
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1978

Database design: A practical methodology.
Kerry Nemovicher

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Industrial Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Nemovicher, Kerry, "Database design: A practical methodology." (1978). Theses and Dissertations. Paper 2149.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=preserve.lehigh.edu%2Fetd%2F2149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2149?utm_source=preserve.lehigh.edu%2Fetd%2F2149&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


DATABASE DESIGN:  A PRACTICAL METHODOLOGY 

by 

Kerry Nemovicher 

A Thesis 

Presented to the Graduate Committee 

of Lehigh University 

in Candidacy for the Degree of 

Master of Science 

in 

Industrial Engineering 

Lehigh University 

1978 



ProQuest Number: EP76422 

All rights reserved 

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted. 

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion. 

uest 

ProQuest EP76422 

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author. 

All rights reserved. 
This work is protected against unauthorized copying under Title 17, United States Code 

Microform Edition © ProQuest LLC. 

ProQuest LLC. 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346 



This thesis is accepted and approved in partial 
fulfillment of the requirements for the degree of Master 
of Science. 

dug.   It , t<f7X 
(date) 

Professor in Charge 

Chairman of Department 

11 



ACKNOWLEDGMENTS 

Although only one name appears upon the title page, 

this thesis has come into being through the combined efforts 

of a number of individuals.  The author wishes to thank 

Dr. Ben L. Wechsler for his persistent encouragement and 

careful scrutiny of the ideas presented herein.  His 

critique has eliminated much of the fuzzy thinking inherent 

in the original conceptualizations and drafts.  The author 

also wishes to acknowledge the help of Dr. Larry E. Long, 

Mr. Dia Ali, Dr. Joseph Nemovicher, and Mrs. Rae Nemovicher 

for their careful reading of the successive drafts of this 

thesis and their roles as sounding boards for the ideas 

developed.  The patience and understanding shown by Marie 

Young and Joanne Whitney in typing (and retyping) this 

text has been more than this author deserves.  Finally 

a special thanks must go to Mrs. Marcia Berkow, the 3ine 

qua non of the final form of the thesis.  Her skills as 

an editor, proof reader, sounding board and typist have 

rendered the formidable task of putting this thesis into 

final form, a genuinely pleasant undertaking. 

111 



TABLE OF CONTENTS 

PAGE 

Acknowledgments  iii 

Table of Contents  iv 

List of Figures  viii 

Abstract   1 

CHAPTER ONE 

STATEMENT OF OBJECTIVE AND PROBLEM SCENARIO 

I.  Background  4 

II.  Statement of the Problem  7 

III.  Statement of the Objective  8 

IV.  Approach to the Problem  8 

CHAPTER TWO 

CURRENT DESIGN METHODOLOGIES 

I.  Introduction  11 

II.  The Artistic Intuitive Approach  12 

III.  The Machine Efficiency Approach  14 

A. Service Analysis   14 

B. An Automated Optimizer for DBTG Type 
Schema Design  16 

IV.  The Functional Approach  18 

V.  Information Orientated Approach  22 

A. An Infological Approach to Database 
Design  2 3 

B. The "Entity-Relationship Model"  25 

iv 



PAGE 

C.  Semantic Predication Analysis   28 

VI.  Canonical Schema Design   33 

VII.  The Relational Approach  38 

VIII.  Other Approaches and Combinations   4 3 

CHAPTER THREE 

ANALYSIS OF THE CURRENT DESIGN DIRECTIONS 

I.  Introduction  46 

II.  A Question of Priority - Man or Machine .... 47 

III.  Logical Schema Design - The Specific Versus 
the General  52 

IV.  Logical Schema Design - Problems with the 
Functional Approach   56 

V.  Conceptual Level Design - A Search for 
Simplicity  58 

VI.  Two Serious Design Methodologies - A Closer 
Look  62 

A. The E-R Approach  62 

B. Canonical Database Design   68 

CHAPTER FOUR 

A PROPOSED NEW DATABASE DESIGN METHODOLOGY 

I.  Introduction  7 3 

II.  The Theory Behind the Method  75 

III.  The Design of the Conceptual Schema  86 

A. Phase I  87 

B. Phase II  93 

IV.  From Conceptual Schema to Working Schema. ... 127 

v 



PAGE 

V.  Summary    131 

CHAPTER FIVE 

SUGGESTIONS FOR FURTHER RESEARCH 

I.  An Automated Design Methodology    133 

II.  A Definitive and Systematic Approach to 
Phase I    134 

III.  A Test of the Methodology    135 

BIBLIOGRAPHY     138 

APPENDIX A 

AN IN-DEPTH PROBLEM SCENARIO 

I.  Design and Traditional Files   142 

II.  Some Problems with the Traditional Designs . 145 

III.  Database Ideals (general goals)  149 

IV.  The Current Status of "Database" Today . . . 152 

V.  Database Schema Design   156 

APPENDIX B 

FURTHER DISCUSSION OF CURRENT DESIGN METHODOLOGIES 

I.  The Service Analysis Tasks   158 

II.  Infological Design   159 

III.  Entity-Relationship Design   165 

IV.  Relations and Normal Forms   168 

APPENDIX C 

EXAMPLES OF THE METHODOLOGY FOR CONCEPTUAL SCHEMA DESIGN 

I.  Introduction    177 

vi 



PAGE 

II.  An Order-Entry System    17 

A. Phase I - Identification of the 
Information to be Modeled    178 

B. Phase II - Construction of the 
Information Model    182 

III.  A Cargo Fleet System    187 

A. Phase I - Identification of the 
Information to be Modeled    190 

B. Phase II - Construction of the 
Information Model    194 

APPENDIX D 

A COMPARISON WITH THE CANONICAL DESIGN APPROACH 

    206 

VITA    222 

vn 



LIST OF FIGURES 

PAGE 

CHAPTER II 

2.1 Functional Level Tree  19 

2.2 The Role of the Enterprise Schema  26 

2.3 Functional Model Graph   29 

2.4 The Predication Structure for the 
Sentence:  "Companies supply parts to 
Departments in some volume"  31 

2.5 The Functional Model Data Structure. ... 32 

2.6 Bubble Chart Example   35 

2.7 Canonical Design Process   37 

2.8 Simple Data Hierarchy  40 

2.9 Data in Tabular Format  40 

2.10 A "Relation"  41 

CHAPTER IV 

4.1 Eide  80 

4.2 An Object and Its Unique Attributes. ... 81 

4.3 1:1 and 1:M Relationships  81 

4.4 Notation for Complementary Relationships . 82 

4.5 Examples of Notational Conventions .... 82 

4.6 Named Relationships  83 

4.7 An Inventory Record Description  90 

4.8 The Inventory Record in Bubble Chart 
Format  93 

4.9 One User's View of the Inventory System. . 96 

4.10 An Incomplete Object/Attribute Matrix. . . 97 

viii 



PAGE 

4.11 An  Object/Attribute  Matrix  of  One 
User's View  98 

4.12 A  Second   Inventory  Record  Description.   . 99 

4.13 Bubble  Chart of   the  Second  User's  View   . 100 

4.14 An  Object/Attribute  Matrix   Incorporating 
Two  Users'   Views  101 

4.15 The  Third  User's  View  102 

4.16 The  Object/Attribute  Matrix of Just   the 
Third  User's View  103 

4.17 The  Completed  Object/Attribute  Matrix.   . 105 

4.18 Embryonic  Object  Records  and   the  Object/ 
Attribute  Matrix  from Which They Are 
Derived  107 

4.19 Objects  and  Their   Unique  Attributes.   .   . 108 

4.20 Schema  Records   Including  Shared 
Attributes  110 

4.21 An   Inter-Record  Relationship     Ill 

4.22 A Complete  Conceptual  Schema     113 

4.23 Redefinition  of   Shared  Attributes.   .   .   . 116 

4.24 A Hitherto  Unaccounted-for   View  117 

4.25 A More  Accurate  View of   the   Role  of 
QTY-ON-ORDER     118 

4.26 The  Revised  Object/Attribute  Matrix.   .   . 120 

4.27 The  Revised  Conceptual  Schema  121 

4.28 A Classic  Example  of  a Hierarchy   .... 119 

4.29 Redundant  and  Non  Redundant  Sets   .... 123 

4.30 Two  Redundant  Sets   in   the   Inventory 
Schema  124 

IX 



PAGE 

4.31 The Final Conceptual Schema 125 

4.32 Elimination of an M:M Relationship . . . 129 

4.33 Removing Redundant Data from 
Concatenated Keys at a Cost to Access 
Time and Complexity 130 

APPENDIX B 

B.l       "The  wording  used   in  relational data 
bases" 170 

APPENDIX  C 

C.l       Traditional  File  View 179 

C.2       The  Three  Views 181 

C.3       Object/Attribute  Matrix  with One   User's 
View 183 

C.4       Object/Attribute  Matrix   Incorporating 
Two  Users'   Views 184 

C.5        Final  Object/Attribute  Matrix 185 

C.6       Conceptual  Schema 186 

C.7        Seven  Users'   Views        191 

C.8       The  Object/Attribute  Matrix   for   Users' 
Views   #1  Through   #3 195 

C.9       The  Object/Attribute  Matrix  for   Users' 
Views  #1  Through  #5 196 

CIO     The Complete Object/Attribute  Matrix 
-  All   Seven  Users'   Views        197 

C.ll     Initial  Schema  Design 198 

C.12     The  Central  Role  of  WAYBILL* 200 

C.l3     Modified   DEPART-DATE        202 



PAGE 

C.14     Modified   DELIVERY-DATE  202 

C.15     The  Final  Schema  205 

APPENDIX   D 

D.l   Local Views  207 

D.2  Canonical Designed Schema   210 

D.3   The Object/Attribute Matrix   211 

D.4   Initial Schema  212 

D.5   Schema Modifications  212 

D.6   Schema Modifications  215 

D.7   Redundant Set3  215 

D.8   Eidos Based Schema  217 

D.9  Alternate Eidos Based Schema  218 

XI 



ABSTRACT 

A PRACTICAL DATABASE DESIGN METHODOLOGY 

This thesis presents a practical, implementable 

methodology for Database logical design.  In the rap- 

idly expanding world of Database users the quest for 

viable and efficient logical designs is one of the most 

difficult and elusive of tasks.  As the uses of Data- 

base technology grow, not only in number but also in 

complexity, the need for a design methodology becomes 

daily more immediate. 

This need has been recognized throughout the 

industry and in recent years a number of Database 

design methodologies have appeared on the market. 

Unfortunately these methodologies have proved less than 

satisfactory.  In general they have tended to be overly 

concerned with machine optimization (to the detriment 

of the logical design), and/or are so theoretically 

abstract and esoteric as to be beyond the ken of the 

potential users — the practitioners in the field. 

The aim of this thesis is to remedy the situa- 

tion by presenting a practical, logical design oriented 

methodology.  The approach is an intuitive one based 

upon the understanding that: 

- a Database logical design deals in generic 

concepts (or data item type3, herein referred 



to as eide) and not in particular items 

of data 

- a Database exists in order to supply 

information, the components of which are 

data and the relationships between data 

- the data which comprise information can 

be viewed as functioning either as 

objects (the principle "subjects of 

concern") or as attributes (modifiers or 

descriptors of the principle objects) 

- a Database must be able to accommodate 

the information needs of all its users 

- an optimal logical design is one in which 

the information needs of all of the users 

are readily discernible. 

The methodology can be divided into two 

phases: 

1. Phase I  - identification of the informa- 
tion to be modeled 

2. Phase II - construction of the information 
model (the conceptual design). 

The logical design of a Database can be thought 

of as the conceptual structure of the Database's infor- 

mation capacity, an information map.  It contains the 

relationships between the generic concepts (not the 

actual data) which constitute the analyst's conceptions 



of the systems to be supported.  Thus the first phase 

in the logical design process is the traditional task 

of the systems analyst — understanding (conceptualiza- 

tion) of the systems to be supported. 

The second phase is the task of converting the 

analyst's understanding of each of the separate users' 

views of the system into an integrated whole — the 

conceptual design of the Database.  This is accomplished 

almost mechanically, first by mapping each user's view 

onto an object/attribute matrix (a table listing 

"objects" on one axis, "attributes" on the other and 

their relationship at the intersection) and then system- 

atically constructing records and sets (relationships 

between records) from the information contained in the 

matrix. 

The process is as effective as it is simple. 

The resulting logical designs (conceptual schemata) are 

both logically sound and efficient.  They compare 

favorably with the best of the esoteric and machine 

oriented designs, yet are far less complex.  Most impor- 

tant, the methodology is comprehensible and iraplementable. 

A Database is first and foremost a practical, pragmatic 

tool, a tool meant to be used; so too this Database 

design methodology is a practical pragmatic tool - 

meant to be used. 



CHAPTER ONE 

STATEMENT OF OBJECTIVE AND PROBLEM SCENARIO 

I.  Background 

There is no doubt today that the Data 

Processing (DP) industry has accepted the concept 

of the "Database".  Software vendors have invested 

considerable sums of money in Database development, 

and a plethora of Database packages have inundated 

the market (Wiederhold, 1977).  The professional 

journals abound with articles about various aspects 

of Database technology and the Association for Com- 

puting Machinery (ACM) now publishes a quarterly 

devoted solely to Database related topics ("ACM 

Transactions on Database Systems").  Many of the 

larger DP centers already have operational Database 

based systems and the trend certainly seems to point 

toward an exponentially expanding Database user pop- 

ulation.  As James Martin indicates, "The development 

of corporate data bases will be one of the most 

important data-processing activities for many years 

to come."(Mar tin, 1977, p. 2) 

Yet, despite its apparent popularity, the 

development and implementation of a Database system 

is not a simple matter.  For the most part it is a 

far more difficult undertaking than the development 

4 



and implementation of traditionally structured systems. 

The software (as will be discussed below) and the hard- 

ware problems are significantly more complex than those 

encountered in non-Database systems, and as with most 

"new concepts", the human inertia-to-change can be a 

serious obstacle. 

Even if one restricts one's view to just the 

software, there are many facets to the problem of 

Database design.  Among other things the designer 

must concern himself with efficient storage utiliza- 

tion (balanced against rapid information retrieval), 

security (insuring both privacy and protection of 

information in the event of machine failure) , data 

integrity (the "absence of inconsistent data"), and 

a sound "logical design" (the grouping of data items 

into records and the definition of the interrelation- 

ships between those records).  It is this last aspect, 

Database logical design, which is the subject of this 

thesis. 

In traditional (non-Database) systems, a file 

is designed around a specific application.  Thus the 

manner in which the data are stored (and the inter- 

relationships between data items) can be optimally 

designed to accommodate the information needs of the 

specific application.  A Database system on the other 



hand, must serve many applications and yet use a 

single data storage scheme.  This scheme must be 

flexible enough to allow each application to view 

the data as if an "application-oriented" file existed. 

It must accommodate all the necessary data items and 

all the necessary interrelationships between those 

data items. 

To create and support a flexible storage scheme 

it is necessary to know the narture of all the constit- 

uent data item types and the nature of all their inter- 

relationships.  This knowledge is recorded in an "infor- 

mation map", which, in Database parlance, is termed a 

Schema.  A schema contains (among other things) a list 

of all the data item types which appear in a Database, 

how they are physically organized, and how they are 

logically connected.  A good schema must not only 

accommodate all the "current" application views of the 

data, but must try to anticipate what views will be 

needed in the future.  It is easy to imagine how, with 

applications of any significant complexity, a poorly 

planned schema could grow to become extremely tangled 

and unwieldy. 

One of the major problems, therefore, of Data- 

base design is the design of the schema. It is a task 

fraught with complexities, one which can appear 



overwhelming in its enormity.  In most circumstances 

the design of the schema is critical to the overall 

Database design and a poorly designed schema will 

almost certainly doom a Database. 

II.  Statement of the Problem 

The problem is how to design a viable Database 

schema.  When faced with the task, where does an analyst 

begin?  Given both the importance of the job and the 

newness of the problem (the lack of experienced exper- 

tise) a need exists for a tool, a technique or method- 

ology which can be used as a guide to schema design. 

This need has begun to be recognized and Data- 

base design books and articles are proliferating 

(Chapter Two consists of a brief survey of some of the 

more popular design directions).  Unfortunately there 

are serious drawbacks to the methodologies which have 

appeared to date (Chapter Three contains a critique 

of the methodologies discussed in Chapter Two).  For 

the most part the proposed schema design methodologies 

rely too heavily upon the user's knowledge of sophisti- 

cated mathematics and/or they place too much importance 

upon the machine optimization aspects of Database design. 

Thus, the need for a workable and practical 

schema design methodology 3till exists.  It is a vacuum 

which must be filled.  With the growing use of Database 



technology and the growing desire to "go Database", 

the need for viable schemata (and hence the need for 

a technique to design viable schemata) becomes daily 

more immediate.  It is a problem which demands a 

solution. 

III. Statement of the Objective 

It is the aim of this thesis to provide a simple 

and concise Database schema design methodology.  The 

methodology, above all else, must be a practical one. 

It must be applicable to real world situations and 

implementable by persons possessing the skills and 

knowledge of today's DP professionals. 

To design a methodology, no matter how powerful, 

which is incomprehensible to the people who must work 

with it is to defeat the very purpose of the methodology. 

IV. Approach to the Problem 

A Database designer must contend with many 

problems.  If the tools which are meant as aids and 

guides are also complex and challenging, then the actual 

basic problems themselves are magnified.  The methodology 

presented herein is an attempt to provide a positive 

tool for the Database designer, a tool which will lessen 

the load and free the analyst for the basic "analytic" 

problems of system design. 

8 



As is indicated above, there have recently been 

many Database design and schema design techniques 

appearing in books and articles, and although, as also 

indicated above, none of these can be regarded as 

definitive, the examination and understanding of these 

proposed methodologies is the obvious first step in an 

attempt to derive an effective schema design method- 

ology.  Chapter Two begins this process by providing 

a brief presentation of some of the more popular design 

directions.  Chapter Three deepens the understanding by 

critically examining each of the design directions and 

attempting thereby to determine the most desirable 

design methodology characteristics.  By understanding 

both the successes and shortcomings of the first 

ventures one can gain a knowledge of the problems to 

be overcome and the ideas which have proven fruitful. 

The final step is the synthesis, the combina- 

tion of the author's own field experience with the 

understanding acquired in the examination of the ideas 

of others.  Thi3 is presented in Chapter Four.  It is 

the exposition of a schema design methodology which 

is both flexible and simple to use.  Although the 

presentation is perhaps far more detailed and theo- 

retical than would be necessary for a practitioner, 

the methodology itself is straight forward and readily 



automatable.  It is neither an esoteric, (mathematical 

or symbolic logic based) technique, nor one that is 

dominated by machine optimization considerations.  It 

is, in short, a practical schema design methodology. 

10 



CHAPTER TWO 

CURRENT DESIGN METHODOLOGIES 

I.  Introduction 

When dealing with an entity as large and 

complex as a Database it is almost inevitable that 

various different aspects of it will come to be 

regarded as its most important quality.  One is reminded 

of the story of the blind men and the elephant; where 

each blind man, having encountered a different part of 

the elephant's anatomy (and of course unable to see the 

whole creature) came to a unique conceptualization of 

the nature of elephants.  This would certainly seem to 

be the situation of the DP world and its encounter with 

Database.  Published Database design techniques run in 

such varied directions (in accordance with each author's 

own understanding of what is "most important") that it 

is difficult to believe that all are concerned with the 

same end product. 

In this chapter, some of the major Database 

design techniques will be reviewed.  Insofar as the 

subject of this thesis is Schema design, this is the 

"important quality" which this author will emphasize. 

Whenever applicable, however, an attempt will be made 

to show how schema design fit3 into the total perspective 

11 



of a particular Database design scheme. 

It will be remembered that the schema must 

describe the three elemental aspects of a Database: 

the data item types to be stored, the grouping of 

data item types into records, and the grouping of 

records into sets.  A successful schema must do this 

in a way which will accommodate all current and fore- 

seen uses of the data.  The manner of this accommoda- 

tion must be as efficient and straightforward as 

possible, keeping to a controlled minimum the need 

for data redundancy and long involved sequential 

searches. 

As has been indicated, this is no mean task, 

growing exponentially with the size and complexity 

of the system.  Judging from the literature, however, 

the early Database theorists apparently did not 

realize the magnitude of schema design.  Today, with 

the wisdom of hindsight and experience, the problem 

is being given more attention.  In the following pages 

the reader will find a sampling of some of the basic 

design directions, running the gamut from simple intui- 

tive design up to the most recent attempts at "auto- 

mated" Database design. 

II.  The Artistic Intuitive Approach 

A direct carryover from traditional system 

12 



design practices is the intuitive approach to Database 

design.  In traditional design, typically the analyst 

collects all of the pertinent information about "who 

needs what in which report" and then intuitively sees 

what data items are needed, how the data items are to 

be grouped into records and which records are to 

belong to which files.  Occasionally the analyst is 

required to perform a few calculations in connection 

with the use of a sophisticated data storage technique 

(such as indexed sequential), but for the most part an 

experienced analyst intuitively knows what to do. 

Understandably a system design, like a computer program, 

often bears the unmistakable artistic stamp of the 

designer. 

Many analysts assume that this same basic 

intuitive process will work with Database systems.  They 

propose that to design a Database one must understand 

the physical mechanisms and organization of Database 

data storage techniques as well as the traditional 

designers understand the hardware and software devices 

of traditional technology.  Armed with this understand- 

ing "of the tools" and a sufficient knowledge of the 

applications to be supported, an analyst should be able 

to intuit a viable Database design. 

13 



Ill.  The Machine Efficiency Oriented Approach 

The early Database packages seriously strained 

the capabilities of their host machines.  Consequently 

many of the initial Database design and implementation 

efforts (as well as the software itself) centered 

around the efficient use of the.machine.  "Although the 

original data base packages were conceived in the glow 

of program independence, they were delivered by the 

practitioners of machine/core optimization." (Wood & 

Chamberlain, Feb. 6, 1978, p. 26).  This concern with 

machine efficiency is naturally reflected in the 

design techniques of those who use machine oriented 

packages and by some who have been simply swept along 

in the wake of such packages.  Two such machine-oriented 

techniques are briefly described below.  The first was 

designed for use with IBM's IMS (Information Manage- 

ment System).  The second is a computer automated 

methodology for "Optimal Data Base Schema Design" of 

CODASYL DBTG type Databases. 

A.  Service Analysis 

Service Analysis is a Database design method- 

ology marketed by Advanced Systems Incorporated (ASI). 

Although aspects of Service Analysis are adaptable to 

many Database Management Systems, it is primarily 

intended for use with IBM's IMS. 

14 



Consisting of thirteen design tasks (see 

Appendix B) the critical design criteria are:  data 

item frequency of access, data item size (number of 

characters), and data item number of potential occur- 

rences.  The design goal is to arrange the data item 

types (or "fields") in such a manner as to render 

those which are most frequently accessed roost easily 

accessible.  One would never, for example, group a 

large, rarely accessed data item together with a highly 

used one since each access of the volatile data item 

would have to carry with it the dead weight of its 

unused companion. 

Although in the Service' Analysis approach the 

physical structure orientation dominates the logical 

relationships, it is understood that the logical 

(or generic) relationships must also play a part.  The 

interaction, however, between physical and logical is 

a difficult one to define.  As Katzen states:  "the 

synthesis of effective logical and physical data 

structures is more of an art than it is a science at 

this point in the evolution of data base technology" 

(Katzen, 1975, p. 298).  Service Analysis seems to 

want to design the physical structure (the design 

methodology for which is very detailed) and then let 

the designer intuit the super imposition of the logical 

15 



upon the physical. 

Where, however, do the definitions for the 

requisite logical relationships come from?  Service 

Analysis leaves this question for the designer.  It 

is this author's personal understanding that ASI left 

the problem for "artistic intuition".  Others have 

treated it as a separate problem and attempted to 

develop a logical design methodology divorced from 

the physical considerations.  (This thesis is one such 

effort).  Later in this chapter, some of those "purely 

logical" approaches will be examined. 

B.  An Automated Optimizer for DBTG Type Schema Design 

In a document worthy of Laputa,  Michael F. 

Mitoma presented "a methodology that will automate 

and optimize the design of DBTG database structures for 

specified applications" (1975, p. i).  Of course, as 

Mr. Mitoma himself points out "there is no widely 

accepted definition of the somewhat nebulous concept 

of 'optimality' as it applies to data base or file 

design" (p. 29).  He defines "the optimal data base to 

be the one which supports the required processing with 

The island floating in the sky which was dis- 
covered by Captain Lemuel Gulliver.  Captain Gulliver 
later commented that:  "neither Prince nor People 
appeared to be curious in any Part of Knowledge, except 
Mathematicks and Musick,". 

16 



the lowest logical record access frequency, subject to 

a number of feasibility and storage bound constraints" 

<p. 29). 

Necessary input to this optimizer consists of 

a complete description of the data items, the data 

base relations (which data items are related to which), 

the run units of the system (with regard to how each 

run unit is to relate to each data item) and so on. 

The design steps are as follows: 

1) construct a mathematical model of the "data manage- 

ment problem" (i.e. the data items, the data base 

relations, the run units, and the schema storage space); 

2) construct a mathematical model of the "data base 

schema," consisting of the number of occurrences of 

each data item, a description of legal data aggregates, 

records and possible sets; 

3) manipulate these two models into what is called 

"the optimization module," (i.e. an Integer Program 

formulation); 

4) construct the Integer Program itself from the 

formulation; 

5) run the Integer Program to produce the optimal 

schema. 

The basic idea behind the technique is to 

examine every feasible configuration and then compute 

17 



for each one the access paths necessary for each data 

item type.  A data item type may, after all be accessed 

in its own right, or as related to another data item 

type (as part of a relationship).  The integer program, 

taking into account the access frequency expectations 

for each data item type, determines the optimal schema 

configuration to be that which has the shortest "aver- 

age" access paths. 

Despite the author's statement that his 

methodology "considers logical design only . . . 

not the physical organization of the data base," (p. 15) 

it falls naturally into the category of "machines opti- 

mization" orientation.  Mr. Mitoma clearly and concisely 

expresses the philosophy of that orientation in the 

following: 

Because a record is the basic unit of access in 
DBTG systems, we measure the efficiency of a 
schema and its corresponding data base with 
respect to a given data management problem in 
terms of the number of record accesses which are 
required to accomplish the processing described 
in the run units of that data management problem. 
In particular, the optimal data base is the one 
on which the required processing can be performed 
with the fewest total number of record accesses, 
subject to the constraint that the size of the 
data base must not exceed the maximum capacity 
of the schema storage space.  The optimal schema 
is then the schema that describes this data 
base (p. 102). 

IV.  The Functional Approach 

One of the more successful concepts which has 

18 



taken hold in recent years has been the idea of 

"top-down" design.  Useful in both systems analysis 

and in programming, the top-down design approach 

initially analyzes a problem at the very general major 

function level and then gradually divides each major 

function into successively finer sub-functions. 

Major Functions 
1 
AA 

Sub Functions 
I 
ABA 

Sub-Sub Functions 

ABBA 

Goal 

AB 

ABB 

ABBB 

AC 

ABC 

!ABBC 

Figure "2.1 Functional Level Tree 

Recognizing the value of this approach, analysts 

have applied it to Database design.  Typically it is 

referred to as being the "Functional Approach" to Data- 

base design.  Its advocates generally stress the pan- 

application aspects of Databases and like John K. Lyon 

define Database as "The total data resources of an 

organization, considered as an entity" (1976, p. 2). 

19 



In an organization which already has a 

considerable tradition of departmentalized information, 

the use of the functional approach is not quite as 

obvious as it may seem.  In their effort to "go Data- 

base" many DP installations have simply tried to link 

together their traditional parochial files.  Others 

have tried the top-down approach strictly along company 

departmental lines (i.e. viewing each department as a 

major functional unit). 

