of one or more

of four structure components. These structure

components are ARRAY, RECORD, SET, and FILE.

An ARRAY consists of a collection of components of

the same type. The ARRAY may be single or

17

—-KJS

multi-dimensional. A list of names or the positions on

a checkerboard are examples o-f structures that could be

represented by the ARRAY type. The ARRAY type is

de-fined giving the ranges of the dimensions and the

type of values of the components. The above examples

might be declared as follows.

NAME - ARRAY tl..153 OF CHAR;

LISTOFNAMES = ARRAY C1..303 OF NAME

or

BOARD = ARRAY CO..7,0..73 OF BOOLEAN

A SET is another of the structured data types.

Like an ARRAY, a SET is a collection of values of the

same type. SETs differ from ARRAYS in that a variable

of this type represents a subset of the powerset of the

base type. The following is an example of a SET

declaration:

SUITS = CCLUBS, DIAMONDS, HEARTS, SPADES]

Note that there is no order within the SET and the

empty set is represented by []. The operators +, *,

and - represent the set operations union, intersection,

and set difference respectively. There are also

relational operators for SETs. = and <> test for set

equality and inequality; <= and >= test for inclusion;

and IN tests for set membership.

18

The third structured data type is RECORD. RECORDS

are the most -flexible o-f the Pascal data types. A

RECORD is a collection b-f components, but unlike an

ARRAY, the components need not- be the same. The

components are called -fields of the RECORD. A single

RECORD may, -for example, contain an ARRAY field, an

INTEGER field, and a REAL field. In this example, the

declaration might be as follows:

PERSON = RECORD
NAME: ARRAY II..15] OF CHAR;
AGE: INTEGER;
PAY: REAL ^

END \

In this example, NAME, AGE, and PAY are the field

i dent i f i ers.

RECORDS can also be defined as variant RECORDS by

using the CASE statement. This allows a given field to

have different structures depending on the value of a

given component (the tag field). An example of a

variant RECORD declaration follows.

DATE - ARRAY U..9] of CHAR;
AUTO = RECORD

MAKE: <GM, CHRYS, FORD, AM, FOREIGN);
YEAR: 1900..2000;
CASE PASSEDINSPECT: BOOLEAN OF

TRUE: (STICKERNO: INTEGER);
FALSE: (LIGHTSFAIL: BOOLEAN;

BRAKESFAIL: BOOLEAN;
EMITSFAIL: BOOLEAN;
EXPDATE: DATE);

END

19

\

The last of the structured data types is the type

FILE. A FILE is a sequence of components which are the

same. Again, a FILE is similar to an ARRAY, but there

are two major differences. The length of a FILE is not

fixed as it is in an ARRAY and components of a FILE can

only be accessed by progressing through the FILE from

the beginning. An empty FILE is a FILE with no

components. Components are written to or read from

FILEs. There are four operators for FILE variables.

RESET returns to the beginning of the FILE for the

purpose of reading from the FILE. REWRITE, likewise,

returns to the beginning of the FILE for the purpose of

writing to the FILE. The GET operator "gets" the next

component (if it exists) from the FILE and puts it in a

buffer variable, and the PUT,operator "puts" the next

component into the file. EOF is a built-in BOOLEAN

function that becomes TRUE when the last component in

the FILE is read. The procedure READ (or WRITE) is

composed of an assignment and a GET (or PUT).

One type of FILE is the text FILE or FILE OF CHAR.

For this type of FILE, two special procedures READLN

and WRITELN are defined in terms of GET and PUT

respectively. A built-in function EOLN is defined to

20

be TRUE only , when an end-of-line marker has been

reached.

The preceeding data types are all static data

types. Pascal also has a dynamic data type called a

POINTER <t>. With a variable of a static data

type, space is allotted in memory -for the value of the

variable. This space is reserved during the entire

execution. Space for a variable of a dynamic data type

is allocated and destroyed during execution with the

use of NEW and DISPOSE. POINTERS refer to the location

of a value rather than actually being the location of

the value.

A linked list is one example of the use of

POINTERS. In a linked list each component is "linked"

by a POINTER to the next component. An example of a

declaration for such a linked list is:

NAMEPOINTER = t NAMENODE;
NAMENODE = RECORD

NAME: ARRAY C1..15J OF CHAR;
NEXT: NAMEPOINTER

END

There are four types of instructions used to

manipulate the data': assignment, compound, repetitive,

and conditional. The assignment statement is used to

give a variable a value. It is of the form <variable>

:= <expression>. The second type is the compound

21

statement. This consists of other statements with the

delimiters BEGIN and END. The statements between the

BEGIN and END may be o-f any type and there may be any

number o-f them.

The three types o-f repetitve statements are the

FOR loop, the WHILE loop, and the REPEAT loop. The FOR

loop per-forms the statements within the loop a

predetermined number o-f times. It uses a control

variable to count the iterations. The FOR loop is.of

the form:

FOR <variab1e> := <expression> TOSDOWNTO
<expression> DO <statement>

The WHILE loop per-forms the statement within the loop

as long as a given condition is TRUE. The test for the

condition appears at the beginning of the loop. The

WHILE loop has the following form:

WHILE <expression>' DO <statement>

The REPEAT loop is similar to the WHILE loop except

that

<1> the test is performed at the end of the loop

which results in the statements within the loop being

executed at least once,

(2) the statements within the loop are performed

until the given condition becomes TRUE, and

22

<3> any number of statements may be within the

1 oop.

The REPEAT loop is of the -form:

REPEAT <statement> i; <statement>> UNTIL
<expression>

The last type o-f instructions is the conditional

instruction. There are two o-f this type, the IF and

the CASE statements. With the IF statement, o-f the

■form:

IF <expression> THEN <statement>! IF <expression>
THEN <statement> ELSE <statement>

The statement -following the THEN is executed only i-f

the expression is true. If it is FALSE, and there is

an ELSE, then the statement following the ELSE is

executed. There is an ambiguity here which results

from a statement of the form:

IF <expression> THEN IF <expression> THEN
<statement> ELSE <statement>

The ambiguity is resolved by the convention that in

such a case, the ELSE statement goes with the closest

IF that is not already terminated (by a semicolon or

closer ELSE).

The CASE statement is designed for situations

which would otherwise necessitate the use of several

nested IF statements. The CASE statement is of the

23

■form:

CASE <expression> OF
<case label> {, <case label>) : <statement>
C; <case label> C, <case label>> : <statement>>

END

The statement associated with a particular case 1abe

is executed when the case label is the value of the

expression.

The UITH statement, of the -following form,

WITH <record variable> C, <pecord variable)) DO
<statement>

allows fields of a record to be denoted by their field

identifier only. Pascal also allows the user to

define PROCEDURES and FUNCTIONS. With the exception of

their headings, these have a form similar to the

program itself and are used as subroutines of the

program. There is also a GOTO statement in Pascal

which can be used to jump the execution to another part

of the program.

For a more in depth explanation of sequential

Pascal, the reader is referred to PASCAL User Manual

and Report <Jensen, 1978).

24

V. CONCURRENT PASCAL

Concurrent programming can be achieved with an

extended Pascal by the addition of structures that

perform the tasks of FORK and JOIN mentioned

previously. COBEGIN, which has the effect of beginning

two or more concurrent processes, is simulated by

interleaving the statements of the concurrent

processes. COEND delays continuation of the main

process until all of the concurrent processes have

termi nated.

