View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by Lehigh University: Lehigh Preserve

Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1984

Concurrent programming with a focus on
concurrent pascal.

Barbara H. Smolowitz

Follow this and additional works at: http://preserve lehigh.edu/etd

b Part of the Computer Sciences Commons

Recommended Citation

Smolowitz, Barbara H., "Concurrent programming with a focus on concurrent pascal.” (1984). Theses and Dissertations. Paper 2191.

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an

authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

https://core.ac.uk/display/228650757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=preserve.lehigh.edu%2Fetd%2F2191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2191?utm_source=preserve.lehigh.edu%2Fetd%2F2191&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

'CONCURRENT PROGRAMMING WITH A FOCUS ON |

CONCURRENT PASCAL

»

by

Barbara H. Smolowi tz

A Thesis
Presgntéd to ;he Graduate Caﬁmittee
~of Lehigh University
in Candidacy for the Degree of
Master of Science
in |

Computing Sdienée

Lehigh University

1984

ProQuest Number: EP76464

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Pro(Quest.
/ \

ProQuest EP76464
Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106 - 1346

This thesis is accepted and approved in partial fulfillment
of the requirements for the degree of Master of Science.

- %o,

77244 10,/98%

ate)/

yd Professor in Chérge

Head of DIVISIOI’\

i

TABLE OF CONTENTS

PAGE

TABLE OF CmeTSI.lIl.ll....l-IIIIII.Il-lIIlllll‘llliii

LISTOF FIGURES-.-.l.l--l-ll.!ll----l‘-...-ll-.l.-l-I.iU.

ABéTmCT.-IIIIII;III.lI-”l‘.l'l'llllllllIllll.lllll.'l...ll.lll/

I L} IN-rRODl:,CTI m " ®» 9 5 8 8 8 s s eSS l ® s 8 s a8 seas : ; s " s 885 8 058 82 3
I I - BACKGROLND- ® @ 5 5380230208208 0006AEEESEEeEAcEsSseEsT RS 5
ITI. PROBLEMS OF CRITICAL-REGiON AND DEADLOCK.......11

IUI SEQUWIAL PASCALI.----.n.--uur.--.‘-.--n-------.14

v. CmCURRmT PASCAL.I......I...IIIIlll’lllll.llllll“2.5'

UI. OPERATING SYSTEMS AND CONCURRENT PASCAL.........51
VITI. EXAMINATION OF THE SOLO OPERATING SYSTEM.......54
UITT. CONCLUSION....euueusennesenneensenncnsnasnssss?l
REFERENCES « « «« + v v s e s e esenssnnenseneenennenneasennenss?2
APPENDIX« « + e e v ee s aeesssssassasssessessnssssneeensess?3

UITAI-I:l.ll.l.ll'l-llllll'.lIIIIllllllllllll.l.lllll?a

FIGURE
FIGURE

FIGURE

" FIGURE
F1GURE
F1GURE
F1GURE

FIGURE

LIST OF FIGURES

1: Peterson‘’s Algorithm....cccecianncanaaaead22?

2=vimplementafion of Peterson‘s Algorithm.....29

3:

é:

Algorithm For Critical Region Management
Using SemaphoOres..cccessssscassaccssscsasass3D

Implementation

Implementation

Implementation

Implementation

 Implementation

of
of
of
of

of

Semaphores..............f36
a PROCESS Declaration....43
T a MONITOR‘Declarationj...44
a CLASS Declaration....;.45'

an Initial Process.......48

ABSTRACT
CONCURRENT PROGRAMMING WITH A FOCUS ON CONCURRENT

PASCAL

This thesis examines various aspects of concurrent
programminé. » Concurrent prograﬁming is pﬁééently used
to simujate concurrent processing on sequential
hardware. -

Concurrent proﬁessing is usefulrt in séveral
applications.(It can be utilized to speed ua compu ter
operations and | maKe man-machine interactions more
efficient. It can also serve to more realistically
model real-life situations.

' Original!y any concurrgnt programming was gpnebat
the machine or assembly language level . | This
programming is difficult to debug an? modjfy;
Structures added tb- high-level éequential languages
improved the situation. Concurrent Pascal is a
high—fevel concurrent languagé”extended'from sequentiaf
Pascal. . It retains the structures of sequential Pascal
while adding sfructqréé* which manage the 5roblems
inhereﬁt in c;ncurrent programming.

"Critical region™ and "deadlock"™ are the major two

problems in concurrent programming. Critical regions

are regions shared by two or mofe‘concurrent processes.’
beadlock "is a situation that occués‘when two or more
processes wait indefinitéiy to use a sh#red region.

Cbncurreﬁtw‘Pascal ‘has bgen shown to be a very
effective tool in fhe writing of operating systems for
i'?:omputers. An operating system is the séftware that
manages the reséurces of the computer. By wusing
Concurent Pascal, Qriting. of an 1operatihg system is
simplified.

The goals of Per Brinch Hansen, the developer of
Concurrent - P;scal,' Qere ”siﬁplicity; reliability, and
adaptabitity. .. Simplicity results from Wﬁaving
structures that _manage the critical region and avoid
deadlock . through their design without the direct
intervention of the programmer. Reliabjlity is
a£tainéd thbough compr?hensive . error checking by the
coﬁpiler. Adaptability is achieved by using a
ﬁierarchical structure for programming in‘which program
pieces can be studiéd .individually. Modifications can

then be made without fear of creating errors in other

=

program pieces.

I. INTRODUCTION

Concurrent processing is a term used to describe
tﬁe simul taneous processing of two or more tasks g;—a
"single computer. Actﬁal concurrent processing can only
be achfeved with hardware. Concurrency, however, can:
bé simulated with appropbiate software. For this
paper, the term 'apparent‘concurrent processing" will
be used when refeﬁﬁf;g to simulated concurfehcy.

There are several levels at which some fofm of
concurrent processing can be obtained. They range from
portions of instructions withiqk a program to whole
Jjobs. An example of the former ﬁ?ght be computation of
a mathematical formula. Ih the calculation of the
expressioh 3 *x + 7 %y /z -0 %2z, each of the terms
- are independent of each other and they can fhefefore be
calculated simul taneously. Tﬁe produéts would then be
added together.' —

'Similarly, within a program, procedures dr other
independent ﬁrogram segments ?an ‘§é executed
simul taneously. An example of this' might be a
statistics package with various procedures designed to
calculaté different ahalyses on the same-data.

The highest level of concurrent processing is in

3

the handling. of whole Jjobs. A single computer can
seruiee severél users at a given time with apparent
 concurrent processing as in a timesharing system:

Thé use of concurrent processing in operating
systems will be discussed in greater depth fn the
following chapters. There are other areas in which‘
concurrent processing js beneficial. Another example
of the timesharing aspect of concurrent processing is
. in electronic mail. With electronic mail, many users
send and receive mail simultaneousl?. There are other
systehs which are actually paralleT processes but‘due
to the sequential nature of computers, their simulation .
has been modeled sequentially. Concurrent programming
allows for modeling in a more realistic fashion.
~Ex$mples of this are manufacturing ;rocess control
systems, irain and subway scheduling, and weather

" forecasting.

This paper will include baékground"}nfaémat{an,
problems involved in concurrent processing, a brief
description of sequential Pascal, and the use of
Copcurreht Pascal for concurrent . programming and

sp;éifically operating systems.

I1. BACKGROUND

The wvarious technological advances of the past
forty years have 1ed to the feasibility of concurrent
programmfng that is discussed in this paper. In. 1944,

Dr; John von Neumann wrote "Preliminary Discussion of

the Logical Design of an Electronic Computing
Instrument® in which he proposed a novel method of
programming computers. Prior to this ~ time,

"programming®" computers was acéomplished by hard—wiring
‘the program into the machine. A change in program
necessi tated physical Qiring changes. Von Neu&ann's
idea was to store the program, in the form of numbers,’
along with the data. The first computer built to
utilize this conceﬁt was the Electronic Delay Stdrage>
Automatic Calculator (EDSAC) buitiABYMauriﬁe V. Wilkes
and‘ his colleagues at Cambridge University, England in
1949. (Shaliy, 1980)

Another major step in this area is described in
the abstract of "PILOT - A New Multiple Computér
System", written in 1959. "The PILOT data processor is
a high;speed ﬁultiple computer syst?m, more than 100

times fastér .than SEAC [designed in May, 1950, by the

Naiional Bureau of Standards]. It contains three
inferconnected computers .féE rapid processing of data,
anq‘ also contains multiple input-output channels for
rapid transfer of data into and out of the system. All
of these units™ operate concurrently in a coordinated
fashion." (Leiner, 1959, Ap. 313) Each of the three
computers mentiongd had a specifi; purpose and the
three were designed to r;n concurrently to-prouide the
high rate of speed desired.

The first, or primary computer, was designed to
handle the coﬁputations involved within the program.
1t héd sixteen basic instructions: seven arithmetic
operétions, two logical processing operations, five
choice operatfons;' and two control operations. Only
the two éontrol‘ operations, "transfer between storage
units' apd *regulate “secondary . qomputer', deal with
probram managemen{. .

ﬁajor program management was handled py the,l
secondary comuter. This ;omputer, independently
programmed, performed pnpcedures useful tb_the program
executing on the primary computer. Tﬁe‘ se&ondary
computer performed such tasks as counting iteratibns;

sequencing .the program runninb on the primary computer,

-l

- sortin

and manipulating the ‘base registers in secondary
stdrage. This computer also had sixteen basic
instructions: six arithmetic operations, four choice
operations, five control ‘operations, and one logical
processing operation. Working together, the primary

and sedondary_ computer were designed to handle complex

techniqdes as well as logarithmtic searches and
error analyﬁes. |

The third computer was designed to independently
handle the ‘funcifons of editing, ginteéprefing, and
modifying datah entering or leaving the system. It ha&}
eight basic instructions: three processing operations,
three choice operations, and two control operations.

The control operations that -each Aﬁf the'fhree
computers could Aperformi were the means by which they
‘coﬁmunicated‘. The three computers were capable of
‘independent execution and were programmed using the
limited machine fanguage instructions. This initial
implementation . of concurrency, therefore, wAwas

accomplished by a combination of hardware implemented

interlocks and independently programmed computers.

In 'the xearl? 1960’s, the concept of running whole

Jobs concurrently was exploréd in the form of

and , manipulating the base regigtéﬁs iﬁ Seﬁohdary'
storage. . This computer =a|§o had- sixteen basic
instructions: six arifhmetic opérations, four choice
» operations, “five control operations, and one logical
processing operation. Working together, thevpriqary
and secondary caﬁputer were designed to handle complex
sérting techniqueé as well a§ logarithmtic searches ahd
érror analyses.

