Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1978

Database design: A practical methodology.

Kerry Nemovicher

Follow this and additional works at: http://preserve lehigh.edu/etd

b Part of the Industrial Engineering Commons

Recommended Citation
Nemovicher, Kerry, "Database design: A practical methodology." (1978). Theses and Dissertations. Paper 2149.

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an

authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=preserve.lehigh.edu%2Fetd%2F2149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2149?utm_source=preserve.lehigh.edu%2Fetd%2F2149&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

DATABASE DESIGN: A PRACTICAL METHODOLOGY

by

Kerry Nemovicher

A Thesis
Presented to the Graduate Committee
of Lehigh University
in Candidacy for the Degree of
Master of Science
in

Industrial Engineering

Lehigh University
1978

ProQuest Number: EP76422

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Pro(Quest.
/ \

ProQuest EP76422
Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M| 48106 - 1346

This thesis is accepted and approved in partial
fulfillment of the requirements for the degree of Master
of Science.

J (date)

Professor 1n Charge

Chairman &f Department

11

ACKNOWLEDGMENTS

Although only one name appears upon the title page,
this thesis has come into being through the combined efforts
of a number of individuals. The author wishes to thank
Dr. Ben L. Wechsler for his persistent encouragement and
careful scrutiny of the ideas presented herein. His
critique has eliminated much of the fuzzy thinking inherent
in the original conceptualizations and drafts. The author
also wishes to acknowledge the help of Dr. Larry E. Long,
Mr. Dia Ali, Dr. Joseph Nemovicher, and Mrs. Rae Nemovicher
for their careful reading of the successive drafts of this
thesis and their roles as sounding boards for the ideas
developed. The patience and understanding shown by Marie
Young and Joanne Whitney in typing (and retyping) this
text has been more than this author deserves. Finally
a special thanks must go to Mrs. Marcia Berkow, the sine
qua non of the final form of the thesis. Her skills as
an editor, proof reader, sounding board and typist have
rendered the formidable task of putting this thesis into

final form, a genuinely pleasant undertaking.

iii

TABLE OF CONTENTS

Acknowledgments.« « « « + + + « . .

Table of ContentS. . . . v v « « v o« v 4 e e e e

List of Figures.« « « « « « « «

AbStract . . v ¢ v ot ot e e e e e e e e e e e e e

II.

ITI.

Iv.

II.

IIT.

Iv.

CHAPTER ONE
STATEMENT OF OBJECTIVE AND PROBLEM SCENARIO
Background+ .+ . 4 0 e 0 e . .
Statement of the Problem
Statement of the Objective
Approach to the Problem.
CHAPTER TWO

CURRENT DESIGN METHODOLOGIES

Introduction
The Artistic Intuitive Approach,
The Machine Efficiency Approach.
A. Service Analysis ¢ + + ¢« o .

B. An Automated Optimizer for DBTG Type
Schema Design.

The Functional Approach.
Information Orientated Approach.

A. An Infological Approach to Database
Design ¢ v ¢ ¢ e e e e e

B. The "Entity-Relationship Model”. . .

iv

PAGE

. dii
iv

. viii

12

23

VI.

VII.

VIII.

II.

III.

Iv.

VI.

II.

III.

IV.

C. Semantic Predication Analysis . . .

Canonical Schema Design

The Relational Approach

Other Approaches and Combinations
CHAPTER THREE

ANALYSIS OF THE CURRENT DESIGN DIRECTIONS

Introduction. ¢ o o . .

A Question of Priority - Man or Machine . .

Logical Schema Design The Specific Versus
the General « & &« « « « .

Logical Schema Design - Problems with the
Functional Approach « « « « .+ .

Conceptual Level Design - A Search for

Simplicity. . . . « « « « ¢ ¢ 4 4 4 44 .
Two Serious Design Methodologies - A Closer
LooK. . ¢ v v o v v v v e e v e e e e e e
A. The E-R Approach.

B. Canonical Database Design

CHAPTER FOUR
A PROPOSED NEW DATABASE DESIGN METHODOLOGY
Introduction. ¢ . ¢
The Theory Behind the Methed.
The Design of the Conceptual Schema
A. Phase I« ¢« ¢« « ¢« v « o« « o .
B. Phase II. ¢ « ¢« ¢ « « o .
From Conceptual Schema to Working Schema. .

v

PAGE

28
33
38
43

46
47

52

56

58

62
62

68

73
75
86
87
93
127

PAGE

V. SUMMALY. « =« = s s s o o s o o o o s o o o = 131

CHAPTER FIVE
SUGGESTIONS FOR FURTHER RESEARCH
I. An Automated Design Methodology. 133

II. A Definitive and Systematic Approach to
Phase I . L] - L] L] L] - - - * . . * . L] L] - - - 134

III. A Test of the Methodology. . . + « « o « o = 135

BIBLIOGRAPHY. .« + ¢ ¢ o o o ¢ e o s o o » o a o o = 138

APPENDIX A

AN IN-DEPTH PROBLEM SCENARIO

I. Design and Traditional Files« . . 142
II. Some Problems with the Traditional Designs . 145
III. Database Ideals (general goals). 149
IV. The Current Status of "Database" Today . . . 152
V. Database Schema Design . .« « « « « ¢ o o o« = 156

APPENDIX B

FURTHER DISCUSSION OF CURRENT DESIGN METHODOLOGIES

I. The Service Analysis Tasks . . ¢« « « & + o . 158
II. Infological Design ¢ « o o & o o o o 159
III. Entity-Relationship Design« 165
IV. Relations and Normal FOrms . . « « « « + o« 168

APPENDIX C
EXAMPLES OF THE METHODOLOGY FOR CONCEPTUAL SCHEMA DESIGN

I. Introduction « ¢ v v v o v o o o o o o o o o 177

vi

II. An Order-Entry System. . . « « « « o« = « « =

A. Phase I - Identification of the
Information to be Modeled.

B. Phase II - Construction of the
Information Model. . . .« ¢ « ¢ ©« o o o o

IITI. A Cargo Fleet SYStem . . « « o 2 o & o o o =

A. Phase I - Identification of the
Information to be Modeled.

B. Phase II - Construction of the
Information Model. . ¢« &« ¢ ¢ ¢ o ¢ o o

APPENDIX D

A COMPARISON WITH THE CANONICAL DESIGN APPROACH

vii

PAGE
177

178

182
187

190

194

206
222

CHAPTER II

2.8
2.9
2.10

CHAPTER 1V

4.9
4.10

LIST OF FIGURES

Functional Level Tree.
The Role of the Enterprise Schema. . . .
Functional Model Graph
The Predication Structure for the

Sentence: "Companies supply parts to
Departments in some volume™".

The Functional Model Data Structure. . .

Bubble Chart Example
Canonical Design Process
Simple Data Hierarchy.
Data in Tabular Format

A "Relation" ¢ & ¢ ¢ e 4 e . .

Eide ¢ « ¢ ¢ ¢« 4 v v e e e e e .
An Object and Its Unique Attributes. . .
l:1 and 1:M Relationships.
Notation for Complementary Relationships
Examples of Notational Conventions . . .
Named Relationships.
An Inventory Record Description.

The Inventory Record in Bubble Chart
Format . . . ¢ . ¢ 4 ¢ ¢ o« o o o « o o

One User's View of the Inventory System.

An Incomplete Object/Attribute Matrix. .

viii

PAGE

26

31
32

37
40
40
41

80
81
81
82
82
83
90

93
96
97

An Object/Attribute Matrix of One
User's View. . « ¢ « ¢« ¢ ¢ ¢« o o« o o o

A Second Inventory Record Description. .
Bubble Chart of the Second User's View .

An Object/Attribute Matrix Incorporating
Two Users' Views . . . ¢ . « « & o o o &

The Third User's View. . ¢« ¢« ¢ ¢ o« « « =

The Object/Attribute Matrix of Just the
Third User's View. « ¢« ¢« ¢ ¢ « o o o o &

The Completed Object/Attribute Matrix. .
Embryonic Object Records and the Object/
Attribute Matrix from Which They Are

Der ived. . L] L] L d L) L] . - * L] * - L d - - L]

Objects and Their Unique Attributes. . .

Schema Records Including Shared
Attr ibutes - - - - - - - . Ll L d L] L3 L] -« *

An Inter-Record Relationship
A Complete Conceptual Schema
Redefinition of Shared Attributes. . . .
A Hitherto Unaccounted-for View.

A More Accurate View of the Role of
QTY-ON -ORDER 3 - . - . -

The Revised Object/Attribute Matrix. . .
The Revised Conceptual Schema.
A Classic Example of a Hierarchy
Redundant and Non Redundant Sets
Two Redundant Sets in the Inventory

Schema . .+ ¢ ¢ o o o o o o o o = o o o =

ix

PAGE

98
99
100

101

102

103

105

107

108

110

113
116

117

118
120
121

123

124

APPENDIX B

B.1l

APPENDIX C
C.1
cC.2

c.3

C.1ll
C.l2

C.1l3

The Final Conceptual

Schema. . . « .« .

Elimination of an M:M Relationship . .

Removing Redundant Data from

Concatenated Keys at
Time and Complexity.

"The wording used in
bages"

a Cost to Access

relational data

Traditional File View. . . . +« ¢« « « &

The Three Views. . .

Object/Attribute Matrix with One User's

View + « o«

L] . - L] . L] - L] .

Object/Attribute Matrix Incorporating

Two Users' Views . .

Final Object/Attribute Matrix.

Conceptual Schema. .
Seven Users' Views .

The Object/Attribute
Views #1 Through #3.

The Object/Attribute
Views #1 Through #5.

. . . . [} 4 . - .

Matrix for Users'

Matrix for Users'

The Complete Object/Attribute Matrix
- All Seven Users' Views . . . « « « .

Initial Schema Design.

The Central Role of WAYBILL$

Modified DEPART-DATE

. . . . [- L] . .

PAGE

. 125
. 129
. 130
. 170
.« 179
. 181
. 183
. 184
. 185
. 186
. 191
. 195
. 196
. 197
. 198
. 200
. 202

c.14
C.15

APPENDIX D

Modified DELIVERY-DATE. . . .

The Final Schema.

Local Views . . « o « o « .« .
Canonical Designed Schema . .
The Object/Attribute Matrix .
Initial Schema.
Schema Modifications.
Schema Modifications.
Redundant Sets.
Eidos Based Schema.

Alternate Eidos Based Schema.

x1i

PAGE

202
205

207
210
211
212
212
215
215
217

218

ABSTRACT

A PRACTICAL DATABASE DESIGN METHODOLOGY

This thesis presents a practical, implementable
me thodology for Database logical design. In the rap-
idly expanding world of Database users the quest for
viable and efficient logical designs is one of the most
difficult and elusive of tasks. As the uses of Data-
base technology grow, not only in number but also in
complexity, the need for a design methodology becomes
daily more immediate.

This need has been recognized throughout the
industry and in recent years a number of Database
design methodologies have appeared on the market.
Unfortunately these methodologies have proved less than
satisfactory. in general they have tended to be overly
concerned with machine optimization (to the detriment
of the logical design), and/or are so theoretically
abstract and esoteric as to be beyond the ken of the
potential users -- the practitioners in the field.

The aim of this thesis is to remedy the situa-
tion by presenting a practical, logical design oriented
methodology. The approach is an intuitive one based
upon the understanding that:

- a Database logical design deals in generic

concepts (or data item types, herein referred

1

phases:

to as eide) and not in particular items
of data
- a Database exists in order to supply

information, the components of which are

data and the relationships between data
- the data which comprise information can

be viewed as functioning either as

objects (the principle "subjects of

concern®™) or as attributes (modifiers or

descriptors of the principle objects)
- a Database must be able to accommodate
the information needs of all its users

- an optimal logical design is one in which

the information nleds of all of the users
are readily djscernible.

The methodology can be divided into two

1. Phase I - identification of the informa-
tion to be modeled

2. Phase II - construction of the information
model (the conceptual design).

The logical design of a Database can be thought

of as the conceptual structure of the Database's infor-

mation capacity, an information map. It contains the

relationships between the generic concepts (not the

actual data) which constitute the analyst's conceptions

of the systems to be supported. Thus the first phase
in the logical design process is the traditional task
of the systems analyst -- understanding (conceptualiza-
tion) of the systems to be supported.

The second phase is the task of converting the
analyst's understanding of each of the separate users'
views of the system into an integrated whole -~ the
conceptual design of the Database. This is accomplished
almost mechanically, first by mapping each user's view
onto an object/attribute matrix (a table listing
"objects" on one axis, "attributes" on the other and
their relationship at the intersection) and then system-
atically constructing records and sets (relationships
between records) from the information contained in the
matrix.

The process is as effective as it is simple.

The resulting logical designs (conceptual schemata) are
both logically sound and efficient. They compare
favorably with the best of the esoteric and machine
oriented designs, yet are far less complex. Most impor-
tant, the methodology is comprehensible and implementable.
A Database is first and foremost a practical, pragmatic
tool, a tool meant to be used; so too this Database
design methodology is a practical pragmatic tool -

meant to be used.

CHAPTER ONE

STATEMENT OF OBJECTIVE AND PROBLEM SCENARIO

I. Background

There is no doubt today that the Data
Processing (DP) industry has accepted the concept
of the "Database". Software vendors have invested
considerable sums of money in Database development,
and a plethora of Database packages have inundated
the market (Wiederhold, 1977). The professional
journals abound with articles about various aspects
of Database technology and the Association for Com-
puting Machinery (ACM) now publishes a gquarterly
devoted solely to Database related topics ("ACM
Transactions on Database Systems"). Many of the
larger DP centers already have operational Database
based systems and the trend certainly seems to point
toward an exponentially expanding Database user pop-
ulation. As James Martin indicates, "The development
of corporate data bases will be one of the most
impor tant data-processing activities for many years
to come, " (Martin, 1977, p. 2)

Yet, despite its apparent popularity, the
development and implementation of a Database system
is not a simple matter. For the most part it is a

far more difficult undertaking than the development

4

and implementation of traditionally structured systems.
The software (as will be discussed below) and the hard-
ware problems are significantly more complex than those
encountered in non-Database systems, and as with most
"new concepts", the human inertia-to-change can be a
ser ious obstacle.

Even if one restricts one's view to just the
sof tware, there are many facets to the problem of
Database design. Among other things the designer
must concern himself with efficient storage utiliza-
tion (balanced against rapid information retrieval),
security (insuring both privacy and protection of
information in the event of machine failure), data
integrity (the "absence of inconsistent data"), and
a sound "logical design”" (the grouping of data items
into records and the definition of the interrelation-
ships between those records). It is this last aspect,
Database logical design, which is the subject of this
thesis.

In traditional (non-Database) systems, a file
is designed around a specific application. Thus the
manner in which the data are stored (and the inter-
relationships between data items) can be optimally
designed to accommodate the information needs of the

specific application. A Database system on the other

hand, must serve many applications and yet use a
single data storage scheme. This scheme must be
flexible enough to allow each application to view

the data as if an "application-oriented"” file existed.
It must accommodate all the necessary data items and
all the necessary interrelationships between those
data items.

To create and support a flexible storage scheme
it is necessary to know the nature of all the constit-
uent data item types and the nature of all their inter-
relationships. This knowledge is recorded in an "infor-
mation map", which, in Database parlance, is termed a
Schema. A schema contains (ambng other things) a list
of all the data item types which appear in a Database,
how they are physically organized, and how they are
logically connected. A good schema must not only
accommodate all the "current" application views of the
data, but must try to anticipate what views will be
needed in the future. It is easy to imagine how, with
applications of any significant complexity, a poorly
planned schema could grow to become extremely tangled
and unwieldy.

One of the major problems, therefore, of Data-
base design is the design of the schema. It is a task

fraught with complexities, one which can appear

overwhelming in its enormity. In most circumstances
the design of the schema is critical to the overall
Database design and a poorly designed schema will

almost certainly doom a Database.

IT. Statement of the Problem

The problem is how to design a viable Database
schema. When faced with the task, where does an analyst
begin? Given both the importance of the job and the
newness of the problem (the lack of experienced exper-
tise) a need exists for a tool, a technique or method-
ology which can be used as a guide to schema design.

This need has begun to be recognized and Data-
base design books and articles are proliferating
(Chapter Two consists of a brief survey of some of the
more popular design directions). Unfortunately there
are serious drawbacks to the methodologies which have
appeared to date (Chapter Three contains a critique
of the methodologies discussed in Chapter Two). For
the most part the proposed schema design methodologies
rely too heavily upon the user's knowledge of sophisti-
cated mathematics and/or they place too much importance
upon the machine optimization aspects of Database design.

Thus, the need for a workable and practical
schema design methodology still exists. It is a vacuum

which must be filled. With the growing use of Database

7

technology and the growing desire to "go Database”,
the need for viable schemata (and hence the need for
. a technique to design viable schemata) becomes daily
more immediate. It is a probiem which demands a

solution.

II1. Statement of the Objective

It is the aim of this thesis to provide a simple
and concise Database schema design methodology. The
methodology, above all else, must be a practical one.

It must be applicable to real world situations and
implementable by persons possessing the skills and
knowledge of today's DP professionals.

To design a methodology, no matter how powerful,
which is incomprehensible to the people who must work

with it is to defeat the very purpose of the methodology.

IV. Approach to the Problem

A Database designer must contend with many
prpblems. If the tools which are meant as aids and
guides are also complex and challenging, then the actual
basic problems themselves are magnified. The methodology
presented herein is an attempt to provide a positive
tool for the Database designer, a tool which will lessen
the load and free the analyst for the basic "analytic"

problems of system design.

As is indicated above, there have recently been
many Database design and schema design techniques
appearing in books and articles, and although, as also
indicated above, none of these can be regarded as
definitive, the examination and understanding of these
proposed methodologies is the obvious first step in an
attempt to derive an effective schema design method-
ology. Chapter Two begins this process by providing
a brief presentation of some of the more popular design
directions. Chapter Three deepens the understanding by
critically examining each of the design directions and
attempting thereby to determine the most desirable
design methodology characteristics. By understanding
both the successes and shortcomings of the first
ventures one can gain a knowledge of the problems to
be overcome and the ideas which have proven fruitful.

The final step is the synthesis, the combina-
tion of the author's own field experience with the
understanding acquired in the examination of the ideas
of others. This is presented in Chapter Four. It is
the exposition of a schema design methodology which
is both flexible and simple to use. Although the
presentation is perhaps far more detailed and theo-
retical than would be necessary for a practitioner,

the methodology itself is straight forward and readily

automatable. It is neither an esoteric, (mathematical
or symbolic logic based) technique, nor one that is
dominated by machine optimization considerations. It

is, in short, a practical schema design methodology.

10

CHAPTER TWO

CURRENT DESIGN METHODOLOGIES

I. Introduction

When dealing with an entity as large and
complex as a Database it is almost inevitable that
various different aspects of it will come to be
regarded as its most important quality. One is reminded
of the story of the blind men and the eléphant; where
each blind man, having encountered a different part of
the elephant's anatomy (and of course unable to see the
whole creature) came to a unique conceptualization of
the nature of elephants. This would certainly seem to
be the situation of the DP world and its encounter with
Database. Published Database design techniques run in
such varied directions (in accordance with each author's
own understanding of what is "most important”™) that it
is difficult to believe that all are concerned with the
same end product.

In this chapter, some of the major Database
design techniques will be reviewed. Insofar as the
subject of this thesis is Schema design, this is the
"important quality" which this author will emphasize.
Whenever applicable, however, an attempt will be made

to show how schema design fits into the total perspective

1l

of a particular Database design scheme.

It will be remembered that the schema must
describe the three elemental aspects of a Database:
the data item types to be stored, the grouping of
data item types into records, and the grouping of
records into sets. A successful schema must do this
in a way which will accommodate all current and fore-
seen uses of the data. The manner of this accommoda-
tion must be as efficient and straightforward as
possible, keeping to a controlled minimum the need
for data redundancy and long involved sequential
searches,

As has been indicated, this is no mean task,
growing exponentially with the size and complexity
of the system. Judging from the literature, however,
the early Database theorists apparently did not
realize the magnitude of schema design. Today, with
the wisdom of hindsight and experience, the problem
is being given more attention. In the following pages
the reader will find a sampling of some of the basic
design directions, running the gamut from simple intui-
tive design up to the most recent attempts at "auto-

mated" Database design.

II. The Artistic Intuitive Approach

A direct carryover from traditional system

12

design practices is the intuitive approach to Database
design. In traditional design, typically the analyst
collects all of the pertinent information about "who
needs what in which report"” and then intuitively sees
what data items are needed, how the data items are to
be grouped into records and which records are to
belong to which files. Occasionally the analyst is
required to perform a few calculations in connection
with the use of a sophisticated data storage technique
(such as indexed sequential), but for the most part an

experienced analyst intuitively knows what to do.

Understandably a system design, like a computer program,
often bears the unmistakable artistic stamp of the
designer.

Many analysts assume that this same basic
intuitive process will work with Database systems. They
propose that to design a Database one must understand
the physical mechanisms and organization of Database
data storage techniques as well as the traditional
designers understand the hardware and software devices
of traditional technology. Armed with this understand-
ing "of the tools” and a sufficient knowledge of the
applications to be supported, an analyst should be able

to intuit a viable Database design.

13

I1I. The Machine Efficiency Oriented Approach

The early Database packages sger iously strained
the capabilities of their host machines. Consequently
many of the initial Database design and implementation
efforts (as well as the software itself) centered
around the efficient use of the machine. "Although the
original data base packages were conceived in the glow
of program independence, they were delivered by the
practitioners of machine/core optimization."” (Wood &
Chamberlain, Feb. 6, 1978, p. 26). This concern with
machine efficiency is naturally reflected in the
design techniques of those who use machine oriented
packages and by some who have been simply swept along
in the wake of such packages. Two such machine-oriented
techniques are briefly described below. The first was
designed for use with IBM's IMS (Information Manage-
ment System). The second is a computer automated
methodology for "Optimal Data Base Schema Design” of

CODASYL DBTG type Databases.

A. Service Analysis

Service Analysis is a Database design method-
ology marketed by Advanced Systems Incorporated (ASI).
Although aspects of Service Analysis are adaptable to
many Database Management Systems, it is primarily

intended for use with IBM's IMS.

14

Consisting of thirteen design tasks (see
Appendix B) the critical design criteria are: data
item frequency of access, data item size (numbér of
characters), and data item number of potential occur-
rences. The design goal is8 to arrange the data itém
types (or "fields") in such a manner as to render
those which are most frequently accessed most easily
accessible. One would never, for example, group a
large, rarely accessed data item together with a highly
used one since each access of the volatile data item
would have to carry with it the dead weight of its
unused companion.

Although in the Service Analysis approach the
physical structure orientation dominates the logical
relationships, it is understood that the logical
(or generic) relationships must also play a part. The
interaction, however, between physical and logical is
a difficult one to define. As Katzen states: “the
synthesis of effective logical and physical data
structures is more of an art than it is a science at
this point in the evolution of data base technology”
(Katzen, 1975, p. 298). Service Analysis seems to
want to design the physical structure (the design
methodology for which is very detailed) and then let

the designer intuit the superimposition of the logical

15

upon the physical.

Where, however, do the definitions for the
requisite logical relationships come from? Service
Analysis leaves this gquestion for the designer. It
is this author's personal understanding that ASI left
the problem for "artistic intuition". Others have
treated it as a separate problem and attempted to
develop a logical design methodology divorced from
the physical considerations. (This thesis is one such
effort). Later in this chapter, some of those "purely

logical" approaches will be examined.

B. An Automated Optimizer for DBTG Type Schema Design
In a document worthy of Laputa,l Michael F.

Mitoma presented "a methodology that will autpmate

and optimize the design of DBTG database structures for

specified applications” (1975, p. i). Of course, as

Mr. Mitoma himself points out "there is no widely

accepted definition of the somewhat nebulous concept

of 'optimality' as it applies to data base or file

design" (p. 29). He defines "the optimal data base to

be the one which supports the required processing with

lThe island floating in the sky which was dis-
covered by Captain Lemuel Gulliver. Captain Gulliver
later commented that: "neither Prince nor People
appeared to be curious in any Part of Knowledge, except
Mathematicks and Musick,".

16

the lowest logical record access frequency, subject to
a number of feasibility and storage bound constraints”
{(p. 29).

Necessary input to this.optimizer consists of
a complete description of the data items, the data
base relations (which data items are related to which),
the run units of tre system (with regard to how each
run unit is to relate to each data item) and so on.

The design steps are as follows:
1) construct a mathematical model of the "data manage-
ment problem" (i.e. the data items, the data base
relations, the run units, and the schema storage space);
2) construct a mathematical model of the "data base
schema," consisting of the number of occurrences of
each data item, a description of legal data aggregates,
records and possible sets;
3) manipulate these two models into what is called
"the optimization module," (i.e. an Integer Program
formulation);
4) construct the Integer Program itself from the
formulation;
5) run the Integer Program to produce the optimal
schema.

The basic idea behind the technique is to

examine every feasible confiquration and then compute

17

for each one the access paths necessary for each data
item type. A data item type may, after all be accessed
in its own right, or as related to another data item
type (as part of a relationship). The integer program,
taking into account the access frequency expectations
for each data item type, determines the optimal schema
configuration to be that which has the shortest "aver-
age" access paths.,
Despite the author's statement that his

methodology "considers logical design only . . .
not the physical organization of the data base,"” (p. 15)
it falls naturally into the category of "machines opti-
mization" orientation. Mr. Mitoma clearly and concisely
expresses the philosophy of that orientation in the
following:

Because a record is the basic unit of access in

DBTG systems, we measure the efficiency of a

schema and its corresponding data base with

respect to a given data management problem in

terms of the number of record accesses which are

required to accomplish the processing descr ibed

in the run units of that data management problem.

In particular, the optimal data base is the one

on which the required processing can be performed

with the fewest total number of record accesses,

subject to the constraint that the size of the

data base must not exceed the maximum capacity

of the schema storage space. The optimal schema

is then the schema that describes this data
base (p. 102).

IV. The Functional Approach

One of the more successful concepts which has

18

taken hold in recent years has been the idea of
"top-down”" design. Useful in both systems analysis
and in programming, the top-down design approach
initially analyzes a problem at the very general major
function level and then gradually divides each major

function into successively finer sub-functions.

Goal

Ca]

Major Functions

AR A5)

L e)

Sub Functions

ABA [ABB | ABC

Sub-Sub Functions

[ABBB] "ABBC

Figure 2.1 Functional Level Tree

Recognizing the value of this approach, analysts
have applied it to Database design. Typically it is
referred to as being the "Functional Approach”™ to Data-
base design. 1Its advocates generally stress the pan-
application aspects of Databases and like John K. Lyon
define Database as "The total data resources of an

organization, considered as an entity" (1976, p. 2).