Such efforts rarely proved successful.  Instead, 

argue supporters of top-down analysis, a true functional 

analysis must take place.  "Top-down design will work 

for data bases as well as it does for programs if the 

analysis is done by function rather than by department" 

write Thomas R. Finneran and J. Shirley Henry in 

Datamation.  "If the designer divides the 'big picture' 

into business functions, rather than organizational 

entities, he can logically segment the organization, 

avoiding the problems inherent in departmental analysis" 

(Nov. 1977, p. 99). 

The process then of functional design is as 

follows: 

1. identify the major enterprise (or system 

functions); 

2. construct a "functional tree" by dividing 

20 



each function into its constituent 

sub-functions until the elementary level 

functions are reached; 

3. identify the data elements necessary to 

support each elementary function; 

4. identify and combine identical branches 

and branch segments; 

5. combine "similar" segments and branches 

through the use of "more generalized" 

definitions; 

6. form records (segments) out of the data 

item "leaves" of each elementary level 

branch; 

7. "infer" sets "from their common key 

elements" (i.e. records which contain a 

common data item are related in an obvious 

way) . 

The philosophy here is clear. 

If a Database is to truly exist, it must be 
designed with the understanding that it is not 
just an on-line file, but, rather, that it is, 
first and foremost, a model of the business. . . . 
The Database administrator ^clesignerj7 has an 
obligation to the company to insure that the Data- 
base is defined in terms of the essential basic 
entities of the enterprise and not in terms of the 
way things are done now, nor in terms of a user's 
idea of an implementation.  The process of Data- 
base design is one of determining those areas 
that are important and significant to the enter- 
prise and it3 environment" (Lyon, 1976, p. 19). 

21 



V.  Information Oriented Approaches 

In recent years some analysts have attempted to 

view the problem of Database design in the light of 

what must be regarded as the essential aspect of a 

Database:  information.  Proponents of this position 

contend that a Database should be a repository of 

retrievable information, not just an amorphous pool 

of data.  The Database design should therefore 

emphasize the information capacity required of the 

Database rather than machine efficiency considerations. 

Much thought has been invested in trying to 

determine the basic elements of information and how 

best to describe them.  The initial division of infor- 

mation into entities (objects) and relationships 

between entities is almost universally accepted.  The 

issue becomes clouded, however, with the introduction 

of auxiliary concepts such as properties, attributes, 

constellations, upper and lower conceptual domains, 

predication structures, et cetera.  An interested reader 

soon finds himself traveling in the realms of semantics, 

symbolic logic, set theory, relational calculus, rela- 

tional algebra, and an occasional sojourn into classi- 

2 cal philosophy.  How do such esoteric topics pertain 

2 
Bo Sundgren even cites Heraclitus (the obscure?) 

in his discussion of "existence". 

22 



to Database design?  Here ace some examples. 

A.  An Infological Approach to Database Design 

Infological, a relatively recently coined word, 

simply means information oriented.  The proponents of 

the infological approach claim that the users of a 

database are information oriented, hence, informa- 

tion oriented (infological) implies user oriented. 

The distinction between information and 
data is essential to the infological theory 
of data bases. . . . Very briefly, data are 
the materialization, the representation of 
information, whereas information is equivalent 
to knowledge and has to do with the semantic 
aspect, the meaning of data. 

By distinguishing between information and 
data we may similarly distinguish between 
infological, or user oriented, and datalogical, 
or computer oriented, data base design problems 
(Sundgren, 1975, p. 2). 

The infological approach to Database design 

requires the designer to analyze the system in terms 

of the information which the system is required to 

produce.  Information is viewed as being a reflec- 

tion of "reality".  The mapping of "reality onto a 
3 

Database"   (reality ^Database) takes place as 

follows: 

1.  The reality >subject matter model 

For this discussion Bo Sundgren defines "a 
data base as a permanently maintained digital data 
model of a slice of reality" (Sundgren, 1975, p. 18) 

23 



submapping, established by the abstraction 
process; 

2. The subject matter model »infological 
model, established by the specification" 
process; 

3. The infological model ^datalogical model 
submapping, established by the design 
process; 

4. The datalogical model ►data base sub- 
mapping, established by this Implementation 
process and maintained by the operation 
process (1975, p. 18). 

In less technical terms this means that: 

1. the analyst views "reality" and subjectively 
forms an understanding of what he sees; 

2. the subjective understanding is modeled 
using some sort of formalized modeling 
technique (in this case, an "infological 
model"); 

3. the formalized information model is 
translated into a working machine model 
(a working schema); 

4. the actual data for the Database is loaded 
and the Database is maintained. 

The real substance of the infological approach 

is concerned with step #2, the construction of an 

infological model from the analyst's perceptions of the 

system.  Unfortunately the terminology and the concepts 

of this technique are so esoteric and foreboding that 

it is impossible (within the limits of this discussion) 

to either delve into the requisite explanations or to 

translate the jargon into the vernacular.  The interested 

reader is referred to Appendix B for an introductory 

24 



discussion of the subject (and to Bo Sundgren's book 

Theory of Data Bases for comprehensive coverage).  This 

introduction and above cited quotations, however should 

be sufficient to convey the unique flavor of the info- 

logical approach to Database design. 

B.  The "Entity-Relationship Model" 

Most of the schemata in use and being designed 

today contain "impurities", that is to say that they 

are 

not a "pure" representation of the real world. 
One of the reasons is that the database designer 
is restricted by the limited capabilities of the 
database management system.  For example, the 
many-to-many relationships between entities are 
difficult to represent directly in some database 
systems.  Another reason is that the user schema 
may contain some features related to the storage 
representation of the database.  For instance, 
it may describe which record types can be directly 
accessed and how to access other record types. 
In addition, the user schema is usually designed 
to be efficient for a certain type of data process- 
ing operations. . . . Therefore, the user schema 
is usually not a direct representation of the real 
world.  This makes the user schema difficult to 
understand and difficult to change (Chen, 1977b, 
p. 77). 

What some analysts propose as a remedy for this 

situation is the creation of a super-schema (or meta- 

schema, enterprise schema, or conceptual schema).  It 

is the task of the super-schema to accurately reflect 

the "real world" free from all pragmatic "3tate of the 

art" limitations.  Such a super-schema would then be 

25 



hardware and software independent, conceptually easier 

and truly information oriented.  Specific working 

schemata could easily be derived from a super-schema 

by applying the particular restrictions of a specific 

Database Management System. 

One of a number of super-schema design method- 

ologies i3 Peter Pin-Shan Chen's "Entity-Relationship 

model" (usually abbreviated as "E-R model").  In the 

E-R model terminology the super-schema is called the 

"enterprise schema" (supposedly because it accurately 

reflects the true enterprise view of information and 

not some view forced to fit the confines of a restric- 

tive computer dictated model). 

Real World      (the enterprise) 

Accurate Reflection 

Enterprise Schema 

Introduction of "Impurities' 

User Schema     (can be any of the current 
types:  network, hier- 
archial, or relational) 

Figure 2.2 The Role of the Enterprise Schema 

The E-R model utilizes five basic concepts. 

These are (Chen, 1977b, pp. 77-79): 

1) entity set3 - "An entity is a 'thing' which can be 
distinctly identified.  An entity set is a group of 

26 



entities of the same type."  In common terminology 
an entity would be called a datum (or a data item), 
and an entity set would be called a data item type 
(or generic name). 

2) relationship sets - "Entities are related to each 
other."  A specific department (an entity) may 
consist of a number of employees (entities). 
Between the department and each employee there is 
a relationship.  The set of all the relationships 
between all the departments and all the employees 
is a relationship set.  "A relationship set is a 
set of relationships of the same type."  Another 
way to approach the definition of relationship 
sets is to note that relationships exist between 
entities and relationship sets exist between entity 
sets. 

3) attributes - An attribute is that aspect of an 
entity or a relationship which can be assigned a 
value.  Age, for example, can be an attribute of 
an employee because a value (number of years) can 
be assigned to it.  In the E-R jargon an attribute 
is defined as "a mapping from an entity set (or 
relationship set) to a value set (or a group of value 
sets) ." 

4. value sets - As with entities and relationships, a 
"value 3et is a group of values of the same type." 
Color, number of years, name of locations, height, 
etc., all could be value sets. 

5) conceptual domains (upper and lower) - Conceptual 
domains are concepts used to accommodate changes 
to the enterprise schema design (they are, however, 
beyond the scope of this brief presentation, but are 
covered in more detail in Appendix B). 

These five basic concepts are the components of 

the E-R model; the media for the "enterprise" (or con- 

ceptual) schema.  The E-R approach proposes that the 

design process begin with the construction of the E-R 

model.  Using that model as a conceptual base, a work- 

ing schema can then be produced. 

27 



The E-R model is meant to be a design tool, 

bridging the gap between the human understanding of 

an enterprise and how that enterprise must be modeled 

in the machine.  It is claimed that the E-R model 

"adopts the more natural view that the real world 

consists of entities and relationships," and that it 

"incorporates some of the important semantic informa- 

tion about the real world" (Chen, 1976, pp. 9-10). 

It is a serious attempt to establish a comprehensible 

logical approach as the foundation for database 

design. 

C.  Semantic Predication Analysis 

One of the methods chosen to convert human 

information into machine retrievable information is 

semantic predication analysis.  It is used as the 

principle methodology of what is (unfortunately) called 

the Functional Model (totally unrelated to the func- 

tional approach to Database design described in sec- 

tion IV).  It assumes that there must be at least a 

word picture of the enterprise (or system) available. 

Given the word picture, semantic analysis analyzes the 

semantic structure of the sentences to produce a Func- 

tional Model;  which in turn can then be converted into 

a schema. 

28 



At the highest level (the information model 

level), "the Functional Model of data is viewed as a 

directed graph; its nodes represent sets and its arcs 

represent total functions.  Nodes are either entity 

sets or value sets.  Entity Set3 may have any number 

of incoming or outgoing arcs; Value Sets may have only 

incoming arcs, because 'values' are the ultimate 

logical representation of information" (Sibley i 

Kerschberg, 1977, pp. 86-87). 

lutlty Sats • C 

Ulu* Wt      - » 

Figure 2.3  Functional model graph (Sibley 
and Kerschberg, 1977, p. 87) 

29 



A predication represents a whole sentence; 
e.g., an assertion, a command, or a question; 
it may be decomposed into zero, one, or two 
arguments and a predicate.  Arguments may them- 
selves be predications.  "Downgraded predications" 
may qualify arguments (the semantic equivalent 
of adjectival clauses) or may modify predicates 
(the semantic equivalent of adverbial clauses). 
The lowest semantic level consists of semantic 
features which serve as atomic semantic descrip- 
tion units.  Down-graded predications play the 
role of semantic features of the arguments or 
predicates that they qualify or modify (Sibley 
& Kerschberg, 1977, p. 87). 

Consider the following example from Sibley 

and Kerschberg. 

1)  Statement:  "Companies supply parts to 

departments in some volume." 

The main predication structure (PN.) is 

"companies supply parts".  It consists of two argu- 

ments:  "companies" (A,) and "parts" (A_), and of one 

predicate:  "supply" (P,).  Note Figure 2.4.  The 

arrow under "supply" indicates the direction of the 

relationship of PN, .  Both PN2 and PN3 are "down- 

graded" predications.  PN_ is the predication repre- 

senting the indirect object.  PN3 represents the 

adverbial information. 

30 



<s> 
I     \ 

'3       \ 

:* <ai« 

*2 

/ .   » 
t      I        \ 

'        i v 

\ 
». 

commies     simi ««T5    i i TO        OC'UTMCim 

Figure 2.4  The predication structure for the sentence 
"Companies supply parts to departments in 

some volume" (Sibley and Kerschberg 
1977, p. 87) 

The choice of the abstraction used to map 
predication structures to Functional Model data 
structures is part of data policy.  As an example, 
the model might be restricted as follows: 

Semantic features map to functions whose 
range sets are value sets. 

Arguments corresponding to "real-world" 
entities map to named argument sets. 

Predications map to named predication sets, 
and the arcs pointing to arguments become 
named functions.  Also the predicate and 
its arrow are attached to the predication 
set. 

31 



Downgraded predications ace represented by 
functions whose domain is the main predication 
set and range is either an argument set or a 
value set (Sibley & Kerschberg, 1977, p. 88). 

Figure 2.5  The functional model data structure 
(Sibley and Kerschberg, 1977, p. 88) 

Figure 2.5 "depicts the Functional Model data 

structure based upon the predication structure of 

/Figure 2.4/ . . . and the above abstraction rules" 

(Sibley & Kerschberg, 1977, p. 88). 

Further abstractions are possible by choosing 

32 



a different set of abstraction rules.  Sibley and 

Kerschberg maintain that by the appropriate choice 

of rules (Data Policy) one can eventually arrive at 

schemata of any of the three major practical types: 

network, hierarchy, relation. 

VI.  Canonical Schema Design 

Does the information stored in a Database con- 

tain its own inherent structure? If it does, can this 

structure be used to derive an "optimal" schema? Some 

analysts have answered "yes" to both these questions 

and have produced what they refer to as being "canoni- 

cal" schemata. 

In the words of James Martin (1977, pp. 248-249) 

We will define a canonical 3chema as a model 
of data which represents the inherent structure 
of that data and hence is independent of individual 
applications of the data and also of the software" 
or hardware mechanisms which are employed in 
representing and using the data. 

It is desirable to step away from the current 
software for a moment and ask the question, "Are 
there any inherent properties in the data which 
would lead to data items being grouped and groups 
being interconnected in a particular structure?" 
The design procedure described /below./. . . makes 
such structures clear.  We refer to them as 
canonical structures.  To be inherently stable, 
and be able to evolve naturally to meet the needs 
of new applications, a data base should have a 
canonical structure.  This gives it the best 
chance of surviving future changes.  It minimizes 
the risk of having to rewrite application programs 
because of data-base changes. 

33 



Canonical schemata are similar to the 

"information-oriented" models (discussed above in 

section V) in that they are not specific schemata for 

specific DBMS packages, but rather are once removed 

models of data structure from which working schemata 

can be derived. 

The canonical form of data. . . is independent 
of whether the data will eventually be repre- 
sented by means of hierarchical, CODASYL, 
relational, or other structures.  An additional 
step in deriving a workable schema is to con- 
vert the canonical form of the data into a 
structure that can be supported by whatever 
software is being used.  This i3 a relatively 
straightforward step (Martin, 1977, p. 249). 

The methodology for producing a canonical 

schema is not conceptually complex.  It is so non- 

complex that it has, in part, been automated (Raver 

and Hubbard, 1977).  The canonical design technique 

is an "incremental" one, based upon how each of the 

various applications "view" the data.  Each user's 

view is added to (or can be deleted from) the canonical 

model in discrete steps, thus allowing for relatively 

simple model modification. 

If one examines the canonical approach in light 

of the three basic schema design tasks (identifying data 

items, grouping data items into records and grouping 

records into sets) one finds that the canonical approach 

concerns itself with only the latter two tasks.  It 

34 



assumes that the relevant data items have been 

identified for each user.  This implies that either 

an existing set of applications can be called upon 

for this information or that some other function (such 

as the preparation of a Data Dictionary) has already 

performed the identification task. 

The graphical tool of the canonical approach 

is the "bubble chart".  A bubble chart is constructed 

by drawing each data item type as an elipse (or a 

circle) and by connecting related data items types 

with arrows.  An arrow may be either single headed 

(for 1:1 relationships) or double headed (for 1:M 

relationships).  An arrow may also be either uni- 

directional (indicating that only a relationship in 

one direction is relevant) or bi-directional (indi- 

cating that complementary relationships exist). 

Figure 2.6 contains an example of a bubble chart. 

Figure 2.6  Bubble Chart Example 

35 



The canonical design process begins by 

representing one user's view (the information needs of 

one application) in bubble chart format.  It then pro- 

ceeds to incorporate additional users' views into the 

bubble chart until all the users' views have been 

taken into account.  Redundant relationships (relation- 

ships which can be deduced from the existence of other, 

non-redundant relationships) are removed as they are 
<» 

discerned.  The final bubble chart is then converted 

into a schema as follows: 

All bubbles with single headed arrows leaving 

them are regarded as "prime keys" (i.e. the key field 

in a record).  All bubbles which have only double- 

headed arrows leaving them become "secondary keys" 

(i.e. keys accessed through the use of a secondary 

index).  All other bubbles are simply ("attribute") 

value fields.  Figure 2.7 illustrates this process. 

By no means an "ivory tower" product, the 

canonical design recognizes the exigencies of an 

operational DP center.  It takes into account the 

physical problems of response time and machine utili- 

zation, but rather than treat the physical constraints 

as being of primary concern (in the manner of Service 

Analysis), it subordinates them to the more "essential" 

logical design.  When compromises are necessary due to 

36 



USER VTEV Jl 

USER VTEV >*2 

USER VTEV? -»3 

FINAL 3U33LE C'lART 

CANONICAL SCHEMA 

DEPT record 

DEPT<>  DEPT-NAME  PROJECTS 

secondary-Lndex 
^ EMPLOYEE record  
EMPLOYEE?  SOCIAL-SECURITY*  ACE  NAME 

Figure 2.7  Canonical Design Process 

37 



physical constraints, the canonical approach accepts 

them for what they are:  compromises due to limitations 

in the state of the art, not essential Database 

features. 

VII.  The Relational Approach 

A movement which is rapidly gaining in popu- 
4 

larity is the push for Relational Databases  and rela- 

tional Database design techniques.  For a discussion 

to do justice to Relational Database theory would 

require a vehicle of far greater scope than this thesis, 

To avoid the topic completely would be to ignore an 

area of ever increasing importance.  The following dis- 

cussion, of necessity brief, aims to convey only the 

basic philosophy of the relational approach and in no 

way pretends to be mathematically rigorous. 

To quote C.J. Date paraphrasing E.F. Codd, the 

objectives for the relational approach are as follows 

(1977, p. 457): 

1. To provide a high degree of data independence; 

2. To provide a community view of the data of 
spartan simplicity, so that a wide variety 
of users in an enterprise (ranging from 
the most computer-naive to the most computer- 
sophisticated) can interact with a common 
model (while not prohibiting super-imposed 
user views for specialized purposes); 

4 
To date, most relational database packages are 

still not past the experimental state. 

38 



3. To simplify the potentially formidable 
job of the database administrator; 

4. To introduce a theoretical foundation (albeit 
modest) into database management (a field 
sadly lacking in solid principles and guide- 
lines) ; 

5. To merge the fact retrieval and file 
management fields in preparation for the 
addition at a later time of inferential 
services in the commercial world; 

6. To lift database application programming 
to a new level—a level in which sets (and 
more specifically relations) are treated 
as operands instead of being processed 
element by element. 

The relational approach is another of the 

"logical design approaches".  It is concerned with 

the "user's view" of the data, not with physical 

representation. 

Codd's principles /the foundations of the 
relational approach/ relate to the user's 
view of the data, or the logical description 
of the data.  It is very important to note 
that they do not apply to its physical 
representation.  There are many ways in which 
a Codd /relational^ data base could be physi- 
cally structured (Martin, 1976, p. 95). 

The underlying principle of the relational 

approach stems from an understanding that any logical 

data structure, no matter how complex, can be broken 

down and represented as one or more table(s) of 

"relations".  Consider the following simple example 

adapted from C.J. Date (1977).  The data structure 

in Figure 2.8 is a typical hierarchy.  Each SUPPLIER 

39 



SUPPLIER RECORD 

SUPPLIER 

,, PART-QUANTITY RECORD 

PARTI QUANTITY 

Figure 2.8  Simple Data Hierarchy 

can supply multiple parts (PART#), each of which can 

be ordered in a given quantity.  At any specific time 

the actual data being stored might consist of any 

combination of values.  Such a possible set of values 

is given in table format in Figure 2.9.  Although listed 

in a table, the structure is really still that of a 

hierarchy.  SUPPLIER can be thought of as the key (the 

SUPPLIER 
PART-QUANTITY 

PART# QUANTITY 

SI PI 300 
P2 200 
P3 400 
P4 200 
P5 100 
P6 160 

S2 PI 300 
P2 466 

S3 P2 200 
P4 300 
P5 460 

Table 2.9  Data in Tabular Format 

40 



root) of which PART-QUANTITY is a function.  Likewise 

within PART-QUANTITY, PART# can be thought of as the 

key (and QUANTITY the dependent item).  In order for 

Figure 2.9 to be considered a "table" in the relational 

sense it roust undergo a process called Normalization. 

Figure 2.10 shows the same information as Figure 2.9 

after normalization. 

SUPPLIER 

SI 
SI 
SI 
SI 
SI 
SI 
S2 
S2 
S3 
S3 
S3 

Figure 2.10  A "Relation" 

Such a normalized table of relationships is called a 

"relation".  It is the basis for the relational 

approach.  To qualify as a relation a table must meet 

a number of standards.  According to James Martin the 

properties of a relation are (1976, p. 96): 

1. Each entry in a table represents one data 
item; there are no repeating groups. 

2. They are column-homogeneous; that is, in 
any column all items are of the same kind. 

41 

ART# QUANTITY 

PI 300 
P2 200 
P3 400 
P4 200 
P5 100 
P6 100 
PI 300 
P2 400 
P2 200 
P4 300 
P5 400 



3. Each column /called a domain/ is assigned a 
distinct name. 

4. All rows /called tup_les/ are distinct; 
duplicate rows are not allowed. 

5. Both the rows and the columns can be viewed 
in any sequence at any time without affecting 
either the information content or the seman- 
tics of the function using the table. 

A relation, such as the one in Figure 2.10, is 

usually expressed as follows:  SPQ(SUPPLIER, PART#, 

QUANTITY):  where SPQ is the name of the relation and 

SUPPLIER, PART# and QUANTITY are its component domains 

(data item types). 

A relational Database schema consists of a set 

of basic relations.  Relations can be manipulated 

(through the use of relational algebra and relational 

calculus) to create various combinations of domains. 

Each new combination of domains is in effect a new rela- 

tion.  Thus any relation necessary to satisfy a user's 

view can be obtained at run time through the use of the 

relational algebra and relational calculus operations. 

The basic relations, those which are to be 

Database resident and do not need to be created at run 

time, are what other methodologies term logical records. 

In order to be appropriate for use in a relational 

schema, these records must be in fourth normal form 

(4NF).  A discussion of the complete normalization 

process which produces 4NF relations (records) is beyond 

42 



the scope of this Chapter, but can be found in Appendix 

B.  In simple, non-mathematical terms, a 4NF relation 

(or record) consists of one key domain (an identifier 

or object) and unique attribute domains (i.e. attributes 

which are used solely as attributes of the key domain). 

The principle effort in relational schema design is the 

determination of the basic 4NF relations. 

Based as it is upon a firm mathematical base, 

the relational approach is a favorite of the academic 

world.  Unfortunately it suffers from a jargon filled 

vocabulary of confusion.  Talented authors 3uch as 

James Martin and C.J. Date are doing much to cut through 

the jargon and present the relational approach in a 

comprehensible manner, but at the moment (and in the 

near foreseeable future) the relational approach remains 

in the domain of the theoreticians. 

VIII.  Other Approaches and Combinations 

There are many other approaches to Database 

design.  There is another so-called "functional 

approach" (Gerritsen, 1975) which requires the designer 

to input each user's view expressed as a hierarchy state- 

ment (using a language called HI-IQ) into a software 

package called DESIGNER.  DESIGNER then analyzes the 

total hierarchy picture and produces a schema network 

43 



in DBTG compatible format. 

There is an automated package for estimating 

"total storage costs and average access time of several 

file organizations, given a specific data base, query 

characterization and device-related specifications. 

Based on these estimates, an appropriate file struc- 

ture may be selected for the specific situation." 

(Cardenas, 1973) 

In a similar vein, a group working for the 

U.S. Navy (Nunamaker, Konsynski, Ho, and Singer, 1976) 

have devised a system for "computer-aided analysis for 

the design and development of" computer based systems. 

Their system contains "four major components:  Problem 

Statement Language, Problem Statement Analyzer, Genera- 

tor of Alternative Designs, and Performance Evaluator." 

The Generator Qf Alternative Designs generates among 

other things "alternative specifications for program 

modules and logical database structures". 

This list could easily continue and engulf many 

pages; as could the list of methodologies which make use 

of a combination of techniques.  The combinations are 

mostly found in industry, the world of practical appli- 

cations, where results are generally more important 

than strict adherence to any specific set of theoretical 

ideology.  Combinations 3uch as Service Analysis 

44 



interwoven with Raver and Hubbard's automated canonical 

schema design would probably prove very effective since 

each addresses a different (yet dovetailing) aspect of 

the total design. 

The direction of the future is probably towards 

more and more automated design techniques.  In addition 

to those already mentioned for established DBMS packages 

there is even some movement to automate the experimental 

ones as well /e.g. Philip A. Bernstein's package for 

"synthesizing third normal form relations from func- 

tional dependencies" (1976^/.  The basis for automation 

exists; the design of a Database is intuitively a 

logical and orderly process.  Yet before automation 

takes place, one should be sure that the methodology 

(upon which one bases the automation model) is the one 

"true" enough to warrant automation. 

45 



CHAPTER THREE 

ANALYSES OF THE CURRENT DESIGN DIRECTIONS 

I.  Introduction 

Amid the mass of Database design methodologies, 

a designer must keep in mind that the object of the 

endeavor is to produce a viable Database design.  When 

so many esoteric topics beckon and call it is easy to 

be distracted from this destination; to be seduced by 

the formal perfection of mathematics or fall fascinated 

into the labyrinthine logic of machine optimization. 

It is easy to become confused and intimidated in the 

ubiquitous jungle of theories and jargon.  When so much 

seems complex and confusing one tends to regard with 

suspicion that which is simple and obvious. 

Database design, however, should be, and can 

be simple and obvious, straightforward and comprehensi- 

ble.  If one does keep the real goal in mind, most of 

the complexity and the confusion can be dispensed with. 

This chapter consists of an attempt to cut away and 

discard that which is superfluous and irrelevant in 

Database design.  It is, if you will, an exercise in 

the judicious use of Occam's Razor.   Design approaches 

Occam's Razor - "the maxim that assumptions 
introduced to explain a thing must not be multiplied 
beyond necessity" - Random House College Dictionary. 

46 



will be tested against the touchstone of pragmatism; 

if some aspect furthers the goal of reaching a viable 

Database design it will be accepted, if not, no matter 

how mathematically elegant or machine efficient, it 

will be rejected. 

The analysis in this chapter is roughly 

patterned after a top-down binary (lion in the desert) 

search.  The approach is to first examine the general 

design directions.  Then, as needed, greater detail is 

added, until at the conclusion of the chapter, certain 

specific methodologies are critiqued. 

II.  A Question of Priority - Man or Machine 

Among the current Database design methodologies 

two distinct and mutually exclusive schools of thought 

dominate and vie for preeminence:  the machine effi- 

ciency school and the information oriented (logical 

design approach) school.  Although within each school 

there exist many factions, before attempting to create 

order out of the multitude of factions, the fundamental 

philosophic issue (machine efficiency versus information 

orientation) must be resolved. 

The case for machine efficient design emphasis 

may seem to be a strong one.  Today's Databases push 

much of the extant machinery to their performance limits 

47 



Many Database systems, for example, work in an on-line 

environment.  Consequently, response time is of para- 

mount importance.  Another salient consideration is 

efficient storage.  Typically, Database systems handle 

large quantities of data.  Despite the decreasing cost 

of storage (both primary and secondary), an inefficient 

data storage scheme can waste considerable sums of 

money, (as well as significantly reduce response time). 

Offhand it would seem that increased software complex- 

ity might be a small price to pay for a DBMS which will 

optimize expensive machine resource utilization. 

A problem with this line of reasoning is that 

there are embedded within it critical assumptions which 

cannot pass unexamined; implications whose ramifications 

will come to fruition only at some future date. 