The. third computer was designed to independently
handle the funcitons gf editipg, ‘ingerpreting, and
Qodifying data entering or leaving the system. "1t had
eight basic instructions: three processin? operations,
-thfee-choice operations, and two control operations.

Tﬁe. éonthl “operations 4tﬁat each o# the thfeé
computers could perform were the means by which they
“*communicated". | The three computers were cipable of
independent execution and were programmed using the
limited machine 1language instructions. This initial
implementation of concurrency; therefore," was
accomplished by a combination of ﬁardware implemented
interlocks and!independently programhed computers.

In the early 1960’s, the concept of runningnyholg

A) :
Jjobs concurrently was explored in the ' form of

time—sharing. While the PILOT.pféject examined usfng
different pdrts of the hardqare within'the system to
perform tasks of one job éonéurrently, the next step
was better utilization of the system by interacting the
cometer witﬁ more fﬁan a single user at one time.
Man-machine interaction is extremely slow in comparison
~with the computational speed.bf thé Eomputer. Better
utilization 64 the eduipment was the ihpetus behind the
concept of timesharing. |

As programs became more complex, §ebugging the
programs became more time consuming. With batch.
processing, the delays between discovering a Bug and
trying a correction could become . interminable. One
solution wodld haue. pe?n ‘tou allow the 'programhef
dedicated access to the computer for dgbugging.
However, this wqpld :haue»'been wasteful df éomputer
time. Several other problems were inherent in this
solution.

16”' *An ‘Experiménta] Time-Sharing System", the
solution of having segsFal users at terminalsﬂphifh
interact with the»computer is discussed.

"To solve these interacfion problems we

would like . to have a computer made
simul taneously available to many users in a

manner somewhat 1ike a telephone exchange.
Each wuser would be able to use a console at
his own pace and without concern for the
activity of others using the system. This
console could as a minimum be merely a
typewriter but more ideally would contain an
incrementally modifiable self-sustaining
display. In any case, data -transmission
requirements should be such that it would be
no major obstacle to have remote instaltation
from the computer proper. .

"The basic technique for a time-sharing
system is to have many persons simul taneously
using the computer through typewri ter
consoles wi th a time—-sharing supervisor
program sequentially running each user
_program in a short -burst or quahtum of
- computation. This sequence, which in the
most straightforward case is a simple
round-robin, should occur often enough so
that each wuser program which is Kept in the
high-speed memory . is run for a quantum at
least once during each approximate human
reaction time «(~.2 -'seconds). In this way,
each user sees a computer fully responsive to
even single Key -strokes each of which may
require only trivial computation; in the
non—-trivial cases, the wuser sees a gradual
reduction of the response time which is
proportional to the complexity of the
response calculation, the slowness of the
computer, and the total number of active
users, It should be clear, however, that if
there are n users actively requesting service
at one time, each user will~only see on the
average 1/n of the effective computer speed.
During the period of high interaction rates
while debugging programs, this should not be
a hindrance since. ordiparily the required
amount of computation needed for each
debugging computer response is small compared
to the ultimate production need." (Corbato,
1942, pp. 335-336)

While severa]i problems were noted by fhe authors,
solutions_ were suggested. By the mid—1960’s,‘6perating
systems were designed to handle this trpe of apparent
concurrent proce;sfng. h

At appfpxjmately the same time, assembly languages
wefe developed which could bhandle the.programming of
concurrent tasks within a program, i.e._ programmed
multipfdtessing. The incorporation of programmedv'
mul tiprocessing gives sequential machines the ability
ﬁo perform apparent Eoncurrent processing. The
programmed multiprocessing was handled through such
commands as FORK and JOIN. The FORK command begins two
or more parallel processes and those processes a;e
ended and fhe single parent process continued at the
JOIN. Melvin E. Conway wrote in his conclusion of "A
Multiprocessor System Design"in 1963, that the effort
should be made to incorﬁorate sgch concurrent concepts
in “common publication languages, for example, AtGOL.'

(p. 146

10

While several pfoblems were noted by the‘authofs,
solutions were suggested. By the mid-1940’s, operating
systems were designed to handle this type of apparent
concurrent processing.

At apgyoxihatelyuthe same time, assembly langqages.
were developed which could handle the'programming of
concurrent taéks within a program, i.e. programmed
multiprocessing. "The incorporatfon ‘of programmed
mul tiprocessing gives sequential -machinesséhe ability
tov perform apparent concurrent processing. The
programmed 'multiprocess[ng was handled through such
commands as FORK and JOIN. The FORK command begins two

or more parallel procesées and thosé processes are
ehded and the single parent #rocess continued at the
JOIN. Melvin E. Conway wrote in his cdncluéion ofv'A-
Multiprocessor' System Design®™ in 1963, that the effort
sﬁgufd be made to incorporate such concurrent concepts
in 'comﬁon publication languages, for example, ALGOL."

(p. 146)

IIl. PROBLEMS OF CRITICAL REGION AND DEADLOCKv

From the beginning it was recognized that there
weﬁe two major problems in.concurrent_processing. The
first is termed "deadlock®". When doﬁcurrent processes
use sharedA-Eesources, there is ;he problem that twd or
mofe processee will wait to use the sﬁared resource
indefinitely, creating a deadlock. 1If both processes
are equivalent and are given a part of the shared
resource, nei ther process may have enough o*_ the
Eesﬁurce to complege its process, and ther;fore neither
process can continue. Per. Brinch Hansenv defines
"deadlock" as a "situation in which two or more
procesées are waiting indefinitely for events that will
never occur."” (1973, p. 336> |

An. example of this would be the pfoblem of fhe
banker with a fixed number of monetary units to loan to
several customers. ' He wishes to satisfy the maximum
nﬁmber of customers whose inqividual requests do nbt
- exceed the fixed amount he has]to lend. The cqstomers
may be given only part of the amount requested at aﬁyu
- given time, but they will not repay the loan'until the*
have received the..entire- amount requested. Morém

11

»

specifically, suppose the banker has 1000 monetary
units to lend to customers’ Custa, Custb, Custc, and

Ehstd. The requests are'as follows:

Custa 375
Custb 582
Custc 240
Custd . 386 .

The banker 'has several options. One option fs for him
to give Custa and Custb their full amounts and Custc
and Custd a very -small portion of their requests.

Custc’ and Custd would then receive the remainder of

their requests from the monetary units repaid by Custa

and Cuétb.' I1¥f, however, he gives each customer 250

monetary units, he will have a deadlock situation. He
will be unable to 1lend ~anyone his full request and
therefore none ﬁf the customerg-will repay his [Pan.
Anothef example of dgadloqk would be two processes
(X and Y)> that shére two files A and B. Process X reads

_from file A and writes to file B, while process Y reads

from file B and writes to file A. Process X will not

give up file A until it has written to file B and

process Y will not givetup file B until it has writfen

to file A. Initially process X is given file A and

process Y is gqiven file B. A deadloék occurs because

neither @ process can terminate. Process 'X ‘waits

‘ 12

indgfinitely fﬁ; B, and process Y waits indefinitely
for A.

The second problem that arises is with critical
regions. Criticél reéions are regions within‘g system
(or program) which are shared by two of mo#e processes
but should bg accéssed by only one process at a gj@fé
Examples might be input/output devices' or var;ables
common to -at least two concurreént processes. ﬁansen
suggests three criteria for critical Eegions ;;
follows:

(1) Ng more than one process can be allowed access
to the crl‘f;al reg‘on at any given time. '

(2> Any process ‘whichfhas access tq the critical
region must finish execution within and exit the
critical region within a %inite amount of time,.

(3 Any process that requests access to the
critical région may not be blocked from the critical
region inde{infteli. (Brinch Hansen, 1973)

There are various methods for .mahaging these

problems in concurren} programming.. They will be

discussed further in the chapter on Concurrent Pascal.

13

IV. SEQUENTIAL PASCAL

*Pascal was introduced in .1971 by Professor

Niktlaus Wirth. His aim was to make available a.

language which would ;llqw programming to be taught as
a systematic ‘diéciplfnevand in whiqh the techniqﬁes of
both “‘scientific’ and ‘commercial”’ programmiﬁg could be
conuincingiy ‘'demonstrated. The adoption of Pascal has

been rapid and widespread, to the extent that it has

become the “‘lingua franca’ of computing science."

(Findlay, 1981, p. iii)

In his own words, N. Wirth explained :-his

Justification for introducing a new language as

follows:

"The development of the 1language Pascal .
is based on two principal aims. The first is
to make available a 1language suitable to
teach programming as a systematic discipline
based on certain fundamental concepts cleacly
and naturally reflected by the language. e
secend is to develop implementations of thi
language which are both reliable a53\
efficient on presently available computers. N

*The desire for a new language for the
purpose of teaching programming is due to my

N

dissatisfaction with the presently used major N

languages whose features and constructs too

often cannot be explained 1logically and
convincingly and which too often defy
systematic reasoning. Along with this

dissatisfaction goes my conviction that the
language in which the student is taught to
express his ideas- profoundly influences his

14

\\\

N

habits of thought and invention, and that the

disorder governing these ' languages directly

imposes itself onto the programming strle of

the students." (Jensen, 1978, p. 133)

It was, perhaps, Wirth’s desire for an orderly
high-level 1language that 1led to the highly structured.
nature' of Pascal. The Jlangquage is divided into data
structures and instruﬁtions for how the data strhctures
are to Dbe manipg!éted{‘ The following is a brief

"description of the structures’ in sequential Pascal.
Concurrent Pascal: Ca description of which is found in
the next chapter? is built uﬁon these structures.
| _All' of the data wused within the program mu%t be
represented as wvariables. These variables .must be
declared as previously defined types. It is in these
trype declarations that a great &eal of Pascal’s

versatility is evidenced. Once a variable is declared

of a given type, it mayvnot be given a value of another

type. -

3
b

There rare four standard t}pes which are
predefined. These are INTEGER, REAL, BOOLEAN, and
CHAR. A wvariable of type INTEGER may have an} integer
value. Arithmetic operators which would result 'in‘
integer wvalues when used with integer operands would be

+, -, *, DIV, and MOD. Similarly, variables of type -

15

REAL may have any real number value. The arithmetic
Operatérs, —.which result in real wvalues when the
operahds are real or integer values, are +, —, %, /.
There are constraint§ placed on maximum and minimum
values by the 'hardwaﬁe on which the sOftware is
implemented. |
' The data type BOOLEAN has only'two uaﬁues: TRUE
and FALSE. These operands use the logical opebators'
AND, OR, and NOT. The standard boolean results are
' obtained uging these operators. 'TRUE and FALSE are
predefined such that the wvalue of FALSE is less than
TRUE.
The 1last standard data type,. CHAR, allows the
uariabIQS' declared ‘as CHAR to have the values of a
pﬁedefined set of characters that is finite and
ordered. While this set is not standard, it in#ludes
the alphanumeric characters; ‘“A‘’..72° and ‘07..797; the
'; blank character; and wusually various other characters.
such ‘as Tw’, ’;', ‘%', and ‘3. The value of the
cﬁaracters is again implementation dependent.
Pascal also allows the user to define new types.
‘Theée may“gg simple scalar types, subrange types, or
complex structured types.