19

In an organization which already has a
considerable tradition of departmentalized information,
the use of the functional approach is not quite as
obvious as it may seem. In their effort to "go Data-
base" many DP installations have simply tried to link
together their traditional parochial files. Others
have tried the top-down approach strictly along company
departmental lines (i.e. viewing each department as a
major functional unit). |

Such efforts rarely proved successful. Instead,
argue supporters of top-down analysis, a true functional
analysis must take place. "Top-down design will work
for data bases as well as it does for programs if the
analysis is done by function rather than by department”
write Thomas R. Finneran 3gnd J. Shirley Henry in

Datamation. "If the designer divides the 'big picture’

into business functions, rather than organizational
entities, he can logically segment the organization,
avoiding the problems inherent in departmental analysis"”
(Nov. 1977, p. 99).

The process then of functional design is as

follows:

1. identify the major enterprise (or system
functions);

2. construct a "functional tree" by dividing

20

each function into its constituent
sub~-functions until the elementary level
functions are reached;

3. identify the data elements necessary to
support each elementary function;

4. identify and combine identical branches
and branch segments;

5. combine "similar" segments and branches
through the use of "more generalized”
definitions;

6. form records (segments) out of the data
item "leaves" of each elementary level
branch;

7. "infer" sets "from their common key
elements" (i.e. records which contain a
common data item are related in an obvious
way) .

The philosophy here 1is clear.

If a Database is to truly exist, it must be
designed with the understanding that it is not
just an on-line file, but, rather, that it is,
first and foremost, a model of the business. . . .
The Database administrator /designex/ has an
obligation to the company to insure that the Data-
base is defined in terms of the essential basic
entities of the enterprise and not in terms of the
way things are done now, nor in terms of a user's
idea of an implementation. The process of Data-
base design is one of determining those areas

that are important and significant to the enter-
prise and its environment" (Lyon, 1976, p. 19).

21

V. Information Oriented Approaches

In recent years some analysts have attempted to
view the problem of Database design in the light of
what must be regarded as the essential aspect of a

Database: information. Proponents of this position

contend that a Database should be a repository of
retrievable information, not just an amorphous pool
of data. The Database design should therefore
emphasize the information capacity required of the
Database rather than machine efficiency considerations.
Much thought has been invested in trying to
determine the basic elements of information and how
best to describe them. The initial division of infor-

mation into entities (objects) and relationships

between entities is almost universally accepted. The

issue becomes clouded, however, with the introduction
of auxiliary concepts such as properties, attributes,
constellations, upper and lower conceptual domains,
predication structures,et cetera. An interested reader
soon finds himself traveling in the realms of semantics,
symbolic logic, set theory, relational calculus, rela-
tional algebra, and an occasional sojourn into clasgi-

cal philosophy.z How do such esoteric topics pertain

280 Sundgren even cites Heraclitus (the obscure?)
in his discussion of "existence".

22

to Database design? Here are some examples.

A. An Infological Apprcach to Database Design

Infological, a relatively recently coined word,
simply means information oriented. The proponents of
the infological approach claim that the users of a
database are information oriented, hence, informa-
tion oriented (infological) implies user oriented.

The distinction between information and
data is essential to the infological theory
of data bases. . . . Very briefly, data are
the materialization, the representation of
information, whereas information is equivalent
to knowledge and has to do with the semantic
aspect, the meaning of data.

By distinguishing between information and
data we may similarly distinguish between
infological, or user oriented, and datalogical,
or computer oriented, data base design problems
(Sundgren, 1975, p. 2).

The infological approach to Database design
requires the designer to analyze the system in terms
of the information which the system is required to
produce. Information is viewed as being a reflec-
tion of "reality". The mapping of "reality onto a
Database"3 (reality——>Databasgse) takes place as

follows:

l. The reality—-3>»subject matter model

For this discussion Bo Sundgren defines "a
data base as a permanently maintained digital data
model of a slice of reality”" (Sundgren, 1975, p. 18).

23

submapping, established by the abstraction
process;

2. The subject matter model——sinfological
model, established by the specification
process;

3. The infological model——+datalogical model
submapping, established by the design
process;

4. The datalogical model——»data base sub-
mapping, established by the implementation
process and maintained by the operation
process (1975, p. 18).

In less technical terms this means that:

1. the analyst views "reality" and subjectively
forms an understanding of what he sees;

2. the subjective understanding is modeled
using some sort of formalized modeling
technique (in this case, an "infological
model") ;

3. the formalized information model is
translated into a working machine model
(2 working schema);

4. the actual data for the Database is loaded
and the Database is maintained.

The real substance of the infological approach
is concerned with step #2, the construction of an
infological model from the analyst's perceptions of the
system. Unfortunately the terminology and the concepts
of this technique are so esoteric and foreboding that
it is impossible (within the limits of this discussion)
to either delve into the requisite explanations or to
translate the jargon into the vernacular. The interested

reader is referred to Appendix B for an introductory

24

discussion of the subject (and to Bo Sundgren's book

Theory of Data Bases for comprehensive coverage). This

introduction and above cited quotations, however should
be sufficient to convey the unique flavor of the info-

logical approach to Database design.

B. The "Entity-Relationship Model"

Most of the schemata in use and being designed
today contain "impurities", that is to say that they
are

not a "pure" representation of the real world.

One of the reasons is that the database designer
is restricted by the limited capabilities of the
database management system. For example, the
many-to-many relationships between entities are
difficult to represent directly in some database
systems. Another reason is that the user schema
may contain some features related to the storage
representation of the database. For instance,

it may describe which record types can be directly
accegsed and how to access other record types.

In addition, the user schema is usually designed
to be efficient for a certain type of data process-
ing operations. . . . Therefore, the user schema
is usually not a direct representatign of the real
world. This makes the user schema difficult to
understand and difficult to change (Chen, 1977b,
p. 77).

What some analysts propose as a remedy for this

situation is the creation of a super-schema (or meta-

schema, enterprise schema, or conceptual schema). It
is the task of the super-schema to accurately reflect
the "real world" free from all pragmatic "state of the

art"” limitations. Such a super-schema would then be

25

hardware and software independent, conceptually easier

and truly information oriented. Specific working

schemata could easily be derived from a super-schema
by applying the particular resﬁrictions of a specific
Database Management System.

One of a number of super-schema design method-
ologies is Peter Pin-Shan Chen's "Entity-Relationship
model” (usually abbreviated as "E-R model™). 1In the
E-R model terminology the super-schema is called the
"enterprise schema" (supposedly because it accurately
reflects the true enterprise view of information and
not some view forced to fit the confines of a restric-

tive computer dictated model).

Real World (the enterprise)

Accurate Reflection

Enterprise Schema

Introduction of "Impurities®

User Schema (can be any of the current
types: network, hier-
archial, or relational)

Figure 2.2 The Role of the Enterprise Schema

The E-R model utilizes five basic concepts.
These are (Chen, 1977b, pp. 77-79):

l) entity sets - "An entity is a 'thing' which can be
istinctly identified. An entity set is a group of

26

entities of the same type."” In common terminology
an entity would be called a datum (or a data item),
and an entity set would be called a data item type
(or generic name).

2) relationship sets - "Entities are related to each
other." A specific department (an entity) may
consist of a number of employees (entities).
Between the department and each employee there is
a relationship. The set of all the relationships
between all the departments and all the employees
is a relationship set. "A telationahig gset is a
set of relationships of the same type. Another
way to approach the definition of relationship
gsets is to note that relationships exist between
entities and relationship sets exist between entity
sets.

3) attributes - An attribute is that aspect of an
entity or a relationship which can be assigned a
value. Age, for example, can be an attribute of
an employee because a value (number of years) can
be assigned to it. In the E-R jargon an attribute
is defined as "a mapping from an entity set (or
relationship set) to a value set (or a group of value
sets) ."

4. value sets - As with entities and relationships, a
"value set is a group of values of the same type.”
Color, number of years, name of locations, height,
etc., all could be value sets.

5) conceptual domains (upper and lower) - Conceptual
domalins are concepts used to accommodate changes
to the enterprise schema design (they are, however,
beyond the scope of this brief presentation, but are
covered in more detail in Appendix B).

These five basic concepts are the components of
the E-R model; the media for the "enterprise®™ (or con-
ceptual) schema. The E-R approach proposes that the
design process begin with the construction of the E-R
model. Using that model as a conceptual base, a work-

ing schema can then be produced.

27

The E-R model is meant to be a design tool,
bridging the gap between the human understanding of
an enterprise and how that enterprise must be modeled
in the machine. It is claimed that the E-R model
"adopts the more natural view that the real world
consists of entities and relationships,”" and that it
"incorporates some of the important semantic informa-
tion about the real world" (Chen, 1976, pp. 9-10).

It is a serious attempt to establish a comprehensible
logical approach as the foundation for database

design.

C. Semantic Predication Analysis

One of the methods chosen to convert human
information into machine retrievable information is
semantic predication analysis. It is used as the
principle methodology of what is (unfortunately) called
the Functional Model (totally unrelated to the func-
tional approach to Database design described in sec-
tion IV). It assumes that there must be at least a
word picture of the enterprigse (or system) available.
Given the word picture, semantic analysis analyzes the
semantic structure of the sentences to produce a Func-
tional Model; which in turn can then be converted into

a schema.

28

At the highest level (the information model
level), "the Functional Model of data is viewad ag a
directed graph; its nodes represent sets and its arcs
represent total functions. Nodes are either entity

sets or value sets. Entity Sets may have any number

of incoming or outgoing arcs; Value Sets may have only

incoming arcs, because 'values' are the ultimate
logical representation of information" (Sibley &

Kerschberg, 1977, pp. 86-87).

(actity Sets = €

Yalua Set = V¥

Figure 2.3 Functional model graph (Sibley
and Kerschberg, 1977, p. 87)

29

A predication represents a whole sentence;
e.g., an assertion, a command, or a gquestion;
it may be decomposed into zero, one, or two
arguments and a predicate. Arguments may them-
selves be predications. "Downgraded predications”
may qualify arguments (the semantic equivalent
of adjectival clauses) or may modify predicates
(the semantic equivalent of adverbial clauses).
The lowest semantic level consists of semantic
features which serve as atomic semantic descrip-
tion units. Down-graded predications play the
role of semantic features of the arguments or
predicates that they qualify or modify (Sibley
& Kerschberg, 1977, p. 87).

Consider the following example from Sibley
and Kerschberg.

l) Statement: "Companies supply parts to
departments in some volume."

The main predication structure (PNl) is
"companies supply parts"., It consists of two argu-
ments: "companies” (Al) and "parts" (A2), and of one
predicate: "supply" (Pl). Note Figure 2.4. The
arrow under "supply" indicates the direction of the
relationship of PNl' Both PN2 and PN3 are "down-
graded" predications. PN2 is the predication repre-
senting the indirect object. PN3 represents the

adverbial information.

30

As *)
'"t‘\:: ““““ 1 ™ o U
’ Y by -~
LA TN -~
,l] [N \' <
] \ "t >
/, 1) ! P N
’] A i 270 N
"] \\ | ,I ' \\
]
U4
; ' Ny ' N\
4 " rd } A T h N
| . |
|
CONPARIES SUPPLY PAXTS LI TO OCPANWENTS
——

Figure 2.4 The predication structure for the sentence:
"Companies supply parts to departments in
some volume" (Sibley and Kerschberg
1977, p. 87)

The choice of the abstraction used to map
predication structures to Functional Model data
structures is part of data policy. As an example,
the model might be restricted as follows:

. Semantic features map to functions whose
range sets are value seats.

. Arguments corresponding to "real-world”
entities map to named argument sgets.

. Predications map to named predication sets,
and the arcs pointing to arguments become
named functions. Also the predicate and

its arrow are attached to the predication
set,

31

. Downgraded predications are represented by
functions whose domain is the main predication
set and range is either an argument set or a
value get (Sibley & Kerschberg, 1977, p. 88).

¥ e
A » Arguamgnt Set
P s Predgicition Sat

Figure 2.5 The functional model data structure
(Sibley and Kerschberg, 1977, p. 88)

Figure 2.5 "depicts the Functional Model data

structure based upon the predication structure of

/Figure 2.4/ . . . and the above abstraction rules”

(Sibley & Kerschberg, 1977, p. 88).

Further abstractions are possible by choosing

32

a different set of abstraction rules. Sibley and
Kerschberg maintain that by the appropriate choice
of rules (Data Policy) one can eventually arrive at
schemata of any of the three major practical types:

network, hierarchy, relation.

VI. Canonical Schema Design

Does the information stored in a Database con-
tain its own inherent structure? If it does, can this
structure be used to derive an "optimal” schema? Some
analysts have answered "yes" to both these questions
and have produced what they refer to as being "canoni-
cal" schemata.

In the words of James Martin (1977, pp. 248-249):

We will define a canonical schema as a model

of data which rep:esents the inherent structure
of that data and hence 1s independent of individual
applications of the data and also of the software

or hardware mechanisms which are employed in
representing and using the data.

It is desirable to step away from the current
sof tware for a moment and ask the guestion, "Are
there any inherent properties in the data which
would lead to data items being grouped and groups
being interconnected in a particular structure?”
The design procedure described /below/. . . makes
such structures clear. We refer to them as
canonical structures. To be inherently stable,
and be able to evolve naturally to meet the needs
of new applications, a data base should have a
canonical structure. This gives it the best
chance of surviving future changes. It minimizes
the risk of having to rewrite application programs
because of data-base changes.

33

Canonical schemata are similar to the
"information~oriented” models (discussed above in
section V) in that they are not specific schemata for
specific DBMS packages, but rather are once removed
models of data structure from which working schemata
can be derived.

The canonical form of data. . . is independent
of whether the data will eventually be repre-
sented by means of hierarchical, CODASYL,
relational, or other structures. An additional
step in deriving a workable schema is to con-
vert the canonical form of the data into a
structure that can be supported by whatever
software is being used. This is a relatively
straightforward step (Martin, 1977, p. 249).

The methodology for producing a canonical
schema is not conceptually complex. It is SO non-
complex that it has, in part, been automated (Raver
and Hubbard, 1977). The canonical design technique
is an "incremental” one, based upon how each of the
various applications "yiew" the data. Each user's
view is added to (or can be deleted from) the canonical
model in discrete steps, thus allowing for relatively
simple model modification.

If one examines the canonical approach in light
of the three basic schema design tasks (identifying data
items, grouping data items into records and grouping

records into sets) one finds that the canonical approach

concerns itself with only the latter two tasks. It

34

assumes that the relevant data items have been
identified for each user. This implies that either

an existing set of applications can be called upon

for this information or that somé other function (such
as the preparation of a Data Dictionary) has already
performed the identification task.

The graphical tool of the canonical approach
is the "bubble chart". A bubble chart is constructed
by drawing each data item type as an elipse (or a
circle) and by connecting related data items types
with arrows. An arrow may be either single headed
(for 1l:1 relationships) or double headed (for 1:M
relationships). An arrow may also be either uni-
directional (indicating that only a relationship in
one direction is relevant) or bi-directiocnal (indi-
cating that complementary relationships exist).

Figure 2.6 contains an example of a bubble chart.

Figure 2.6 Bubble Chart Example

35

The canonical design process begins by
representing one user's view (the information needs of
one application) in bubble chart format. It then pro-
ceeds to incorporate additional users' views into the
bubble chart until all the users' views have been
taken into account. Redundant relationships (relation-
ships which can be deduced from the existence of other,
non-redundant relaEionships) are removed as they are
discerned. The final bubble chart is then converted
into a schema as follows:

All bubbles with single headed arrows leaving
them are regarded as "prime keys" (i.e. the key field
in a record). Ail bubbles which have only double-
headed arrows leaving them become "secondary keys”
(L.e. keys accessed through the use of a secondary
index). All other bubbles are simply ("attribute")
value fields. Figure 2.7 illustrates this process.

By no means an "ivory tower" product, the
canonical design recognizes the exigencies of an
operational DP center. It takes into account the
physical problems of response time and machine utili-
zation, but rather than treat the physical constraints
as being of primary concern (in the manner of Service
Analysis), it subordinates them to the more "essential”

logical design. When compromises are necessary due to

36

PR]

USER VIEW a1

Groeny” R T (oo (o

USER VIEW a2

Gy s

USER VIEW 43

DA COEEE

FINAL BUBBLE CHART

CANONICAL SCHEMA

DEPT record
DEPTJ | DEPT-NAME | PROJECT® D
I Qigodaaty-lndex

y EMPLOYEE record
LﬁEH?LOYEE? SOCIAL-SECURITY® IACE xaxé]

Figure 2.7 Canonical Design Process

37

physical constraints, the canonical approach accepts
them for what they are: compromises due to limitations
in the state of the art, not essential Database

features.

VII. The Relational Approach

A movement which is rapidly gaining in popu-
larity is the push for Relational Databases4 and rela-
tional Database design techniques. For a discussion
to do justice to Relational Database theory would
require a vehicle of far greater scope than this thesis.
To avoid the topic completely would be to ignore an
area of ever increasing importance. The following dis-
cussion, of necessity brief, aims to convey only the
basic philosophy of the relational approach and in no
way pretends to be mathematically rigoréﬁs.

To quote C.J. Date paraphrasing E.F. Codd, the
objectives for the relational approach are as follows
(1977, p. 457):

l. To provide a high degree of data independence;
2. To provide a community view of the data of
spartan simplicity, so that a wide variety

of users in an enterprise (ranging from

the most computer-naive to the most computer-

sophisticated) can interact with a common

model (while not prohibiting super-~-imposed
user views for specialized purposes);

4To date, most relational database packages are
still not past the experimental state.

38

3. To simplify the potentially formidable
job of the database administrator;

4. To introduce a theoretical foundation (albeit
modest) into database management (a field
sadly lacking in solid principles and gquide-
lines);

5. To merge the fact retrieval and file
management fields in preparation for the
addition at a later time of inferential
gservices in the commercial world;

6. To lift database application programming
to a new level--a level in which sets (and
more specifically relations) are treated
as operands instead of being processed
element by element.

The relational approach is another of the
"logical design approaches". It is concerned with
the "user's view" of the data, not with physical
representation.

Codd's principles /the foundations of the

relational approach/ relate to the user's

view of the data, or the logical description

of the data. It is very important to note

that they do not apply to its physical

representation. There are many ways in which

a Codd (relational/ data base could be physi-

cally structured (Martin, 1976, p. 95).

The underlying principle of the relational
approach stems from an understanding that any logical
data structure, no matter how complex, can be broken
down and represented as one or more table(s) of
"relations". Consider the following simple example
adapted from C.J. Date (1977). The data structure

in Figure 2.8 is a typical hierarchy. Each SUPPLIER

39

SUPPLIER RECORD

SUPPLIER

) PART-QUANTITY RECORD
y

PART# QUANTITY

Figure 2.8 Simple Data Hierarchy

can supply multiple parts (PART#), each of which can

be ordered in a given quantity. At any specific time
the actual data being stored might consist of any
combination of values. Such a possible set of values

is given in table format in Figure 2.9. Although listed
in a table, the structure is really still that of a

hierarchy. SUPPLIER can be thought of as the key (the

PART-QUANTITY
SUPPLIER PART} QUANTITY
sl Pl 300

P2 200
P3 400
P4 200
PS5 100
F6 100
S2 Pl 300
P2 400
S3 P2 200
P4 300
PS 400

Table 2.9 Data in Tabular Format

40

root) of which PART-QUANTITY is a function. Likewise

within PART-QUANTITY, PART# can be thought of as the

key (and QUANTITY the dependent item). In order for

Figure 2.9 to be considered a "table™ in the relational

sense it must undergo a process called Normalization.

Figure 2.10 shows the same information as Figure 2.9

after normalization.

SUPPLIER PART#
Sl Pl
Sl P2
Sl P3
Sl P4
Sl P5
Sl P6
S2 Pl
52 P2
S3 P2
S3 P4
S3 PS5

Figure 2.10

QUANTITY

300
200
400
200
100
100
300
400
200
300
400

"Relation™

Such a normalized table of relationships is called a

"relation”. It is the basis for the relational

approach. To qualify as a relation a table must meet

a number of standards.

According to James Martin the

properties of a relation are (1976, p. 96):

l. Each entry in a table represents one data
item; there are no repeating groups.

2. They are column-homogeneous; that is, in
any column all items are of the same kind.

41

3. Each column /called a domain/ is assigned a
distinct name.

4. All rows /called tuples/ are distinct;
duplicate rows are not allowed.

5. Both the rows and the columns can be viewed

in any sequence at any time without affecting

either the information content or the seman-

tics of the function using the table.

A relation, such as the one in Figure 2.10, is
usually expressed as follows: SPQ(SUPPLIER, PART#S,
QUANTITY): where SPQ is the name of the relation and
SUPPLIER, PART# and QUANTITY are its component domains
(data item types).

A relational Database schema consists of a set
of basic relations. Relations can be manipulated
(through the use of relational algebra and relational
calculus) to create various combinations of domains.
Each new combination of domains is in effect a new rela-
tion. Thus any relation necessary to satisfy a user's
view can be obtained at run time through the use of the
relational algebra and relational calculus operations.

The basic relations, those which are to be
Database resident and do not need to be created at run
time, are what other methodologies term logical records.

In order to be appropriate for use in a relational

schema, these records must be in fourth normal form

(4NF). A discussion of the complete normalization

process which produces 4NF relations (records) is beyond

42

the scope of this Chapter, but can be found in Appendix
B. In simple, non-mathematical terms, a 4NF relation
(or record) consists of one key domain (an identifier

or object) and unique attribute domains (i.e. attributes
which are used solely as attributes of the key domain).
The principle effort in relational schema design is the
determination of the baéic 4NF relations.

Based as it is upon a firm mathematical base,
the relational approach is a favorite of the academic
world. Unfortunately it suffers from a jargon filled
vocabulary of confusion. Talented authors such as
James Martin and C.J. Date are doing much to cut through
the jargon and present the relational approach in a
comprehensible manner, but at the moment (and in the
near foreseeable future) the relational approach remains

in the domain of the theoreticians.

VIII. Other Approaches and Combinations

There are many other approaches to Database
design. There is another so-called "functional
approach" (Gerritsen, 1975) which requires the designer
to input each user's view expressed as a hierarchy state-
ment (using a language called HI-IQ) into a software
package called DESIGNER. DESIGNER then analyzes the

total hierarchy picture and produces a schema network

43

in DBTG compatible format.

There is an automated package for estimating
"total storage costs and average access time of several
file organizations, given a specific data base, query
characterization and de&ice-related specifications.
Based on these estimates, an appropriate file struc-
ture may be selected for the specific situation.”
(Cardenas, 1973)

In a similar vein, a group working for the
U.S. Navy (Nunamaker, Konsynski, Ho, and Singer, 1976)
have devised a system for "computer-aided analysis for
the design and development of" computer based systems.
Their system contains "four major components: Problem
Statement Language, Problem Statement Analyzer, Genera-
tor of Alternative Designs, and Performance Evaluator.”
The Generator Qf Alternative Designs generates among
other things "alternative specifications for program
modules and logical database structures”,.

This list could easily continue and engulf many
pages; as could theﬂlist of methodologies which make use
of a combination of techniques. The combinations are
mostly found in industry, the world of practical appli-
cations, where results are generally more important
than strict adherence to any specific set of theoretical

ideology. Combinations such as Service Analysis

44

interwoven with Raver and Hubbard's automated canonical
schema design would probably prove very effective since
each addresses a different (yet dovetailing) aspect of
the total design.

The direction of the future is probably towards
more and more automated design techniques. In addition
to those already mentioned for established DBMS packages
there is even some movement to automate the experimental
ones as well /é.g. Philip A. Bernstein's package for
"synthesizing third normal form relations from func-
tional dependencies™ (1976)/. The basis for automation
exists; the design of a Database is intuitively a
logical and orderly process. Yet before automation
takes place, one should be sure that the methodology
(upon which one bases the automation model) is the one

"true" enough to warrant automation.

45

Lo

CHAPTER THREE

ANALYSES OF THE CURRENT DESIGN DIRECTIONS

I. Introduction

Amid the mass of Database design methodologies,
a designer must keep in mind that the object of the
endeavor is to produce a viable Database design. When
SO many esoteric topics beckon and call it is easy to
be distracted from this destination; to be seduced by
the formal perfection of mathematics or fall fascinated
into the labyrinthine loéic of machine optimization.
It is easy to become confused and intimidated in the
ubiquitous jungle of theories and jargon. When so much
seems complex and confusing one tends to regard with
suspicion that which is simple and obvious.

Database design, however, should be, and can
be simple and obvious, straightforward and comprehensi-
ble. If one does keep the real goal in mind, most of
the complexity and the confusion can be dispensed with.
This chapter consists of an attempt to cut away and
discard that which is superfluous and irrelevant in
Database design. It is, if you will, an exercise in

the judicious use of Occam's Razor.1 Design approaches

_ lOccam's Razor - "the maxim that assumptions
introduced to explain a thing must not be multiplied
beyond necessity” - Random House College Dictionary.

46

will be tested against the touchstone of pragmatism;
if some aspect furthers the goal of reaching a viable
Database design it will be accepted, if not, no matter
how mathematically elegant or machine efficient, it
will be rejected.

The analysis in this chapter is roughly
patterned after a top-down binary (lion in the desert)
search. The approach is to first examine the general
design directions. Then, as needed, greater detail is
added, until at the conclusion of the chapter, certain

specific methodologies are critiqued.

II. A Question of Priority - Man or Machine

Among the current Database design methodologies
two distinct and mutually exclusive schoo}s of thought
dominate and vie for preeminence: the machine effi-
ciency school and the information oriented (logical
design approach) school. Although within each school
there exist many factions, before attempting to create
order out of the multitude of factions, the fundamental
philosophic issue (machine efficiency versus information
orientation) must be resolved.

The case for machine efficient design emphasis
may seem to be a strong one. Today's Databases push

much of the extant machinery to their performance limits.

47

Many Database systems, for example, work in an on-line
environment. Consequently, response time is of para-
mount importance. Another salient consideration is
efficient storage. Typically, Database systems handle
large quantities of data. Despite the decreasing cost
of storage (both primary and secondary), an inefficient
data storage scheme can waste considerable sums of
money, (as well as significantly reduce response time).
Offhand it would seem that increased software complex-
ity might be a small price to pay for a DBMS which will
optimize expensive machine resource utilization.

A problem with this line of reasoning is that
there are embedded within it critical assumptions which
cannot pass unexamined; implications whose ramifications
will come to fruition only at some future date.

One tacit assumption behind machine oriented
design is the presupposition that there can exist fore-

knowledge of such factors as data item access frequency

and number of occurrences. Adequate estimates of these

parameters might be obtainable for a system at the time

the Database is being designed; but what can be said

about the unpredictable future? 1Is not data storage
flexibility (adaptability) one of the goals of Database
technology? One of the basic insights is that no system

is static. What happens to data storage flexibility

48

when critical factors in the data storage scheme are
the access frequency of certain data items and the
number of times they are expected to occur? It is
almost certain that the addition of a new application
to an existing Database so designed would cause havoc;
requiring modifications to the extent of a total
redesign.