It is the responsibility of the programmer to

handle the problems of the critical region and

deadlock. There are two main methods for managing

critical regions and avoiding deadlock. The first is

"busy waiting" and the second is with "semaphores".

With "busy waiting", any process needing the

critical region enters an indefinite loop Just before

entering the critical region. It exits the loop when

it meets the condition that (a) it is the only process

requesting access to the critical region which is

currently free or it is the process' turn for the

critical region and the critical region is currently

free.

25

Peterson's algorithm, shown in Figure 1,

<Peterson, 1981) is an example o-f this type of

management o-f critical regions. This algorithm

protects a critical region while having a "-fair11 system

o-f accessing the region. Each of the concurrent

processes will eventually be given access to the

critical region and at no time will more than one

process be given access to the critical region. This

is accomplished by establishing several conditions for

entering the critical region. For a process to enter

the critical region, the value of its conditional

expression in the REPEAT loop proceeding the critical

region must be TRUE. Only one process will have a set

of individual conditions with a pattern of values such

that the entire expression is TRUE.

26

THE SOLUTION FOR TWO PROCESSES.

<* trying protocol -for PI *)

Ql := TRUE;

TURN := 1 ;

wait until NOT Q2 OR TURN = 2;

Critical Section;

<* exit protocol for PI *)

Ql := FALSE.

<* trying protocol -for P2 *)

Q2 := TRUE;

TURN := 2;

wait until NOT Ql OR TURN =1;

Cri t i cal Sect ion;

<* exit protocol -for P2 *>

Q2 := FALSE

FIGURE 1: Peterson's Algorithm

27

THE SOLUTION FOR n PROCESSES.

<* protocols for PI *)

FOR j := 1 TO n - 1 DO

BEGIN

Qt i 3 := j;

TURNCj] := i ;

wait until ([-for all] k * i, Q[k] < j) OR

TURN [j] * i

END;

Cr i t ical Sect i on;

Q[i] := 0

FIGURE 1 (continued)

28

<* DECLARATIONS FOR THE PROGRAM SEGMENTS *)

TYPE
KINDTRANSACT = <CR, DEB);
TRANSACT = RECORD

KIND: KINDTRANSACT;
-' AMOUNT: REAL;

BRANCHNUM: INTEGER;
END;

ACCT = RECORD
NAME: ARRAY C1..25] OF CHAR;
SSNUM: INTEGER;
NUMTRANSACTIONS: INTEGER;
TRANSACTIONS: ARRAY C1..MAXNUM] OF

TRANSACT;
BALANCE: REAL

END;
ACCOUNTS = ARRAY U.iNUMACCTS] OF ACCT;

VAR :
ACCTS: ACCOUNTS;
Bl, B2: BOOLEAN;
TURN: INTEGER;

FIGURE 2: Implementation of Peterson's Algorithm

29

PROCEDURE RECORD-TRANSACTION <NUM: INTEGER; AMTi
REAL; K: KINDTRANSACT; BRNUM: INTEGER);

BEGIN —
WITH ACCTS CNUM3 DO

BEGIN
NUMTRANSACTION& ,:= NUMTRANSACTIONS + 1;
WITH TRANSACTIONS [NUMTRANSACTIONS] DO

BEGIN
KIND := K;
AMOUNT := AMT;
BRANCHNUM := BRNUM

END;
BALANCE := BALANCE + AMT;

END
ENDf

FIGURE 2 (continued)

30

PROCEDURE BRANCH1;

VAR
ACCTNUM: INTEGER;
AMNT: REAL;
KND: KINDTRANSACT;

BEGIN
REPEAT

<* THE GETINFO PROCEDURE GETS THE INFORMATION
NEEDED FOR RECORDING THE DEBITS AND CREDITS. FOR
THIS EXAMPLE WE NEED NOT BE CONCERNED WITH THE
DEFINITION OF THIS PROCEDURE. *i

GETINFO <ACCTNUM, AMNT);
IF AMNT > 0 THEN
KND := CR

ELSE
KND := DEB;

Bl := TRUE;
TURN := 1;
REPEAT UNTIL <<NOT B2) OR (TURN = 2)>;
RECORD-TRANSACTION (ACCTNUM, AMNT, KND, 1);
Bl := FALSE

UNTIL FALSE;
END;

FIGURE 2 (continued)

31

\J

PROCEDURE BRANCH1;

VAR
ACCTNUMz INTEGER;
AMNTz REAL;
KND: KINDTRANSACT;

BEGIN
REPEAT

<* THE GETINFO PROCEDURE GETS THE INFORMATION
NEEDED FOR RECORDING THE DEBITS AND CREDITS. FOR
THIS EXAMPLE UE NEED NOT BE CONCERNED WITH THE
DEFINITION OF THIS PROCEDURE. *)

.GETINFO (ACCTNUM, AMNT);
IF AMNT > 0 THEN
KND := CR

ELSE
KND := DEB;

Bl := TRUE;
TURN := 1;
REPEAT UNTIL ((NOT B2> OR (TURN = 2));
RECORD-TRANSACTION (ACCTNUM, AMNT, KND, 1);
Bl := FALSE

UNTIL FALSE;
END;

FIGURE 2 (continued)

31

PROCEDURE BRANCH2;

VAR
ACCTNUM: INTEGER;
AMNTs REAL;
KND: KINDTRANSACT;

BEGIN
REPEAT
GETINFO (ACCTNUM, AMNT);
IF AMNT > 0 THEN

KND := CR
ELSE

KND := DEB;
B2 := TRUE;
TURN := 2;
REPEAT UNTIL <<NOT Bl) OR (TURN =1));
RECORD-TRANSACTION (ACCTNUM, AMNT, KND, 2);
B2 := FALSE;

UNTIL FALSE;
END;

BEGIN <* MAIN *>
Bl := FALSE;
B2 := FALSE;
TURN := 1;
COBEGIN

BRANCH1;
BRANCH2;

COEND;
END. <* MAIN *)

FIGURE 2 (continued)

32

Figure 2 is a set of program segments showing an

implementation of Peterson's algorithm for two

concurrent processes. In the hypothetical situation, a

bank has two branches which concurrently record debits

and credits. The critical region is the

RECORD-TRANSACTION procedure. In this example, the

critical region is managed through the variables TURN,

Bl, and B2.

While "busy waiting" manages the critical region,

it is wasteful o-f CPU power. The waste arises in the

constant checking in the REPEAT UNTIL „ <(NOT B2) or

(TURN = 2)) and REPEAT UNTIL ((NOT Bl) or (TURN =1))

statements. This method of ' management is also

cumbersome. For several concurrent processes the

implementation of the algorithm becomes quite

complicated.

In 19^5, E. W. Dijkstra proposed using semaphores

to simplify the management of critical regions. The

additional structures WAIT and SIGNAL are used with the

new data type, SEMAPHORE. A SEMAPHORE is an variable

of type INTEGER. It is only operated upon by WAIT and

SIGNAL. WAIT and SIGNAL are defined as follows:

(Ben-Ari, 1982)

WAIT (s>: If s > 0 then s := s - 1 else the

33

execution of the process that called WAIT (s) is

suspended.

SIGNAL <s): If some process P has been

suspended by a previous WAIT (s) on this SEMAPHORE s

then wake up P else s := s + 1,

The critical region ' is then managed by the

algorithm given in Figure 3 for n processes. It is

possible for "lockout" to occur using this algorithm

unless a "fair" method is designed for determining

which process is woken by STGNAL. Figure 4 shows the

program segment in Figure 2 rewritten using SEMAPHORES.

