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Abstract 

Nial (Nested Interactive Array Language) is proposed 

as a useful tool for prototyping decision-making systems 

employing discrete simulation.  Considered a fifth 

generation computer language, Nial is based on a 

mathematical model of data called array theory which 

provides the definitions for its data operations. Nial is 

a functional language and is used interactively.  Its 

value in prototyping discrete simulations stems from the 

ease with which it manipulates data objects within its 

environment.  Discrete simulations demand a great deal of 

"bookkeeping" in the form of creating, filing, and 

destroying records; sorting lists; searching lists; and 

selecting items from a list.  The Nial language, with its 

array-as-data-object concept, is equipped with a rich set 

of primitive operations ideally suited for carrying out 

the computer instructions required of those activities. 

Nial's functionallity, combined with its concise 

programming capabilities, led to the development of an 

extensive collection of baseoperations supporting a wide 
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variety of simulation modeling elements.  The individual 

modeling elements are used as building blocks in 

developing prototype discrete' simulation packages. 

Represented by symbols, the modeling elements can be 

combined into a network-like diagram to describe the 

system of interest.  Once defined, the modeling elements 

are translated into sets of logical-mathematical 

operating rules which are input to a simulation control 

program.  The control program is supported by the 

collection of baseoperations and employs an event 

scheduling approach. 

A functional description of each modeling element is 

given along with the format of its operating rules set. 

The use of a general purpose simulation package is also 

described which allows one to experiment with the various 

modeling elements before developing a specialized 

prototype.  Finally, the process of designing a prototype 

simulation package is presented through an actual 

example.  Emphasized are the design of an interactive 

query session as a means for inputting pertinent 

operating rules, the procedures for generating a summary 

report, and the organization of the supporting 

baseoperations into a working program. 
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1.  Introduction 

Over the last decade, the information systems and 

data processing industries have experienced unparalleled 

growth. As a result of this expansion, system development 

methods and approaches have been under constant review in 

an effort to improve the manageability and productivity 

of development projects.  Among the various new methods 

being proposed in recent years, one in particular stands 

out—prototyping. 

A variety of definitions of the word prototype have 

been offered in publications dealing with the subject, 

but Jenkins and Naumann (1) feel Webster's description is 

adequate: 

1. An original model on which something 
is patterned; 

2. An individual that exhibits the essential 
features of a later type; 

3. A standard or typical example. 

Other definitions compiled by Canning (2) include "a 

quick and inexpensive process of developing and testing a 

trial balloon" and "the first thing or being of its 

kind." 

Whichever definition fits best, one thing is for 

certain—software prototyping allows end-users a chance 

to work with the system they are trying to define.  With 
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prototyping, construction of a quick and dirty system 

begins after the bare minimum of a specification has been 

prepared.  In the end, it has one purpose, and that is to 

show the users what they are asking for.  It gives them 

some working knowledge of the results that can be 

achieved by the system they 'have defined.  After 

definition is complete, the prototype will be discarded 

and replaced by the operating version of the system.  In 

some cases, a prototype also serves as a useful model to 

production programmers in designing the logic of the 

finished product.  These benefits are so great, that many 

DP pundits like Appleton (3) feel prototyping will 

replace the traditional life cycle approach for 

developing and maintaining end-user application systems 

and shared databases. 

Prototyping requires software tools that allow 

designers or programmers to create a working system in a 

very short time.  These resources include such things as 

on-line interactive systems, database management systems, 

application development systems, high level languages, 

generalized input and output software, and libraries of 

-re-usable code.  Of all the tools available, the high 

level languages offer a more responsive tool for most 

prototype situations because of their interpretive nature 

and non-procedural code.  Because the code is interpreted 
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and does not require a compilation step, analysts and 

programmers can perform iterations at a terminal with the 

user.  At the same time, productivity is increased due to 

the automatic features of the high-level coding.  The 

interactive environment of high level languages also 

gives users the appearance that information processing 

resources are physically adjacent and immediately 

available.  User perception of rapid and efficient 

alteration is what encourages them to discover and 

evaluate design alternatives. 
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2.  Problem Definition 

The objective of this thesis is to demonstrate how 

Nial, a fifth generation computer language, can serve as 

a useful tool for prototyping discrete event computer 

simulations.  Nial was chosen f or,j this ^purpose because it 

not only satisfies the criteria for high level 

prototyping languages, but is also equipped with a set of 

primitive operations that are ideally suited for carrying 

out the computer instructions demanded by discrete event 

simulations.  In contrast to continuous simulation 

techniques which rely heavily upon the solution of 

algebraic, dfference, or differential equations, discrete 

simulations demand a great deal of "bookkeeping" in the 

form of creating, filing, and destroying records; sorting 

lists; searching lists; and selecting items from a list. 

This thesis will demonstrate how easily Nial handles 

those tasks with its unique array-as-data-object concept. 

Numerous examples will be given displaying the 

conciseness and power of Nial as a programming language 

for discrete event simulations.  However, Nial's real 

usefulness as a prototyping tool will be demonstrated by 

presenting a broad set of Nial-based functional units (or 

baseoperations) that can be combined to quickly build 

prototype computer simulation packages.  The unified 

modeling approach used to design the simulation elements 
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will be'discussed and a detailed survey of each modeling 

element given.  The procedures for integrating the 

modeling elements into a working simuiyitr'on program will 

be presented through the use of a general purpose 

simulation package and, finally, the prototyping process 

itself demonstrated through an actual example. 
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3.  Background 

3.1  History and Programming Concepts of Nial 

Nial (Nested Interactive Array Language) is a 

computer language based on a mathematical model of data 

called array theory.  It serves as the model for data 

manipulated in the system and provides the definition^ 

for the data operations of the language (4). The language 

was designed through a joint effort of M.A. Jenkins of 

Queen's University at Kingston, Canada, his co-workers, 

and Trenchard More of the IBM Cambridge Scientific Center 

(5,6).  Q'Nial, the version implemented on Lehigh 

University's DECSYSTEM-20 in early 1984 and used in this 

work, is a portable version of the Nial language suitable 

for implementation on systems ranging from IBM PCs to the 

large scale IBM 4341 (7). 

Nial is designed as an interactive language with 

both an immediate execution mode and the ability to 

execute extensive program texts read from script files or 

loaded as predefined operations.  As an expression based 

language, the principal unit of computation is an 

expression that returns a value.  Common mathematical 

notations form the syntactical basis in which expressions 

are written'.  Moreover, Nial combines their use with a 

variety of programming styles ranging from the structured 

constructs of ALGOL to the recursive style of LISP. 
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In Nial, the result of an expression evaluation is 

an array.  In the immediate execution mode, the array is 

displayed as a picture on the user's terminal.  The 

picture shows the structure and content of the evaluation 

result which aids in understanding the data structure 

concepts of the language. 

Nial may also be used in a command oriented way, in 

that an expression may be viewed as an imperative by 

ignoring its result.  The language furnishes the syntax 

for this suppression. 

Nial execution occurs in a workspace containing the 

data and objects defined by the user.  For convenience, 

access to data outside the workspace and programmed 

interaction with the terminal are provided by system 

operations for input and output. All text editing is done 

through the host system interface. 

Nial is a functional language which encourages the 

decomposition of problems into functional units.  Each 

unit is implemented as an operation. Like LISP, it allows 

creation of new operations and transformers (functional 

objects that map operations to operations to form new 

operations), and can treat programs as data. 

The value of Nial as a prototyping tool is derived 

from its use in an interactive environment. Operations 

can be applied to any kind of data which makes it ideal 
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for experimenting with problem solving.  A new command is 

entered and immediately the programmer can learn if it 

was correct. Interpreted like APL and LISP, Nial executes 

each of its input commands immediately which allows one 

to observe how the data are transformed by the operation 

being defined.  Furthermore, when all the statements 

re'quired to solve a problem have been proven, the log of 
0 

the programming session can be saved and edited.  Only 

those commands that worked are edited into the final 

program 

3.2  Computer Simulations 

Computer simulation has been applied to many 

diverse systems.  It has been used for design, procedural 

analysis and performance assessment for almost three 

decades and the literature abounds with numerous 

applications.  Areas where computer simulation has been 

used include air traffic control, communications system 

design, job shop scheduling, financial forecasting, 

maintenance scheduling, and water resources development 

to name just a few (8).  Surveys compiled by Shannon (9) 

revealed that simulation and statistical methods are the 

most widely-used management science and operations 

research techniques employed by industry and government. 

Computer simulations can be divided into two 

distinct classes:  1) discrete simulation, and 2) 
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continuous simulation.  Discrete simulation concerns the 

modeling on a digital computer of a system in which, state 

changes can be represented by a collection of discrete 

events.  Simulated time is advanced from one event to the 

next and can be a fixed or variable time increment.  In 

continuous simulation, the dependent variables of the 

model change continuously over simulated time causing 

smooth changes in the attributes of the system entities. 

Continuous modeling involves the characterization of the 

behavior of a system by a set of mathematical equations. 

3.3  Discrete Simulation Concepts 

3.3.1  Systems and Models 

A system is defined as an aggregation or 

collection of related objects united to perform a 

specified function.  Each object or entity of the system 

can be characterized by attributes that may themselves be 

related.  For example, a bank, its tellers and the 

customers all form a system.  The teller entities possess 

attributes of sex, age, experience and salary of which 

experience and salary may be related.  Customers arriving 

to the bank are also entities and have attributes of sex, 

age and the type of transaction they are about to 

request. Any process that causes a change in the state of 

a system is called an activity.  The phrase "state of the 

 • --f^" 
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system" describes all of the entities, attributes, and 

activities as they exist at one point in time.  In the 

bank system, a customer arriving to the bank is an 

arrival activity.  Upon arrival, the state of the bank 

system changes to reflect the additional person in the 

bank.  If a teller is free to serve the customer, the 

teller begins a service activity which also changes the 

state of the system in terms of teller utilization. 

Models are descriptions or abstractions of a system. 

In the physical sciences, models are usually developed 

based on theoretical laws and principles.  The models may 

be scaled physical objects (iconic models), mathematical 

equations and relations (abstract models), or graphical 

representations (visual models). The usefulness of models 

has been demonstrated in describing, designing, and 

analyzing systems. 

Computer simulation models are mathematical-logical 

representations of systems which can be carried out in 

experimental fashion on a digital computer.  Therefore, a 

simulation model can be considered as a laboratory 

version of a system whose components include the 

computer, operational rules, mathematical functions, and 

probability distributions.  The behavior of the model is 

^reduced to programmable, logical-decision rules and 

operations.  Such models have also been described as 
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input-output models (9).  That is, they yield the output 

of the system given the input to its interacting 

subsystems.  Computer simulation models are therefore 

"run" rather than "solved" in order to obtain the desired 

information or results.  They are incapable of generating 

a solution on their own in the sense of analytical models 

but rather serve as a tool for the analysis of the 

behavior of a system under conditions specified by the 

experimentor. 

3.3.2  Next Event Approach 

_ As mentioned earlier, discrete event 

simulation on the digital computer involves a system 

model in which state changes occur at event times.  Since 

the state of the system remains constant between event 

times, a complete dynamic portrayal of the state of the 

system can be obtained by advancing simulated time from 

one event to the next.  This timing mechanism is referred 

to as the next event approach and is used by all modern 

computer simulation programming languages.  By repeatedly 

advancing to the time of the next event, a simulation is 

able to skip over the inactive time whose passage in the 

real world must be endured. 

Figure 3-1 illustrates how time is represented and 

managed when using a next event approach to discrete 
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simulations.  A sequence of events (e.) are depicted on 

TIME 

Figure 3-1.  Passage of Time in Next Event Modeling 

horizontal time axis. The arrows point to the time values 

at which time is updated and the events occur.  Following 

each event, time is advanced to the exact time of the 

earliest of all future events.  Each event would also 

represent some change in the state of the system being 

simulated.  For instance, in the bank example presented 

earlier, an event depicted in Figure 3-1 could represent 

the arrival of a -customer to the bank or the 

end-of-service and departure of a previous arrival.  In 

the case where there is a simultaneous occurrence of 

events (e. and e^), e. might represent the departure of a 

previous arrival and e- the arrival of a new customer. 

3.3.3  Alternative World Views for Discrete 
Simulation 

In developing computer simulation models, 

the analyst needs to select a conceptual framework for 

describing the system to be modeled.  The framework or 
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perspective within which the system functional 

relationships are perceived, and described has come to be 

known as the term "world-view" (10).  The world-view 

employed by the modeler provides a conceptual mechanism 

for articulating the system description and can be 

implicitly defined in a simulation language or, where the 

modeler elects to employ a general purpose computer 

language, is organized by—the modeler^himself. 

Discrete simulation models can be formulated by:  1) 

defining the changes in state that occur at each event 

time; 2) describing the activities in which the entities 

in the system engage; or 3) describing the process 

through which the entities in the system flow.  The 

relationships between these concepts are demonstrated in 

Figure 3-2 by considering the bank system once again. The 

Process 

Arrival   of 
Customer  Event 

Start-of-Service 
Event 

End-of-Service      TIME 
Event 

Figure   3-2.     Relationships   Between   Events,   Activities, 
and   Processes 
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arrival of a customer to the bank, the start-of-service 

for the customer, and the end-of-service for the customer 

all signify events.  As shown, events take place at 

isolated points in time and bring about a change in the 

state of the system.  Decisions are made at events to 

start or end activities.  An activity is an operation or 

collection of operations that transform the state of an 

entity.  The service activity in,ithe bank example results 

in a busy teller and transforms the customer from an 

arriving to a departing entity.  A process is a sequence 

of events ordered on time and may comprise several 

activities.  In Figure 3-2, the process encompasses the 

arrival of a customer to its completion of service. 

Together, the concepts of event, activity, and 

process give rise to three alternative world-views for 

building discrete event models.  These are called: event 

scheduling, activity scanning, and process interaction. 

The event scheduing and process interaction approaches 

employ a next-event method of organizing event notices. 

The principal difference among them is the scanning of 

simultaneous events which may produce different results 

if there is some interaction between them. 

The event scheduling approach sees a system as a 

collection of overlapping activities.  The beginning and 

ending of each activity are regarded as separate events 
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which are independently scheduled.  A conditional event . 

can be treated as a sub-event within the event routine 

that causes its release, or it can be scheduled as a   ^ 

separate, concurrent event.  Similarly, if an entity is 

created and is to be involved in an immediate event, that 

event might be a sub-event or a separately scheduled 

event. 

The process interaction approach concentrates on the 

individual entities.  The system is seen as a set of 

overlapping activities, causing events as they start and 

finish, but the activities form related groups, which are 

the processes.  Once committed to a process, an entity 

will generally proceed through all the activities of the 

process.  If the end of one activity implies the start of 

another for the same entity, these two events will be 

executed in sequence, and not scheduled separately. 

Similarly, if a non-zero activity is encountered, so that 

the start of an activity implies its immediate end, those 

two events will also be executed in sequence.  An entity 

will, therefore, be carried through as many events of a 

process as presently possible. 

The activity scanning approach does not specifically 

use the next-event method,- although the simulation 

proceeds in uneven steps through successive events.  All 

activities have a statement giving the conditions under 

17 - 



s 

which they may be started, including a specification of 

what entities and resources mus1 oe available.  Each 

active entity has an associated clock giving the time 

when the entity will end the activity in which it is 

engaged.  Scanning the clocks determines which event 

occurs next.  Following the change of state that ocnirs, 

all activities are scanned to see which can then be 

started. 

3.4  Event Scheduling Approach Chosen for Nial-Based 
Simulations 

In designing the Nial-based elements for prototyping 

discrete simulations, it was necessary to choose a single 

world-view approach to provide a unified conceptual 

framework within which any combination of elements could 

function together. Implicit in this decision was the need 

to provide just one simulation control program (or timing 

routine) which determines which event is the next to be 

selected. With these points in mind, the event scheduling 

approach was selected to provide this unified perspective 

and therefore deserves a more detailed examination. 

3.4.1  Details of Event Scheduling 

Discrete event simulation deals primarily 

with queueing or waiting line problems. In a queueing 

problem an arrival occurs and demands that a service be 

18 - 



performed.  The system responds by performing the service 

if it can, or by keeping the demand waiting until it can 

perform it. 

Three considerations play roles in the study of 

problems using queueing-oriented models: 1) the nature of 

the jobs to be performed; 2) the resources available to 

complete a job; and 3) the way in which jobs are selected 

for service.  The nature of jobs includes their frequency 

of occurrence, the number of tasks per job, the resource 

requirements per task, and the service time per task. 

Questions relating to available resources might include 

number and skill types, the assignment of resources by 

station, and the assignment of resources to tasks.  The 

way in which jobs are selected is defined by the system's 

logical operating rules. 

In the simplest form of a queueing problem a job 

requiring service arrives at a facility that has one 

server.  If the server is idle he services the job; if he 

is busy the job is placed in a queue or waiting line to 

await later service.  The state of the system is defined 

by the number of jobs (or entities) in the facility at a 

given moment of time. The queue length is measured either 

by the total number of jobs waiting for service plus the 

number of jobs in service or by just the number of jobs 

waiting for service.  A state change occurs every time a 
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job arrives and every time a job departs.  Each arrival 

and departure is an event. 

Two additional events occur in this simple queueing 

system:  1) when the server becomes busy; and 2) when the 

server is freed or becomes idle. The events, however, are 

conditional on the occurrence of an arrival or departure 

event.  For example, an arrival when the server is idle 

causes him to become busy.  A departure, when no jobs are 

waiting, causes him to become idle. 