One tacit assumption behind machine oriented 

design is the presupposition that there can exist fore- 

knowledge of such factors as data item access frequency 

and number of occurrences.  Adequate estimates of these 

parameters might be obtainable for a system at the time 

the Database is being designed; but what can be said 

about the unpredictable future?  Is not data storage 

flexibility (adaptability) one of the goals of Database 

technology?  One of the basic insights is that no system 

is static.  What happens to data storage flexibility 

48 



when critical factors in the data storage scheme are 

the access frequency of certain data items and the 

number of times they are expected to occur?  It is 

almost certain that the addition of a new application 

to an existing Database so designed would cause havoc; 

requiring modifications to the extent of a total 

redesign. 

Another assumption of the machine oriented 

approaches is the continued existence of the machine 

itself.  A Database which is designed around the 

specifications (idiosyncrasies?) of a particular machine 

can have no pretense to machine independence.  In the 

best circumstances certain compatibilities will exist 

between a single vendor's different models; in the 

worst cases, even the upgrading of an operating system 

will precipitate serious redesign problems.  This is 

not the place to rehash all the old arguments against 

machine dependent application software.  Many a DP center 

still bears the scars of lessons learned the hard way 

in this regard.  Unfortunately, except for those who 

continually live in innocent bliss (faith in the one 

and only vendor), many of the machine oriented apostles 

are doomed to repeat this sad and costly history. 

Earlier it was stated that "Offhand it would 

seem that increased software complexity might be a small 

49 



price to pay for a DBMS which will optimize expensive 

machine resource utilization," but this is not so. 

The most valuable and the most fallible resource at 

any DP installation is its professional personnel. 

Software complexity has an exponentially increasing 

debilitating effect upon professional personnel and 

their productive output.  This is not to deny that 

extraordinary and talented people exist - people who 

revel in the complex and the obscure.  Highly complex 

systems have been designed and implemented.  Geniuses 

find their way into the computer field as well as into 

any other, but systems should not be designed under 

the assumption that there will always be a genius 

present to administrate them.  To quote Henry Kissinger 

2 writing in another context:   "The very complexity of 

these arrangements doomed them.  A system which requires 

a great man. . . sets itself an almost insurmountable 

challenge. . . " (1971, p. 921). 

Machine oriented designs are, by their very 

nature, logically more complex than designs formulated 

in accordance with human modes of thought.  The end 

product of an information system is information.  A 

Database is a tool within an information system, a 

2 
Describing Bismarck's web of international 

alliances. 

50 



means to an end (and not an end in itself).  The whole 

system, and all its tools should be as conceptually 

simple and comprehensible as possible. 

It has been said that:  "Man is born free, and 

everywhere he is in chains."  Men created machines to 

serve the needs of men.  How absurd it is to find some 

men now serving (orienting themselves towards) the needs 

of the machines.  It is, to say the least, psychologi- 

cally demeaning. 

Given the state of the art of today's Database 

technology, even the most fanatic supporters of the 

information oriented approach would concede that when 

it comes to the actual, practical, final design and 

implementation of a Database, response time and machine 

utilization must be taken into account.  The machines 

are simply not "sophisticated" enough to allow the 

designer to ignore such considerations.  The real ques- 

tion, however, is whether in order to achieve an "opti- 

mal" Database design, one must begin the design process 

by defining the physical machine oriented characteris- 

tics.  This author's answer is emphatically "no".  A 

machine efficient Database design approach i3 not a 

guarantee that the final product will make optimum use 

of even the machine's resources*  In many cases a machine 

oriented approach results in serious sub-optimization 

51 



problems (i.e. the optimization of one specific 

resource to the detriment of the utilization of the 

total resources).  Certainly in regard to flexibility, 

adaptability and the "expensive" human factor, there 

are considerable problems with the machine oriented 

approach. 

The logical design based approach falls prey 

to none of these shortcomings. It places the machine 

in rightful subordination to the considerations of 

logical information content. The information oriented 

school itself, however, is not a unified whole. Some 

of the factions, and their arguments will be examined 

in the following sections. 

III.  Logical Schema Design - The Specific Versus the 
General 

When the analyst inaugurates the Database 

design at the logical design (information oriented) 

level a problem similar to the machine-oriented versus 

information-oriented distinction arises.  It is the 

problem of specific package orientation versus general- 

ized package-independent design.  Stated simply the 

question is whether to begin designing a schema to fit 

the mold of a specific DBMS package, or to initially 

construct a package-independent data (information) 

model and then from it derive a specific schema (by 

52 



imposing on the general, unrestricted model, the 

idiosyncratic restrictions of the package). 

In actual practice the specific package oriented 

design is quite prevalent.  It is natural when using a 

specific package to begin thinking in the terms of that 

package and in line with its mode of structure.  An 

analyst working with hierarchical data structures begins 

to think in terms of data hierarchies.  He soon begins 

to intuitively organize data interrelationships into 

hierarchies and they become for him the natural way to 

think.  In like manner, the analyst who works with net- 

works or with relations begins to feel comfortable and 

natural with the type of data structure to which he has 

become accustomed.  This is, in many cases, the real 

basis for what was discussed in Chapter Two as being the 

"Artistic Intuitive Approach". 

A package-oriented design by a designer familiar 

with the package can be a very efficient operation.  If 

the specific DBMS package is powerful and flexible, the 

resulting Database will probably be powerful and flexible, 

On the other hand, a restrictive DBMS package will almost 

certainly cause the designer to create a restrictive and 

convoluted Database. Regrettably, even though some Data- 

base packages may appear to give the designer a signifi- 

cant degree of conceptual freedom, all existing (and 

53 



foreseeable) DBMS packages are to some extent 

conceptually restrictive.  This is a serious drawback 

to the package oriented design approach. 

A second drawback which exists today (but which 

may be diminished in the not too distant future) is 

package dependency.  Unfortunately, being package oriented 

usually means being package dependent.  Like machine 

dependency the effects of package dependency are gener- 

ally seen only over an extended time period.  How fool- 

hardy it is to irrevocably tie oneself (and one's com- 

pany) to a vendor if it can at all be avoided.  No 

matter how powerful the vendor may seem, the sands of 

time have toppled many a mighty giant.  Far better to 

face the vicissitudes of fortune unencumbered and flexi- 

ble than needlessly tied to the fate of another. 

The hope for the future in this situation is the 

growing interest and acceptance of standard DBMS fea- 

tures.  More and more vendors are turning towards the 

CODASYL DBTG recommendations, and ANSI seems close to 

endorsing them.  This trend should lessen the danger of 

package dependency.  Eventually standard packages may be 

as compatible and transportable as ANSI standard COBOL 

programs.  For the present, however, it must be remem- 

bered that widespread standard DBMS packages are still 

a feature of the future and not a virtue of our own time. 

54 



Thus, package oriented design, widespread though 

it may be, contains two serious (fatal?) flaws: 

restricted conceptualization and package dependency. 

The alternative, general package independent design has 

neither of these faults.  By beginning the design proc- 

ess at the conceptual level, the designer is free to 

formulate his ideas in direct response to the informa- 

tion dictated data relationships, the "inherent" data 

organization.  Free from the pragmatic confines of 

specific DBMS packages such a model can be a truer 

reflection "of reality" than any restricted model.  Free 

from the idiosyncrasies of a specific package the unre- 

stricted conceptual model is eminently transportable. 

Simple design compromises can adapt it to any reasonable 

DBMS package and when the time comes to transport the 

design, the Database, to another package, the original 

(uncompromised) design is still valid. 

It is hard not to find the idea of a conceptual 

level design appealing.  Yet if it is so appealing, why 

isn't it more widely used?  One reason is that the con- 

cept of a "conceptual schema" is still relatively new. 

Another reason is that although it is easy to say that 

one should work from a "conceptual model" there is very 

little agreement as to how to formulate that model and 

what modeling tools should be used.  This lack of 

55 



unanimity is evident even from the brief survey of 

techniques described in Chapter Two.  In the following 

section an attempt will be made to critique the current 

conceptual level approaches, and, barring a full 

endorsement of any one particular approach, at least 

an understanding of the current shortcomings will be 

reached. 

IV.  Logical Schema Design - Problems with the 
Functional Approach 

A conceptual schema is often called an enterprise 
3 

schema,  that is, it is supposed to be a model of the 

enterprise it serves.  There are, however, a number of 

ways in which the reality and the information needs of 

an enterprise can be modeled.  One method is to take the 

total information picture as a gestalt, an integrated 

whole of interrelated data.  An alternative method is 

the Functional Approach, a model based upon the enter- 

prise's functional features.  Although the functional 

approach is a direct descendant of the very powerful and 

successful top-down design technique, there are some 

serious problems with it. 

A Database is, by its very nature, an information 

integrator:  a means whereby the information needs of all 

JNot to be confused with the E-R approach's 
specific use of the terms "enterprise schema". 

56 



its users can be stored in an integrated manner. 

Paradoxically, in order to store information in an 

integrated flexible manner, one stores data and not 

information per se.  There are really two ways in which 

information can be stored:  implicitly and explicitly. 

To store a unit of information explicitly is to group 

all its component data into one "lump" (or record).  To 

store information implicitly is to store the component 

data independent of a specific information context, but 

in such a manner that the desired information can be 

constructed out of its components when need be.  Con- 

siderations of maximum flexibility demand that as far 

as physically possible, information should be stored 

implicitly.  Only those datum which are inherently 

connected (such as a person and his social security 

number) should be stored together (in one record). 

What the functional approach does, by its 

process of dividing the information into fundamental 

units of information, is create a collection of records 

(groups of data types) each containing a basic unit of 

information.  This scheme is very sensible in the tradi- 

tional file environment, where one is interested in 

storing information explicitly.  It is not, however, 

very suitable to Database design.  There is, for example, 

no guarantee that different functions may not need the 

same piece of data, but in different information contexts, 

57 



By following the functional approach such a piece of 

data would appear in multiple records, a problem of 

data redundancy.  Similarly, the practice of storing 

explicit information requires a serious redesign effort 

whenever a new type of information is needed (even if 

all the requisite data are already in the "Database"I). 

This is not to entirely repudiate the value of 

the top-down techniques as an aid in Database design. 

Determination of the information of an enterprise is 

basic to Database design.  Top-down, functional analysis 

provides a powerful method of ascertaining an enter- 

prise's information needs (and thus the information 

needs of its Database), but this should be the extent 

of the functional analysis role.  It is a useful tool, 

but out of place when used as a schema designing 

implement. 

V.  Conceptual Level Design - A Search for Simplicity 

In the introduction to this chapter it was 

stated that "the object of the endeavor is to produce 

a viable Database design".  Some readers may find the 

phrase "viable Database design" to be somewhat vague 

and the time has come to expand upon that idea and make 

it more specific.  Despite whatever fascinations Data- 

base concepts may hold for the purely academic world 

(and other interested bystanders) the subject finds 

58 



its origins deeply embedded in the practical, the 

applied world.  More than anything else a Database is 

a tool.  Its value lies in its ability to be used. 

Aesthetic considerations, no matter how intellectually 

soul statisfying, can only be of secondary (almost 

insignificant) importance. 

Like any tool its usefulness is seen in its 

power to perform a job well and its applicability, or 

adaptability to handle a wide range of situations.  A 

designer of tools must always bear in mind, among other 

things, who it is that will use the tool.  A thirty 

kilogram hand-held hammer for example, might certainly 

be able to pound nails with considerable force but its 

usefulness would be extremely limited, both by reason of 

its lack of applicability to many situations (delivering 

too much power) and by reason of its unwieldable weight. 

A methodology for Database design is also a 

tool; a tool used to design another tool.  Just as a 

Database is primarily a practical tool, by association, 

the Database design tool must also be primarily a prac- 

tical tool.  As such, the authors of Database design 

methodologies must take into consideration the identity 

of the users of the tool; the design artisans. 

The Database design artisans are for the most 

part DP professionals with considerable experience in 

59 



the field.  They ace system analysts and programmers who 

have risen to a position of precedence.  They are not 

primarily mathematicians, logicians, semanticists and 

philosophers.  Why then are so many Database design 

methodologies geared to mathematicians, logicians, 

semanticists and philosophers? What good does it do to 

create a Database design methodology which is compre- 

hensible only to a specialist (or at least a cognoscenti) 

in one or more of these peripheral disciplines? 

Many of the "conceptual level" design method- 

ologies are of this ilk.  Consider the "infological 

approach" and "semantic predication analysis".  The info- 

logical approach, with its mixture of symbolic logic, 

semantics, relational mathematics and realist philosophy, 

is perhaps an extreme case of erudite design.  Semantic 

predication analysis, in addition to being equally 

obscure, is also of questionable value.  Typically 

"word pictures" of an organization and its functions 

are far less precise (far less informative) than dia- 

grams and schematics.  If a complete word picture of an 

organization can be composed, then most certainly a 

schematic can also be composed with far less effort. 

Even the relational approach, with its emphasis 

on the not so mundane relational mathematics and its 

"confusing language" (Martin, 1976, p. 96) cannot hope 

to be comprehensible to the average system analyst.  The 

60 



proliferation of "normal forms" (so reminiscent of 

Ptolomy's proliferating epicycles) can only cast a 

doubtful light upon the relational model's claims of 

logical simplicity and ease of use. 

There exists just one justification for such 

esoteric Database design techniques (aside from the 

desire to create a white elephant and/or the need to 

churn out pulp for the publisher's mill):  that there 

can exist no simpler, less abstruse, method of accom- 

plishing the same task.  But, if there does exist a 

simple Database design methodology, one which with far 

less complexity reaches the same goal, then it follows 

that (with a swipe of Occam's razor?) all the abstruse 

methodologies should be summarily discarded. 

The issue, thus, centers upon the question of 

whether a simple and comprehensible Database design 

methodology does exist.  Without the existence of such 

a methodology Occam's razor becomes duller than a butter 

knife.  Both the canonical Database design and the Entity 

Relationship approach are simpler than those mentioned 

above (comprehensible to the average DP professional) 

but, as will be seen in the next section, they are not 

ideal alternatives.  The E-R approach is still overly 

complex and the Canonical design is not purely a concep- 

tual level design.  Nevertheless, Chapter Four of this 

61 



thesis emphatically asserts that a simple, easy to use, 

yet powerful Database design methodology does indeed 

exist.  Before expanding upon that topic, however, the 

assertions made above concerning the canonical and 

Entity Relationship approaches must be justified. 

VI.  Two Serious Design Methodologies - A Closer Look 

Of all the Database design methodologies which 

this author has encountered, the canonical design tech- 

nique and the E-R approach have left the most favorable 

impressions. Each is an information oriented approach. 

Each is not overly erudite. In the absence of a better 

tool, each would probably do a passable job. The prob- 

lem is that each one of these methodologies is, in its 

own way, somewhat deficient. 

A.  The E-R Approach 

The E-R approach is a true conceptual level 

approach.  It is not concerned with serving the particu- 

lar structure of any given DBMS package, but rather its 

goal is to be an accurate reflection of "reality", one 

which can then be used as the basis for a package 

oriented design.  If it were to be judged only upon 

whether it reaches its goal or not then the E-R approach 

must be deemed a success.  Unfortunately, how one reaches 

a goal is often as important as the goal attainment 

62 



itself.  The E-R approach does provide a means of 

modeling "reality", but both the construction of the 

model and the finished model itself are far more 

complex than they need to be. 

The E-R model makes use of entity sets, rela- 

tionships, attributes, value sets, and upper and lower 

conceptual domains.  How well defined are these concepts? 

Are they all necessary? Consider the problem of the 

enterprise administrator, the person responsible for 

determining the "entity types most suitable for his 

company."  How does he identify an "entity"? Peter 

Pin-Shan Chen provides the following guide:  "An entity 

is a 'thing' which can be distinctly identified." (Chen, 

1977a, p. 17) 

Intuitively everyone knows what a "thing" is.  A 

"thing" exists (if not physically then conceptually) and 

can be described.  It is the opposite of "nothing" (which 

cannot be described).  In other words, a "thing" is that 

which has attributes.  Thus, upon first glance at the 

definition, one is led to believe that an "entity" is 

that which has (or can have) attributes (or properties). 

This expanded definition of an entity must, 

however, be short lived.  Further examination of the E-R 

approach discloses the following:  "Entities and relation- 

ships have properties, which can be expressed in terms 

of attribute-value pairs" (p. 17). If both entities and 

63 



relationships can have properties (attributes), then 

both must be describable, and hence both must be things. 

How is one to distinguish between entity things and 

relationship things? 

The answer to this question is implied by the 

following excerpt from the definition of relationships: 

"Relationships may exist between entities" (Chen, 1977a, 

p. 17).  From this it is deducible that entities must 

be unitary, indivisible things while relationships are 

combined, or concatenated things.  This confusing situa- 

tion can perhaps be clarified through the use of an 

example. 

Suppose that the local electric company keeps 

customer records keyed on a customer service number. 

A customer service number is a unique identifier of a 

customer.  As far as the system is concerned, a customer 

is a unitary indivisible thing, thus the customer service 

number can be thought of as identifying an entity.  As 

the unique identifier of the entity, the customer service 

number itself can be thought of as being the entity 

(which in turn may have attributes, e.g. name, address, 

phone number, and so on).  Other entities which the 

system might include are billing cycle number, branch 

office number, service route number, etc.  Each is, in 

some sense a unitary thing and hence each is an entity. 

64 



It seems now that the problem of identifying 

entities has been clarified (although as shall be seen 

shortly, it is not as clear as one might wish).  The 

next natural question is:  How does one identify relation- 

ships?  If a relationship is a concatenated "thing", it 

should be easy to identify.  Consider again the example 

of the electric company.  It retains, as has been noted, 

customer service numbers.  Each customer service number 

is made up of, among other things:  the branch number, 

the billing cycle number, the service route number, and 

an address code.  The multiple concatenation of all these 

parts results in a unique customer "service number". 

Thus the customer service number is a relationship.  As 

a relationship it is entitled to have attributes (such 

as customer name, address and phone number). 

It seems therefore that the original analysis, 

which declared a customer service number to be an 

entity, was in error.  Obviously, it follows from the 

definitions that a customer service number is a relation- 

ship.  All the steps in this argument have led logically 

from one to the next and the conclusion is inescapable. 

Nevertheless, this author submits that the conclusion 

is, from an intuitively logical point of view, an 

absurdity.  The customer service number uniquely identi- 

fies a customer.  Is one to assume from this that one 

65 



must think of a customer as a "relationship"? 

There is an alternative to this line of thinking, 

one which more closely follows the normal pattern of 

human thought.  Would it not be far simpler to postulate 

only one generic term to describe "things"?  The human 

mind deals with concatenated "things" as "entities" all 

the time.  A person's full name, for example, is really 

a concatenation of his first and last name (and any others 

which might be appended).  The E-R approach of splitting 

"things" into two ill-defined and unnatural groups can 

only lead to confusion. 

The example above is not the only instance of 

over complexity to be found in the E-R approach.  Con- 

sider the postulated capacity of values to become enti- 

ties and entities to become values.  Entities and values 

each inhabit a different conceptual domain (entities the 

upper, values the lower).  Recognizing that occasionally 

something which has always been thought of as a value 

needs to be thought of as an entity (and vice versa) the 

E-R approach provides a process for transferring a 

"thing" from one conceptual domain to another (it is one 

of the five basic modifying operations).  For example, 

suppose office number has always been thought of as the 

value for the attribute office of the entity employee. 

One day the need arises to take inventory of the offices. 

66 



Thus it might be useful to think of employee as the 

value of the attribute resident of the entity office 

number. 

It is clear here that "things" can be either 

entities or values with equal facility.  In other terms 

one might say that a thing i3 sometimes an object (a 

possessor of attributes) and at other times it can be 

thought of as an attribute of some other object.  No 

one "thing" is uniquely an object, just as no one "thing* 

is uniquely an attribute.  Why then, must a division 

into conceptual domains be made?  Why should the rigid 

distinction exist between "entities" and "values"? 

They are, after all, two sides of the same coin.  It is 

far simpler to postulate the existence of only one 

generic terra to cover all the E-R concepts.  Such a 

singular concept could be seen as being usable in 

different modes:  as an object with attributes, as an 

attribute of an object, as a component of a concatena- 

tion, and as being either indivisible or concatenated in 
4 

its own right. 

The point is this, that the E-R approach has 

postulated far more concepts and complexities than are 

4 
Just such an approach will be introduced in 

Chapter Four. 

67 



really necessary to deal with the problems at hand. 

Even the relatively simple E-R diagrams become hope- 

lessly tangled and interwoven in a system of even 

moderate scale. It is almost as if the E-R approach 

suffers from ivory tower naivete; it i3 an intellec- 

tually stimulating idea, but of questionable practi- 

cal worth. 

B.  Canonical Database Design 

The Canonical Design technique, like the E-R 

approach, is a methodology for a package independent 

design.  The object of the design is not a "working" 

schema (one which is immediately usable with a particu- 

lar DBMS package) but rather a generalized schema 

design which may be modified to meet the specific 

requirements of a specific package.  The canonical 

design methodology purports to be able to discover the 

"inherent properties in the data which would lead to 

data items being grouped and groups being interconnected 

in a particular structure" (Martin, 1977, pp. 248-49). 

This is an admirable goal; unfortunately the canonical 

design approach does not reach it. 

Although attempting to divorce itself from the 

practical restrictions of today's DBMS packages, the 

canonical design is too steeped in current DBMS package 

68 



traditions to be considered a truly "conceptual" 

design approach.  Definitely not a purely package 

oriented design, the canonical design inhabits the 

quasi conceptual, quasi package oriented middle ground 

between the two approaches.  What causes this slight 

package orientation seems to be a genuine concern for 

practical applicability.  In many respects the canonical 

design's practical approach is a definite asset over 

some of the ivory tower conceptual approaches.  The use 

of the convenient bubble charts as a schematic and 

explanatory base indicates a genuine concern for wide- 

spread comprehensibility.  The automated package (IBM1s 

Data Base Design Aid - DBDA - which incorporates features 

of the canonical design) renders the canonical approach 

feasible even in highly complex systems (circumstances 

which would make incomprehensible spiderwebs of the 

most carefully drawn bubble charts).  Nevertheless, the 

restrictivene3S and the narrow horizons which ultimately 

plague all package oriented designs, prove also to be 

the canonical design's undoing. 

One minor restriction which characterizes the 

canonical design is its prohibition of M:M relationships. 

It is true that most of today's DBMS packages will not 

support M:M relationships, but this does not mean that 

69 



an M:M relationship  is not occasionally an important 

conceptual construct.  Sometimes an M:M relationship 

is a true and accurate picture of a situation (as, for 

example, in the case of authors and their books:  one 

author may have many books, while one book may have 

many authors).  If one is trying to model the "inherent" 

structure of information, then one must allow for M:M 

relationships. 

A second, more crucial problem, with the 

canonical design i3 its use of "secondary keys" (or 

secondary indicies).  In forming the bubble chart, the 

canonical design recognizes "candidate keys" i.e. data 

items which are used to identify other data items.  Data 

items which are non-key items are termed attr ibutes. 

In another terminology the candidate keys would be 

called objects which in turn possess attributes.  This 

is a classical conceptual distinction; one which is 

intuitively valid, even to non-DP initiates.  Canonical 

design, however, then proceeds to introduce into the 

picture a third category of data item, the secondary 

key.  In the process of converting the bubble chart into 

a "conceptual schema" diagram, the class of candidate 

In the context of the canonical design. In the 
Chapter Four methodology the M:M relationship is seen in 
a different context. 

70 



keys are split into pr imary keys and secondary keys. 

A primary key is an object which possesses single 

valued attributes.  A secondary key is an object which 

possesses only multivalued attributes.  From a concep- 

tual point of view such a distinction is totally 

incomprehensible. 

If, for example, it is postulated that cars can 

be only monochromatic (i.e. the object car can have only 

one color attribute) then cars would be primary keys. 

If, however, cars could be considered polychromatic, then 

cars would be relegated to the status of secondary keys. 

Where is the logic behind such a state of affairs? 

To a DP professional the distinction is not with- 

out reason.  Often it is more convenient to retain 

multiple valued attributes on a separate (secondary) 

index file.  Hence, if an object has only multivalued 

attributes it becomes pragmatically reasonable that the 

attributes might be better handled through the use of a 

secondary index.  What, however, have such considerations 

to do with a conceptual design?  They are out of place 

and inappropriate. 

In, and of itself, this lack of adherence to 

"pure" conceptual design is not fatal.  If the introduc- 

tion of a few practical considerations is required to 

enhance the viability of a design, then they should not 

71 



be rejected merely upon the grounds of "conceptual 

impurity" and complexity.  Regrettably thia is not the 

case.  The introduction of the canonical design's 

package oriented features renders its product less 

powerful, and less viable.  The schema which the canoni- 

cal design generates must often be considered sub- 

optimal for a number of reasons.  Although this is not 

the place to delve into the problem in greater depth, 

the interested reader is referred to Appendix D, 

wherein will be found an analysis of an example given 

by Raver and Hubbard in their exposition of the canoni- 

cal design approach.  Included in that analysis is an 

alternate schema design generated by the method to be 

expounded in Chapter Four of this thesis. 

Thus it is that the canonical design, having 

set for itself the worthy goal of all conceptual design 

approaches (the generation of an "information" model), 

it falls short of that goal.  A package-oriented tint 

to the canonical technique has impeded it3 progress in 

what this author believes to have been a start in the 

right direction.  Building upon many of the basic ideas 

of the canonical design it should be possible to reach 

the goal, to create a pure information model.  Chapter 

Four of this thesis will explain just how it can be 

done. 

72 



CHAPTER FOUR 

A PROPOSED NEW DATABASE DESIGN METHODOLOGY 

I.  Introduction 

The subject of a Database is information. It 

is the end for which the Database exists. A computer 

can be regarded as a "black box" which enables men to 

store data and (if properly used) to retrieve informa- 

tion. Both data and information have an existence of 

their own; quite apart from any specific computer or 

software package. 

The function of a Database is twofold.  (1) It 

must receive data from the external world and instruct 

a specific computer how that data is to be stored.  (2) 

It must produce information upon demand by instructing 

the computer to retrieve the appropriate stored data. 

To fulfill its dual role the Database must 

interact in two distinct directions.  (1)  It must be 

able to interact with a specific machine (the hardware 

and the supporting software) in order to govern the 

storage and retrieval of data.  (2) It must contain a 

map of information (the data and the interrelationships 

between the data which comprise information). 

The Database-machine relationship is machine- 

dependent and transient.  It has no existence apart from 

a specific machine and its specific environment.  The 

73 



Database's information map is machine independent and 

eternal.  As long as the information it maps is valid, 

even if no machine exists, the information map itself 

(the data relationships which form the information) is 

also valid. 

In accord with the dual nature of Databases, 

Database design should consist of two discrete steps: 

the design of the information map (alternately known 

as a Database logical design or conceptual schema), and 

the design of the Database-machine interface.  Insofar 

as one of the purposes of a Database is to provide 

flexibility (which should include machine independence), 

and insofar as one of its paramount characteristics 

should be logical simplicity ("easy to use"), it is 

obvious that the design process should begin with the 

information map.  Once the information map is designed 

it can be modified to meet the restricting requirements 

of any specific machine and DBMS package.  In this 

manner, machine dictated modifications to the innate 

logical design can be easily recognized as such; and 

not confused with the essential underlying information 

structure. 

The methodology described in this chapter is a 

technique for constructing information maps.  It begins 

with a discussion of the theory behind the method and 

74 



concludes with an explanation of the methodology itself 

(including some considerations on how to handle machine 

imposed restrictions). 

II.  The Theory Behind The Method 

Specific information consists of specific 

instances of data and specific relationships between 

data.  The piece of information "the house is blue" 

conveys a message about a specific object (the house) 

and a certain attribute of that object (its blueness). 

An information map, however, does not deal in specifics, 

but rather in abstractions.  It is irrelevant to the 

information map whether any given house is blue or 

green.  What does concern the information map is that 

a house, a kind of object, can have a certain attribute 

called color.  The information map deals with objects 

(i.e. possessors of attributes), attributes, and rela- 

tionships (the connection between objects and attributes). 

If one were interested in information about a house, its 

color might be a requisite aspect of that information. 