34

VAR
S: SEMAPHORE;

PROCEDURE Pi;
BEGIN

REPEAT
WAIT (S);
Critical Region (Pi);
SIGNAL <S>;
Remote Region (Pi);

UNTIL FALSE;
END;

BEGIN (* MAIN *)
S := 1;
COBEGIN

Pi;
P2;

Pn
COEND

END. (* MAIN *)

FIGURE 3: Algorithm For Critical Region Management
Using Semaphores

35

<* SEE FIGURE 2 FOR THE TYPE DECLARATIONS AND
DECLARATION OF RECORD-TRANSACTION PROCEDURE *>

VAR
ACCTS: ACCOUNTS;
S: SEMAPHORE;

PROCEDURE BRANCH1;
BEGIN
REPEAT

GETINFO <ACCT, AMNT); <* REFER TO FIGURE 2 FOR
COMMENT ON GETINFO *)

IF AMNT > 0 THEN
KND := CR

ELSE
KND := DEB;

WAIT <S>
RECORD-TRANSACTION (ACCTNUM, AMNT, KND, 1);
SIGNAL <S>

UNTIL FALSE;
END;

PROCEDURE BRANCH2
BEGIN

REPEAT
GETINFO (ACCTNUM, AMNT);
IF AMNT > 0 THEN

KND := CR
ELSE

KND := DEB;
WAIT <S>;
RECORD-TRANSACTION (ACCTNUM, AMNT, KND, 1);
SIGNAL <S>;

UNTIL FALSE;
END;

FIGURE 4: Implementation o-f Semaphores

36

BEGIN <* MAIN *>
S i= 1 ;
COBEGIN

BRANCH1;
BRANCH2

COEND
END. <* MAIN *)

FIGURE 4 (continued)

37

While on the surface the problem o-f critical

region managment appears to be solved by the use of

SEMAPHORES in a relatively straight—forward manner,

Brinch Han sen (1973) points out the -flaws in this

reasoning.

"If we replace this structured notation
[shared regions] with semaphores, this will
have grave consequences:

(1) Since a semaphore can be used to
solve arbitrary synchronizing problems, a
compiler cannot conclude that a pair of

. wai t and si onal operations on a given
semaphore initialized to one delimits a
critical region, nor that a missing member of
such a pair is an error. A compiler will
also be unaware of the correspondence between
a semaphore and the common variable it
protects. In short, a compiler cannot give
the programmer any assistance whatsoever in
establishing critical regions correctly.

(2) Since a compiler is unable to
recognize critical regions, it, cannot make
the distinction between critical regions and
disjoint processes. Consequently, it must
permit the use of common variables
everywhere. So a compiler can no longer give
the programmer any assistance in avoiding
time-dependent errors in supposedly disjoint
processes."

The deadlock problem has been only partially

solved. Deadlock can occur through poor management of

the critical region, but it can also occur when any one

(or more) of the following conditions exist.

38

A

"<1> Mutual exclusion: A resource can only be
acquired by one process at a time.

<2> Non-preempti ve schedulino; A resource can
only be released by the process which has acquired
it.

<3> Part i al al1ocat i on: A process can acquire its
resources piecemeal.

<4> Circular wai t ino; The previous conditions
permit concurrent processes to acquire part o-f their
resources and enter a state in which they wait
indefinitely to acquire each other's resources."(Brinch
Hansen, 1973)

Brinch Hansen (1977) outlines a hierarchical

resource system to prevent deadlock. A hierarchical

system consists o-f a sequential ordering for requesting

and releasing resources. When concurrent programs are

written using hierarchical ordering -for system

components, other benefits are realized. The major

additional benefit is in program testing and

correctness. Once a program component has been shown

to be correct, errors in newer components cannot make

older components fail because old components do not

call newer components.

Brinch Hansen developed Concurrent Pascal (from

1972 - 1975) with the goal of creating a language for

concurrent programs that satisfies three requirements:

simplicity, reliability, and adaptability. Simplicity

is achieved through the use of small, well-defined

program pieces. Reliability is aided by extensive

39

compilation checks of type compatibility. Hierarchical

structure also aids correctness testing. Adaptability

comes in being able to modify existing programs. By

using abstract language and small wel 1 -def i ned program

components* modifications become easier.

Concurrent Pascal is an extension of sequential

Pascal. The -following is a brief description of the

extended data structures and manipulation instructions

in Concurrent Pascal. This information is taken from

The _, Arch i tecture of Concurrent Proorams <Brinch

Hansen, 1977).

Concurrent Pascal contains all of the data types

of Pascal plus two additional data types, QUEUE and

system. The majority of the manipulation instructions

are the same, i.e. assignment, compound, FOR, WHILE,

REPEAT, IF, CASE, and WITH. There are, however, also

CYCLE statements and INIT statements in Concurrent

Pascal. Concurrent Pascal also has procedure and

function capabilities, but these differ slightly from

sequential Pascal.

The two new data types, QUEUE and system, are

called active types. Any type containing system types

or QUEUEs is an active type. The remainder are passive

types. QUEUE is a simple data type like CHAR, INTEGER,

40

BOOLEAN, REAL, subrange, and scalar types. System

types are structured and consist of other component

types.

There are three kinds o-f system types: PROCESSes,

MONITORS, and CLASSes. A concurrent program is made up

o-f these three types. A system type declaration is o-f

the the -following -form:

PROCESS ! MONITOR ! CLASS <empty> ! <parameters>;
<block>

A PROCESS type consists o-f a data structure and a

sequential statement for manipulation o-f that

structure. Within the parameter list, the MONITORS to

which the PROCESS has access are declared. A PROCESS

has access only to MONITORS or CLASSes. PROCESSes do

not have direct access to shared data. They must

access the shared data through a MONITOR.

MONITORS consist o-f data structures and operations

that PROCESSes can per-form on these data structures,

the operations are in the form of functions or

procedures which, the PROCESSes call. These operations

manage the synchronization of the calling PROCESSes and

the exchange of data among them.

A CLASS is a system component that can only be

accessed by a single other system component <PROCESS,

41

—-?*? .

MONITOR, or another CLASS). It consists o-f a data

structure and operations that can be performed on the

data structure (similar to a MONITOR).

Examples of PROCESS, MONITOR, and CLASS

declarations are shown in Figures 5, 6, and 7

respectively. The problem o-f hypothetical bank with

its concurrent branch recording, processes is continued.

For passive type declarations, see Figure 2.

r

42

msss~i

TYPE BRANCHPROCESS = PROCESS (MANAGER:
RECORDMANAGER);

VAR
ACCTNUM: INTEGER;
AMNT: REAL;
BRAMCHNO: INTEGER;
KND: KINDTRANSACT;

BEGIN
CYCLE

(* SEE COMMENT IN FIGURE 2 CONCERNING GETINFO.
THIS PROCEDURE REQUIRES AN ADDITIONAL PARAMETER:
BRANCHNO *>

GETINFO (ACCTNUM, AMNT, BRANCHNO);
IF AMNT > 0 THEN

KND := CR
,• , ..-.. .ELSE ... -., . . , *.,.,*.. .