Figure  3-3 displays a flowchart which describes 

each element of the queueing problem from an event 

scheduling approach.  as shown, the. first thing that 

occurs at an arrival event is a check on the status of 

the server.  If the server is already busy, the arrival 

entity is filed in a queue where it waits until the 

server is freed.  If the server is not busy, a service 

time is determined and the arrival scheduled for 

departure.  Since the departure time coincides with the 

time that service ends, this time is determined by adding 

the arrival's service time to the time at which service 

begins. Service times are attributes of every arrival and 

may be random or nonrandom.  Regardless of their 

character, a simulation model must provide a mechanism 

for generating these times. Figure 3-3 explicitly shows a 

computational block for determining service times just 
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before the arrival's departure time is scheduled. Service 

times could also be determined when a job arrives. 

Upon processing a departure event, the first 

instruction is to check whether additional jobs are 

waiting for service in the queue. If none exist, then the 

server's status is placed in an idle mode.  If more jobs 

are waiting, then the next job is selected for service, 

its service time determined, and finally its departure   "-. '■ >■' 

time scheduled. 

Note that the final instruction in each event 

routine is "select next event." This instruction combined 

with the scheduling instruction forms the basis for 

making a discrete event simulation work.  Whenever an 

event is scheduled, a record identifying the event and 

the time at which it is to occur is filed in a special 

list.  When the instruction to select the next event is 

encountered, the computer simulation searches this list 

to find and perform the event with the earliest scheduled 

time.  Then simulated time is advanced to this scheduled 

time, thus skipping the "dead" time.  This procedure is 

the essence of the next event approach to simulation. 

3.4.2  Additional Features of Event Scheduling 

Whenever the event scheduling approach to 

simulation modeling is used, a computer program is needed 

to conduct a search of the list of scheduled events (or 
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event calendar) to determine which is the next to be 

executed.  This simulation control program has many 

titles, among which the name timing routine is one of the 

most common.  After every event is performed, control 

returns to the timing routine, which selects the next 

event from the list of scheduled events.  The event 

selected is the one with the scheduled time closest to 

the current simulated time.  When time advances to the 

scheduled occurrence time of the event, control transfers 

to a code block that executes the steps comprising the 

event.  The code block then transfers control back to the 

timing routine, which then selects the next event. 

As mentioned earlier, a queue is a set of jobs 

waiting for service.  A queue may be thought of as a list 

from which arrivals are selected for service according to 

a rule called the queue discipline. For example, jobs may 

be selected as follows: 

1. in the order of their arrival (FIFO), 

2. in the reverse order of their arrival 
(LIFO), 

3. in the order of shortest service time, 

4. in the order of longest service time, 

5. according to a priority number that each 
job has for service, or 

6. at random. 

A queue discipline is a rule by which a system'operates. 
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In a computer simulation this rule is translated into a 

logical operating rule whose form depends on the queue 

discipline adopted.  For example, adoption of the FIFO 

discipline means that records are filed in the queue in 

the order of their arrival times. The next job to receive 

service is then the first job in the queue.  Figure 3-3 

provides for this eventual search by including the 

creation of a record for each job that waits.  If 

selection is a function of a priority number or service 

time, then that attribute must be part of the job record. 

Another procedural feature which needs to be added 

to the arrival event in Figure 3-3 concerns the 

generation of additional arrivals.  Two methods exist: 1) 

a sequence of arrivals are preparecfain advance of the 

simulation (no interaction between exogenous arrivals and 

the endogenous events of the system); or 2) the arrival 

time of the next entity is determined at the time of 

arrival of its predecessor.  The second method is often 

referred to as "bootstrapping."  It requires keeping only 

the arrival time of the next entity and is the preferred 

method of generating arrivals for computer simulations. 

The last feature pertains to recordkeeping.  As 

Figure 3-3 appears, all records of arrivals that wait 

remain in the model. Clearly the list of records grows as 

a function of simulated time and occupies increasing 
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storage space in the computer memory.  One way to limit 

this growth is to destroy a record when the corresponding 

job receives service. The idea of creating and destroying 

records and searching lists is one of the principal 

concepts on which discrete event digital simulation is 

based. 

3.5  Conventional Programming Considerations 

The concepts of discrete simulation just 

presented imply a capability to carry out a variety of 

programmed computer instructions. These include creating, 

filing, and destroying records; searching lists; sorting 

lists; selecting members from a list; generating random 

variates; collecting and analyzing data; and model 

initialization.  By far, most of the work of a simulator 

is devoted to manipulating various collections of ordered 

data items, such as event lists and queue files.  In a 

later section of this thesis, it will be demonstrated how 

Nial, with its array-as-data-object concept, can easily 

handle these programming requirements.  However, in order 

to appreciate the power of Nial in building computer 

simulations, this section will detail some of the more 

frequently encountered data structures used when 

programming simulations with languages like FORTRAN, 

PL/1, PASCAL and ALGOL. 
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3.5.1 Data Objects—Generation and Manipulation 

Data structure manipulation is an inherent 

part of any discrete event simulation. Typical operations 

during a simulation include: 

1. gaining access to the j   record of 
a list to examine or change the contents 
of its fields, 

A 

2. inserting a new record after the j 
but before the j + 1st record, 

3. deleting the j   record from a list, 

4. determining the record count in a list, 

5. ordering records in a list in ascending 
order based on the values stores in 
specified fields, and 

6. searching the list for records with given 
values in certain fields. 

Every computer simulation program contains data 

structures that represent objects of different classes. 

More specifically, the data structures consist of records 

of the objects in the simulation, each record containing 

information regarding the characteristics of a distinct 

object.  A simulation operates on these records as 

simulated time elapses. 

Some simulation programs are designed to deal only ■ 

with fixed data structures that are allocated either 

during compilation or at the start of execution.  These 

structures represent fixed numbers of objects of 

different classes.  Other simulation programs are written 
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to allow both fixed and varying numbers of objects.  The 

way in which a simulation program handles the generation 

of objects is related to the way it sees a system through 

its world-view and to whether its base-language is 

compiled or interpreted. 

3.5.2  Data Structures 

Rigid and dynamic data structures have 

important implications for simulations.  In FORTRAN, a 

DIMENSION statement reserves storage space.  For example, 

the statement DIMENSION ATRIB (20,10) instructs the 

computer to reserve a block of 20x10 = 200 storage 

locations for the array called ATRIB.  Once the 20x10 

memory locations are allocated to ATRIB, they remain so 

until the program terminates. 

Rigid data structures like the DIMENSION statement 

do not always provide an efficient means of utilizing 

memory space in the computer.  For example,' consider a 

simple simulation problem in which entities travelling 

through a system collect varying numbers of attributes. 

Using the same 20x10 arrangement, let ATRIB (K,l) denote 

the first attribute (eg. arrival time to the system) of 

the K   arrival and ATRIB (K,2), ... , ATRIB (K,10) the 

remaining nine attributes.  Depending upon the logical 

routing rules through the system, a particular entity 

might collect just one attribute or up to all ten.  The 
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straightforward use of a dimension statement in' this case 

would result in the following disadvantages: 

1. not all of the column positions would 
be utilized, thus wasting memory space, 

2. it may not be necessary to keep the 
attribute records of entities that have 
left the system, and 

3. the number of arrivals to the system 
would be limited, in this case, to 20. 

• Crude Data Structure 

One method of increasing the utilization of 

available storage space in the previous example is to 

vacate the registers once the information is no longer 

needed and make it available to new arrivals.  For 

example, at the start of the simulation, all the 

registers are set to zero indicating they are empty.  Let 

the first attribute of each K   arrival, ATRIB (K,l), 

hold its nonzero order of arrival.  As entities arrive to 

the system, ATRIB (1), ATRIB (2), ATRIB (3), ... is 

checked until a K (K^-20) for which ATRIB (K) = 0 is 

found.  The order number of that entity is then placed in 

ATRIB (K,l) and the K   row of storage space reserved for 

that entity during its lifetime in the system. 

When an entity leaves the system, its row of storage 

space is located in the ATRIB array and cleared by 

setting each register to zero.  This release of space 

allows those positions to be used again.  Although the 
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maximum number of entities in €*he system at one time 

cannot exceed 20, it is clear that the number of entities 

processed can be considerably greater than 20. 

The benefit of space conservation in this example is 

obtained, unfortunately, at the cost of added computer 

time.  Note that, upon an entity's arrival, the registers 

must be checked sequentially until an empty set is found 

for storage.  A sequential search must also be conducted 

when attempting to locate a particular attribute or set 

of attributes based on order (e.g. minimum service time). 

In a system with rapid state change and many entities, 

the computing time consumed in a search of this kind can 

be expensive. 

• Ordered Chains 

One way to reduce the search time of ordered 

arrays is to add information to the record of an entity 

which points it to the record of the next ordered entity. 
\ 

For instance, if the ATRIB array in the previous example 

must be ordered by increasing time of arrival"'to the 

system, ATRIB (K,l) could contain the arrival time of 

that entity while ATRIB (K,2) would hold the register 

address of the next arrival to the system. 

This is an effective programming technique for 

handling records like these and embodies the principles 

of list processing (11).  The records are said to be 
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chained together or in a l^st. In general, the records of 

the entities in the ordered chain are identified in the 

computer memory by an address.  If the records have more 

than one word, the address is assigned to one of the 

words, such as the first.  One word, or field in a word, 

called a pointer, is set aside in each record for the 

purpose of constructing the list.  In addition, a special 

word called the list header is provided for entering the 

list. 

The records are chained together into a structure 

known as a singly linked list and is illustrated in 

Figure 3-4.  The list header contains the address of the 

Record A 

Addr. of B 

Record C 

Addr. of Next 

Addr. of A 

Record B 

Addr. of C 

Last 
Record 

find Chain 

LIST HEADER 

Figure 3-4.  Singly Linked List Structure 

first record in the list. The pointer of the first record 

contains the address of the second record, and so on down 

the list. The last record in the list contains a special 

end-of-chain symbol in the pointer space to indicate that 

it is the last member.  If the list happens to be empty, 
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the list header contains the end-of-chain symbol. 

Beginning from the header, a search is able to move 

down the list by following the chain of pointers.  If the 

program needs to remove a record from the list, say 

record B from list ABC, it simply changes the pointer in 

A to point C, as illustrated in Figure 3-5. 

Addr. of A 

Record  A Record C 

Addr.   of C — Addr.  of Next 
I 
/ 

Record  B 
i Last 

Record 

End  Chain 

LIST HEADER 

Figure 3-5.  Removing a Record From a List 

Correspondingly, to insert a record into the list, (for 

example, to put Z in the list ABC between B and C) the 

pointer B is set to Z and the pointer of Z set to C. 

Re-sorting is achieved by a series of removals and 

insertions. 

With a first-in-first-out rule of ordering records, 

it is also convenient to keep a list trailer that has the 

address of the last record, because new additions are 

made at the end.  The trailer record avoids the necessity 

of working along the list to find the last entry.  The 

trailer will also contain the end-of-chain symbol when    q, 
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the list is empty. 

While it is easy to insert a new record after a 

given record in a singly linked list, it is not so easy 

to do that before a given record.  This is because each 

record points to its successor, but not to its 

predecessor.  A similar observation applies to deletions: 

to remove an element from the list one needs a reference 

to its predecessor. 

These difficulties can be avoided by adding a second 

pointer to the records pointing to the record preceding 

it (if any).  The result is a doubly linked list and is 

illustrated in Figure 3-6.  Now, given references to the 

LIST TRAILER 

Figure 3-6.  Doubly Linked 
List Structure 

LIST HEADER 

list header and trailer, the list can be traversed in 
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both directions; insertions can be made either before or 

after any given element in the list; any element can be 

removed from the list without having' to know its 

successor or predecessor. 

Other, more complicated data structures exist that 

improve the efficiency of handling lists.  Directed 

graphs, binary trees, and heaps are included in these 

(12).  However, they all have one thing in common: while 

increasing data storage space, the amount of computer 

time spent checking for data elements is greatly reduced. 

Even though execution time is minimized, there still 

exists the drawback of having to reserve space at the 

beginning of a program arid the need not to exceed the 

specified array size.  As a result, many special purpose 

discrete simulation languages are implemented with 

programming systems that have list processing and dynamic 

data structuring capabilities. 

P 
■saji 
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4.  Basics of Nial-Based Discrete Simulations 

The previous section touched on the basic concepts 

of data structures and their manipulation when 

programming discrete simulations with general purpose 

computer languages. The next section will demonstrate how 

those tasks are concisely and efficiently handled using 

Nial.  However, before those examples are presented, some 

basic modeling and design concepts of Nial-based discrete 

simulations (NBDS) need to be described first. 

4.1  Modeling Concepts 
i 

As stated earlier, event scheduling was chosen 

as the world-view approach to designing the elements of 

discrete simulation presented here.  While this approach 

is embedded in the simulation control program and 

supporting operations, the task of modeling a prototype 

simulation actually employs a process-oriented 
•6 

perspective. Each element of the process, such as a queue 

or server, can be represented pictorially using symbols. 

When these elements are combined together they form 

network-like structures, similar to those employed by 

SLAM, a special purpose simulation language (13).  Each 

element of the network represents a set of 

mathematical-logical operating rules that are provided by 

the modeler when building the simulation.  As entities 

enter the syst-em, they flow through the network as 

- 34 - 



prescribed by the operating rules of the particular 

element they encounter. 

To provide the tools for quickly developing a 

prototype simulation, several different kinds of modeling 

elements were designed and translated into Nial-based 

operations.  A detailed description of the elements will 

be presented in a later section of this thesis.  However, 

to expand the modeling concepts being presented here, the 

basic modeling elements of queues and activities will be 

introduced. 

4.1.1  Queues 

Two types of queues can be modeled in these 

simulations.  The first one is known as a service" queue 

and represents an area or site to which entities arrive 

and request the service of a single resource.  If a 

service entity is not available, the arrival waits in the 

queue until one is freed. 

The second type of queue is known as a resource/ 

queue.  Resource queues are similar to service queues 

except entities arriving to them can request the service 

of discrete or variable amounts of resources.  If the 

requested amount of resources is not available, the 

arrival waits in the resource queue until they are 

relinquished.  Unlike service queues which are associated 

with a single service activity devoted specifically to 
■ t 
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that queue, resource queues can share a bank of resources 

with other resource queues.  In addition, the units of a 

resource available for use by resource queues can be 

altered during the computer simulation.  This option is 

not available with service queues where the number of 

entities serving them remains fixed throughout simulated 

time. 
i 

i 

4.1.2  Activities 

Like queues, there are two types of 

activities—service activities and regular activities. 

Both allow entities to flow through them to other 

elements in the network. The passage of an entity through 

an activity can be delayed for a prescribed period of 

time although regular activities can be used with no time 

delays. 

The major difference between the two types of 

activities is the number of concurrent entities they 

allow to pass through them.  Service activities limit the 

number of entities flowing through them at one time to 

the number of servers represented by the activity. On the 

other hand, regular activities have no restriction on the 

number of entities that can simultaneously flow through 

them.  Service activities are also used exclusively with 

service queues while regular activities can direct the 

flow of entities away from any other kind of modeling 
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element.  In particular, regular activities are used to 

delay the time resources and are utilized by an entity 

acquiring them at a resource queue. 

As an example of how queues and activities are used 

in the modeling process, Figure 4-1 illustrates a network 

diagram of a simple queueing model.  Note how node-like 

X       /\ / \      Service   

r-^ < ^ -^ Kntitv 

Entity 
Generator 

Entity 
Queue Destructor 

Figure 4-1.  Simple Queueing Model 

symbols are used to represent the entity generator, the 

service queue, and the entity destructor while a 

branching or connecting symbol is used to represent the 

service activity (the branching symbol is also used to 

represent regular activities).  Various symbols will be 

used to represent other types of nodes which include 

milestones and decision points. 

The network pictured in Figure 4-1 represents an 

entire process.  Entities arrive to a service area where 

they are either served immediately or wait for service in 

the queue.  Upon completing the service activity, the 
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entities depart the system as represented by the entity* 

destructor or termination node.  Service and regular 

activities represent the time delay that an entity 

encounters as it flows through the system and are two 

elements responsible for the advance of simulated time in 

the model. 

4.2  Simulation Control Program 

The queueing model pictured in Figure 4-1 

represents an entire process through which entities flow. 

However, the computer program which controls that process 

is designed to sequentially select event notices from an 

event calendar and execute blocks of code or base- 

operations corresponding to that, particular event or 

element of the process.  The event notices contain both 

information which is used to transfer control of the 

program to appropriate operations and information which 

is used to reference a look-up table of operating rules 

provided by the modeler before execution of the 

simulation begins.  The operating rules define the unique 

characteristics of each element of the model and are 

referenced during events in which those elements are 

involved.  For example, if the next event on the calendar 
f 

is an arrival to the queue node shown in Figure 4-1, the 

operating rules for that node are referenced to determine 

what service activity serves that station and whether or 
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not the server is busy.  If the server is already 

occupied, the rules would be referenced to determine the 

queueing discipline for that queue, the maximum number of 

entities allowed in the queue, etc.  Together that 

information determines what transactions take place 

during the event and controls the directional flow of the 

program.  Upon completing those transactions, control 

returns to the timing routine, the next event is selected 

from the event calendar, and the process repeated until a 

termination notice is detected.  The simulation can be 
■6 

terminated at a given point in simulated time or after a 

certain number of entities have been processed.  Upon 

detecting a termination notice, the program updates 

time-persistent statistics and then generates a summary 

report. 