At this point the temptation is strong to 

immediately classify the world into "objects", "attrib- 

utes" and "relationships".  This division, however, is 

an ephemeral one.  What at one instant is an object can 

in the next be seen as an attribute.  What at one instant 

is an attribute can in the next be seen as an object. 

75 



Consider the statements "Dan's house is blue" and 

"blue is sad".  In the second statement, that which 

was previously seen as an attribute of house, "color", 

(blue) is now an object possessing its own attribute, 

"mood", (sad).  In the first statement, that which was 

only an object "house" is now both an object (for it 

still possesses the attribute color) and an attribute 

(for it is possessed by - is an attribute of) the 

object "person". 

Thus it is that by nature information contains 

only two basic components: 

1. generic concepts which can be abstracted 
from specific instances of data (e.g. 
color, employees*, mood, height, salary, 
project!, etc.) 

2. relationships between generic concepts. 

A generic concept is called an eidos  (the 

plural is eide).  The eide must play both roles: 

"object" and "attribute").  Any eidos can be considered 

either an object or an attribute depending upon the 

information context in which it is used. 

One must be careful in working with eide.  It 

is easy to assume that for each eidos a recoginized word 

An eidos is an abstracted generic concept 
(literally "form).  According to Plato, men recognize 
things for what they are due to a physical object's 
resemblance to its eidos (e.g. a physical chair is recog- 
nized as a chair because it partakes of "chairness", that 
is, in some way it resembles the eidos of chair). 

76 



exists.  This is definitely not the case.  An eidos can 

be any concept which is used either as an object or as 

an attribute.  An example of an eidos for which no 

single word exists can be seen in the following case. 

Suppose a company purchases a certain item (let 

it be called "XYZ") from a number of different suppliers, 

each of whom supplies many different types of items to 

the company, and each of whom charges a different price 

for xyz.  Within the company, items are identified by a 

unique PART#.  In attempting to obtain the piece of infor- 

mation, "what does supplier 'q' charge for xyz?", one dis- 

covers that neither the PART* of xyz, nor the name of a 

supplier is sufficient to identify the information being 

sought.  The price cannot be considered a function (an 

attribute) of PART# because different suppliers use 

different prices.  Similarly price cannot be considered 

a function of SUPPLIER since each supplier supplies 

numerous items.  It turns out that in this situation 

price is a function of the concatenation (the linking or 

logical intersection) of SUPPLIER and PARTf.  No single 

word exists for this concatenation.  Nevertheless, the 

eidos here must be the concatenation "PARTf - SUPPLIER", 

for rt is the true object of the attribute "price". 

Not all concatenations require new, unusual, or 

hyphenated names.  In regard to persons, "name" itself 

77 



is often a concatenation (although it is rarely thought 

of as such).  What is often meant by 'NAME" is a person's 

full name, a concatenation of at least his first and last 

name (and possibly a middle name as well).  It is impor- 

tant to realize that concatenations are common eide, 

having no greater nor no less a claim to serve as either 

object, or attribute, than the logically indivisible 

eide. 

The relationships between eide which concern a 

Database information map are solely "relationships of 

attribute".  This means that either a certain eidos can 

have another as its attribute or it cannot.  If it can, 

then the relationships can either be one of unity (1:1) 

or one of multiplicity (1:M). 

Although it is common practice to speak of M:M 

relationships, an M:M relationship is a misnomer.  In 

strict terms, a relationship exists between an object 

and its attribute (i.e. between one object and one or 

more attributes).  The object side of the relationship 

must always be a "1".  What is usually seen as an M:M 

relationship is in reality two complementary relation- 

ships.  Consider the example of the two eide book and 

author:  one book may have many authors and one author 

may have written many books.  In this classic M:M 

situation it can be seen that the M:M relationship is 

78 



really two relationships:  one from book to author and 

one from author to book.  Each relationship is a 1:M 

relationship, but no M:M relationship exists. 

A relationship can either be named or unnamed. 

In some instances a named relationship takes on the name 

of the attribute (e.g. the relationships between the 

eidos "PERSON" and the eidos "AGE" would most probably 

also be called "AGE").  In other instances a relation- 

ship may possess a descriptive name of its own (e.g. a 

relationship between the eidos "MAN" and the eidos 

"WOMAN" might be termed "SPOUSE"). 

It should also be noted that more than one 

relationship may exist between a single pair of eide 

(e.g. if an airplane is to use an airport as an inter- 

mediate stopover, there will be two relationships between 

the eidos "AIRPORT-FLIGHT" and the eidos "TIME": 

"ARRIVAL-TIME" and "DEPARTURE-TIME"). 

It is obvious that the realm of the eide and 

their interrelationships is limitless, as indeed are the 

possibilities for information.  It must be understood 

that for practical reasons any given Database's informa- 

tion map can contain only a small subset of the set of 

universal information.  Although any specific eidos can 

be thought of as both object and attribute, it will 

happen that within the subset of a given Database some 

79 



eide will be used only as objects, some only as 

attributes, and some as both. 

There are many ways to represent an information 

map.  As with most pieces of complex software, the repre- 

sentation which is "machine readable" (even a high level 

language structure) is usually not the most comprehen- 

sible to humans.  In the case of an information map 

(an entity which should be machine independent anyway) 

the most convenient format is probably a diagram. 

The diagramatic conventions which are used in 

this methodology are not original.  Similar conventions 

are common.  To avoid ambiguity, however, definitions 

in the light of the above "theoretical" discussion, are 

provided.  The following are the conventions used with 

the graphic reproduction of schemata: 

a.  All eide are represented by a rectangular 
box which contains the name of its eidos 
inside. 

EMPLOYEES* MOOD COLOR NAME 

Figure 4.1  Eide 

b.  Relationships between an object and those 
eide which are used soley as its attributes 
can be of two types, 1:1 and 1:M.  In 
either case the attributes are aligned in 
a contiguous row to the right of the object, 
In the stance of a l:m relationship two 
extra partial boxes are drawn "behind" the 

80 



original attribute's box (as shown in the 
illustration below with the eide ALIASES 
and IDENTIFYING-MARKS). 

KZCOSOf rUXX-HAMS ALXASXS |    AGZ axiaiT 

riguz* 4.2    An Object And  Its Oniqu* Attribute* 

c.  Relationships between an object and those 
eide which are used either as objects 
themselves (in other relationships) or as 
shared attributes (i.e. as attributes of 
more than one object) are represented as 
arrows.  The direction of the arrow always 
indicates the direction of the relationship, 
running from the object to the attribute. 
1:1 relationships are single headed arrows, 
1:M relationships are double headed arrows. 

DEPTf * EMPLOYEE* 

» PHONE-NO £ 

Figure 4.3  1:1 and 1:M Relationships 

81 



d.  When two eide are related by two relationships 
such that the object of one relationship is 
tne attribute of the other relationship, 
instead of using two arrows (which might tend 
to clutter a diagram) both relationships are 
represented by one-bi-directional arrow.  It 
must be remembered that relationships are 
always "one way" (from object to attribute) 
arrows.  Thus all bi-directional arrows 
indicate the presence of two complementary 
relationships.  Figure 4.4 illustrates this 
convention; while Figure 4.5 presents some 
examples. 

DEPT# 

n 
DEPT# 

EMPLOYEE* 
> J 

EMPLOYEE* 

Figure 4.4  Notation for Complementary Relationships 

npi Qmjl HOUSE PART* J 

t \ > \ 

; \                                   \ :| 
> f 

f 

EMPLOYEE* COLOR  MOOD SUPPLIER-PART* 

> f > u* PHONE-NO SUPPLIER 

Figure 4.5  Examples of Notational Conventions 

82 



e.  In the event that a relationship is a 
"named relationship" the relationship 
name is written either intersecting 
the arrow or along side it.  When two 
relationships share an arrow (and it is 
not clear to which relationship the name 
belongs) a small arrow can appear next 
to the name. 

MALE FLIGHT! 

/ I t 
* 1 

WIFE HUSBAND CREW PASSENGER-LIS 
i 

\ t V                     \t 

FEMALE EMPLOYEE* 
■ 

PASSENGER 

Figure 4.6  Named Relationships 

An information map is an abstract model of infor- 

mation.  It is not a "working"-schema (i.e. one that can 

be directly applied to a specific DBMS package).  Given 

the current state of the Database art, there should be 

a distinction made between conceptual schemata (unre- 

stricted conceptual models of information) and working- 

schemata (models restricted by specific package 

limitations). 

In order to maximize machine and package inde- 

pendence, Database design should always begin at the 

conceptual schema level (not at the working-schema level). 

83 



Working-schemata are derivable from conceptual schemata, 

but the reverse is not always true.  Using a valid con- 

ceptual schema as a base (a pure information model) a 

designer can knowledgeably modify the model to accommo- 

date the pragmatic restrictions imposed upon him. 

Parameters such as response time, access frequency, 

controlled redundancy (how much and at what cost), 

access modes and so forth can all be taken into account 

and used to "tune" the working-schema.  A properly tuned 

working-schema is essential to a successful Database 

design.  It is the short term end product of the 

designer.  It is the interface between a machine and the 

conceptual schema, the legitimate child of the conceptual 

schema's union with practicality. 

The most convenient vehicle for a conceptual 

schema model is the information map (the "object- 

attribute-relationship" diagrams).  This is an effective 

model, simple yet powerful.  The format comes easily to 

DP professionals (who can, for example, think of eide 

as data items).  Unlike the relational approach (and 

some others which only a mathematician could love) the 

information map deals in a terminology which is compre- 

hensible.  It is natural for both DP professionals and 

non-professionals to think in terms of objects which 

have attributes and which may be related, All of which 

84 



(objects, attributes and relationships) are clearly 

discernible within the model.  As will be shown in a 

later section of this chapter, the information map is 

an easy model to construct (a significant portion of 

its design procedure can be automated) and that a 

conceptual schema is easily convertible to a working- 

schema format (resembling as it does the CODASYL DBTG 

schema diagrams, conversion from an information map to 

a DBTG type schema is almost trivial). 

Before turning attention to the practical 

questions of how to actually design a conceptual schema 

and how to convert a conceptual schema to a specific 

working one, here is a brief review of the basic tenets 

of the theory "behind the method". 

1. The primary concern of a Database is 
information. 

2. The Database must act as an interface 
between man and machine:  accepting data 
from man, storing data in the machine, and 
retrieving information for man. 

3. The primary concern of the Database 
designer should be the Database's informa- 
tion map (its eternal soul) and not a 
specific machine environment (its mortal 
body). 

4. The basic building blocks of information 
(and thus the features to be found in 
information maps) are eide and relation- 
ships.  Eide have two functions:  to be 
objects and to be attributes.  A relation- 
ship connects between object and attribute; 
it is that, by virtue of which, an object 
is an object and an attribute is an 
attribute. 

85 



5. Database design should consist of two 
major steps: 

a) design of a conceptual schema (the 
information map) 

b) modification of the conceptual schema 
to include machine necessitated 
restrictions. 

6. The most suitable model for a conceptual 
schema is an information map (an object- 
attribute relationship model). 

III.  The Design of a Conceptual Schema 

The design of a conceptual schema consists of 

two phases.  These are: 

Phase I - identification of the information 
to be modeled 

Phase II- construction of the information 
model (the conceptual schema) from 
the identified information. 

Each phase is an integral part of the process, and each 

is of equal importance.  Phase I is the more intuitive 

phase.  It requires experience, as well as an intimate 

knowledge of the systems involved in order to accurately 

identify the information needs and data interrelation- 

ships of the total Database environment.  Phase II is 

the more mechanical phase and is the primary topic of 

this thesis. 

In the following discussion, Phase I is des- 

cribed briefly; more from the point of view of what 

results it should yield rather than the manner in which 

those results can be obtained.  There are, after all, 

86 



many valid ways of identifying the information to be 

modeled.  Phase II, on the other hand, is the crux of 

the methodology being presented and is thus dealt with 

in significant detail. 

A.  Phase I 

Identification of the information to be modeled 

consists of identifying the eide (the generic concepts, 

or data item types) and identifying the interrelation- 

ships between the eide.  There are many methods to 

accomplish this task and many tools to aid the analyst 

in the endeavor.  The choice of approach and the choice 

of tools depend in large measure upon a specific system's 

environment.  An analyst working on a new and nebulous 

system would naturally proceed differently than an 

analyst working in a well-defined environment.  Likewise 

the analyst with access to a powerful data dictionary 

can approach the problem with less trepidation than his 

less fortunate counterparts. 

Regardless of the environment however, there are 

certain basic elements which must be common to all.  One 

basic element is the ability of the analyst to abstract 

the relevant aspects of a given system.  The success of 

the operation as a whole depends upon the accuracy of 

the analyst's perception.  The "aspects" of the system 

which the analyst must perceive are listed below.  These 

87 



are the minimal information requirements for a 

successful Phase I. 

Phase I Information Requirements 

1) Identify and name all eide (generic concepta) 

which the system is to use.  This entails the 

identification of all the types of data to be 

found anywhere within the system. 

2) Remove synonyms and homonyms from the system. 

This is a very crucial and delicate step.  It 

requires a full understanding of the concepts to 

be used.  Where an eidos has been given multiple 

names, (synonyms) one unique and universal name 

must be decided upon.  Where multiple eide have 

been given the same name, (homonyms) each eidos 

must be assigned a thoroughly unique name. 

3) Identify the origins of the eide.  Certain 

eide are basic to a system and are, of necessity, 

mputed into the system.  Other eide are deriv- 

able quantities and need not be system inputs. 

Such derivable eide are usually the result of 

a calculation (e.g. the total number "on order" 

of a given part can be obtained by summing the 

number requested in each of the unfilled, "out- 

standing", orders).  It is up to the analyst 

to decide which derivable eide to include in 

88 



the schema and which to exclude.  Each 

inclusion brings with it both implicit data 

redundancy and additional complexity (the 

fewer the number of eide, the simpler the 

schema).  In general, unless a certain 

derivable eidos is of paramount importance, 

derivable eide should be excluded from the 

conceptual schema.  This does not, however, 

mean that they will be excluded in the final 

practical design.  There are serious practi- 

cal trade-offs to be considered.  These will be 

discussed in section IV (machine considera- 

tions) .  The point here is that an accurate 

identification of the nature of a particular 

eidos must also include information on the 

possible and most reasonable origins of that 

eidos. 

4)  Identify the interrelationships between 

eide including the "type" of relationship 

(i.e. 1;1, 1;M).  Typically this information 

will be gleaned from various "users' views" 

of the system data.  A user's view can come 

from the file organization of an existing 

system, or from a detailed description of the 

output requirements for either a new or an 

89 



existing system.  In performing this 

identification process great care must be 

taken to establish the true object and the 

true attribute in each relationship.  Often 

an existing tile structure can be deceptive 

in this regard.  Consider the example of the 

following record from a parts inventory file: 

PART# SUPPLIER SUPPLIER-ADDRESS DESCRIPTION UNIT-PRICE 

Figure 4.7 An Inventory Record Description 

Even though the file may be defined in the system 

as a parts information file, PART# i3 not the 

only object (key) being described.  SUPPLIER and 

DESCRIPTION are unequivocally attributes of 

PART*.  SUPPLIER-ADDRESS, on the other hand, is 

definitely an attribute of SUPPLIER, while UNIT- 

PRICE can be either an attribute of PART* 0£ an 

attribute of the concatenation of PART* and 

SUPPLIER.  If a given part can only have one 

price, regardless of who the supplier is, (an 

unlikely circumstance) then UNIT-PRICE may be 

thought of as only an attribute of PART*, other- 

wise it belongs to the concatenation. 

Similarly, problems exist in determining the 

90 



types of relationships expressed.  In the record 

format above the relationship types are ambiguous. 

Does, for example, the system allow multiple 

suppliers for a single part?  Does it allow for 

multiple parts to be supplied by a single 

supplier?  Is the "supplier-to-part" relation- 

ship pertinent to the system? The answers to 

these types of questions are not always easy 

to obtain; such answers usually require an 

intimate knowledge of the systems involved. 

Nevertheless such knowledge is a necessity if 

the Database logical design is to be a true 

model of the systems' information requirements. 

These are the tasks which Phase I must perform. 

Depending upon the environment, there are many ways in 

which an analyst can accomplish them.  It is not the 

intent of this thesis to delve in depth into the prob- 

lems and methodologies of Phase I.  The tasks and some 

of the problems are mentioned simply as an introduction 

to the prerequisites of Phase II. 

The success of Phase II is not directly dependent 

upon the format of the Phase I results.  It is irrelevant 

whether the analyst chooses to use bubble charts, 3NF 

relations, a machine based data dictionary, or any other 

convenient data description tool.  The point is, however, 

91 



that in order to engage in a meaningful Phase II, 

accurate Phase I results must be available. 

Before turning to a discussion of Phase II a 

brief digression concerning notation is in order.  As 

stated above, the format of the Phase I results is 

irrelevant to the success of Phase II, however, the 

analyst must be careful to avoid an ambiguous format. 

The classic rectangular record format is just such an 

ambiguous format.  For use with the examples in the 

discussion of Phase II, this author has chosen the 

bubble chart format.  Although possibly not as familiar 

to most analysts as the rectangular record formats, 
2 

bubble charts are by far more expressive.  Consider 

Figure 4.8.  It has none of the ambiguity of Figure 4.7's 

record format.  Undoubtedly, the analyst must possess 

a more detailed knowledge of the system in order to 

draw a bubble chart, but, as mentioned in the previous 

paragraph, this is knowledge which must, in any event, 

be obtained. 

It should be noted that in the bubble chart 

Figure 4.8, the relationships  between PART* and SUPPLIER 

2 
The bubble charts used here represent each eidos 

(regardless of its context) as an elipse and represent 
relationships with the same "arrow" conventions as are 
used in the schemata (see Chapter Four, section II). 

Not an M:M relationship, but two distinct and 
complimentary 1:M relationships. 

92 



Figure 4.8  The Inventory Record in Bubble Chart Format 

are redundant, since the connection between them can be 

derived from the concatenated eidos SUPPLIER-PARTf. 

Usually an experienced analyst will immediately eliminate 

such redundant relationships.  Thus, in future references 

to this user's view the PART*:SUPPLIER, and SUPPLIER: 

PART# relationships will not appear. 

B.  Phase II 

Phase II is the process of translating the 

system's information requirements (as determined by Phase 

I) into a conceptual schema.  The conceptual schema con- 

sists of: 

1. eide (or data items) grouped into records 
(or segments) 

2. records interconnected into sets (directioned 
relationships) 

93 



For the purposes of explanation and clarity of 

exposition, the conceptual schemata used in this thesis 

will be expressed in a graphical format.  There is no 

reason, however, why the methodology detailed herein 

cannot be automated and the conceptual schemata 

expressed in either machine readable, or machine pro- 

ducible form. 

Phase II consists of four stages (or steps). 

They are as follows: 

1. create the object/attribute matrix 

2. create the initial conceptual schema diagram 

3. modify the schema in regard to shared 

attributes. 

4. modify the schema to eliminate redundant sets 

The first two stages are simply mechanical operations. 

If the Phase I results are clear-cut and unambiguous, 

stages 1 and 2 can be accomplished with a minimum of 

thought.  Stages 3 and 4, on the other hand, are intui- 

tive in nature.  They are involved with modifying the 

initial schema; fine tuning it to fit the analyst's per- 

ceptions of the situation.  These later.stages give the 

analyst an opportunity to re-evaluate the implications 

of the Phase I results in light of the added perspective 

and clarity provided by an accurately produced informa- 

tion model — the initial schema. 

94 



In the following sections a detailed discussion 

of each of the four stages is presented.  In that dis- 

cussion a simple example is built up and carried through 

to a final conceptual schema design.  For an enhanced 

understanding of the Phase II methodology, however, the 

reader should examine Appendix C, which contains a 

number of other examples of this methodology. 

1)  Creation of the Object/Attribute Matrix 

Each eidos may be used either as an object (a 

possessor of attributes), attribute, or both, depending 

upon the total information context of the system.  It 

is the function of the object/attribute matrix to 

express both the character of each eidos (i.e. how it is 

used) and the types of relationships into which it enters. 

The matrix is built by first mapping one user's view of 

the data onto the matrix, and then step by step, adding 

additional views until all the users' views have been 

incorporated. 

The object/attribute matrix is a two dimensional 

table.  Objects are listed along the vertical axis; 

attributes along the horizontal.  Eide which are used as 

both objects and attributes appear along both axes.  As 

an example consider again the record from the parts 

inventory file. 

95 



PART# SUPPLIER SUPPLIER-ADORESS DESCRIPTION UNIT-PRICE 

(DESCRIPTION) 

Figure 4.9 One User's View of the Inventory System 

Let it be assumed that in this case parts can have 

multiple suppliers, suppliers multiple parts, and that 

price is a function of the concatenation of supplier and 

part.  Since PART#, SUPPLIER, and SUPPLIER-PART* are 

objects, they would be listed along the vertical axis. 

PART#, SUPPLIER, SUPPLIER-ADDRESS, DESCRIPTION, UNIT- 

PRICE, and SUPPLIER-PARTt would all be listed along the 

horizontal axis since all are used as attributes. 

Figure 4.10 shows this listing. 

96 



Attributes PAPT# SUPPLIER SUPPLIER- 
ADDRESS 

DESCRIP- 
TION 

UNIT- 
PRICE 

SUPPLIER- 
PART* 

Objects \ 

PAKT# 

SUPPLIER 

SUPPLIER- 
PART* 

Figure 4.10  An Incomplete Object/Attribute Matrix 

Figure 4.10 is not a complete matrix however,  It 

will be noted that although the axes have been filled in, 

the body of the matrix is still vacant.  Whereas the axes 

record the identification of the eide and their function, 

the matrix itself expresses the types of relationships 

which exist.  The relationships are expressed as a ratio 

of object to attribute (object:attribute).  For example, 

given the assumptions listed above, the intersection of 

PART# and SUPPLIER-PART* would contain the value 1:M 

(expressing the fact that one part may have many suppli- 

ers).  Likewise, the intersection of SUPPLIER and 

SUPPLIER-PART* would also contain the value 1:M (indicat- 

ing that one supplier may supply many parts).  The inter- 

sections of eide which are not directly related (such 

97 



as PART# and SUPPLIER-ADDRESS) should be left blank; as 

should the tautological relationship of an eidos inter- 

secting itself.   Figure 4.11 is an example of a complete 

object/attribute matrix in the sense that it is a 

complete picture of the information contained in the 

sample record. 

attributes PART* SUPPLIER SUPPLIER- 
ADDRESS 

DESCRIP- 
TION 

UNIT- 
PRICE 

SUPPLIER- 
PART* 

Objects \ 

PART# 1:1 1:M 

SUPPLIER 1:1 1:M 

SUPPLIER- 
PART* lsl 1:1 1:1 

Figure 4.11 An Object/Attribute Matrix of One User's View 

Although most of the relationships and relation- 

ship types used in Figure 4.11 may seem obvious, the 

relationships regarding SUPPLIER-PARTt are perhaps less 

so and thu3 require a few words of explanation.  The rela- 

tionship between SUPPLIER-PART* and UNIT-PRICE has been 

Not always will the intersection of an eidos 
with itself be tautological.  A parts component list is 
an example of a situation where it would not be and 
where the intersection box might contain the value 
"1:M". 

98 



explained above (that the price of a part is a function 

of both the part and the supplier).  Whenever a concatena- 

tion is formed, of necessity the concatenation is related 

to its component eide; hence the four relationships: 

SUPPLIER-PART:PART#, SUPPLIER-PART*:SUPPLIER, PARTI: 

SUPPLIER-PART#, SUPPLIER:SUPPLIER-PART*. 

Having mapped one user's view onto the matrix, 

the time has come to examine a second user's view. 

Suppose that the inventory system contains another file 

whose record is as follows: 

PART* WAREHOUSE QTY-ON-HAND REORDER-LEVEL QTY-ON-ORDER 

Figure 4.12 A Second Inventory Record Description 

Here again the ambiguity of a file format is manifest. 

From the format alone, one cannot determine if a single 

part can be stored in multiple warehouses, and/or if a 

warehouse can store more than one type of part.  To 

remedy this situation the same user's view (file) will 

be presented in bubble chart format.  Note that here, 

as in the previous example, the redundant relationships 

(PART*:WAREHOUSE, WAREHOUSE:PART*) have been eliminated, 

and do not appear on the bubble chart. 

99 



Figure 4.13  Bubble Chart of the Second User's View 

The results of the inclusion of this new informa- 

tion into the object/attribute matrix is shown in Figure 

4.14. 

This process of incorporating additional users' 

views continues until all of the users' views are repre- 

sented in the matrix.  Unless a matrix contains all the 

users' views, it cannot be considered complete.  Until 

it is complete the next stage of Phase II, that of 

creating the pure conceptual schema diagram, cannot be 

started. 

Before turning to the discussion of this next 

stage, one more element of the object/attribute matrix 

must be illustrated. 

Occasionally it will happen that two eide are 

related by more than one relationship.  In such cases, 

100 



m 
> 

I 

I 
w 
O o c 

s 
Ul 
to 

0. 

u 
wo 

a o 
c < 

3 
0» 

Si 3 
(A 

< 
3 

101 



the intersection square on the matrix is divided into 

as many subdivisions as there are relationships.   Each 

subdivision of the square represents one relationship. 

As an example of this situation consider the bubble chart 

of Figure 4.15, another user's view in the fictional 

inventory system. 

Figure 4.15  The Third User's View 

In this instance there is a dual relationship 

from SUPPLIER to WAREHOUSE.  The designers are interested 

in knowing not only which warehouses are in the delivery 

range of which suppliers; they also want to know which 

warehouse is the closest to a given supplier.  Likewise 

a dual inverse relationship exists (i.e. from WAREHOUSE 

to SUPPLIER).  The system must supply information, not 

In an automated package this problem could be 
handled more elegantly through the addition of another 
dimension to the matrix.  In the manual operation however, 
the need for visual and graphical clarity prohibits the 
use of this otherwise natural third dimensional solution. 

102 



only as to which suppliers serve a certain warehouse, 

but also which suppliers consider a certain warehouse 

their prime (or closest) delivery point. 

In order to illustrate how these dual relation- 

ships are mapped onto the object/attribute matrix, just 

this view is shown in the matrix of Figure 4.16. 

N.   Attribute 

Objects         >v 

SU7PLHR SJPPUZX- 
PAST* 

SUPPUEH- 

MCX 
MXBC 

QTY-CM- 
ORXR 

OfVOt-tEM) 
-re* 

wMUHXra itM   lm 

SU7KJZX lil    liH XlM lil 

SUFPLH31- 
m 1:1 lil 

Figure 4.16   ID* Objccc/Attrltuca Matrix of Juat ci» Third UMt'i Vl«w 

Note how the dual arrows of the dual relationships 

are mapped as split squares in the matrix.  In the event 

that additional relationships are needed for these two 

eide, the intersection squares could be subdivided even 

further. 

Having illustrated this final aspect of the 

object/attribute matrix, the discussion of this topic is 

complete.  With a complete object/attribute matrix 

103 



(encompassing all the users' views) the analyst is ready 

to begin the process of drawing the conceptual schema 

diagram.  In the discussions of the remaining stages, 

the inventory system which has been described will be 

regarded as a complete inventory system.  The full object/ 

attribute matrix for this sample system can be seen in 

Figure 4.17. 

2)  Creation of the Initial Schema Design Diagram 

The task of this stage is to create an initial 

schema out of the information contained in the object/ 

attribute matrix.  A schema consists of eide grouped 

into records (or segments) and records interconnected in 

sets.  Although the final schema design may have compro- 

mises and modifications built into it, the initial 

schema is a "pure" design (free from data redundancy) 

which can be produced, almost mechanically from the 

object/attribute matrix. 