A scalar type is an ordered list of identifiers.

16

P

Once 'this list is declared, the identifiers becomelthe
constant values of that type. An example of tﬁis type
might be the declaration for days as f&llows: |

DAYS = (SUN, MON, TUES, WED, THURS, FRI, SAT)

A subrange type, as the name suggests, consists of.
tﬁ: ﬁubrange of a previously dec?areq type (with the
exception of the‘REAL type). Two examples of this, theﬁ
firét a subrange of INfEGER and the second a subrange
of DAYS defined above, follow. |

..~ TEMPS = 32..212

WEEKDAY = MON..FRI

The retational operators =, (, (=, >, >=, and <>
apply to all of the simple data types. There are also
varibus builf—in functions, such as ORD, TRUNc; and 0ODD
which have a wvalue of one tfpe as an argument and
return a v#lue d¥ another type.

Complex structured data types consist of various
simple data types (standard, user defined scalar, and
user defined subrange) and a combination of one'or more
of four structure components. - These structure.
components are ARRAY, RECORD, SET, and FILE.

An ARRAY consists of a colleﬁtion of componentgvéf

the same type. The ARRAY may be single or

?

17

Lum—

multi—dimensioha]. | A list of names or the ﬁositions on
a checkerboard are examples qf g}ructqres that codld be
represented by the ARRAY type. The ARRAY type is
defined giving the ranges of the dimensions and the
type of ‘ualues of the|component5._lThe above examples
might be declared as follows.
NAME = ARRAY [1..151 OF CHAR;

LISTOFNAMES = ARRAY [1..301 OF NAME.

1

or ‘
BOARD = ARRAY [0..7,0..7]1 OF BOOLEAN

A SET is another of the struetured data types.
Like an ARRAY, a SET is a collection of values of the
‘same type. SETs differ from ARRAYs.in that a variable
of this type represents a subset of the_powerSet of the
base type.‘ _The following is an bexahple of a SEf
» declarafion: ‘

| SUITS = [CLUBS, DIAMONDS, HEARTS, SPADES]
Note that there is no order within fhe SET andrthe
empty set is rep;esented by [1. The operators +, #*,
and - represent the set operatiohs unioﬁ, intef;ection,
and set difference respectively. There are also
relafional operators for SETs. = and <> test for set
eqdality and inequality; <= and >= test for inclusion;

and IN tests for set membership.

18

The third structured data type is RECORD. -RECORDS
are thg most flexible of the Pascal data txpeé. A

RECORD is a collection of components, but 'unlike an

v

ARRAY, the components need not- be the same. The
components are called fields of the RECORD. A single
RECORD may, for example, contain an ARRAY field, an

INTEGER field, and a REAL field. In this example, the

e

declaration mighf,be as follows:

PERSON = RECORD
NAME: ARRAY [1..15]1 OF CHAR;
AGE: INTEGER; o
PAY: REAL - , N

END o _ _ _ \\\
In this example, NAME, AGE, and PAY are the field '

Yy

identifiers.
“RECORDS can also be d;fined as variant RECORDs by | \\\\
using the CASE statement. This allows a given fie}d to
have differenf stfuctures dépending on the value of a
given component (the tag field). An example of a
'variant RECORD declaration follows.

DATE = ARRAY [1..9] of CHAR;

AUTO = RECORD

: MAKE: (GM, CHRYS, FORD, AM, FOREIGN);

YEAR: 1900..2000;
CASE PASSEDINSPECT: BOOLEAN OF

TRUE: (STICKERNO: INTEGER);

FALSE: (LIGHTSFAIL: BOOLEAN;
BRAKESFAIL: BOOLEAN;
EMITSFAIL: BOOLEAN;
EXPDATE: DATE)>;

19

A

The 1last of thé structured data types i§ the type
FILE. A’FILE is a sequence of compﬁnents which are the
same. Again, a FILE is similar to an ARRAY, but there
~are two major differences. The length of a FILE ié not
fixed as it isvin an ARRAY and components of a FILE”can
only be aécessed by progressing through the FILE from
the beginnjng. An empty FILE is a FILE with no
compdne&ts. Components are written to or read from
FILEs. There are +four operator% for FILE variables.
RESET returns to the beginning vof the FILE for the
- purpose of reading from the FILE. REWRITE, likewise,
returns to the beginning of the FILE for éhe purpose of
writing:rto the FILE. The GET operator "gets® the next
component (if it exists) from the FiLE and puts it in a‘
buffer wvariable, and the PUF, operator "puts®" the next
component into the file. EOF is a built-in BOOLEAN
#unctidn that becomes TRUE when the last cbﬁpongnt in
the FILE‘ is read. The procedure READ (or WRITE) is
composed of an assignment and a GET (or PUT).

One type of FILE is the text FILE or FILE‘OF CHAR. .
For this type of FILE, iwb‘spegial proceduhéé READLN
and WRITELN are defined in terms of GET and PUT

" respectively. A built-in +function EOLN is defined to

B

20

be TRUE only when an end-of-line marker has Been
reached.

The preceeding data types are all static data
types. Pascal» also has a dynamic data type called a
POINTER (t)>. With a wvariable of a static data
type, space is allotted in memor y for the value of the
variable. This space is reserved during the enfire
execufion. Space for a variable of a dynamic data type
is allocated and destroyed during execution with the
use of NEW and DISPOSE. POINTERs refer to the location
of a wvalue rather than actually being tﬁe location of
the value. |

A linked list is one example of the use 6f
POINTERs. In a linked lisf each component is ']inkéd'
by a POINTER to the next component. An example of a
declabation for such a linked list is: '

'NAMEPOINTER = ¢ NAMENODE}
NAMENODE = RECORD
NAME: ARRAY [1..15] OF CHAR;
NEXT: NAMEPOINTER
END

There are four types of instructions wused to
manipulate the data: assignment, compound, repetitive,
and conditional. f;e assignment statement is used to

give a wvariable a value. It is of the form (uariab]e)

i= <(expression’. The secdnd typé' is the compound

21

. \

statement. This consists of other statemenﬁs with fhe
delimiters BEGIN and END. The statements between the

BEGIN and END may be of any type and there may be any

e T

number of them.

The three types of repetitve statements are the'
FOR 1loop, the WHILE loop, and the REPEAT loop. The FOR
loop performs the statements within the rloop a
predetermined number of times. It uses a ‘contrbl
variable to count the iterations. The FOR loop is.of .
the.forma |

FOR <variable> := (expression> TOIDOWNTO .
{expression> DO {(statement> '

The WHILE 1loop performs the statement within the loop
as long as a given condition is TRbE. The test for the
condition abpears at the beginning of the loop. The
WHILE loop has the followiﬁb form:

| WHILE <express}on>“00 {statement>

The REPEAT "'loop is similar to the WHILE loop except
that ‘

(1) the test is performed at the end of the loop
thch .results in the statements within the loop being
'executed at least once,

(2) the statements within the loop are performed

until the given condition becomes TRUE, and

22

SeErh

3 any number of statements may be within the
loop.
The REPEAT loop is of the form:

‘REPEAT (statement> (; <(statement>}> UNTIL
{expression> .

, %he)last trpe of instructions is the conditional
instruction. There are two of this type, the IF aqd
the CASE statements. ‘With the °'IF statement, of the
form: |

IF <{expression> THEN <{(statement)>! IF (expréssion)
THEN <(statement)> ELSE <(statement)>

The statement following the THEN is executed only if
the expression: - is true. 1If it is FALSE, and there is
an ELéE, then the statement following the ELSE is
execﬁted.‘ #There is an ambiguity hgbe'which results
from a statement of the form: |

IF <expression> THEN IF {expression?> THEN
--{statement)> ELSE <{statement> :

The ambiguity is resofugd' by the convention that in
such a case, the ELSE statement goes with tﬁe'closest
IF thaf is not already terminated (by a semicolon or
closer ELSE).

The. CASE\ statement is des}gnéd for situations
which would otherwise necessitate the use of severalw

nested IF statements. The CASE statemeht is of the

23

form: a

CASE <(expression> OF
{case label> {, <case label)>} : <(statement>
{; <case label> {, <case label>) : <{statement)>

END : o

' The statement associated with a particutlar case 1labe

is executed when the case 1label is the value of the

expression.

The WITH statement, of the following form,

WITH <record variable> {, <record variable)} DO
{statement> '

alfdws fields of a record to be denoted by their field
identifier only. Pascal also ‘allows the user to
define PROCEDUREs and FUNCTIONs. 'wifh fhe'exception of
their heédings; these have a form similar to »thé
- program itself and are used as subroutines of the
program. There is .also“a GOTO statement in Pascal
| which can-be,used to jump the'exécution to another part»
of the program. |
For " a more‘in depth explanation of‘ sequential
Pascal, the reader is referred to PASCAL User Manual

and Report (Jensén, 1978 .

29

V. CC_NI".:URRENT PASCAL

Concurrent programming can be achieved with an
extended Pascal by the addition of structures that
perform the tasks of FORK and JOIN mentioned

preuiously;n COBEGIN, which has the effect of begiqhing

two or more concurrent processes, Iis simulated by
interleaving the statements of the concurrent
processes. COEND delays continuation of the main

process until all ofb the concurrent processes have
termjnatéd.

It is the responsibility of the programmer to
handle - fhe problems ‘of the éritical region and
&eadlock. There are two main methoqs‘ for manaéing
crftital. regions and a;oiding deadlock. The first is
"busy waiting" and the second is with "semaphores®.

Wi th "busy waiting", any process‘ needing the
critical region enters an indefinite loop just before
entering the critical region; Itfexits'the l1oop when
it meets the condition that (a) it is the only process
requesting access to the critical region which is
currently free or (b) it is the process’ turn for the

critical region and the <critical region is currently

free.

25 -

Peterson’s algorithm, shown in ' Figure 1,
(Peterson, 1981) is an example of this type of

management of critical reqgions. This algori thm

protects a critical region while having a "fair" system

of accessing the region. = Each of the concurrent
processes will eventually be given access to the
critical region and at no time will more than one

precess be given access to the critical region. This

is accomplished by establishing several conditions for

entering the critical region. For a process to enter
the criticél region, the wvalue of its conditional
expressjﬁn in the REPEAT loop preceedfng the critical
region must be TRUE. Only one pbocegs will have a set
of individual conditions with a pattern of values such

that the entire expression is TRUE. ‘

26

THE SOLUTION FOR TWO PROCESSES.