Figure 4-2 presents a flow chart diagram of the NBDS 

simulation control program. The above discussion includes 

everything after the event selection block.  The first 

three blocks include all of the initialization steps; 

here various constants, program variables, and flags are 

set to their starting values and the operating rules 

established.  Finally, the last executable block before 

the loop structure initializes the event calendar.  Here 

each set of operating rules for  the generation nodes in 

the model is scanned and the first entities scheduled for 
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arrival.  The operations in this block also establish 

queue nodes with initial entities in the queue if 

indicated. 

Every simulation program has a three-level 

hierarchial structure in which the simulation control 

program occupies the top level and housekeeping functions 

such as the collection of statistics and generation of 

random variables occupy the lower level. The middle level 

is occupied by the arrival and departure routines and the 

associated operations which process the individual 

events.  These two routines are depicted in Figure 4-3. 

Note the "bootstrapping" technique for generating the 

next arrival from a previous arrival in the arrival 

routine. Except for queue nodes, arrivals to nodes always 

resul.t in the scheduling of a departure event (in some 

cases where a zero-time activity follows, the scheduling 

of a departure is skipped and an arrival to the next node 

scheduled instead).  In the case of an arrival to a queue 

node, a departure event is scheduled only if the 

necessary resources or servers are available.  Otherwise, 

the arrival is filed in the queue (see Figure 3-3). 

In the departure event, the first task determines 

whether the departure is from a service activity or a 

regular activity.  Once that has been determined, the 

appropriate set of operating rules is referenced and the 
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code for the given type of activity executed.  Unlike the 

arrival routine, an event is always scheduled at the end 

of a departure.  In this case it is an arrival to the 

destination node poi'nted to by the activity.  While not 

detailed in Figure 4-3, a departure event might also lead 

to the scheduling of another departure. This could result 

from a service activity which has been freed to service a 

queue that holds waiting entities.  As shown in Figure 

3-3, the next entity is selected for service, its service 

time determined, and the entity scheduled for a 

departure. 

4.3  Data Structures in NBDS 

•  Statistical Arrays 

Two basic data structures were employed in 

building the simulation operations of this thesis.  The 

first structure resembles a FORTRAN-like one- or 

two-dimensional array which is used to maintain 

statistical data and flags associated with queue nodes, 

service activities, etc.  Each row-major ordered array 

belongs to a particular class of elements and each row of 

that array belongs to a given element within that class. 

For two-dimensional arrays, the total number of rows is 

determined during the program initialization steps and is 

dependent upon the number of modeling elements in the 

system.  However, the first row of each matrix is never 
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•&*     \ used to hold data in order to maintain a logical 

correspondence to the element number to which those data 

belong.  This is due to the addressing feature of Nial in 

which the first element of. an array is address 0.  For 

example, the address (0 2) refers to the third element in 

the first row of a matrix. Since the modeling elements in 

the program are logically ordered (e.g. if there are    $, 

three service activities they are known as servers 1,2 

and 3), the first element owns the second row of the 

matrix and so forth.  While the first row of each matrix 

represents wasted workspace, a logical relationship 

between element numbers and the position of its data in 

the matrix is maintained. It also eliminates the need for 

a costly base-address-plus-offset calculation each time 

the data for a particular element are referenced in the 

, simulation program. 

Nial conveniently establishes and initializes arrays 

with just one primitive operation, the "reshape" 

operation.  As an example, consider the following 

expression and its evaluated result pictured in the 

sketch mode: 

ACTSTATS:= A   6   reshape 0 

0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
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In the simulation operations to be presented later, 

the array Actstats is used to maintain statistics on all 

regular activities.  Therefore, the array created above 

would represent storage space for three activities 

(including the dummy first row). 

Direct assignments can be made to any member of an 

array in a FORTRAN-like fashion. For example, observe the 

effect of the following operation on the array Actstats: 

ACTSTATS 0 (1 1):= 45 

0 0 0 0 0 0 
0 45 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

Similar insertions are carried out with the "place" 

and "placeall" operations which can replace single and 

multiple items in an array respectively.  Observe the use 

of the latter operation in the example below: 

ACTSTATS:= (10 10 5 9) (3 cart 0 12 3) placeall ACTSTATS 

0 0 0 0 0 0 
0 45 0 0 0 0 
0 0 0 0 0 0 

10 10 5 9 0 0 

Selections from an array are carried out with operations 

corresponding to those demonstrated ab:>v-?: 

ACTSTATS 0 (1 1) 

(3 cart 0 12 3) choose ACTSTATS 

10 10 5 9 
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The selection and insertion operations demonstrated in 

the previous examples provide the mechanism by which most 

of the data are manipulated in the statistical arrays 

supporting the various NBDS simulation elements.  They're 

especially useful in combination with each other .where 

one operation selects data from a statistical array and 

passes them as arguments to a computational operation; 

the computational operation then returns the same array 

with new values which are inserted back, into the old o 

array. 

• Entity Records 

In Section 3.5, the basic data structures 

and bookKeeping concepts involved in programming discrete 

simulations with general purpose computer languages was 

presented.  Demonstrated was the complex and cumbersome 

need to provide pointers for each* record in ordered lists 

serving as queue files or event calendars.  In NBDS 

simulations, this task is totally eliminated.  The 

array-as-data-object concept of Nial combined with the 

entity record structure designed for NBDS produce a 
-tit 

highly efficient means for manipulating the data objects 

within the program.  As a result, elements of the 

simulation and their associated operations are quickly 

and easily designed—a critical factor of the prototyping 

process. 
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In the simulation operations presented here, a 

single record is created for each entity as it enters the 

system.  The record is a solitary array (or list) of 

ordered data items which are program and user-defined 

attributes of the entity.  Certain attributes play an 

important role during the top level execution of the 

simulation control program while others are only accessed 

during event routine operations.  The entity record's 

lifetime in the system is spent either on the event 

calendar or filed in some queue awaiting service.  The 

most important aspect of the entity record is that it 

"flows" through, the simulation program as a complete 

unit, much like an entity with all its attributes would 

in a real-world system.  This aids^the programmer greatly 

in conceptualizing the simulation element under design. 

There are a minimum of eight program-defined 

attributes in an entity record which occupy addresses 

0,1,2, ... 7.  All but one of these attributes change 

dynamically during the simulation run.  An entity record 

can also contain an unlimited number of user-defined 

attributes beginning at address 8. Thus, from run to run, 

the length of the entity record can vary but, once set 

during the initialization steps, remains fixed throughout 

an individual simulation run. 

Figure 4-4 displays an example of an entity record 
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(U-t-W-t-i-t-5~4A-!-* 
! D ! 14 . 8 ■' 79 . 5 ! QUE1! SRV 1:14.8! ,' ! 30 . J 
+_+ + + + + + - + - + f 

Figure 4-4.  NBDS Entity Record 

containing the eight basic attribute positions common to 

all records plus one user-defined attribute. The contents 

of the first eight fields could describe the state of an 

entity record on the event calendar of a run simulating 

the simple queueing problem depicted in Figure 4-1.  The 

following definitions are identified by an address and 

summarize what type of attribute each field holds and its 

relevance to the simulation program: 

©The first field indicates whether the entity is 

scheduledNfor a departure or an arrival.  In this example 

the character  D indicates the entity is scheduled for a 

departure.  The character strings AO and Al are used to 

indicate a freshly generated arrival to the system or a 

later arrival to.a node somewhere else in the system 

respectively. This field is referenced each time an event 

is selected from the event calendar to determine which 

event routine is to be executed. 

(T)This field holds the generation time or time 

the entity first entered the system and is the only 
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program-defined attribute that remains frxed throughout 

the simulation.  The example in Figure 4-4 indicates the 

entity was generated at time 14.8. 

(2) The third field contains scheduled event times 

and is the field on which the event calendar is ordered. 

In the example given, the entity is scheduled to depart a 

service activity at time 79.5.  Each time an event is 

selected from the event calendar, this field is 

***' referenced and simulated time advanced to the value 

contained there. 

(3)At the time of generation or at the end of each 

departure event, an arrival is scheduled and the 

destination of that arrival entered into the fourth field 

of the entity record.  That field is then referenced at 

the start of each arrival event to determine which blocks 

of code will be executed next.  In the given example, the 

four-membered character string QUEl indicates that, prior 

to its scheduled departure, the entity had arrived at 

service queue #1. 

(4_}whenever an entity's departure is scheduled 

from a node, the activity over which it is to be routed 

is entered into the fifth position of the entity record. 

This field is then referenced during a departure event to 

determine which type of activity is ending as well as its 

activity number.  The character string SRVl in the sample 
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record indicates that the entity is being served by 

service activity #1. 

(5) The next field contains the simulated clock 

time at which an entity arrives to a node.  This value is 

always entered when an entity is newly generated or at 

the end of each departure event.  It is used to calculate 

the time an entity has been waiting for service in a 

queue.  As shown in Figure 4-4, the value of this time is 

14.8, the same time the entity entered the system. ° 

(§) & (7) The next two fields are utilized only when 

resource queues are specified in the model.  Since the 

example in Figure 4-4 is only modeling a service queue, 

these two fields would remain empty throughout the 

simulation as" indicated.  The first field at address 6.is 

reserved to hold the identification number of the last 

resource queue encountered while the next field is used 

to indicate the number of resources acquired at that 

queue and currently being utilized by the entity.  These 

two attributes play an important role in the preemption 

of entities utilizing a particular resource'which will be 

detailed later in the thesis. 

(§)The last field pictured in Figure 4-4 holds one 

of a possibly infinite number of user-defined attributes. 

While not yet discussed, entities can acquire 

user-defined attributes anywhere in the network by 
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passing through ASSIGNMENT nodes.  ASSIGNMENT nodes 

compute the value of a given attribute using program 

variables, simple mathematical expressions, or by 

accessing one of the program random variate generators. 

While not included in the network pictured in Figure 

4-1, suppose an ASSIGNMENT node preceded the service 

queue and was used to compute the service time for that 

entity.  Assuming this was the first user-defined 

attribute, it would be stored in field 8 and its value 

referenced at the time that entity would be scheduled for 

service. In the given example, field 8 contains a service 

time of 30.0 time units.  Since the entity is scheduled 

for a departure at time 79.5, a quick subtraction 

indicates that service began for this entity at time 

49.5.  Furthermore, subtracting the time contained in 

field 5 from the start-of-service time reveals the entity 

waited in the service queue for 34.7 time units before 

receiving service. 

4.4  Random Variate Generation 

Since the modeling elements presented in this 

thesis are designed to simulate stochastic processes, a 

mechanism must be available for generating random 

variables.  This requires a source of uniformly 

distributed random numbers which, in turn, are 

transformed into a new set of random variates from a 
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variety of continuous and discrete probability 

distributions.  Independent samples that are uniformly 

distributed in the interval (0,1) provide the basis for 

generating samples from all other distributions.  Nial 

provides a utility for generating random integers which, 

when divided by the largest value of the specified 

interval, would^produce random numbers between 0 and 1. 

However, the random number generator of the version 

implemented on the DECSYSTEM-20 and used ihvthis work 
\. 

(Q'Nial, release 1, version 3.02) did not function. 

Therefore, a new operation was built to provide uniformly 

distributed random numbers between 0 and 1. 

A wide variety of methods have been developed for 

random number generation.  One of the more common ones is 

the multiplicative congruential generator which was the 

choice for this work.  It has the form:' 

Z. , = a.Z. (mod m) (1) 

ri+l = 
Zi+l/

m (2) 

where Z~ is the initial seed value and r. is the i 

B-2 pseudorandom number. It provides a maximal period of 2 

before recycling occurs on a computer with B bits/word. 

The assignment of values to the constants a and m and the 

seed value Z~ has been the subject of a great amount of 

research.  Fishman (14) presents a widely accepted set of 

procedures for choosing those values that was the basis 
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for designing the random number generating operation used 

in this work. In addition, Deo (15) demonstrates how the 

correct choice of constants can save the modulus division 

step during the computation. The guidelines proposed by 

both authors resulted in a random number generator having 

the form: 

Zi+1 = 189277 * zi (3). 

I ri+l = Zi+1 /34359738368 (4) 

The value of m i*'s one greater than the largest integer 

held in one word by the DECSYSTEM-20.  Its choice makes 

the division of the product a Z.. unnecessary for the 

modulo operation in the original equation. A machine word 

cannot hold an integer larger than (m-1).  Therefore, as 

soon as the product exceeds (m-1), overflow would 

automatically occur, leaving only the remainder.  In the 

DECSYSTEM-20 no action is taken when this occurs but 

overflow sets the sign bit and the result becomes 

negative.  Therefore, the result is simply adjusted by 

taking the additive inverse of Equation 4. 

The NBDS operation which contains this random number 

generator is named RANNUM. Any odd integer can be used as 

an initial seed value for RANNUM which is provided at the 

start of a simulation run. RANNUM actually employs two 

random number generators of the form just given. However, 

they are seeded with different values and alternate 
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between each other 'when RANNUM is called upon,to generate 

a random number.  The use of alternating generators helps, 

reduce the potential for nonrandomness when a 2-tuple of 

independent uniform random numbers is called for (14). 

With the means to generate uniformly distributed 

random numbers from 0 to 1, transformation algorithms 

were built into operations to generate random variates 

from several probability distributions.  They include the 

exponential, uniform, Erlang and normal distributions and 

were all adopted from FORTRAN-like algorithms presented 

in various simulation textbooks (10,15,16).  Their use as 

a modeling element will be detailed in a later section. 

4.5  Data Collection and Statistical Analysis 

Each of the basic simulation elements presented 

earlier are supported in the event routines with^— 

baseoperations designed solely for the purpose of 

collecting data.  Those operations act upon statistical 

arrays maintained for each of the elements in the model 

as demonstrated earlier.  Those data are automatically 

collected during each event routine or each time there is 

a change in the state of a system variable.  The user can 

also initiate the collection of statistics on 

user-defined entity attributes and global system 

variables.  This is carried out during the passage of 

entities through a specialized modeling element known as 
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a TALLY node whose use will be detailed later. 

There are two basic types of statistics collected 

during an NBDS run.  The first class is derived from time 

independent samples and include the accumulated sums and 

squares on discrete observations of such variables as 

service time or time spent in a queue.  If specified in a 

TALLY node, certain attributes or global variables can be 

maintained as grouped data and displayed later as 

frequency and cumulative distributions in a histogram. 

The second class of statistics is derived from time 

dependent samplings. They are collected over intervals of 

simulated time with tne points between each interval 

marked by a change in the sjfeate0 df the variable under 
f   • ' " 

observation.  Time-weighted statistics on variables such 

as the number of entities waiting in a queue or 

utilization of an activity or resource fall into this 

class. 

In the general purpose NBDS program, the data 

collected during an simulation run is automatically 

analyzed during summary operations at the end of the run. 

In special purpose prototypes, the user has the freedom 

to determine which summary statistics are needed and 

codes his own summary operations.  Where applicable, 

sample means and standard deviations are calculated for 

both types of statistics.  The formulas used for 
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calculating those statistics are summarized in Table 4-1, 

The components of those equations represent several of 

the components of the statistical arrays maintained for 

each element. 
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Table 4-1  Formulas for Calculating Means 
and Standard Deviations 

Statistics Based 
Upon Observations 

Sample Mean 

x = 1/n 
1 = 1 

Sample Standard Deviation 

\| 

n    2     ,-,2 
jr x.  - n • ( x) 

i = i  
n - 1 

Statistics For 
Time-Persistant 
Variables 

x(t)«dt 
x =/0 

T N 

x (t).dt 
- (x)2 

n = number of samples 

T = Total Time interval 



5.  Data Object Management Efficiently Handled With Nial 

Section 3.5 reviewed some of the basic recordkeeping 

tasks involved when programming discrete event 

simulations with general purpose computer languages. 

Those nontrivial tasks deal mainly with maintaining 

ordered lists of records representing entities waiting 

for service in a queue or serving as a file for event 

notices.  Now that the reader has just gained a basic 

understanding of the modeling concepts, data structures, 

and program control associated with NBDS, this section of 

the thesis will demonstrate how easily and efficiently 

Nial handles those same programming requirements.  Nial's 

usefulness will also be exhibited through examples of 

record creation, record destruction, searching, sorting 

and selecting records from a list of records. 

5.1  Entity Records—Creation, Destruction and List 
Formation 

Every discrete event simulation program must be 

able to create records of entities representing new 

arrivals to the system and most programs will have a need 

to destroy unwanted records to free up space in the 

computer memory.  Section 4.2 detailed the points of 

entity record creation which clearly indicate that most 

of the record creation during a simulation run occurs as 

a result of the bootstrapping step in the arrival event. 
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Here -each new arrival to the system triggers^ the 

scheduling of its successor. In NBDS the CREATE operation 

serves this purpose by returning as its value a record 

(or array) of the next arrival to be placed on the event 

calendar.  In CREATE, the variable is assigned this new 

record as follows: 

NXTARVL: = AO  ARVT ARVT (SECOND GRULES) 

AVRT '  ' ' ' LINK (N.TRIBS RESHAPE 0) 

In this example AVRT represents the arrival time of the 

entity which is the sum of the present simulated time and 

a random interarrival time period.  The interarrival time 

period is chosen from a probability distribution 

specified in the operating rules for the source 

generation node as is the destination node of the new 

entity ind-icated by SECOND GRULES.  The variable  N.TRIBS 

specifies the total number of user-defined attributes 

each entity can be assigned and together with the RESHAPE 

0 operation initializes each value to zero. The primitive 

LINK operation "links" the resultant attribute array with 

the other items in the record to create a single 

heterogeneous linear data structure known as the entity 

record.  As an example, suppose the arrival of the next 

entity was determined to occur at time 30.0, its first 

destination is QUEl, and it can be assigned up to two 

user-defined attributes.  A picture of NXTARVL would 
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appear   as: 

+—+—+—+ +_+_+_+_+ 
!A0I30.!30.IC1UE1I     I    :0I0! 
+ —+ + + + _ + _ + _+_ + 

Noteihow the use of blank character strings in place of 

unassigned variables maintains the correct address 

spacing described in the previous section. 