The first step in thi3 process is the grouping 

of the eide into records.  A record is a logical unit 

made up of an object and its attributes.  Each object 

has its own record.  In the non-redundant initial schema, 

a record should consist of one object and only those 

attributes which are unique to that object.  Attributes 

which relate to more than one object should not form 

104 



3 

C 

■3 

a o 

105 



part of a record.  In the inventory example, the eidos 

DESCRIPTION is unique to PART#.  SUPPLIER-PART* could 

not be a member of the PART# record for two reasons: 

1) SUPPLIER-PART* is an attribute of more than just 

PART* and 2) SUPPLIER-PART* is an object in its own 

right (and thus cannot be a part of another object's 

record). 

The construction of records proceeds as 

follows: 

a) Create a record entry for each object in the 

object/attribute matrix.  In the inventory 

example this is illustrated in Figure 4.18. 

In that example there are five objects 

(PART*, SUPPLIER, SUPPLIER-PART*, WAREHOUSE, 

and WAREHOUSE-PART*) therefore, five record 

entries need to be created. 

b) Identify those attributes which are eide  * j 

used only as attributes.  This entails 

examining the list of attributes and 

singling out those which are not also objects 

(i.e. a list of those eide which are pure 

attributes).  In the example this would be: 

DESCRIPTION, UNIT-PRICE, QTY-ON-HAND, QTY- 

ON-ORDER, REORDER-LEVEL, SUPPLIER-PERFORMANCE- 

RATING, and ORDER-LEAD-TIME. 

106 



7r h 
*fc 

'*i- 

>?. 

">/, 

^3 
*'/. •O 

"?K 
**, 

'•to v/: 

-Vv y/i 

''* 

CJ 
u 

"5 
u tv » 
c u» (- 
*,J ac ac 
u < < u C 

i 1 
Ui UJ ■M 
1/1 LO K? i/l 
* g 5 3 

M u; ui LA! 
X JC 3C 3C < < < < 
5 -^ 3 2 

u 
u 
u 
»    ■» 

<    < c   z. 

"3 
U 

u 
'J 
u 

ac ac 
■jj -0 •—• •■» ^ a^ 

a. a. 
3 o 
I/) i/> 

•3 
o 

2 3 

a    — 

J 
3 
•J 

-3 
C 

-3 

O 

C 
3 

107 



Add the appropriate unique attributea to 

each record entry.  Out of the list of pure 

attributes, the analyst should identify 

those which are attributes to only one 

object and then add those attributes to the 

appropriate object's record entry.  In the 

example all the attributes except the eidos 

QTY-ON-ORDER are of this ilk.  Thus DESCRIP- 

TION should be appended to the PARTt record, 

UNIT-PRICE to the SUPPLIER-PARTf record, 

and so on.  The complete results for this 

step are shown in Figure 4.19. 

PART* r»conl 
PART# DESCRIPTION 

5UFPT.TTR     yieflrt 

SUPPLIER SUPPLIER-ACDRESS SUPPLIER-PERFORMANCE RATTIJG 

& 

SUPPLIER-PART* r«cerd 

SUPPLIER-PART* UNIT-PRICE ORDER-LEAD-TEC 

WAREHOUSE record 

WAREHOUSE 

USE-PART* r«cord WAREHOUSE-PART* r»c 
[   WAREHOUSE-PART* | QT WAREHOUSE-PART*    GTY-ON-HAND REORDER-LEVEL 

Fi<jur«   4.19    Objects  and Thsir  Oniqu* Attributes 

108 



d)  Incorporate the shared attributes into the 

diagram.  Having entered all the objects 

and the unique attributes into the diagram, 

the only remaining eide are the shared 

attributes.  It will be remembered that a 

shared attribute is an eidos which, although 

never used (in the system) as an object, is 

used as an attribute of more than one object. 

Shared attributes are rare occurrences. 

Quite often an eidos which is thought to 

be a shared attribute turns out, after 

further examination, to be either an object 

or a homonym for two (or more) very similar 

eide.  In the inventory example the only 

shared attribute is QTY-ON-ORDER.   Figure 

4.20 shows the state of the schema diagram 

after this shared attribute has been added. 

More will be said about this particular shared 
attribute later on. 

109 



z o w s 
M 

t CC 

o OT 
o W 

£ Q 

«% «*. 
frl 6j 
2g 5 
OU cu 

o 
o » 
u 

6 M 

a, 

P 

"E 
o 
u 
a> 

9H 

a. 
i 

6 
M 

a. 

W 
o 
h-t 

I 

I 

OU 

0) 

3 

« 

sz 

c 
•a 
3 

n 
■a 
u 
O u a « 

3 o x: 
u 

o 

3 

110 



At this point all the eide have been incorporated 

into the schema diagram.  Records have been constructed 

which graphically express the relationship between each 

object and its pure attr ibutes.  The final step, then, 

is to complete the diagram by entering the sets (i.e. 

the relationships between the objects).  This is prob- 

ably the easiest step in the whole process.  It con- 

sists of identifying those attributes which are also 

objects (by examining the object/attribute matrix) and 

drawing the appropriate type of arrow for each inter- 

section square.  In the example, if one starts from the 

upper left hand side of the matrix, the first attribute 

(which is also an object) one encounters is PART*. 

Proceeding down PART#'s column, the first non-vacant 

square is the intersection with SUPPLIER-PART*.  The 

SUPPLIER-PART#:PART# intersection contains the value 

1:1, thus a single headed arrow should be drawn from 

the SUPPLIER-PART* record to the PART* record (as in 

Figure 4.21. 

PARTt record 

PART# DESCRIPTION 

SUPPLIER-PART* record 

SUPPLIER-PART* UNIT-PRICE ORDER-LEAD-TIME 

Figure 4.21  An Inter-Record Relationship 

111 



In like manner, one could continue down the PARTt 

column to encounter the WAREHOUSE-PART* intersection. 

That intersection would also indicate that a single 

headed arrow should be drawn to PARTt from WAREHOUSE- 

PART* . 

It doesn't really matter in this examination 

whether one runs the columns or the rows, the end 

result is the same—a complete initial schema design 

in graphic format.  For the inventory example, the 

complete initial schema design is shown in Figure 4.22. 

Note that in this figure the relative positions of some 

of the records differ from what they were in previous 

diagrams.  This has been done in order to facilitate 

drawing a less complicated looking diagram and in no 

way affects the schema's information content. 

112 



ayreiHR .rssaia 
SUPPLIER SUPPLIER-AUCRESS SUPPLIER-?ERFowu:;cE-AATi:rG 

X 

' '^rrpoT ^ '■uMp^o'*# 

SUPPLIER- PART/ 
T 

•-*-< 
UNIT-PRICE ORDER-LEAD-TIME 

PART* rtcori 
PART#    DESCRIPTION 

tyAJffiWWE-PW :T* mirt 
WAREHOUSE-PART* QTT-ON-HAi'fD REORDER- LEVEL 

•WAREHOUSE record 
WAREHOUSE 

01 

OTT-CN-CREER 

ftqura   4.22     A Co«pl«C»  Conceptual   Sch«oui 

3)  Modifications to the Schema Regarding Shared 
Attr ibutes 

This stage is the first which requires human 

judgmental decisions (the designer's discretion).  The 

problems it addresses are problems of human understanding 

and not shortcomings in the design generation process. 

Although the conceptual schema produced by stages 1 

and 2 is an accurate model of the information obtained 

in Phase I, circumstances can exist which might necessi- 

tate modifications to that model. 

Such a circumstance is the possibility that, in 

light of the added clarity provided by a schema model, 

113 



some of the original Phase I definitions and assumptions 

may demand rethinking. 

The prime area of this concern is that of the 

shared attributes.  Shared attributes are an anomaly 

in an otherwise clearly defined situation.  Being neither 

unique attributes nor objects, shared attributes occupy 

a possibly vague middle ground.  Shared attributes are 

rare and in general result from an insufficient analysis 

of the situation.  What is thought to be a shared attrib- 

ute is usually either an object or a homonym for similar 

eide. 

In dealing with shared attributes, the analyst 

has three options; 

a)  Redefinition.  The analyst, after reexamin- 

mg the situation, may conclude that the reason a shared 

attribute exists is because it is ambiguously defined. 

On the one hand that which is thought of as being one 

shared attribute, might in fact be two distinct generic 

concepts (two distinct eide).  Reviewing the inventory 

example, one might question whether the QTY-ON-ORDER of 

a particular PART* for a particular WAREHOUSE is concep- 

tually the same idea as the QTY-ON-ORDER of a particular 

PART# from a particular SUPPLIER.  If it is not, then 

instead of the single shared attribute, QTY-ON-ORDER, 

there should exist two non-shared attributes:  WAREHOUSE- 

114 



PART#-QTY-ON-ORDER and SUPPLIER-PART#-QTY-ON-ORDER 

(see Figure 4.23).  On the other hand, that which i3 

perceived as a single shared attribute, might advan- 

tageously be considered to be an object.  The second 

example in Figure 4.23 illustrates such a situation. 

In that instance PHONE-NO is a shared attribute of 

both DEPT# and EMPLOYEE* (enabling the system to report 

the phone number for any given department and/or 

employee).  It might, however, be useful to be able to 

ascertain to whom a particular phone number belongs 

(i.e. establish PHONE-NO as an object with attributes 

DEPT# and EMPLOYEE*).  In either of these two situations 

all that is involved is a simple redefinition of function. 

Occasionally a more extreme re-evaluation is necessary 

but that will be discussed in («c) below. 

b) Maintenance 'of the status quo.  One cannot 

rule out, a priori, the possibility that a shared attrib- 

ute is really the most accurate and most comprehensible 

description of the situation being modeled.  If such is 

the case, then there is no reason to remove the shared 

attribute from the schema and it should, most certainly, 

be retained. 

c) Re-evaluation of Phase I assumptions.  This 

is the third and most drastic option available.  It calls 

for the analyst to rethink and re-examine some of the 

115 



■• CPTIC:? A 

?rlglr.al  Situations 

SUPPLIER-PART*  record :EPT# r»c:rt 

SUPPLIER-PART* UNIT-PRICE ! ORDER-LEAD-TIME 

1 
QTY-ON-ORDER 

t  
WAREHOUSE-PART*  record 

WAREHOUSE-PART*     QTY-ON-HAND    REORDER-LEVEL 

r—        DEPT* 

rrror nvr-r 
EMPLOYEE* 

PKCNE-NO 

After Redefinition 

SUPPLIER-PART* record 

SUPPLIER-PART* UNIT-PRICE ORDER-LEAD-TI>E | SUPPLIER-PART*-C7Y-GN-CRTER 

WAREHOUSE-PART*  record 

WAREHOUSE-PART*     3TY-CN-HAND     REORDER-LEVEL    WAREHCUSE-?ART*-iTY-CM-CRDER 

DEPT*  record 
DEPT* 

v< 

-»■ 

PHONE-KO  record 

*    EMPLOYEE*  record 
PHONE-NO 
 7F  

EMPLOYEE* * 

Figure   4.23     Redefinition   of   Shared   Actribu tet 

116 



basic Phase I assumptions.  In the inventory example 

this re-examination might yield the following analysis. 

- QTY-ON-ORDER  as determined by Phase I is 
ambiguous and needs re-evaluation.  As it 
stands now, QTY-ON-ORDER, can refer to the 
quantity of a PARTf on order from a particu- 
lar SUPPLIER or, the quantity of a PART* on 
order for a particular WAREHOUSE.  The 
logical view of wanting to know how many of 
a certain PART# are on order for a particular 
WAREHOUSE from a particular SUPPLIER (see 
Figure 4.2 T) is not accounted for. 

Figure 4.24  A Hitherto Unaccounted-for View 

All three views of QTY-ON-ORDER (as an 
attribute of SUPPLIER-PART*, as an attribute 
of WAREHOUSE-PARTI and as an attribute of 
WAREHOUSE-SUPPLIER-PART#) are really derivable 
quantities.  In each case QTY-ON-ORDER can 
be obtained by summing the number of PARTS 
listed on each of the appropriate outstanding 
orders.  An ordered quantity of parts is 
actually an attribute of a specific order. 
The quantity of parts on order is therefore, 
a function of the concatenation of PART* 
and ORDER#.  Although the eide ORDER* and 
ORDER#-PART# are not currently features of 
the system, they are basic concepts whose 
inclusion would prove beneficial. 

All the mentioned relationship requirements 
can be met using the following user's view 
(Figure 4.25) . 

117 



Figure 4.25 A More Accurate View of the Role of QTY-ON-ORDER 

- The incorporation of this analysis into the 
overall picture renders the previous usage 
of QTY-ON-ORDER (that of an attribute of 
both WAREHOUSE-PART* and SUPPLIER-PART*) 
a derivable quantity.  As such it is a 
source of implicit redundancy and should be 
removed from the schema (thus also removing 
the necessity of renaming it). 

The decision as to which option to choose must 

be a human, intuitive choice.  The analyst can only 

examine each option in the light of his own knowledge 

and experience.  In the inventory example any of the 

three options could be a viable alternative, but it is 

the author's opinion that in this case, the third 

option (the re-evaluation) holds the most promise.  The 

118 



revisions which such a re-evaluation would necessitate 

(to both the object/attribute matrix and the schema 

diagram) are shown in Figures 4.26 and 4.27. 

4) Modifications to the schema to eliminate redundant 
sets 

In incorporating the various users' views into 

the schema, it often happens that certain sets are ren- 

dered redundant.  A set is redundant when the relation- 

ship it expresses can be deduced from other non- 

redundant sets.  The classical example of a redundant 

set occurs most naturally in a hierarchical situation. 

DIVISION 1 

> 
> 

BATTALION 

^ 
i 

<-# PLATOON 

Figure 4.28  A Classic Example of a Hierarchy 

In Figure 4.28 the relationships between DIVISION and 

PLATOON are directly deducible from the relationships 

between DIVISION and BATTALION and the relationships 

between BATTALION and PLATOON.  Thus the DIVISION: 

PLATOON and the PLATOON:DIVISION relationships are 

119 



/*7 

>#V «? 

**/ 

'?., 

'* 

120 



SUPPLIER record 

ZZ    SUPPLIER SUPPLIER-ADDRESS SUPPLIER- PERFOR.MANCE-RATLNG B\ 
iSUPPLIER-PART*  record 
SUPPLIER-PART*     UNIT-PRICE     ORDER-LEAD-TIME 

PART* record 

PART*  DESCRIPTION 

:WAREHOUSE-PART* record 

WAREHOUSE-PART*  QTY-ON-HAND  REORDER-LEVEL 

: .WAREHOUSE record 

WAREHOUSE 

:ISUPPLIER-WAREHOUSE  record 
*»     SUPPLIER-WAREHOUSE 

_JORDER* record 
ORDER* 

wQRDER*-PART*  record 
*>     ORDER*-PART*     QTY-ON-ORDER 

Figure   4.27     The   Revised  Conceptual  3chen* 

121 



redundant. 

In most circumstances it is wise to eliminate 

redundant sets (relationships).  They add little concep- 

tual content to the model and tend to clutter the picture 

Occasionally, however, an analyst will choose to retain 

a redundant relationship in order to emphasize the 

existence of a very important relationship (one which 

should be explicitly expressed and not implied). 

Although, as was stated in the discussion of 

Phase I, an experienced analyst can usually 3pot and 

weed out redundant relationships before they are incor- 

porated into the schema, great care must be exercised 

in the removal of redundant relationships.  Not all 

relationships which appear to be redundant are really 

redundant.  Consider the two examples in Figure 4.29. 

The diagrams for the two situations are identical.  The 

DIVISION to PLATOON, PLATOON to DIVISION relationships 

are truly redundant.  The DEPT# and PHONE-NO relation- 

ships need not be.  If the list of phone numbers 

includes the home numbers of the employees and/or the 

department has an official line (or lines) not assigned 

to any employee, then the DEPT# to PHONE-NO and PHONE- 

NO to DEPT# relationships are definitely not redundant. 

In the inventory example all set redundancies 

were carefully weeded out of each user's view before 

122 



DIVISION 

BATTALION 

V 
> V 
" PLATOON 1 

DEPT# 

EMPLOYEE! 

-» 
i. 

PHONE-NO 

Figure 4.29  Redundant and Non-Redundant Sets 

any information was incorporated into the object/ 

attribute matrix.  Nevertheless, as the schema currently 

stands, set redundancy does exist.  Figure 4.30 illus- 

trates this redundancy.  The set connecting a SUPPLIER 

to all the WAREHOUSES it serves, and the set connecting 

a WAREHOUSE to all the SUPPLIERS which serve it, are no 

longer necessary (as this information is now obtainable 

through the concatenated eidos SUPPLIER-WAREHOUSE). 

The cause of this redundancy stems not from 

having overlooked a redundant set within a particular 

user's view, but rather from an aspect of one user'3 view 

(in this case the concatenated eidos SUPPLIER-WAREHOUSE) 

rendering redundant a set in another user's view (the 

SUPPLIERS-IN-REGION, and WAREHOUSES-IN-REGION sets). 

Typically an analyst will work on only one user's view 

at a time, thus in stages 1 and 2 it is very difficult 

123 



to guard against this type of redundancy.  Given the 

overall view provided by a schema diagram however, 

all such redundancies are discernible. 

SUPPLIER record 
-» SUPPLIER SUPPLIER-ADDRESS SUPPLIER-PERFORMANCE-RATINC 

j] 

;r  SUPPLIER-WAREHOUSE record 
SUPPLIER-WAREHOUSE 

4> WAREHOUSE record 
J   WAREHOUSE 

FLguro 4.30  Two Redundant Sets In the Inventory Schema 

In the inventory example there is no special 

requirement to retain the redundant sets and they 

should be eliminated.  This final modification completes 

the inventory example and the resultant conceptual schema 

is shown in Figure 4.31. 

C.  Concluding Remarks on the Conceptual Schema Design 

The goal of this methodology has been to place 

the burden of human endeavor where it belongs — on the 

design and understanding of information systems, not on 

124 



SUPPLIER record 

SUPPLIER SUPPLIER-ADDRESS SUPPLIER-PERFORMANCE-RATINC 
T: 

?SUPPLIER-PART* record 

SUPPLIER-PART* UNIT-PRICE ORDER-LEAD-TIKE 

. > 

PART*   record 
PART* DESCRIPTION 

i l 

^WAREHOUSE-PART* record 

WAREHOUSE-PART* QTY-ON-HAND REORDER-LEVEL 

.WAREHOUSE record 

WAREHOUSE 

ill 

ISUPPLIER-WAREHOUSE record 

»  SUPPLIER-WAREHOUSE 

BORDER* record 

ORDER* 

>rORDER*-PART* record 

ORDER*-PART* QTY-ON-ORDER 

Figure   4.31     The   Final  Conceptual  Scheaa 

125 



the mechanics of a schema design.  The complete design 

process is an iterative one.  Initially the analyst 

collates the various "users' views" of the system 

(Phase I).  These initial perceptions are entered into 

a model generator (stages 1 and 2 of Phase II) which 

produces an accurate model, the initial schema.  In light 

of the enhanced clarity which the model provides (an 

overall view of the information system rather than a 

series of private "users' views"), the analyst can 

re-evaluate some of the initial perceptions and modify 

the model accordingly (stages 3 and 4 of Phase II).  The 

cycle of re-evaluation and modification can then continue 

until the analyst is satisfied that the schema is an 

accurate and correct model. 

The ease in which schemata are produced from a 

set of users* views (analysts perceptions) renders the 

Database very simple to update (modify).  The analyst 

need only be concerned with obtaining an accurate under- 

standing of the new requirements in order to change an 

existing schema, since the actual process of producing 

the schema is mechanical.  Insofar as most schemata are 

not static constructs (most information systems being in 

a constant state of flux), this is an important feature. 

The result of the methodology detailed above is 

a conceptual schema.  It is a comprehensible, and 

126 



accurate, simple to design reflection of a system's 

information need3.  It also purports to be a solid 

foundation for the construction of a practical working 

schema.  The manner in which this transformation is 

accomplished is briefly described in the next section. 

IV.  From Conceptual Schema to Working Schema 

A conceptual schema is a tool, a design aid. 

Its strength lies in its ability to be a flexible, 

independent and accurate model of a system's information 

requirements.  In the conceptual, unrestricted form, 

this tool is not an operational tool (not a working 

schema).  One of the purposes of designing a conceptual 

schema, however, is to create a base from which a working 

schema may easily be derived. 

The transformation from a conceptual schema to 

a working schema should be a simple one.  It requires 

merely that the idiosyncratic restrictions of a specific 

DBMS package and of a specific machine environment be 

imposed upon the unrestricted conceptual model.  These 

restrictions are in the nature of compromises to the 

pure unrestricted design.  Although in order to delve 

into specific details would require a thorough acquaint- 

ance with a specific environment (and is thus beyond the 

scope of this thesis), examples can be presented of the 

type of compromises an analyst might be required to make. 

127 



The conceptual schema is so close to CODASYL 

DBTG schema format, that little or no effort i3 

required to convert a conceptual schema to any of the 

CODASYL DBTG based packages.  Nevertheless, CODASYL 

as well as most other DBMS packages does not support 

M:M relationships;  a feature which can be found in 

a conceptual schema.  The removal of a M:M relation- 

ship is not a complex operation.  All that it requires 

is the creation of a new record (a nub) which consists 

of the concatenation of the two eide involved in the 

original M:M relationships.  Figure 4.32 illustrates 

this M:M removal operation. 

When one begins to consider machine environ- 

ment factors, one invariably encounters the ubiquitous 

"space/time" tradeoff (response times can be improved 

at the cost of additional storage space and requisite 

storage space can be reduced at the cost of response 

time) . 

One way response times can be improved is 

by introducing additional data and set redundancy into 

the Database.  The more places a specific piece of 

data exists, the less searching the system must do. 

'What in CODASYL terminology is called an M:M 
relationship and which this author has described as 
being two complementary 1:M relationships. 

128 



The M:M relationship (Each department can work on many 
projects and each project can be apportioned among many 
departments) 

DEPTt 
M:M 

<4- ->*» PROJECT* 

The adapted relationship (each of the original eide now 
has an 1:M relationship with the concatenation) 

DEPT# ,      1:M 1:M      j PROJECT! 
< r1 

> 
> 

< 

DEPT#-PROJECT* 

Figure 4.32  Elimination of M:M Relationships 

The more sets a specific record belongs to, the quicker 

it can be found. Both additional sets and data require 

additional storage.- How much storage cost is the extra 

speed worth? 

If storage (rather than response time) is at a 

premium then storage costs can also be cut down.  Cer- 

tainly the removal of all data (and set) redundancy is 

one feasible option.  Reducing to a minimum such niceties 

as hashed key accesses is another. ' A not-so-obvious 

source of elimination of data redundancy is the concate- 

nated eide.  Often the concatenation itself can be 

129 



eliminated   from   its  own   record.     Figure   4.33   illustrates 

how   this  can   be  done. 

With the concatenated eidos SUPPLIER-PART* 

PART»      record 

PART*   DESCRIPTION 

SUPPLIER-PARTf  record 

SUPPLIER-PART* UNIT-PRICE ORDER-LEAD-TIME 

V SUPPLIER record 

SUPPLIER SUPPLIER-ADDRESS SUPPLIER-PEPJTDRMANCE-RATING 

Without the concatenated eidos SUPPT.TKR-PART»   (All accesses to the 
SUPPLIER-PART* record must access both parent records in order  to 
identify the particular record being accessed.) 

PART#    record 

PART# DESCRIPTION 

i 

PART#-SUPPLJ [ER    record 
| *> 

UNIT-PRICE ORDER-LEAD-TIME 
rf 

\ ' SUPPLIER    record 

SUPPLIER SUPPLIER-ADDRESS SUPPLIER-PERPOI*PttCE-RATING 
■ 

\ 

Figure 4.33 
Removing Redundant Data From Concatenated 

Keys at a Cost to Access Time and Complexity 

130 



Depending upon one's own needs and constraints, 

the conceptual schema can be bent and reshaped until 

there is barely a hint left of its original form.  Each 

change, however, is a compromise, an introduction of 

pollution into the pure information model.  Despite the 

simplicity of incorporating compromises into a concep- 

tual schema, the analyst must never lose the long range 

perspective.  The true information model is the concep- 

tual schema; compromises to it are to be eschewed wherever 

possible. 

V.  Summary 

The subject of Database is information.  It is 

the end for which the Database exists.  Information is 

a very practical and applicable commodity.  Information, 

in order to be useful, must be accessible and it is the 

function of a Database to make information accessible. 

This task is a difficult one, abounding in complexities. 

A Database, by virtue of the end it serves is not a 

simple structure; nevertheless, despite a common belief 

to the contrary, Database design need not be overly 

complex. 

There are two major aspects to Database design: 

the creation of a pure information model and the modifica- 

tion of the pure model to conform to the exigencies of 

131 



the current state of technology.  The latter aspect, 

the incorporation of environment dictated compromises, 

is a complex operation.  Its complexity is directly 

proportional to the complexity and the restrictiveness 

of the given DBMS package being used.  The primary 

aspect however, the design of the conceptual schema, 

need no longer be viewed as a complex operation.  The 

methodology which this thesis has presented, demonstrates 

that schema design can be a mechanical process.  If 

complexity does exist in this aspect of Database design, 

it stems from the complexity of the system being modeled, 

not from the Database design process itself. 

As any experienced analyst knows, information 

systems can be exceedingly complex and challenging.  If 

the tools the analyst has to work with are also complex 

and challenging, the problems are unnecessarily multi- 

plied.  By removing the complexity from one aspect of 

the analysts' Database tool, this author hopes to have 

helped clear the path to unencumbered confrontations 

with the proper problems of systems analysis. 

132 



CHAPTER FIVE 

SUGGESTIONS FOR FURTHER RESEARCH 

I.  An Automated Design Methodology 

Throughout Chapter Four's explanation of the 

proposed methodology, numerous references were made to 

the methodology's "mechanical" aspects (specifically 

stages 1 and 2 of Phase II).  Obviously the term 

"mechanical" was used as a metaphor, denoting that the 

activities involved could be accomplished by a machine 

(i.e. a computer), not that the methodology itself is 

in machine readable form.  By shifting the emphasis a 

little (and noting that every piece of drudgery which 

can be accomplished by a machine should be accomplished 

by a machine) it can be asserted tl\at those aspects of 

this the methodology which are automatable, should be 

automated. 

The result of such an automation effort should 

produce a useful and worthwhile Database Design Package. 

The most powerful design would be an interactive (conver 

sational) program which would encompass all of the 

Phase II stages.  The overall program logic of a Phase 

II package might be similar to the following: 

1. Read in the initial Phase I results. 

2. Create the object/attribute matrix. 

133 



3. Create the initial schema design (from the 
object/attribute matrix). 

4. Output the schema design. 

5. Output comments which would indicate 
possible points where the initial schema 
might be modified (i.e. shared attributes, 
data redundancies, set redundancies etc.). 

6. Request modifications; if none are needed 
end the program. 

7. Incorporate the modifications into the 
object/attribute matrix and into the schema. 

8. Return to step #4. 

Although the little logic list above is in no 

way exhaustive, it suffices to illustrate that the 

automation of the proposed Database design methodology 

is not an impossible undertaking.  Considering the 

benefits such an automated package could provide, this 

seems a most worthy enterprise. 

II.  A Definitive and Systematic Approach to Phase I 

In the discussion of Phase I (identification of 

the information to be modeled) it was stated that "There 

are many methods to accomplish this task /Phase ij  and 

many tools to aid the analyst in the endeavor."  This 

is not to say that all the methods are of equal value or 

that even any one method can be considered definitive. 

The systematic gathering and modeling of a system's 

descriptions is a problem with applications far byond 

the realm of just Databases. 

134 



This thesis has presented the minimum 

"information requirements" that an "information identi- 

fication" effort would need for Database design.  A 

researcher might limit his initial quest to devising 

a systematic way of meeting those requirements and then 

expand to include a wider horizon.  Even if the scope 

were limited to only certain types of applications, a 

definitive, systematic approach to the identification 

(and notation) of systems' information requirements 

would be a significant boon to the DP industry. 