Another assumption of the machine oriented
approaches is the continued existence of the machine
itself. A Database which is designed around the
specifications (idiosyncrasies?) of a particular machine
can have no pretense to machine independence. 1In the
best circumstances certain compatibilities will exist
between a single vendor's different models; in the
worst cases, even the upgrading of an operating system
will precipitate serious redesign problems. This is
not the place to rehash all the old arguments against
machine dependent application software. Many a DP center
still bears the scars of lessons learned the hard way
in this regard. Unfortunately, except for those who
continually live in innocent bliss (faith in the one
and only vendor), many of the machine oriented apostles
are doomed to repeat this sad and costly history.

Earlier it was stated that "Offhand it would

seem that increased software complexity might be a small

49

price to pay for a DBMS which will optimize expensive
machine resgsource utilization,” but this is not so.

The most valuable and the most fallible resource at

any DP installation is its professional personnel.
Software complexity has an exponentially increasing
debilitating effect upon professional personnel and
their productive output. This is not to deny that
extraordinary and talented people exist - people who
revel in the complex and the obscure. Highly complex
systems have been designed and implemented. Geniuses
find their way into the computer field as well as into
any other, but systems should not be designed under

the assumption that there will always be a genius
present to administrate them. To quote Henry Kissinger
writing in another context:2 "The very complexity of
these arrangements doomed them. A system which requires
a great man. . . sets itself an almost insurmountable
challenge. . . " (1971, p. 921).

Machine oriented designs are, by their very
nature, logically more complex than designs formulated
in accordance with human modes of thought. The end
product of an information system is information. A

Database is a tool within an information system, a

2Describing Bismarck's web of international
alliances.

50

means to an end (and not an end in itself). The whole
system, and all its tools should be as conceptually
simple and comprehensible as possible.

It has been said that: "Man is born free, and
everywhere he is in chains."” Men created machines to
serve the needs of men. How absurd it is to find some
men now serving (orienting themselves towards) the needs
of the machines. It is, to say the least, psychologi-
cally demeaning.

Given the state of the art of today's Database
technology, even the most fanatic supporters of the
information oriented approach would concede that when
it comes to the actual, practical, final design and
implementation of a Database, response time and machine
utilization must be taken into account. The machines
are simply not "sophisticated" enough to allow the
designer to ignore such considerations. The real ques-
tion, however, is whether in order to achieve an "opti-
mal® Database design, one must begin the design process
by defining the physical machine oriented characteris-
tics. This author's answer is emphatically "no". A

machine efficient Database design approach is not a

guarantee that the final product will make optimum use
of even the machine's resources. In many cases a machine

oriented approach results in serious sub-optimization

51

problems (i.e. the optimization of one specific
resource to the detriment of the utilization of the
total resources). Certainly in regard to flexibility,
adaptability and the "expensive" human factor, there
are considerable problems with the machine oriented
approach.

The logical design based approach falls prey
to none of these shortcomings. It places the machine
in rightful subordination to the considerations of
logical information content. The information oriented
school itself, however, is not a unified whole. Some
of the factions, and their arguments will be examined
in the following sections.

III. Logical Schema Design - The Specific Versus the
General

When the analyst inaugurates the Database
design at the logical design (information oriented)
level a problem similar to the machine-oriented versus
information—-oriented distinction arises. It is the

problem of sgpecific package orientation versus general-

ized package-independent design. Stated simply the
question is whether to begin designing a schema to fit
the mold of a specific DBMS package, or to initially
construct a package-independent data (information)

model and then from it derive a specific schema (by

52

¥

imposing on the general, unrestricted model, the
idiosyncratic restrictions of the package).

In actual practice the specific package oriented
design is quite prevalent. It is natural when using a
specific package to begin thinking in the terms of that
package and in line with its mode of structure. An
analyst working with hierarchical data structures begins
to think in terms of data hierarchies. He soon begins

to intuitively organize data interrelationships into

hierarchies and they become for him the natural way to
think. In like manner, the analyst who works with net-
works or with relations begins to feel comfortable and
natural with the type of data structure to which he has
become accustomed. This is, in many cases, the real
basis for what was discussed in Chapter Two as being the
"Artistic Intuitlive Approach".

A package-oriented design by a designer familiar
with the package can be a very efficient operation. If
the specific DBMS package is powerful and flexible, the
resulting Database will probably be powerful and flexible.
On the other hand, a restrictive DBMS package will almost
certainly cause the designer to create a restrictive and
convoluted Database. Regrettably, even though some Data-
base packages may appear to give the designer a signifi-

cant degree of conceptual freedom, all existing (and

.

53

foregeeable) DBMS packages are to some extent
conceptually restrictive. This is a serious drawback
to the package oriented design approach.

A second drawback which exists today (but which
may be diminishedvin the not too distant future) is
package dependency. Unfortunately, being package oriented
usually means being package dependent. Like machine
dependency the effects of package dependency are gener-
ally seen only over an extended time period. How fool-
hardy it is to irrevocably tie oneself (and one's com-
pany) to a vendor if it can at all be avoided. No
matter how powerful the vendor may seem, the sands of
time have toppled many a mighty giant. Far better to
face the vicissitudes of fortune unencumbered and flexi-
ble than needlessly tied to the fate of another.

The hope for the future in this situation is the
growing interest and acceptance of standard DBMS fea-
tures. More and more vendors are turning towards the
CODASYL DBTG recommendations, and ANSI seems close to
endorsing them. This trend should lessen the danger of
package dependency. Eventually standard packages may be
as compatible and transportable as ANSI standard COBOL
programs. For the present, however, it must be remem-
bered that widespread standard DBMS packages are still

a feature of the future and not a virtue of our own time.

54

Thus, package oriented design, widespread though
it may be, contains two serious (fatal?) flaws:
restricted conceptualization and package dependency.

The alternative, general package independent design has
neither of thege faults. By beginning the design proc-
ess at the conceptual level, the designer is free to
formulate his ideas in direct response to the informa-
tion dictated data relationships, the "inherent" data
organization. Free from the pragmatic confines of
specific DBMS packages such a model can be a truer
reflection "of reality" than any restricted model. Free
from the idiosyncrasies of a specific package the unre-
stricted conceptual model is eminently transportable.

Simple design compromises can adapt it to any reasonable

DBMS package and when the time comes to transport the
design, the Database, to another package, the original
(uncompromised) design is still valid.

It is hard not to find the idea of a conceptual
level design appealing. Yet if it is so appealing, why
isn't it more widely used? One reason is that the con-
cept of a "conceptual schema"” is still relatively new.
Another reason is that although it is easy to say that
one should work from a "conceptual model"” there is very
little agreement as to how to formulate that model and

what modeling tools should be used. This lack of

55

unanimity is evident even from the brief survey of
techniques described in Chapter Two. In the following
section an attempt will be made to critique the current
conceptual level approaches, and, barring a full
endorsement of any one particular approach, at least

an understanding of the current shortcomings will be
reached.

Iv. Logical Schema Design - Problems with the
Functional Approach

A conceptual schema is often called an enterprise
schema,3 that is, it is supposed to be a model of the
enterprise it serves. There are, however, a number of
ways in which the reality and the information needs of
an enterprise can be modeled. One method is to take the
total information picture as a gestalt, an integrated
whole of interrelated data. An alternative method is
the Functional Approach, a model based upon the enter-
prise's functional features. Although the functional
approach is a direct descendant of the very powerful and
successful top-down design technique, there are some
serious problems with it.

A Database is, by its very nature, an information

integrator: a means whereby the information needs of all

INot to be confused with the E-R approach's
specific use of the terms "enterprise schema”.

56

its users can be stored in an integrated manner.
Paradoxically, in order to store information in an
integrated flexible manner, one stores data and not

information per se. There are really two ways in which

information can be stored: implicitly and explicitly.
To store a unit of information explicitly is to group
all its component data into one "lump" (or record). To
store information implicitly is to store the component
data independent of a specific information context, but
in such a manner that the desired information can be
constructed out of its components when need be. Con-
siderations of maximum flexibility demand that as far
as physically possible, information should be stored
implicitly. Only those datum which are inherently
connected (such as a person and his social security
number) should be stored together (in one record).

What the functional approach does, by its
process of dividing the information into fundamental
units of information, is create a collection of records
(groups of data types) each containing a basic unit of

information. This scheme is very sensible in the tradi-

tional file environment, where one is interested in
storing information explicitly. It is not, however,

very suitable to Database design. There is, for example,
no guarantee that different functions may not need the

same piece of data, but in different information contexts.

57

By following the functional approach such a piece of
data would appear in multiple records, a problem of
data redundancy. Similarly, the practice of storing

explicit information requires a serious redesign effort

whenever a new type of information is needed (even if
all the requisite data are already in the "Database"!).

This is not to entirely repudiate the value of
the top-down techniques as an aid in Database design.
Determination of the information of an enterprise is
basic to Database design. Top-down, functional analysis
provides a powerful method of ascertaining an enter-
prise's information needs (and thus the information
needs of its Database), but this should be the extent
of the functional analysis role. It is a useful tool,
but out of place when used as a schema designing

implement.

V. Conceptual Level Design - A Search for Simplicity

In the introduction to this chapter it was
stated that "the object of the endeavor is to produce
a viable Database design". Some readers may find the
phrase "viable Database design" to be somewhat vague
and the time has come to expand upon that idea and make
it more specific. Despite whatever fascinations Data-
base concepts may hold for the purely academic world

(and other interested bystanders) the subject finds

58

its origins deeply embedded in the practical, the
applied world. More than anything else a Database is
a tool. 1Its value lies in its ability to be used.
Aesthetic considerations, no matter how intellectually
soul statisfying, can only be of secondary (almost
insignificant) importance.

Like any tool its usefulness is seen in its
power to perform a job well and its applicability, or
adaptability to handle a wide range of situations. A
designer of tools must always bear in mind, among other
things, who it is that will use the tool. A thirty
kilogram hand-held hammer for example, might certainly
be able to pound nails with considerable force but its
usefulness would be extremely limited, both by reason of
its lack of applicability to many situations (delivering
too much power) and by reason of its unwieldable weight.

A methodology for Database design is also a
tool; a tool used to design another tool. Just as a
Database is primarily a practical tool, by association,
the Database design tool must also be primarily a prac-
tical tool. As such, the authors of Database design
methodologies must take into consideration the identity
of the users of the tool; the design artisans.

The Database design artisans are for the most

part DP professionals with considerable experience in

59

the field. They are system analysts and programmers who
have risen to a position of precedence. They are not
primarily mathematicians, logicians, semanticists and
philosophers. Why then are so many Database design
methodologies geared to mathematicians, logicians,
semanticists and philosophers? What good does it do to
create a Database design methodology which is compre-
hensible only to a specialist (or at least a cognoscenti)
in one or more of these peripheral disciplinesg?

Many of the "conceptual level" design method-
ologies are of this ilk. Consider the "infological
approach” and "semantic predication analysis”. The info-
logical approach, with its mixture of symbolic logic,
semantiqs, relational mathematics and realist philosophy,
is perhaps an extreme case of erudite design. Semantic
predication analysis, in addition to being equally
obscure, is also of questionable value. Typically
"word pictures" of an organization and its functions
are far less precise (far less informative) than dia-
grams and schematics. If a complete word picture of an
organization can be composed, then most certainly a
schematic can also be composed with far less effort.

Even the relational approach, with its emphasis
on the not so mundane relational mathematics and its
"confusing language™ (Martin, 1976, p. 96) cannot hope

to be comprehensible to the average system analyst. The

60

proliferation of "normal forms" (so reminiscent of
Ptolomy's proliferating epicycles) can only cast a
doubtful light upon the relational model's claims of
logical simplicity and ease of use.

There exists just one justification for such
egoteric Database design techniques (aside from the
desire to create a white elephant and/or the need to
churn out pulp for the publisher's mill): that there
can exist no simpler, less abstruse, method of accom-
plishing the same task. But, if there does exist a
simple Database design methodology, one which with far
less complexity reaches the same goal, then it follows
that (with a swipe of Occam's razor?) all the abstruse
methodologies should be summarily discarded.

The issue, thus, centers upon the question of
whether a simple and comprehensible Database design
methodology does exist. Without the existence of such
a methodology Occam's razor becomes duller than a butter
knife. Both the canonical Database design and the Entity
Relationship approach are simpler than those mentioned
above (comprehensible to the average DP professional)
but, as will be seen in the next section, they are not
ideal alternatives. The E-R approach is still overly
complex and the Canonical design is not purely a concep-

tual level design. Nevertheless, Chapter Four of this

61

thesis emphatically asserts that a simple, easy to use,
yet powerful Database design methodology does indeed
exist. Before expanding upon that topic, however, the
assertions made above concerning the canonical and

Entity Relationship approaches must be justified.

VIi. Two Serious Design Methodologies - A Closer Look

Of all the Database design methodologies which
this author has encountered, the canonical design tech-
nigque and the E-R approach have left the most favorable
impressions. Each is an information oriented approach.
Each is not overly erudite. 1In the absence of a better
tool, each would probably do a passable job. The prob-
lem is that each one of these methodologies is, in its

own way, somewhat deficient.

A. The E-R Approach

The E-R approach is a true conceptual level
approach. It is not concerned with serving the particu-
lar structure of any given DBMS package, but rather its
goal is to be an accurate reflection of "reality®, one
which can then be used as the basis for a package
oriented design. If it were to be judged only upon
whether it reaches its goal or not then the E-R approach
must be deemed a success. Unfortunately, how one reaches

a goal is often as important as the goal attainment

62

itself. The E~R approach does provide a means of
modeling "reality”, but both the construction of the
model and the finished model itself are far more
complex than they need to be.

The E-R model makes use of entity sets, rela-
tionships, attributes, value sets, and upper and lower
conceptual domains. How well defined are these concepts?
Are they all necessary? Consider the problem of the
enterprise administrator, the person responsible for
determining the "entity types most suitable for his
company."” How does he identify an "entity"? Peter
Pin-Shan Chen provides the following guide: “An entity
is a 'thing' which can be distinctly identified.” (Chen,
1977a, p. 17)

Intuitively everyone knows what a "thing”™ is. A
"thing” exists (if not physically then conceptually) and
can be described. It is the opposite of "nothing” (which
cannot be described). 1In other words, a "thing” is that
which has attributes. Thus, upon first glance at the
definition, one is led to believe that an "entity" is
that which has (or can have) attributes (or properties).

This expanded definition of an entity must,
however, be short lived. Further examination of the E-R
approach discloses the following: ®"Entities and relation-
ships have properties, which can be expressed in terms

of attribute-value pairs®" (p. 17). If both entities and

63

relationships can have properties (attributes), then
both must be describable, and hence both must be things.
How is one to distinguish between entity things and
relationship things?

The answer to this question is implied by the
following excerpt from the definition of relationships:
"Relationships may exist between entities” (Chen, 1977a,
P. 17). From this it is deducible that entities must
be unitary, indivisible things while relationships are
combined, or concatenated things. This confusing situa-
tion can perhaps be clarified through the use of an
example.

Suppose that the local electric company keeps
customer records keyed on a customer service number.

A customer service number is a unique identifier of a
customer. As far as the system is concerned, a customer

is a unitary indivisible thing, thus the customer service

number can be thought of as identifying an entity. As
the unique identifier of the entity, the customer service
number itself can be thought of as being the entity
(which in turn may have attributes, e.g. name, address,
phone number, and so on). Other entities which the
system might include are billing cycle number, branch
office number, service route number, etc. Each is, in

some sense a unitary thing and hence each is an entity.

64

It seems now that the problem of identifying
entities has been clarified (although as shall be seen
shortly, it is not as clear as one might wish). The
next natural question is: How does one identify relation-
ships? 1If a relationship is a concatenated "thing”, it
should be easy to identify. Consider again the example
of the electric company. It retains, as has been noted,
customer service numbers. Each customer service number
is made up of, among other things: the branch number,
the billing cycle number, the service route number, and
an address code. The multiple concatenation of all these
parts results in a unique customer "service number”.

Thus the customer service number is a relationship. As
a relationship it is entitled to have attributes (such
as customer name, address and phone number).

It seems therefore that the original analysis,
which declared a customer service number to be an
entity, was in error. Obviously, it follows from the
definitions that a customer service number is a relation-
ship. All the steps in this argument have led logically
from one to the next and the conclusion is inescapable.
Never theless, this author submits that the conclusion
is, from an intuitively logical point of view, an
absurdity. The customer service number uniquely identi-

fies a customer. Is one to assume from this that one

65

must think of a customer as a "relationship®?

There is8 an alternative to this line of thinking,
one which more closely follows the normal pattern of
human thought. Would it not be far simpler to postulate
only one generic term to describe "thinés?? The human
mind deals with concatenated "things”™ as "entities”™ all
the time. A person's full name, for example, is really
a concatenation of his first and last name (and any others
which might be appended). The E-R approach of splitting
"things" into two ill-defined and unnatural groups can
only lead to confusion.

The example above is not the only instance of
over complexity to be found in the E-R approach. Con-
sider the postulated capacity of values to become enti-
ties and entities to become values. Entities and values
each inhabit a different conceptual domain (entities the
upper, values the lower). Recognizing that occasionally
something which has always been thought of as a value
needs to be thought of as an entity (and vice versa) the
E-R approach provides a process for transferring a
"thing" from one conceptual domain to another (it is one
of the five basic modifying operations). For example,

suppose office number has always been thought of as the

value for the attribute office of the entity employee.

One day the need arises to take inventory of the offices.

66

Thus it might be useful to think of employee as the
value of the attribute resident of the entity office
number.

It is clear here that "tﬁings” can be either
entities or values with equal facility. 1In other terms
one might say that a thing is sometimes an object (a
possessor of attributes) and at other times it can be
thought of as an attribute of some other object. No
one "thing" is uniquely an object, just as no one "thing"
is uniquely an attribute. Why then, must a division
into conceptual domains be made? Why should the rigid
distinction exist between "entities" and "values"?

They are, after all, two sides of the same coin. It is
far simpler to postulate the existence of only one
generic term to cover all the E-R concepts. Such a
singular concept could be seen as being usable in
different modes: as an object with attributes, as an
attribute of an object, as a component of a concatena-
tion,_and as being either indivisible or concatenated in
its own right.4

The point is this, that the E-R approach has

postulated far more concepts and complexities than are

4Just such an approach will be introduced in

Chapter Four.

67

really necessary to deal with the problems at hand.
Even the relatively simple E-R diagrams become hope-
lessly tangled and interwoven in a system of even
moderate scale. It is almost as if the E-R approach
suffers from ivory tower naivete; it is an intellec-
tually stimulating idea, but of questionable practi-

cal worth.

B. Canonical Database Design

The Canonical Design technique, like the E-R
approach, is a methodology for a package independent
design. The object of the design is not a "working"
schema (one which is immediately usable with a particu-
lar DBMS package) but rather a generalized schema
design which may be modified to meet the specific
requirements of a specific package. The canonical
design methodology purports to be able to discover the
"inherent properties in the data which would lead to
data items being grouped and groups being interconnected
in a particular structure" (Martin, 1977, pp. 248-49).
This is an admirable goal; unfortunately the canonical
design approach does not reach it.

Although attempting to divorce itself from the
practical restrictions of today's DBMS packages, the

canonical design is too steeped in current DBMS package

68

traditions to be considered a truly "conceptual”

design approach. Definitely not a purely package
oriented design, the canonical design inhabits the

quasi conceptual, quasi package oriented middle ground
between the two approaches. What causes this slight
package orientation seems to be a genuine concern for
practical applicability. In many respects the canonical
design's practical approach is a definite asset over
some of the ivory tower conceptual approaches. The use

of the convenient bubble charts as a schematic and

explanatory base indicates a genuine concern for wide-
spread comprehensibility. The automated package (IBM's

Data Base Design Aid - DBDA - which incorporates features

of the canonical design) renders the canonical approach
feasible even in highly complex systems (circumstances
which would make incomprehensible spiderwebs of the
most carefully drawn bubble charts). Nevertheless, the
restrictiveness and the narrow horizons which ultimately
plague all package oriented designs, prove also to be
the canonical design's undoing.

One minor restriction which characterizes the
canonical design is its prohibition of M:M relationships.
It is true that most of today's DBMS packages will not

support M:M relationships, but this does not mean that

69

an M:M relationship5 is not occasionally an important
conceptual construct. Sometimes an M:M relationship
is a true and accurate pilcture of a situation (as, for
example, in the case of authors and their books: one
author may have many books, while one book may have
many authors). If one is trying to model the "inherent”
structure of information, then one must allow for M:M
relationships.

A second, more crucial problem, with‘the
canonical design is its use of "secondary keys" (or
secondary indicies). 1In farming the bubble chart, the

canonical design recognizes "candidate keys" i.e. data

items which are used to identify other data items. Data

items which are non-key 1tems are termed attributes.

In another terminology the cagndidate keys would be
called objects which in turn possess attributes. This
is a classical conceptual distinction; one which is
intuitively valid, even to non-DP initiates. Canonical
design, however, then proceeds to introduce into the
picture a third category of data item, the secondary
key. In the process of converting the bubble chart into

a "conceptual schema®" diagram, the class of candidate

5In the context of the canonical design. In the
Chapter Four methodology the M:M relationship is seen in
a different context.

70

keys are split into primary keys and secondary keys.

A primary key 1s an object which possesses single
valued attributes. A secondary key is an object which
possesses only multivalued attributes. From a concep-
tual point of view such a distinction is totally
incomprehensible.

If, for example, it is postulated that cars can
be only monochromatic (i.e. the object car can have only
one color attribute) then cars would be primary keys.

If, however, cars could be considered polychromatic, then
cars would be relegated to the status of secondary keys.
Where is the logic behind such a state of affairs?

To a DP professional the distinction is not with-
out reason. Often it is more convenient to retain
multiple valued attributes on a separate (secondary)
index file. Hence, if an object has only multivalued
attributes it becomes pragmatically reasonable that the
attributes might be better handled through the use of a
secondary index. What, however, have such considerations
to do with a conceptual design? They are out of place
and inappropriate.

In, and of itself, this lack of adherence to
"pure" conceptual design is not fatal. If the introduc-
tion of a few practical considerations is required to

enhance the viability of a design, then they should not

71

be rejected merely upon the grounds of "conceptual
impurity" and complexity. Regrettably this is not the
case. The introduction of the canonical design's
package oriented features renders its product less
powerful, and less viable. The schema which the canoni-
cal design generates must often be considered sub-
optimal for a number of reasons. Although this is not
the place to delve into the problem in greater depth,
the interested reader is referred to Appendix D,
wherein will be found an analysis of an example given
by Raver and Hubbard in their exposition of the canoni-
cal design approach. Included in that analysis is an
alternate schema design generated by the method to be
expounded in Chapter Four of this thesis.

Thus it is that the canonical design, having
set for itself the worthy goal of all conceptual design
approaches (the generation of an "information" model),
it falls short of that goal. A package-oriented tint
to the canonical technique has impeded its progress in
what this author believes to have been a start in the
right direction. Building upon many of the basic ideas
of the canonical design it should be possible to reach
the goal, to create a pure information model. Chapter
Four of this thesis will explain just how it can be

done.

72

CHAPTER FOUR

A PROPOSED NEW DATABASE DESIGN METHODOLOGY

I. Introduction

The subject of a Database is information. It
is the end for which the Database exists. A computer
can be regarded as a "black box" which enables men to
store data and (if properly used) to retrieve informa-
tion. Both data and information have an existence of
their own; quite apart from any specific computer or
sof tware package.

The function of a Database is twofold. (1) It
must receive data from the external world and instruct
a specific computer how that data is to be stored. (2)
It must produce information upon demand by instructing

the computer to retrieve the appropriate stored data.

To fulfill its dual role the Database must
interact in two distinct directions. (1) It must be
able to interact with a specific machine (the hardware
and the supporting software) in order to govern the
storage and retrieval of data. (2) It must contain a
map of information (the data and the interrelationships
between the data which comprise information).

The Database-machine relationship is machine-
dependent and transient. It has no existence apart from

a specific machine and its specific environment. The

73

Database's information map is machine independent and
eternal. As long as the information it maps is valid,
even if no machine exists, the information map itself
(the data relationships which form the information) is
also valid.

In accord with the dual nature of Databases,
Database design should consist of two discrete steps:
the design of the information map (alternately known
as a Database logical design or conceptual schema), and
the design of the Database-machine interface. Insofar
as one of the purposes of a Database is to provide
flexibility (which should include machine independence),
and insofar as one of its paramount characteristics
should be logical simplicity ("easy to use"), it is
obvious that the design process should begin with the
information map. Once the information map is designed
it can be modified to meet the restricting requirements
of any specific machine and DBMS package. In this
manner, machine dictated modifications to the innate
logical design can be easily recognized as such; and
not confused with the essential underlying information
structure.

The methodology described in this chapter is a
technique for constructing information maps. It begins

with a discussion of the theory behind the method and

74

concludes with an explanation of the methodology itself
(including some considerations on how to handle machine

imposed restrictions).

II. The Theory Behind The Method

Specific information consists of specific
instances of data and specific relationships between
data. The piece of information "the house is blue”
conveys a message about a specific object (the house)
and a certain attribute of that object (its blueness).

An information map, however, does not deal in specifics,
but rather in abstractions. It is irrelevant to the
information map whether any given house is blue or

green. What does concern the information map is that

a house, a kind of object, can have a certain attribute
called color. The information map deals with objects
(i.e. possessors of attributes), attributes, and rela-
tionships (the connection between objects and attributes).
If one were interested in information about a house, its
color might be a requisite aspect of that information.

At this point the temptation is strong to
immediately classify the world into "objects", "attrib-
utes" and "relationships™. This division, however, is
an ephemeral one. What at one instant is an object can
in the next be seen as an attribute. What at one instant

is an attribute can in the next be seen as an object.

75

Consider the statements "Dan's house is blue"™ and
"blue is sad". In the second statement, that which
was previously seen as an attribute of house, "color”,
(blue) is now an object possessing its own attribute,
"mood"”, (sad). In the first statement, that which was
only an object "house" is now both an object (for it
still possesses the attribute color) and an attribute
(for it is possessed by - is an attribute of) the
object "person”.
Thus it is that by nature information contains
only two basic components:
1. generic concepts which can be abstracted
from specific instances of data (e.g.
color, employees#, mood, height, salary,
project#, etc.)
2., relationships between generic concepts.

1 (the

A generic concept is called an eidos
pPlural is eide). The eide must play both roles:
"object" and "attribute”). Any eidos can be considered
either an object or an attribute depending upon the
information context in which it is used.