(* trying protocol fbr P1 %)
@1 := TRUE;

TURN = 13 .

wait until NOT @2 OR TURN = 2;
Critical Section;

(% exit protocol for P1 %

Q1 := FALSE.

(€ {rying protocol for P2 %)
@2 := TRUE;

TURN := 2;

wait until NOT @1 OR TURN = 1;
Critical Section; —

(% exit protocol for P2 %)

@2 := FALSE

FIGURE 1: Peterson’s Algorithm

27

THE SOLUTION FOR n PROCESSES.

(% protocols for Pi)
FOR j =1 TO0O n - 1 .DO
BEGIN
QUi s= i
TURNLjI := i;
wait until ([for alll k = i,'Q[k] < J) OR
TURN [j] = i
END; S e
Critical Section;

Qlil =0

FIGURE 1 {(continued)

28

(% DECLARATIWS FOR THE PROGRAM SEGMENTS %)

TYPE
KINDTRANSACT = (CR, DEB);
TRANSACT = RECORD
o KIND: KINDTRANSACT ;
—_ AMOUNT : REAL;
BRANCHNUM: INTEGER;
) END; -
ACCT = RECORD
NAME: ARRAY [1..25]) OF CHAR;
SSNUM: INTEGER;
NUMTRANSACTIONS: INTEGER; : .
TRANSACTIONS: ARRAY [1..MAXNUM] OF
TRANSACT ;
" BALANCE: REAL
END; - ,
ACCOUNTS = ARRAY [1..NUMACCTS) OF ACCT;

VAR S
ACCTS: ACCOUNTS;
Bl, B2: BOOLEAN;
TURN: INTEGER;

FIGURE 2: Implementation of Peterson’s Algorithm

i

29

PROCEDURE RECORD_TRANSACTION (kNLM. INTEGER; AMT:
REAL; K: KINDTRANSACT; BRNUM: INTEGER);

BEGIN ‘ : ' —
WITH ACCTS [NUM1 DO '
BEGIN
NUMTRANSACTIONS. . := NUMTRANSACTIONS + 1;
WITH TRANSACTIONS [NUMTRANSACTIONS] DO
'BEGIN
KIND := Kj
AMOUNT := AMT;
. BRANCHNUM := BRNUM
END; ,
. BALANCE := BALANCE + AMT;
END
B\lD,’ .

FIGURE 2. {(continued)

30

'PROCEDURE BRANCH1 ;

VAR
- ACCTNUM: INTEGER;
AMNT: REAL;
KND: KINDTRANSACT;

-BEGIN
REPEAT

(¥ THE GETINFO PROCEDURE GETS THE INFORMATION

NEEDED FOR RECORDING THE DEBITS AND CREDITS.

FOR

THIS EXAMPLE WE NEED NOT BE CONCERNED WITH THE

DEFINITION OF THIS PROCEDURE. ¥
GETINFO (ACCTNUM, AMNT);
IF AMNT > 0 THEN
KND := CR -
ELSE

REPEAT UNTIL ((NOT B2) OR (TURN = 2));
RECORD_TRANSACTION (ACCTNUM, AMNT, KND,
. Bl := FALSE
UNTIL FALSE;
END;

FIGURE 2 (continued)

31

1);

PROCEDURE BRANCH! ;

VAR

ACCTNUM: INTEGER;
AMNT: REAL; -
KND: KINDTRANSACT ;

BEGIN
REPEAT |
(* THE GETINFO PROCEDURE GETS THE INFORMATION
NEEDED FOR RECORDING THE DEBITS AND CREDITS. FOR
THIS EXAMPLE WE NEED NOT BE CONCERNED WITH THE
DEFINITION OF THIS PROCEDURE. *)
.GETINFO (ACCTNUM, AMNT);

IF AMNT > 0 THEN
KND := CR
ELSE
KND := DEB;
Bl := TRUE;
TURN := 1; . :
REPEAT UNTIL ((NOT B2) OR (TURN = 2));
RECORD_TRANSACTION (ACCTNUM, AMNT, KND, 1);
Bl := FALSE

UNTIL FALSE;

END;

FIGURE 2 (continued)

31

PROCEDURE BRANCH2;

VAR '
ACCTNUM: INTEGER; :
AMNT : REAL;

KND: KINDTRANSACT ;

BEGIN
REPEAT
GETINFO (ACCTNUM, AMNT);
- IF AMNT > 0 THEN
. ~KND := CR
ELSE
KND := DEB;
B2 := TRUE;
TURN := 2; '
REPEAT UNTIL ((NOT B1)> OR (TURN = 1)); :
RECORD_TRANSACTION (ACCTNUM, AMNT, KND, 2);
B2 := FALSE; -
UNTIL FALSE;
END;

BEGIN (x* MAIN)
B1 := FALSE;
B2 := FALSE; ~
TURN := 1;
COBEGIN
BRANCH]1 ;
BRANCH2;
COEND;
END. (* MAIN *)

FIGURE 2 (continued

32 T

Figure 2 is a set of program segments showing an
implementation of Peterson’s algorithm for two
concurrené processes. In the hypothetical situation, a
bank has two branches which concurfently record debits
and credits. ~ The critical region is the
RECDRD_TRANSACTION procedufe. In this example, the
critical regibn is managed through the vériables TURN,
Bi, and B2. | |

'wiwhilg "busy waiting” manages the critical region,
it is wasteful of CPU power. Tﬁe waste arises in the

constant checking in the REPEAT UNTIL . ({NOT B2) or

»

(TURN = 2)) and REPEAT UNTIL ((NOT B1) or (TURN = 1))
statements. This me thod of - manégement is also
" ‘cumbersome. For several concurrent processes the
implementation 6f the algorithm becomes _quité

" complicated.

In 1965, E. W. Dijkstra proposed using semaphores
io simplify the management of critical regions. The
addi tional structures WAIT and SIGNAL are used with the
new data type, SEMAPHORE. A SEMAPHORE is an variablé
ofi type INTEGER. It is only operatéd upon by WAIT and
SIGNAL . WAIT and SIGNAL are defined as follows:
(Ben-Ari, 1982)

WAIT (s): If s > 0O theén s (= s — 1 else the

N

33

execution of the process that called WAIT (s) s

suspended.

SIGNAL ° (s): If some process P has been
suspénded by a previous WAIT (s> on this SEMAPHORE s

then wake up P else s 1= s + 1.

The critical region ' is then managed by the

algorithh ‘given in Figure 3 for n processes. It is
possible‘ for "lockout®™ to occur using this algorithm
unless a "fair® method is designed for determining
which process is woken by SIGNAL. - Figure 4 shows the

program segment in Figure 2 rewritten using SEMAPHOREs.

34

VAR _
S: SEMAPHORE;

PROCEDURE Pi;
BEGIN
REPEAT
WAIT (S);
Critical Region (Pi);
SIGNAL (S); ’
Remote Region (Pi);
UNTIL FALSE;
END;

BEGIN (% MAIN x)
§ :=1; -~
COBEGIN

Pl;
‘P23

Pn

COEND |
END. (% MAIN %)

FIGURE 3: Algorithm For Critical Region Management
Using Semaphores

35

(% SEE FIGURE 2 FOR THE TYPE DECLARATIONS AND
DECLARATION OF RECORD_TRANSACTION PROCEDURE *)
VAR

ACCTS: ACCOUNTS;

S: SEMAPHORE;

PROCEDURE BRANCHI,
BEGIN
" REPEAT .
GETINFO (ACCT, N‘NT), (% REFER TO FIGURE 2 FOR
COMMENT ON GETINFO %) :
IF AMNT > 0 THEN
- KND := CR
ELSE
KND := DEB;
WAIT (S)
RECORD_TRANSACTION (ACCTNLM AMNT, KND, 1)
SIGNAL (S)
UNTIL FALSE;
END;

PROCEDURE BRANCH2
BEGIN
REPEAT
GETINFO (ACCTNUM, AMNT);
IF AMNT > 0 THEN
KND := CR i
ELSE ,
KND := DEB; :
WAIT (S);
RECORD_TRANSACTION (ACCTNLM APNT KND, 1);
SIGNAL (S);
UNTIL FALSE;
END;

'FIGURE 4: Implementation of Semaphores

3é

- BEGIN (% MAIN %)

S =13 -
COBEGIN
BRANCH1 ;
BRANCH2
COEND . '
END. (* MAIN =)

FIGURE 4 (continued)

37

While on the surface the problem of
' 4

region managmenf appears to be solved by the use of
SEMAPHOREs in a relatively ‘straight-forward manner,

Brinch Hansen (1973) points out the flaws in this

reasoning.

_ “If we replace this structured notation
[shared regionsl] with semaphores, this will

have grave consequences:

(1) Since a semaphore can be used to
solve arbitrary synchronizing problems,

compiler cannot conclude that a pair of
. wait and siqnal operations on a

semaphore initialized to one delimits
critical region, nor that a missing member of
such a pair is an error. A compiler will
also be unaware of the correspondence between

a semaphore and the common wvariable

protects. In short, a compiler cannot give
the programmer any assistance whatsoever

establishing critical regions correctly.

2) Since' a compiler is wunable
recognize critical regions, it cannot make
the distinction between critical regions and
disjoint processes. Consequently, it
permi t - the use of common variables
everywhere. So a compiler can no longer give
the programmer any assistance in avoiding

time-dependent errors in supposedly disjoint

processes.”

The deadlock problem has been only partially
" solved. Deadlock can occur through poor management of

the critiéal'region, but it can also occur whéen any one

(or more) of the following conditions exist.

38

critical

*{1> Mutual exclusion: A resource can only be
acquired by one process at a time.

(2> Non-preemptive schedulinq: A resource can
only be released by the process which has acquired
it- N
(3) Partial allocation: A process can acquire its
resources piecemeal.

(4) Circular waiting: The previous condi tions
permit concurrent processes to acquire part of their
resources and enter a state .in which they wait
indefinitely to acquire each other’s resources."(Brinch
Hansen, 1973 : :

Brinch Hansen (1977 o&tlines a hierarchical
resource system to"prevent deadlock. A hierarchical
system Acbnsists of a sequential orderfng for requesting
and releasing résources. whed concufrent programs are
written using hierarchical Aorderiﬁg for system
components, other ‘benefits are realized. The major
additioﬁal benefit is in program tésfiﬁg. and
correctneés.» Once a program component has been sho@n
fo be 'correct, errors in newer components canﬁot make
older cémponents fail because old componénts do not
call newer components.

Brinch Hansen developed Concur}ent Pascal (from
1972 - 1975 with'fhe goal‘of’creating a language for
concurrent programs that satisfies three requirements:
sihplicity, reliability, and adaptability. Simplicity

is achieved through the use of small, well-defined

program pieces. Reliability is aided by extensive

compilation checks of type compatibility. Hierarchical
structure alsoc aids correctness testing. Adaptability
coﬁes in being able to modify existing ﬁrograms. By
using abstract -Iahguage and small well-defined program
components, modifications become easier.