Ill.  A Test of the Methodology 

Centrally crucial to the total endeavor of this 

thesis is the idea that the methodology produced must be 

applicable in real world situations.  Throughout the 

analysis and discussion there has been an emphasis on 

comprehensibility, ease of use, and simplicity; practi- 

cality has been a principle criteria ("the touchstone of 

pragmatism") by which other methodologies have been 

judged.  In the light of such a goal it is imperative 

that the proposed methodology be tried and tested in a 

"real world" environment. 

Ideally a true test must consist of a trial 

implementation of the methodology by "front line analysts' 

working in various DP environments.  The methodology, is 

after all, meant as a Database design tool (i.e. a tool 

135 



for DP practitioners).  The front line Database analysts 

should therefore be its judges. 

A test of this sort would have analysts work for 

a period of time with the proposed methodology.  It would 

then require feedback from the analysts in the form of 

evaluations.  These could take the form of questions 

similar to the following: 

1. Which features of the methodology proved 
convenient? 

2. Which features of the methodology proved 
annoying? 

3. Were the schema designs flexible and easy 
to work with? 

4. Could the conceptual designs be easily 
modified to meet package and machine 
restrictions? 

5. Were the Databases produced functionally 
viable? 

6. Were there any special problems encountered? 

7. How does this methodology compare with 
others with which you are familiar? 

This test would serve two very important func- 

tions. Certainly, as with any valid test, it could be 

used to judge the effectiveness and the value of the 

proposed methodology. In addition, however, a test of 

this kind could be used to fine tune the methodology; 

to make it more responsive to the needs of the practi- 

tioners.  The desired result, is after all, to produce 

136 



a product which is useful, toward that end a test 

would provide invaluable feedback. 

If this proposed methodology is not to be just 

another adorning flower upon an ivory tower, then a 

project in line with this suggestion must eventually 

come into being.  All ideas and methodologies can be 

improved upon.  Improvement is the natural direction 

of growth.  This suggested research would provide the 

requisite feedback for that growth, and as such can 

be considered an essential component in the creation 

of this methodology. 

137 



BIBLIOGRAPHY 

Books 

Chen, Peter Pin-Shan.  The Entity-Relationship Approach 
to Logical Data Base Design.  The Q.E.D. Monograph 
Series Data Base Management, No. 6.  Wellesley, 
Massachusetts:  Q.E.D. Information Sciences, 1977a. 

Date, C. J.  An Introduction to Database Systems. 
Reading, Massachusetts:  Addison-Wesley, 37977 
(2nd ed .) . 

Jones, Paul E., Jr.,  Data Base Design Methodology:  A 
Logical Framework.  The Q.E.D„ Monograph Series 
Data Base Management, No. 3.  Wellesley, Massachu- 
setts:  Q.E.D. Information Sciences, 1976. 

Katzen, Harry Jr.  Computer Data Management and Data 
Base Technology^  New York:  Van Nostrand Reinhold 
Company, 1975. 

Lyon, John K.  An Introduction to Data Base Design.  New 
York:  John Wiley & Sons, 1971. 

Lyon, John K.  The Database Administrator.  New York: 
John Wiley & Sons, 1976. 

Martin, James.  Principles of Data-Base Management. 
Englewood Cliffs, New Jersey:  Prentice-Hall, 1976. 

Martin, James.  Computer Data-Base Organization. 
Englewood Cliffs, N.J.:  Prentice-Hall, 1977 
(2nd ed.) . 

Meadows, Charles T.  Applied Data Management.  New York: 
John Wiley u  Sons, 1976. 

Ross, Ronald G.  Data Base Systems Design, Implementa- 
tion, and Management.  New York:  Araacom, 1978. 

Sundgren, Bo.  Theory of Data Bases.  New York: 
Petrocelli/Charter, 1975. 

Wiederhold, Gio.  Database Design.  New York:  McGraw- 
Hill, 1977. 

138 



Yourdon, Edward.  Design of Qn-Line Computer Systems 
Englewood Cliffs, N. J.:  Prentice-Hall, 1972. 

Articles and Conference Proceedings 

Ashany, R. and M. Adamowicz.  "Data Base Systems."  IBM 
Systems Journal, 15, No. 3 (1976), pp. 253-263. 

Bernstein, Philip.  "Synthesizing Third Normal Form 
Relations from Functional Dependencies."  ACM 
Transactions on Database Sy3tem, 1, No. 4 
(1976), pp. 277-298. 

Blasgen, M. W. and E. K. P. Eswaran. "Storage and Access 
in Relational Data Bases." IBM Systems Journal ,16, 
No. 4 (1977), pp. 363-377. 

Canning, Richard G. "Creating the Corporate Data Base." 
EDP Analyzer, 8, No. 2 (1970). 

Canning, Richard G. "Organizing the Corporate Data Base." 
EDP Analyzer, 8, No. 3 (1970). 

Canning, Richard G. "Processing the Corporate Data Base." 
EDP Analyzer, 8, No. 4 (1970). 

Canning, Richard G. "Data Security in the CDB." EDP 
Analyzer, 8, No. 5 (1970).  ,, 

Cardenas, Alfonso F.  "Evaluation and Selection of File 
Organization - A Model and System."  Communications 
of the ACM, 16, No. 9 (1973), pp. 540-548. 

Chen, Peter Pin-Shan.  "The Entity-Relationship Model - 
Towards a Unified View of Data."  ACM Transactions 
on Database Systems, Vol. I, No. 1, March 1976, 
pp. 9-36. 

Chen, Peter Pin-Shan.  "The Entity-Relationship Model - 
A Basis for the Enterprise view of Data." AFIPS 
Conference Proceedings,1977 National Computer 
Conference.  13-16 June 1977.  Montvale, N. J.: 
AFIPS Press, 1977b, pp. 77-84. 

Durchholz, R. and G. Richter.  "Concepts for Data Base 
Management Systems."  Data Base Management, IFIP 
Working Conference on Data Base Management.  1-5 
April, 1974.  Amsterdam:  North Holland Publishing 
Co., 1974, pp. 97-122. 

139 



Gerritsen, Rob.  "A Preliminary System for the Design of 
DBTG Data Structures."  Communications of the ACM, 
18, No. 10 (1975), pp. 551-557. 

Grotenhuis, F. J. W.  "STAF:  Standard Automation Funda- 
ments, A Model for Automatic Processing."  Data 
Base Management, IFIP Working Conference on Data 
Base Management.  1-5 April, 1974, Amsterdam:  Nor th 
Holland Publishing Co., 1974, pp. 313-335. 

Finneran, Thomas R., J. Shirley Henry.  "Structured 
Analysis for Data Base Design."  Datamation, 
November 1977, pp. 99-113. 

Heyne, G. F. and C. J. Daniel.  "Design Techniques for a 
User Controlled DB/DC System."  IBM Systems Journal, 
16, No. 4 (1977), pp. 344-362. 

Kissinger, Henry. "White Revolutionary:  Reflections on 
Bismarck."  Daedalus, 97, No. 3 (1968), pp. 888-924. 

Nijssen, C. M.  "Data Structuring in the DDL and Rela- 
tional Data Model."  Data Base Management, If1^ 
Working Conference on Data Base Management. 1-5 
April, 1974. Amsterdam:  North Holland Publishing 
Co., 1974, pp. 363-384. 

Nunamaker, J. F., Jr., Ben R. Konsynski, Jr., Thomas Ho, 
and Carl Singer.  "Computer-Aided Analysis and 
Design of Information Systems." Communications of 
the ACM, 19, No. 12 (1976), pp. 674-687. 

Raver, N. and G. U. Hubbard.  "The Automated Logical 
Data Base Design:  Concepts and Applications." 
IBM Systems Journal, 16, No. 3 (1977), pp. 287-312. 

Senko, M. E. "Data Structures and Data Accessing in Data 
Base Systems Past, Present, Future."  IBM Systems 
Journal, 16, No. 3 (1977), pp. 208-257. 

Sibley, Edgar H. and Larry Kerschberg.  "Data Architec- 
ture and Data Model Considerations."  AFIPS 
Conference Procedures, 1977 National Computer 
Conference.  13-16 June 1977.  Montvale, N. J.: 
AFIPS Press, 1977, pp. 85-96. 

Strocker, P. M., and P. A. Dearnly.  "A Self-Organizing 
Data Base Management System."  Data Base Management, 
IFIP Working Conference on Data Base Management. 
1-5 April, 1974, Amsterdam:  North Holland Publishin* 
Co., 1974, pp. 334-349. 

140 



Sundgren, Bo.  "Conceptual Foundations of the Infological 
Approaches to Data Bases."  Data Base Management, 
IFIP Working Conference on Data Ba3e Management. 
1-5 April, 1974.  Amsterdam:  North Holland 
Publishing Co., 1974, pp. 61-96. 

Titman, P. J. "An Experimental Data Base System Using 
Binary Relations."  Data Ba3e Management, IFIP 
Working Conference on Data Base Management.  T-5 
April, 1974.  Amsterdam:  North Holland Publish- 
ing Co., 1974, pp. 351-361. 

Towner, L. E. "Non-Codasyl DBMS - A Bad Choice for 
Users."  Computerworld, 6 Feb. 1978, p. 21. 

Wood, Roy, and Robert B. Chamberlain.  "Once for 
Designers, DBMS Now Keyed to User."  Computerworld, 
6 Feb. 1978, p. 26. 

Reports and Manuals 

Bethlehem Steel Corp. Data Processing Services.  IMS 
Standards Manual User's Guide (rev. 1), Bethlehem, 
Pennsylvania:  1 June, 1977. 

Committee on Data Systems Languages (CODASYL).  Data 
Base Task Group Report April 1971.  New Yorlc! 
Association for Computing Machinery, 1971. 

Digital Equipment Corp.  Data Base Management System 
Administrators Procedures Manual.  D.E.C. Maynard, 
Massachusetts:  1977. 

IBM Corp.  Data Base Design Aid Version 2 General 
Information Manual.  IBM.  White Plains, New York: 
1977 (GH20-1626-2). 

Unpublished Working Papers 

Mitoma, Michael, F., Optimal Data Base Schema Design. 
Ann Arbor:  Michigan University, 1975. 

Weldon, Jay-Louise. "A Data Base Configuration Model. 
New York:  New York University, Aug. 1977. 

Weldon, Jay-Louise.  "Using Database Abstractions for 
Logical Design - A Case Study."  New York:  New 
York University, Oct. 1977. 

141 



APPENDIX A 

AN IN-DEPTH PROBLEM SCENARIO 

I.  Design and Traditional Files 

Before turning attention to Database design 

techniques it behooves one to establish some perspec- 

tive as to the origins and evolution of the Database 

concept.  This requires some understanding of the 

design environment previous to Database technology. 

It was, after all, an environment of narrow horizons, 

demanding of designers only that they satisfy the 

needs of a given particular application, or at most, 

the needs of a single specific system. 

In the first DP systems the overwhelming 

number of applications were batch oriented.  Hardware 

limitations and storage costs combined to restrict 

most files to a sequential storage medium (magnetic 

tapes and/or perforated paper).  This meant that most 

file processing had to be sequential, but that the 

potential length (the number of records) and potential 

breadth (the record size) of files could be considered 

(within reason) unbounded. 

Information was considered parochial in nature; 

each system (all files and programs) being the private 

fiefdom of its owner.  System sovereignty was a well 

142 



respected right which when transgressed required the 

highest authority. 

Rarely was it realized to what extent informa- 

tion is a total enterprise resource.  The majority of 

systems came "online" more by accident of circumstance 

than by overall information resource planning.  Even 

the development of DP centers themselves followed 

haphazard (albeit not unpredictable) courses. 

Although system design, then as now, was "not 

so much a science as a trade or a craft," (Yourdon, 1972, 

p. 72) basically the designs could, be categorized into 

two fundamental orientations (Lyon, 1971):  process- 

oriented systems and file-oriented systems.  Because 

both these orientations are still common (and are occa- 

sionally applied to Database design) a few words on the 

subject are in order. 

The process-oriented designer tends to initiate 
design by identifying and defining each of the 
system-run /sic/ units in terras of internal process- 
ing, leading to a determination of the data required 
by each program.  Finally after each "process" unit 
is defined, the designer reviews his data require- 
ments and constructs a file. 

The alternative to process orientation is a 
design which begins by an examination of the total 
system in terms of information. . . . The file 
approach defines the information elements of a 
system and organizes them such that the informa- 
tion remains valid even though the details of the 
process change. . . . The file-oriented designer 
concentrates on the basic information element of 
the system. . . and will design the file such that 

143 



it establishes and maintains the logical integrity 
of. . ./the basic element/, the subsidiary informa- 
tion elements, and finally the relationships among 
the elements (Lyon, 1971, pp. 7-9). 

Even with the advent of feasible and relatively 

inexpensive Direct Access Storage Devices (DASD's - 

mostly removable disks) design orientations changed very 

little.  Indexed Sequential, Direct Access, and in some 

cases, Inverted files began to be more widely used, but 

often even with these constructs, the analysts' view of 

"File" remained intrinsically the same.  The heritage of 

sequential processing proved hard to shed. 

With sequential files (particularly on magnetic 

tapes) it made good sense to pack each record with as 

much data as possible.  This reduced the necessity of 

storing large amounts of data in the computer memory and 

reduced the necessity of searching files for "further 

pieces of data".  The notion of a "masterfile" was often 

a large sequential file wherein each record contained 

tens (and sometimes hundreds) of data items.  One 

rationale for this was that if a file included all 

potentially needed data, the file became more "flexible" 

i.e. would not need additional file interaction and would 

be relatively free from modification.  Typically, various 

applications in a system would sort the masterfile (or 

some extracted subset of it) according to a particular 

144 



need and then process the sorted file. 

This same type of thinking was carried over into 

non-sequential (and indexed sequential) files.  Many not- 

strictly-sequential files were built around enormous 

record sizes for precisely the same reasons that sequen- 

tial files were.  There were, of course, exceptions, 

but these were a small minority. 

The pre-Database world was one of mostly sequen- 

tial files and sequential file orientation.  Systems (and 

sometimes subsystems) were viewed as being independent 

entities and the private domains of their owners.  Pay- 

rolls and other basically sequential applications were 

functioning well, however the problems were myriad and 

multiplying.  In the following section, some of these 

problems will be examined. 

II.  Some Problems with the Traditional Designs 

Depending upon the individual's personal 

orientation, different authors have taken various views 

as to the types of problems which gave rise to the need 

for Database technology.  Although many cite the same 

"source of the problem", each then proceeds to expound 

upon a different problem.  This is understandable since 

one "source" may cause many problems.  There seem to be 

These foresighted exceptions laid the founda- 
tions for Database technology. 

145 



three basic orientations:  management-oriented, system- 

oriented, and machine-oriented.  The following brief 

review of the problems first lists some of the signifi- 

cant "problem sources", then defines them (where 

necessary) and finally discusses the problems they cause 

for each sector of interest. 

Parochial View of Data - (This has been amply 
elucidated in Section I). 

Data Redundancy - The storage of one "piece 
of information" in multiple locations. 
There are really two types of data redun- 
dancy:  explicit and implicit.  Explicit 
redundancy occurs where one has multiple 
storage location of exactly the same piece 
of information.  Implicit redundancy occurs 
where a piece of information and all the 
factors necessary^ coexist in storage. 

Data-Dependent Applications - "This means that 
the way in which the data is organized on 
secondary storage and the way in which it 
is accessed are both dictated by the 
requirements of the application, and more- 
over that the knowledge of the data 
organization and access technique is built 
into the application logic"1" (Date, 1977, 
p. 10) . 

Lack of Flexibility in Current Data Structures - 
This manifests itself in a number of areas: 
difficulties in having "shared files", 
problems with restricting access on a record 
and/or field level (as opposed to on a file 
level), and problems with viewing a given 
file as being able to accommodate various 
organizational structures (although to a 
certain extent Indexed Sequential and 
Inverted files both provide the designer 
with some powerful options). 

The outstanding problem for those of a management 

146 



bent is the fragmentation and lack of centralized 

control of a very valuable resource - information.  As 

C.J. Date (1977, p. 6) points out in answering the 

question, "Why Database?": 

One answer is that it provides the enterprise 
with centralized control of its operational 
data - which ".   T ~ is its most valuable asset. 
This is in sharp contrast to the situation 
which prevails in most enterprises today, 

^diibere typically each application has its own 
private files - quite often its own private 
tapes and disk packs, too - eo that the opera- 
tional data is widely dispersed, and there is 
little or no attempt to control it in a 
systematic way. 

Other authors also stress this issue: 

An enterprise needs to manage its data 
resource. . . . Recognition that data are 
valuable and that they are not the property 
of a single function is to acknowledge the 
enterprise as an integrated whole and not 
a collection of independent units (Lyon, 1976, 
pp. 2-3). 

Thus with the growing concern for Management Information 

Systems (MIS), and the growing awareness of information 

as an important resource, the inadequacies of pre- 

Database systems became quite apparent. 

The machine-oriented analysts tend to emphasize 

some of the problems caused by data redundancy, particu- 

larly inflated file size.  Overly large files are both 

a waste of precious storage space and result in slower 

response times.  In today's systems "files are large; 

thus, redundant data must be factored out to reduce the 

147 



time required to access desired information" (Katzen, 

1975, p. 165).  With the quantity of information being 

stored increasing at an exponential rate /and the pros- 

pects "that the exponential growth could continue for a 

decade or two" (Martin, 1977, p. 4 )J   the problems of 

efficient data storage become increasingly more critical. 

System-oriented authors have pointed out many 

problems with the traditional modus operandi.  Here are 

only a few of the principle ones. 

The High Cost of Data Redundancy - Obviously if 
multiple copies of a piece of information 
exist, this requires the system to perform 
multiple updating operations.  This may not 
be significant when dealing with small 
inactive files, but the cost can be quite 
appreciable with large and/or highly active 
files. 

The Increased Probability of Transcription and 
Updating Errors Due to Data Redundancy - 
There is a corollary to Murphy's Law: 
"Transcription errors increase as the square 
of the number of times a piece of information 
is manually transcribed."  Note the lemma 
which states that:  "the more places a given 
piece of information resides, the greater is 
the probability that one or more of its 
occurrences will be updated incorrectly 
(due to transcription errors and/or simply 
being overlooked)."  Taken together it can 
be concluded that:  the more the occurrences 
of a given piece of information, the greater 
the probability that one (or more) of those 
occurrences will contain an error (Q.E.D.). 

Data Inconsistency Due to Redundancy - Even if 
one does manage to keep one's files free 
from real errors (transcription and the like), 
redundancy can cause the appearance of appar- 
ent errors, a condition which can be equally 

148 



embarrassing for a DP center.  It is rare 
to find a traditional (non-integrated, non- 
Database) situation in which every occurrence 
of a redundant data item can be updated at 
the same time.  "In a large data processing 
operation without a database there are so 
many redundant data that it is virtually 
impossible to keep them all at the same 
level of update.  Too often the users or 
general management notice the apparent 
inconsistencies that this causes and dis- 
trust the computerized information.  Inabil- 
ity to keep redundant data in the same state 
of update is a common cause of the anti- 
computer stories that managers too often 
tell" (Martin, 1977, p. 23). 

Growth Resistant Systems Due to Data Dependent 
Applications - In an environment where the 
data organizational structure is coded as 
an integral part of the application programs 
(as in the "File Section" of a COBOL pro- 
gram) any change in a file, be it ever 30 
minor, necessitates modification and recomp- 
ilation of every single program which accesses 
that file.  In large systems where many pro- 
grams may use a single file even a minimal 
change in a file definition can result in 
tedious and expensive program modifications. 

Difficulty in Sharing Stored Data - The basic 
alternative to private files is shared files. 
Traditional file organizations, however, lack 
the requisite flexibility for conveniently 
sharing files.  Shared information also 
requires much more stringent security and 
privacy features than traditional file 
structures offer.  If the golden age of 
integrated systems is to successfully replace 
the private data fiefdoms, more powerful 
file organizations must exist. 

Ill.  Database Ideals (general goals) 

Having noted the drawbacks of non-Database 

systems and organization structures, the next step i3 to 

149 



examine the features of a data storage scheme which would 

be able to overcome the traditional difficulties and 

better accommodate DP needs.  The convenient buzz word 

for such a schema (already freely used in this work) is 

Jatabase.  As was noted in the discussion of the tradi- 

tional problems, different authors cite various features 

as being those which characterize a Database /e.g. 

CODASYL's Data Base Task Group (1971) lists twelve 

requisite features, C.J. Date (1977) lists seven, and 

James Martin (1977) lists thirty 7. 

Such lists are never really mutually exclusive. 

Individual authors use different degrees of generaliza- 

tion and implied assumptions in enumerating their own 

criteria.  Nevertheless, an industry-wide dispute does 

exist over just what constitutes a Database (and the 

issue is far from settled).  Some of the repercussions 

of this dispute will be mentioned later on, but for 

the nonce, controversy should be avoided.  A general 

(intuitive) idea of some desired Database features will 

certainly suffice for an understanding of this thesis. 

To this end it is convenient to borrow a defini- 

tion of Database from James Martin (1976) and a list of 

requisite features from the CODASYL Data Base Ta3k Group 

/DBTG (1971)7. 

150 



a) Definition of a Database (Martin, p. 4): 

A collection of data designed to be used 
by different programmers is called a data base. 
We will define it as a collection of inter- 
related data stored together with controlled 
redundancy to serve one or more applications 
in an optimal fashion; the data are stored 
so that they are independent of programs 
which use the data; a common and controlled 
approach is used in adding new data and modify- 
ing and retrieving existing data within the 
data base. 

b) Requisite Data Base Features (p. 6): 

The Data Base Task Group's objective in 
developing these proposals was to make this 
/Database_7 possible by providing featur.es 
which: \ 

V 

. allow data to be structured in the mariner 
most suitable to each application, regard- 
less of the fact that some or all of that 
data may be used by other applications 
- such flexibility to be achieved without 
requiring data redundancy. 

. allow more than one run-unit to concurrently 
retrieve or update the data in the database. 

. provide and permit the use of a variety of 
search strategies against an entire database 
or portions of a database. 

. provide protection of the database against 
unauthorized access of data and from 
untoward interaction of programs. 

. provide for centralized capability to 
control the physical placement of data. 

. provide device independence for programs. 

. allow the declaration of a variety of data 
structures ranging from those in which no 
connection exists between data-items to 
network structures. 

151 



. allow the user to interact with the data 
while being relieved of the mechanics of 
maintaining the structural associations 
which have been declared. 

. allow programs to be as independent of the 
data as current techniques will permit. 

. provide for separate descriptions of the 
data in the database and of the data known 
to a program. 

. provide for a description of the database 
which is not restricted to any particular 
processing language. 

. provide an architecture which permits the 
description of the database, and the data- 
base itself, to be interfaced by multiple 
processing languages. 

These features, then, provide both generality 
and flexibility and allow the building and 
manipulation of data structures as complex as 
necessary for a given application. 

IV.  The Current States of "Database" Today 

Three statements can characterize the position 

of Database technology in today's Data Processing (DP) 

world: 

1. Almost everybody wants a "Database". 

2. There is no general agreement on a 
precise definition of a Database. 

3. There is almost general agreement that 
the Database packages which are on the 
market do not meet all the cr iter ia of 
what a Database should be. 

If it were not costing so much time and money, 

the situation could be comical.  But time and money are 

being spent in enormous quantities.  Every vendor of 

152 



self-esteem feels it incumbent upon himself to market at 

least one "Data Base Management System" (DBMS) no matter 

how limited.  Database books, journals and other sundry 

publications proliferate with a prodigious frequency. 

DP managers, who should by now be used to the magic of 

such buzz words, point with pride at their own opera- 

tional "DBMSs", even when the heart of such a system 

is often nothing more than an Indexed Sequential file 

with a fancy name. 

What is it that causes such a phenomenon?  From 

whence comes the need to "jump on the band wagon" of an 

idea that is admittedly still vague and whose future 

direction is uncertain?  Perhaps one reason is that 

many view DBMS as being the cure for all the present 

ills and the prevention against future ones. 

It is this faith in the ability of Database 

that is in part responsible for much of the current 

controversy.  Vendors, all wanting to be the first 

with the "magical solution", all in the heat of a 

fiercely competitive market, invested great sums of 

money into developing Database technology.  Many have 

succeeded in producing marketable packages, but like 

Pandora's box, there are still plagues mixed in with the 

blessings.  Very little cooperation and coordination 

took place in the early development stages.  The attempts 

153 



at standardization of features came too late.  Vendors 

who have tread disparate paths do not want to retrace 

their steps to follow the "standard" road; they have 

gone too far and too much has already been invested. 

This leaves the users and potential users in a 

difficult predicament.  Most Database packages which are 

produced by the major hardware vendors are extremely 

hardware dependent.  A user of IBM's IMS, for example, 

is totally locked into IBM (and IBM compatible) hardware. 

Even with some of the more machine independent packages 

(produced for the most part by software houses) a user 

gets locked into a particular piece of software.  To 

switch to another DBMS package would require a horren- 

dous conversion effort. 

Independent groups such as CODASYL have made 

valiant efforts to bring about standards and standard 

compatible features for all Database packages, but for 

the present the battle lines are still drawn.  Eventually 

the standards must come and from the current trends it 

appears as if CODASYL's standards will carry the day 

/."Nearly all of the database packages developed in the 

last four years used the CODASYL specification as their 

guide"(Towner, 1978), but with a giant like IBM leading 

the opposition, CODASYL's victory is far from assured/. 

Whatever the eventual outcome, the standards 

154 



which do emerge, forged in the crucible of controversy, 

will be a welcome boon to the entire DP industry.  We 

of the present, however, must live with the uncertain- 

ties of the future and make due with the fuzzy, some- 

times partisan definitions of the here and now. 

It turns out, that even after one has agreed 

to a certain set of standard features, finding a 

package which truly supports these features is another 

matter.  When the first Database packages were developed 

much of the requisite technology (both hardware and 

software) was not available.  These early packages 

tended to strain machine capabilities to their limits 

and out of necessity these original packages were 

extremely "machine-efficiency-oriented". 

This has, in the long run, proved counter- 

productive to the general Database goals, saddling the 

fledgling technology with a set of misdirected early 

traditions.  As some commentators have noted: 

There is, however, an irony present 
in that the development styles of the original 
DBMS have tended to weaken the goals of program, 
and particularly programmer, independence. 

Although the original data base packages 
were conceived in the glow of program indepen- 
dence, they were delivered by practitioners of 
machine/core optimization.  The good intention 
of program independence through DBMS was itself 
compromised by design and implementation goals 
that emphasized efficient use of machines rather 
than people, despite the changing machine/people 

155 



relationships which brought them into being 
(Wood and Chamberlain, 1978). 

In current practice there is an unfortunate 

perpetuation of the early machine-efficiency-orientation. 

We shall see this orientation again reflected in some of 

the Database design techniques discussed in Chapter Two. 

Another factor which impedes the potential users 

in the search for a standard package is the perfidy of 

unscrupulous vendors.  Often a vendor will advertise 

"CODASYL DBTG Standard" DBMS packages only to have 3hort 

changed the user on some of the more important festures. 

In practice this credibility gap only serves to muddy 

waters even further and place one more obstacle on the 

path to standardization. 

V.  Database Schema Design 

Despite the lack of unanimity among the Database 

package vendors (as well as among the academicians) 

there are certain aspects of Database design which can 

be relatively independent of the particular Database 

package to be used.  One such aspect is Database schema 

design, the primary topic of this thesis. 

If the function of a data base were merely to 
store data, its organization would be simple.  Most 
of the complexities arise from the fact that it 
must also show the associations between various 
items of data that are stored (Martin, 1977, p. 60). 

The task of the Database schema is to detail exactly 

156 



what types of data will be stored in the Database and 

what interrelationships exist between those data types. 

It can be thought of as a mapping of the information 

capacity of the Database, a complete description, not 

of the specific information the Database contains, but 

of the kind of information it can contain. 

In order to determine the "kind of information" 

a Database can contain it is necessary to know three 

things:  What data items it contains; how the data items 

are grouped into records; and how the records are grouped 

into sets.  These three tasks are the essence of database 

schema design. 