One must be careful in working with eide. It

is easy to assume that for each eidos a recoginized word

lAn eidos is an abstracted generic concept
(literally "form). According to Plato, men recognize
things for what they are due to a physical object's
resemblance to its eidos (e.g. a physical chair is recog-
nized as a chair because it partakes of "“chairness", that
is, in some way it resembles the eidos of chair).

76

exists. This is definitely not the case. An eidos can
be any concept which is used either as an object or as
an attribute. An example of an eidos for which no
single word exists can be seen in the following case.

Suppose a company purchases a certain item (let
it be called "XYZ") from a number of different suppliers,
each of whom supplies many different types of items to
the company, and each of whom charges a different price
for xyz. Within the company, items are identified by a
unique PART#. In attempting to obtain the piece of infor-
mation, "what does supplier 'q' charge for xyz?", one dis-
covers that neither the PART# of xyz, nor the name of a
supplier is sufficient to identify the information being
sought. The price cannot be considered a function (an
attribute) of PART# because different suppliers use
different prices. Similarly price cannot be considered
a function of SUPPLIER since each supplier supplies
numerous items. It turns out that in this situation
price is a function of the concatenation (the linking or
logical intersection) of SUPPLIER and PART#. No single
word exists for this concatenation. Nevertheless, the
eidos here must be the concatenation "PART# - SUPPLIER",
for it is the true object of the attribute "price".

Not all concatenations require new, unusual, or

hyphenated names. In regard to persons, "name" itself

77

is often a concatenation (although it is rarely thought
of as such). What is often meant by "NAME" is a person's
full name, a concatenation of at least his first and last
name (and possibly a middle name as well). It is impor-
tant to realize that concatenations are common eide,
having no greater nor no less a claim to serve as either
object, or attribute, than the logically indivisible
eide.

' The relationships between eide which concern a
Database information map are solely "relationships of
attribute”. This means that either a certain eidos can
have another as its attribute or it cannot. If it can,
then the relationships can either be one of unity (1:1)
or one of multiplicity (1:M).

Although it is common practice to speak of M:M
relationships, an M:M relationship is a misnomer. 1In
strict terms, a relationship exists between an object
and its attribute (i.e. between one object and one or
more attributes). The object side of the relationship
must always be a "1". What is usually seen as an M:M
relationship is in reality two complementary relation-
ships. Consider the example of the two eide book and
author: one book may have many authors and one author
may have written many books. 1In this classic M:M

situation it can be seen that the M:M relationship is

78

really two relationships: one from book to author and
one from author to book. Each relationship is a 1:M
relationship, but no M:M relationship exists.

A relationship can either be named or unnamed.
In some instances a named relationship takes on the name
of the attribute (e.g. the relationships between the
eidos "PERSON" and the eidos "AGE" would most probably
also be called "AGE"). In other instances a relation-
ship may possess a descriptive name of its own (e.g. a
relationship between the eidos "MAN" and the eidos
"WOMAN" might be termed "SPOUSE").

It should also be noted that more than one
relationship may exist between a single pair of eide
(e.g. 1f an airplane is to use an airport as an inter-
mediate stopover, there will be two relationships between
the eidos "AIRPORT-FLIGHT" and the eidos "TIME":
"ARRIVAL-~-TIME" and "DEPARTURE-TIME").

It is obvious that the realm of the eide and
their interrelationships is limitless, as indeed are the
possibilities for information. It must be understood
that for practical reasons any given Database's informa-
tion map can contain only a small subset of the set of
universal information. Although any specific eidos can
be thought of as both object and attribute, it will

happen that within the subset of a given Database some

79

eide will be used only as objects, some only as
attributes, and some as both.

There are many ways to/represent an information
map. As with most pieces of complex software, the repre-
sentation which is "machine readable" (even a high level
language structure) is usually not the most comprehen-
sible to humans. In the case of an information map
(an entity which should be machine independent anyway)
the most convenient format is probably a diagram.

The diagramatic conventions which are used in
this methodology are not original. Similar conventions
are common. To avoid ambigquity, however, definitions
in the light of the above "theoretical"™ discussion, are
provided. The following are the conventions used with
the graphic reproduction of schemata:

a. All eide are represented by a rectangular

box which contains the name of its eidos
inside.

EMPLOYEES # MOOD COLOR NAME

Figure 4.1 Eide

b. Relationships between an object and those
eide which are used soley as its attributes
can be of two types, l1l:1 and 1:M. 1In
either case the attributes are aligned in
a contiguous row to the right of the object.
In the stance of a 1:m relationship two
extra partial boxes are drawn "behind"™ the

80

original attribute's box (as shown in the
illustration below with the eide ALIASES
and IDENTIFYING-MARKS).

RICORD ¢ TULL-NAME ALIASES AGE HEICKT WEICKT IDEXTITYING~-MARKS

Piguce 4.2 An Object and Its Unique Attribucaes

Relationships between an object and those
eide which are used either as objects
themselves (in other relationships) or as
shared attributes (i.e. as attributes of
more than one object) are represented as
arrows. The direction of the arrow always
indicates the direction of the relationship,
running from the object to the attribute.
1l:1 relationships are single headed arrows,
1:M relationships are double headed arrows.

DEPT#

al EMPLOYEE#$ HOUSE#$

_»{ PHONE~NO lg——— L-%{ COLOR MOOD

Figure 4.3 1l:1 and 1l:M Relationships

8l

d. When two eide are related by two relationships

such that the
the attribute o

instead o

object of one relationship is
f the other relationship,
using two arrows (which might tend

to clutter a diagram) both relationships are
represented by one-bi-directional arrow. It
must be remembered that relationships are

always "one way"

(from object to attribute)

arrows. Thus all bi-directional arrows
indicate the presence of two complementary

relationships.

Figure 4.4 1llustrates this

convention; while Figure 4.5 presents some

examples.

DEPT#

{

EMPLOYEE#$

Figure 4.4 Notation

DEPT#

EMPLOYEE#

I

_»I PHONE-NO

_—>

DEPT#

l

EMPLOYEE#

for Complementary Relationships

HOUSE

PART#

i

COLOR MOOD

SUPPLIER-PART#$

SUPPLIER

Figure 4.5 Examples of Notational Conventions

82

e. In the event that a relationship is a
"named relationship”™ the relationship
name is written either intersecting
the arrow or along side it. When two
relationships share an arrow (and it is
not clear to which relationship the name
belongs) a small arrow can appear next
to the name.

MALE FLIGHT#
f !
A
WIFE | HUSBAND CREW PASSENGER~LIST
* 'i
4
y L
FEMALE EMPLOYEE# PASSENGER

Figure 4.6 Named Relationships

An information map is an abstract model of infor-
mation. It is not a "working"-schema (i.e. one that can
be directly applied to a specific DBMS package). Given
the current state of the Database art, there should be
a distinction made between conceptual schemata (unre-
stricted conceptual models of information) and working-
schemata (models restricted by specific package
limitations).

In order to maximize machine and package inde-
pendence, Database design should always begin at the

conceptual schema level (not at the working-schema level).

83

Working-schemata are derivable from conceptual schemata,
but the reverse is not always true. Using a valid con-
ceptual schema as a base (a pure information model) a
designer can knowledgeably modify the model to accommo-
date the pragmatic restrictions imposed upon him.
Parameters such as response time, access frequency,
controlled redundancy (how much and at what cost),
access modes and so forth can all be taken into account
and used to "tune" the working-schema. A properly tuned
working-schema is essential to a successful Database
design. It is the short term end product of the
designer. It is the interface between a machine and the
conceptual schema, the legitimate child of the conceptual
schema's union with practicality.

The most convenient vehicle for a conceptual
schema model is the information map (the "object-
attribute~-relationship"” diagrams). This is an effective
model, simple yet powerful. The format comes easily to
DP professionals (who can, for example, think of eide
as data items). Unlike the relational approach (and
some others which only a mathematician could love) the
information map deals in a terminology which is compre-
hensible. It is natural for both DP professionals and
non-professionals to think in terms of objects which

have attributes and which may be related. All of which

84

(objects, attributes and relationships) are clearly
discernible within the model. As will be shown in a
later section of this chapter, the information map is
an easy model to construct (a significant portion of
its design procedure can be automated) and that a
conceptual schema is easily convertible to a working-
schema format (resembling as it does the CODASYL DBTG
schema diagrams, conversion from an information map to
a DBTG type schema is almost trivial).

Before turning attention to the practical
questions of how to actually design a conceptual schema
and how to convert a conceptual schema to a specific
working one, here is a brief review of the basic tenets
of the theory "behind the method".

1. The primary concern of a Database is
information.

2. The Database must act as an interface
between man and machine: accepting data
from man, storing data in the machine, and
retrieving information for man.

3. The primary concern of the Database
designer should be the Database's informa-
tion map (its eternal soul) and not a
specific machine environment (its mortal
body) .

4. The basic building blocks of information
(and thus the features to be found in
information maps) are eide and relation-
ships. Eide have two tunctions: to be
objects and to be attributes. A relation-
ship connects between object and attribute;
it is that, by virtue of which, an object
is an object and an attribute is an
attribute.

85

5. Database design should consist of two
major steps:

a) design of a conceptual schema (the
information map)

b) modification of the conceptual schema
to include machine necessitated
restrictions.

6. The most suitable model for a conceptual

schema is an information map (an object-
attribute relationship model).

III. The Design of a Conceptual Schema

The design of a conceptual schema consists of
two phases. These are:

Phase I - identification of the information
to be modeled

Phase II- construction of the information
model (the conceptual schema) from
the identified information.
Each phase is an integral part of the process, and each
is of equal importance. Phase I is the more intuitive
phase. It requires experience, as well as an intimate
knowledge of the systems involved in order to accurately
identify the information needs and data interrelation-
ships of the total Database environment. Phase 1I is
the more mechanical phase and is the primary topic of
this thesis.
In the following discussion, Phase I is des-
cribed briefly; more from the point of view of what

results it should yield rather than the manner in which

those results can be obtained. There are, after all,

B6

many valid ways of identifying the information to be
modeled. Phase II, on the other hand, is the crux of
the methodology being presented and is thus dealt with

in significant detail.

A. Phase I

Identification of the information to be modeled
consists of identifying the eide (the generic concepts,
or data item types) and identifying the interrelation-
ships between the eide. There are many methods to
accomplish this task and many tools to aid the analyst
in the endeavor. The choice of approach and the choice
of tools depend in large measure upon a specific system's
environment. An analyst working on a new and nebulous
system would naturally proceed differently than an
analyst working in a well-defined environment. Likewise
the analyst with access to a powerful data dictionary
can approach the problem with less trepidation than his
less fortunate counterparts.

Regardless of the environment however, there are
certain basic elements which must be common to all. One
basic element is the ability of the analyst to abstract
the relevant aspects of a given system. The success of
the operation as a whole depends upon the accuracy of
the analyst's perception. The "aspects" of the system

which the analyst must perceive are listed below. These

87

are the minimal information requirements for a
successful Phase I.

Phagse I Information Requirements

l) Identify and name all eide (generic concepts)

which the system is to use. This entails the

identification of all the types of data to be
found anywhere within the system.

2) Remove syvnonyms and homonyms from the system.

This is a very crucial and delicate step. It
requires a full understanding of the concepts to
be used. Where an eidos has been given multiple
names, (synonyms) one unique and universal name
must be decided upon. Where multiple eide have
been given the same name, (homonyms) each eidos
must be assigned a thoroughly unique name.

3) 1Identify the origins of the eide. Certain

eide are basic to a system and are, of necessity,

inputed into the gystem. Other eide are deriv-
able gquantities and need not be system inputs.
Such derivable eide are usually the result of

a calculation (e.g. the total number "on order"
of a given part can be obtained by summing the
number requested in each of the unfilled, "“out-
standing"”, orders). It is up to the analyst

to decide which derivable eide to include in

88

the schema and which to exclude. Each
inclusion brings with it both implicit data
redundancy and additional complexity (the
fewer the number of eide, the simpler the
schema). 1In general, unless a certain
derivable eidos is of paramount importance,
derivable eide should be excluded from the
conceptual schema. This does not, however,
mean that they will be excluded in the final
practical design. There are serious practi-
cal trade-offs to be considered. These will
discussed in section IV (machine considera-
tions). The point here is that an accurate
identification of the nature of a particular
eidos must also include information on the
possible and most reasonable origins of that
eidos.

4) Identify the interrelationships between

eide including the "type" of relationsghip

(i.e. 1:1, 1:M). Typically this information

will be gleaned from various "users' views"
of the system data. A user's view can come
from the file organization of an existing
system, or from a detailed description of the

output requirements for either a new or an

89

existing system. In performing this
identification process great care must be

taken to establish the true object and the

true attribute in each relationship. Often

an existing tile structure can be deceptive
in this regard. Consider the example of the

following record from a parts inventory file:

PART#

SUPPLIER | SUPPLIER-ADDRESS | DESCRIPTION | UNIT-PRICE

Figure 4.7 An Inventory Record Description

Even though the file may be defined in the system
as a parts information file, PART# is not the
only object (key) being described. SUPPLIER and
DESCRIPTION are unequivocally attributes of
PART#. SUPPLIER-~ADDRESS, on the other hand, is
definitely an attribute of SUPPLIER, while UNIT-
PRICE can be either an attribute of PART# or an
attribute of the concatenation of PART# and
SUPPLIER. If a given part can only have one
price, regardless of who the supplier is, (an
unlikely circumstance) then UNIT-PRICE may be
thought of as only an attribute of PART¢, other-
wise it belongs to the concatenation.

Similarly, problems exist in determining the

90

types of relationships expressed. In the record
format above the relationship types are ambiguous.
Does, for example, the system allow multiple
suppliers for a single part? Does it allow for
multiple parts to be supplied by a single
supplier? Is the "supplier-to-part"™ relation-
ship pertinent to the system? The answers to
these types of questions are not always easy

to obtain; such answers usually require an
intimate knowledge of the systems involved.
Nevertheless such knowledge is a necessity if
the Database logical design is to be a true

model of the systems' information requirements.

These are the tasks which Phase I must perform.
Depending upon the environment, there are many ways in
which an analyst can accomplish them. It is not the
intent of this thesis to delve in depth into the prob-
lems and methodologies of Phase I. The tasks and some
of the problems are mentioned simply as an introduction
to the prerequisites of Phase II.

The success of Phase II is not directly dependent
upon the format of the Phase I results. It is irrelevant
whether the analyst chooses to use bubble charts, 3NF
relations, a machine based data dictionary, or any other

convenient data description tool. The point is, however,

91

that in order to engage in a meaningful Phase 1I,
accurate Phase I results must be available.

Before turning to a discussion of Phase II a
brief digression concerning notation is in order. As
stated above, the format of the Phase I results is
irrelevant to the success of Phase II, however, the
analyst must be careful to avoid an ambiguous format.
The classic rectangular record format is just such an
ambiguous format. For use with the examples in the
discussion of Phase II, this author has chosen the
bubble chart format. Although possibly not as familiar
to most analysts as the rectangular record formats,
bubble charts are by far more expressive.2 Consider
Figure 4.8. It has none of the ambiguity of Figure 4.7's
record format. Undoubtedly, the analyst must possess
a more detailed knowledge of the system in order to
draw a bubble chart, but, as mentioned in the previous
paragraph, this is knowledge which must, in any event,
be obtained.

It should be noted that in the bubble chart

Figure 4.8, the relationships3 between PART$# and SUPPLIER

2The bubble charts used here represent each eidos
(regardless of its context) as an elipse and represent
relationships with the same "arrow" conventions as are
used in the schemata (see Chapter Four, section II).

3Not an M:M relationship, but two distinct and
complimentary l:M relationships.

92

DESCRIPTION

SUPPLIER
-PART#

SUPPLIER~-

ADDRESS

Figure 4.8 The Inventory Record in Bubble Chart Format

are redundant, since the connection between them can be
derived from the concatenated eidos SUPPLIER-PART#$.
Usually an experienced analyst will immediately eliminate
such redundant relationships. Thus, in future references
to this user's view the PART#:SUPPLIER, and SUPPLIER:

PART# relationships will not appear.

B. Phase II

Phase II is the process of translating the
system's information requirements (as determined by Phase
I) into a conceptual schema. The conceptual schema con-
sists of:

1. eide (or data items) grouped into records
(or segments)

2. records interconnected into sets (directioned
relationships)

93

For the purposes of explanation and clarity of
exposition, the conceptual schemata used in this thesis
will be expressed in a graphical format. There is no
reason, however, why the methodology detailed herein
cannot be automated and the conceptual schemata
expressed in either machine readable, or machine pro-
ducible form.

Phase 1II consists of four stages (or steps).
They are as follows:

l. create the object/attribute matrix

2. create the initial conceptual schema diagram

3. modify the schema in regard to shared

attributes.

4. modify the schema to eliminate redundant sets
The first two stages are simply mechanical operations.
If the Phase I results are clear-cut and unambiguous,
stages 1 and 2 can be accomplished with a minimum of
thought. Stages 3 and 4, on the other hand, are intui-
tive in nature. They are involved with modifying the
initial schema; fine tuning it to fit the analyst's per-
ceptions of the situation. These later stages give the
analyst an opportunity to re-evaluate the implications
of the Phase I results in light of the added perspective
and clarity provided by an accurately produced informa-

tion model -- the initial schema.

94

In the following sections a detailed discussion
of each of the four stages is presented. In that dis-
cussion a simple example is built up and carried through
to a final conceptual schema design. For an enhanced
understanding of the Phase II methodology, however, the
reader should examine Appendix C, which contains a

number of other examples of this methodology.

l) Creation of the Object/Attribute Matrix

Each eidos may be used either as an object (a
possessor of attributes), attribute, or both, depending
upon the total information context of the system. It
is the function of the object/attribute matrix to
express both the character of each eidos (i.e. how it is
used) and the types of relationships into which it enters.
The matrix is built by first mapping one user's view of
the data onto the matrix, and then step by step, adding
additional views until all the users' views have been
incorporated.

The object/attribute matrix is a two dimensional
table. Objects are list@d along the vertical axis;
attributes along the horizontal. Eide which are used as
both objects and attributes appear along both axes. As
an example consider again the record from the parts

inventory file.

95

PART# | SUPPLIER | SUPPLIER-ADDRESS | DESCRIPTION | WNIT-PRICE

Figure 4.9 One User's View of the Inventory System

Let it be assumed that in this case parts can have
multiple suppliers, suppliers multiple parts, and that
price is a function of the concatenation of supplier and
part. Since PART{, SUPPLIER, and SUPPLIER-PART# are
objects, they would be listed along the vertical axis.
PART#, SUPPLIER, SUPPLIER-ADDRESS, DESCRIPTION, UNIT-
PRICE, and SUPPLIER-PART# would all be listed along the
horizontal axis since all are used as attributes.

Figure 4.10 shows this listing.

96

Attributes | PART# | SUPPLIER | SUPPLIER- | DESCRIP- | ONIT- | SUPPLIER-
ADDRESS TION PRICE | PARTS®

Objects

PART#

SUPPLIER

SUPPLIER-
PART#

Figure 4.10 An Incomplete Object/Attribute Matrix

Figure 4.10 is not a complete matrix however, It
will be noted that although the axes have been filled in,
the body of the matrix is still vacant. Whereas the axes
record the identification of the eide and their function,
the matrix itself expresses the types of relationships
which exist. The relationships are expressed as a ratio
of object to attribute (object:attribute). For example,
given the assumptions listed above, the intersection of
PART# and SUPPLIER-PART# would contain the value 1:M
(expressing the fact that one part may have many suppli-
ers). Likewise, the intersection of SUPPLIER and
SUPPLIER-PART# would also contain the value 1:M (indicat-
ing that one supplier may supply many parts). The inter-

sections of eide which are not directly related (such

97

as PART# and SUPPLIER-ADDRESS) should be left blank; as
should the tautological relationship of an eidos inter-
secting itself.4 Figure 4.1l1 is an example of a complete
object/attribute matrix in the sense that it is a
complete picture of the information contained in the

sample record.

Attributes | PARTS | SUPPLIER | SUPPLIER- | DESCRIP- | UNIT- | SUPPLIER-
ADDRESS TIN PRICE | PART#
Objects
PART# 1:1 1:M
SUPPLIER 1:1 1:M
PLIER~-
ART# 1:1 1:1 1:1

Figure 4.11 An Object/Attribute Matrix of One User's View

Although most of the relationships and relation-
ship types used in Figure 4.l11 may seem obvious, the
relationships regarding SUPPLIER-PART# are perhaps less

so and thus require a few words of explanation. The rela-

tionship between SUPPLIER-PART# and UNIT-PRICE has been

4Not always will the intersection of an eidos
with itself be tautological. A parts component list is
an example of a situation where it would not be and
where the intersection box might contain the value
"l:M".

98

explained above (that the price of a part is a function
of both the part and the supplier). Whenever a concatena-
tion is formed, of necessity the concatenation is related
to its component eide; hence the four relationships:
SUPPLIER~-PART:PART#, SUPPLIER-PART#:SUPPLIER, PART#:
SUPPLIER~-PART#, SUPPLIER:SUPPLIER-PART#$.

Having mapped one user's view onto the matrix,
the time has come to examine a second user's view.
Suppose that the inventory system contains another file

whose record is as follows:

PART# | WAREHOUSE | QTY-ON-HAND | QTY-ON-ORDER | REORDER-LEVEL

Figure 4.12 A Second Inventory Record Description

Here again the ambiguity of a file format is ganifest.
From the format alone, one cannot determine if a single
part can be stored in multiple warehouses, and/or if a
warehouse can store more than one type of part. To
remedy this situation the same user's view (file) will
be presented in bubble chart format. Note that here,

as in the previous example, the redundant relationships
(PART# :WAREHOUSE, WAREHOUSE:PART#) have been eliminated,

and do not appear on the bubble chart.

99

PART#

WAREHOUSE
~PART#

QTY-ON-HAND QTY-ON-ORDER

Figure 4.13 Bubble Chart of the Second User's View

The results of the inclusion of this new informa-
tion into the object/attribute matrix is shown in Figure
4.14.

This process of incorporating additional users'
views continues until all of the users' views are repre-
sented in the matrix. Unless a matrix contains all the
users' views, it cannot be considered complete. Until
it is complete the next stage of Phase II, that of
creating the pure conceptual schema diagram, cannot be
star ted.

Before turning to the discussion of this next
stage, one more element of the object/attribute matrix
must be illustrated.

Occasionally it will happen that two eide are

related by more than one relationship. In such cases,

100

SASIA ,s108n onl bBuyieiodiodsu]l x§2IeH 8INQY311V/109{q0 uUY #1°) einbry4

ey | o1

LEA S I £}

11

F#13Yd-ISNOHINYN

HT ISNOHINVA
111 1 | 1t | esevd-wanadns
HT 1 ¥3114dns
HE1 11 ¢13vd
535010
& z o/ o /o /» /) \——o-or
» & e/ §/ 85/ L/ S
£/ 818/ 8/5/8/5/8/8) o
’ ’ % S A .%w)W. h.v(b-l
%ﬁ &~ M %o >/ A ’
.%e >/ R/ $.%
.

101

the intersection square on the matrix is divided into

5 Each

as many subdivisions as there are relationships.
subdivision of the square represents one relationship.

As an example of this situation consider the bubble chart
of Figure 4.15, another user's view in the fictional

inventory system.
o

SUPPLIER

SUPPLIER-
PERFORMANCE
-RATING

Figure 4.15 The Third User's View

In this instance there is a dual relationship
from SUPPLIER to WAREHOUSE. The designers are interested
in knowing not only which warehouses are in the delivery
range of which suppliers; they also want to know which
warehouse is the closest to a given supplier. Likewise
a dual inverse relationship exists (i.e. from WAREHOUSE

to SUPPLIER). The system must supply information, not

5In an automated package this problem could be
handled more elegantly through the addition of another
dimension to the matrix. In the manual operation however,
the need for visual and graphical clarity prohibits the
use of this otherwise natural third dimensional solution.

102

only as to which suppliers serve a certain warehouse,
but also which suppliers consider a certain warehouse
their prime (or closest) delivery point.

In order to illustrate how these dual relation-
ships are mapped onto the object/attribute matrix, just

this view is shown in the matrix of Figure 4.16.

Attr {buces ‘m SUPPLIIR | SIPPLIER- SUPPLIER~- | QTY~-Qhi- CROER-LIND
PARTS PERICQRM- QROEIR -TDM

ANCE
RATDG

Objects

WAREMOUSK lid LM

SLPPLIIR 1:1 1l 1M lil

SCPPLIER-

| PARTY 11 1:1 1:1

Fiqure 4.16 The Object/Attribuce Matrix of Just the Third Usec's View

“m

Note how the dual arrows of the dual relationships
are mapped as split squares in the matrix. In the event
that additional relationships are needed for these two
eide, the intersection squares could be subdivided even
further.

Having illustrated this final aspect of the
object/attribute matrix, the discussion of this topic is

complete. With a complete object/attribute matrix

103

(encompassing all the users' views) the analyst is ready
to begin the process of drawing the conceptual schema
diagram. In the discussions of the remaining stages,

the inventory system which has been described will be
regarded as a complete inventory system. The full object/
attribute matrix for this sample system can be seen in

Figure 4.17.

2) Creation of the Initial Schema Design Diagram

The task of this stage is to create an initial
schema out of the information contained in the object/
attribute matrix. A schema consists of eide grouped
into records (or segments) and records interconnected in
sets. Although the final schema design may have compro-
mises and modifications built into it, the initial
schema is a "pure" design (free from data redundancy)
which can be produced, almost mechanically from the
object/attribute matrix.

The first step in this process is the grouping
of the eide into records. A record is a logical unit
made up of an object and its attributes. Each object
has its own record. In the non-redundant initial schema,
a record should consist of one object and only those
attributes which are unique to that object. Attributes

which relate to more than one object should not form

104

Attributes

-

B
- -
= -

-

—)=

- |3

- 1
- -
- -
-
- =
e [
x <
< a.
S]
U T
x |xjwn|wv
@ “w e | 212
-t - | = 1O D
e | |==I=]=
1] I Y VI SR
x|~ x |x
—_ €< 1 DI i<
[I v v hu'3 hs”

105

The Coumpleted Ubject, Attcibute NMatrix

Figuee 4.17

part of a record. 1In the inventory example, the eidos
DESCRIPTION is unique to PART#. SUPPLIER-PART# could
not be a member of the PART# record for two reasons:
1) SUPPLIER-PART# is an attribute of more than just
PART4# and 2) SUPPLIER~PART# is an object in its own
right (and thus cannot be a part of another object's
record).