The record in the above example completely 

characterizes that particular entity upon its arrival to 

the system.  It can be entered into any other list as a 

complete unit by simply nesting all its members into a 

single array and linking it to the other members of the 

list. For example, consider an arrival event in which the 

above record represents an entity arriving to QUEl. 

Assume that all the service activities are occupied when 

it arrives and must therefore wait for service in the 

queue.  Also assume that prior to filing this record in 

the queue, the queue already contains two other entities 

waiting for service.  Identified as QRECS, a picture of 

this file might appear as follows: 

+ + + 
+— + + + + _+ + - + - + ! + — + + + + - + + - + - + 
! AO 15,2 i 5.2! C1UE1 ! I 5 . 2 I 0 I 0 I I I AO I 9 . 9 ! 9 . 9 i DUE 1 ! ,' 9 . 9 ! 0 I 0 ! 
+—+—+—+ +-+—+-+-+: +—+—+—+ +-+—+-+-+ 
 + ,,—-+ 

Since the leftmost member of QRECS is usually served 

first, the ordering of records in QRECS could reflect a 

FIFO queueing discipline (note event time in each third 
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field).  If the record representing the arrival is 

assigned to the variable ARVLREC, its entrance into this 

file simply requires the following expression: 

QRECS: = QRECS LINK SOLITARY ARVLREC 

A picture of this file would now appear as: 

+ + + + 
+__+—+—+ +_+—+-+-+ : +--+—+—+ +-+—+-+-+ i +--+—+—+ +-+—+-+-+ 
:AOI5.2:5.2:QUEI: :5.210101::AO:9.9:9.910UE1: 19.9:010:::AO:3O. 130.IQUEII I30.:O:O: 
+__+—+—+ +_+—+-+-+ 1 +—+—+—+ +-+—+-+-+:+—+—+—+ +-+—+-+-+ 
 ,„, + +  

ARLVREC, with all its attributes, has now become the 

third member of the array QRECS.  In"actual practice, 

QRECS is placed in a collective file known as QFILE (a 

file containing all the service queue files).  The 

resulting three level nested array is a good example of 

Nial's array-within-an-array concept.  The example also 

demonstrates how easily lists can be created without 

having to provide a system of pointers to the individual 

data objects—the pointers are naturally embedded in the 

Nial language itself. 

Once an entity waiting in a queue file has been 

scheduled for service, there must be a means to destroy 

or eliminate that record from the file.  In NBDS this is 

carried out with the primitive "rest" operation which 

drops the first member from a list, leaving everything 

after the first item still intact.  Since all queue fi,les 

are usually served in order of lowest-address-first, the 
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first reaprd in QRECS would be the next to receive 

service.  Once scheduled, its record would be destroyed 

using the following expression: 

QRECS: = REST QRECS 

If QRECS started with the same three records shown above, 

the resultant picture of this last operation would appear 

as: 

+ + + 
i+—+—+ + +-■( +-+-■):+—+—+-—+ +-+—+-+-+ 
i,' A0i9.?:?.?:OUEI : :9.9loso: 11 AO:3O, :30. :OUEI : ,'3o.:oio: 
i+—+ ) + f-+—+-+-+;+—+—^—^ +- +—+-+-+ 
+ +  

5.2  Sorting Record Lists 

In the previous example, QRECS identified a 

file of records representing a queue with a FIFO queueing 

discipline.  Therefore, to maintain a FIFO (or LIFO) 

ordering when records are added to the list, the new 

record needs only to be "linked" to one end of the list. 

However, at times the records in a queue file are ordered 

using a discipline which keys on certain attributes such 

as service time or time-in-system.  In these cases the 

NBDS operation S'o'lftTUP or SORTDOWN is used depending upon 

which direction the file is to be ordered. As an example, 

consider the three-membered QRECS file used before but 

this time with a service time value stored in the first 

user-defined attribute position (address 8). A picture of 

the FIFO-ordered file would still appear like this: 
tj + + + 
1+—+—+—t +-+—+-+-+—+!+—+—+—+ +-+—+-+-+—+: t—+—+—+ +-+—+-+-+—+: 
I lft0!5.2!5:2!0UEi:    !5.2:0!0!25. ! I .' flO i 9 . 9 ,' 9, 9 I DUE! ,'    : 9 . 9 \0 ,'0 ! 12 . ! ! ! AO 1 30 . ! 30 . iQUEl !    ! 30. ! 0 !0 ! 7.6 i ! 
It — + + 1 + - + + - + - + +1 t — + + + + - + + - + - + + It.-t—,+ + + + - + + - + - + +1 
+ + ,.« + 
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However, given the expression: 

QRECS: = SORTUP 8 QRECS 

a picture of QRECS would now appear as: 

. +—+—+—+ +_+—+-+-+—+1 +—+-««•+—+—^+-+—+-+-+—+: +—+—+ + +-+—+-+-+—+ 
I i (MJ130. 130. lOUEl!    !30. i 010: 7.6! 1 1AO 1 9.9 \ 9.9 ! CIUEI !    19. 9:0101112.! i i AO ! 5.2 1 5.2 i 0UE1 1    ! 5.2: 0 : 01 23. ! 
. t_^—+ + +-+ +-+-+ + i t—+ + + +-+ +-+-+ + : +—+ + + +-+ +-+-+ + 
+ :- + +  

with the records having the shortest service time in a 

position to receive the earliest service.  Here an entire 

list of records, each containing its own list of 

attributes, is reordered simply by supplying the address 

of the key attribute in each record and the file itself 

as arguments to the operation SORTUP. 

This complex sort operation was built from just the 

following bit of code: 

SORTUP IS OP KEY ARAYS (LINK (GRADEUP EACH 

KEY PICK ARAYS) EACHLEFT PICK ARAYS) 

The complimentary SORTDOWN operation is identical except 

the primitive "GfrADEUP" is replaced with "GRADEDOWN." 

While each of these operations is used to provide 

low-value-first or high-value-first ordering to queue 

files, the SORTUP operation is used most extensively in 

ordering the event calendar based on the event time of 

each record.  That is, each time a new event is scheduled 

and added to the event calendar, CALENDAR, the entire 

list of records -is passed to SORTUP along with address 
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number 2 (event time).  The value then returned by SORTUP -, 

is the event calendar of records in order^of earliest 

event time.  By physically maintaining the event calendar 

in this order, each time the "select next event" 

instruction is encountered in the simulation control 

program, the program merely selects the first record from 

CALENDAR as the next to be processed.  Again a rather 

complicated recordkeeping task is reduced to just a few 

lines of code using Nial. 

5.3  Search and Selection of Records From a List 

As mentioned earlier, an important programming 

consideration in discrete event simulation is the ability 

to search lists for records with a given value in certain 

fields.  There may also be a need to remove that record 

from the list for use elsewhere in the program.  A good 

example where this is used in NBDS is during the 

preemption of entities utilizing a particular resource. 

This element of NBDS allows entities arriving to a 

specialized preemption node to preempt the activity of 

other entities using a specified resource and acquire 

those resources for its own use.  The preempted entities 

are then sent to a given resource queue until additional 

resources are made available again while the entity 

causing the preemption is scheduled for departure with 

the newly acquired resources. 
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An initial step in the preemption process is a 

search of the event calendar to find those entities 

currently utilizing the resource in question.  For 

example, consider an event calendar containing the 

following records at the time of a preemption: 

+-+—+—+—■*■—+—-f-f--+-+ 
:[i:6.;: ?t,.; ifiout :ACT: :6.::I:S.:2: ;^o: lot.: 101. :RCIUI :   : 101. : 

+-*- + + + + +-+--+-4 
:D:25.6 1132. IRQUlIftCTl!25.6 I 1 IS. I 2 I 
+ -+ + + + + +- + --T- + 

Assuming the number identifying the desired 

resource, RN, is 1, a visual search of each record's 

field #6 indicates the first and last entities scheduled 

for departure from regular activity #1 are each currently 

utilizing 5 units of the resource.  A programmed search 

for these two records is achieved through use of the 

following expression: 

POSTNS: = RN FINDALL EACH (6 PICK) CALENDAR 

where POSTNS is assigned as its value the array (0 2) 

containing the positional addresses of the records in 

CALENDAR utilizing resource RN.  Assuming both entities 

are preempted, their records can be culled from the event 

calendar and assigned to the array PRMPTRECS for 

selective processing elsewhere using the expression: 

PRMPTRECS: = POSTNS CHOOSE CALENDAR 

whose resultant picture would appear as: 
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;t_+ + ^ + + T_ + __T-+:+-+ + 4. + + +- + -- + -+; 

i:D:A.i:,?5.2:R(iui;fiCTi:4.i:i:5.:2:::n:2S.i:i3:. IRGUI IACTI:25.&:I:s.;2:: 
:+-+ + + ■»- -<- +- +—+-+:+-+ + + r + +-+—T-+: 

However, CALENDAR still contains the preempted records. 

To remove them simply requires the expression: 

CALENDAR: = ((TELL TALLY CALENDAR) EXCEPT 

POSTNS) CHOOSE CALENDAR 

which would leave the record scheduled for an arrival to 

RQUl as the only record on the event calendar. 

Obviously there are more steps involved in the 

preemption routine.  However, the three lines of code 

presented in these examples demonstrate how simply a list 

search and item selection is carried out using Nial. From 

these and the previous programming examples, the reader 

should be able to appreciate how the power of Nial 

reduces many of the routine programming chores demanded 

by other computer languages. 
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6.  Simulation Elements of NBDS 

The process of developing prototype discrete 

simulation systems using NBDS requires the following 

steps: 

1. model development and translation into 
a network diagram, 

2. provision of a set of operating rules 
for each element of the model, 

3. design and coding of operation(s) to 
provide a means for input of the 
system operating rules into the 
control program, 

4. design and coding of operation(s) to 
generate a summary report, and 

5. integration of simulation control 
program, element operations, input 
operation(s), and output operation(s) 
into a working simulation program. 

The basic concepts of modeling and network diagrams 

involved in the first step were described earlier in 

Section 4.  The last three steps will be dealt with later 

in the thesis when examples of the general and special 

purpose NBDS programs are presented.  The purpose of this 

section is to provide the reader with enough information 

about the different modeling elements of NBDS to be able 

to complete the second task listed above.  Presented will 
c 

be /th£—-frtrffction of each element along with the content 

and format of its associated operating rules.  Also, for 

each element Appendix A lists the names of the 

baseoperations built to support them in NBDS programs. 
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The operations are listed in a hierarchical fashion to 

indicate which operations are used within another.  In 

addition, Appendix B contains an alphabetical listing of 

each NBDS operation and the beginning line number of its 

location in the general purpose NBDS script file.  That 

script file is named NBDS.NDF and resides in the Lehigh 

University Computer Center tape library under Volume 

Serial Number JCW002.  Together, Appendix A ,and B provide 

a quick reference to the operations and their source code 

required to support a particular simulation element in an 

NBDS prototype. 

6.1  General Format for Operating Rules 

Before each simulation element is presented, 

some general guidelines concerning the written format of 

the operating rules need to be introduced: 

• Each component in a single set of operating 

rules becomes a member of a solitary array or list. 

Therefore, the members within a single set of operating 

rules must be delineated from each other by maintaining 

one or more spaces between them—not by separating them 

with commas or some other special character. 

• All alphabetic data is entered in upper case. 

• Non-numeric information is entered as Nial 

character strings and must therefore be enclosed by 

single quotes (eg. 'FIFO' or 'QUEl').  In some cases 
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numeric information must be entered as character strings 

as well..  Those cases will be specifically indicated.   «^ 

• Numeric data can be entered as integers or real 

numbers. 

• The ordering of components in each set of rules 

is critical.  Therefore, if a particular component does 

not need to be specified, it should be replaced by a 

blank character string (eg. ' '). 

• The first member of every set of rules is at 

least a four-membered character string of which the first 

three characters identify its element type (eg. QUE or 

ACT).  The last character(s) is an integer which uniquely 

identifies that set of rules among several of the same 

type (eg. QUEl, QUE2, etc.).  Numbering begins with 1 and 

should (although not necessary in the general purpose 

package) be continuous. 
<> 

6.2  Symbols for Nodes and Activities • 

Table 6-1 provides a listing of suggested 

symbols for depicting network models of NBDS systems. Any 

symbol can be employed by a modeler to represent a. 

& particular element as long as it distinguishes itself 

from others and fits nicely into the network diagram. 

Table 6-1 also lists the page number of this text in 

which the operating rules format for t,he given node or 

activity can be found. 
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Table 6-1  Symbols for NBDS Modeling Elements 

Name Symbol 
Page Containing 

Operating Rules format 

GENERATE 

SERVICE QUEUE 

-> 72 

84 

SERVICE or REGULAR 
ACTIVITY 

SRVn   or   ACTn 
trvrordur 87. 88 

Q-SELECT-BHND 

Q-SELECr-FWD 

SRVR-SELECT 

81 

77 

83 

CONTINUATION 107 

CONDITIONAL BRANCH <^B«V>^---> 109 

MULTIPLY (Wn  (O > 107 

MULTIPLE BRANCH 
-*7. 

    ^ 

108 

70 



d> Table 6-1 (continued) 

Symbol 

RESOURCE QUEUE 

Resource Bank 

RESOURCE FREE 

RESOURCE ALTER 

RESOURCE PREEMPT 

^ nrlI+ S RQUn 

/RSCr, \ 
/ Capac     \ 

/n.n....    \ 

nrtl 

FREn 

\nolt „) 
ALT* 

Jnnjst 
-) 

|p/ATn 

Page Containing 
Operating Rules format 

90 

92 

93 

95 

98 

CLOSE C^!v® 113 

OPEH 0?M 114 

ASSIGNMENT 

ASSn 
expi 
exp 2 101 

TALLr LY, titlt 

r;p 
104 

TERMINATE <Qg) 74 

71 



6.3  Entity Creation and Destruction 

As mentioned earlier, every simulation program 

must provide a means for entity creation and destruction. 

These are provided for in NBDS through the use of 

GENERATE and TERMINATE nodes respectively. 

• GENERATE Node 

The operating rules format for the GENERATE 

node is shown below: 

'GENn' 'dest' 'tint' tfg gmax 

Collectively these rules are known as Genrules.  In the 

leading label above (as in all other rules labels), n 

represents the unique integer number assigned to each set 

of rules within the given class.  The character string 

dest is the destination node of each new entity which 

corresponds to that node's identifying label.  The next 

character string, tint, refers to the time interval 

between generations.  It can be substituted with a 

constant value or any NBDS probability distribution or 

program variable. The codes and associated parameters for 

the latter two options are displayed in Table 6-2.  The 

next two rules, tfg and gmax, are the simulated time at 

which the first entity is generated and the maximum 

number of entities generated by that node respectively. 

Gmax becomes infinity if not specified and is the only 

member of those rules allowed to be left blank. 
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Table 6-2.  NBDS Random and Program Variables 

Name  Associated Parameters 

UNFRM 

EX PON 

NORML 

ERLNG 

ATRIB 

GVAR 

CLOCK 

TGEN 

RANNUM 

MIN    MAX 

MN 

MN STD 

MN NS 

N 

Definition 

A sample from a uniform 
distribution between 
the interval MIN and 
MAX 

A sample from an 
exponential 
distribution with mean 
MN 

A sample from a normal 
distribution with mean 
MN and standard 
deviation STD 

A sample from an Erlang 
distribution which is 
the sum of NS 
exponential samples 
each with mean MN 

N   user-defined 
attribute of an entity 

N  global variable 

Current simulated time 

Generation time of an 
entity 

A sample from a uniform 
distribution of random 
numbers in the interval 
(0,1) 
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An example of a set of GENERATE rules is shown 

below: 

■GENl1  'QUEl' 'UNFRM 5 10' 0 100 

where GENl generates entities with a time interval 

between generations that is drawn from a sample of times 

uniformly distributed between 5 and 10.  GENl is also 

shown to direct its newly created entities to the node 

QUEl and begins generating them at time 0.  Generation of 

entities ceases once a total of 100 have been created. 

• TERMINATE Node 

The TERMINATE node only requires two members in 

its operating rules: •«- 

'TRMn * tc 

where tc is the termination count for the node TRMn. When 

the total number of entities terminated by that node is 

equal to tc, the simulation run is ended.  If more than 

one TERMINATE node exists, the first one to reach its tc 

will end the simulation run.  If tc is left blank, there 

is no limit to the number of entities destroyed by that 

node.  The following is an example of a set of TERMINATE 

rules which would end a simulation run after processing 

1000 entities at1 node TRMl: 

•TRM1' 1000 

6.4 Queue Selection and Service Selection Nodes 

As described earlier, service queues are 

o 
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locations in a network where arriving entities request 

the service of one or more discrete service entities 

represented by a single service activity.  If all the 

servers are busy upon its arrival, the entity waits in 

the queue until one becomes available.  These simple 

concepts are easily modeled.  However, before a 

description of QUEUE nodes and service activities is 

given, several features and modeling elements related to 

them deserve attention first. 

• Q-SELECT-FWD Node 

Q-SELECT-FWD nodes provide one of several 

ways"in which entities can be routed to different 

locations in a network.  When an entity arrives to a 

Q-SELECT-FWD node, it is routed without delay to one of 

several parallel queues designated by the node.  The 

choice of queues is made based upon a priority decision 

rule specified in the set of rules for the node.  A 

summary of those decision rules is listed in Table 6-3. 