KND := DEB;
MANAGER. SEND (ACCTNUM, AMNT, KND, BRANCHNO);

END;
END;

FIGURE 5: Implementation of a PROCESS Declaration

43

TYPE SENDERQUEUE = ARRAY C1..23 OF QUEUE;

TYPE RECORDMANAGER = MONITOR;

VAR
SENDING: (ONE, TWO);
SENDER: SENDERQUEUE;
RECORDER: RECORD-TRANSACTION;

PROCEDURE ENTRY SEND <ACCTNUM: INTEGER; AMNT:
REAL; KND: KINDTRANSACT; BRANCHNO: INTEGER);

BEGIN
IF BRANCHNO = 1 THEN
BEGIN

IF SENDING = TWO THEN DELAY (SENDER [13);
RECORDER.ENTER (ACCTNUM, AMNT, KND,

BRANCHNO);
SENDING := ONE;
CONTINUE (SENDER [23);

END
ELSE

BEGIN
IF SENDING = ONE THEN DELAY (SENDER £23);
RECORDER.ENTER (ACCTNUM, AMNT, KND,

BRANCHNO);
SENDING := TWO;
CONTINUE (SENDER C1]);

END;
END ;

BEGIN
SENDING := ONE;
INIT RECORDER;

END;

FIGURE 6: Implementation o-f a MONITOR Declaration

44

TYPE RECORD-TRANSACTION = CLASS;

VAR
ACCTS: ACCOUNTS;

PROCEDURE ENTRY <NUM: INTEGER; AMT: REAL; K:
KINDTRANSACT; BRNUM: INTEGER);

BEGIN
UITH ACCTS tNUM] DO

BEGIN
NUMTRANSACTIONS := NUMTRANSACTIONS + 1;
WITH TRANSACTIONS tNUMTRANSACTIONS3 DO

BEGIN
KIND := K;
AMOUNT := AMT;
BRANCHNUM := BRNUM;

END;
BALANCE := BALANCE + AMT;

END;
END;

BEGIN
<* INITIALIZE ACCTS *>
END;

FIGURE 7: Implementation o-f a CLASS Declaration

45

The QUEUE type is a standard type in Concurrent

Pascal. It is declared within a MONITOR type and is

used to delay and resume PROCESSes. There is a

standard function EMPTY which has a QUEUE variable as

its argument and results in a BOOLEAN value. The value

is TRUE when there is no PROCESS delayed in the QUEUE.

There are also two procedures de-fined -for QUEUEs.

DELAY results in the. calling PROCESS losing its

exclusive access to the MONITOR. Other PROCESSes can

then call the MONITOR variables. CONTINUE is called by

the PROCESSes returning from the MONITOR. If another

PROCESS is waiting in the QUEUE,^it immediately regains

its exclusive access to the MONITOR variables.

As mentioned previously, there are two statements

in Concurrent Pascal which are not in sequential

Pascal. The first is the CYCLE statement. This

statement is equivalent to:

REPEAT <statement> I; <statement>> UNTIL FALSE

It has the syntax:

CYCLE <statement> i; <statement>> END y

The CYCLE statement may only be used in a PROCESS.

The INIT statement is used to initialize system

components. The initial PROCESS, the outermost level

46

of the program, contains an INIT statement which

initializes the other PROCESSes and MONITORS and

de-fines their access rights to one another through

their parameters. The INIT statement also allocates

space -for the system components variables. Once a

system component is initial zed, its variables and

parameters become permanent variables.

Routines, in Concurrent Pascal, are procedures,

-functions, and sequential programs. They consist o-f a

set o-f parameters and a compound statement that

operates on the parameters. While a system component

may not refer to the variables o-f another system

component, it may call routine entries defined within

another system type. There are four, types of routine

entries: process entry, monitor entry, class entry,

and initial statement. The last of these has been

discussed previously. The initial statement does not

have an identifier and is simply called using the INIT

statement. Figure 8 shows an

initial process for the types declared in Figures 5-7.

47

VAR
MANAGER: RECORDMANAGER;
BRANCH1, BRANCH2: BRANCHPROCESS;

BEGIN
INIT
MANAGER,
BRANCH1 (MANAGER),
BRANCH2 (MANAGER);

END.

FIGURE 8: Implementation o-f an Initial Process

48

The other three kinds of routine entries appear in

system components bearing their name. A process entry,

de-fined within a process type, can only be called by a

sequential program within a process type. It cannot be

called by a system component. A monitor entry, on the

other hand, can be called by any system component that

wishes to operate on that monitor. Calls made

simultaneously -for monitor routines which operate on

the same permanent variables will be handled singlely.

A , class entry can only be called by- one system

component, the system component that has access to that

CLASS.

The syntax -for the procedure and function routines

are as -fol lows: T

PROCEDURE ENTRY ! <empty> < identified
<parameters>; <block>

FUNCTION ENTRY ! <empty> <identified
<parameters> : < i dent i-f i er> ; <b1ock>

A sequential program routine is controlled by a job

PROCESS. The parameters o-f the program must be o-f

passive types and the rightmost parameter represents

the variable in which the compiled program code is

stored. The program may call other routines de-fined

within the job PROCESS as long as these are lised

-following ENTRY in the program definition. The syntax

4?

for a sequential program routine is as -follows:

PROGRAM <ident i-f ier> <parameters>
<access rights) ! <empty>

where (access rights> has the -following syntax:

; ENTRY < i dent i -f i ers>

The use o-f the MONITOR, PROCESS, and CLASS, as

de-fined in Concurrent Pascal, removes the necessity -for

the programmer to manage the problems of critical

region and deadlock. This management is built into the

interaction of these data structures. The limited

accessing among the data structures and their "one-way"

nature also allows for greater compiler checking. This

aids in ensuring program correctness.

This characteristic of Concurrent Pascal

facilitates the writing of operating systems as will be

discussed in the next two chapters.

V

50

.VI. OPERATING SYSTEMS AND CONCURRENT PASCAL

An operating system is a software system designed

to manage the sharing o-f computer resources. As

mentioned previously,, the sharing of resources can be

by several users as in a time-sharing system. An

operating system is also necessary for a single user to

efficiently use a computer system. The problem of

managing a system for several users is, therefore, an

extension of the problem of managing the system for a

single user.

A great deal of efficiency can be gained for a

single user system by running computer processes

concurrently. Ben-Ari (1982) gives the example of a

computer that can execute one million instructions per

second. This computer is connected to a card reader

which reads 300 cards per minute. While one card is

read (1/5 of a second), 200,000 instructions could be

executed. A large percentage of the time the CPU will

be idle if the card reading process and CPU execution

take place sequentially.

In the l?60's autonomous peripheral devices were

designed which could- operate independent of the CPU.

This meant that a computer could execute one program

51

while reading in a second program and possibly print

out a third program. The problem arose, though, of

synchronizing the CPU and the peripheral devices.

One method devised to handle the synchronization

problem was the interrupt concept. With -this method, a

peripheral device sends a signal to a register

connected to the CPU. When the signal is received, the

CPU stop^s executing the current program and can then

switch to a program that is waiting -for the peripheral

device. The program managing the action between the

peripheral device and the CPU is the operating system.

The same concept used to permit concurrent

operation of the peripheral devices and the CPU could

be used to manage a system with several users.

Most operating systems are. written in low-level

languages. These programs are large and unwieldly.

Several problems arise with these systems. Because of

their size these programs are difficult to understand

and modify. They are also prone to time-dependent

errors. This makes the system unreliable and prone to

crashing. Once an error has occurred, it is difficult

to locate the problem.