Concurfent Pascal is an extension of sequential
Pascal. 4 The fallowing is a brief descihription of the
extended data structures and manipulation instructions
in Concurrent Pascal. This information is taken from

The. Architecture of Concurrent Programs (Brinch

»Hansen, 1977>.

Cdncurrent Pascal contains all of the data types
of Pascal plus two additional data types, QUEUE and
system. The majority of the manipulation instructions
‘are the same, i.e. aséignment, compound, FOR, WHILE,
REPEAT, 1F, CASE, and UITH; There are, however, also
CYCLE statements and INIT statements in Cdncurrent
Pascal. Concurrent Pascal also .has procedure and
function capabilities, but these differ slightly from
sequential Pascal.

The two new data types, QUEUE and system, are
called active types. Any type containing system types
or QUEUEs is an active type. fﬁe remainder are passive

types. QUEUE is a simple data type like CHAR, INTEGER,

40

BOOLEAN, REAL, sﬁbrangé, ahd scalar "types.' System
types are struétureq and consist of other component
types. |

There are three kinds of system types: PROCESSes,
MONITORS, and CLASSes. A concurrent program is made up
of these three types. A system type declaration is of

the the following form:

PROCESS | MONITOR i CLASS <empty> | <{parameters);
{block> :

A PROCESS type consists of a data structure~ana a
sequential statement ‘for manipulation of that
structure. Within the parameter list, the MONITORs to
whfch the PROCESS has access are declared. A PROCESS
has access only to MONITORs or CLASSes. PROCESSes‘dq
not have diréct ‘acaess to shared data. »Théy must
access the shared data'thfough'a MONITOR.

MONITORs cons}st of data structures and operations
that PROCESSes can - perform on these data structures.
the operations are in ‘the form of functions or
procedures which. the PROCESSes call. These operations
manage the synchronization of the calling PROCESSes and
the exchange of dat# among them.

A CLASS is a system component that can oniy be

accessed by a single other system component (PROCESS,

41

MONITOR, or another CLASS). It consists of a data
structure and operatioﬁs that can be ber{ormed on the
data structure (similar to a MONITOR).

Examples of PROCESS, MONITOR, and CLASS
dec{arations are shown iﬁ Figures 5,\'6, and 7
respectively. The problem of hypothetical bank with"
"its concurrent branch recording. processes is continued.

For passive type de;larations, see Figure 2.

42

L

PRemETS

TYPE BRANCHPROCESS = PROCESS (MANAGER:
RECORDMANAGER) ;

VAR
ACCTNUM: INTEGER;
AMNT : REAL;
BRANCHNO: INTEGER;
KND: KINDTRANSACT;

BEGIN

CYCLE '
(®* SEE COMMENT IN FIGURE 2 CONCERNING GETINFO.
THIS PROCEDURE REQUIRES AN ADDITIONAL PARAMETER:

- BRANCHNO %)

GETINFO (ACCTNUM, AMNT, BRANCHNO) ;
IF AMNT > 0 THEN

KND := CR
ELSE . : o - e, v
KND := DEB; ‘

MANAGER. SEND (ACCTNUM, AMNT, KND, BRANCHNO) ;
END; : :
END;

FIGURE 5: Implementa&ion of a' PROCESS Declaration

43

TYPE SENDERQUEUE = ARRAY [1..21 OF QUEUE;
TYPE RECORDMANAGER = MONITOR;

VAR :
SENDING: (ONE, TWO);
SENDER: SENDERQUEUE ;
RECORDER: RECORD_TRANSACTION;

PROCEDURE ENTRY SEND (ACCTNUM: INTEGER; AMNT:
REAL; KND: KINDTRANSACT; BRANCHNO: INTEGER) ;

BEGIN
IF BRANCHNO = 1 THEN
BEGIN ;
IF SENDING = TWO THEN DELAY (SENDER [11);
RECORDER.ENTER (ACCTNUM, AMNT, KND, .
BRANCHNO) ; ‘
SENDING := ONE;
CONTINUE (SENDER [21);
END
ELSE
BEGIN ’
- IF SENDING = ONE THEN DELAY (SENDER [21);
RECORDER.ENTER (ACCTNUM, AMNT, KND,
BRANCHNO) ; ' ' ”
. SENDING := TWO;
CONTINUE (SENDER [11);
"ENDj; - '
END;

BEGIN
SENDING := ONE;

INIT RECORDER;
END;

FfGURE é: Implementation of a MONITOR Declaration

-4

TYPE RECORD_TRANSACTION = CLASS;

VAR
ACCTS: ACCOUNTS;

PROCEDURE ENTRY (NUM: INTEGER; AMT: REAL; K:
KINDTRANSACT ; BRNUM: INTEGER) ;

BEGIN
WITH ACCTS [NUM] DO
BEGIN
NUMTRANSACTIONS := NUMTRANSACTIONS + 1;

WITH TRANSACTIONS [NUMTRANSACTIONS] DO
BEGIN

KIND := K3
AMOUNT := AMT;
BRANCHNUM := BRNUM;

END;
BALANCE := BALANCE + AMT;
END;
END;
BEGIN
(% INITIALIZE ACCTS %)
END;

FIGURE 7: Implementation of a CLASS Declaration

45

&

-

The QUEUE type is é st#ndard type in Concurrent
Pascal.v‘ It ‘js declared within a MONITOR type and is
used | tp delay - and resume PROCESSes. There is a
standard function EﬁPTY which has a QUEUE variable as
its argument and results in a BﬁOLEAN value. The value
is TRUE when there is no PROCESS delayed in the QUEUE.
There are 5156 two procedures defined for QUEUEs.
DELAY results in the calling PROCESS 1losing its .
exclusive access to the MONITOR. Otﬁer PROCESSes can
then call.the MONITOR‘oariables.k CONTINUE is called by
the PROCESSes ‘returning from the MONITOR. If another
PROCESS is Qaiting in the QUEUE, it immediately regains
its exclusive access to the MONITdﬁ variables.

AS mentioned preuiouﬁly, there are two statements.
in Concurrent Pascal which are not in sequential
Pascal. The first is the CYCLE statement. This
statement is equivalent to:

REPEAT <(statement)> {; (statement>? UNTIL FALSE

It has the syntax:

CYCLE <{(statement)> {(; <(statement)>} END A 7

The CYCLE statement may'only be used in a PROCESS.
The INIT statement is used to initialize system

components. The initial PROCESS, the outermost level

46

of the program, contains an INIT statement which
initializes - the. other PROCESSes and MONITORs and

defines their access rights to one another throdgh

their parameters. The INIT statement also allocates
space for the 'system components variables. Once a
" system - component is initialzed, its wvariables and

parame ters become permanent variables.
Routines, in Concurrent Pascal, are procedures,

functions, and sequential programs. They consist of a

set of parameters and a compound statement that

operates on the parameters. While a system component
may not refer 'to the wvariables of another system
component, it may call routine entries defined within
another ‘s}stem_ type; ~ There are foun_types>of routine
entries: proceés entry, monitor entry, class entry,
and initial .sta{ehent. The last of these has been
diseussed previously. The initi;l statement does not
have an identifier and is simply called using the INIT
statement. Figure 8 shoqs an

initial probess for the types declared in Figures 5-7.

IV

VAR
MANAGER: RECORDMANAGER;
BRANCH1 , BRANCH2: BRANCHPROCESS;

BEGIN

INIT

- MANAGER, :

BRANCH1 (MANAGER),

BRANCH2 (MANAGER) ;
END.

FIGURE 8: lmp‘ementation of an Initial Process

48

The other three kinds of routine entries appear jin.

system components bearing their name. --A process entry,

defined within a process type, can only be called by a

sequential program within a process fype. It cannot be
called by a system component. A monitor entry, on the
other hand, can be'cailed by any system component that
wishes to operate " on that monitor. Calls made
simul taneousty <for monitor broﬁtines which operate on
the <same permanent uariab}es will be handled singlely.
'AY3 class -entry can- oﬁly be called by one system
comﬁonent, the system component that has access to that
CLASS.

The. syntax for the procedure and function routines
are as follows: S T

PROCEDURE ENTRY ! <empty> <identifier>
{parameters>; {block> .

FUNCTION ENTRY © <embfy> identifier>
{parameters>: <identifier>; <(block>

A sequential program routine is 4controlled by a job
PROCESﬁ. The parameteés of the program must be of
passi;; typés and the rightmost parameter represents
the vari#ble. in which the compiled program code is
stored. The program may call other routines defined
within the job PROCESS as longnﬁas these are 1ised

following ENTRY in the program definition. The syntax

49

for a sequential program routine is as folloﬁs:

PROGRAM (idehtiffer) {parameters>
{access rights> | <empty>

where <access rights)> has tﬁe following syntax:
; ENTRY <identifiers> '

The wuse of the MONITOR, PROCESS, and CLASS, as
defined in Concqrfent Pascal, rehoogs'the necessity for
tﬁe progfammer fo‘ manage‘ the ‘problems of critical
region and deadlock. This management is built into the
~interaction of fhese data structures.‘ The “limited_
accessing améng the data strucfures and fheir ‘ohe—way‘
nature al;o allows‘for greater compiler>checking. This
aids in ensuring brogram correctness.

This chafacteristic of Concurrent P;scal

facilitates .the writing of operating systems as will be

discussed in the next two chapters.

S50

VI. OPERATING SYSTEMS AND CONCURRENT PASCAL

An opérating system is a software s;stem de#ignéd
“to manage the sharing of computer resources; _ As~
mentioned .previously,. the shéring of résourcgs can be
by several users as in a time—-sharing system. An
operating system is also necessary fqﬁ a single user to
- efficiently use a computer system. " The problem of
managing a system - for several users is, therefore, an
extension of the problém of:ﬁanaging the system for a
single user. |

A great deal of efficiency can be gained for a
single user system by running computer- processes
conéurreﬁtly. Ben-Ari (1982) gives the example of a
computer that can egecute onelmiillgn instructions ber
second. This computef is connected‘to’a‘card reader
which reads 300 cards per minute. UWhile one card is
read (1/5 of a second), 200,000 instructions could be
executed. A large percentage of the time the CPU will
be idle if. the card r?ading process and CPU eﬁecution
take place sequentially. |

In the 1940‘°s autonomous peripheral devices were
designed which could . operate independent of the CPU.

This meant that a computer could execute one program

51

while reading in a second program and possfbly print
ocut a third' program. ‘Thé problem arose, though, of
synchronizing the CPU and the peripheral devices.