As' an example, consider the diagram of a 

Q-SELECT-FWD node and associated queue nodes shown below: 

,-^°'J"ii- 

X 

-*<; 
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Table 6-3.  Decision Rules Used by Q-SELECT-FWD 
and Q-SELECT-BHND Nodes 

Code      Definition 

PRI       Select first available queue node from given 
order 

CYC        Selection of queue nodes still designated in 
order but choose first available node after 
last one selected 

RAN        Select queue node at random 

LNQ        Select queue with largest number of waiting 
entities 

SNQ        Select queue with smallest number of waiting 
entities 

SRC       Select queue with smallest remaining capacity 

LRC        Select queue with largest remaining capacity 
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If the queue selection rule designated by the 

Q-SELECT-FWD node was PRI and the given order was (1 2), 

an entity arriving to the node would always be routed to , 

QUEl providing room was available in the queue. 

Otherwise, the entity would default to QUE2.  This 

particular node is useful in modeling the arrival of 

customers to a multi-queueing service area such as a 

supermarket checkout area or fast-food counter where the 

customer has a choice among several service lines. 

The operating rules for this selection node are 

collectively known as Qsfrules.  Their format is shown 

below: 

'QSFn1 (n^^ n2 ...) 'qsr' 'BLK or Balk To' 

where the second component is an array of integer values 

identifying the numbers of the possible destination queue 

nodes (note: these values must be enclosed in parentheses 

to maintain their identity as a single component in the 

top level of the rules array).  The character string 

designated by qsr refers to the code of one of the 

decision rules listed in Table 6-3.  The last member of 

these rules describes a feature of queue nodes not yet 

discussed—balking and blocking. 

When an entity arrives to a queue whose servers are 

fully occupied and there is no more room in the queue, 

two different actions are possible:  1) the entity can be 

- 77 - 



routed to another node in the network (called balking); 

or 2) if the entity was routed to the service queue by a 

service activity, it can wait outside the queue until 

room becomes available; however, until that entity can 

enter its destination queue, the service activity which 

served it is prevented from servicing any other entities. 

Trie second possi-b-i^iiy is called blocking and can only 

a-ffect service activRies.  In this case the server tied 

up by the blocked entity is not considered to be utilizea 

but is not free to resume service either.  A situation 

like this can be represented by a forklift transporting 

commodities to a loading zone.  If on arrival to the 

loading zone there is no more room available to unload 

its goods, the forklift and goods must sit idle until the 

next set of goods is removed from the queue.  In the case 

of the first possibility, an entity can balk out of the 

system by being routed to a TERMINATE node or it can 

assume a new destination anywhere else in the network 

(note: balking is not permitted to queues which allow 

blocking). 

In the Qsfrules example listed earlier, the 

character string 'BLK' entered in the last position would 

allow entities arriving to the Q-SELECT-FWD node to be 

blocked if they were routed there by a service activity 

and all the possible destination queues were full.  If 
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balking was desired instead, the code for the destination 

node would be entered in this position (note: statistics 

are automatically kept on balks from individual queues 

but not in the case of balks from a Q-SELECT-FWD node). 

If neither balking or blocking was desired, the last 

position in the single set of Qsfrules would be left 

blank.  Below are the symbols for balking and blocking 

respectively, used here with Q-SELECT-FWD nodes: 

An example of a single set of Qsfrules is shown 

below: 

'QSF1' (12) 'PRI'  'TRM2' 

These rules could describe the two parallel queues 

example presented earlier but indicate that entities 

would balk out of the system (destroyed by TERMINATE node 

2) if both destination queues were at capacity. 

• Q-SELECT-BHND Node 

A second node used in conjunction with a set 

of parallel queue nodes is the Q-SELECT-BHND node. It is 

associated with single or multiple service activities and 
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is responsible for selecting the next queue to be 

serviced when a service entity is freed from a previous 

activity.  It provides a "look behind'1 capability in 

contrast to the "look forward" capability of a 

Q-SELECT-FWD node and is referenced only when a service 

entity it precedes completes a service activity.  The 

Q-SELECT-BHND node does not interfere with the 

request-for-service of an entity arriving to one of the 

parallel queues it polices.  If a service entity is 

available, that entity is immediately served; otherwise, 

the entity waits in the queue and is then selected for 

service based upon the decision of the Q-SELECT-BHND 

node.  Like the Q-SELECT-FWD node, this node selects the 

next queue to be serviced based upon a priority decision 

rule.  The decision rules and their codes for the 

Q-SELECT-BHND node are the same as those used by 

Q-SELECT-FWD nodes which are listed in Table 6-3. 

Below is a partial network diagram of a 

Q-SELECT-BHND node and its associated queues: 

33V1 

Assuming SRVl just finished a service activity, QSBl 
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would check to see if any entities were waiting in QUEl 

or QUE2.  If both queues were in use, the choice to serve 

a particular queue would be made based upon QSBl's 

decision rule. For instance, if the rule was specified as 

LNQ, the queue containing the largest number of entities 

would be served next.  If both queues contained an equal 

number of entities, the first queue in the list of queues 

would be served.  It's easy to see from this example that 

the Q-SELECT-BHND node models the perspective of a 

service activity.  A situation where this would be a 

useful modeling element is in a manufacturing process 

where separate queues develop along a line that are 

serviced by one or several activities. 

The operating rules for the Q-SELECT-BHND node are 

collectively designated as Qsbrules.  Their individual 

format is shown below: 

'QSBn' (n, n  ...) 'qsr' 'srvid' 

where the second and third members are identical to those 

in Qsfrules.  The last element refers to the 

identification code of the service activity or service 

selection node following the Q-SELECT-BHND node.  Service 

selection nodes provide a choice among several different 

service activities and will be discussed in the next 

segment. As an example of a set of Qsbrules, consider the 

following: 
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'QSBl' (1 2) 'LNQ' 'SRVl' 

These rules would describe the example given earlier in 

which SRVl selected from either QUEl or QUE2 depending 

upon which had the greater number of waiting entities. 

• SRVR-SELECT Node 

The last preliminary node that needs to be 

described is the SRVR-SELECT node. This node is used when 

there is a need for an entity arriving to a queue to 

select a particular service activity from among several 

serving that same queue.  That is, every service activity 

is allowed multiple service entities but this node allows 

for multiple service activities as well. A SRVR-SLCT node 

is situated between its associated queue and the service 

activities it polices as shown below: 

Like the previous two selection nodes, the SRVR-SELECT 

node is governed by a set of priority decision rules 

listed in Table 6-4. if the rule for the above example 

was specified as RAN, an entity arriving to QUEl would 

select either SRVl or SRV2 at random if both service 

activities were idle. 
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Table 6-4.  Decision Rules Used by SRVR-SELECT Nodes 

Code   Definition 

PRI    Select first available service activity from a 
given order 

CYC    Select service activities from a given order but 
select first available one after last one selected 

SBT    Select service activity having smallest busy time 

LBT    Select service activity having largest busy time 

RAN    Select service activity at random 

The collective name for the operating rules of this 

node is Sllrules.  Below is the format for a single set: 

'SSLn' (n, n~ ...) 'ssr' 

where (n, n~ ...) represents the solitary array of 

service activity numbers provided for selection and ssr 

is the decision rule code. The following is an example of 

these rules based on the diagram presented earlier: 

'SSLl1 (12) 'RAN' 

Again, only integer numbers identifying each service" 

activity is used in the second component while the entire 

list is enclosed in parentheses to maintain its 

singularity among the other members. 

SRVR-SELECT nodes are useful when modeling a system 

where a particular source of entities require different 

processing times or a particular service activity is 

given a higher priority. For instance, customers arriving 
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to a fast-food counter with multiple servers might choose 

the counterperson who takes the least time to prepare 

their order based on previous experience or management 

might encourage such a situation themselves by the proper 

line arrangement. As mentioned earlier, SRVR-SELECT nodes 

can also be used with Q-SELblCT-BHND nodes. The partial  

network diagram shown below demonstrates such a 

combination: 

6.5 SERVICE QUEUE Nodes 

By now the reader should be familiar with the 

function of SERVICE QUEUE nodes and their network symbol. 

Therefore, this next section will be devoted entirely to 

a discussion of its operating rules format. 

The operating rules for a QUEUE node are referred to 

collectively as Qrules. The format for a single set is 

shown below: 

'QUEn1 'disc' qn qmax 'BLK or Balk To' 'srvid' 'qsid' 

The character string disc refers to the queueing 

discipline for that queue.  Table 6-5 lists the codes and 
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Table 6-5.   Queueing Disciplines 

Code   Definition 

FIFO   Entities served in order of arrival 

LIFO   Entities served in reverse order of arrival 

LVFn   Entities served in order based on low-value-first 
of n   user defined attribute 

HVFn   Entities served in order based on high-value-first 
of n   user defined attribute 

RAND   Entities served at random 

descriptions of those available in NBDS.  The elements 311 

and qmax refer to the initial number of entities in the 

queue at the start of the simulation and the maximum 

allowable number of entities in the queue at any one time 

respectively.  If qn   is greater than 0, service begins 

immediately at the start of the simulation for as many 

entities as there are available servers (note: if 

beginning simulation with entities already in the queue, 

LVF or HVF queueing discipline cannot be used).  If there 

is no limit to the number of entities a QUEUE node can 

hold, then qmax should contain a blank character string. 

Blocking and balking can be specified if qmax is zero or 

greater.  If blocking is desired, the fifth position 

should contain the character string 'BLK'.  If balking is 

desired, this element should be replaced with the code 

name of the destination balked to.  The next position 

represented by srvid holds the identification of the 
c 
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associated service activity or SRVR-SELECT node. Finally, 

the element qsid refers to the code name of a 

Q-SELECT-FWD or Q-SELECT-BHND node associated with the 

queue.  As implied by the single position for two 

different options, an individual QUEUE node can only be 

r 
associated with one type of queue selection node at a 

time. 

"      As an example of a set of Qrules, consider the 

following: 

'QUE11  'FIFO' 0 ' ' ' ' *SRVl' ' ' 

This represents the simplest QUEUE node possible.  QUEl 

maintains a FIFO queueing discipline, starts with no 

entities in the queue, and is serviced by the activity 

SRVl.  Note the blank character strings which indicate no 

limits on the queue length, no blocking or balking, and 

no association with queue selection nodes respectively. 

Again, their inclusion is important as the position of 

each rule in a set is critical. 

6.6 Activities 

-. Since the role of activities in a network has 

already been established, this next section will simply 

highlight the differences between the two types and 

describe their respective operating rules content and 

format.     **' 



• Service Activities 

Service activities limit the number of 

concurrent entities travelling over them and are used 

only in conjunction with service queues.  Their operating 

rules are known collectively as Srvrules and each set has 

the following structure: ;  > 

'SRVn' 'dest' ' srvt' nsrvs 'ssl' 

As in the rules for a GENERATE node, dest represents the 

code for the destination node to which ari; e/i'tity is 

delivered by the activity.  The character string srvt is 

the designated service time for that activity and is the 

time period by which an entity's passage through the 

activity is delayed. Like the tint rule of Genrules, srvt 

is substituted with a constant value or any code and 

associated parameters for the random variates and program 

variables listed in Table 6-2.  The descriptor nsrvs is 

the number of parallel servers represented by the service 

activity. Lastly, the character string ssl represents the 

name of a SRVR-SELECT node with which the service 

activity is associated.  If the service activity is not 

associated with one, this last position is left blank. 

As an example of a set of Srvrules consider the 

following: 

'SRV1'  'QUE3'  'ATRIB(l)1 1 'SSLl' 

Here the last member indicates SRVl*s association with. 
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SRVR-SELECT node SSLl (as in the previous example where 

SRVl was named as one of two possible service activities 

an entity could select from when arriving to the node 

SSLl).  In this case, the destination of an entity 

utilizing SRVl is the service queue QUE3.  In addition, 

the service time for that entity is determined by the 

value of its first user-defined attribute, ATRIB(l). 

Finally, the value at address 3 indicates this is a 

single server activity. 

• Regular Activities 

Regular activities are used to transport 

entities away from nodes other than QUEUE nodes and have 

no restriction on the number of entities utilizing them 

at one time.  A collection of operating rules describing 

regular activities is referred to as Actrules.  A single 

set of Actrules has the following format:      ' ./ 

'ACTn' 'dest' 'dur' 'N/S' 

where dest again represents the code of the destination 

node to which the activity delivers its entities and dur 

represents the duration of time an entity's progress is 

delayed through the activity.  Dur is similar to srvt of 

Srvrules except a zero time duration can be specified for 

the activity by simply leaving its character string 

blank.  The last member in this set of rules gives a 

modeler the choice of whether or not to collect 
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iaar the 

descriptive statistics on a given activity. In some cases 

regular activities are required only to provide a link   /-^„^ 

between nodes with no need to report their utilization^ 

statistics, etc.. In these situations, the modeler has 

option of supplying the character string 'N/S' in the  

last position pf the operating rules statement to prevent 

the wasted collection of statistics. 

Below is an example of a set of Actrules: 

'ACTl'  'TRMl1  ' * 'N/S' 

where entities passing through AGTl are directed to 

TERMINATE node 1 without delay.  Also, the last member in 

this set of rules indicates that no statistics describing 

the use of this activity are to be collected during the 

simulation run. 

6.7 Resource Queues and Related Simulation Elements 

As described in Section 4.1, resource queues are 

similar to service queues except entities arriving to the 

latter type must acquire "resources" as opposed to 

discrete service entities to continue their passage 

through the queue.  Resources are delegated to a queue 

from an external source which can be shared by multiple 

resource queues.  Arriving entities can request variable 

amounts of a given resource and, once acquired, depart 

from the queue over a regular activity branch.  This next 

section details the operating rules required by resource 

queues and also introduces several of the modeling 
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elements used with them. 

• RESOURCE QUEUE Node 

Below is the format of a set of operating 

rules for a RESOURCE QUEUE node which, are referred to 

collectively as Rqrules: 

'RQUn' 'disc' qn qmax 'Balk To1 rn 'nrqst' 'actid' 

Except for the leading label, the first four components 

are identical in name? and function to those in a set of 

Qrules.  The Balk To variable at address 4 is also the 

same as that for Qrules but, as this rule implies, 

resource queues only allow balking—not blocking.  The 

last three members of this set of rules are unique to 

RESOURCE QUEUE nodes. Rn is an integer number identifying 

the source of resources for the queue (see next section). 

The character string nrqst represents the number of 

resources an entity arriving to the queue requests and is 

one of three rules in this family of elements where 

numeric information must be entered as a character 

string.  The value,, might be a constant but, like the time 

delays for activities, the value of nrqst may also be 

obtained by specifying one of the random variates or 

program variables listed in Table 6-2.  Finally, actid 

refers to the identifying code for the regular activity 

emanating from the RESOURCE QUEUE node. 

An example of an individual set of Rqrules is given 
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below: 

' RQUl>**LVF2, 0 ' ' ' ' 1 'ATRIB(2)' 'ACTl' 

Going from left to right, this set of rules specifies 

that entities waiting for resources in RQUl queue up in 

order of low-value-first based on their second 

user-defined attribute. The third component indicates the 

simulation begins with no entities in the queue. The next 

two blank character strings mean there is no limit to the 

capacity of the queue and, hence, no balking from the 

queue respectively. The value at address 5 indicates that 

resources acquired at RQUl are held by resource bank #1. 

Furthermore, the next position specifies that entities 

arriving to the queue request resource amounts equal to 

the value contained in its second user-defined attribute 

(therefore, by virtue of the queueing discipline, waiting 

entities requesting the least amount of resources are 

served first). Finally, the last component indicates that 

entities travel from RQUl over regular activity ACTl. 

• Resource Banks 

Resource banks are used to hold specified 

amounts of resource for allocation to designated resource 

queues. A bank of resources varies dynamically throughout 

a simulation run but can never exceed its capacity or 

drop to a negative amount.  They lie outside the actual 

network model but must be specified in the operating 
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rules when RESOURCE QUEUE nodes are used. 

Together the operating rules for Resource Banks are 

known as Rscrules.  A single set of rules assumes the 

following format: 

'RSCn' capac (n, n2 ...) 

where RSCn identifies the particular bank of resources 

and capac specifies the number or amount of resources 

available for allocation at the start of the simulation. 

The last member of these rules is a solitary array which 

lists the integer numbers of those RESOURCE QUEUE nodes 

associated with the resource bank.  The order in which 

those queues are listed is important during the 

reallocation of resources which will be discussed in the 

next two segments. 

As an example of a set of Rscrules, consider the 

following: 

•RSC1' 10 (1 2 3) 

Here resource bank RSCl starts the simulation run with 10 

units of resource which are allocated to entities 

arriving at resource queues RQUl, RQU2, and RQU3 

(provided the requested amount is still available). 

However, if additional resources become available or 

previously acquired resources are relinquished during the 

simulation run, reallocation of those resources to 

waiting entities begins immediately by polling each of 
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the three resource queues in the prescribed order. 

• RESOURCE FREE Nodes 

Resources previously acquired by an entity 

are relinquished by routing the entity through a RESOURCE 

FREE node.  RESOURCE FREE nodes specify the amount of 

resources given up by an arriving entity as well*- as the 

originating Resource Bank to which they are returned for 

reallocation.  Since all entities arriving to a RESOURCE 

FREE node will trigger the release of additional 

resources, care should be taken by the modeler to 

preserve the balance of resources in the system' by not 

releasing more than was origjftially available.  Where 

variable amounts of resources are acquired by entities 

arriving to a resource queue, it is a good practice to 

record that amount in the entity record as a user-defined 

attribute.  That attribute can then be referenced upon an 

entity's arrival to a RESOURCE FREE node to determine the 

correct amount of resources to relinquish.  In the event 

an excess balance of resources is released at a free 

node, the amount of available resources will not increase 

beyond the given Resource Bank's capacity. 