Once a schema is mapped out, the designer can 

easily translate almost any given "logical design" into 

the specific form most efficient for a given Database 

package.  Indeed, if the designer works at the schema 

level (and does not begin to design at the package 

level to fit a certain package) the problem of package 

independence would be greatly reduced.  Instead of 

reflecting the framework of a specific package a schema 

should reflect the innate nature of the data and the 

information contained therein. 

157 



APPENDIX B 

FURTHER DISCUSSION OF CURRENT DESIGN METHODOLOGIES 

I.  The Service Analysis Tasks 

In Service Analysis (SA) the problem of Database 

design is divided among thirteen tasks.  Briefly these 

tasks are: 

1. determine who will be the clients of the 

system 

2. determine what services the system needs 

to perform for the clients 

3. identify the "data objects" required to 

support the services 

4. determine the frequency of access (usage) 

of each of the data objects 

5. describe the information available 

6. describe the major functional units involved 

in the system 

7. describe the client groups (sub-system 

identification) 

8. collate the above information into a Service 

Analysis Book 

9. prepare the Data Dictionary from the informa- 

tion in the Service Analysis Book 

10.  calculate the degree of redundancy in the 

158 



system (based upon the information in the 

Data Dictionary) 

11. prepare the "First Cut Design", a grouping 

of data objects into "pseudosegments" 

(candidates for records) on the basis of 

access frequency 

12. prepare the "Second Cut Design", a split- 

ting of the pseudosegments into segments 

(records^ based upon considerations of 

size, number of occurrences and generic 

relationships (logical connections) 

13. prepare the first design, the definition 

of the Database logical structure. 

It is fairly obvious from this list where the 

three design functions (identifying data items, grouping 

into records and grouping into sets) take place.  Tasks 

one through nine identify the data items.  Tasks ten 

through twelve group the items into records; while both 

twelve and thirteen group records into sets. 

II.  Infological Design 

The infological design deals in four (4) funda- 

mental concepts.  These are (Sundgren, 1975, pp. 18-31): 

1.  Objects - "Intuitively an object is something that 
we are interested in, something that we want 
to gather information about. 

159 



Objects may or may not be physical 
entities.  Enterprises, departments, 
educations, professions, leisure activities 
and car accidents are as good 'object candi- 
dates' as are persons, buildings, areas, 
pets, and motor vehicles.  It is when we 
specify a particular infological model. . . 
that we decide what phenomena to include 
as objects." 

2. Properties - Properties are one of the two funda- 
mental concepts which can be used to answer 
the question "What is it that we want to know 
about an object? . . . Intuitively we may 
either want to inform ourselves about the 
properties of an object or about the object's 
relations to other objects." 

3. Object Relations - "Whereas properties are tied 
to individual objects, object relations are 
tied to pairs or, more generally, n tuples1 

of objects". - An object relation Ts a 
specified relationship between two or more 
objects (e.g. a person and a car may be 
related by the relationship of "owner to 
chattel"). 

4. Time - "The fourth fundamental infological concept 
to be introduced is time.  The most convenient 
procedure for specifying the set of times of 
a particular infological model will probably 

N-     be 'per constellation type' /see below/; 
that is, for each phenomenon to be covered 
by the infological model, we specify the 
times of potential interest." 

In addition to the fundamental concepts, the info- 

logical approach requires the aid of some "derived" con- 

cepts.  A complete formal discussion of these is quite 

beyond the scope of this thesis, but briefly some of them 

^A tuple is simply a group of related objects; 
therefore an n tuple is a group of n related objects. 

160 



are as follows 

Constellations - "Objects, properties, object 
relations, and times form certain basic struc- 
tures, called elementary constellations, or 
e-constellations, which together define the 
whole structure and contents of the object 
system" (Sundgren, 1974, p. 65). 

Formally stated, the definition of an 
e-constellation becomes:  "If x is an n tuple 
of objects (n = 1,2,3, . . .) , y_ is a property 
or an object relation, and z^ is a time, then 
the triple  x,y,z  is called an elementary 
constellation, an e constellation; and x is 
called the object component, y_ the predicate 
component, and z the time component of the 
e cons te Hat ion"?' (Sundgren, 1975, p. 33). 

If y_ is a property then the e-constellation is 
called a property type.  If y_ is a relation, 
the e-constellation is a relational type. 

Object Group - An object group "is the set of 
all objects that have, have had, or will have" 
a given property (Sundgren, 1975, p. 34). 

Attributes - A set of properties is an attribute 
if and only if there exists an object group for 
which the set of properties is relevant (where 
relevant is defined as a set of properties wherein 
each property is valid for at least one object 
in the object group for any given time slice). 

Given this discussion of objective reality as 4 
a foundation, infological theory proceeds to describe 

the human interaction with the Database.  Humans are 

interested in information and so must reference the 
i 

Database.  Thus the area of references is also analyzed 

References are the basic building blocks of messages. 

References are conceptual, mental entities which 
human beings use when they perceive and think about 

161 



an object system.  Each reference refers to an object 
system entity, the target of the reference. . . . 
References may be combined into reference expressions 
An elementary message, or e-message, is a reference 
expression which has an e-constellation as the 
object system target" (Sundgren, 1974, p. 93). 

As has been stated, infological implies user 

oriented.  Indeed the user is asked to view the Database 

as a magical "black box" for which he has but to define 

the objects, properties, attributes, messages and so 

forth, never to consider the computer oriented data- 

logical point of view.  However, "for those who are to 

perform the computer-dependent, datalogical design of a 

data base, the infological 'black box view* will not be 

sufficient" (Sundgren, 1974, p. 93).  What then must the 

datalogical practitioner do in order to complete the 

Database design and open up the magical black box? 

In order to bridge the gap between the infological 
and the datalogical sphere of the general data 
base design theory, an elementary file, or e-file, 
is defined as a certain "normal" representation of 
an e-concept.  There are three basic types of 
e-files; object e-files, property e-files, and 
relational e-files.  Which type we choose for a 
particular e-concept, ec, is dependent upon such 
infological parameters as the respective frequen- 
cies and response time requirements for /inquiries/ 

Thus the initial datalogical design step according 
to the extended infological theory consists in a 
transformation of the set of e-concepts of the 
infological model into a set of object, property, 
and relational e-files.  Then there is a set of 
formally well-defined file structuring operators 
by means of which we may transform the initial file 
structure into a file structure which better fits 

162 



(a) the expected infological pattern of the 
transactions which will hit the operative data 
base, and (b) the storage and access structure 
of available memories. 

After a number of applications of the file struc- 
turing operators we will arrive at the file 
structure which is to be implemented.  The final 
file structure, or file system, will contain a 
number of the subsystems called >*rS-complexes, or 
directory/file-complexes.  The internal structure 
of such a complex may or may not conform to some 
well-known file organization technique.  Anyhow 
we will have designed our file system in a much 
less arbitrary and much more user-influenced way 
than is common today (Sundgren, 1974, pp. 93-94). 

Before leaving this discussion of infological 

Database design, a few words must be said about the 

major concern of th.is thesis - the logical design of 

the Database.  From the infological viewpoint a Data- 

base consists of three principle "subsystems" (or parts) 

Formally we may define the infological data base 
as a triple, 

DB =   S,N,F, 

where 

S is a schema 
N is a nucleus 
F is a filter. 

Together S and N determine the set of M of 
messages that are contained in the data base, the 
information contents of the data base (Sundgren, 
1975, p. 71): 

The filter is not of current concern.  It has the 

function of protecting "the data base and its users 

163 



against false messages and messages that are not 

meaningful according to the specifications and defini- 

tions embedded in the data base schema" (Sundgren, 1975, 

p. 76).  Taken together the "schema" and the "nucleus" 

define the logical Database design (the schema in this 

author's terminology).  The nucleus is that portion of 

the Database which contains the basic data items and 

records.  The infological schema is that which defines 

the requisite interrelationships (sometimes sets and 

sometimes records). 

Once again in the words of Bo Sundgren (1975, 

pp. 72, 74-75) : 

From an infological point of view a data base 
schema is identical with the specification of a 
particular infological model. . . . Thus a schema 
is a statement of a set of (references to) object 
types, attributes, object relations, generation 
rules, constellation types, internal and external 
definition, etc. 

The nucleus of a data base is a set of messages 
that is sufficient to generate, in combination with 
the schema, the information contents of the data 
base.  If no message can be removed from the 
nucleus without changing the information contents 
of the data base, we shall say that the nucleus is 
infologically minimal, or non redundant.  As has 
been said before, there may be datalogical as well 
as infological reasons for allowing the nucleus to 
be redundant. 

Whereas the general idea of the nucleus as a 
kernal or subset of messages from which the other 
messages of the data base are derived seems clearly 
conceivable even from an infological point of view, 
we cannot always give a strictly infological 

164 

-V\ 



justification for considering, or not considering, 
a particular message as part of the nucleus. 
Several distinct sets of messages may, independently 
of each other, fulfill the infological condition, 
as stated above, for being a non redundant nucleus; 
and any set containing one of these sets as a 
proper subset would be a feasible redundant nucleus. 
Selecting one of these redundant or non redundant 
nucleus candidates as the nucleus of the data base 
is ultimately a design decision into which data- 
logical efficiency considerations inevitably come. 

Ill.  Entity-Relationship Design 

The E-R model is constructed in three steps 

(Chen, 1977b, pp. 78-79): 

1. "identify entity sets of interest to the 
enterprise71 

"An entity is a ' th'ing' which can be 
distinctly identified.  According to the needs 
of the enterprise, entities can be classified 
into different entity types such as EMPLOYEE, 
STOCK-HOLDER.  An entity-set is a group of 
entities of the same type. . . . 

" ^     There are many 'things' in the real world. 
In addition, different enterprises may view 
the same thing differently.  It is the responsi- 
bility of the enterprise administrator to select 
the entity types which are most suitable for 
his company." 

2. identify the relationship sets of interest to 
the enterprise 

"Entities are related to each other.  Differ- 
ent types of relationships may exist between 
different types of entities.  A relationship set 
is a set of relationships of the same type" 
Relationship sets may exist between two entities 
(e.g. employee assignments to work projects might 
be called the employee-project relationship set) 
or between multiple entities (e.g. the relation- 
ship set which could exist between the entities: 

165 



project, part-# and supplier).  Relationship 
sets may also be of various mappings (or 
"ratio" types).  Entities may be related on 
a one-to-one (1:1) basis, a one-to-many 
(1:M) basis, or a many-to-many (M:M) basis. 

3. 

"There are many types of relationships 
between entities.  The responsibility of 
the enterprise administrator is to select 
the relationship sets (or types) which are 
of interest to the enterprise." 

"identify relevant proper ties of entities and 
relationships (i.e., def ine~vaTue sets and 
attributes)" 

Entity Set 

Attr ibutes 

Value Sets 

"Entities and relationships have proper- 
ties, which can be expressed in terms of 
Attr ibute-value pairs.  'Blue', and '4' 
are examples of values.  Values can be 
classified into different types such as COLOR 
or QUANTITY.  A value set is a group of 
values of the same type.  An attr ibute is a 
mapping from an entity set (or a relation- 
ship set) to a value set (or a group of value 
sets)." 

EMPLOYEE 

7—^ 
AGE ADDRESS 

It should be noted that the use of the 
concept of relationship set is such that 
relationships themselves can have attributes 
(and thus can be considered in some sense 
entities). 

166 



Relationship Set 

Attr ibutes 

Value Sets 

"It is useful to think" of the E-R model as 
j 

consisting "of two conceptual domains:  (1) the upper 

conceptual domain which consists of entity sets and 

relationship sets; (2) the lower conceptual domain which 

consists of attributes and value sets." (Chen, 1977b, 

p. 80)  It is obvious that any given schema can never be 

a static completed entity.  There must be mechanisms for 

modifications.  The E-R model contains five basic modify- 

ing operations:  add, delete, split, merge, and shift. 

Each of the first four can occur in either the upper or 

the lower domains.  The fifth (shift) affects both 

domains.  Add and delete are obvious functions required 

for the addition of new entities and the deletion of old 

ones from the model (with all the concomitant connection 

and disconnection of relationships and attributes).  To 

split an entity is to divide it into logical sub-entities 

167 



(which now become entities).  An example of a split 

would be the division of the entity EMPLOYEE into 

MALE-EMPLOYEE and FEMALE-EMPLOYEE.  Relationships can 

also be split (e.g. the relationship EMPLOYEE-PROJECT 

can be split into WORKER-PROJECT and MANAGER-PROJECT). 

"To merge" is the reverse of "to split".  The shift 

function handles the shifting from one conceptual 

domain to another.  Occasionally it may be desired to 

view what had been viewed as a value (e.g. skill code) 

as an entity.  This would require a shifting operation. 

Similarly an entity may be "downgraded" to the status 

of value also through the use of the shift function. 

IV.  Relations and Normal Forms 

The basis of the relational approach is the 

"relation".  To qualify as a relation a table must meet 

a number of standards.  According to James Martin (1976, 

p. 96) the properties of a relation are: 

1. Each entry in a table represents one 
data item; there are no repeating groups. 

2. They are column-homogeneous; that is, 
in any column all items are of the same 
kind. 

3. Each column /called a domain^ is assigned 
a distinct name. 

4. All rows /called tuplesj7 are distinct; 
duplicate rows are not allowed. 

168 



Both the rows and the columns can be viewed 
in any sequence at any time without affect- 
ing either the information content or the 
semantics of the function using the table. 

An example of a relation can be seen in Figure 

B.l.  In that example the domain Employee-number is indi- 

cated to be the "Prime Key".  This means that it (the 

prime key) is the domain which identifies the tuple; 

or, in other words, a tuple consists of an "object" and 

its attributes, the domain which identifies the object 

is the prime key. 

Using a slightly different terminology, Gio 

Wiederhold (1977, p. 337) refers to the object-attribute 

relationship as being that between a relation's "Ruling 

and Dependent Parts". 

Within one relation we distinguish the set of 
attributes which define the object described 
by the tuples—the ruling part—and those which 
provide data regarding the object—the dependent 
part. 

In most data models it is desirable that relations 
have ruling parts which are unique, since we wish 
to have only one descriptive tuple per object. 
This immediately makes the tuples themselves unique. 
The ruling part should not contain redundant attrib- 
utes; that is, it should not contain attributes 
which when removed would still leave a ruling part 
with the property of uniqueness.  When an employee 
number is in the ruling part of a relation, the 
employee name is not also in the ruling part, since 
employee numbers are designed to be unique. 

169 



viti»s 

-fl  
8 8!§8«8 8S3 
OD   —   Q   •<■   o   r»   .1   ■«   - 

•H'X 

*P03||!HS 

iu»Luu«a»c 

z 
< 
>- x 
Z iu 
3 <D   tt 
O 5  <r 

^ K <-> 5 
y LU aj 5 £ u t- ^ a   O *   2 - x 

2   O a:   ^ X O 
U^UJZSUUJOOO u_,'_io_iy-iz5cc 
<   a.   OU   a.   <   CJ   tu   <   a. 

*<*'D 

«»S 

»UJ»N 

**qainu **AO|OLU3 

5 : e s : i 3 : : b 

i.T CI .-.».».    — — wl    3 
n — n   n   «7   .—. — n   i3-   -. 
r> o o   —   .-.   - i c  o   -r 
o o o   —   %  o - **»   —  r* — — icoo — coo 

383=233p=3 

I 
__o  —  —   —   —   o  —  a 

O £- ai  — •- 
<r "- 

5 3 5 •" 

5   =    K 

$   -   t   "  Z 
-JZyi^Qjr-QUiS 
^  <  O'UJ  iu  0  >   <  <n  a; 

_l<005<0<< 
ca   —lOCCCuiCXXu. 

8 2 <M — o r-> a o •- 
ci *■*» co *r* ^ o <N 
<j> O* CO *r O <Ji <7» 

^ - a) n T u) N 

<C7 

s 
a 
<U 
01 
TJ 

TJ 

ITJ 
C 
o 

in r- 

•a r* 
a) a\ 
en ^ 
3 

a* c 
c •-« 

•-4 AJ 

u IT] 
O X 
* -~ 

0) 

£* 
s 

03 

V 

3 

St. 

170 



A relation v.'hich consists of a "normalized 

table" (such as Figure B.l) is considered to be in £ ir st 

normal form (INF).  Although simple and straightforward, 

a INF relation cannot often be readily worked with. 

Behind its apparently innocent exterior lurk problems 

which will return to haunt a designer if they are not 

immediately purged.  These problems are not always 

obvious.  James Martin and Gio Wiederhold each mention 

two such problems:  relations which contain non-fully 

functionally dependent attributes, and relations which 

contain transitive dependencies.  C.J. Date cites a 

third problem (in addition to the above mentioned): 

the problem of multivalued relations wherein the attrib- 

utes are not fully functionally dependent in respect to 

one another. 

Despite a somewhat foreboding vocabulary, the 

problems themselves are simple and readily understandable 

If the value of one attribute B is always determined 
by the value of another attribute A, we say that B 
is functionally dependent on A.  Th~is is the rela- 
tionship between the dependent part and the ruling 
part of a relation (Wiederhold, 197y, p. 338). 

The initial process of normalization (the 

creation of the INF) does not always ensure that each 

non-prime attribute (each domain which is not a part 

of the prime key) is functionally dependent upon the 

171 



prime key.  Consider the relation in this example 

adapted from James Martin (1977). 

PART 
» 

SUPPLIER 
* 

SUPPLIER- 
NAME 

SUPPLIER- 
DETAILS 

PRICE 

prime key 

The prime key is the concatenation PARTf- 

SUPPLIER*.  PRICE is truly functionally dependent upon 

this concatenation since neither PART# alone nor 

SUPPLIER* alone is sufficient to uniquely identify a 

particular supplier's price for a particular item. 

SUPPLIER-NAME and SUPPLIER-DETAILS are not function- 

ally dependent upon the PART#-SUPPLIER# key since 

SUPPLIER! along is sufficient to identify them; and for 

them, PART# is totally irrelevant.  In order to remedy 

this situation and establish full functional dependency 

two (or more) relations are needed instead of one.  The 

resulting relations are considered to be in second normal 

form (2NF). 

PART#-SUPPLIER# PRICE 

prime key 

SUPPLIER* 

__J 

prime key 

SUPPLIER-NAME 

172 

SUPPLIER-DETAILS 



The second problem listed was that of transitive 

dependencies. 

Suppose that A, B, and C are three attributes of 
relation R.  If C is functionally dependent on 
B and B is functionally dependent on A, then C is 
functionally dependent on A.  If the Tnverse map- 
ping is nonsimple, (i.e., Tf A is not functionally 
dependent on B or B is not functionally dependent 
on C), then C is said to be transitively dependent 
on A (Martin, 1977, p. 238). 

Here again an example adapted from Martin is 

useful in clarifying the point.  Note the relation: 

EMPLOYEE* EMPLOYEE-NAME SALARY PROJECT* COMPLETION-DATE 

prime key 

In this case, although EMPLOYEE-NAME, SALARY, and 

PROJECT* are all functionally dependent upon EMPLOYEE*, 

COMPLETION-DATE is clearly a function of PROJECT*. It is 

only transitively dependent on EMPLOYEE*. As before, the 

solution to the problem is to split the relation into two 

(or more) "clean" relations. The resulting relation is 

considered to be in third normal form (3NF). 

EMPLOYEE* EMPLOYEE-NAME SALARY PROJECT* 

pr ime key 

PROJECT* COMPLETION-DATE 

L 
prime key 

173 



The final problem (that of multivalued 

attributes) began to make its appearance in the 

literature as late as 1975.  C.J. Date (1977, p. 168) 

uses the following example to illustrate the point. 

Given the relation called CTX: 

COURSE TEACHER TEXT 

pr ime~key 

or in relational terminology:  CTX (COURSE, TEACHER, 

TEXT).  This relation is definitely in third normal 

form "(in fact it is 'all key')" (Date).  Yet suppose 

that for a given course (e.g. physics) there could be 

one of two teachers (A and B) each of whom could use 

either one of two texts (x or y_) .  The possible tuples 

for this state of affairs are as follows: 

CTX COURSE TEACHER TEXT 

Physics 
Physics 
Physics 
Physics 

A 
A 
B 
B 

X 
y 
X 
y 

It is apparent that the relation CTX contains some 
redundancy, leading as usual to problems over     , 
storage operations.  For example, to add the inforr 
mation that the physics course uses a new text 
f z J   .   .   .   ,   it is necessary to create two new 
tuples, one for each of the two teachers (Date, 
1977, p. 168). 

The major problem here is somewhat subtle.  Linking 

174 



COURSE, TEACHER and TEXT together as a concatenated key 

might seem reasonable at the outset.  Nothing in INF, 

2NF, or 3NF procedures forbids it.  Nevertheless non- 

functional dependency has crept into the picture. 

C.J. Date (1977, pp. 168-169) explains the problem as 

follows: 

First of all, attribute COURSE of the CTX 
relation is said to "rnultidetermine" attribute 
TEACHER.  Equivalently, we say that there is a 
"multivalued dependence" of TEACHER on COURSE. 
The meaning of these statements is basically 
that, although a given course does not have a 
single corresponding teacher (i.e., TEACHER is 
not functionally dependent on COURSE), neverthe- 
less each course does have a well-defined set of 
corresponding teachers.  More precisely, we may 
say that the set of TEACHER values matching a 
given COURSE and TEXT value pair depends only 
on the particular COURSE value specified—the 
TEXT value specified is irrelevant.  (As a 
counterexample, consider the familiar relation 
SP(S#,P#,QTY).  Here QTY is not "multidependent" 
on S#, because the set of QTY values—actually 
a single value—matching a given S# and P# value 
pair certainly does not depend on the S# value 
alone.  We note that attribute TEXT of CTX is 
also multidependent on COURSE; multivalued 
dependencies generally appear together in pairs 
in this way. 

Functional dependence, ... is a special case 
of multivalued dependence.  The problem with 
3NF relations such as CTX is that they involve 
multivalued dependencies that are not also 
functional dependencies. 

As usual, the problem can be solved by dividing 

the relation CTX into two relations:  CT(COURSE, TEACHER) 

and CX (COURSE,TEXT).  This results in relations of the 

fourth normal form (4NF).  4NF is today considered the 

form that a relational designer can safely work with. 

175 



To quickly recapitulate, given a normalized 

relation (INF), here is what one must do before one can 

begin to work with it (note that in relational parlance 

a "projection" is a subset of the domains of a given 

relation). 

a) Take projections of the original INF relation 
to eliminate any nonfull functional depend- 
encies.  This will produce a collection of 
2NF relations. 

b) Take projections of these 2NF relations to 
eliminate any transitive dependencies. 
This will produce a collection of 3NF 
relations. 

c) Take projections of these 3NF relations to 
eliminate any multivalued dependencies that 
are not also functional dependencies.  This 
will produce a collection of 4NF relations. 
(In practice, it is usually easiest to 
eliminate such dependencies before applying 
the other two normalization steps.) (Date, 
1977, p. 169-170) 

Given a complete set of 4NF relations, the 

logical structure (the information capacity) of a Data- 

base is fully described.  Various user views can be 

accommodated through the use of relational algebra and/or 

relational calculus (with such operators as select, pro- 

ject, and join). 

176 



APPENDIX C 

EXAMPLES OF THE METHODOLOGY FOR CONCEPTUAL SCHEMA DESIGN 

I. Introduction 

The following pages contain examples of the 

methodology for conceptual schema design.  These are 

simple paradigms, chosen to illustrate various aspects 

of the design process rather than to display actual 

full scale information systems. 

II. An Order-entry System 

This example is based upon a problem presented 

by C.J. Date (1977, p. 171, 493).  His word description 

scenario of the problem is as follows: 

A database used in an order-entry 
system is to contain information about 
customers, items, and orders.  The 
following information is to be included. 

- For each customer 
C us tome r number Tun i que) 
Valid "ship-to" addresses (several 
per customer) 

Balance 
Credit limit 
Discount 

- For each order 
Heading information:  customer number, 

"ship-to" address, date of order 
Detail lines (several per order), 
each giving item number, quantity 
ordered 

177 



- For each item 
Item number (unique) 
Manufacturing plants 
Quantify on hand at each plant 
Stock danger level for each plant 
Item description 

Semantic Assumptions 

- No two customers have the same 
ship-to address. 

- Each order is identified by a unique 
order number. 

- Each detail line within an order is 
identified by a line number, 
unique within the order. 

A.  Phase I - Identification of the Information to be 
Modeled 

In the above word description three distinct 

user views are evident.  These are: 

1. the customer view 

2. the order view 

3. the item view. 

One method to graphically represent the informa- 

tion to be modeled is to convert the word description 

into traditional file record formats.  Depending upon 

the sophistication of the environment, these can take 

on various forms.  Figure C.l illustrates one tradi- 

tional solution to the problem.  This solution involves 

the use of three files: 

178 



1. a customer file - with a variable length 
record whose length depends upon the number 
of addresses a customer may have 

2. an order file - consisting of two record 
types, a header record and multiple line 
records 

3. an item file - another variable length 
record.  Its length depends upon the number 
of plants which manufacture a given item. 

CUSTOMER virw 

CUSTOMER* BAUUJCT CREDIT-LIMIT DISCOUNT SO-OF-AODRESS ADDRESS 

ORDER  VIEW 

ORDER-ID        HEADER-ID        CUSTOMER*        ADDRESS        ORDER-DATE 

ORDER-ID LINE* ITEM* QTT-ON-ORDER 

ITEM   VIEW 

ITEM* DESCRIPTION NO-OF-PLANTS PLANT 
1  

QTY-0M-8AND    j   3ANGER-LEVEL 

Ftgutt C.l    Tradition*!  Fll* vi«« 

Unfortunately although this traditional repre- 

sentation accurately illustrates one possible physical 

file organization, it leaves many questions unanswered. 

It does not (nor can it) represent the information needs 

(the information use) which the stored data must provide, 

Will, for example, it be necessary to find all customers 

179 



with a certain credit limit (i.e. view customer as an 

attribute of credit limit)?  Would it ever be necessary 

to know, in total, how many of a certain item are still 

on order, or on which orders a certain item appears 

(i.e. view order as an attribute of item number}? 

These are aspects of the system which remain ambiguous; 

ambiguities which only an intimate knowledge of the 

system can dispel.  In actual practice an analyst would 

interact with the "users" of the system in order to 

clear up these uncertainties, but for the present exam- 

ple an arbitrary choice of system definitions will 

suffice. 

For an unambiguous representation of the system's 

information needs, bubble charts are used.  Figure C.2 

illustrates the three user's views of the system in 

bubble chart format.  Some of the significant assump- 

tions made in forming up the system definitions are as 

follows: 

1. that there is no need to retain a data item 
"HEADER-ID" since the determination of which 
information belongs in the header and which 
in the detail lines can be determined within 
an application program. 

2. that quantity ordered is properly a function 
of the concatenation of item number and order. 

order ' s 3.  that there is a significance to an 
line number and it should be retained in / 
the Database. 

180 



s 
a 

2 

8 
CO 

o 
u 
JZ 
E- 

<u 

E- 

u 
0) 
u 
3 

181 



that the quantity of an i'tem on hand at 
a given plant, and the danger level of an 
item at a given plant are both functions 
of the concatenation of olant and item 
number. 

B.  Phase II - Construction of the Information Model 

The first step in the design of the information 

model (the conceptual schema) is the construction of 

the object/attribute matrix.  This can be done mechani- 

cally from each of the user's view bubble charts. 

Figure C.3 shows the object/attribute matrix with just 

the customer view represented.  Figure C.4 and Figure 

C.5 resDectively show the matrix after the incorporation 

of the order view and the item view (the final matrix). 

Figure C.6 illustrates the conceptual schema 

derived from the object/attribute matrix of Figure C.5. 

Once again the process of constructing a conceptual 

schema from the object/attribute matrix is a purely 

mechanical one. 

There is one shared attribute (ADDRESS) in the 

conceptual schema and the question is, should it be 

allowed to remain, or should a modification be made. 