One method devised to handle the synchronization
problem ‘was the interrupt concept. With ‘this mefhod, a
peripheral device sends a signal to ‘a‘ register
conqsctéd to the CPU. When the sign;l is received,~fhe
CPU 'stSbe, executing the current program and can then
switch to a program that is waiting for the peripheral
device. The program managing the action between the
peripheral device and the CPU is the operating system.

The same - concept used to permit- concuﬁrenf
operation of the “peripﬁeral devices and the CPU could
be used to manage a sysﬁem with several users.

Mosf operating systems are. written in low-level
languages. These programs are ltarge and unwieldly.

Several problems arise with these systems. Because of

their size these programs are difficult to understand

and . modify. They are also prone to time-dependent
errors. This maKes the system unreliable and prone to
crashing. Once an error has occurred, it is difficult

to locate the problem.
Concurrent Pascal is an effective tool for writing

operating system programs. Its struc@ure is such that

52

shared "resources are managed by independent components.
_lt also allows for systematic testing of the system
through hierarchical design. The Solo Opebating
System, thch will be examined in detail iﬁ tﬁe next
chapter, was written in Concurrent Pascal. Its author,
Per Brinch Hansen, reported that it took approximately
two man-years to develop the entire system. He

estimates that it would have taken twenty to thirty

man—years to develop the same system in machine

fﬁngﬁage. (Brinch Hansen, 1977).

g

53

N gy -

VII. EXAMINATION OF THE SOLG OPERATING SYSTEM

This chapter examines the Solo Operating System
written by Per Brinch Hansen (1977). The purpose of. .
this analysis is to show how the system was»constfucfed
using the concurrent structures of Concurrent Pascal.
This examination ‘will al;o show how the system was
developed using a hierarchical structure.

Thg_ Solo Operating System Q;s the first operating
s?stem Qf}ffen in “Concﬁrrent ‘Pascal, It was
implemented oﬁ the PDP 11/45 computer and was in use in
May, 1975. It is unusual in that it is written almost
entirely in Concurrent Pascal with only a small
perceﬁtage ‘of machine language code. Protection of the
system is achieved through exténsive compile—-time
checks of type compatability and access rights instead.
of execution—-time checking with hardware mechanisms.

i The operating s}stem manages the processing qf
programs, written in sgquénti;lrpr Concurrent Pascal,
for a single user. The user is able to edit, compile,
and store these programs. The user intereacts with the
computer through the use of a console. Through the .
console, the user can access a card reader, tape and

disk devices, and a printer. The handling of these

54

functions is managed tﬁrough . concurrent processes in
the operating system.

The main body of the operating system program is
the INITIAL PROCESS (Brinch Hansen, 1977, pp. 140 -
141). This process, when execﬁted, initializes six
PROCESSes of five PROCESS types aﬁd four teen MONITORs
of seven MONITOR types. This INITIAL PROCESS has
ac&ess 6nly to those PROCESSes and.HONITORs. Once it

terminates execution, ' these structures remain as
I SR

permanent wvariables. Tt is this INITIAL PROCESS that -

begins all of the . concurrent processes necessary for

the operating4system.

The Appendix shows the hierarchical structure of

the remainder of the program. I¥ the program is
considered in terms of "bottom up* design, the highest
layer (that laygr“which no other componenté access)
consists qf the five other PROCESSes. These PRObESSes

then have access to various MONITORs and CLASSes, as

shown, thch are either declared as parameteré orv

variables within the PROCESS declaration. That layer

-";of MOITORs and CLASSes then have access to MONITORs and

CLASSes in a similar manner, and so on. The lowest

layer of. active types are those MONITORs and CLASSes

that do noi ..declare any other aét”ve types as

LA

PNFEN

99

&:

’ pahameter§ or wvariables. They therefore do‘not have
access to an; other actiﬁe types.

There are six CLASSes and ﬁONITORs that do not
‘access any other CLASSes or MONIORs. These are FIFO
CLASS, TYPEWRITER CLASS, LINEBUFFER MONITOR, PAGEBUFFER
MONITOR, ARGBUFFER MONITOR, and PROGSTACK MONITOR.

-~The FIF0O CLASS (Brihch\ Hansen,.1977, p. 103) is
used to manage a fifo (first in, first out)> QUEUE. If
consists of <four ENTRY fungtions: AﬁRIvAL, DEPARTURE,
EMPTY, and FULL. It is through these fun'}:”tid:.{sf that
this CLASS is accessed. The functions ARRIVAL and
DEPARTURE ére INTEGER functions and return the values
at which the next QUEUE element can take or leave from
respectively{ The funct?o?s EMPTY"and FULL return
BOOLEAN values depending on the value of thé INTEGER
variable 1length. A value of O fdr length would retqrn a,
value of TRUE for 'EﬁPTY and a'Aualue of limit (a
parameter. value for the size of the QUEUE) would return
a value of TRUE fqﬁ; FULL. A variable of fype FIFO
CLASS is initialized“with the head and tail variables
having a value of 1 and a length of -0,

The TYPEWRITER CLASS (Brinch Hansen, 1977, pp. 107
- 108) is wused to transfer a line of text to or from

the console. An 10 procedure is used to delay the

56

KN Loy

calling . process while a single character is
transferred. This type consists of two' ENTRY

procedures WRITE and READ. The WRITE -procedure

.consists mainly of a REPEAT loop that calls a WRITECHAR

procedure until an entire line has been written to the
console <(using the 10 procedure). vThe READ procedure
begins by ringing the beli on the consqle. The
remainder of the procedure is censists mainlf of a
REPEAT 1loop. In the REPEAT loop, a single cheracter is
read from the censole uhtil‘an ehtiﬁe line is read.
The end of 1line is determined by a linefeed character
or by reaching the 1limit for the line array. Within
the loop a test is made for eifﬁer a “"control c"
character or a “"control 1* character. If a "control c*
is read, a "?" is written on the console and the ihde#
of the 1line array fsldecremeeeed by 1. If a "control
]'d is read; a linefeed character followed by a "?" are
wriften on the console.

The TYPERESOURCE MQNITdR (Brinch Hansen, 1977, pp.

. 108 - 106> is used to gain exclusive aceess to the

console, It consists of two ENTRY proceddres: REQUEST
and RELEASE. This type uses the FIFO CLASS to manage a
QUEUE. The REQUEST procedure tests whether or not

another process is currently using the console. 1If it

57

is,: the process requesting access is placed on the
QU5051J ‘Tﬁe phocess’ accessing the console is .thén
identified on the console. The RELEASE procedure
checks the QUEUE to see if any processes are currently
waiting to use the consofe. If the QGUEUE is empty,
then the console becomes free. Otherwise, the next
process is taken o#f of the vQUEUE and allowed:éo
continue. The main . body of this declaration
initializes the FIFO CLASS var};ble in addition to
initializing its passiue type uagiﬁbles,‘n

A TYPERESOURCE ﬁarameter and a TYPEWRITER variable
are accessed by a v;ﬁiable of the TERMINAL CLASS type
(Brinch Hansen,A 1977, p. 109, Thié type uses the
previous two types to gain exclusive access to the
congole, to identify its calling process, and to
traﬁsfer "the -line of text' either to or .from the
console. Two ENTRY procedures are uged to accoﬁpl}sh
this: READ and WRITE. The READ procedure requests
access to the console through a TYRERESOURCE parame ter.
If/ the process requesting the console is different than
the one that most recently accessed the console
previously, the process name is written on the console.
The 1line of text' is then read from the console and

access to the console is released. The write procedure

S8

differs only in that instead of reading a‘line of text
?rom the conéole, it writes a line of text on the
wconscﬁe. The main body of this declar?tion initializes'
the TYPEWRITER CLASS variable.
Thev RESOURCE MONITOR (Briﬁch Hansen, 1977, pp. 104
- 105> . type s bery similar to the TYPERESOURCE}
MONITOR. vlt has two ENTRY procedures, REQUEST and
’RELEASE, which pérform like those described above.
fhis MONITOR,ﬁhowevﬁr, gives a process exclusive accéss
%Aﬁo . any " of tﬁ: cqmpgﬁgré resources as opposed to only
the console. It thenefdre does not need“to inform tﬁe
resource as to which process has accessed it. It
simply tests to see if the resource is available and
delaysv or coptinues the processes acéordingly. For this
declaration, another actiue‘ declaration‘ is needed.
This is for an ARRAY of QUEUE as follows:

3

CONST

PROCESSCOUNT

TYPE ' '
PROCESSQUEUE = ARRAY [1..PROCESSCOUNT1 OF QUEUE;

73

The main body of this declaration initializes the FIFOi
CLASS wvariable .énd initializes the BOOLEAN variable to
TRUE.

A single character is written onto or read from a .

TERMINAL CLASS parame ter by a variable of the

59

TERMINALSTREAM - CLASS type (Brinch Hansen, 1977, pp. 110
- 111>, This type consists of three ENTRY procedures:
READ, WRITE, and RESET, and a procedure used only by

uariables of that CLASS type} The local procedure is

-an initialization procedure used to initialize the

header variable. The READ and WRITE procedures are
used to read and write (respectively) a character to a
variable of type TERMINAL CLASS. 1In the READ procedure

the end of a line has been reached then the TERMINAL

CLASS varjable procedure READ is called and the coumt

is reset to 0. If it is not the end of the line, then
the next character from the text line array is assigned

to the variable parameter c. The WRITE procedure

wews oo

executes in a similar manner. It increases the count -

and then stores a singfe character in an arﬁay of type

line. When the end of the line is reached, the

TERMINAL CLASS wvariable procedure WRITE is called and.>

the text 1line array is passed to it. The-pnoéedure
RESET is used to reinitialize the line of text. The
main body of this declaration is a procedure call for
the INITIALIZE procedure.

| There are three buffer type MONITORs used in this
proghém:\ ARGBUFFER, LINEBUFFER, and PAGEBUFFER (Brinch

Hansen, 1977, pp. 125 - 126). They are different only

60

in the type of the buffer Qsed. There are two ENTRY
'pro&e&ures: READ and WRITE. The READ protedure tests
to see if the buffer‘is full. 1I1f it is, the message is
aésigned to a‘ text variable and full .is then assigned
the wvalue FALSEJ The sénding process then continues.
If the buffer is not full, thé receiving process is
delayed- before complé%ing‘ the procedure. The WRITE
procedure is similar only that the operations are in
reberse. The PAGEBUFFER MONITOR type also checks for
the end of the file.