Concurrent Pascal is an effective tool for writing

operating system programs. Its structure is such that

52,

X

shared resources are managed by independent components.

It also allows for systematic testing o-f the system

through hierarchical design. The Solo Operating

System, which will be examined in detail in the next

chapter, was written in Concurrent Pascal. Its author,

Per Brinch Hansen, reported that it took approximately

two man-years to develop the entire system. He

estimates that it would have taken twenty to thirty

man-years to develop the same system in machine

language. (Brinch Hansen, 1977).

^.

53

VII. EXAMINATION OF THE SOLO OPERATING SYSTEM

This chapter examines the Solo Operating System

written by Per Brinch Hansen <1977). The purpose of

this analysis is to show how the system was constructed

using the concurrent structures of Concurrent Pascal.

This examination will also show how the system was

developed using a hierarchical structure.

The Solo Operating System was the first operating

system written in Concurrent Pascal. It was

implemented on the PDP 11/45 computer and was in use in

May, 1975. It is unusual in that it is written almost

entirely in Concurrent Pascal with only a small

percentage of machine language code. Protection of the

system is achieved through extensive compile-time

checks of type compatabi1ity and access rights instead

of execution-time checking with hardware mechanisms.

The operating system manages the processing of

programs, written in sequential or Concurrent Pascal,

for a single user. The user is able to edit, compile,

and store these programs. The user intereacts with the

computer through the use of a console. Through the

console, the user can access a card reader, tape and

disk devices, and a printer. The handling of these

54

-functions is managed through concurrent processes in

the operating system.

The main body of the operating system program is

the INITIAL PROCESS (Brinch Hansen, 1977, pp. 140 -

141). This process, when executed, initializes six

PROCESSes of -five PROCESS types and -fourteen MONITORS

o-f seven MONITOR types. This INITIAL PROCESS has

access only to those PROCESSes and MONITORS. Once it

terminates execution, these structures remain as

permanent variables. It is this INITIAL PROCESS that

begins all o-f the concurrent processes necessary -for

the operating system.

The Appendix shows the hierarchical structure o-f

the remainder o-f the program. I-f the program is

considered in terms of "bottom up" design, the highest

layer (that layer which no other components access)

consists o-f the -five other PROCESSes. These PROCESSes

then have access to various MONITORS and CLASSes, as

shown, which are either declared as parameters or

variables within the PROCESS declaration. That layer

of MOITORs and CLASSes then have access to MONITORS and

CLASSes in a similar manner, and so on. The lowest

layer of active types are those MONITORS and CLASSes

that do not declare any other active types as

55

parameters or variables. They there-fore do not have

access to any other active types.

There are six CLASSes and MONITORS that do not

access any other CLASSes or MONIORs. These are FIFO

CLASS, TYPEWRITER CLASS, LINEBUFFER MONITOR, PAGEBUFFER

MONITOR, AR6BUFFER MONITOR, and PROGSTACK MONITOR.

-The FIFO CLASS (Brinch Hansen, 1977, p. 103) is

used to manage a -fi-fo (-first in, -first out) QUEUE. It

consists o-f four ENTRY functions: ARRIVAL, DEPARTURE,

EMPTY, and FULL. It is through these •functions that

this CLASS is accessed. The -functions ARRIVAL and

DEPARTURE are INTEGER -functions and return the values

at which the next QUEUE element can take or leave -from

respectively. The -functions EMPTY and FULL return

BOOLEAN values depending on the value o-f the INTEGER

variable length. A value o-f 0 -for length would return a,

value o-f TRUE -for EMPTY and a value o-f limit <a

parameter, value -for the size o-f the QUEUE) would return

a value o-f TRUE -for FULL. A variable of type FIFO
V.'

CLASS is initialized with the head and tail variables

having a value of 1 and a length of 0.

The TYPEWRITER CLASS (Brinch Hansen, 1977, pp. 107

- 108) is used to transfer a line of text to or from

the console. An 10 procedure is used to delay the

56

calling process while a single character is

transferred. This type consists of two ENTRY

procedures WRITE and READ. The WRITE procedure

consists mainly of a REPEAT loop that calls a WRITECHAR

procedure until an entire line has been written to the

console (using the 10 procedure). The READ procedure

begins by ringing the bell on the console. The

remainder of the procedure is consists mainly of a

REPEAT loop. In the REPEAT loop, a single character is

read from the console until an entire line is read.

The end of line is determined by a linefeed character

or by reaching the limit for the line array. Within

the loop a test is made for either a "control c"

character or a "control 1" character. If a "control c"

is read, a "?" is written on the console and the index

of the line array is decremented by 1. If a "control

l"j is read, a linefeed character followed by a "?" are

written on the console.

The TYPERESOURCE MONITOR <Brinch Hansen, 1977, pp.

105 - 106) is used to gain exclusive access to the

console. It consists of two ENTRY procedures: REQUEST

and RELEASE. This type uses the FIFO CLASS to manage a

QUEUE. The REQUEST procedure tests whether or not

another process is currently using the console. If it

57

is, - the process requesting access is placed on the

QUEUE. The process accessing the console is then

identified on the console. The RELEASE procedure

checks the QUEUE to see i-f any processes are currently

waiting to use the console. If the QUEUE is empty,

then the console becomes ' free. Otherwise, the next

process is taken off of the QUEUE and allowed to

continue. The main body of this declaration

initializes the FIFO CLASS variable in addition to

initializing its passive type variables.

A TYPERESOURCE parameter and a TYPEWRITER variable

are accessed by a variable of the TERMINAL CLASS type

<Brinch Hansen, 1977, p. 109). This type uses the

previous two types to gain exclusive access to the

console, to identify its calling process, and to

transfer the line of text either to or from the

console. Two ENTRY procedures are used to accomplish

this: READ and WRITE. The READ procedure requests

access to the console through a TYPERESOURCE parameter.
/

If the process requesting the console is different than

the one that most recently accessed the console

previously, the process name is written on the console.

The line of text is then read from the console and

access to the console is released. The write procedure

58

differs only in that instead o-f reading a line of text

from the console, it writes a line of text on the

console. The main body of this declaration initializes

the TYPEWRITER CLASS variable.

The RESOURCE MONITOR <Brinch Hansen, 1977, pp. 104

105) type is very similar to the TYPERESOURCE

MONITOR. It has two ENTRY procedures, REQUEST and

RELEASE, which per-form like those described' above.

This MONITOR, however, gives a process exclusive access

to any o-f the computers resources as opposed to only

the console. It there-fore does not need to in-form the

resource as to which process has accessed it. It

simply tests to see i-f the resource is available and

delays or continues the processes accordingly. For this

declaration, another active declaration is needed.

This is for an ARRAY o-f QUEUE as follows:

1 CONST
PROCESSCOUNT = 7;

TYPE
PROCESSQUEUE = ARRAY C1..PROCESSCOUNT] OF UUEUE;

The main body of this declaration initializes the FIFO

CLASS variable and initializes the BOOLEAN variable to

TRUE.