The operating rules for RESOURCE FREE nodes are 

referred to collectively as Freerules.  An individual set 

has the following format: 

'FREn' rn 'nrel' 'actid' 

MU^(.vUAnJ\l>-rt.n4i,J\l.4n-/l|.Vlft4n, 
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where rn specifies the number of the Resource Bank to 

which nrel resources are returned by entities arriving to 

the node.  Like the nrqst component of Rqrules, nrel is a 

character string which may contain a constant value or 

expression derived from the random variates and program 

variables listed in Table 6-2. 

An example of a set of Freerules is the following: 

'FRE1' 1 'ATRIB(2)' 'ACT21 

where entities arriving to FREl release acquired 

resources in an amount equal to the value stored in its 

second user-defined attribute. The relinquished resources 

are given back to Resource Bank #1 where they are 

immediately reallocated to the resource queues prescribed 

by RSCl.  The regular activity ACT2 then routes arrivals 

away from FREl. 

• RESOURCE ALTER Nodes 

At certain points in a network&model, there 

may%be a need to adjust the capacity of a particular 

Resource Bank. This is accomplished in NBDS by routing an 

entity through a special element known as a RESOURCE 

ALTER node which is a particularly useful element for 

simulating employee work breaks or scheduled machine 

maintenance. 

The operating rules for RESOURCE ALTER nodes are 

known collectively as Altrules. An individual set has the 
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following structure: 

'ALTn' rn 'naif 'actid' 

where rn is the number of the Resource Bank whose 

resource capacity is being altered and the character 

string nalt represents the amount by which the capacity 

is altered. Nalt may be negative or positive and may also 

be defined by one of the variables listed in Table 6-2. 

As in the other related rules, actid represents the name 

of the regular activity which routes arrivals away from 

ALTn. 

An important point should be made concerning the use 

of a RESOURCE ALTER node.  If the arrival of an entity to 

an alter node would reduce the capacity of its designated 

Resource Bank below the number of resources currently 

available, no effort is made to recover the difference 

from entities currently in possession of them.  Instead, 

the entities flow through the network as usual and when 

they finally encounter a RESOURCE FREE node, the 

resources released at the node simply aren't reallocated 

by the designated Resource Bank.  Also related to this is ^ 

the effect of repeated arrivals to an alter node that 

decrements the capacity of a given Resource Bank.  Once 

the capacity has been reduced to zero, any additional 

arrivals to the alter node will not create a negative 

deficit. 
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Consider the following set of Altrules: 

•ALTl1 1 '^10' 'ACT3' 

Here entities arriving to ALTl will initially cause a 

reduction in the capacity of Resource Bank #1 by 10 units 

and then be routed away from the node by the regular 

activity ACT3.  Note the use of the tilda symbol in the 

~X^'J value ^ 10 to indicate a negative number. Thi^ is a Nial 

convention and is in contrast to the normal dash (-) 

reserved as the operation symbol for subtraction. 

• RESOURCE PREEMPT Nodes 

RESOURCE PREEMPT nodes are useful elements 

for modeling situations where the utilization of a 

resource by an entity is suddenly interrupted by another 

(eg. machine breakdowns or an ^interruption in the 

transmission of a message over a shared communications 

line).  Here entities arriving to a preempt node will 

initially request the use of a given amount and type of 

resource just as entities do upon arriving to a resource 

queue.  If a sufficient amount of resources is available, 

they are allocated to the entity in the normal fashion 

and the entity proceeds on through the network.  However, 

if the available resources cannot satisfy the entity's 

request, then the entity will attempt to preempt that 

same resource from entities already utilizing them until 

its requirements are satisfied.  Resources may only be 

- 96 

S 



preempted from entities currently engaged in a regular 

activity (ie. not from entities waiting in a queue or 

engaged in a service activity).  A preemption attempt on 

an entity engaged in a regular activity will only be 

successful if the value of a given user-defined attribute 

gives the preemption entity a higher priority.  If an 

entity arriving to a RESOURCE PREEMPT node fails to 

acquire its requested number of resources, it balks to a 

destination node specified by the modeler. 

If more than one entity is preempted in a single 

attempt, preemption begins with those entities scheduled 

for the latest departure event.  If only a portion of the 

resources owned by the last entity preempted were 

required to satisfy the preemption, the remainder is made 

available to other entities waiting for that resource. 

Preempted entities are sent to a designated resource 

queue where they are established as the first entities 

waiting for the resource (in order of earliest departure 

time first).  Their remaining processing time is saved in 

the third program-defined attribute of their entity 

record which is later used as their activity duration 

when reassigned resources.  Preempted entities which 

resume activity take up at the same place in the network 

from which they were preempted.  However, because 

preempted entities may be sent back to a queue different 
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from their original source, they may resume activity with 

a resource different from the one they possessed when 

preempted.  Also, if an entity targeted for preemption is 

in possession of more than one resource type, only the 

last resource will be given up; all other resources 

remain in that entity's possession when sent back to a 

resource queue. 

The operating rules for a RESOURCE PREEMPTION node 

are known collectively as Pmtrules. Below is the rules 

format for an individual set: 

'PMTn' rn 'nrqst' 'LVn or HVn' rq 'Balk To1 'actid' 

where nrqst represents the amount of resources from 

Resource Bank # rn initially requested by an entity 

arriving to PMTn.  The character strings LVn and HVn of 

the fourth component specify the type of priority and 

attribute number an entity arriving to this nodes assumes 

when attempting a preemption of another entity.  R(£ is an 

integer number identifying the resource queue to which a 

preempted entity is sent while Balk To represents the 

code name of the node to which an entity is sent when 

unsuccessful in a preemption attempt.  In the event of a 

successful preemption (or normal acquisition of available 

resources), the entity arriving at PMTn is routed away 

from the node over regular activity actid. 

To illustrate the use of a set of Pmtrules, consider 
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the following: 

'PMTl' 1 '5' 'HV3' 1 'TRM21 'ACT4' 

Here an entity arriving to PMTl requests 5 units of 

resource frdm Resource Bank #1.  If they are not 

available, or only partially available, then an attempt 

is made to preempt entities in possession of that 

resource until enough .resources are acquired to satisfy 

the arrival's request.  Entities determined as candidates 

for preemption will only be preempted if the value of 

their third user-defined attribute is less than that of 

the entity arriving to PMTl (equal values using either 

priority scheme will not cause a preemption).  If a 

successful preemption occurs, the preempted entity is 

sent to RESOURCE QUEUE node #1 where it waits at the head 

of the line for available resources; the entity causing 

the preemption then continues its journey through the 

network over regular activity ACTl.  If unsuccessful in 

acquiring the requested units of resource, the entity 

arriving to PMTl immediately balks to TRM'2 where' it is 

terminated. 

6.8  ASSIGNMENT Nodes 

Up to now a great deal of attention has been 

given to user-defined attributes of an entity.  As just 

presented in the discussion of the RESOURCE PREEMPTION 

node, user-defined attributes are required to establish a 

- 99 - 



..   . . r 
priority system among entities involved in a preemption 

attempt.  They are also useful to hold pre-determined 

service times or record the units of resource acquired at 

a given RESOURCE QUEUE node.  To carry out these 

assignments in an NBDS prototype, entities are routed 

through ASSIGNMENT nodes. These elements assign values to 

members of an entity record reserved to store 

user-defined attributes.  The array of attributes is 

collectively referred to as ATRIB.  Arrivals to an 

ASSIGNMENT node can also change the value of a globally 

defined program variable contained in the array GVAR. 

The statement used to assign values to any of these 

variables must begin with the name of the array and the 

address value of', its position in the array (addressing 

begins with 1).  Following the assignment symbol, the 

right-hand side of the expression can contain a single 

constant or any of the NBDS variables listed in Table 

6-2.  The expression can also contain any combination of 

constants and variables with any number of arithmetic 

operations as long as it conforms to the constructs of 

Nial and employs the correct arithmetic symbols.  As 

examples of valid NBDS assignments at an ASSIGNMENT node, 

consider the following: 

ATRIB(2): = EXPON(IO) + ATRIB(l) 

GVAR(1): = GVAR(1) * 2 
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In the first example, an entity arriving to the node 

would have"the value of its second user-defined attribute 

replaced with the sum of a sample drawn from an 

exponential distribution (with mean 10) and its first 

user-defined attribute. In the second example, the global 

variable GVAR(l) is assigned as its value the product of 

its present value and the constant 2. 

The operating rules used to define ASSIGNMENT nodes 

are known collectively as Assnrules and have the 

following individual format: 

'ASSn'   'dest1  'expl'  'exp2'    'expK' 

where an individual node can have K separafe expressions. 

As shown, ASSIGNMENT nodes are not associated with an 

activity.  Instead, an entity arriving to the node is 

immediately passed to its destination node as indicated 

by dest.  Also note that each expression must be entered 

as a character string. 

As an example of an individual set of Assnrules 

consider the following: 

*ASS1'    'QUE3'   'ATRIB(2): = EXRON(IO) + 

ATRIB(l)'    'GVAR(l): = GVAR(l) * 2' 

Here the expressions used were given in the previous 

examples and would result in the assignments described 

there.  Also, an entity arriving to ASSl is shown to be 

immediately routed to the node QUE3. 
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An additional element associated with ASSIGNMENT 

nodes also needs to be introduced here which concerns the 

initialization of global variables.  Like the attributes 

for an entity, the values of all GVAR variables are 

automatically initialized to zero at the start of a 

simulation run.  However, if the modeler wishes to 

initialize a particular variable with a non-zero starting 

value, this can be accomplished by including one or more 

INIT statements with each set of Assnrules during the 

input.of the operating rules.  One statement is used for 

each global variable to be initialized ,'a'nd has the 

following format: 

'INIT'   'exp' 

where the generalized INIT label is used with each ^u. 

initialization and exp represents any GVAR assignment 

expression discussed earlier.  For example, the following 

statement would initialize the previously used global 

variable to the value 5 at the start of the simulation 

run: 

'INIT'     'GVAR(l): =5' 

The collective name of a group of INIT statements is 

Inits. 

6.9  Collection of Supplementary Statistics 

While most of the simulation elements 

presented so far were designed to collect their own set 
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of descriptive statistics, NBDS also has the capability 

to collect supplementary statistics on user-defined 

attributes, global variables, and other system variables. 

Time independent statistics can be collected on most 

system variables by routing entities through a TALLY node 

while time dependent statistics can be maintained on any 

global variable through use of a TIMD statement. 

• ' TALLY Node 

Each time an entity arrives to a TALLY node, 

one of the following types of variables can be 

automatically collected as an individual observation: 

1. TSYS - the length of time an entity 
has spent in the system to that point. 

2. INT(n) - the difference between the 
arrival time (CLOCK) of an entity to 
the TALLY node and a mark time stored 
in user-defined attribute n. 

3. BTWN - the time between arrivals to 
the TALLY node, using the first 
arrival as a reference point. 

4. ATRIB(n) - the= value of user-defined 
attribute n. 

5. GVAR(n) - the current value of global 
variable n. 

The statistical array Tallystats stores most of the 

data collected at TALLY nodes. Those data include minimum 

and maximum values, total number of observations, and the 

information necessary to estimate means and standard 

deviations at the end of the simulation run.  TALLY nodes 
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can also collect the data required to generate a 

histogram at the end of the simulation run. The histogram 

is divided into 17 cells and depicts the frequency 

distribution of values observed on a designated variable 

over the length of a simulation run.  Those data are 
•1 

maintained as separate arrays within ^single array known 

as the Freqfile. 

The operating rules for a collection of TALLY nodes 

are referred to as Tallyrules.  The format for an 

individual set is shown below: 

'TLYn'   'dest'  'title'  ' typ' ('HIST' 11 ul) 

As with ASSIGNMENT nodes, entities passing through a 

TALLY node are immediately routed to the next destination 

represented by dest.  The character string title is any 

name the modeler chooses to identify the type of variable 

being observed while typ refers to one of the code names 

for the five different variable types listed above.  The 

last member in these rules is a solitary array specifying" 

the need for a histogram. Along with the character string 

'HIST1, the modeler must provide an estimated range of 

observed values for the variable by specifying its lower 

limit (11) and upper limit (ul) respectively.  If no 

histogram is desired, the three-membered array is 

replaced with a blank character string. 

Below is an example of an individual set of 
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Tallyrules: 

'TLY1' 'TRM1' 'Time in System' *TSYS' ('HIST' 10 500) 

These rules indicate TLYl is used to collect the duration 

of time an entity arriving to that node has spent in the 

system to that point. Since the entities are subsequently 

terminated, that time period represents their total 

lifetime in the system.  Furthermore, a histogram is 

called for depicting the frequency distribution of those 

observations estimated to lie between 10 and 500 time 

units. 

•  TIMD Statement 

The TIMD statement is another NBDS element 

that is not directly represented'by a network symbol but 

instead is used to designate a system global variable for 

the collection of time-persistent statistics.  Data 

describing the value of a global variable over the 

duration of the simulation run are maintained in the 
f      a 

statistical array Glbstats.  That information can be used 

at the end of the simulation to generate mean values and 

standard deviations as well as minimum and maximum 

observed values. 

The TIMD statement is similar to the INIT statement 

in that it may only be used to name a single global 

variable.  A group of TIMD statements are referred to 

collectively as Timrules.  The structure of an individual 
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statement is shown below: 

'TIMD1 'title' n 

where each statement is preceded with the generalized 

label TIMD.  As before, title refers to a user-supplied 

character string which uniquely nasaes the variable of 

interest and n represents the integer number of its 

address in the GVAR array.  For example, in the TIMD 

statement shown here: 

'TIMD'  'Number in System' 2 

GVAR(2) is used to monitor the number of entities in the 

system at any one time and is designated to be maintained 

as a time dependent variable. 

6.10  CONTINUATION Nodes 

In many instances during the design of a 

network model there is a need to separate regular 

activities into two or more activities with distinct time 

delays.  There may also be a need to immediately follow a 

service activity with a regular activity; or where a node 

(like the TALLY node) is not associated with an activity, 

there may be a need to delay an entity's departure from 

that node to its next destination.  In all three cases, a 

CONTINUATION node can be used to solve the problem. 

The operating rules for a CONTINUATION node are 

known collectively as Contrules.  The format for an 

individual set is shown below: 
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'CONn'  'ACTn1 

This two-membered set of rules just contains its 

identifying code name and the code name of the regular 

activity which delivers entities from the node. As shown, 

it simply models a sequential arrival and departure event 

with a time delay (specified by ACTn) in between. 

6.11  MULTIPLY Node 

When a network model calls for the 

simultaneous generation of multiple entities, either from 

a GENERATE node or some other location, the MULTIPLY node 

will satisfy that requirement.  When an entity arrives to 

a MULTIPLY node, it is replicated any number of times, 

afterwhich the parent and its clones are immediately 

routed to a single destination node.. 

A collection of operating rules for MULTIPLY nodes 

are referred to as Multrules.  An individual set has the 

following format: 

'MLTn'  nm 'dest' 

where nm identical entities are routed from MLTn to dest 

for each arrival to the node. 

6.12  MULTIPLE BRANCH Node 

This NBDS modeling element is identical to 

the MULTIPLY node just presented except the multiple 

entities created at the node are individually routed to 
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*"wo or nore different destination nodes in the network. 

The collective name for the operating rules of   „ 

MULTIPLE BRANCH nodes is Mbrnrules.  Individually, a set 

of Mbrnrules contains the following format: 

'MBRh'  Cdest^ 'dest'2  ... 'aest'  ) 

where K identic?*   icities are routed t^ multiple 

destination nodes from MBRn for each a\rrival to the node 

(that includes the parent entity as well).  Note the use 

of a single array to hold all the destination nodes.  The 

maintenance of this array as a single member in the top 

Lerel of the rules is critical. 

An example of a single set of Mbrnrules is given 

below: 

'MBR1'   ('QUEl'  'QUE2'  'QUE3') 

Here an'*«htity arriving to MBRl is replicated three times 

and evenly distributed to three different service queues. 

6.13  CONDITIONAL BRANCH Node 

CONDITIONAL BRANCH nodes are useful NBDS 

modeling elements in that they provide important decision 

points within a network.  An entity arriving to a 

CONDITIONAL BRANCH node is confronted with a sequence of 

conditional statements, each of which is associated with 

a different destination node.  The entity begins testing 

each condition and is routed to the destination of the 

first one satisfied. 
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Below is the format for a set of CONDITIONAL BRANCH 

node operating rules collectively known as Cbrnrules: 

'CBRn' ('cond'   'dest^ ) ( ' cond' 2 'dest'2 ) 

... ('cond'   'dest' ) 
i\ J\ 

where CBRn contains K sets of conditions and associated 

destination nodes.  Hera each condition (cond) and 
J 

destination node (dest) are defined together as a single 

array within the array of operating rules and represent a 

single branch from the node CBRn.  When an entity arrives 

to a CONDITIONAL BRANCH node, it begins testing each 

condition in the order given in the set of Cbrnrules.  If 

a given condition is satisfied, the entity automatically 

departs the node to the destination node associated with 

the conditional statement and no further testing is 

carried out.  If a given condition is not satisfied, then 

the entity tests the next one in line.  If none of the 

conditions are satisfied, the entity is routed to the 

last destination node specified as a failsafe measure. 