There are several CLASSes and MONITORsvpgrtaining
to disk usé. The first, thé DISK CLASS type (Brinch
Hansen, 1977, pp. 112 - 113), transfers a page to or
from a disk device. It also accesses the"co;sole to
report a disk failure and to communicate with the
operator qbncerning this efror; This tyﬁe ;onsiﬁts of
three procedures, two of which are ENTRY procedures.
The TRANSFER procedure, which is local to this CLASS,
ei ther reads or_writeé a page from or to the disk. The
page is identified. by its absolute page address.
Whether the procedure reads or writes, using a TERMINAL
CLASS type variable is determined by a parameter. The
page a&dress‘.is also passed as a parameter. The IO

procedure is used by this TRANSFER pbocedure as it was

61

v

in‘ the TYPEWRITER CLASS type. The two remaining
procedures: READ and’"WRITE, simply -have calls : to
TRANSFER. 'The only differenc; be tween the two is in
one ‘of the parameters. Thé READ procedure passes.input
as a parameter and the URITE procedure passes outpuf.
The type page is a unfuersal type. This allows the
DISK CLASS to transfer pages of different types.

The DISK CLASS type is accessed by,the DISKFILE

CLASS type (Brinch Hansen, 1977, pp. 114 ~ 115). The

purpose - -of - this .type .is- to -make - it possible for -a=* "=’

‘process to access a disk file. If a disk failure
occurs, the TYPERESOURCE CLASS parameter is accessed»té

communicate exclusively with the console. ‘This'type

has a BOOLEAN function INCLUDES which is TRUE only if a

R

giueﬁ "page number is within the proper rénge and ahkile
is to be accessible. There are also four ENTRY
procedures: OPEN, CLOSE, READ, and WRITE. The READ and
WRITE procedures use the DISK CLASS type variable to
transfer a page from dﬁyto a disk. The OPEN procedure
aséigns a page map to a file ;nd makes it acces;ible.

The CLOSE procedure maKes the file inaccessible and
reseté the length of the file to 0. The main body of
the type declaration sets the 1length to 0, the

accessability wvariable to FALSE, and initializes the

62

......

RN

DISK CLASS variable; I't should also be noted that the
variable‘ length in this declaration is an ENTRY
variable. This allows it to be used outside the CLASS.
its value, however, can ©only be changed within the
CLASS.

The DISKTABLE CLASS type (Brinch Hansen, 1977, pp.
116 - 117) uses both a TYPERESOURCE type parameter and
a DISKFILE type vahiable. The TYPERESOURCE parameter
is ‘again . accessed to report disk failure as mentioned
above. It uses the DISKFILE to-gain access to locate a
catalog on a disk. The main body of the declaration
cosists of initializing the DISKFILE variable,
accessing the DISKFILE procedure OPEN, and initializing
the 1local wvariables. The one ENTRY procedure_in this
aeclanation, procedure ENfRY-READ, useg the DISKFILE to
Eead an entry at a giQen location in the catalog;

Catalog lookup {; managed by :the DISKCATALOG
MUNITdR type (Brinch Hansen, 1977, pp. 117 - 118). A ‘
TYPERESOURCE 'parameter is used as mentioned above for
disk failure. A RESOURCE type parameter is used to
gain exclusive access to the disk. ,Thi; type also uses
a DISKTABLE variable to search for a file identifier.

‘There is a local §unctjon HASH which returns a value

for the hash Key. There is also one ENTRY procedure,

63

| LOOKUP; The LOOKUP ' porcedure is a search procedure
using the hash Key. A variable BOOLEAN pafameter
returns the aﬁpropriaté value indicating if the
identifier was found. 1If the identifier was found, the
procedure alsﬁ returns the file attributes. The body
of the decl;ration initializes the DfSKTABLE variable.
The last of the disk aﬁcessing CLASSes and
MONITORs is- the DATAFILE CLASS 'type (Brinch Hansen,

1977, pp. 119 - 121>. It is with this CLASS that a

process accesses a file of a given identifier name. It~

accesses a parameter of type RESOURCE to gain access to

the disk and a parameter of type DISKCATALOG to 1ook up

the file. A parameter of type TYPERESOURCE is used to
access the console to report disk failure. A variable

of type DISKFILE. is used to open and ;lose'files.

There are four ENTRY ﬁrocedures: OPEN, CLOSE, READ, and

WRITE. The READ and WRITE procedures simply reﬁuest
access to the disk using the RESOURCE parameter, read
or write to the file using the DISKFILE variable, and
release the disk again using the RESOURCE parameter.

The CLOSE procedure closes a file using tﬁe DISKFILE
procedure CLOSE and reinitializes the local variables.

The OPEﬁ procedure éccesses the DISKCATALOG parameter

to perform a lookKup. If the file is found, then the

64

procedure requestls use of the disk through the RESOURCE

T oNe

parameter, opens the file using the DISKFILE procengg
open, resets the length ua?iablé, and releases the disk
thrbugh the RESOURCE parameter. The main body of this
type initializes the DISKFILE wvariable and fhe local
variables. | | |

The PRDGFILE CLASS typéthrinch Hansen, f97?, p.
122> is used to transfer a sequential Pascal program
from disk intor core. It accesses a TYPERESOURCE
paréﬁe}er ,toy communicate with the console in the ;asé
ﬁf diék failure; # RESOURCE parame ter tovgaiﬁ exc]usi:e
access to the disk, and a DISKCATALOG parametef to
lookup the file on the disk. A DISKFILE variable is
‘"used to read the program from the file. This type
A consists of a éingle ENTRY procedure, OPEN. After the
ffle is looked up, tests are performed to make>suﬁe it

is found and and that the file contains sequential

code. If both of these cohdi&ions‘are satisfied then
the disk 1is requested, the +file is opened, and the
program is read. Another fest is made to ensure that

the 1length of the file does not exceed the space
allotted in core. The main body initializes the

variable of type DISKFILE.

The PROGSTACK tybe (Brinch Hansen, 1977, pp. 123 -

é5

121) is a MONITOR used to manage the nested calls of‘
pr;grams) from one to another. It maintains a Lifo
(last in, first out) stack. Two BOOLEAN ENTRY
functions, SPACE and ANY, are used to determine if-the
stack ha§ run out of spaze or is empty (respectively).

There are also three ENTRY procedures: PUSH, POP, and
GET. PUSH is used to put an identifier on the sfack;

The POP procedure, in addition to removing anm
identifier from the stack, returns the attributes of
the termination oi‘ the program. The GEf_proEedure,
identifies the program at the top of the stack. The
main body of th@s tfpe initializes the top of the‘stack
to 0. No other CLASSes or MONITORs are accessed by
this.type.

PROCESSes communicate with each other through
access to the CHARSTREAM CLASS (Brinch Hansen, 1977,
pp. 126 - 127). Messages are passed character by
character ;ﬁd a PQGEBUFFER parameter is used to send
and receive a pag§ of characters. There‘are,foub.ENTRY
procedures: INITREAD, INITWRITE, READ, and WRITE. The
- INITREAD and INITWRITE open the CHARSTREAM for reading
and writingA respectively,. Once a PROCESS has opened
the CHARSTREAM, it can then READ or WRITE a single

character. The PAGEBUFFER MONITOR is used to manage

-

the reading and writing.

~The remainder ofbfhe'declar;tions are the PROCESS
declarations. fhey are accessed 'on]y by the
initialization PROCESS. Theré are five types of
cpncurrent PkOCESSes used: LOADERPROCESS, CARDPROCESS,
'PRINTERPROCESS, JOBPROCESS, and I10PROCESS.

The purpose of the LOADERPROCESS'(Bpinch Hansen,
1977, pp. 139 - 140) is to reiniti#lize the Solo
operating system. The process interrupts the operating
'systeh and waits for a signal (the BEL Key) from the
console. It receives fhe signal_,though the IO
procedure. When the signal is receibed, the PROCESS
requests -access to the disk through the RESOURCE
parame ter. It reloads the the system and then releases
the disk.

The CARDPROCESS <(Brinch Hansen, 1977, pp. 137 -
138) and PRINTERPROCESS (Br'inch Hansen, 1977, pp. 138 -
159) 'arg similar processés. The CARDPROCESS sends data
from a card reader to a variable of type IOPROCESS.
The PRINTERPROCESS sends data from an I0OPROCESS to.a
lineprinter. The program has only one variable of each
type. This is to ensure that each of these devices is
controlled by a single process. These PROCESSes use a

LINEBUFFER parameter to send and receive the data to

~&7

and from the IOPROCESS. A TYPERESOURCE pargmeter’and a
variable ,6f type TERMINAL afe used. to inform the
console that an error has been detegied. " The
declarations _begin by initializing‘ the TERMINAL -
variable. They then enter infinite loops in which the
CARDPROCESS reads any of the cards in the card reader
and the PRINTERPROCEQS writes ‘ggy déta received from
the IOPROCESS to the lineprinter. This is accompl{shed
'usiné the Ib' procedure. Each type wuses a standard
procedure WAIT to delay the process if either in the
case of CARDPROCESS there are no cards.ta read or: in
the case of PRINTERPROCESS, there is no data to be éent,
to the lineprinter.
| The JOBPROCESS (Brin&h Hansen, 19772, pp. 129 -
132> and the-lOPROCESS (Br{nCh Hansen, 1977, pp. 133 —
136> +are similar in structure. The JOBPROCESS is. used
.to e*ecute. sequential' Pascal programé which‘can call.
other sequéntial Pascal prog}ams recursipely. The
I0PROCESS exe&utes seduential Pascal programs that send
(or receive) data to <(or from)> the JOBPROCESS. They
both can ipplement iﬁterfate procedures be tween' the
programs and the opérating,vsystem. Each PROCESS has

parameters of type TYPERESOURCE, RESOURCE, and

DISKCATALOG. The results of accessing thesg parameters -

68

has been explained previously. Thé JOBPROCESS uses tiwo
PAGEBUFFER parameters and four ARGBUFFER paﬁameters to
interact wi th two I0PROCESSes. Similarly, the
I0OPROCESS- has one PAGEBUFFER parameter énd two
ARGBUFFER 'parameters té intgract with the JOBPROCESS.

Both PROCESSes use a PROGSTACK parameter to manage the
nésted program - calls mentioned previously. In
,addifion,“ the IbPROCES§ uses a LINEBUFFER parameter to
access an IO device. These PROCESSes also have
variables of ~ type TERMINAL, TERMINALSTREAM, and
DATAFILE thch have also previously been discussed.

The PROCESSes eacﬁ have a PROGFILE variable which is
used to store the currently executed prégram and
_CHARSTREAMF variables for communicating with each other.
The declarations each contaiﬁ a sequential programA
'Foutine, which specifies the routine entries called by
the program- Each ENTRY'froutine is also declared.

These ' are .gimplé procedures and functiﬁns_which access
other CLASSes and MONITORS within the system. These
interface routines can only be accesséd by the
sequential ;program. After initializing ifs variables,
each PROCESS cglls a CALL procedure whicﬁ‘is tocal to
the PROCESS. The CALL procedure l1ocads the program from

the disk into core using he PROGSTACK parameter and the

69

PROGFILE wvariable. Jnitialiy, the JOBPROCESS executes
a ‘sequential program DO which reads the users program
identiffer from the console. The IOPROCESS initially
executes the 10 prdgram‘ which “~beqgins the readihg of
cards for an input PROCESS and the writing to a
lineprinter for an output PROCESS. fhe PROCESSes send
a termination message to the console upon completioﬁ of
their respective initializatidn procedures.