A single character is written onto or read from a

TERMINAL CLASS parameter by a variable of the

59

TERMINALSTREAM CLASS type <Brinch Hansen, 1977, pp. 110

- 111). This type consists o-f three ENTRY procedures:

READ, WRITE, and RESET, and a procedure used only by

variables o-f that CLASS type. The local procedure is

an initialization procedure used to initialize the

header variable. The READ and WRITE procedures are

used to read and write Respectively) a character to a

variable of type TERMINAL CLASS. In the READ procedure

the end o-f a 1 ine has been reached then the TERMINAL

CLASS variable procedure READ is called and the coufft

is reset to 0. If it is not the end of the line, then

the next character -from the text line array is assigned

to the variable parameter c. The WRITE procedure

executes in a similar manner. It increases the count

and then stores a single character in an array of type

line. When the, end of the line is reached, the

TERMINAL CLASS variable procedure WRITE is called and

the text line array is passed to it. The- procedure

RESET is used to reinitialize the line of text. The

main body of this declaration is a procedure call for

the INITIALIZE procedure.

There are three buffer type MONITORS used in this

program: ARGBUFFER, LINEBUFFER, and PAGEBUFFER <Brinch

Hansen, 1977, pp. 125 - 126). They are different only

60

in the type of the buffer used. There are two ENTRY

procedures: READ and WRITE. The READ procedure tests

to see if the buffer is -full. If it is, the message is

assigned to a text variable and full is then assigned

the value FALSE.. The sending process then continues.

If the buffer is not full, the receiving process is

delayed before completing the procedure. The WRITE

procedure is similar only that the operations are in

reverse. The PAGEBUFFER MONITOR type also checks for

the end of the file.

There are several CLASSes and MONITORS pertaining

to disk use. The first, the DISK CLASS type <Brinch

Hansen, 1977, pp. 112 - 113), transfers a page to or

from a disk device. It also accesses the console to

report a disk failure and to communicate with the

operator concerning this error. This type consists of

three procedures, two of which are ENTRY procedures.

The TRANSFER procedure, which is local to this CLASS,

either reads or writes a page from or to the disk. The

page is identified by its absolute page address.

Whether the procedure reads or writes, using a TERMINAL

CLASS type variable is determined by a parameter. The

page address - is also passed as a parameter. The 10

procedure is used by this TRANSFER procedure as it was

61

in the TYPEWRITER CLASS type. The two remaining

procedures: READ and WRITE, simply have calls to

TRANSFER. The only difference between the two is in

one of the parameters. The READ procedure passes input

as a parameter and the WRITE procedure passes output.

The type page is a universal type. This allows the

DISK CLASS to transfer pages of different types.

The DISK CLASS type is accessed by the DISKFILE

CLASS type (Brinch Hansen, 1977, pp. 1.14 - 115). The

purpose « of 'this -type -is.--1 to make it possi bl e for -'***"

process to access a disk file. If a disk failure

occurs, the TYPERESOURCE CLASS parameter is accessed to

communicate exclusively with the console. This type

has a BOOLEAN function INCLUDES which is TRUE only if a

given page number is within the proper range and a file

is to be accessible. There are also four ENTRY

procedures: OPEN, CLOSE, READ, and WRITE. The READ and

WRITE procedures use the DISK CLASS type variable to

transfer a page from or to a disk. The OPEN procedure

assigns a page map to a file and makes it accessible.

The CLOSE procedure makes the file inaccessible and

resets the length of the file to 0. The main body of

the type declaration sets the length to 0, the

accessabi1ity variable to FALSE, and initializes the

62

DISK CLASS variable. It should also be noted that the

variable length in this declaration is an ENTRY

variable. This allows it to be used outside the CLASS.

Its value, however, can only be changed within the

CLASS.

The DISKTABLE CLASS type <Brinch Hansen, 1977, pp.

116 - 117) uses both a TYPERESOURCE type parameter and

a DISKFILE type variable. The TYPERESOURCE parameter

is again accessed to report disk -failure as mentioned

above. It uses the DISKFILE to gain access to locate a

catalog on a disk. The main body o-f the declaration

cosists o-f initializing the DISKFILE variable,

accessing the DISKFILE procedure OPEN, and initializing

the local variables. The one ENTRY procedure in this

declaration, procedure ENTRY READ, uses the DISKFILE to

read an entry at a given location in the catalog.

Catalog lookup is managed by the DISKCATALOG

MONITOR type (Brinch Hansen, 1977, pp. 117-118). A

TYPERESOURCE parameter is used as mentioned above -for

disk failure. A RESOURCE type parameter is used to

gain exclusive access to the disk. This type also uses

a DISKTABLE variable to search -for a -file identifier.

There is a local function HASH which returns a value

for the hash key. There is also one ENTRY procedure,

63

LOOKUP. The LOOKUP porcedure- is a search procedure

using the hash key. A variable BOOLEAN parameter

returns the appropriate value indicating i-f the

identifier was found. I-f the identifier was found, the

procedure also returns the file attributes. The body

of the declaration initializes the DISKTABLE variable.

The last of the disk accessing CLASSes and

MONITORS is the DATAFILE CLASS type (Brinch Hansen,

1977, pp. 11? - 121). It is with this CLASS that a

process accesses a file, of a given identifier name. It

accesses a parameter of type RESOURCE to gain access to

the disk and a parameter of type DISKCATALOG to look up

the file. A parameter of type TYPERESOURCE is used to

access the console to report disk failure. A variable

of type DISKFILE is used to open and close files.

There are four ENTRY procedures: OPEN, CLOSE, READ, and

.WRITE. The READ and WRITE procedures simply request

access to the disk using the RESOURCE parameter, read

or write to the file using the DISKFILE variable, and

release the disk again using the RESOURCE parameter.

The CLOSE procedure closes a file using the DISKFILE

procedure CLOSE and reinitializes the local variables.

The OPEN procedure accesses the DISKCATALOG parameter

to perform a lookup. If the file is found, then the

64

»

procedure requestis use o-f the disk through the RESOURCE

parameter, opens the -file using the DISKFILE procedure

open, resets the length variable, and releases the disk

through the RESOURCE parameter. The main body of this

type initializes the DISKFILE variable and the local

variables.

The PROGFILE CLASS type (Brinch Hansen, 1977, p.

122) is used to transfer a sequential Pascal program

from disk into core. It accesses a TYPERESOURCE

parameter to communicate with the console in the case

of disk failure, a RESOURCE parameter to gain exclusive

access to the disk, and a DISKCATALOG parameter to

lookup the file on the disk. A DISKFILE variable is

used to read the program from the file. This type

consists of a single ENTRY procedure, OPEN. After the

file is looked up, tests are performed to make sure it

is found and and that the file contains sequential

code. If both of these conditions are satisfied then

the disk is requested, the file is opened, and the

program is read. Another test is made to ensure that

the length of the file does not exceed the space

allotted in core. The main body initializes the

variable of type DISKFILE.

The PROGSTACK type (Brinch Hansen, 1977, pp. 123 -

65

124) is a MONITOR used to manage the nested calls of

programs -from one to another. It maintains a Li-fo

(last in, -first out) stack. Two BOOLEAN ENTRY

-functions, SPACE and ANY, are used to determine if the

stack has run out o-f space or is empty (respectively).

There are also three ENTRY procedures: PUSH, POP, and

GET. PUSH is used to put an identifier on the stack.

The POP procedure, in addition to removing an

identifier from the stack, returns the attributes of

the termination of the program. The GET procedure

identifies the program at the top of the stack. The

main body of this type initializes the top of the stack

to 0. No other CLASSes or MONITORS are accessed by

th is type.