Therefore, the modeler could actually substitute a blank 

character string for the last condition to be tested but, 

for clarity's sake, should be spelled out explicitly. 

The conditional statements can contain any 

constants, random variates, or program variables listed 

in Table 6-2 but must be used with the Nial relational 

and Boolean operations listed in Table 6-6. Note that the 
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Table 6-6.  Standard Nial Relational and Boolean 
Operations 

Operation  Definition 

> greater, than 

< less than 

= equal to 

>= greater than or equal to 

<= less than or equal to 

^ = not equal to 

and A logical and of items of A 

Not A reverse the logical value of A 

or A' logical or of items of A 
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NBDS variable RANNUM can be used to specify a probability 

in a conditional statement such as the following: 

RANNUM > 0.20 

Here the condition is satisfied if the uniformly 

distributed random number generated by RANNUM is greater 

than 0.20.  If used in a set of Cbrnrules, an arriving 

entity would face an 80% chance of being routed to the 

associated destination node., 

As an example of a set of Cbrurules, consider the 

following: 

'CBR1' ('ATRIB(l) = 1'   'CONl') ('ATRIB(l) = 2' 'CON2') 

Here the conditional statements are testing for a certain 

p" .'■'■ ■■■ 

attribute value of the entity arriving to CBRl.  If the 

entity's first user-defined attribute is equal to 1, it 

is routed to the CONTINUATION node CONl.. Otherwise the 

attribute value is considered to be equal' to 2 and the 

entity departs to CON2. 

6.14  CLOSE and OPEN Nodes / 

In many queueing situations there is often a 

need to temporarily suspend service to a particular queue 

or group of queues.  Such might be the case when a bank 

teller takes a lunch break or a machine on an assembly 

line is shutdown for maintenance.  Another example would 

be a traffic light at"an intersection where the flow of 

traffic is halted in one' or more directions for a given 
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period of time.  In the case of the ban)?: teller breaking 

for lunch, the customers lined up for service in his 

queue would most likely be directed to another teller 

still in service.  However, in the last example, the 

drivers lined up at a traffic light would be forced to 

wait in line until they could pass through a green light. 

All of the situations described above can be modeled 

with CLOSE and OPEN nodes.  In addition, these modeling 

elements can be applied to both service queues and 

resource queues. 

•  CLOSE Nodes 

When an entity arrives to a CLOSE node, a 

designated queue or group of queues is closed for 

service.  In the case of a service queue, any entities 

currently in a service activity are permitted to complete 

that service.  Likewise, entities from a resource queue 

currently in possession of a resource are allowed to keep 

it until scheduled for release. However, when the service 

activity is over, its servers are idled or when the 

resource is relinquished, the designated resource queue 

is not polled for reallocation.  At the time of closure, 

an additional action may take place.  If the designated 

queue permits balking (as indicated by its fifth 

operating rule), the modeler has the option of sending 

all the entities currently in that queue to the 
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destination node specified by the balking rule.  Any 

additional arrivals to the queue automatically balk to 

the given destination node while that queue remains 

x.| closed.  If balking is not specified, then any additional 

arrivals to the queue simply enter the queue and wait 

until service resumes. 
i 

The operating rules for a CLOSE node are referred "to 

collectively as Clsrules.  An individual set has the 

following format: 

'CLSn1  'qtyp' ^ n2 . . . ) ' BALK' 'actid'- 

where the character string qtyp specifies the type of 

queue (/s) to be closed.  Here the code QUE specifies a 

service queue while RQU specifies a resource queue.  The 

third member of these rules is an array of integer 

numbers identifying the queue or queues of that type to 

be closed.  (Note: CLOSE nodes cannot specify service 

queues associated with Q-SELECT-FWD nodes). The next item 

gives the modeler the option to balk all current and 

future entities to the balking destination node specified 

by that queue.  If this rule is left as a blank character 

string, balking will only occur if:  1) the operating 

rules for the queue specify it; and 2) the queue's 

capacity is reached while the queue remains closed.  The 

last operating rule for a CLOSE node specifies which 

regular activity routes the arrival away from the node. 
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An example of a set of CTsrules is shown below: 

•CLS1'  'RQU' (12) ' ' 'ACT5' 

Here an entity arriving to CLSl forces the closing of 

resource queues 1 and 2 and is routed away from the node 

on ACT5.  The blank character string at address 3 allows 

normal balking to occur from those nodes if indicated in 

their respective Rqrules. 

• OPEN Node 

OPEN nodes are used to resume service on a 

previously closed queue.  When an entity arrives to an 

OPEN node associated with service queues, the specified 

queues are served immediately if a service entity is 

available.  Likewise, an entity arriving to an OPEN node 

associated with resource queues results in the immediate 

polling of those queues if available resources exist. 

Also, if.automatic balking was specified, that 

restriction is lifted as well. \ 

A collection of operating rules for OPEN nodas are 

referred to as Opnrules.  An individual set is structured 

as follows: 

'OPNn'  'qtyp' (n, n2 ...) 'actid1 

where the rules are identical to those of Clsrules by the 

same name.  As an example of an individual set, consider 

the following: 

'0PN1'  , 'RQU' (12) 'ACT61 
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Here an 'entity arriving to OPNl would allow the same 

queues closed by the earlier example to resume normal 

activity. 

6.15 SEED Statement 

The SEED statement is another" statement 

which is read into the program along with the operating 

rules at the start of. a simulation run.  It allows the 

user a choice of ten different seed values for the random 

number generating operation RANNUM (actually two 

different seed values are picked with this statement, one 

for each of the two alternating generators within 

RANNUM).  The format of this statement is: 

'SEED' n 

when n is any integer from 1 to 10 inclusive.  If no SEED 

statement is included with a group of operating rules, 

the seed value defaults to the first one. 

6.16 END Statement 

The last NBDS element to be presented is 

appropriately named the END statement.  It is read into 

the NBDS program like all other statements and gives a 

user the option to end a simulation run at a particular 

simulated time.  The statement has the simple format: 

'END''time 

where time is the CLOCK time at which the simulation run 
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is terminated.  Together with the termination count 

specification of TERMINATE nodes, a modeler has the 

option of terminating the simulation run based on number 

of entities processed or simulated time elapsed. 
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7,  Model Building With NBDS Elements 

Now that the reader has been introduced to the 

modeling elements of NBDS, this section will present a 

few examples of how those elements can be combined to 

model systems. Emphasis will be placed upon the method by 

which the elements are symbolized and integrated into a 

pictorial representation of the system and, more 

importantly, how that information is translated into the 

appropriate operating rules for input into an NBDS 

simulation program.  Having developed some actual sets of 

operating rules, the next section will demonstrate how 

they are input into the general purpose NBDS program and 

internally organized into a working set of rules. 

7.1  Simple Queueing System 

As an introductory example of how a network 

model can be translated into a set of NBDS operating 

rules, refer back to Figure 4-1.  Pictured is a network 

diagram of a simple queueing system.  Assume the system 

has the following characteristics: 

• the time between arrivals to the queue is 
exponentially distributed with a mean of 
5 minutes, 

• arrivals to the queue wait for service in 
order of their arrival, 

• the queue is serviced by a single service 
entity whose service time is uniformly 
distributed between 2 and 15 minutes, 
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•  the simulation run ends after 1000 
entities have been processed. 

To translate Figure 4-1 into a set of NBDS operating 

rules requires just four lines: 

'GENl' '0UE1' 'EXPON 5' 0 ' ' 
'QUE1' 'FIFO' '0' ' ' ' ' 'SRV1' 
'SRV1' 'TRM1' 'UNFKM 2 15' 1 ' ' 
'TRM1' 1000 

When properly interpreted by the control program, this 

set of rules is all the NBDS program needs to 

successfully execute the simulation of this system. 

7.2   Computer System With Preemptive Processing 

As a means of introducing a network model 

containing the family of resource nodes, consider the 

network diagram pictured in Figure 7-1.  The system 

pictured there could represent a simple computer system 

in which incoming jobs are placed in a queue until 

allocated a sufficient amount of memory space for 

processing by the CPU.  The job queue in this case is 

modeled by a RESOURCE QUEUE node.  Jobs arriving to the 

system queue up in an order inversely proportional to 

their memory requirements.  Memory is allocated to the 

jobs from a finite source, here modeled by a Resource 

Bank. Once a job acquires memory space, processing begins 

by the CPU, represented in this case by regular 
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activities.  Upon completion, the job relinquishes the 

memory by passing through a RESOURCE FREE node and leaves 

the system.  While most of the jobs are processed in an 

order based on their memory requirement, some jobs enter 

the system that hold priority over all jobs irregardless 

of their memory demands.  Those jobs will preempt jobs 

already being processed if enough memory is not available 

for use when they arrive.  This element of the system is 

modeled with the RESOURCE PREEMPT node shown in Figure 

7-1. 

For illustrative purposes, assume the system..has, the 

following characteristics: 

• normal jobs arrive to the system with 
exponentially distributed interarrival 
times whose mean is 2.5 sec; high priority 
jobs arrive with the time between jobs 
distributed exponentially and having% 
mean of 20 sec, / 

• the memory requirement of normal jobs is 
uniformly distributed between 10 and 70 
pages; the memory required by high 
priority jobs is normally distributed 
with a mean of 75 i 20 pages, 

• the total available memory is 150 pages, 

• CPU time of normal jobs is exponentially 
distributed with a mean of 5 sec; CPU 
time of high priority jobs is normally 
distributed with a mean of 8 ± 3.5 sec. 

Figure 7-2 lists the set of translated operating 

rules describing the system above.. Note how the priority 

between the two types of jobs is assigned with ATRIB(l) 
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'GEN1' 'ASS1' 'EXPON 2.5' 0 ' ' 
'GEN2' 'ASS2' 'EXPON 20.0' 0 ' ' 
'ASS1' 'RQU1' 'ATRIB(l) : = 1' ' ATRIEK 2 ) ! =UNF:RM 10 70'    'GVAR<1)!=GVAR(1H1' 
'ASS2' 'PMT1' 'ATRIB(l)!=2' 'ATRIB(2>:=NORML 75 20' 'GVAR(1):-GVAR<1) + 1' 
'RSC1' 150 1 
'R0U1' 'LUF2' 0 ' ' ' ' 1 'ATRIB<2)' 'ACT1' 
'FMT1' 1 'ATRIB(2)' 'HM1' 1 'RGU1' 'ACT2' 
'ACT1' 'FRE1' 'EXPON 5' ' ' 
'ACT2' 'FRE1' 'NORML 8 3.5' ' ' 
'FRE1' 1 'ATRIB(2)' 'ACT3' 
'ACT3' 'ASS3' ' ' 'N/S' 
'ASS3' 'TRM1' 'GYAR(l)}=GUAR(1>-1' 
'TRM1' ' ' 
'TIMD' 'Number Jobs in System' 1 
'END' 3600 

Figure 7-2.  Operating Rules for Computer System Model 

when the jobs enter the system.  This attribute is 

later referenced in the priority rule of PMTl (see HVlj) . 

Also note how the global variable GVAR(l) is used to keep 

track of the number of jobs in the system at any one 

time.  Together with the TIMD statement, GVAR(l) is 

reported as a time dependent variable at the end of the 

simulation run. Also demonstrated i"s the use of ACT3 as a 

timeless activity to the next node with no statistics 

collected on it. Finally, the END statement indicates the 

simulation run is to end after 3600 simulated time 

seconds have elapsed. 

7.3   Serial Work Stations on a Production Line 

A more complicated scheme of SERVICE QUEUES 

is presented in this example where a portion of an 

automobile production line is modeled containing a series 
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of work stations.  The network depicting this model is 

shown in Figure 7-3 where*units arrive to the first work 

station for a particular set of operations and are then 

distributed between two separate work stations for 

another series of operations.  The first work stahdon is 

an area large enough to store three automobiles at a time 

(not including the ones being operated on) but the 

succeeding stations have room to store only one 

automobile apiece.  Therefore, if each of the downstream 

work stations has a unit awaiting service when another 

arrives, the arrival is blocked.  If the storage capacity 

of the first work station is exceeded, the excess 

automobiles are transported to a yard outside the 

manufacturing plant and stored there for later service. 

For the purpose of this illustration, assume the 

additional system characteristics: 

• the time between arrivals to the first 
work station is uniformly distributed 
between 12 and 20 minutes, 

• the first work station is serviced by 
two parallel workers whose service 
times are normally distributed with a 
mean of 20± 5 minutes, 

• the next two work stations are each 
manned by one person whose respective 
service times follow an Erlang distribu- 
tion of 3 samples each with means of 12 
and 15 minutes respectively, 

• automobiles completing service by the 
first work station are distributed to 
the first of the next two parallel 
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stations which has room in/ists queue. 

The system described abeVe is translated into the 

set of operating rules shown in Figure 7-4.  The concepts 

'GEN1' 'QUEl' 'UNFRh 12 20' 0 ' ' 
'C1UE1' 'FIFO' 0 3 'TRM2' 'SRV1' ' ' 
'SRV1' 'GSF1' 'NORML 20 5' 2 ' ' 
'QSF1' (2 3) 'SNO' 'BLK' 
'QUE2' ' ' ' ' i ' ' 'SRU2' 'QSF1' 
'0UE3' '    '    '    '    i    '    '    'SRV3' 'QSF1' 
'SRV2' 'TLY1' 'ERLNG 12 3' 1 ' ' 
'SRV3' 'TLY1' 'ERLNG 15 3' 1 ' ' 
'TLY1' 'TRM1' 'Time in System' 'TSYS' ('HIST' 40 180) 
'TRM1' ' ' 
'TRM2' ' ' 
'END' 1000 

Figure 7-4.  Operating Rules for Production 
Line Model 

demonstrated in this example include balking, blocking, 

and queue selection.  Also included in the network is a 

TALLY node to collect statistics on the time each unit 

spends in the system.  Those data are summarized in a 

histogram at the end of the simulation as specified in 

TLYl. 

7.4  Traffic Light 

This last example of a traffic light 

features a more extensive network of resource nodes and 

also demonstrates the use of CONDITIONAL BRANCH nodes, 

the CLOSE node, and the OPEN node.  It models a traffic 

light at a 3-way intersection pictured in the diagram 
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MALI. 

*-<? -E 
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The heavily travelled east-west street intersects 

with the entrance to a shopping mall.  Eastbound traffic 

desiring to enter the mall must make a left turn in front 

of westbound traffic.  Because these are single lanes, 

eastbound traffic backs up behind any cars waiting to 

make a left turn. 

Again, for the purpose of^illustration, assume the 

system has the additional characteristics: 

• if cars arrive' to the intersection when 
the light is green and there are no cars 
waiting in front of them, they pass        > 
straight through without delay; when 
traffic is backed up, cars passing 
through the intersection are delayed by 
a normally distributed time period of 
3 ± 1.5 seconds which represents the time 
it takes the car to regain momentum, 

• cars making a left turn into the mall 
are also delayed by a constant time 
of 1 second; cars turning right from 
the westbound lane experience no time 
delays and therefore right turns have 
no effect on the system, 

• the light stops traffic in the E-W 
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directions for a period of 30 seconds 
while cars exit the mall; it then turns 
green on the eastbound side only for 
15 seconds to give any cars starting out 
a clear path to make a left turn; after 
that 15 seconds, the light turns green on 
the westbound side and both lanes are 
allowed passage for the next 45 seconds 
until the light turns red again, 

•  the arrival pattern of cars from each 
direction in exponentially distributed with 
an average of 7 seconds between cars west- 
bound and an average of 8.5 seconds between 
cars eastbound; also, one out of every ten 
eastbound cars make a left turn. 

Figure 7-5 contains the network diagram of this 

traffic light system. Note how the lanes are modeled with 

Resource Banks, each having a capacity of one unit.  To 

pass through the intersection, therefore, each car must 

acquire the unit of resource assigned to its lane at its 

respective RESOURCE NODE. However, eastbound cars turning 

left into the mall also request the use of the resource 

unit assigned to westbound traffic.  Since westbound 

traffic has priority over that resource, any cars making 

a left turn must wait until all westbound traffic passes 

or until they are allowed the 15 second free period at 

the start of a cycle.  This network model also 

demonstrates several uses of CONDITIONAL BRANCH nodes. In 

the first case they are used with probability branching 

to direct 10% of the eastbound arrivals to ASSl while the 

remainder are directed to ASS2.  At each ASSIGNMENT node 

the arrivals are assigned a value in their first ATRIB 
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array which is used by CONDITIONAL BRANCH nodes later in 

the network to separate those cars making a left turn. 