The construction of records proceeds as
follows:

a) Create a record entry for each object in the

object/attribute matrix. In the inventory

example this is illustrated in Figure 4.18.
In that example there are five objects
(PART#, SUPPLIER, SUPPLIER-PART#&, WAREHOUSE,
and WAREHOUSE-~PART#) therefore, five record
entries need to be created.

b) 1Identify those attributes which are eide

=4

used only as attributes. This entails

examining the list of attributes and

singling out those which are not also objects
(i.e. a list of those eide which are pure
attributes). 1In the example this would be:
DESCRIPTION, UNIT-PRICE, QTY-ON-HAND, QTY-
ON-ORDER, REORDER-LEVEL, SUPPLIER-PERFORMANCE-

RATING, and ORDER-LEAD-TIME.

106

PIATAOp 337 (011 YITYS mua) X1IICH Minqeaniv/analqa Ayl pur sprosay 1dalqo dtuckiqe

A1°r 217171

VNGRS ETRMARAN

PN AIRYE=-UI11I4NS

21I4YJ~ISNOHINVAM ¥31'1ddNS

PIod3d1 eIV -4SH0HIAYH pro3Ida ¥Irddns

ASNOIINYM rLINYd

PIODAT JSIHIHTINYM PI0332 A IRVY
1 11 131 1 11 ALYVA=ISNOHTYYM
Rl HAHA ISNONIANYM
14 11 11 1 11 ALAVA-NITITLINS
Hl Ji H e 1 ¥31°144NS
s1MVYd
NARKIRIE

S3InNYINLLY

NIHLVE TRV o

107

c)

ZART4 Tecord
PARTS

Add the appropriate unigue attributes to

each record entry. Out of the list of pure

attributes, the analyst should identify
those which are attributes to only one
object and then add those attributes to the
appropriate object's record entry. In the
example all the attributes except the eidos
QTY-ON-ORDER are of this ilk. Thus DESCRIP-
TION should be appended to the PART# record,
UNIT-PRICE to the SUPPLIER-PART# record,

and so on. The complete results for this

step are shown in Figure 4.19.

DESCRIPTICN

SUPOL TR ~ecord

SUPPLIZR | SUPPLIER~-ACDRESS | SUPPLI=R-FERFORMANCI RATIXG 7]

SUPPLIER-PART¢ recerd

SUPPLIZR-PART# | UNIT-PRICE | ORDER~LEAD-TIME

W,

YAREHOUSE-PART# QHHMLWNDIMENI1¢SEL

WAREHOUSE record
wmnmmml

-) gm

Figure 4.19 Objects and Their Unique Attribucass

108

d) Incorporate the shared attributes into the

diagram. Having entered all the objects

and the unique attributes into the diagram,
the only remaining eide are the shared
attributes. It will be remembered that a
shared attribute is an eidos which, although
never used (in the system) as an object, is
used as an attribute of more than one object.
Shared attributes are rare occurrences.
Quite often an eidos which is thought to

be a shared attribute turns out, after
further examination, to be either an object
or a homonym for two (or more) very similar
eide. In the inventory example the only

shared attribute is QTY—ON-ORDER.6

Figure
4.20 shows the state of the schema diagram

after this shared attribute has been added.

6More will be said about this particular shared
attribute later on.

109

893Nq1133Y poivys HuypnToul sp105ay ewayss Oz°y eanbyg

1

TIATT-Y3IQUOT | ANVH-NO-~ALD

#1UVd-ISNOHIUVA

PI000d FLuvd-dSNOHIYVA

dSNOHIYYA

P1008

-

JOI¥d-1INN | #1UVd-HITITddNS

ONILVH-JONVWHOJHAd -3 I'TddNS

SSIVAAV-YIIT4dNS | YAI'TddNS

pdodal
NOI1JdI¥Js3ad |#1uvd
PIT38Y FIHVd

110

At this point all the eide have been incorporated
into the schema diagram. Records have been constructed
which graphically express the relationship between each

object and its pure attributes. The final step, then,

is to complete the diagram by entering the sets (i.e.
the relationships between the objects). This is prob-
ably the easiest step in the whole process. 1t con-
sists of identifying those attributes which are also
objects (by examining the object/attribute matrix) and
drawing the appropriate type of arrow for each inter-
section square. In the example, if one starts from the
upper left hand side of the matrix, the first attribute
(which is also an object) one encounters is PART#.
Proceeding down PART#'s column, the first non-vacant
square 1is the intersection with SUPPLIER-PART#. The
SUPPLIER-PART#:PART# intersection contains the value
1:1, thus a single headed arrow should be drawn from
the SUPPLIER-PART# record to the PART# record (as in

Figure 4.21.

PART# record
PART# | DESCRIPTION

SUPPLIER-PART#% record
SUPPLIER-PART# | UNIT-PRICE ORDER-I.J:‘.AD—TIM}.-:;7

Figure 4.21 An Inter-Record Relationship

111

In like manner, one could continue down the PART#
column to encounter the WAREHOUSE-PART# intersection.
That intersection would also indicate that a single
headed arrow should be drawn to PART¢ from WAREHOUSE-
PART#.

It doesn't really matter in this examination
whether one runs the columns or the rows, the end
result is the same--a complete initial schema design
in graphic format. For the inventory example, the
complete initial schema design is shown in Figure 4.22.
Note that in this figure the relative positions of some
of the records differ from what they were in previous
diagrams. This has been done in order to facilitate
drawing a less complicated looking diagram and in no

way affects the schema's information content.

112

YL o=Q rsecord
4 SUPPLIZR | SUPPLIZR-ACCRESS | SUPPLIIR-PAFORMANCE-RATING m

T

yq_rym TR A0S ran~pd

SUPPLIER-PARTS | UNTIT-FRICE | ORDER-LEAD-TL{E
CART ¢ ord
PART# | DESCRIPTICN QTY -ON-CRCER

IWAREUOUSE-PARTS fecord
‘Y{AREHOUSE-PART# | QTY-ON-HAID | REDRCER-LEVEL

| §

»

p FAREUOUSE record
YAREHOUSE

Figure 4.22 A Coaplete Conceptual Schena

3) Modifications to the Schema Regarding Shared
Attributes

This stage is the first which requires human
judgmental decisions (the designer's discretion). The
problems it addresses are problems of human understanding
and not shortcomings in the design generation process.
Although the conceptual schema produced by stages 1
and 2 is an accurate model of the information obtained
in Phase I, circumstances can exist which might necessi-
tate modifications to that model.

Such a circumstance is the possibility that, in

light of the added clarity provided by a schema model,

113

- —_—

some of the original Phase I definitions and assumptions
may demand rethinking.

The prime area of this concern is that of the
shared attributes. Shared attributes are an anomaly
in an otherwise clearly defined situation. Being neither
unique attributes nor objects, shared attributes occupy
a possibly vague middle ground. Shared attributes are
rare and in general result from an insufficient analysis
of the situation. What 1is thought to be a shared attrib-
ute is usually either an object or a homonym for similar
eide.

In dealing with shared attributes, the analyst
has three options:

a) Redefinition. The analyst, after reexamin-

1ng the situation, may conclude that the reason a shared
attribute exists is because it is ambiguously defined.
On the one hand that which is thought of as being one
shared attribute, might in fact be two distinct generic
concepts (two distinct eide). Reviewing the inventory
example, one might question whether the QTY-ON-ORDER of
a particular PART# for a particular WAREHOUSE is concep-
tually the same idea as the QTY-ON-ORDER of a particular
PART# from a particular SUPPLIER. If it is not, then
instead of the single shared attribute, QTY-ON-ORDER,

there should exist two non-shared attributes: WAREHOUSE-

114

PART#-QTY-ON-ORDER and SUPPLIER-PART#-QTY-ON-ORDER

(see Figure 4.23). On the other hand, that which 1s
perceived as a single shared attribute, might advan-
tageously be considered to be an object. The second
example in Figure 4.23 illustrates such a situation.

In that instance PHONE-NO is a shared attribute of

both DEPT# and EMPLOYEE# éenabling the system to report
the phone number for any given department and/or
employee). It might, however, be useful to be able to
ascertain to whom a particular phone number belongs
(i.e. establish PHONE-NO as an object with attributes
DEPT# and EMPLOYEE#). In either of these two situations
all that is involved is a simple redefinition of function.
Occasionally a more extreme re-evaluation 1s necessary
but that will be discussed in (<) below.

b) Maintenance 'of the status gquo. One cannot

rule out, a priori, the possibility that a shared attrib-
ute is really the most accurate and most comprehensible
description of the situation being modeled. If such is
the case, then there is no reason to remove the shared
attribute from the schema and it should, most certainly,
be retained.

c) Re-evaluation of Phase] assumptions. This

is the third and most drastic option available. It calls

for the analyst to rethink and re-examine some of the

115

~ SPTICH A

Sriginal Si+T:ia%ions

——e——

SUFPLIZR-PART#4 reccrd

SUPPLIER-PART#

UNIT-PRICE A ORDER~-LEAD-TIME

1

!

QTY-ON-ORDER

T

AAREHQUSE~-PART#

record

WAREHOUSE-PART#

QTY-ON=-HAND | REORDER-LZVEL

After Redefini+io

SUPPLIZR-PART#S reccrd

CEPTS recorz

¥

-

PRCNE-NO

SUPPLIZR-PART# | UNIT-PRICE | CRDER-ILZAD-TIME | SUPPLIZR-PART#-2TY-CN=CREER
WAREHOUSE-FART# record
WAREHQUSE-PART# | ATY-CN-HAND | RECRLCER-LEVEL | TAREHCUSE-PART#-2TV-JM-CRDER

_DrpPTé record

DEPT#

T 1 | ——ESONEe;

=MPIOYE

>>| PHONE-NO |
\ # reccrd
TMPLOYEE#]<

Fiqgure 4.23

116

20 record
3

Redefinition of Shared Attribuzes

basic Phase I assumptions. In the inventory example
this re-examination might yield the following analysis.

- QTY-ON-ORDER as determined by Phase I is
ambiguous and needs re-evaluation. As it
stands now, QTY-ON-ORDER, can refer to the
quantity of ‘a PART# on order from a particu-
lar SUPPLIER or, the quantity of a PART# on
order for a particular WAREHOUSE. The
logical view of wanting to know how many of
a certain PART# are on order for a particular
WAREHOUSE from a particular SUPPLIER (see

4)

Figure 4.2 1s not accounted for.

WAREHOUSE-
SUPPLIER-PART#

QTY-ON-ORDER

s

-

Figure 4.24 A Hitherto Unaccounted-for View

- All three views of QTY-ON-ORDER (as an
attribute of SUPPLIER-~PART#, as an attribute
of WAREHOUSE-PART# and as an attribute of
WAREHOUSE-SUPPLIER-PART#) are really derivable
quantities. In each case QTY-ON-ORDER can
be obtained by summing the number of PARTS
listed on each of the appropriate outstanding
orders. An ordered quantity of parts is
actually an attribute of a specific order.
The quantity of parts on order is therefore,
a function of the concatenation of PART#$
and ORDER#. Although the eide ORDER# and
ORDER#-PART# are not currently features of
the system, they are basic concepts whose
inclusion would prove beneficial.

- All the mentioned relationship requirements

can be met using the following user's view
(Figure 4.25).

117

Figure 4.25 A More Accurate View of the Role of QTY-ON-ORDER

- The incorporation of this analysis into the
overall picture renders the previous usage
of QTY-ON-ORDER (that of an attribute of
both WAREHOUSE-PART# and SUPPLIER-PARTR®)

a derivable quantity. As such it is a
source of implicit redundancy and should be
removed from the schema (thus also removing
the necessity of renaming it).

The decision as to which option to choose must
be a human, intuitive choice. The analyst can only
examine each option in the light of his own knowledge
and experience. In the inventory example any of the
three options could be a viable alternative, but it is
the author's opinion that in this case, the third

option (the re-evaluation) holds the most promise. The

118

trevisions which such a re-evaluation would necesgssitate
{to both the object/attribute matrix and the schema
diagram) are shown in Figures 4.26 and 4.27.
4) Modifications to the schema to eliminate redundant
sets

In incorporating the various users' views 1nto
the schema, it often happens that certain sets are ren-
dered redundant. A set is redundant when the relation-
ship it expresses can be deduced from other non-
redundant sets. The classical example of a redundant

set occurs most naturally in a hierarchical situation.

DIVISION |

Y
&

bATTALION

Y

71 PLATOON

Figure 4.28 A Classic Example of a Hierarchy

In Figure 4.28 the relationships between DIVISION and
PLATOON are directly deducible from the relationships
between DIVISION and BATTALION and the relationships
between BATTALION and PLATOON. Thus the DIVISION:

PLATOON and the PLATOON:DIVISION relationships are

119

ORIECT:ATTRIDUILE HMATRIX

ATTRIBUTES

X = -
- - -
x =
- —
x -
. .
— -
-
.
-—
z
-
-
-
-
.
-
-
[
-
=
e
~ - -~
— . .
- - —
I
e
-
= b =
v ve
— —
-
-
—
—
.
-—
—
-
X
— -3 —
.. — ..
-]l T —
=3
- — ~
.- . .
— — -
-
- -
. x
= < -
=< ~ -
-) x
[-l - <
=lx|a|2 =
- -)
- - - = = x x
- N . -— - - -
x N = x x = =
< - = - < x =
- ;] [Se] x x - =

120

The Kevlagd M.)utl/kllrllullc MHotrix

Flpome 4,26

SUPPLIER record
—————= SUPPLIER | SUPPLIER-ADDRESS SUPPLIER-PERFORHANCE-RATISC171

e
.

y SUPPLIER-PART# record
SUPPLIER-PART® | UNIT-PRICE | ORDER-LEAD-TIME

o

PARTé¢ record
—={—> PART@® | DESCRIPTION

'WAREHOUSE-PART# record
WAREHOUSE-PART¢# | QTY-ON~-HAND | REORDER-LEVEL

WAREHOUSE raecord
WAREHOUSE

>

{SUPPLIFR-WAREHOUSE record
— SUPPLIER-WAREHOUSE

JORDERY record
ORDER#

3ORDER#-PART# record
> ORDER#®-PART# | QTY-ON-ORDER

b

Figure 4.27 The Revised Conceptual Schema

121

redundant.

In most circumstances it is wise to eliminate
redundant sets (relationships). They add little concep-
tual content to the model and tend to clutter the picture.
Occasionally, however, an analyst will choose go retain
a redundant relationship in order to emphasize the
existence of a very important relationship (one which

should be explicitly expressed and not implied).

Although, as was stated in the discussion of
Phase I, an experienced analyst can usually spot and
weed out redundant relationships before they are incor-
porated into the schema, great care must be exercised
in the removal of redundant relationships. Not all
relationships which appear to be redundant are really
redundant. Consider the two examples in Figure 4.29.
The diagrams for the two situations are identical. The
DIVISION to PLATOON, PLATOON to DIVISION relationships
are truly redundant. The DEPT# and PHONE-NO relation-
ships need not be. If the list of phone numbers
includes the home numbers of the employees and/or the
department has an official line (or lines) not assigned
to any employee, then the DEPT# to PHONE-NO and PHONE-

NO to DEPT# relationships are definitely not redundant.

In the inventory example all set redundancies

were carefully weeded out of each user's view before

122

DIVISION DEPT#

A 4 $
4

BATTALION EMPLOYEE $
Y M

v

PLATOON | PHONE-NO

Figure 4.29 Redundant and Non-Redundant Sets

any information was incorporated into the object/
attribute matrix. Nevertheless, as the schema currently
stands, set redundancy does exist. Figure 4.30 1illus-
trates this redundancy. The set connecting a SUPPLIER
to all the WAREHOUSEs it serves, and the set connecting
a WAREHOUSE to all the SUPPLIERs which serve it, are no
longer necessary (as this information is now obtainable
through the concatenated eidos SUPPLIER-WAREHOUSE).

The cause of this redundancy stems not from
having overlooked a redundant set within a particular
user's view, but rather from an aspect of one user's view
(in this case the concatenated eidos SUPPLIER-WAREHOUSE)
rendering redundant a set in another user's view (the
SUPPLIERS-IN-REGION, and WAREHOUSES-IN-REGION sets),
Typically an analyst will work on only one user's view

at a time, thus in stages 1 and 2 it is very difficult

123

to guard against this type of redundancy. Given the
overall view provided by a schema diagram however,

all such redundancies are discernible.

SUPPLIER record

SUPPLIER | SUPPLIER-ADDRESS | SUPPLIER-PERFORMANCE-RATING r
l) -

b o

«

¥ SUPPLIER-WAREHOUSE record
SUPPLIER-~WAREHOUSE

ah

WAREHOUSE record
WAREHOUSE

WAREHOUSES-IN-REGION —»
<« SUPPLIERS-IN-REGION

b

Figure 4.30 Two Redundant Sets in the I[nventory Schema

In the inventory example there is no special
requirement to retain the redundant sets and they
should be eliminated. This final modification completes

the inventory example and the resultant conceptual schema

is shown in Figure 4.31.

C. Concluding Remarks on the Conceptual Schema Design
The goal of this methodology has been to place
the burden of human endeavor where it belongs -—- on the

design and understanding of information systems, not on

124

) SUPPLIER record
[SUPPLIER | SUPPLIER-ADDRESS LSUPPLIER-PERFORHANCE—RATIHC[}1
—

) S

ySUPPLIER-PART¢ record
SUPPLIER-PART¢# | UNIT~-PRICE | ORDER-LEAD-TIME

h

PART¢ racord
—|—> PART# | DESCRIPTION

WAREHOQUSE-PART# record
WAREHOUSE-PART¢ | QTY-ON-HAND | RECRDER~LEVEL

b

WAREHOUSE record
WAREHOUSE

3

! SUPPLIER-WAREHOUSE record
——|— SUPPLIER-WAREHOUSE

JORDER¢$ record
ORDER#

4

YJORDER#-PART# record
¥ ORDER#-PART¢ | QTY-ON-ORDER

Figure 4.31 The Final Conceptual Scheza

125

the mechanics of a schema design. The complete design
process 1s an iterative one. Initially the analyst
collates the various "users' views" of the system

(Phase I). These initial perceptions are entered into

a model generator (stages 1 and 2 of Phase II) which
produces an accurate model, the initial schema. 1In light
of the enhanced clarity which the model provides (an
overall view of the information system rather than a
series of private "users' views"), the analyst can
re-evaluate some of the initial perceptions and modify
the model accordingly (stages 3 and 4 of Phase II). The
cycle of re-evaluation and modification can then continue
until the analyst is satisfied that the schema is an
accurate and correct model.

The ease in which schemata are produced from a
set of users' views (analysts perceptions) renders the
Database very simple to update (modify). The analyst
need only be concerned with obtaining an accurate under-
standing of the new requirements in order to change an
existing schema, since the actual process of producing
the schema is mechanical. Insofar as most schemata are
not static constructs (most information systems being in
a constant state of flux), this is an important feature.

The result of the methodology detailed above is

a conceptual schema. It 1s a comprehensible, and

126

accurate, simple to design reflection of a system's
information needs. It also purports to be a solid
foundation for the construction of a practical working
schema. The manner in which this transformation 1is

accomplished is briefly described in the next section.

IVv. From Conceptual Schema to Working Schema

A conceptual schema is a tool, a design aid.
Its strength lies in its ability to be a flexible,
independent and accurate model of a system's information
requirements. In the conceptual, unrestricted form,
this tool is not an operational tool (not a working
schema). One of the purposes of designing a conceptual
schema, however, 1s to create a base from which a working
schema may easily be derived.

The transformation from a conceptual schema to
a working schema should be a simple one. It requires
merely that the idiosyncratic restrictions of a specific
DBMS package and of a specific machine {nvironment be
imposed upon the unrestricted conceptuaf‘model. These
restrictions are in the nature of compromises to the
pure unrestricted cdesign. Although in order to delve
into specific details would require a thorough acquaint-
ance with a specific environment (and is thus beyond the
scope of this thesis), examples can be presented of the

type of compromises an analyst might be required to make.

127

The conceptual schema 1s so close to CODASYL
DBTG schema format, that little or no effort is
required to convert a conceptual schema to any of the
CODASYL DBTG based packages. Nevertheless, CODASYL
as well as most other DBMS packages does not support
M:M relationships;7 a feature which can be found in
a conceptual schema. The removal of a M:M relation-
ship is not a complex operation. All that it requires
is the creation of a new record (a nub) which consists
of the concatenation of the two eide involved in the
original M:M relationships. Figqure 4.32 illustrates
this M:M removal operation. |

When one begins to consider machine environ-
ment factors, one invariably encounters the ubiquitous
"space/time" tradeoff (response times can be ifproved
at the cost of additional storage space and requjsite
storage space can be reduced at the cost of response
time).

One way response times can be improved is
by introducing additional data and set redundancy into
the Database. The more places a specific piece of

data exists, the less searching the system must do.

‘What in CODASYL terminology is called an M:M
re;ationship and which this author has described as
being two complementary 1l:M relationships.

128

The M:M relationship (Each department can work on many
projects and each project can be apportioned among many
departments)

DEPT# << >>1 PROJECT#

The adapted relationship (each of the original eide now
has an 1:M relationship with the concatenation)

DEPT# | 1:M 1:M PROJECT#

DEPT§#-PROJECT#

Figure 4.32 Elimination of M:M Relationships

The more sets a specific record belongs to, the quicker
it can be found. Both additional sets and data require
additional storage.- How much storage cost is the extra
speed worth?

If storage (rather than response time) is at a
premium then storage costs can also be cut down. Cer-
tainly the removal of all data (and set) redundancy 1is
one feasible option. Reducing to a minimum such niceties
as hashed key accesses is another.’ A not-so-obvious
source of elimination of data red;hdancy is the concate-

nated eide. Often the concatenation itself can be

129

eliminated from its own record. Figure 4.33 illustrates

how this can be done.

Wwith the concatenated eidos SUPPLIER-PART#

PART$ record
PART# | DESCRIPTION
7.y

l SUPPLIER-PART# record
SUPPLIER-PART# | UNIT-PRICE | ORDER-LEAD-TIME

A

y SUPPLIER record
SUPPLIER | SUPPLIER-ADDRESS | SUPPLIER-PERFORMANCE-RATING]]

Without the concatenated eidos SUPPLIER-PART# (All accesses to the
SUPPLIER-PART% record must access both parent records in order to
identify the particular record being accessed.)

PARTH# record
PART# DESCRIPTION

PART#-~SUPPLIER record
| UNIT-PRICE | ORDER-LEAD-TIME

P

SUPPLIER record
SUPPLIER SUPPLIER-ADDRESS | SUPPLIER-PERFORMANCE~-RATING T]

) ¢
) S—

Fiqure 4.33
Removing Redundant Data From Concatenated
Keys at a Cost to Access Time and Complexity

130

Depending upon one's own needs and constraints,
the conceptual schema can be bent and reshaped until
there is barely a hint left of its original form. Each
change, however, is a compromise, an introduction of
pollution into the pure information model. Despite the
simplicity of incorporating compromises into a concep-
tual schema, the analyst must never lose the long range
perspective. The true information model is the concep-
tual schema; compromises to it are to be eschewed wherever

possible.

V. Summary

The subject of Database is information. It is
the end for which the Database exists. Information is
a very pragéical and applicable commodity. Information,
in order to be useful, must be accessible and it is the
function of a Database to make information accessible.
This task is a difficult one, abounding in complexities.
A Database, by virtue of the end it serves is not a
simple structure; nevertheless, despite a common belief
to the contrary, Database design need not be overly
complex. |

There are two major aspects to Database design:
the creation of a pure information model and the modifica-

tion of the pure model to conform to the exigencies of

131

the current state of technology. The latter aspect,

the incorporation of environment dictated compromises,

is a complex operation. Its complexity is directly
proportional to the complexity and the restrictiveness

of the given DBMS package being used. The primary

aspect however, the design of the conceptual schema,

need no longer be viewed as a complex operation. The

me thodology which this thesis has presented, demonstrates
that schema design can be a mechanical process. If
complexity does exist in this aspect of Database design,
1t stems from the complexity of the system being modeled,
not from the Database design process itself.

As any experienced analyst knows, information
systems can be exceedingly complex and challenging. If
the tools the analyst has to work with are also complex
and challenging, the problems are unnecessarily multi-
plied. By removing the complexity from one aspect of
the analysts' Database tool, this author hopes to have
helped clear the path to unencumbered confrontations

with the proper problems of systems analysis.

132

CHAPTER FIVE

SUGGESTIONS FOR FURTHER RESEARCH

I. An Automated Design Methodology

Throughout Chapter Four's explanation of the
proposed methodology, numerous references were made to
the methodology's "mechanical" aspects (specifically
stages 1 and 2 of Phase II). Obviously the term
"mechanical” was used as a metaphor, denoting that the
activities involved could be accomplished by a machine
(i.e. a computer), not that the methodology itself 1is
in machine readable form. By shifting the emphasis a
little (and noting that every piece of drudgery which
can be accomplished by a machine should be accomplished
by a machine) it can be asserted that those aspects of
this the methodology which are automatable, should be
automated.

The result of such an automation effort should
produce a useful and worthwhile Database Design Package.
The most powerful design would be an interactive (conver-
sational) program which would encompass all of the
Phase II stages. ‘The overall program logic of a Phase
II package might be similar to the following:

l. Read in the initial Phase I results.

2. Create the object/attribute matrix.

133

3. Create the initial schema design (from the
object/attribute matrix).

4. Output the schema design.

5. Output comments which would indicate
possible points where the initial schema
might be modified (i.e. shared attributes,
data redundancies, set redundancies etc.).

6. Request modifications; if none are needed
end the program.

7. Incorporate the modifications into the
object/attribute matrix and into the schema.

8. Return to step #4.

Although the little logic list above is in no
way exhaustive, it suffices to illustrate that the
automation of the proposed Database design methodology
is not an impossible undertaking. Considering the
benefits such an automated package could provide, this

seems a most worthy enterprise.

II. A Definitive and Systematic Approach to Phase I

In the discussion of Phase I (identification of
the information to be modeled) it was stated that "There
are many methods to accomplish this task /Phase I/ and
many tools to aid the analyst in the endeavor." This
is not to say that all the methods are of equal value or
that even any one method can be considered definitive.
The systematic gathering and modeling of a system's
descriptions is a problem with applications far byond

the realm of just Databases.

134

This thesis has presented the minimum
"information requirements"” that an "information identi-
fication” effort would need for Database design. A
researcher might limit his initial gquest to devising
a systematic way of meeting those requirements and then
expand to include a wider horizon. Even if the scope
were limited to only certain types of applications, a
definitive, systematic approach to the identification
(and notation) of systems' information requirements

would be a significant boon to the DP industry.

III. A Test of the Methodology

Centrally crucial to the total endeavor of this
thesis is the idea that the methodology produced must be

applicable in real world situations. Throughout the

analysis and discussion there has been an emphasis on

comprehensibility, ease of use, and simplicity; practi-

cality has been a principle criteria ("the touchstone of
pragmatism") by which other methodologies have been
judged. In the light of such a goal it is imperative
that the proposed methodology be tried and tested in a
"real world"” environment.