PROCESSes communicate with each other through

access to the CHARSTREAM CLASS (Brinch Hansen, 1977,

pp. 126 - 127). Messages are passed character by

character and a PAGEBUFFER parameter is used to send

and receive a page of characters. There are four ENTRY

procedures: INITREAD, INITWRITE, READ, and WRITE. The

INITREAD and INITURITE open the CHARSTREAM for reading

and writing respectively. Once a PROCESS has opened

the CHARSTREAM, it can then READ or WRITE a single

character. The PAGEBUFFER MONITOR is used to manage

66

the reading and writing.

The remainder o-f the declarations are the PROCESS

declarations. They are accessed only by the

initialization PROCESS. There are -five types o-f

concurrent PROCESSes used: LOADERPROCESS, CARDPROCESS,

PRINTERPROCESS, JOBPROCESS, and IOPROCESS.

The purpose o-f the LOADERPROCESS (Brinch Han sen,

1977, pp. 139 - 140) is to reinitialize the Solo

operating system. The process interrupts the operating

system and waits -for a signal < the BEL key) -from the

console. It receives the signal through the 10

procedure. When the signal is received, the PROCESS

requests access to the disk through the RESOURCE

parameter. It reloads the the system and then releases

the disk.

The CARDPROCESS (Brinch Hansen, 1977, pp. 137 -

138) and PRINTERPROCESS (Brinch Hansen, 1977, pp. 138 -

139) are similar processes. The CARDPROCESS sends data

■from a card reader to a variable o-f type IOPROCESS.

The PR INTERPROCESS sends data -from an IOPROCESS to a

lineprinter. The program has only one variable o-f each

type. This is to ensure that each o-f these devices is

controlled by a single process. These PROCESSes use a

LINEBUFFER parameter to send and receive the data to

67

and -from the IOPROCESS. A TYPERESOURCE parameter and a

variable o-f type TERMINAL are used to inform the

console that an error has been detected. The

declarations begin by initializing the TERMINAL

variable. They then enter in-finite loops in which the

CARDPROCESS reads any o-f the cards in the card reader

and the PR INTERPROCESS writes any data received -from

the IOPROCESS to the lineprinter. This is accomplished

using the 10 procedure. Each type uses a standard

procedure WAIT to delay the process if either in the

case o-f CARDPROCESS there are no cards to read or, in

the case o-f PR INTERPROCESS, there is no data to be sent

to the lineprinter.

The J0BPR0CESS <Brinch Hansen, 1977, pp. 12? -

132) and the IOPROCESS (Brinch Hansen, 1977, pp. 133 -

136) are similar in structure. The JOBPROCESS is used

to execute sequential Pascal programs which can call

other sequential Pascal programs recursively. The

IOPROCESS executes sequential Pascal programs that send

(or receive) data to (or from) the JOBPROCESS. They

both can implement interface procedures between the

programs and the operating, system. Each PROCESS has

parameters of type TYPERESOURCE, RESOURCE, and

DISKCATALOG. The results of accessing these parameters

68

has been explained previously. The JOBPROCESS uses two

PAGEBUFFER parameters and -four ARGBUFFER parameters to

interact with two IOPROCESSes. Similarly, the

IOPROCESS has one PAGEBUFFER parameter and two

ARGBUFFER parameters to interact with the JOBPROCESS.

Both PROCESSes use a PROGSTACK parameter to manage the

nested program calls mentioned previously. In

addition, the IOPROCESS uses a LINEBUFFER parameter to

access an 10 device. These PROCESSes also have

variables of type TERMINAL, TERMINALSTREAM, and

DATAFILE which have also previously been discussed.

The PROCESSes each have a PROGFILE variable which is

used to store the currently executed program and

CHARSTREAM variables -for communicating with each other.

The declarations each contain a sequential program

routine which spec i-Ties the routine entries called by

the program-. Each ENTRY routine is also declared.

These are simple procedures and functions which access

other CLASSes and MONITORS within the system. These

inter-face routines can only be accessed by the

sequential program. A-fter initializing its variables,
i

/■

each PROCESS calls a CALL procedure which is local to

the PROCESS. The CALL procedure loads the program from

the disk into core using he PROGSTACK parameter and the

69

PROGFILE variable. Initially, the JOBPROCESS executes

a sequential program DO which reads the users program

identifier from the console. The IOPROCESS initially

executes the 10 program which begins the reading o-f

cards for an input PROCESS and the writing to a

lineprinter for an output PROCESS. The PROCESSes send

a termination message to the console upon completion of

their respective initialization procedures.

The declarations descibed here, along with the

INITIAL PROCESS make up the Solo Operating System. The

redundancy of the parameters and variables allows the

system to check the access rights during compilation.

A component can access only those components it has

declared as parameters or variables. Access rights are

restricted by the rules of the Concurrent Pascal

Language. By using these access rights, critical

regions are managed. By not allowing components to

call each other recursively, deadlock is avoided.

Debugging is facilitated by bottom-up testing.

For example, once the FIFO component is debugged, it

will not cause errors in the TYPERESOURCE component.

Any errors encountered there are specific to that

component.

70

VIII. CONCLUSION

This thesis has examined various aspects of

concurrent programming. The problems inherent in

simulating concurrent processes through software were

discussed and several solutions were given. While a

slight extension o-f sequential Pascal may be sufficient

.to manage simulated concurrent processing, more elegant

and efficient solutions result from a set of formal

structures as in Concurrent Pascal. The introduction

of the structures of this language also provide

extended compiler error checking (through type

checking), and a means for hierarchical' programming.

The example used throughout the chapter on Concurrent

Pascal demonstrates the differences in the structures

used in the three extensions of Pascal. The Solo

Operating System shows Concurrent Pascal to be an

effective tool for facilitating the writing of

operating systems.

As concurrent programming becomes more extensive,

abstract languages, like Concurrent Pascal, will ^

provide the means for creating simple, reliable, and

adaptable programs.

71

REFERENCES

1. Ben-Ar i, M. Pr i nc i pies of. Concurrent ProoramminQ.
Prentice-Hall International, Inc., U.S.A., 1982.

2. Brinch Hansen, Per. Qperati no System Pr i nc i pies.
Prentice-Hall,. Inc., Englewood Cliffs, New Jersey,
1973.

3. Brinch Hansen, Per. The Arch i tecture of
Concurrent ' Proorams. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1977.

4. Conway, Meluin E., "A Multiprocessor System
Design", AFIPS. Vol 24, (Fall 1963), pp. 139-146.

5. Corbato, Fernando J., Merwin-Daggett, Marjorie, and
Daley, Robert C, "An Experimental Time-sharing
System", AFIPS. Vol 21, (Spring 1962), pp. 335-344.

6. Fi ndl ay, Uli 1 1 i am and Watt, Dav id A. PASCAL An
Introducti on to Methodi cal Proorammi no <2nd ed),
Computer Science Press, Inc., Maryland, 1981.

7. Jensen, Kathleen and Wirth, Niklaus. PASCAL User
Manual and Report (2nd ed), Springer-Ver1ag,
U.S.A., 1978.

8. Leiner, A. L., Notz, W. A., Smith, J. L., and
Weinberger, A., "PILOT - A New Multiple Computer
System", J_s_ ACM, Vol 6, No 3 (July 1959),
pp. 313-335.

9. Peterson, G. L., "Myths About the Mutual
Exclusion Problem", Informat i on Processing
Letters. Vol 12, No 3, (1981), pp. 115-116.

10. Shelly, Gary B. and Cashman, Thomas J. Introduct ion
to Computers and Data Processi no. Anaheim
Publishing Co., U.S.A., 1980.