It is this author's opinion that ADDRESS in this 

instance is a true case of a shared attribute.  There 

are no grounds for asserting that the ADDRESS referred 

182 



A 

\^"\ 

\^"\ 

\^\ 

v^\^ 

\J^ 
^v\ 
\./(^- 

- 

^ 

^4 

1/1 u 

at 

t < 

/    & 
/               a 
'                 O 

X 

O 

183 



*/. 

N\ 

\^\ 

\\ 

~ 

X ^« X 

^^ 

- 

X 

- 

: 

— 

- 

- 

- 

1/1 
Ul 

< 

/        & /               ul /                 —» /                   °> 
'                     O 

X 

2 

a 
s 
& 
3 

a 

3 

u z 
J 

1 
Ot 

« o 
£ *- 

a 
■ 

at 

ac 
O 
i 

s 

a 

3 

184 



■^ 

'«ft <b 
*Jb 

*fc 
'■H>. 

*to 
:** ̂  

^. 
«* **, 

3 
u. 

a a 
at 

8 

5 

185 



CUSTOMER* recor d 

CUSTOMERS BALANCE CREDIT-LIMIT DISCOUNT 
,s 

ORDER record 

ORDER-ID ORDER-DATE ADDRESS 
-. 

; ' 

ORDER-LINE* record 

ORDER-LINE* 

v ITEM*-ORDER- ID record 

ITEM#-ORDER-ID QTY-ON-ORDER 
A 

\r   ITEM record 

ITEM* DESCRIPTION 
A 

^ PLANT-ITEM* record 

PLANT-ITEM* QTY-ON-HAND DANGER-LEVEL 

'A 
s,  PLANT record 

/■■■ 
PLANT 

Figure C.6  Conceptual Schema 

186 



to by the CUSTOMER record is different from the ADDRESS 

attribute of the ORDER record; since every occurrence 

of an ORDER address must also be an occurrence of a 

CUSTOMER address.  Thus, insofar as the conceptual 

schema is concerned, ADDRESS is a shared attribute and 

should remain as such (although when designing the 

working schema, taking physical constraints into con- 

sideration, it may be desirable to introduce some 

redundancy and append the ADDRESS to both the ORDER and 

the CUSTOMER record). 

Before concluding that the schema shown in 

Figure C.6 is the final conceptual schema, the reader 

should check the original user's views against the 

schema to determine whether the schema can really accom- 

modate them and whether to do so requires needless 

complications.  In the current example it will be found 

that the schema easily accommodates the user's views 

with no complications. 

Ill.  A Cargo Fleet System 

The following example involves a system of 

cargo ships, ports of call, shipping containers, ship- 

ping agents and all the other romantic paraphernalia 

of life on the high seas.  The scenario is borrowed 

from James Martin (1977, p. 277-279) and is quoted here 

187 



in its entirety. 

First User View: 

Information is stored about each ship, 
the volume of its cargo storage capacity, 
is VESSEL. 

including 
The key 

VESSEL CARGO- 
VOLUME 

DETAILS 

Second User View: 

A ship stops at many ports and it is necessary 
to print out its itinerary: 

VESSEL 

> '> 

PORT DATE-OF- 
ARRIVAL 

DATE-OF- 
DEPARTURE 

Third User View: 

Persons who ship goods are referred to as 
consignees.  Their goods must be crated or stored 
in shipping containers.  These are given a container 
identification number.  A list can be obtained, when 
requested, of what containers have been sent by a 
consignee: 

CONSIGNEE 

> ' 

CONTAINER# DESTINATION 
-PORT 

VESSEL DATE-OF- 
ARRIVAL 

SHIPPING 
-AGENT 

188 



Fourth User View: 

The shipments are all handled by shipping agents. 
A shipping-agent report must be generated, listing 
all the containers that a given agent is handling and 
giving their waybill numbers: 

SHIPPING 

> 
> 

CONTAINER 
# 

WAYBILL 
* 

CONSIGNEE ORIGINATION 
-PORT 

VFSKn. DELIVERY 
-DATE 

Fifth U3er View: 

The fifth user view is the waybill.  A waybill 
relates to a shipment of goods between two ports on 
a specified vessel.  The shipment may consist of 
one or more containers: 

 .  
VOUBXLL      ORICXNKnaf 

4         1   -PCRT 
CESTBAXICH 
-?ORT 

CSNSIGME 
DQWHT. 

aXTVOCf 
-OKIE 

VESSEL SHX77BG 

CCNtWNER* canons HWCCUC SI3 
INymULTICKS 

189 



Sixth User View: 

For a given vessel a list is required of what 
containers should be off-loaded at each port. 

VESSEL 

51 
PORT 

u 
CONTAINER* 

Seventh User View: 

For a given vessel a list is required of what 
containers are to be loaded at each port.  Details 
of the container size, handling instructions, and 
destination port are needed for loading purposes: 

VESSEL 

> 
> 

PORT 

> ' 

CONTAINER* SIZE/ HANDLING- 
INSTRUCTIONS 

DESTINATION 
-PORT 

A.  Phase I - Identification of the Information to be 
Modeled 

Once again the most profitable first step in the 

analysis is to bubble chart the situation.  Figure C.7 

shows the bubble charts for each of the seven user's 

views.  Since these views seem well defined, there is 

190 



:iz  User V! 

Second User View 

Third User View 

Figure C.7   Seven Users' Views 

191 



Fourth User View 

ORIGINATION 
DESTINATION 

Fifth Us«r VUw 

Figure C.7  continued 

192 



Sixth User View 

Seventh User View 

Figure C.7  continued 

193 



little else to do in this phase. 

B.  Phase II - Construction of the Information Model 

Stage 1, the object/attribute matrix, follows 

directly from the bubble charts.  Figures C.8, C.9, and 

CIO show successive stages in the construction of this 

example's object/attribute matrix (C.10 is the completed 

matr ix). 

The initial schema design, (stage 2) is shown in 

Figure C.ll.  This schema, a direct mapping from the 

object/attribute matrix, appears exceedingly complex. 

Usually when a schema appears to be this complex some- 

thing is wrong, and in the current example there is a 

great deal that is wrong. 

The problem lies in the Phase I analysis (as 

indeed Phase II so far has done nothing but represent 

that analysis in a graphical format).  A major source 

of difficulty is that those views which are concerned 

with the relationships of the CONTAINER*, the WAYBILL*, 

the CONSIGNEE, and the SHIPPING-AGENT have for the most 

part ignored the critical role that a WAYBILL plays in 

the system.  The formulation of these user's views have 

made the common error of deriving a "view" on the basis 

of only a report format and not on the basis of the 

actual information structure.  WAYBILL is a central 

concept to the system.  It is the connection between a 

194 



c 
a* 
3 
a 

a 
m 

u 
O 

K 

U 

£ 
a 

•** <v 

*>„ 

^J- 

^ *u 
*<b. **b 

u 
o 

Ul 

u) 
5 

5 

3 

195 



^ ■V 
.>? 

o 

> 

e 
•i 
3 
u 
o 

K 

U 

**«» 

3 

to 

> 

d 
V) 

> 

u 
UJ s < 

i 

'i 
■o >- 
5 

196 



^ 

X 
■a 
x u 

J 

o 

r u 
o 
p 

n 

^b. *b 

CO 
to 

> 

so 
(O 

> 

3 

s 5 

< 

a 
< 
2 

9 

\ 

197 



Ul 

rn                     r- 
1- 

5 
Ul                                                      t» i 1 
t- t>. i >• 
4 5                         D 4 

1 —» ss c 
* > 

—^ fr 
OS                                   </ 

2                       2 
> 

a 
Cl J                                   •- 
c a                                 H 

5 ! 
& 
3 

1 
4 

CO k 2 
-J *■ 4 
fc*4 M 1 < C 1 

fc w 
o 5 a ■o 
u i 0 1 u 

■a 
u 

> £ 
o 
u 
CU 

o 0 at -o                     "O    fc u > 
I 4) < U                          U    2 

o                  o   C ._ ,_ ■o 
T3 8 

DC 

M . U                            Cl     C_ 2T Sj kl 
U 

f- H ■a                    u o o o 
u O M u 5 ce oe u * k < < Cl 

u o o 0                   u u ae   a 
tai    b 

; 1 u u o. a. U                           bl aj i 2 S ■» 
i i 01                           Z z Z   a -1 

d _i  ■ J U                                U o »•*   »- kBM i-^ M _i 
Ul Ui U) M ►«« <   - a. a. N-> ■— 

to CO V) i/i t-  t- to to a. a. a CO 
10 CO to tO at   a e            z z Z    3| *— •■* >- >• 

O    C 3               O 8 •< * > > > > CL     2 O O   c to to 3t 3 

•—I r-1           "- 

si 

\ 
V 

1 / 
rj- 

V ' 
aouviusiyo 
tto!lVMI153a 

//                   iiO-<IV0T 

((               <wi 
vtr>T TWT I0IH0 V^ 

c 

2 

to 

si u 
3 
00 

aoiiYtuxS3a 

198 



CONSIGNEE and a SHIPPING-AGENT, the connection between 

a CONSIGNEE and his CONTAINERS, and the connection 

between the CONTAINERS and their VESSEL and PORTs.  A 

graphic representation of the importance of a WAYBILL* 

can be seen in the bubble chart Figure C.12. 

Although there are also other minor problems 

with the original Phase I bubble charts (there usually 

are), the main concern is how to clear up the primary 

problem.  There are two ways in which this can be done. 

On the one hand, the analyst can suspect that something 

is amiss due to the complexity of the initial schema, 

and perform a thorough re-evaluation of the Phase I 

analysis.  On the other hand, it is entirely possible 

that the subjective "complexity clue" eludes the analyst. 

In such a situation it becomes the function of the Phase 

II stages 3 and 4 to disclose the problems and suggest 

solutions.  For this example let it be assumed that 

the latter situation has occurred and that the analyst 

takes the schema complexity for granted and continues 

blythly on his way. 

His first task after the formulation of the ini- 

tial schema design is (stage 3 of Phase II ) the examina- 

tion of the use of shared attributes.  In this example 

(Figure C.ll) there are two:  DEPART-DATE and DELIVERY- 

DATE. 

DEPART-DATE is an attribute of both VESSEL-PORT 

199 



Figure C.12  The central role of WAYBILL* 

200 



and WAYBILL*.  Intuitively, however, it is the VESSEL 

which departs from a certain PORT on a certain DEPART- 

DATE.  A WAYBILL departs on a certain date only by 

virtue of its being assigned to a VESSEL.  Thus in this 

situation, it is more accurate to retain DEPART-DATE as 

a unique attribute of VESSEL-PORT, and to obtain the 

DEPART-DATE for a specific WAYBILL! by connecting it to 

the appropriate VESSEL-PORT (see Figure C.13). 

DELIVERY-DATE, the other shared attribute, 

belongs to both WAYBILL! and to CONTAINER*.  Here again, 

an intuitive analysis should be sufficient to resolve 

the issue.  Consider the hierarchy represented by the 

bubble chart in Figure C.12; containers belong to a 

waybill.  All the parties involved in the shipping 

process (except perhaps the stevedores) deal in terms of 

shipment numbers (i.e., WAYBILL*), not in individual 

containers.  A CONTAINER is transported by a specific 

VESSEL and has a specific DELIVERY-DATE, by virtue of 

its assignment to a specific WAYBILL*.  Thus it is 

that DELIVERY-DATE should be a unique attribute of WAY- 

BILL* (and only by association can it be an attribute 

of CONTAINER*).  This rearrangement is illustrated in_ 

Figure C.14. 

Having dispensed with the shared attributes, 

attention can now be focused upon stage 4; consideration 

201 



VESSEL-PORT record 
VESSEL-PORT ARRIVE-DATE DEPART-DATE 

WAYBILL record 
WAYBILL* 

Figure C.13  Modified DEPART-DATE 

CONTAINER record 
CONTAINER* CONTENTS HANDLING-INSTRUCTIONS SIZE 

VWAYBILL record 
WAYBILL* DELIVERY-DATE 

Figure C.14  Modified DELIVERY-DATE 

202 



of redundant sets (of which the example has many). 

Perhaps the most strikingly complicated feature of the 

initial schema is the mass of arrows connected to the 

CONTAINER* record.  It is, therefore, the most logical 

place to begin a search for redundant sets. 

Remember the stage 3 discussion of CONTAINER*: 

a container is never dealt with individually, but only 

as a part of a shipment (a WAYBILL).  Thus every arrow 

connected to CONTAINER*, except the one between WAY- 

BILL* and CONTAINER*, is superfluous.  The SHIPPING- 

AGENT deals with waybills and can obtain all his 

CONTAINER#s through his WAYBILL#s.  Similarly the 

CONSIGNEE works with a WAYBILL* to trace all his con- 

TAINER*s.  VESSELS load and unload shipments (WAYBILL#s) 

at various PORTs.  From the crew's point of view a 

container is merely a part of a shipment, hence the 

VESSEL and PORT records should not be directly connected 

to CONTAINER*. 

In addition to the above "intuitive" argument 

other sets can be seen to be redundant.  There is, for 

example, no need for any of the sets involving VESSEL 

and PORT when parallel sets exist (sets from the same 

record) to the VESSEL-PORT concatenation.  Finally, it 

should be noted that the pairs of sets LOAD  and 

ORIGINATION, and LOAD-OFF and DESTINATION, are merely 

203 



complementary aspects of the same basic relationships. 

Incorporating all the modifications implied by 

this analysis completes stage 4.  Figure C.15 is the 

resultant schema.  It is a simple and very straight- 

forward design. 

In working through this example it was pointed 

out above that after stages 1 and 2 of Phase II pro- 

duced an overly complex schema it would have been 

feasible for the analyst to suspect a problem existed 

and to begin a re-evaluation of the Phase I results. 

If that re-evaluation had successfully taken place, 

the importance of the WAYBILL record as a key record 

would have been discerned.  In the example, however, it 

was assumed that the analyst did not suspect that a 

re-evaluation was necessary.  Nevertheless in the final 

schema (Figure C.15) WAYBILL! is indeed a very key 

record. 

This illustrates an interesting aspect of the 

methodology, that even if the Phase I analysis is less 

than perfect, Phase II will often force the analyst to 

ask the questions which can rectify previous mistakes. 

204 



4 

U 
W1 

2 
u. 
tj 

NOIlVNIlSSa 
avtn — 

NOIXVNIOiyO 

205 



APPENDIX D 

A COMPARISON WITH THE CANONICAL DESIGN APPROACH 

A fair comparison between two methodologies 

should involve a neutral example, one that is not 

specifically tailored to suit the strong points of 

either of them.  Nevertheless to stack the odds 

unfavorably, the example chosen for this comparison 

is one which the proponents of the canonical design 

use as a vehicle to demonstrate the effectiveness of 

their methodology.  It is the example which Raver 

and Hubbard present in their article Automated logical 

data base design:  Concepts and applications (1977). 

Here is the scenario as they present it: 

A data base is being designed for a trucking 
company that loads its trucks with products 
for shipment to various customers.  Many trips 
are made each working day, and each trip is 
made by a certain type of vehicle.  Each component 
of a product is given a package number.  On a 
specific trip, all packages for a given customer 
are grouped and given a single shipment number. 

The data base is required to support five 
application functions that provide operating 
information for the company.  A schematic repre- 
sentation of each function is depicted in each 
part of/Figure D.l_^ .... (For simplicity, 
only the output requirements of each function are 
considered.) 

Part A of /Figure D.]/    .    .   .[.   shows the trip 
schedules (Local View 1) that list each trip by 
date, and for each trip, give the vehicle type, 

206 



(A) 

(B) 

(C) 

Figure D.l   Local Views 

207 



(D) 

(E) 

Figure D.l    continued 

208 



weight, and volume.  The customer shipment 
query (Local View 2) shown in Part B handles 
customer queries about the dates of scheduled 
trips to a customer.  Part C illustrates the 
customer product query (Local View 3) that 
handles customer queries such as, "When and 
what is the shipping information for given 
products?"  The trip contents (Local View 4) 
lists each trip, the customers to be served, 
and the packages and products to be delivered 
as shown in Part D.  The shipment history (Local 
View 5) in Part E provides a history of each 
shipment. 

The schema produced by the canonical design 

technique is shown in Figure D.2. 

Using the eidos based object/attribute method- 

ology, the first step is to establish the users' views. 

Since these are already given in the problem, one can 

proceed directly to the construction of the object/ 

attribute matrix.  The matrix for this example is shown 

in Figure D.3, and the resultant schema is presented 

in Figure D.4. 

This initial schema contains some shared 

attributes and redundant sets, all of which must be 

examined before one can conclude that the schema is in 

final form.  The shared attributes are VEH-WT and VEH-VOL. 

In each case the attribute is shared by TRIP-NO and 

SHIP-NO.  This is hardly a situation of genuinely shared 

attributes, as there can be many shipments involved in 

a single trip, and the volume and weight of the 

209 



TRIP record 

TRIP-NO DATE VEH-TYPE VEH-WT VEH-VOL 
> 

SHIP-NO record 
SHIP-NO CUSTOMER 

PACKAGE record 

PACKAGE-NO MFG PACKAGE-VOL PACKAGE-WT PRODUCT 

Figure D.2   Canonical designed schema 

210 



<w. 

K 

U 

3 
.3 

o.v. 
'+*. *l 

o 
z 

ac 
U) 

5 
u 

t 
c 
a. 

o z 

a 

211 



DATE record 
DATE 

TRIP record 
TRIP-NO VEH-TYPE 

;; CUSTOMER record 
—  CUSTOMER 

SHIP-NO record 
SHIP-NO 

-»f 
I PACKAGE record 
PACKAGE-NO 

-» 

1 
VEH-WT 
 *  

PACKAGE-VOL 

VEH-VOL 

PACKAGE-WT MFG 

sf PRODUCT record 
PRODUCT 

Figure D.4   Initial Schetna 

TRIP record 

\'\ 

~\ 

TRIP-NO VEH-TYPE VEH-WT VEH-VOL 1 
\ 

SHIP-NO record 
SHIP-NO 

Figure D.5   Schema Modifications 

212 



transporting vehicle are independent of any one shipping 

number.  On the other hand, the volume and weight of the 

vehicle used are definitely legitimate aspects of a 

trip description, and thus should be considered unique 

attributes of TRIP-NO.  It is far more sensible to 

think of a shipment linked to a specific trip than linked 

to a specific vehicle volume and weight.  These modifica- 

tions are shown in Figure D.5. 

The second area of possible modifications is 

that of redundant sets.  Here, however, the issue is 

less cut and dry.  When examining the initial schema 

(Figure D.4) for redundant sets it becomes obvious that 

not only do redundant sets exist but also that some logi- 

cally essential sets are missing.  Specifically, it is 

very strange that there is no way for a customer to find 

out what shipments (SHIP-NO) belong to him, except via a 

full list of his packages (PACKAGE-NO).  It is also 

strange that it is impossible to find out which ship- 

ments (SHIP-NO) are assigned to a given trip (TRIP-NO) 

except by reading al,?. the SHIP-NOs.  A SHIP-NO is an 

important link in the chain of relations:  1) it is via 

SHIP-NO that a given package (PACKAGE-NO) is assigned to 

a TRIP-NO; 2) it should be that a CUSTOMER works through 

SHIP-NO to locate his packages (PACKAGE-NO) and not the 

213 



other way around. 

To incorporate these features into the system 

requires the addition of two sets:  a 1:M from CUSTOMER 

to SHIP-NO, and a 1:M from TRIP-NO to SHIP-NO (Figure 

D.6).  By so doing, the schema (the information model) 

becomes a more accurate picture of the inherent informa- 

tion structure underlying the system, and the process 

of searching out redundant sets can continue. *■ 

There is no problem recognizing the redundant 

sets (listed in Figure D.7), but the problem lies in  <(. 

which to remove.  When, for example, looking for all 

the products a customer has ordered should it be neces- 

sary to always trace from CUSTOMER to SHIP-NO to PACKAGE- 

NO to PRODUCT?  Would it not be simpler to retain the 

redundant direct relationship between CUSTOMER and 

PRODUCT?  Such questions can be meaningfully answered 

by an analyst working in a real environment.  The con- 

ceptual schema is a tool, not an abstract theoretical 

construct, if it is more meaningful for the analyst to 

!lf one does not accept this analysis, or if one 
thinks it prejudicial to the canonical design's case, 
the comparison between the resultant schemata can take 
place either using the initial schema (Figure D.4) or 
using the initial schema modified to account for shared 
attributes and set redundancy (but without the benefit 
of the above added sets (Figure D.9). 

214 



TRIP record 

TRIP-NO VEH-TYPE VEH-WT VEH-VOL 

X CUSTOMER record 
CUSTOMER 

: rSHIP-NO record 

♦5     SHIP-NO 

Figure D.6  Schema Modifications 

Redundant Set Non-Redundant Alternate Path 

SHIP-NO -* DATE 

PACKAGE -» DATE 

CUSTOMER -+  PACKAGE 

CUSTOMER -* TRIP 

CUSTOMER -» PRODUCT 

SHIP-NO ■+ TRIP -+ DATE 

PACKAGE -* SHIP-NO -*• TRIP ■+  DATE 

CUSTOMER -> SHIP-NO -» PACKAGE 

CUSTOMER -> SHIP-NO ■* TRIP 

CUSTOMER -* SHIP-NO -> PACKAGE -> PRODUCT 

Figure D.7  Redundant Sets 

215 



/ 
( 

think in terras of a direct redundant link, then the 

redundancy can remain.  Conversely, if the analyst 

feels more comfortable working with no redundancy, then 

all redundant sets should be removed.  For the sake of 

this example, all redundancy will be removed (remember- 

ing, of course, that it can be restored as the need 

arises).  The final schema is shown in Figure D-8. 

Having derived this schema, the time has come 

to compare it to the product of the canonical design. 

Even a casual observer would note that the two schemata 

differ considerably; how is one to judge between them? 

Although it is possible to argue that one schema seems 

more flexible than the other, or that one seems less 

complex than the other, the first test should be how 

well each satisfies the needs it was created for.  If 

a schema does not conveniently support the applications 

it was designed around, then there is no point in dis- 

cussing flexibility, complexity, or any other issue. 

In this comparison each user's view (or local 

view) will be listed and each schema examined to deter- 

mine how that view can be supported.  The supporting 

commentary for the canonical design is that of Raver 

and Hubbard (1977, pp. 296-297). 

216 



DATE record 

DATE 

TRIP record 

TRIP-NO VEH-TYPE VEH-WT VEH-VOL 

CUSTOMER record 
CUSTOMER 

-W 

J 
SHIP-NO record 
SHIP-NO 

I PACKAGE record 
PACKAGE-NO MFG PACKAGE-VOL PACKAGE-WT 

I PRODUCT record 
PRODUCT 

Figure D.8  Eidos based Schema 

217 



DATE record 

DATE 

>'TRIP record 
TRIP-NO  VEH-TYPE VEH-WT VEH-VOL 

* CUSTOMER record 
CUSTOMER 

SHIP-NO record 
SHIP-NO 

& PACKAGE record 
M  PACKAGE-NO MFG PACKAGE-VOL PACKAGE-WT 

¥ PRODUCT record 
PRODUCT 

Figure D.9  Alternate Eidos based Schema 

218 



View #1 

"the trip schedules . . . that list each trip 

by date, and for each trip, give vehicle type, weight, 

and volume." 

- the canonical design:  "View 1 can be satis- 

fied provided a »secondary index is implemented with 

DATE as a source and TRIP-NO as target." 

- the eidos design:  View 1 is directly supported 

by the schema, there is a direct link between DATE and 

the TRIP-NO record which contains all the requisite 

information. 

View #2 

"The customer shipment query . . . handles 

queries about the dates of scheduled trips to customers." 

- the canonical design:  "View 2 requires a 

secondary index with CUSTOMER as source and TRIP-NO as 

target." \ 

- the eidos design:  View 2 can be accommodated 

by working from a CUSTOMER through his SHIP-NOs to the 

appropriate TRIP-NOs (and their respective DATEs).  It 

should be noted that if it is considered important to 

have a direct relationship accommodate this view, the 

redundant relationship between CUSTOMER and TRIP-NO 

need not have been eliminated. 

219 



View #3 

"the customer product .query . . . such as, 

'When and what is the shipping information for given 

products?'" 

- the canonical design:  "View 3 is not 

efficiently supported by the canonical representation. 

One and possibly two sorts will be required to produce 

the report.  A secondary index with CUSTOMER as source 

and SHIP-NO as target will avoid an additional sort. 

The designer may wish to reconsider and modify View 3 

. . . to avoid the sorting." 

- the eidos design:  This view can be accommo- 

dated with the schema by connecting CUSTOMER to PRODUCT 

through PACKAGE-NO (which must be accessed anyway), and 

by connecting PACKAGE-NO to DATE through SHIP-NO (which 

also must be accessed anyway).  Once again, if any of 

these connections were deemed important enough to war- 

rant the existence of a redundant set the appropriate 

set(s) could have been spared in the elimination process 

View #4 

"The trip contents . . . lists each trip, the 

customers to be served, and the packages and products 

to be delivered." 

220 



- the canonical design:  "View 4 is directly 

supported by the canonical representation." 

- the eidos design:  View 4 is supported by 

connecting CUSTOMER to TRIP-NO through SHIP-NO and then 

direct links from SHIP-NO to PACKAGE-NO and from PACKAGE- 

NO to PRODUCT. 

View #5 

"The shipment history . . . provides a history 

of each shipment." 

- the canonical design:  "View 5 requires a 

secondary index on SHIP-NO and a backward pointer from 

the SHIP-NO segment /record/ to the TRIP-NO segment." 

- the eidos design:  View 5 "is directly 

supported by" the eidos approach. 

There is little that need be added to the con- 

clusiveness of the above comparison.  Whereas the canon- 

ical design schema has problems accommodating most of 

the user's views (and has to resort to secondary indi- 

cies and sorts in order to do so), the eidos design 

directly supports them all.  The only aid which the eidos 

design needs is the occasional use of an intermediate 

logical connection (which it should be pointed out, 

follows intuitive lines of thought - such as connecting 

a customer to his packages via a shipping number). 

221 



VITA 

Kerry Nemovicher was born 29 September, 1946 in New 

York City.  He graduated from Roslyn High School in June 

1964 and began attending St. John's College (Annapolis, 

Maryland) in September of the same year.  St. John's 

College is a classical Liberal Arts institution based 

upon the "Great Books of the Western World" program. 

Although the St. John's program is highly structured 

and academic, Mr. Nemovicher's extra-curricular activities 

were many and varied.  During the academic seasons he 

participated in community affairs (local politics and a 

volunteer program at the state mental health institution) 

and student government.  Over the summer vacations, Mr. 

Nemovicher built cabins for a homesteader in Alaska, re- 

wrote the St. John's freshmen laboratory manual and 

studied archeology at Oxford (England).  In June of 1968, 

Mr. Nemovicher graduated from St. John's College (B.A. 

Liberal Arts).  His bachelor's thesis topic was "Mitzvahs 

A Judaic Interpretation of the Good Deed." 

In August of 1968 Mr. Nemovicher immigrated to Israel 

taking up residence at Kibbutz Mishmar HaEmek.  He worked 

there (mostly agricultural work) until November 1969 when 

he was inducted into the Israel Defense Forces.  At the 

end of the three year tour of duty he began a career as 

a computer programmer.  As a key member in a "technical 

222 



control group" in the data processing center of one of 

Israel's largest computer installations, he gained ex- 

perience in both applications and system programming, 

as well as organizing instructional programs.  At the 

Israel 10th Annual Data Processing Conference (in Jerusalem) 

he delivered an original paper:  "COMFORT - A Report 

Generating Language". 

In the fall of 1976, Mr. Nemovicher began his studies 

in the Industrial Engineering department of Lehigh 
i 

University. 

223 


	Lehigh University
	Lehigh Preserve
	1-1-1978

	Database design: A practical methodology.
	Kerry Nemovicher
	Recommended Citation


	tmp.1451580486.pdf._VdGp