Ideally a true test must consist of a trial
implementation of the methodology by “front line analysts*
working in various DP environments. The methodology, is

after all, meant as a Database design tool (i.e. a tool

135

for DP practitioners). The front line Database analysts
should therefore be its judges.

A test of this sort would have analysts work for
a period of time with the proposed methodology. It would
then require feedback from the analysts in the form of
evaluations. These could take the form of questions
similar to the following:

1. Which features of the methodology proved
convenient?

2. Which features of the methodology proved
annoying?

3. Were the schema designs flexible and easy
to work with?

4. Could the conceptual designs be easily
modified to meet package and machine
restrictions?

5. Were the Databases produced functionally
viable?

6. Were there any special problems encountered?

7. How does this methodology compare with
others with which you are familiar?

This test would serve two very important func-
tions. Certainly, as with any valid test, it could be
used to judge the effectiveness and the value of the
proposed methodology. 1In addition, however, a test of
this kind could be used to fine tune the methodology;
to make it more responsive to the needs of the practi-

tioners. The desired result, is after all, to produce

136

a product which is useful, toward that end a test
would provide invaluable feedback.

If this proposed methodology is not to be just
another adorning flower upon an ivory tower, then a
project in line with this suggestion must eventually
come into being. All ideas and methodologies can be
improved upon. Improvement is the natural direction
of growth. This suggested research would provide the
requisite feedback for that growth, and as such can
be considered an essential component in the creation

of this methodology.

137

BIBLIOGRAPHY

Books

Chen, Peter Pin-Shan. The Entity-Relationship Approach
to Logical Data Base Design. The Q.E.D. Monograph
Series Data Base Management, No. 6. Wellesley,
Massachusetts: Q.E.D. Information Sciences, 1977a.

Date, C. J. An Introduction to Database Systems.
Reading, Massachusetts: Addison-Wesley, 1977
(2nd ed.).

Jones, Paul E., Jr., Data Base Design Methodology: A
Logical Framework. The Q.E.D. Monograph Series
Data Base Management, No. 3. Wellesley, Massachu-
setts: Q.E.D. Information Sciences, 1976.

Katzen, Harry Jr. Computer Data Management and Data
Base Technology. New York: Van Nostrand Reinhold
Company, 1975.

Lyon, John K. An Introduction to Data Base Design. New
York: John Wiley & Sons, 1971l.

Lyon, John K. The Database Administrator. New York:
John Wiley & Sons, 1976.

Martin, James. Pfinciples of Data-Base Management.
Englewood Cliffs, New Jersey: Prentice-Hall, 1976.

Martin, James. Computer Data-Base Organization.
Englewood Cliffs, N.J.: Prentice-Hall, 1977
(2nd ed.).

Meadows, Charles T. Applied Data Management. New York:
John Wiley & Sons, 1976.

Ross, Ronald G. Data Base Systems Design, Implementa-
tion, and Management. New York: Amacom, 1978.

Sundgren, Bo. Theory of Data Bases. New York:
Petrocelli/Charter, 1975.

Wiederhold, Gio. Database Design. New York: McGraw-
Hill, 1977.

138

Yourdon, Edward. ©Design of On-Line Computer Systems.
Englewood Cliffs, N. J.: Prentice-Hall, 1972.

Articles and Conference Proceedings

Ashany, R. and M. Adamowicz. "Data Base Systems."” IBM
Systems Journal, 15, No. 3 (1976), pp. 253-263.

Bernstein, Philip. "Synthesizing Third Normal Form
Relations from Functional Dependencies.” ACM
Trangactions on Database System, 1, No. 4
(1976), pp. 2771-298.

Blasgen, M. W. and E. K. P. Eswaran. "Storage and Access
in Relational Data Bases." IBM Systems Journal,lé,
No. 4 (1977), pp. 363-377.

Canning, Richard G. "Creating the Corporate Data Base."
EDP Analyzer, 8, No. 2 (1970).

Canning, Richard G. "Organizing the Corporate Data Base.,"
EDP Analyzer, 8, No. 3 (1970).

Canning, Richard G. "Processing the Corporate Data Base."
EDP Analyzer, 8, No. 4 (1970).

Canning, Richard G. "Data Security in the CDB." EDP
Analyzer, 8, No. 5 (1970). p

Cardenas, Alfonso F. "“Evaluation and Selection of File
Organization - A Model and System."” Communications
of the ACM, 16, No. 9 (1973), pp. 540-548.

Chen, Peter Pin-Shan. "The Entity-Relationship Model -
Towards a Unified View of Data."” ACM Transactions
on Database Systems, Vol. I, No. 1, March 1976,
PP. 9-36.

Chen, Peter Pin-Shan. "The Entity-Relationship Model -
A Basis for the Enterprise View of Data." AFIPS
Conference Proceedings, 1977 National Computer
Conference. 13-16 June 1977/. Montvale, N. J.:
AFIPS Press, 1977b, pp. 77-84. ‘

Durchholz, R. and G. Richter. "Concepts for Data Base
Management Systems." Data Base Management, IFIP
Working Conference on Data Base Management. 1-5
April, 1974. Amsterdam: North Holland Publishing
Co., 1974, pp. 97-122.

139

Gerritsen, Rob. "A Preliminary System for the Design of .
DBTG Data Structures.” Communications of the ACM,
18, No. 10 (1975), pp. 551-557.

Grotenhuis, F. J. W. "STAF: Standard Automation Funda-
ments, A Model for Automatic Processing.” Data
Base Management, IFIP Working Conference on Data
Base Management. 1-5 April, 1974, Amsterdam: North
Holland Publishing Co., 1974, pp. 313-335.

Finneran, Thomas R., J. Shirley Henry. "Structured
Analysis for Data Base Design." Datamation,
November 1977, pp. 99-113.

Heyne, G. F. and C. J. Daniel. "Design Techniques for a
User Controlled DB/DC System." IBM Systemsg Journal,
16, No. 4 (1977), pp. 344-362.

Kissinger, Henry. "White Revolutionary: Reflections on
Bismarck." Daedalus, 97, No. 3 (l1968), pp. 888-924.

Nijssen, C. M. "Data Structuring in the DDL and Rela-
tional Data Model." Data Base Management, IFIP
Working Conference on Data Base Management. l1-5
April, 1974. Amsterdam: North Holland Publishing
Co., 1974, pp. 363-384.

Nunamaker, J. F., Jr., Ben R. Konsynski, Jr., Thomas Ho,
and Carl Singer. "Computer-Aided Analysis and
Design of Information Systems." Communications of
the ACM, 19, No. 12 (1976), pp. 674-687.

Raver, N. and G. U. Hubbard. "The Automated Logical
Data Base Design: Concepts and Applications.”
IBM Systems Journal, 16, No. 3 (1977), pp. 287-312.

Senko, M. E. "Data Structures and Data Accessing in Data
Base Systems Past, Present, Future."” IBM Systems
Journal, 16, No. 3 (1977), pp. 208-257.

Sibley, Edgar H. and Larry Kerschberg. "Data Architec-
ture and Data Model Considerations."”™ AFIPS
Conference Procedures, 1977 National Computer
Conference. 13-16 June 1977. Montvale, N. J.:
AFIPS Press, 1977, pp. 85-96.

Strocker, P. M., and P. A. Dearnly. "A Self-Organizing
Data Base Management System." Data Base Management,
IFIP Working Conference on Data Base Management.
1-5 Apr1il, 1974, Amsterdam: North Holland Publishing
Co., 1974, pp. 334-349.

140

Sundgren, Bo. "Ccnceptual Foundations of the Infological
Approaches to Data Bases." Data Base Management,
IFIP Working Conference on Data Base Management.
1-5 April, 1974. Amsterdam: North Holland
Publishing Co., 1974, pp. 61-96.

Titman, P. J. "An Experimental Data Base System Using
Binary Relaticns.” Data Base Management, IFIP
Working Conference on Data Base Management. 1-5
April, 1974. Amsterdam: North Holland Publish-
ing Co., 1974, pp. 351-361.

Towner, L. E. "Non-Codasyl DBMS - A Bad Choice for
Users." Computerworld, 6 Feb. 1978, p. 21.

Wood, Roy, and Robert B. Chamberlain. "Once for
Designers, DBMS Now Keyed to User." Computerworld,
6 Feb. 1978, p. 26.

Reports and Manuals

Bethlehem Steel Corp. Data Processing Services. IMS
Standards Manual User's Guide (rev. 1), Bethlehem,
Pennsylvania: 1 June, 1977.

Committee on Data Systems Languages (CODASYL). Data
Base Task Group Report April 1971. New York:
Association for Computing Machinery, 1971.

Digital Equipment Corp. Data Base Management System
Administrators Procedures Manual. D.E.C. Maynard,
Massachusetts: 1977.

IBM Corp. Data Base .Design Aid Version 2 General
Information Mznual. IBM. White Plains, New York:
1977 (GH20-1626-2).

Unpublished Working Papers

Mitoma, Michael, F., Optimal Data Base Schema Design.
Ann Arbor: Michigan University, 197S.

Weldon, Jay-Louise. "A Data Base Configuration Model."
New York: New York University, Aug. 1977.

Weldon, Jay-Louise. "Using Database Abstractions for

Logical Design - A Case Study.” New York: New
York University, Oct. 1977.

141

APPENDIX A

AN IN-DEPTH PROBLEM SCENARIO

I. Design and Traditional Files

Before turning attention to Database design
techniques it behooves one to establish some perspec-
tive as to the origins and evolution of the Database
concept. This requires some understanding of the
design environment previous to Database technology.

It was, after all, an environment of narrow horizons,
demanding of designers only that they satisfy the
needs of a given particular application, or at most,
the needs of a single specific system.

In the first DP systems the overwhelming
number of applications were batch oriented. Hardware
limitations and storage costs combined to reéstrict
most files to a sequential storage medium (magnetic
tapes and/or perforated paper). This meant that most
file processing had to be sequential, but that the
potential length (the number of records) and potential
breadth (the record size) of files could be considered
(within reason) unbounded.

Information was considered parochial in nature;
each system (all files and programs) being the private

fiefdom of its owner. System sovereignty was a well

142

respected right which when transgressed required the
highest authority.

Rarely was it realized to what extent informa-
tion is a total enterprise resource. The majority of
systems came "online" more by accident of circumstance
than by overall information resource planning. Even
the development of DP centers themselves followed
haphazard (albeit not unpredictable) courses.

Although system design, then as now, was "not
so much a science as a trade or a craft,” (Yourdon, 1972,
pP. 72) basically the designs could. be categorized into
two fundamental orientations (Lyon, 1971): process-
oriented systems and file—-oriented systems. Because
both these orientations are still common (and are occa-
sionally applied to Database design) a few words on the
subject are in order.

The process-oriented designer tends to initiate
design by identifying and defining each of the
system-run /Sic/ units in terms. of internal process-
ing, leading to a determination of the data required
by each program. Finally after each "process"™ unit
is defined, the designer reviews his data require-
ments and constructs a file.

The alternative to process orientation is a
design which begins by an examination of the total
system in terms of information. . . . The file
approach defines the information elements of a
system and organizes them such that the informa-
tion remains valid even though the details of the
process change. . . . The file-oriented designer

concentrates on the basic information element of
the system. . . and will design the file such that

143

it establishes and maintains the logical integrity
of. . ./the basic element/, the subsidiary informa-
tion elements, and finally the relationships among
the elements (Lyon, 1971, pp. 7-9).

Even with the advent of feasible and relatively
inexpensive Direct Access Storage Devices (DASD's -
mostly removable disks) design orientations changed very
little. Indexed Sequential, Direct Access, and in some
cases, Inverted files began to be more widely used, but
often even with these constructs, the analysts' view of
"File" remained intrinsically the same. The heritage of
sequential processing proved hard to shed.

With sequential files (particularly on magnetic
tapes) it made good sense to pack each record with as
much data as possible. This reduced the necessity of
storing large amounts of data in the computer memory and
reduced the necessity of searching files for "further
pieces of data". The notion of a "masterfile"™ was often
a large sequential file wherein each record contained
tens (and sometimes hundreds) of data items. One
rationale for this was that if a file included all
potentially needed data, the file became more "flexible"
i.e. would not need additional file interaction and would
be relatively free from modification. Typically, various

applications in a system would sort the masterfile (or

some extracted subset of it) according to a particular

144

need and then process the sorted file.

This same type of thinking was carried over into
non-sequential (and indexed sequential) files. Many not-
strictly-sequential files were built around enormous
record sizes for precisely the same reasons that sequen-
tial files were. There were, of course, exceptions,
but these were a small minority.

The pre-Database world was one of mostly sequen-
tial files and sequential file orientation. Systems (and
sometimes subsystems) were viewed as being independent
entities and the private domains of their owners. Pay-
rolls and other basically sequential applications were
functioning well, however the problems were myriad and
multiplying. In the following section, some of these

problems will be examined.

II. Some Problems with the Traditional Designs

Depending upon the individual's personal
orientation, different authors have taken various views
as to the types of problems which gave rise to the need
for Database technology. Although many cite the same
"source of the problem", each then proceeds to expound
upon a different problem. This is understandable since

one "source" may cause many problems. There seem to be

lThese foresighted exceptions laid the founda-

tions for Database technology. G

145

three basic orientations: management-oriented, system-
oriented, and machine-oriented. The following brief
review of the problems first lists some of the signifi-
cant "problem sources", then defines them (where

necessary) and finally discusses the problems they cause

for each sector of interest.

Parochial View of Data - (This has been amply
elucidated in Section I).

Data Redundancy - The storage of one "piece
of information" in multiple locations.
There are really two types of data redun-
dancy: explicit and implicit. Explicit
redundancy occurs where one has multiple
storage location of exactly the same piece
of information. Implicit redundancy occurs
where a piece of information and all the
factors necessary coexist in storage.

Data-Dependent Applications - "This means that
the way 1n which the data is organized on
secondary storage and the way in which it
is accessed are both dictated by the
requirements of the application, and more-
over that the knowledge of the data
organlization and access technique 1s built
into the application logic" (Date, 1077,
p. 10}).

Lack of Flexibility in Current Data Structures -
This manifests itself in a number of areas:
difficulties in having "shared files",
problems with restricting access on a record
and/or field level (as opposed to on a file
level), and problems with viewing a given
file as being able to accommodate various
organizational structures (although to a
certain extent Indexed Sequential and
Inverted files both provide the designer
with some powerful options).

The outstanding problem for those of a management

146

bent is the fragmentation and lack of centralized

control of a very valuable resource - information. As

C.J. Date (1977, p. 6) points out in answering the
question, "Why Database?":

One answer is that it provides the enterprise
with centralized control of its operational
data - which . . . 1s 1ts most valuable asset.
This is in sharp contrast to the situation
which prevails in most enterprises today,

~ilere typically each application has its own
private files -~ quite often its own private
tapes and disk packs, too - so that the opera-
tional data is widely dispersed, and there is
little or no attempt to control it in a
systematic way.

Other authors also stress this issue:
An enterprise needs to manage its data
resource. . . . Recognition that data are
valuable and that they are not the property
of a single function is to acknaowledge the
enterprise as an integrated whole and not
a collection of independent units (Lyon, 1976,
pp. 2-3). .
Thus with the growing concern for Management Information
Systems (MIS), and the growing awareness of information
as an important rescurce, the inadequacies of pre-
Database systems became quite apparent.

The machine-oriented analysts tend to emphasize

some of the problems caused by data redundancy, particu-
larly inflated file size. Overly large files are both

a waste of precious storage space and result in slower
response times. In today's systems "files are large;

thus, redundant data must be factored out to reduce the

147

time required to access desired information"™ (Katzen,

1975, p. 165). With the guantity of information being

stored increasing at an exponential rate /and the pros-

pects "that

the exponential growth could continue for a

decade or two" (Martin, 1977, p. 4)/ the problems of

efficient data storage become increasingly more critical.

System-oriented authors have pointed out many

problems with the traditional modus operandi. Here are

only a few of the principle ones.

The

The

High Cost of Data Redundancy - Obviously if
multiple copies of a piece of information
exist, this requires the system to perform
multiple updating operations. This may not
be significant when dealing with small
inactive files, but the cost can be quite
appreciable with large and/or highly active
files.

Increased Probability of Transcription and
Updating Errors Due to Data Redundancy -
There is a corollary to Murphy's Law:
"Transcription errors increase as the square
of the number of times a piece of information
is manually transcribed."”™ Note the lemma
which states that: "the more places a given
piece of information resides, the greater is
the probability that one or more of its
occurrences will be updated incorrectly

(due to transcription errors and/or simply
being overlooked)." Taken together it can
be concluded that: the more the occurrences
of a given piece of information, the greater
the probability that one (or more) of those
occurrences will contain an error (Q.E.D.).

Data Inconsistency Due to Redundancy - Even if

one does manage to keep one's files free

from real errors (transcription and the like),
redundancy can cause the appearance of aEEar-
ent errors, a condition which can be equally

148

embarrassing for a DP center. It is rare

to find a traditional (non-integrated, non-
Database) situation in which every occurrence
of a redundant data item can be updated at
the same time. "In a large data processing
operation without a database there are so
many redundant data that it is virtually
impossible to keep them all at the same
level of update. Too often the users or
general management notice the apparent
inconsistencies that this causes and dis-
trust the computerized information. Inabil-
ity to keep redundant data in the same state
of update is a common cause of the anti-
computer stories that managers too often
tell"” (Martin, 1977, p. 23).

Growth Resistant Systems Due to Data Dependent
Applications - In an environment where the
data organizational structure is coded as
an integral part of the application programs
(as in the "File Section" of a COBOL pro-
gram) any change in a file, be it ever so
minor, necessitates modification and recomp-
ilation of every single program which accesses
that file. 1In large systems where many pro-
grams may use a single file even a minimal
change in a file definition can result in
tedious and expensive program modifications.

Difficulty in Sharing Stored Data - The basic
alternative to private files is shared files.
Traditional file organizations, however, lack
the requisite flexibility for conveniently
sharing files. Shared information also
requires much more stringent security and
privacy features than traditional file
structures offer. If the golden age of
integrated systems 1is to successfully replace
the private data fiefdoms, more powerful
file organizations must exist.

III. Database Ideals (general goals)

Having noted the drawbacks of non-Database

systems and organization structures, the next step is to

149

examine the features of a data storage scheme which would
be able to overcome the traditional difficulties and
better accommodate DP needs. The convenient buzz word
for such a schema (already freely used in this work) 1is
Jatabase. As was noted in the discussion of the tradi-
tional problems, different authors cite various features
as being those which characterize a Database [é.g.
CODASYL's Data Base Task Group (1971) lists twelve
requisite features, C.J. Date (1977) lists seven, and
James Martin (1977) lists thirtx_].

Such lists are never really mutually exclusive.
Individual authors use different degrees of generaliza-
tion and implied assumptions in enumerating their own
criteria. Nevertheless, an industry-wide dispute does
exist over just what constitutes a Database (and the
issue is far from settled). Some of the repercussions
of this dispute will be mentioned later on, but for
the nonce, controversy should be avoided. A general
(intuitive) idea of some desired Database features will
certainly suffice for an understanding of this thesis.

To this end it is convenient to borrow a defini-
tion of Database from James Martin (1976) and a list of
requisite features from the CODASYL Data Base Task Group

[pBTG (1971)] .

150

a) Definition of a Database (Martin, p. 4):

A collection of data designed to be used
by different programmers is called a data base.
We will define it as a collection of inter-
related data stored together with controlled
redundancy to serve one or more applications
in an optimal fashion; the data are stored
so that they are independent of programs
which use the data; a common and controlled
approach is used in adding new data and modify-
ing and retrieving existing data within the
data base.

b) Requisite Data Base Features (p. 6):

The Data Base Task Group's objective in
developing these proposals was to make this
/Database/ possible by providing featutes
which:) \

3
. allow data to be structured in the manner
most sulitable to each application, regard-
less of the fact that some or all of that
data may be used by other applications
- such flexibility to be achieved without
requiring data redundancy.

. allow more than one run-unit to concurrently
retrieve or update the data in the database.

. provide and permit the use of a variety of
search strategies against an entire database
or portions of a database.

. provide protection of the database against
" unauthorized access of data and from
untoward interaction of programs.

. provide for centralized capability to
control the physical placement of data.

. provide device independence for programs.
! .
. allow the declaration of a variety of data
structures ranging from those in which no

connection exists between data-items to
network structures.

151

allow the user to interact with the data
while being relieved of the mechanics of
maintaining the structural associations

which have been declared.

allow programs to be as independent of the
data as current techniques will permit.

provide for separate descriptions of the
data in the database and of the data known
to a program.

provide for a description of the database
which is not restricted to any particular
processing language.

provide an architecture which permits the
description of the database, and the data-
base itself, to be interfaced by multiple
processing languages.

These features, then, provide both generality
and flexibility and allow the building and
manipulation of data structures as complex as
necessary for a given application.

IVv. The Current Status of "Database" Today

Three statements can characterize the position

of Database technology in today's Data Processing (DP)

world:

Almost everybody wants a "Database™.

There 1is no general agreement on a
precise definition of a Database.

There is almost general agreement that
the Database packages which are on the
market do not meet all the criteria of
what a Database should be.

If it were not costing so much time and money,

the situation could be comical. But time and money a:§

being spent in enormous quantities. Every vendor of

152

self-esteem feels\it incumbent upon himself to market at
least one "Data Base Management System"” (DBMS) no matter
how limited. Database books, journals and other sundry
publications proliferate with a prodigious frequency.

DP managers, who should by now be used to the magic of
such buzz words, point with pride at their own opera-
tional "DBMSs", even when the heart of such a system

is often nothing more than an Indexed Sequential file
with a fancy name.

What 1s it that causes such a phenomenon? From
whence comes the need to "jump on the band wagon" of an
idea that is admittedly still vague and whose future
direction is uncertain? Perhaps one reason is that
many view DBMS as being the cure for all the present
i1lls and the prevention against future ones.

It is this faith in the ability of Database
that is in part responsible for much of the current
controversy. Vendors, all wanting to be the first
with the "magical solution”, all in the heat of a
fiercely competitive market, invested great sums of
money into developing Database technology. Many have
succeeded in producing marketable packages, but like
Pandora's box, there are still plagues mixed in with the
blessings. Very little cooperation and coordination

took place in the early development stages. The attempts

153

at standardization of features came too late. Vendors
who have tread disparate paths do not want to retrace
their steps to follow the "standard" road; they have
gone too far and too much has already been invested.

This leaves the users and potential users in a
difficult predicament. Most Database packages yhich are
produced by the major hardware vendors are extremely
hardware dependent.. A user of IBM's IMS, for example,
is totally locked into IBM (and IBM compatible) hardware.
Even with some of the more machine independent packages
{produced for the most part by software houses) a user
gets locked into a particular piece of software. To
switch to another DBMS package woulé require a horren-
dous conversion effort.

Independent groups such as CODASYL have made
valiant efforts to bring about standards and standard
compatible features for all Database packages, but for
the present the battle lines are still drawn. Eventually
the standards must come and from the current trends it
appears as if CODASYL's standards will carry the day
é“Nearly all of the database packages developed in the
last four years used the CODASYL specification as their
guide" (Towner, 1978), but with a giant like IBM leading
the opposition, CODASYL's victory is far from assureq].

Whatever the eventual outcome, the standards

154

which do emerge, forged in the crucible of controversy,
will be a welcome boon to the entire DP industry. Wwe
of the present, however, must live with the uncertain-
ties of the future and make due with the fuzzy, some-
times partisan definitions of the here and now.

It turns out, that even after one has agreed
to a certain set of standard features, finding a
package which truly supports these features 1is another
matter. When the first Database packages were developed
much of the requisite technology (both hardware and
sof tware) was not available. These early packages
tended to strain machine capabilities to their limits
and out of necessity these original packadges were
extremely "machine-efficiency-oriented".

This has, in the long run, proved counter-
productive to the general Database goals, saddling the
fledgling technology with a set of misdirected early
traditions. As some commentators have noted:

There is, however, an irony present

in that the development styles of the original
DBMS have tended to weaken the goals of program,
and particularly programmer, independence.

Although the original data base packages

were conceived in the glow of program indepen-
dence, they were delivered by practitioners of
machine/core optimization., The good intention
of program independence through DBMS was itself
compromised by design and implementation goals

that emphasized efficient use of machines rather
than people, despite the changing machine/people

155

relationships which brought them into being
(Wood and Chamberlain, 1978).

In current practice there 1s an unfortunate
perpetuation of the early machine-efficiency-orientation.
We shall see this orientation again reflected in some of
the Database design techniques discussed in Chapter Two.

Another factor which impedes the potential users
in the search for a standard package is the perfidy of
unscrupulous vendors. Often a vendor will advertise
"CODASYL DBTG Standard" DBMS packages only to have short
changed the user on some of the more impgrtant festures.
In practice this credibility gap only serves to muddy

waters even further and place one more obstacle on the

path to standardization.

V. Database Schema Design

Despite the lack of unanimity among the Database
package vendors (as well as among the academicians)
there are certain aspects of Database design which can
be relatively independent of the particular Database
package to be used. One such aspect is Database schema
design, the primary topic of this thesis.

If the function of a data base were merely to
store data, its organization would be simple. Most
of the complexities arise from the fact that it
must also show the associations between various-

items of data that are stored (Martin, 1977, p. 60).

The task of the Database schema is to detail exactly

156

what types of data will be stored in the Database and
what interrelationships exist between those data types.

It can be thought of as a mapping of the information

capacity of the Database, a complete description, not
of the specific information the Database contains, but

of the kind of information it can contain.

In order to determine the "kind of information”

a Database can contain it is necessary to know three
things: What data items it contains; how the data items
are grouped into records; and how the records are grouped
into sets. These three tasks are the essence of database
schema design.

Once a schema is mapped out, the designer can
easlily translate almost any given "logical design" into
the specific form most efficient for a given Database
package. Indeed, if the designer works at the schema
level (and does not begin to design at the package
level to fit a certain package) the problem of package
independence would be greatly reduced. Instead of
reflecting the framework of a specific package a schema
should reflect the innate nature of the data aHd the

information contained therein.

157

APPENDIX B

FURTHER DISCUSSION OF CURRENT DESIGN METHODOLOGIES

I. The Service Analysis Tasks

In Service Analysis (SA) the problem of Database
design is divided among thirteen tasks. Briefly these
tasks are:

l. determine who will be the clients of the

system

2, determine what services the system needs

to perform for the clients

3. identify the "data objects" required to

support the services

4., determine the frequency of access (usage)

of each of the data objects

S. describe the information available

6. describe the major functional units involved

in the system

7. describe the client groups (sub-system

identification)

8. collate the above information into a Service

Analysis Book

9. prepare the Data Dictionary from the informa-

tion in the Service Analysis Book

10. <calculate the degree of redundancy in the

158

system (based upon the information in the
Data Dictionary)

l1. prepare the "First Cut Design”, a grouping
of data objects into "pseudosegments”
(candidates for records) on the basis of
access frequency

12. prepare the "Second Cut Design", a split-
ting of the pseudosegments into segments
(records) based upon considerations of
size, number of occurrences and generic
relationships (logical connections)

13. prepare the first design, the definition
of the Database logical structure.