72

APPENDIX

HIERARCHICAL OUTLINE OF THE SOLO OPERATING SYSTEM

CARDPROCESS
TYPERESOURCE MONITOR

FIFO CLASS
LINEBUFFER MONITOR
TERMINAL CLASS

TYPERESOURCE MONITOR
FIFO CLASS

TYPEWRITER CLASS
PRINTERPROCESS
TYPERESOURCE MONITOR

FIFO CLASS
LINEBUFFER MONITOR
TERMINAL CLASS

TYPERESOURCE MONITOR
FIFO CLASS

TYPEWRITER CLASS
IOPROCESS
TYPERESOURCE MONITOR

FIFO CLASS
RESOURCE MONITOR

FIFO CLASS
DISKCATALOG MONITOR
TYPERESOURCE MONITOR

FIFO CLASS
RESOURCE MONITOR

FIFO CLASS
DISKTABLE CLASS
TYPERESOURCE MONITOR

FIFO CLASS
DISKFILE CLASS
TYPERESOURCE MONITOR

FIFO CLASS
DISK CLASS
TYPERESOURCE MONITOR

FIFO CLASS
TERMINAL CLASS
TYPERESOURCE MONITOR

FIFO CLASS
TYPEWRITER CLASS

73

LINEBUFFER MONITOR
PAGEBUFFER MONITOR
AR6BUFFER MONITOR
PR06STACK MONITOR
TERMINAL CLASS

TYPERESOURCE MONITOR
FIFO CLASS

TYPEURITER CLASS
TERMINALSTREAM CLASS

TERMINAL CLASS
TYPERESOURCE MONITOR

FIFO CLASS
TYPEWRITER CLASS

CHARSTREAM CLASS
PAGEBUFFER MONITOR

DATAFILE CLASS
TYPERESOURCE MONITOR

FIFO CLASS
RESOURCE MONITOR

FIFO CLASS
DISKCATALOG MONITOR
TYPERESOURCE MONITOR

FIFO CLASS
RESOURCE MONITOR

FIFO CLASS
DISKTABLE CLASS
TYPERESOURCE MONITOR

FIFO CLASS
DISKFILE CLASS

TYPERESOURCE MONITOR
FIFO CLASS

DISK CLASS
TYPERESOURCE MONITOR

FIFO CLASS
TERMINAL CLASS

TYPERESOURCE MONITOR
FIFO CLASS

TYPEURITER CLASS PROGFILE CLASS
TYPERESOURCE MONITOR

FIFO CLASS
RESOURCE MONITOR

FIFO CLASS
DISKCATALOG MONITOR
TYPERESOURCE MONITOR

FIFO CLASS
RESOURCE MONITOR

FIFO CLASS

74

DISKTABLE CLASS
TYPERESOURCE MONITOR

FIFO CLASS
DISKFILE CLASS
TYPERESOURCE MONITOR

FIFO CLASS
DISK CLASS
TYPERESOURCE MONITOR

FIFO CLASS
TERMINAL CLASS
TYPERESOURCE MONITOR

FIFO CLASS
TYPEWRITER CLASS

DISKFILE CLASS
TYPERESOURCE MONITOR

FIFO CLASS
DISK CLASS
TYPERESOURCE MONITOR

FIFO CLASS
TERMINAL CLASS

TYPERESOURCE MONITOR
FIFO CLASS

TYPEWRITER CLASS
LOADERPROCESS

RESOURCE MONITOR
FIFO CLASS

JOBPROCESS
TYPERESOURCE MONITOR

FIFO CLASS ,
RESOURCE MONITOR

FIFO CLASS
DISKCATALOG MONITOR
TYPERESOURCE MONITOR

FIFO CLASS
RESOUCE MONITOR

FIFO CLASS
DISKTABLE CLASS
TYPERESOURCE MONITOR

FIFO CLASS
DISKFILE CLASS
TYPERESOURCE MONITOR

FIFO CLASS
DISK CLASS
TYPERESOURCE MONITOR

FIFO CLASS
TERMINAL CLASS

TYPERESOURCE MONITOR

75

FIFO CLASS
TYPEWRITER CLASS

PAGEBUFFER MONITOR
ARGBUFFER MONITOR
PROGSTACK MONITOR
TERMINAL CLASS
TYPERESOURCE MONITOR

FIFO CLASS
TYPEURITER CLASS

TERMINALSTREAM CLASS
TERMINAL CLASS

TYPERESOURCE CLASS
FIFO CLASS

TYPEWRITER CLASS
CHARSTREAM CLASS
PAGEBUFFER MONITOR

DATAFILE CLASS
TYPERESOURCE MONITOR

FIFO CLASS
RESOURCE MONITOR

FIFO CLASS
DISKCATALOG MONITOR
TYPERESOURCE MONITOR

FIFO CLASS
RESOURCE MONITOR

FIFO CLASS
DISKTABLE CLASS
TYPERESOURCE MONITOR

FIFO CLASS
DISKFILE CLASS
TYPERESOURCE MONITOR

FIFO CLASS
DISK CLASS
TYPERESOURCE MONITOR

FIFO CLASS
TERMINAL CLASS

TYPERESOURCE MONITOR
FIFO CLASS

TYPEWRITER CLASS
PROGFILE CLASS
TYPERESOURCE MONITOR

FIFO CLASS
RESOURCE MONITOR

FIFO CLASS
DISKCATALOG MONITOR
TYPERESOURCE MONITOR

FIFO CLASS

76

RESOURCE MONITOR
FIFO CLASS

DISKTABLE CLASS
TYPERESOURCE MONITOR

FIFO CLASS
DISKFILE CLASS
TYPERESOURCE MONITOR

FIFO CLASS
DISK CLASS
TYPERESOURCE MONITOR

FIFO CLASS
TERMINAL CLASS
TYPERESOURCE MONITOR

FIFO CLASS
TYPEWRITER CLASS

DISKFILE CLASS
TYPERESOURCE MONITOR

FIFO CLASS
- DISK CLASS

TYPERESOURCE MONITOR
FIFO CLASS '

TERMINAL CLASS
TYPERESOURCE MONITOR

FIFO CLASS
TYPEWRITER CLASS

77

VITA

Barbara Harab Smolowitz was born January 29, 1950,

in Washington, D.C. She graduated from Bethesda-Chevy

Chase High School, Bethesda, Maryland in 1968. in

1972, she graduated -from Carnegie-Mellon University,

Pittsburgh, Pennsylvania with a B. A. Degree in

Mathematics. She was then inducted into Pi Mu Epsilon,

the National Honorary Mathematics Fraternity.

During the academic year 1973-74, she taught

mathematics at Oak Harbor Junior High School, Oak

Harbor, Washington. From 1974 until 1976, she taught

college preparatory mathematics at Nazareth Senior High

School, Nazareth, Pennsylvania.

In 1977 she received an M. A. Degree in Secondary

Education from Lehigh University, Bethlehem,

Pennsylvania. She began her studies in the Division of

Computing and Information Science at Lehigh University

in the fall of 1982.

She currently resides in Bridgewater, New Jersey

with her husband and two daughters.

78

	Lehigh University
	Lehigh Preserve
	1-1-1984

	Concurrent programming with a focus on concurrent pascal.
	Barbara H. Smolowitz
	Recommended Citation

	tmp.1451580486.pdf.nA9mW