The declarations descibed here, along with the
INITIAL PROCESS make up the Solo Operating System. The
redundancy of the parameters andlvariables allows the

~——system to check the access rights during compiltation.
A component can access only 'those components it has
declared as parameferé orvvériables. Access rights are
restricted by the rules of the Concurrent Pascal
Léngu;ge. By using these access _rights, critical
regions are managed. By not allowing.éomponents to
call each other recursively, deadlock is‘avoided.

Debugging is facilitated by bottom—up'testing.'
For example, once thé FIFO component is debugged, it
will not cause‘ errors in the TYPERESOURCE component.
Any errors .encountered there are specific to that

component.

70

VIII. CONCLUSION

- This thesis has examined various aspects of
concurrent programming. The problems inherent in
simulating con&uréent processés through softwaré were
discussed énd .several solutions were given. While a
.slight extension of sequential Pascal maf Be sufficient
.to manage simulated concurrent processing, more elegant
anqr éfficient ~solutions result from a set of formal
structures as in Concurrent Pascal. The introduction
of the structures pf' this language also provide
extended compiler error checKing (through type
checking, _and_ a means for hierarchical ppogramming.
The example wused throughout the chaptFr on Concurrent
Pascal demonstrates the differences in the structures
used in the three extensions of Pascal. ‘Th; Solo
Operating System shows'_Concurrent Pascal to be an
effective tool for facilitating the writing of
operating systems.

As concurrent programming becomes more extensive,
abstract languages, lTike Concurrent Pascal, will
provide the heans fdf créating simple, reliable, and

adaptable programs.

71

10.

REFERENCES

Ben—-Ari, M. Principles of Concurrent Proqrgﬁming,
Prentice—Hall International, Inc., U.S5.A., 1982.

Brinch Hansen, Per. Ogergting System Principles,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1973.

Brinch Hansen, Per. The Archi tecture of
Concurrent .Programs, Prentice—Hall, Inc.,

Englewood Cliffs, New Jersey, 1977.

Conway, Melvin E., "A Multiprocessor System
Design", AFIPS, Vol 24, (Fall 1943), pp. 139-144.

Corbato, Fernando J., Merwin-Daggett, Marjorie, and
Daley, Robert C., "An Experimental Time-sharing
System", AFIPS, Vol 21, (Spring 1962), pp. 335-344.

Findlay, William and Watt, David A. PASCAL An
Introduction to Methodical Programming (2nd ed>,
Computer Science Press, Inc., Maryland, 1981.

Jensen, Kathleen and Wirth, Niklaus. PASCAL User |

-Manual and Report (2nd ed>, Springer—-Verlag,

U.S.A., 1978..

Leiner, A. L., Notz, W. A., Smith, J. L., and
Weinberger, A., "PILOT — A New Multiple Computer

System", J. ACHM, Vol &6, No 3 (July 193593,
Pe terson, G. L., ""Myths About the Mutual
Exclusion Problem", Information Processing

Letters, Vol 12, No 3, (1981), pp. 115-114.

Shelly, Gary B. and Cashman, Thomas J. Introduction
to Computers and Data Processingq, Anaheim
Publishing Co., U.S5.A., 1980,

72

APPENDIX

HIERARCHICAL OUTLINE OF THE SOLO OPERATING SYSTEM

CARDPROCESS -
TYPERESOURCE MONITOR
FIFD CLASS *
LINEBUFFER MONITOR
TERMINAL CLASS
TYPERESOURCE MONITOR
FIFO CLASS
TYPEWRITER CLASS
PRINTERPROCESS
 TYPERESOURCE MONITOR
FIFD CLASS
.LINEBUFFER MONITOR
" TERMINAL CLASS |
TYPERESOURCE MONITOR
FIFO CLASS
TYPEWRITER CLASS
10PROCESS
TYPERESOURCE MONITOR
FIFO CLASS
RESOURCE MONITOR
FIFO CLASS
DISKCATALOG MONITOR
TYPERESOURCE MONITOR
FIFO CLASS
RESOURCE MONITOR
FIFO. CLASS
DISKTABLE CLASS
TYPERESOURCE MONITOR
FIFO CLASS
DISKFILE CLASS
TYPERESOURCE MONITOR
FIFO CLASS
. DISK CLASS |
TYPERESOURCE MONITOR
FIFO CLASS
TERMINAL CLASS
TYPERESOURCE MONITOR
FIFD CLASS
TYPEWRITER CLASS

73

LINEBUFFER MONITOR
PAGEBUFFER MONITOR
ARGBUFFER MONITOR
PROGSTACK MONITOR
TERMINAL CLASS
. TYPERESOURCE MONITOR
FIFO CLASS
TYPEWRITER CLASS
TERMINALSTREAM CLASS
TERMINAL CLASS
TYPERESOURCE MONITOR
FIFO CLASS
TYPEWRITER CLASS
CHARSTREAM CLASS
PAGEBUFFER MONITOR
DATAFILE CLASS
TYPERESOURCE MONITOR
FIFO CLASS ‘
RESOURCE MONITOR
FIFO CLASS ‘
DISKCATALOG MONITOR
TYPERESOURCE MONITOR
FIFO CLASS |
. RESOURCE MONITOR
FIFO CLASS
DISKTABLE CLASS
TYPERESOURCE . MONITOR
FIFO CLASS
DISKFILE CLASS
TYPERESOURCE MONITOR
FIFO CLASS
DISK CLASS
 TYPERESOURCE MONITOR
FIFO CLASS
TERMINAL CLASS
TYPERESOURCE MONITOR
FIFO CLASS
TYPEWRITER CLASS PROGFILE CLASS
TYPERESOURCE MONITOR
FIFO CLASS
RESOURCE MONITOR
FIFO CLASS
DISKCATALOG MONITOR
TYPERESOURCE MONITOR
FIFO CLASS
RESOURCE MONITOR
FIFO CLASS

79

DISKTABLE CLASS
TYPERESOURCE MONITOR
FIFO CLASS
DISKFILE CLASS
TYPERESOURCE MONITOR
FIFO CLASS '
DISK CLASS _
TYPERESOURCE MONITOR
FIFO CLASS.
TERMINAL CLASS
TYPERESOURCE MONITOR
- FIFO CLASS
TYPEWRITER CLASS
DISKFILE CLASS
TYPERESOURCE MONITOR
FIFO CLASS
DISK CLASS
TYPERESOURCE MONITOR
FIFO CLASS
TERMINAL CLASS ‘
TYPERESOURCE MONITOR
FIFO CLASS
TYPEWRITER CLASS
LOADERPROCESS
RESOURCE MONITOR
FIFO CLASS
JOBPROCESS
* TYPERESOURCE MONITOR
FIFO CLASS
RESOURCE MONITOR
FIFO CLASS
DISKCATALOG MONITOR ,
TYPERESOURCE MONITOR
FIFO CLASS
RESOUCE MONITOR
FIFO CLASS
DISKTABLE CLASS
TYPERESOURCE MONITOR
FIFO CLASS
DISKFILE CLASS
TYPERESOURCE MONITOR .
FIFO CLASS
DISK CLASS
TYPERESOURCE MONITOR
FIFO CLASS
TERMINAL CLASS
TYPERESOURCE MONITOR

75

FIFO CLASS
TYPEWRITER CLASS
PAGEBUFFER MONITOR
ARGBUFFER MONITOR
PROGSTACK MONITOR
TERMINAL CLASS.
TYPERESOURCE MONITOR
FIFO CLASS
TYPEWRITER CLASS
TERMINALSTREAM CLASS
TERMINAL CLASS
TYPERESOURCE CLASS
FIFO CLASS
TYPEWRITER CLASS
CHARSTREAM CLASS
PAGEBUFFER MONITOR
DATAFILE CLASS
TYPERESOURCE MONITOR
FIFO CLASS |
RESOURCE MONITOR
FIFO CLASS
DISKCATALOG MONITOR
TYPERESOURCE MONITOR
FIFO CLASS
RESOURCE MONITOR
FIFO CLASS
DISKTABLE CLASS
TYPERESOURCE MONITOR
FIFO CLASS '
'DISKFILE CLASS
TYPERESOURCE MONITOR
FIFO CLASS
DISK CLASS
TYPERESOURCE MONITOR
FIFO CLASS
TERMINAL CLASS
TYPERESOURCE MONITOR
FIFO CLASS
TYPEWRITER CLASS
PROGFILE CLASS
TYPERESOURCE MONITOR
FIFO CLASS
RESOURCE MONITOR
FIFO CLASS
DISKCATALOG MONITOR
TYPERESOURCE MONITOR
FIFO CLASS

746

RESOURCE MONITOR
FIFO CLASS
DISKTABLE CLASS
TYPERESOURCE MONITOR
FIFO CLASS
'DISKFILE CLASS
TYPERESOURCE MONITOR
FIFO CLASS
DISK CLASS
TYPERESOURCE MONITOR .
FIFO CLASS
TERMINAL CLASS

TYPERESOURCE MONITOR .

FIFO CLASS
TYPEWRITER CLASS
DISKFILE CLASS
TYPERESOURCE MONITOR
FIFO CLASS
- DISK CLASS . , :
TYPERESOURCE MONITOR
FIFO CLASS !
TERMINAL CLASS
TYPERESOURCE MONITOR
FIFO CLASS
TYPEWRITER CLASS

27

VITA

Barbafa Harab Smolowitz was born January 29, 1950,
in. Washington, D.C. She graduated from Bethesda-Chevy
Chase High School, Bethesda, Maryland in 1968. in
1972,' she graduated from Carnegie—HelIon'University,
Pittsburgh, Pennsylvania with a B. A. Degree in
Mathematics. She was then inducted into Pi Mu Epsilon,
the National Honorary Mathematics Fraternity.

During the academic year 1973-74, she taught
mathematics at 0Oak Harbor Junior High School, 0ak
Hérbor, Washington. From 1974 until 1976, she taught
college preparatory mathematics at Nazareth Senior High

- School, Nazareth, Pennsylvania.

. In 1977 she received an M. A. Degree in Secondary
Education from | Lehigh Universi ty, Bethléhem,
- Pennsylvania. She began her studies in the Division of
Computing and Information Science at Léhigh University
in the fall of 1982.

She curFent1y resides in Bridgewater, New Jersey

with her husband and two daughters.

78

%

	Lehigh University
	Lehigh Preserve
	1-1-1984

	Concurrent programming with a focus on concurrent pascal.
	Barbara H. Smolowitz
	Recommended Citation

	tmp.1451580486.pdf.nA9mW