It is fairly obvious from this list where the
three design functions (identifying data items, grouping
into records and grouping into sets) take place. Tasks
one through nine identigy the data items. Tasks ten

through twelve group the items into records; while both

twelve and thirteen group records into sets.

IT. Infological Design

The infological design deals in four (4) funda-
mental concepts. These are (Sundgren, 1975, pp. 18-31):
1. Objects - "Intuitively an object is something that

we are interested in, something that we want
to gather information about.

159

Objects may or may not be physical
entities. Enterprises, departments,
educations, professions, leisure activities
and car accidents are as good 'object candi-
dates' as are persons, buildings, areas,
pets, and motor vehicles. It is when we
specify a particular infological model. . .
that we decide what phenomena to include
as objects.”

2. Properties - Properties are one of the two funda-
mental concepts which can be used to answer
the question "What is it that we want to know
about an object? . . . Intuitively we may
either want to inform ourselves about the
properties of an object or about the object's
relations to other objects."

3. Object Relations - "Whereas properties are tied
to individual objects, object relations are
tied to pairs or, more generally, n tuples
of objects". - An object relation is a
specified relationship between two or more
objects (e.g. a person and a car may be
related by the relationship of "owner to
chattel").

4. Time - "The fourth fundamental infological concept
to be introduced is time. The most convenient
; procedure for specifying the set of times of
. a particular infological model will probably
- be 'per constellation type' /see below/;
that is, for each phenomenon to be covered
by the infological model, we specify the
times of potential interest."

In addition to the fundamental concepts, the info-
logical approach requires the aid of some "derived" con-
cepts. A complete formal discussion of these is quite

beyond the scope of this thesis, but briefly some of them

la tuple is simply a group of related objects;
therefore an n tuple is a group of n related objects.

160

are as follows:

1.

Constellations - "Objects, properties, object
relations, and times form certain basic struc-
tures, called elementary constellations, or
e-constellations, which together define the
whole structure and contents of the object
system" (Sundgren, 1974, p. 65).

Formally stated, the definition of an
e-constellation becomes: "If x is an n tuple
of objects (n =1,2,3, . . .), Y is a property
or an object relation, and z is a time, then
the triple x,y,z 1is called an elementary
constellation, an e constellation; and x 1is
called the object component, y the predicate
component, and z the time component of the

e constellation.” (Sundgren, 1975, p. 33).

If y is a property then the e-constellation is
called a property type. If y is a relation,
the e-constellation 1s a relational type.

Object Group - An object group "is the set of
all objects that have, have had, or will have"
a given property (Sundgren, 1975, p. 34).

Attributes - A set of properties is an attribute
i1f and only if there exists an object group for
which the set of properties is relevant (where
relevant is defined as a set of properties wherein
each property is valid for at least one object

in the object group for any given time slice).

Given this discussion of objdétive reality as
v

a foundation, infological theory procéeds to describe

the human interaction with the Database. Humans are

interested in information and so must reference the

!

Database. Thus the area of references is also analyzed.

References are the basic building blocks of messages.

References are conceptual, mental entities which
human beings use when they perceive and think about

161

an object system. Each reference refers to an object
system entity, the target of the reference. .
References may be combined into reference expressions.
An elementary message, or e-message, 1S a reference
expression which has an e-constellation as the
object system target" (Sundgren, 1974, p. 93).

As has been stated, infological implies user
oriented. Indeed the user is asked to view the Database
as a magical "black box" for which he has but to define
the objects, properties, attributes, messages and so
forth, never to consider the computer oriented data-
logical point of view. However, "for those who are to
perform the computer-dependent, datalogical design of a
data base, the infological 'black box view' will not be
sufficient” (Sundgren, 1974, p. 93). What then must the
datalogical practitioner do in order to complete the
Database design and open up the magical black box?

In order to bridge the gap between the infological
and the datalogical sphere of the general data
base design theory, an elementary file, or e-file,
is defined as a certain "normal" representation of
an e-concept. There are three basic types of

. \ . o "
e-files; object e-files, property e-files, and
relational e-files. Which type we choose for a
particular e-concept, ec, is dependent upon such
infological parameters as the respective frequen-
cies and response time requirements for /inquiries/

.

Thus the initial datalogical design step according
to the extended infological theory consists in a
transformation of the set of e-concepts of the
infological model into a set of object, property,
and relational e-files. Then there is a set of
formally well-defined file structuring operators

by means of which we may transform the initial file
structure into a file structure which better fits

162

(a) the expected infological pattern of the
transactions which will hit the operative data
base, and (b) the storage and access structure
of available memories.

After a number of applications of the file struc-
turing operators we will arrive at the file
structure which is to be implemented. The final
file structure, or file system, will contain a
number of the subsystems called ~/3-complexes, or
directory/file-complexes. The internal structure
of such a complex may or may not conform to some
well-known file organization technique. Anyhow
we will have designed our file system in a much
less arbitrary and much more user-influenced way
than is common today (Sundgren, 1974, pp. 93-94).

Before leaving this discussion of infological
Database design, a few words must be said about the
major concern of this thesis - the logical design of

the Database. From the infological viewpoint a Data-

base consists of three principle "subsystems" (or parts).

Formally we may define the infological data base
as a triple,

DB = S,N,F,
where

S is a schema
N is a nucleus
F is a filter.

Together S and N determine the set of M of
messages that are contained in the data base, the
information contents of the data base (Sundgren,
1975, p. 71).

The filter is not of current concern. It has the

function of protecting "the data base and its users

163

against false messages and messages that are not
meaningful according to the specifications and defini-
tions embedded in the data base schema” (Sundgren, 1975,
p. 76). Taken together the "schema" and the "nucleus"
define the logical Database design (the schema in this
author's terminology). The nucleus is that portion of
the Database which contains the basic data items and
records. The infological schema is that which defines

the requisite interrelationships (sometimes sets and

sometimes records).
Once again in the words of Bo Sundgren (1975,
pp. 72, 74-75):

From an infological point of view a data base
schema is identical with the specification of a
particular infological model. . . . Thus a schema
is a statement of a set of (references to) object
types, attributes, object relations, generation
rules, constellation types, internal and external
definition, etc.

The nucleus of a data base is a set of messages
that is sufficient to generate, in combination with
the schema, the information contents of the data
base. If no message can be removed from the
nucleus without changing the information contents
of the data base, we shall say that the nucleus is
infologically minimal, or non redundant. As has
been said before, there may be datalogical as well
as infological reasons for allowing the nucleus to
be redundant.

Whereas the general idea of the nucleus as a

kernal or subset of messages from which the other
messages of the data base are derived seems clearly
conceivable even from an infological point of view,
we cannot always give a strictly infological

164

III.

justification for considering, or not considering,

a particular message as part of the nucleus.

Several distinct sets of messages may, independently
of each other, fulfill the infological condition,

as stated above, for being a non redundant nucleus;
and any set containing one of these sets as a
proper subset would be a feasible redundant nucleus.
Selecting one of these redundant or non redundant
nucleus candidates as the nucleus of the data base
is ultimately a design decision into which data-
logical efficiency considerations inevitably come.

Entity—-Relationship Design

The E-R model is constructed in three steps

(Chen, 1977b, pp. 78-79):

1. "identify entity sets of interest to the
enterprise’”

"An entity is a 'thing' which can be
distinctly 1i1dentified. According to the needs
of the enterprise, entities can be classified
into different entity types such as EMPLOYEE,
STOCK-HOLDER. An entity-set is a group of
entig;es of the same type. .

\ There are many 'things' in the real world.

~ In addition, different enterprises may view
the same thing differently. It is the responsi-
bility of the enterprise administrator to select
the entity types which are most suitable for
his company."

2. identify the relationship sets of lnterest to
the enterprise

AN
N

"Entities are related to each other. Differ-
ent types of relationships may exist between
different types of entities. A relationship set
is a set of relationships of the same type
Relationship sets may exist between two entities
(e.g. employee assignments to work projects might
be called the employee-project relationship set)
or between multiple entities (e.g. the relation-
ship set which could exist between the entities:

165

Entity Set

Attributes

Value Sets

project, part-¢ and supplier). Relationship
sets may also be of various mappings (Ot
"ratio" types). Entities may be related on
a one-to-one (l:1) basis, a one-to-many
(1:M) basis, or a many-to-many (M:M) basis.

"There are many types of relationships
between entities. The responsibility of
the enterprise administrator is to select
the relationship sets (or types) which are
of interest to the enterprise.”

"identify relevant properties of entities and
relationships (l1.e., define value sets and
attributes)"

"Entities and relationships have proper-
ties, which can be expressed in terms of
Attribute-value pairs. 'Blue', and '4'
are examples of values. Values can be
classified into different types such as COLOR
or QUANTITY. A value set 1s a group of
values of the same type. An attribute is a
mapping from an entity set (or a relation-
ship set) to a value 'set (or a group of value
sets)."

EMPLOYEE |
AGE ADDRESS
NUMBER NAME OF
OF OCATION
YEARS

It should be noted that the use of the
concept of relationship set is such that
relationships themselves can have attributes
(and thus can be considered in some sense
entities).

166

-

Relationship Set EMPLOYEE-PROJECT

," \

Attributes HOURS WORKED JoB

\

|
Value Sets NUMBER OF SKILL

HOURS CODE |

"It is useful to think" of the E-R model as
consisting "of two conceptual domains: (13 the upper
concept al domain which consists of entity sets and
relationship sets; (2) the lower conceptual domain which
consists of attributes and value sets.” (Chen, 1977b,
pP. 80) It is obvious that any given schema can never be
a static completed entity. There must be mechanisms for
modifications. The E-R model contains five basic modify-
ing operations: add, delete, split, merge, and shift.
Each of the first four can occur in either the upper or
the lower domains. The fifth (shift) affects both
domains. Add and delete are obvious functions required
for the addition of new entities and the deletion of old
ones from the model (with all the concomitant connection
and disconnection of relationships and attributes). To

split an entity is to divide it into logical sub-entities

167

(which now become entities). An example of a split
would be the division of the entity EMPLOYEE into
MALE-EMPLOYEE and FEMALE-EMPLOYEE. Relationships can
also be split (e.g. the relationship EMPLOYEE-PROJECT
can be split into WORKER-PROJECT and MANAGER-PROJECT).
"To merge" is the reverse of "to split". The shift
function handles the shifting from one conceptual
domain to another. Occasionally it may be desired to
view what had been viewed as a value (e.g. skill code)
as an entity. This would require a shifting operation.
Similarly an entity may be "downgraded" to the status

of value also through the use of the shift function.

IV. Relations and Normal Forms

The basis of the relational approach is the
"relation". To qualify as a relation a table must meet
a number of standards. According to James Martin (1976,
P. 96) the properties of a relation are:

l. Each entry in a table represents one
data item; there are no repeating groups.

2. They are column-homogeneous; that is,
in any column all items are of the same
kind.

3. Each column /called a domain/ is assigned
a distinct name.

4. All rows /called tupleg/ are distinct;
duplicate rows are not allowed.

le8

5. Both the rows and the columns can be viewed
in any sequence at any time without affect-
ing either the information content or the
semantics of the function using the table.

An example of a relation can be seen in Figure
B.l. In that example the domain Employee-number is indi-
cated to be the "Prime Key". This means that it (the
prime key) is the domain which identifies the tuple:
or, in other words, a tuple consists of an "object" and
its attributes, the domain which identifies the object
is the prime key.

Using a slightly different terminology, Gio
Wiederhold (1977, p. 337) refers to the object-attribute
relationship as being that between a relation's "Ruling
and Dependent Parts".

Within one relation we distinguish the set of
attributes which define the object described

by the tuples--the ruling part--and those which
provide data regarding the object--the dependent

Qart.

In most data models it is desirable that relations
have ruling parts which are unique, since we wish

to have only one descriptive tuple per object.

This immediately makes the tuples themselves unique.
The ruling part should not contain redundant attrib-
utes; that is, it should not contain attributes
which when removed would still leave a ruling part
with the property of uniqueness. When an employee
number is in the ruling part of a relation, the
employee name is not also in the ruling part, since
employee numbers are designed to be unique.

169

q

«.895€Q PlPp [PUOTIELTAI Ul pasn Hburpiom aygL,

(L6 *d ‘9161 ‘uriien)

0012 M WAV HOOHd €6 060
oot 1D3LHIYY 14 Ut
005¢ HIINIONI (0 e
o0z L T'ERb] 20 vHo
000L INVYLINNODIY Ct ‘i
o0/t TECLGRY cr 7
| 0005 INVLINSNOD L 00
oot B 1E = T £+ IR 70
008! H38MN 14 cr et
0002 1NV INNOJIY € o
14 o ¢ 9

: Z : g

a 3

8 3

3

—:‘:60

L

1'9 ainbr g

Ay puniy

\

V020
M.0L10
SEL1L0
|60
{01160
R
RLATI0)
| ecooco
61010t

onmg

seg

unNeiay

V-?Iln nun)

) 0 NATOBYO HIVY 1Z62L
" \ HE LY3EIV 1IVH €069
(o 0 VQ344 HSIOVHISHOH BIOLY
80 { JWYIITMUINIVY LSPOE
£0 ' MJWOLHLINS €8815
€t { SOIAILOY (651
¥ L 03¥3¥3INIIINO0Y__ TE9L
10 __0.07001YvwW IINIUMY] ___ 055ES |

50 t 3307 NVOVNYI BILBZ
€0 _ MINESINOF - OELLS
@ 3 g

g 7 2

+BQWNU-MBA0I0W]

170

2>

A relatiocon vwhich consists of a "normalized

table”" (such as Figure B.l) 1is considered to be in first
normal form (1INF). Although simple and straightforward,

a 1INF relation cannot often be readily worked with.
Behind its apparently innocent exterior lurk problems
which will return to haunt a dg;igner 1f they are not
immediately purged. These proglems are not always
obvious. James Martin and Gio Wiederhold each mention
two such problems: relations which contain non-fully
functionally dependent attributes, and relations which
contain transitive deéendencies. C.J. Date cites a
third problem (in addition to the above mentioned):
the problem of multivalued relations wherein the attrib-
utes are not fully functionally dependent in respect to
one another.
Despite a somewhat foreboding vocabulary, the

problems themselves are simple and readily understandable.

If the value of one attribute B is always determined

by the value of another attribute A, we say that B

is functionally dependent on A. This is the rela-

tionship between the dependent part and the ruling
part of a relation (Wiederhold, 197y, p. 338).

The initial process of normalization (the
creation of the 1NF) does not always ensure that each
non-prime attribute (each domain which is not a part

of the prime key) ic functionally dependent upon the

171

prime key. Consider the relation in this example

adapted from James Martin (1977).

1
PART SUPPLIER SUPPLIER- SUPPLIER- PRICE !
¢ 4 NAME DETAILS j

——

prime key

The prime key is the concatenation PART#-
SUPPLIER#. PRICE is truly functionally dependent upon
this concatenation since neither PART# alone nor
SUPPLIER# alone is sufficient to uniquely identify a
particular supplier's price for a particular item.
SUPPLIER-NAME and SUPPLIER-DETAILS are not function-
ally dependent upon the PART#-SUPPLIER# key since
SUPPLIER# along is sufficient to identify them; and for
them, PART# is totally irrelevant. In order to remedy
this situation and establish full functional dependency
two (or more) relations are needed instead of one. The

resulting relations are considered to be in second normal

form (2NF).

)
AN

PART#-SUPPLIER# PRICE

L - _J
prime key

SUPPLIER#$ ' SUPPLIER-NAME SUPPLIER-DETAILS

L - J
prime key

The second problem listed was that of transitive

dependencies.

Suppose that A, B, and C are three attributes of
relation R. If C is functionally dependent on

B and B is functionally dependent on A, then C is
functlonally dependent on A. If the Inverse map-
ping is nonsimple, (i.e., 1f A is not functionally
dependent on B or B is not functionally dependent
on C), then C is said to be transitively dependent
on Q (Martin, 1977, p. 238).

Here again an example adapted from Martin is

useful in clarifying the point. ©Note the relation:

EMPLOYEE# | EMPLOYEE-NAME | SALARY | PROJECTE# | COMPLETION-DATE

5,_J
prime key

In this case, although EMPLOYEE-NAME, SALARY, and
PROJECT# are all functionally dependent upon EMPLOYEE#$,
COMPLETION-~-DATE 1is clearly a function of PROJECT#. It is

only transitively dependent on EMPLOYEE#. As before, the

solution to the problem is to split the relation into two
(or more) "clean" relations. The resulting relation is

considered to be in third normal form (3NF).

EMPLOYEE # EMPLOYEE-NAME SALARY PROJECT#

— — J
prime key

PROJECT# COMPLETION-DATE |

e

L |
prime key

173

The final problem (that of multivalued
attributes) began to make its appearance in the
literature as late as 1975. C.J. Date (1977, p. 168)
uses the following example to illustrate the point.

Given the relation called CTX:

COURSE TEACHER TEXT

L

prime key

or in relational terminology: CTX (COURSE, TEACHER,
TEXT). This relation is definitely in third normal
form "(in fact it is 'all key')" (Date). Yet suppose
that for a given course (e.g. physics) there could be
one of two teachers (A and B) each of whom could use
either one of two texts (x or y). The possible tuples

for this state of affairs are as follows:

CTX COURSE TEACHER TEXT

- Physics A X
Physics A Y
Physics B X
Physics B y

It is apparent that the relation CTX contains some
redundancy, leading as usual to problems over S
storage operations. For example, to add the inforr
mation that the phy51cs course uses a new text

[l z/ . . . , it is necessary to create two new
tuples, one for each of the two teachers (Date,
1977, p. 168).

The major problem here is somewhat subtle. Linking

174

COURSE, TEACHER and TEXT together as a concatenated key
might seem reasonable at the outset. Nothing in 1NF,
2NF, or 3NF procedures forbids i1t. Nevertheless non-
functional dependency has crept into the picture.

C.J. Date (1977, pp. 168-169) explains the problem as
follows: |

First of all, attribute COURSE of the CTX
relation is said to "multidetermine" attribute
TEACHER. Equivalently, we say that there is a
"multivalued dependence" of TEACHER on COURSE.
The meaning of these statements is basically
that, although a given course does not have a
single corresponding teacher (i.e., TEACHER is
not functionally dependent on COURSE), neverthe-—
less each course does have a well-defined get of
corresponding teachers. More precisely, we may
say that the set of TEACHER values matching a
given COURSE and TEXT value pair depends only

on the particular COURSE value specified--the
TEXT value specified is irrelevant. (As a
counterexample, consider the familiar relation
SP(S#,P#,QTY). Here QTY is not "multidependent"”
on S#, because the set of QTY values--actually

a single value-—-matching a given S# and P# value
pair certainly does not depend on the S# value
alone. We note that attribute TEXT of CTX is
also multidependent on COURSE; multivalued
dependencies generally appear together in pairs
in this way.

Functional dependence, . . . is a special case

of multivalued dependence. The problem with

3NF relations such as CTX is that they involve

multivalued dependencies that are not also

functional dependencies.

As usual, the problem can be solved by dividing

the relation CTX into two relations: CT(COURSE, TEACHER)
and CX (COURSE,TEXT). This results in relations of the

fourth normal form (4NF). J4NF is today considered the

form that a relational designer can safely work with.

175

To quickly recapitulate, given a normalized
relation (1NF), here is what one must do before one can
begin to work with it (note that in relational parlance
a "projgctiOn" is a subset of the domains of a given
relation).

a) Take projections of the original 1NF relation
to eliminate any nonfull functional depend-
encies. This will produce a collection of
2NF relations.

b) Take projections of these 2NF relations to
eliminate any transitive dependencies.
This will produce a collection of 3NF
relations.

c) Take projections of these 3NF relations to
eliminate any multivalued dependencies that
are not also functional dependencies. This
will produce a collection of 4NF relations.
(In practice, it is usually easiest to
eliminate such dependencies before applying
the other two normalization steps.) (Date,
1977, p. 169-170)

Given a complete set of 4NF relations, the
logical structure (the information capacity) of a Data-
base is fully described. Various user views can be
accommodated through the use of relational algebra and/or

relational calculus (with such operators as select, pro-

ject, and join).

176

APPENDIX C

EXAMPLES OF THE METHODOLOGY FOR CONCEPTUAL SCHEMA DESIGN

I. Introduction

The following pages contain examples of the
methodology for conceptual schema design. These are
simple paradigms, chosen to illustrate various aspects
of the design process rather than to display actual

full scale information systems.

II. An Order-entry System

This example is based upon a problem presented
by C.J. Date (1977, p. 171, 493). His word description
scenario of the problem is as follows:

A database used in an order-entry
system is to contain information about
customers, items, and orders. The
following information 1s to be included.

- For each customer
Customer number (unigue)
Valid "ship-to" addresses (several
per customer)
Balance
Credit limit
Discount

- For each order
Heading information: customer number,
"ship-to" address, date of order
Detail lines (several per order),
each giving item number, guantity
ordered

177

- For each item
Item number (unigue)
Manufacturing plants
Quantify on hand at each plant
Stock danger level for each plant
Item description
Semantic Assumptions

- No two customers have the same
ship-to address.

-~ Each order 1is identified by a unique
order number.

- Each detail line within an order 1is

identified by a line number,
unique within the order.

A. Phase I - Identification of the Information to be
Modeled
In the above word description three distinct

user views are evident. These are:

1. the customer view
2. the order view

3. the item view.

One method to graphically represent the informa-
tion to be modeled is to convert the word description
into traditional file record formats. Depending upon
the sophistication of the environment, these can take
on various forms. Figure C.l illustrates one tradi-
tional solution to the problem. This solution involves

the use of three files:

178

l. a customer file - with a variable length
record whose length depends upon the number
of addresses a customer may have

2. an order file - consisting of two record
types, a header record and multiple line
records

3. an item file - another variable length
record. Its length depends upon the number
of plants which manufacture a given item.

CIUSTOMER VIEZW

CUSTOMER® BALANCE CREDIT-LINMIT l DISCOUNT NQ-OF~ADDRESS ADCRESS

ORDER VIEW

ORDER-ID ' BEADER-ID CUSTOMER®S ADDRESS CRDER-DATE

ORDER-ID | LINZ® | IT=Me | QTY-ON-ORDER

ITEM VIEW - .

1
ITEN® | DESCRIPTION | NO—OF-PLANTS | PLANT | QTY-ON-HAND | DANGER-LEVEL

Figure C.1 Traditional File View

Unfortunately although this traditional repre-
sentation accurately illustrates one possible physical
file organization, it leaves many questions unanswered.
It does not (nor can it) represent the information needs
(the information use) which the stored data must provide.

Will, for example, it be necessary to find all customers

179

with a certain credit limit (i.e. view customer as an

attribute of credit limit)? Would it ever be necessary

to know, in total, how many of a certaigzitem are still
on order, or on which orders a certain item appears

(i.e. view order as an attribute of item number)?

These are aspects of the system which remain ambiguous;

ambiguities which only an intimate knowledge of the

system can dispel. 1In actual practice an analyst would
interact with the "users" of the system in order to

clear up these uncertainties, but for the present exam-

ple an arbitrary choice of system definitions will

suffice.

For an unambiguous representation of the system's
information needs, bubble charts are used. Figure C.2
illustrates the three user's views of the system in
bubble chart format. Some of the signifggant assump-
tions made in forming up the system def{nitions are as
follows: \

1. that there is no need to retain a data item
"HEADER-ID" since the determination of which
information belongs in the header and which
in the detail lines can be determined within

an application program.

2. that gquantity ordered is properly a function
of the concatenation of item number and order.

3. that there is a significance to an o:der'g
line number and it should be retained in '
the Database.

180

SM3TA 991Y] 3YlL Z°D ainbrg

-NO0-ALD

GNVYH

NOIAdINOS3T e

K3 IA K31t

al-waquo

M3 IA ¥IQYO

I 1A IXOLSND

181

4. that the quantity of an item on hand at
a given plant, and the danger level of an
item at a given plant are both functions
of the concatenation of olant and item
number.
B. Phase II - Construction of the Information Model

The first step in the design of the information
model (the conceptual schema) is the construction of
the object/attribute matrix. This can be done mechani-
cally from each of the user's view bubble charts.
Figure C.3 shows the object/attribute matrix with just
the customer view represented. Figure 9.4 and Figure
C.5 respvectively show the matrix after the incorporation
of the order view and the item view (the final matrix).

Figure C.6 illustrates the conceptual schema
derived from the objeét/attribute matrix of Figure C.5.
Once again the process of constructing a conceptual
schema from the object/attribute matrix is a purely
mechanical one.

There is one shared attribute (ADDRESS) in the
conceptual schema and the question is, should it be
allowed to remain, or should a modification be made.

It is this author's opinion that ADDRESS in this

instance is a true case of a shared attribute. There

are no grounds for asserting that the ADDRESS referred

182

‘MI[A §,138N 2U0 YIlA XJIICH AINq[IIY/ I3[0

g°0 eanyy

1t

Hit #93IN01SND

EAN

5103ar4d0

SINGIYLLY

XIULYR ANGINLLYELOTNHO

183

*sm3fA ,w10sn om) Rupivandiodu] x12ICH 0111331v/193{0

»* wan¥iy

1 it e et U1-930%0-dH31L1L
L BN Ll

1 #3IN11- 83080

Hil HiT (RER RN 11 g1-13Qu0

(RN 1 1 [HL ¥AHOISO

S103rdo

S3IndInLLyY

XIMIVH ALMIYLLY: LDAMNHO

184

¥j21o 2ynqraniv/1dafgg (euyy

¢'D ain¥yy

1t

T

ALl -INY1]

HiT

IKYUl

1t

131

a1-%3040-M311

Ll

FANTT-¥20R)

Hit

(&8 |

Cl1-¥30%0

H:1

#43R015ND

s1d3arko

S3INgIYLLY

X181VH JLNG1IWLLY!LD3ryy

185

CUSTOMER#

record

CUSTOMER#

BALANCE | CREDIT-LIMIT | DISCOUNT

ORDER record

ORDER-ID

ORDER-DATE

ADDRESS

, ORDER-LINE# record

ORDER~LINE#

ITEM#-ORDER-ID record

v

ITEM#-ORDER-ID

QTY-ON-ORDER

LN

v ITEM record

ITEM# | DESCRIPTION

Y PLANT-ITEM# record

PLANT-ITEM# | QTY-ON-HAND

DANGER-LEVEL

PLANT

Figure C.6

PLANT record

Conceptual Schema

186

to by the CUSTOMER record is different from the ADDRESS
attribute of the ORDER record; since every occurrence
of an ORDER address must also be an occurrence of a

CUSTOMER address. Thus, insofar as the conceptual

schema is concerned, ADDRESS is a shared attribute and
should remain as such (although when designing the
working schema, taking physical constraints into con-
sideration, it may be desirable to introduce some
redundancy and append the ADDRESS to both the ORDER and
the CUSTOMER record).

Before concluding that the schema shown in
Figure C.6 is the final conceptual schema, the reader
should check the original user's views against the
schema to determine whether the schema can really accom-
modate them and whether to do so requires needless
complications. In the current example it will be found
that the schema e;;ily accommodates the user's views

with no complications.

III. A Cargo Fleet System

The following example involves a system of

cargo ships, ports of call, shipping containers, ship-
ping agénts and all the other romantic paraphernalia
of life on the high seas. The scenario is borrowed

from James Martin (1977, p. 277-279) and is quoted here

187

in its entirety.

First User View:

Information is stored about each ship, including

the volume of its cargo storage capacity. The key
is VESSEL.

VESSEL CARGO- DETAILS
VOLUME

Second User View:

A ship stops at many ports and it is necessary
to print out its itinerary:

VESSEL

4

PORT DATE-OF - DATE~-OF -
ARRIVAL DEPARTURE

Third User View:

Persons who ship goods are referred to as
consignees. Their goods must be crated or stored
in shipping containers. These are given a container
identification number. A list can be obtained, when

requested, of what containers have been sent by a
consignee:

CONSIGNEE

CONTAINER# | DESTINATION | VESSEL | DATE-OF- | SHIPPING
-PORT ARRIVAL =AGENT

188

rfourth User View:

The shipments are all handled by shipping agents.

A shipping-agent report must be generated,

listing

all the containers that a given agent is handling and
giving their waybill numbers:

SHIPPING
-AGENT
y
CONTAINER | WAYBILL | CONSIGNEE | ORIGINATION | VESSEL | DELIVERY
-PORT -DATE
Fifth User View:
The fifth user view is the waybill. A waybill

relates to a shipment of goods between two ports on

a specified vessel.

one Or more containers:

The shipment may consist of

WAYBILL | CRIGIRATICN | DESTRMATICN | CRSIGEY | DATE-CF- | XLIVERY | VESSEL | SHIPPDNG
~FCRT -PCRT CEPART . ~CATE -AGNT
"
r
CONTAINERS | CONIINTS | BANDLING SIZE
INSTROCTIONS

189

Sixth User View:

For a given vessel a list is required of what
containers should be off-loaded at each port.

VESSEL

prd

PORT

CONTAINERY

Seventh User View:

For a given vessel a list is required of what
containers are to be loaded at each port. Details
of the container size, handling instructions, and
destination port are needed for loading purposes:

——
VESSEL
¥
PORT
X
CONTAINER$ SIZ§/ HANDLING- DESTINATION
(INSTRUCTIONS -PORT

-

)

A. Phase I - Identification of the Information to be
Modeled

Once again the most profitable first step in the
analysis is to bubble chart the situation. Figure C.?7
shows the bubble charts for each of the seven user's

views. Since these views seem well defined, there is

190

Second User View

(o B &
) <> Catd

Third User View

Figure C.7 Saven Users' Views

191

Fourth User View

SHIPPING-
AGENT

CONTAINER

WAYBILLZ

ORIGINATION
DESTINATION

Fifrth User View

WAYBILL¢ @ @ Dg:;fér.

ORIGINATION DELIVERY
‘ DESTINATION DATE

Figure C.7 continued

HANDL ING-
INSTRUCTIONS,

192

Sixth Us;;~View

GO

VESSEL-PORT

OFF-LOAD

Seventh User View

Figure C.7 continued

193

little else to do in this phase.

B. Phase II - Construction of the Information Model

Stage 1, the object/attribute matrix, follows
directly from the bubble charts. Figures C.8, C.9, and
C.1l0 show successive stages in the construction of this
example's object/attribute matrix (C.10 is the completed
matrix).

The initial schema design, (stage 2) is shown in
Figure C.ll. This schema, a direct mapping from the
object/attribute matrix, appears exceedingly complex.
Usually when a schema appears to be this complex some-
thing is wrong, and in the current example there is a
great deal that is wrong.

The problem lies in the Phase I analysis (as
indeed Phase II so far has done nothing but represent
that analysis in a graphical format). A éajo: source
of difficulty is that those views which are concerned
‘with the relationships of the CONTAINER$, the WAYBILLS$,
éhe CONSIGNEE, and the SHIPPING-AGENT have for the most
part ignored the critical role that a WAYBILL plays in
the system. The formulation of these user's views have
made the common error of deriving a "view" on thé basis
of only a report format and not on the basis of the

actual information structure. WAYBILL is a central

concept to the system. It is the connection between a

194

e
o

]

¢4 ulnoaya | smoyp L5398 10 ¥]2304 23nq1I1IIV/130(q0) B n,.u 2an¥y 4

11 ey | AANTVINGD
"I IS
Wit 104
T8 KT E1 0 IR} 1904 -13553A
Wil ot T3S53A
\ S123r10
§ /8 /8 /8)5 /8 /588
N > >4
D < o B %5 X
> EY cﬂ \J o L -~ &
~ S & o H & ‘
§ /5 /8 /8 /& S/
0N
\ 4
SV @ﬂ S3IngIuLL

Y
g
X18LVH JINYIANLLY 13140

195

¢¢ YInolyy [sad]p s 108n 10) XJIIUH 2INQ1311V/138{00 syl 6°D sandyy

FTHIgAYN

| ore v R 3 30 IR

INIOY-ON1dd1HS
1ty enqoey (g FUINTVINGD
JINDISNOD
R 1404

LR B AR IR R IR R

R

[O A 1 |1 1¥404-13553A
HiT I (& 13553A

S103ruo

OA.
%n. SILNAINLLY

g
X1dLVN 2LNG1IYLLY I 1D37H0

196

SAJLA L, SIIF() { (17 - X12ITH 9INqPa11Y/198(q0 919 1dwnd oy,

017D Pandyy

-

s 151 | HiL 1t LR RN T IR ER FI1I0AYH

Wl INFOV-DNI441NS

13 [} 1 1 |G 1t Brgst] 1 FUANIVINDD
H!T 133INDISNOD

Ht 1H04

HAJH:R 10 11 It &R} 14804 -"13SS3A

11 ‘13SS3A

S103rgo

SAINAIHLLY

XIMLYH JINGIHLLVELIIL N0

197

udyseg vwayds 187Ul

11°D 2andyy

31vUa-AY3IAITAA

]

#1T19AVA

P10321 TIIGAVAA

4

JIN3DY-ONIddIHS
p10331 INFOY-DNIdd1HS 4

1¥ N

3ZIS | SNOLLONYULSHI ~ONITANVH

NOIIVNIOINO

SINIINGD | #¥3ANIYINOD

31lva-13vdaa

1

P109232 YIN1VYINOD

_ 33NJISNOD TIIL

p10331 FINDISKOD

lyod

p10231 130d 4

13

JLVA-3IALYHY | 18O4-T13SS3A

~
\

J30-1vQ'1

aval

p10321 1H04-"13SS3A 2

S$11v13ad

AHNTOA-008YD | 13SS3A dﬂr\

P10231 “135S3A

NOILVYNIIS3d

198

CONSIGNEE and a SHIPPING-AGENT, the connection between
a CONSIGNEE and his CONTAINERs, and the connection
between the CONTAINERs and their VESSEL and PORTs. A
graphic representation of the importance of a WAYBILL#$
can be seen in the bubble chart Figure C.12.

Although there a}e also other minor problems
with the original Phase I bubble charts (there usually
are), the main concern is how to clear up the primary
problem. There are two ways in which this can be done.
On the one hand, the analyst can suspect that something
is amiss due to the complexity of the initial schema,
and perform a thorough re-evaluation of the Phase 1
analysis. On the other hand, it is entirely possible
that the subjective "complexity clue" eludes the analyst.
In such a situation it becomes the function of the Phase
II stages 3 and 4 to disclose the problems and suggest
solutions. For this example let it be assumed that
the latter situation has occurred and that the analyst
takes the schema complexity for granted and continues
blythly on his way.

His first task after the formulation of the ini-
tial schema design is (stage 3 of Phase II) the examina-
tion of the use of shared attributes. In this example
(Figure C.1ll) there are two: DEPART-DATE and DELIVERY-

DATE.

DEPART-DATE is an attribute of both VESSEL-PORT

199

VESSEL PORT

Y 3

VESSEL-
PORT

SHIPPING-
AGENT

WAYBILL#

L3

Figure C.12 The central role of WAYBILL#

200

and WAYBILL#. Intuitively, however, it is the VESSEL
which departs from a certain PORT on a certain DEPART-
DATE. A WAYBILL departs on a certain date only by
virtue of its being assigned to a VESSEL. Thus in this
situation, it is more accurate to retain DEPART-DATE as
a unique attribute of VESSEL-PORT, and to obtain the
DEPART-DATE for a specific WAYBILL# by connecting it to
the appropriate VESSEL-PORT (see Figure C.l3).

DELIVERY-DATE, the other shared attribute,
belongs to both WAYBILL# and to CONTAINER#. Here again,
an intuitive analysis should be sufficient to resolve
the issue. Conskder the hierarchy represented by the
bubble chart in Figure C.l12; containers belong to a
waybill. All the parties involved in the shipping
process (except perhaps the stevedores) deal in terms of
shipment numbers (i.e., WAYBILL#), not in individual
containers. A CONTAINER is transported by a specific
VESSEL and has a specific DELIVERY-DATE, by virtue of
its assignment to a specific WAYBILL#. Thus it is
that DELIVERY-DATE should be a unique attribute of WAY-
BILL# (and only by association can it be an attribute
of CONTAINER#). This rearrangement is illustrated in
Figure C.1l4.

Having dispensed with the shared attributes,

attention can now be focused upon stage 4; consideration

201

VESSEL-PORT record

VESSEL-PORT | ARRIVE-DATE | DEPART-DATE

TWAYBILL record

WAYBILL#

Figure C.13 Modified DEPART-DATE

CONTAINER record

CONTAINER# | CONTENTS | HANDLING-INSTRUCTIONS | SIZE

WAYBILL record

WAYBILL# | DELIVERY-DATE

Figure C.14 Modified DELIVERY-DATE

202

of redundant sets (of which the example has many).
Perhaps the most strikingly complicated feature of the
initial schema is the mass of arrows connected to the
CONTAINER# record. 1It is, therefore, the most logical
place to begin a search for redundant sets.

Remember the stage 3 discussion of CONTAINER#$:
a container is never dealt with individually, but only
as a part of a shipment (a WAYBILL). Thus every arrow
connected to CONTAINER#, except the one between WAY-
BILL# and CONTAINER#, is superfluous. The SHIPPING-
AGENT deals with waybills and can obtain all his
CONTAINER#s through his WAYBILL#s. Similarly the
CONSIGNEE works with a WAYBILL# to trace all his con-
TAINER#s. VESSELs load and unload shipments (WAYBILL#S)
at various PORTs. From the crew's point of view a
container 1is merely a part of a shipment, hence the
VESSEL and PORT records should not be directly connected
to CONTAINERG#. |

In addition to the above "intuitive" argument
other sets can be seen to be redundant. There 18, for
example, no need for any of the sets involving VESSEL
and PORT when parallel sets exist (sets from the same
record) to the VESSEL-PORT concatenation. Finally, it

should be noted that the pairs of sets LOAD and

ORIGINATION, and LOAD-OFF and DESTINATION, are merely

203

complementary aspects of the same basic relationships.

Incorporating all the modifications implied by
this analysis completes stage 4. Figure C.1l5 is the
resultant schema. It is a simple and very straight-
forward design.

In working through this example it was pointed
out above that after stages 1 and 2 of Phase 11 pro-
duced an overly complex schema it would have been
feasible for the analyst to suspect a problem existed
and to begin a re-evaluation of the Phase I results.

If that re-evaluation had successfully taken place,
the importance of the WAYBILL record as a key record;
would have Seen discerned. In the example, howeverQ it
was assumed that the analyst did not suspect that a
re—-evaluation was necessary. Nevertheless in the final
schema (Figure C.l15) WAYBILL# is indeed a very key
record.

This illustrates an interesting aspect of the
me thodology, that even if the Phase I analysis is less
than perfect, Phase II will often force the analyst to

ask the questions which can rectify previous mistakes.

204

™B3Y3S [CUTd Yl

S aanyy

JLVU-A¥3IANI30 | #T119AVA

$H 4o

paodd2 T)IYAVA

INIOV-ONI1dd LIS

pa0331

INIDY-ON14d LIS

3218

SKROILONYLISNI -ONITONYH

SINIINOD | MIINIVINGD

-~

pi0593 WANIVINOD

3I3NDISNOD

p20321 JINVISNOD

140d

p10301 1304

31va-1vvdiq

J1VA-IATYAY | 1¥0d-TISSIA

440-qvQ7 ==

-—— NOILVNI1S3Q

=+—— NOILVYNIDIYO

p20231 1Y04-13SS3A

STIVI30 | IRA'I0A-004YD | '13553A

pP10323 “13553A

205

APPENDIX D

A COMPARISON WITH THE CANONICAL DESIGN APPROACH

A fair comparison between two methodologies
should involve a neutral example, one that is not
specifically tailored to suit the strong points of
either of them. Nevertheless to stack the odds
unfavorably, the example chosen for this comparison
is one which the proponents of the canonical design
use as a vehicle to demonstrate the effectiveness of
their methodology. It is the example which Raver

and Hubbard present in their article Automated logical

data base design: Concepts and applications (1977).
!

Here is the scenario as they present it:

A data base is being designed for a trucking
company that loads its trucks with products

for shipment to various customers. Many trips

are made each working day, and each trip is

made by a certain type of vehicle. Each component
of a product is given a package number. On a
specific trip, all packages for a given customer
are grouped and given a single shipment number.

The data base is required to support five
application functions that provide operating
information for the company. A schematic repre-
sentation_of each function is depicted in each
part of /Fiqure D.1/ (For simplicity,
only the output requirements of each function are
considered.)

il

Part A of /Figure D.;7 . +« .¢. shows the trip
schedules (Local View 1) that list each trip by
date, and for each trip, give the vehicle type,

206

(B)

CUSTOMER
¥
(EE%;UCT

Y

Figure D.1 Local Views

207

PRODUCT

- (PACKAGE- PACKAGE-~ PACKAGE-
NO VOL WT
(E)

Figure D.1 continued

208

weight, and volume. The customer shipment
query (Local View 2) shown in Part B handles
customer queries about the dates of scheduled
trips to a customer. Part C illustrates the
customer product query (Local View 3) that
handles customer gqueries such as, "When and
what is the shipping information for given
products?" The trip contents (Local View 4)
lists each trip, the customers to be served,
and the packages and products to be delivered
as shown in Part D. The shipment history (Local
View 5) in Part E provides a history of each
shipment.

The schema produced by the canonical design
technique is shown in Figure D.2.

Using the eidos based object/attribute method-
ology, the first step is to establish the users' views.
Since these are already given in the problem, one can
proceed directly to the construction of the object/
attribute matrix. The matrix for this example is shown
in Figure D.3, and the resultant schema is presented
in Figure D.4.

This initial schema contains some shared
attributes and redundant sets, all of which must be
examined before one can conclude that the schema is in
final form. The shared attributes are VEH-WT and VEH-VOL.
In each case the attribute is shared by TRIP-NO and
SHIP-NO. This is hardly a situation of genuinely shared

attributes, as there can be many shipments involved in

a single trip, and the volume and weight of the

209

TRIP record

TRIP-NO | DATE | VEH-TYPE | VEH=-WT | VEH-VOL

SHIP-NO record
SHIP-NO | CUSTOMER

PACKAGE record

PACKAGE-NO | MFG | PACKAGE-VOL { PACKAGE-WT

PRODUCT

Figure D.2 Canonical designed schema

210

X1310 INQJ1IY/133{q0 syl ¢°Q danByy

1:1 . H:I et 1:t 11 ON-d1iiS
LR U I R N R | &2} st | r:r ON-39V®DVd
H!T Lonaoyd
WD | Ret Wl YIHOLSND
H: I trr st [:1| 121 " ON-d1YlL
Wil aivd
$103rgo
) O 3 \} \3 p
P g/ / L/ A & .% /L& /L .,...Q
O A.u D) .Q .W- .nﬂu S oy ’ ’ / R
£ /8 s) 5 I/ mmu &
nuu o % 8 .qu 7 o —_—
< > EERARAY
»M: K o 53.1nt i

XTHLYR JLNUTHLLY S 10091 HO

211

DATE record
DATE

Y TRIP record -

TRIP-NO | VEH-TYPE

2

y CUSTOMER record

|1

CUSTOMER VEH-WT VEH-VOL

SHIP-NO record

SHIP-NO

A L=

Y PACKAGE record

o
77

PACKAGE-NO | PACKAGE-VOL | PACKAGE-WT

MEG

A

y PRODUCT record

<

PRODUCT

Figure D.4 Initial Schema

TRIP record

TRIP-NO | VEH-TYPE | VEH-WT | VEH-VOL

SHIP-NO record

SHIP-NO

Figure D.5 Schema Modificatiouns

212

transporting vehicle are independent of any one shipping
number. On the other hand, the volume and weight of the
vehicle used are definitely legitimate aspects of a
trip description, and thus should be considered unigque
attributes of TRIP-NO. It is far more sensible to
think of a shipment linked to a specific trip than linked
to a specific vehicle volume and weight. These modifica-
tions are shown in Figure D.S5.

The second area of possible modifications is
that of redundant seté. Here, however, the issue is
less cut and dry. When examining the initial schema
(Figure D.4) for redundant sets it becomes obvious that
not only do redundant sets exist but also that some logi-
cally essential sets are missing. Specifically, it is
very strange that there is no way for a customer to find
out what shipments (SHIP-NO) belong to him, except via a
full list of his packages (PACKAGE-NO). It is also
strange that it is impossible to find out which ship-
ments (SHIP-NO) are assigned to a given trip (TRIP-NO)
except by reading all the SHIP-NOs. A SHIP-NO is an
important link in the chain of relations: 1) it is via
SHIP-NO that a given package (PACKAGE-NO) is assigned to
a TRIP-NO; 2) it should be that a CUSTOMER works through

SHIP-NO to locate his packages (PACKAGE-NO) and not the

213

other way around.

To incorporate these features into the system
reqdires the addition of two sets: a 1:M from CUSTOMER
to SHIP-NO, and a 1:M from TRIP-NO to SHIP-NO (Figure
D.6). By so doing, the schema (the information model)
becomes a more accurate picture of the inherent informa-
tion structure underlying the system, and the process
of searching out redundant sets can continue.l

There is no problem recogniiing the redundant
sets (listed in Figure D.7), but the problem lies in -
which to remove. When, for example, looking for all
the products a customer has ordered should it be neces-
sary to always trace from CUSTOMER to SHIP-NO to PACKAGE-
NO to PRODUCT? Would it not be simpler to retain the
redundant direct relationship between CUSTOMER and
PRODUCT? Such questions can be meaningfully answered
by an analyst working in a real environment. The con-

ceptual schema is a tool, not an abstract theoretical

construct, if it is more meaningful for the analyst to

11f one does not accept this analysis, or if one
thinks it prejudicial to the canonical design's case,
the comparison betwesen the resultant schemata can take
place either using the initial schema (Figure D.4) or
using the initial schema modified to account for shared
attributes and set redundancy (but without the benefit
of the above added sets (Figure D.9).

214

TRIP record
TRIP-NO | VEH-TYPE | VEH-WT | VEH-VOL

N

Y CUSTOMER record
CUSTOMER

y SHIP-NO record
SHIP-NO

h A

Figure D.6 Schema Modifications

Redundant Set Non-Redundant Alternate Path
SHIP-NO -» DATE SHIP-NO -» TRIP - DATE
PACKAGE - DATE PACKAGE - SHIP-NO -+ TRIP - DATE

CUSTOMER - PACKAGE|CUSTOMER - SHIP-NO -» PACKAGE
CUSTOMER -» TRIP CUSTOMER - SHIP-NO -» TRIP

CUSTOMER -» PRODUCT | CUSTOMER -» SHIP-NO - PACKAGE -+ PRODUCT

Figure D.7 Redundant Sets

215

-

/
{

think in terms of a direct redundant link, then the
redundancy can remain. Conversely, 1if the analyst

feels more comfortable working with no redundancy, then

all redundant sets should be removed. For the sake of
this ekample, all redundancy will be removed (remember-
ing, of course, that it can be restored as the need
arises). The final schema is shown in Figure D-8.

Having derived this schema, the time has come
to compare it to the product of the canonical design.
Even a casual observer would note that the two schemata
differ considerably; how is one to judge between them?
Although it is possible to argue that one schema seems
more flexible than the other, or that oﬁe seems less
complex than the other, the first test should be how
well each satisfies the needs it was created for. If
a schema does not conveniently support the applications
it was designed around, then there is no point in dis-
cussing flexibility, complexity, or any other issue.

In this comparison each user's view (or local
view) will be listed and each schema examined to deter-
mine how that view can be supported. The supporting
commentary for the canonical design is that of Raver

and Hubbard (1977, pp. 296-297).

216

DATE record

DATE

LTRIP record

| TRIP-NO | VEH-TYPE

VEH-WT

VEH-VOL

CUSTOMER record

CUSTOMER | Cj

I SHIP-NO record

~

SHIP-NO

; PACKAGE record

PACKAGE-NO | MFG

PACKAGE-VOL | PACKAGE=-WT

f PRODUCT record

PRODUCT

Figure D.8

Eidos based Scﬁema

217

DATE record
DATE

TRIP record
I TRIP-NO VEH-TYPE | VEH-WT | VEH-VOL

A

Y CUSTOMER record
_|—| CUSTOMER
¥

o

SHIP-NO record
SHIP-NO

PACKAGE record
——94 PACKAGE=-NO | MFG | PACKAGE-VOL | PACKAGE-WT

PRODUCT record
PRODUCT

Figure D.9 Alternate Eidos based Schema

218

View #1

"the trip schedules . . . that list each trip
by date, and for each trip, give vehicle type, weight,
and volume."

-

- the canonical design: "View 1 can be satis-

fied provided a.secondary index is implemented with
DATE as a source and TRIP-NO as target."”

- the eidos design: View 1 is directly supported

by the schema, there is a direct link between DATE and
the TRIP-NO record which contains all the requisite

information.

View #2
"The customer shipment query . . . handles
queries about the dates of scheduled trips to customers.”

- the canonical design: "View 2 requires a

secondary index with CUSTOMER as source and TRIP-NO as
target." \

- the eidos desién: View 2 can be accommodated

by working from a CUSTOMER through his SHIP-NOs to the
appropriate TRIP-NOs (and their respective DATEs). It
should be noted that if it is considered important to
have a direct relationship accommodate this view, the
redundant relationship between CUSTOMER and TRIP-NO

need not have been eliminated.

219

View #3

"the customer product query . . . such as,
'Wwhen and what is the shipping‘information for given
products?'"

- the canonical design: "View 3 is not

efficiently supported by the canonical representation.
One and possibly two sorts will be required to produce
the report. A secondary index with CUSTOMER as source
and SHIP-NO as target will avoid an additional sort.
The designer may wish to reconsider and modify View 3
. - . to avoid the sorting."

- the eidos design: This view can be accommo-

dated with the schema by connecting CUSTOMER to PRODUCT
through PACKAGE-NO (which must be accessed anyway), and
by connecting PACKAGE-NO to DATE through SHIP-NO (which
also must be accessgd anyway). Once again, if any of
these connections Qere deemed important enough to war-
rant the existence of a redundant set the appropriate

set (s) could have been spared in the elimination process.

View #4
"The trip contents . . . lists each trip, the
customers to be served, and the packages and products

to be delivered."”

- the canonical design: "View 4 is directly

supported by the canonical representation.”

- the eidos design: View 4 is supported by

connecting CUSTOMER to TRIP-NO through SHIP-NO and then
direct links from SHIP-NO to PACKAGE-NO and from PACKAGE-

NO to PRODUCT.

View #5
"The shipment history . . . provides a history
of each shipment."”

- the canonical design: "View 5 requires a

secondary index on SHIP-NO and a backward pointer from
the SHIP-NO segment /record/ to the TRIP-NO segment."

- the eidos design: View 5 "is directly

supported by" the eidos approach.

There is little that need be added to the con-
clusiveness of the above comparison. Whereas the canon-
ical design schema has problems accommodating most of
the user's views (and has to resort to secondary indi-
cies and sorts in order to do so), the eidos design
directly supports them all. The only aid which the eidos
design needs is the occasional use of an intermediate
logical connection (which it should be pointed out,
follows intuitive lines of thought - such as connecting

a customer to his packages via a shipping number).

221

VITA

Kerry Nemovicher was born 29 September, 1946 in New
York City. He graduated from Roslyn High School in June
1964 and began attending St. John's College (Annapolis,
Maryland) in September of the same year. St. John's
College is a classical Liberal Arts institution based
upon the "Great Books of the Western World" program.
Although the St. John's program is highly structured
and academic, Mr. Nemovicher's extra-curricular activities
were many and varied. During the academic seasons he
participated in community affairs (local politics and a
volunteer program at the state mental health institution)
and student government. Over the summer vacations, Mr.
Nemovicher built cabins for a homesteader in Alaska, re-
wrote the St. John's freshmen laboratory manual and
studied archeology at Oxford (England). In June of 1968,
Mr. Nemovicher graduated from St. John's College (B.A.
Liberal Arts). His bachelor's thesis topic was “Mitzvah s
A Judaic Interpretation of the Good Deed.”

In August of 1968 Mr. Nemovicher immigrated to Israel
taking up residence at Kibbutz Mishmar HaEmek. He worked
there (mostly agricultural work) until November 1969 when
he was inducted into the Israel Defense Forces. At the
end of the three year tour of duty he began a career as
a computer programmer. As a key member in a "technical

222

control group'" in the data processing center of one of
Israel's largest computer installations, he gained ex-
perience in both applications and system programming,
as well as organizing instructional programs. At the
Israel 10th Annual Data Processing Conference (in Jerusalem)
he delivered an original paper: "COMFORT - A Report
Generating Language"”.

In the fall of 1976, Mr. Nemovicher began his studies
in the Industrial Engineering department of Lehigh

\
University.

223

	Lehigh University
	Lehigh Preserve
	1-1-1978

	Database design: A practical methodology.
	Kerry Nemovicher
	Recommended Citation

	tmp.1451580486.pdf._VdGp