Also note how a set of CONDITIONAL BRANCH nodes and the 

use of the NBDS variables CLOCK and TGEN determines 

whether a car has been waiting in line or not.  If found 

to be waiting, the car is directed over an activity 

having the appropriate time delay.  Finally, an effective 

use of CLOSE and OPEN nodes is illustrated in which they 

simulate the phases of the traffic light.  Note how only 

one entity is initially generated to CLSl to begin the 

traffic light cycle.  Figure 7-6 lists the NBDS operating 

rules required to carry out a simulation of this model 

for a simulated time period of one hour. 
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'GEM1' 
'GEN2' 
'GEN3' 
'RSC1' 
'RSC2' 
'RQU1' 
'RUU2' 
'RQU3' 
'FRE1' 
'FRE2' 
'FRE3' 
'CBR1' 
'CBR2' 
'CBR3' 
'CBR4' 
'C0N1' 
'C0N2' 
'ASS1' 
'ASS2' 
'CLB1' 
'0PN1' 
'0PN2' 
'ACT1' 
'ACT2' 
'ACT3' 
'ACT4' 
'ACT5' 
'ACT6' 
'ACT7' 
'ACTS' 
'ACT9' 
'ACTIO 
'TRM1' 
'END' 

'EXPON 8i5' 
'EXPON 7' 0 
''01 

1 
2 
2 

'1' 
'1' 
'1' 

\ 

'CBR1' 
'R0U2' 
'CLS1' ' 
1 1 
1 (2 3) 
'FIFO' 0 
'FIFO' 0 
'FIFO' 0 
2 '1' 'ACT4' 
1 '1' 'ACTS' 
2 '1' 'ACT5' 

RANNUM s= 0.10' 'ASS1 
CLOCK « TGEN' 'CBR3') 
ATRIB(l) = 1' 'RQU3') 
CLOCK = TGEN' 'FRE3') 

ACT2' 
ACT7' 
RQU1' 'ATRIB(l)t=l' 
Raui' 'ATRIB(D:=2' 

ACT1' 
ACT6' 
ACT3' 

) ('RANNUM > 0.10' 'ASS2') 
('CLOCK X.TGEN' 'C0N1') 
CATRIBd) - 2' 'FRE2') 
('CLOCK > TGEN' 'C0N2') 

'RQU' 
'RGU' 
'RQU' 
'CBR2' 
'CBR3' 
'FRE1' 
'FRE2' 
'TRM1< 
'CBR4' 
'FRE3' 
'0PN1' 
'0PN2' 
'CLS1 

3600 

<1 2> ' ' 
1 'ACT9' 
2 'ACTIO' 

'ACT8' 

NORML 3 1.5' 'N/S' 
1' ' ' 

' 'N/S' 
' 'N/S' 
/   /   / 

NORML 3 1.5' 'N/S' 
30' 'N/S' 
15' 'N/S' 
'45' 'N/S' 

Figure 7-6.  Operating Rules for Traffic Light Model 
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8.  General Purpose NBDS Package 

One of the primary objectives of this thesis 

was to develop a set of Nial-based operations that could 

be used to prototype decision-making systems employing 

discrete simulation. As the first few simulation elements 

were developed and tested for this purpose, an 

interactive query/answer routine was used to input the 

various operating rules into the control program. 

However, as the list of simulation elements grew, this 

task became slow and cumbersome which led to the design 

of a non-interactive, batch-read technique to inputting 

the rules.  What evolved as a result of all this work was 

actually a rudimentary simulation language whose features 

include a set of operating rules having their own 

vocabulary and syntax.  Admittedly this general purpose 

NBDS package lacks many essential features of a good 

simulation language (eg. extensive error checks and 

debugging facilities), but its being presented here for 

three important reasons: 

1. To learn how to build a working proto- 
type simulation system using NBDS, one 
must understand how to correctly 
organize the operating rules so that 
the control program is able to in- 
terpret them properly; also, one must 
learn how to access the statistical 
arrays at the end of the simulation 
run to report the desired results. 
Use of the general purpose NBDS package 
provides a good vehicle to learn those 
tasks. 
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2. While developing the model of a system 
one wishes to build a specific simulation 
package for, use of the general purpose 
NBDS package is very helpful in testing 
certain elements of the model, developing 
the required set of operating rules, and 
deciding what data are necessary to report. 

3. The current set of simulation elements 
together with the control program provide 
a good basis on which to build and test 

-<J additional simulation operations when 
needed for a specific modeling purpose. 

The discussion of the general purpose NBDS package 

will begin by detailing how the operating rules are 

organized within the program.  Following this, is a 

description of the summary statistics automatically 

printed at the end of a simulation run. Finally, examples 

of actual general purpose NBDS runs will be presented 

using some of the operating rules developed in the 

previous section. 

8.1  Input and Internal Organization of Operating 
Rules 

Once entered j.nto the NBDS control program, 

each set of operating rules is organized into a three 

level nested array.  At the top level is the single 

collective array (eg. Qrules, Srvrules, Inits, etc.) 

which holds the middle level containing one or more 

individual sets of like operating rules.  At the bottom 

level are the individual rule elements owned by each set 

of operating rules.  To obtain their singularity within 
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the top level, each set of like operating rules must be 

entered into its collective parent array as a solitary 

array.  Furthermore, each solitary array of rules must be 

ordered within its parent array so that its address 

corresponds to the integer number of its rules 

identification label. Since numbering of the rules always 

begins with 1, the first position in each parent array 

(address 0) is simply a blank character string.  Each 

parent array is initialized with a blank character string 

by the operation 'INIT_RULES at the start of a simulation 

run. The use of this dummy position is similar to the use 

of the first row of dummy values in every statistical 

array:  it maintains the logical correspondence between 

the rules' set number and its position in the parent 

array. 

As an example of an ordered array of operating 

rules, consider the following collection of Srvrules 

pictured in the sketch mode: 

++ ,- + +  
i +—+—+ +-+-+1 +—+—+ +-+-+ i +—+—+ +-+-+ 
: !SRi.'l lOSFliNCRML 10 5,'2i I ! I5RV2ITLY1 ,'ERLNG 12 3ill ! ! : SRV3 ! TLY1 .' ERLNG 15 3.111 I 
I + + + +-+-+ I + + + +- + -+ ! + + + +-+-+ 

t+ + +  

The individual sets of rules shown above were taken from 

the list of operating rules for the Production Line 

example given in the previous section (see Figure 7-4). 
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Note the empty character string in the first position of 

the parent array Srvrules and the logical ordering of its 

member arrays in the next lower level. 

The Srvrules array given above is in a form ready 

for execution within the NBDS program. It is an important 

task of one developing a prototype simulation package to 

organize all the sets of rules used by the system in a 

similar fashion. In the general purpose NBDS package this 

process is carried out automatically by the operation 

READ_INPUT. All one has to do is list the operating rules 

in a script file named Input.Dat in a format similar to 

the examples given in the previous section.  Once 

execution begins, each line of the script file is read 

into the program, converted into a solitary array, and 

linked with other member rule sets of its kind. 

The code for READ_INPUT that performs these tasks is 

displayed in Figure 8-1.  Note how the use of the 

CASE-expression provides a convenient way to select the 

appropriate set of operating rules by keying on the rules 

identification label of each set (here assigned to the 

variable Typ).  It also provides the means for an error 

check ah the rules labels by defaulting to an error 

message if the code does not match,' any of those listed. 

Both these techniques are used in many other NBDS 

operations where selections are made from several 

133 - 



READ-INPUT IS ( 
EOF:= EXECUTE '??eof'f 
NFILE'f=" OPEN "INPUT.DAT mrt 
LINE:= EXECUTE READFILE NFILE; 
NAME:= FIRST LINEF DATE:= SECOND LINE; TITLE:= THIRD LINE; 
EACH URITESCREEN ' ' ('Input Statements For ' LINK TITLE 

LINK ':')> 
LINE!= EXECUTE READFILE NFILEt 
WHILE LINE "= EOF DO 

WRITE LINEf 
TYPt= 3 TAKE (FIRST LINE)f 
CASE TYP FROM 

GENRULES:= GENRULES LINK SOLITARY LINE END 
QRULES:= QRULES LINK SOLITARY LINE END 
QSFRULES:= QSFRULES LINK SOLITARY LINE END 
QSBRULESS= OSBRULES LINK SOLITARY LINE END 

SSLRULES LINK SOLITARY LINE END  - 
SRVRULES LINK SOLITARY LINE END 

RSCRULES:= RSCRULES LINK SOLITARY LINE END 
RORULES:= RQRULES LINK SOLITARY LINE END 
FREERULES:= FREERULES LINK SOLITARY LINE END 
ALTRULES:= ALTRULES LINK SOLITARY LINE END 
PMTRULES:= PMTRULES LINK SOLITARY LINE END 
CLSRULES:= CLSRULES LINK SOLITARY LINE END 
OPNRULES:= OPNRULES LINK SOLITARY LINE END 
ACTRULES!= ACTRULES LINK SOLITARY LINE END 
TERMRULES:= TERMRULES LINK SOLITARY LINE END 

SSLRULES:= 
SRVRULES:- 

'GEN' 
'QUE' 
'OSF' 
'HSB' 
'SSL' 
'SRV 
'RSC 
'RQU' 
'FRE' 
'ALT' 
'PMT' 
'CLS' 
'OPN' 
'ACT' 
'TRM' 
'MLT' 
'CBR' 
'MBR' 
'CON' 
'ASS' 
'TLY' 
'TIM' 
'INI' 
'SEE' 
'END' 
ELSE 

CODE.')> 
ABORT:« END_SIM:= I» 

ENDCASEI 
LINE!= EXECUTE READFILE NFILE* 

ENDWHILEJ 
CLOSE NFILEI) 

MULTRULES:> 
CBRNRULESJ' 

HULTRULES LINK SOLITARY LINE END 
CBRNRULES LINK SOLITARY LINE END 

: MBRNRULES:= MBRNRULES LINK SOLITARY LINE END 
: CONTRULES:= CONTRULES LINK SOLITARY LINE END 
: ASSNRULES:= ASSNRULES LINK SOLITARY LINE END 
: TALLYRULES:= TALLYRULES LINK SOLITARY LINE END 
: TIMRULES:- TIMRULES LINK SOLITARY LINE END 
: INITS:- INITS LINK SOLITARY LINE END 
I CHOOSE-SEED (SECOND LINE) END 
: TERMT:- SECOND LINE END 
EACH WRITESCREEN ' ' ((FIRST LINE) LINK ' NOT A VALID RULE 

Figure 8-1.  Nial Code for Read-Input Operation 
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expressions depending upon a key rules identifier.  Also 

note line 5 of Figure 8-1.  As it implies, the first line 

of every Input.Dat file must contain the name of the 

simulator, the date, and title of the run.  All these 

variables are entered as character strings. 

If the sets of operating rules within a given class 

are listed in Input.Dat in a continuous, logical order 

starting with rule number 1, no further action would be 

required by the NBDS program to organize the rules 

following READ_INPUT.  However, the general purpose NBDS 

package goes one step further by providing a set of rules 

sort operations which allow one to enter the rules into 

the script file in any order.  The sets of rules are also 

allowed- discontinuous numbering. The operation at the top 

level of these sorting procedures is named RULE_SORT.  It 

also performs the critical task of creating and 

initializing the arrays used to.maintain statistics on 

the various simulation elements.  Because rtvkeys on the 

number of elements in a given class, RULE_SORT %reat^s- 

just that amount of storage space required to collect 

statistics on the elements of that particular run. 

8.2  Statistical Analysis and Summary Report 

■*       Upon detecting the end of a simulation run, 

the general purpose NBDS control program exits the event 

proces-siTng loop and begins executing a series of 
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statistics update and reporting operations.  Update 

operations are used to update any time related statistics 

associated with a given simulation element.  For example, 

if service queues were used in a particular run, the 

operations UPDATE_Q and SUMMARY_Q would be executed in 

that order at the end of the simulation. UPDATE_Q updates 

time dependent variables related to service queue lengths 

while SUMMARY_Q estimates average queue lengths, waiting   * 

times in the queue and average times between balks from 

the queues.  In addition, SUMMARY_Q selects other 

pertinent data from Qstats, organizes all the summary 

data for output, and then prints a summary report of 

descriptive queue statistics.  Similar operations are 

carried out for other elements in the simulation.  Table 

8-1 summarizes the statistical results automatically 

printed at the end of a general purpose NBDS run for 

queues, activities, resource banks, time independent and 

time dependent variables. 

8.3  General Purpose NBDS Examples 

8.3.1  Basic Execution Procedures 

Assuming the user has already prepared a 

script file of operating rules and has access to a Nial 

workspace, the execution of a general purpose NBDS 

requires just three steps: 
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Table 8-1.  Output Statistics of a General Purpose NBDS 
Run 

Service and Resource Queues 

• Average queue length 

• Maximum queue length 

• Number of entities left in queue at end 

• of those entities receiving service, the 
average delay time in the queue for just 
those entities not immediately served 

-•• the average waiting time of all entities 
receiving service 

• Number of balks from the queue 

• Average time between balks from the queue 

Resource Banks 

• Current capacity of the bank 

• Average utilization of bank over time 

• Maximum number of resource units utilized at 
one time 

• Current number of resource units utilized 

Service Activities 

• Number of servers in activity 

• Current number of busy servers 

• Total numbers of entities served 
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Table 8-1. (continued) 

Service Activities (continued) 

• Average utilization of service activity 

• Fractional average of time the service 
activity is blocked 

• Average service time including wait in queue 

• Minimum service time including wait in queue 

• Maximum service time including wait in queue 

• Maximum idle time for a single server 
activity or the maximum number of idle 
servers at one time for a multiple server 
activity 

• Maximum busy time for a single server 
activity or the maximum number of busy 
servers at one time for a multiple server 
activity 

Regular Activities 

• Average number of entities routed over the 
activity at one time 

• Maximum number of activities routed over the 
activity at one time 

• Current number of entities engaged in 
activity 

• Total number of entities routed over 
activity 

Time Independent Variables 

• Mean and standard deviation of observations 

• Minimum observed value 

- 138 - 



Table 8-1. (continued) 

Time Independent Variables (continued) 

• Maximum observed value 

• Total number of observations 

Time. Dependent Variables 

• Mean and standard deviation over time 

• Minimum observed value 

• Maximum observed value 

• Current value 
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1. the script file of NBDS operations* 
is loaded into the workspace and 
evaluated using the command: 

LOADDEFS "NBDS.NDF 

(note:  for a silent load, use "NBDS 0) ^ 

2. the commahd GO is entered which 
initiates execution of the' control- 
program; at this point, an introductory 
header is printed followed by a listing 
of all the operating rules as they 
appear in the file Input.Dat, 

3. after all the operating rules are printed, 
a message follows requesting the user to 
check the input statements for obvious 
errors; if an error is detected, the user 
simply keys CTRL G which aborts the run 
and drops him back into the command mode; 
from there, the required corrections can 
be made by accessing the host editor with 
the EDIT "INPUT. DAT ..command; if cor- 
rections were needed, Step 2 is repeated;   
otherwise, the user simply keys RETURN 
which initiates execution. 

When the simulation is finished executing, a second 

header is printed containing all the information in the 

s   first line of Input.Dat (simulator's name, run title, and 
\ ■      . 

t 

/   date).  Also printed will be' the simulated start and 

finish times of the run.  Finally, the summary statistics 

V   will be printed for'^ifll those* elements in the simulation 

\ that appear in Table 8-1. 

V    *note:  the DECSYSTEM-20 would not allocate 
sufficient workspace to load NBDS.NDF in its entirety; 
therefore, the script of unused operations was replaced 
with the empty array NULL which preserved the operation 
in name but freed up needed workspace. 
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8.3.2  Computer System With preemptive 
Processing 

As a first example of a general purpose 

NBDS simulation, consider the computer system modeled in 

Section 7.2. An identification statement was added to the 

top of the list of operating rules shown in Figure 7-2 

and the entire set entered into the author's DECSYSTEM-20 

directory as the file INPUT.DAT.  After loading NBDS.NDF 

and entering the GO command, the header was printed along 

with an echo listing of the operating rules (in sketch 

mode) as shown in Figure 8-2. Upon checking the rules for 

errors and keying RETURN, a message indicating that the 

program was executing appeared. 

The output of summary results for this simulation 

run is displayed in Figure 8-3.  As shown, the run ended 

at simulated time 3600. Reported are the standard results 

for resource queues, resource banks, regular activities, 

and time dependent variables.  Statistics of interest for 

this particular run might include the memory queue length 

(average length of Que 1), waiting time of all jobs in 

the queue (average wait time in Que 1), utilization of 

computer memory (average utilization of Res 1), number of 

preemptions (count for Act 2), number of jobs processed 

by the CPU (count for Act 1), and average number of jobs 

in the system at one time (mean value for time dependent 

variable "Number Jobs in System.",), 
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O'Nial! Tuenex Release 1 Usnion 3.02 
clear uorkiFice 

LOADDEFS 'NBDS 0 
GO 

********************************* 
# * 
♦ General Purpose       ..# 
* Nial-Based « 
♦ Discrete Siaulations    ,' * 
* 

************ 
/ 

********************************* 

\ ;     }   \ ) 
Input Stateeents For COMPUTER SYSTEM EXAMPLE} 
+ + + +-+-+ 
IGEN1IASS1IEXP0N 2.5101 I 
+ + + +-+-+ 
+ + + +-+-+ 
IGEN2IASS2IEXP0N 20.010! I 
+ + + +-+-+ 
+ + + + + + 
IASS1IR0U1IATRIBC1):-1IATRIB(2>I=UNFRM 10 70 I GVARt 1 > :=GUAR( 1 > + l I 

+--V+ \ + + -— + 
IAS§2IPMT1IATRIB<1):«2IATRIB<2)I»N0RML 75 20!GVAR<1)J«GVAR<1>+lI 

+ +-—+-+ 
JRSC1J150111 
+ +-—+-+ 
+—-+ +-+-+-+-+ + + 
IRQU1ILVF2I0! I !1!ATRIB<2>IACT1I 
+ + +_+_+_+_+ + + 
+ +_+ + +_+ + + 
IPMT1I1IATRIB<2>IHV111!RQU1IACT2! 
+ +_+ + +_+ + f 
+ + + +_+ 

IACT1IFRE1IEXP0N 511 
+ + + +_+ 
+ + + +_+ 
IACT2IFRE1SN0RML 8 3.51 I 
+ + '-+ +-+ 
+, + -+ + + 

IFRE111 IATRIB<2>IACT3I 
+ +_+ + + 
+ + +-+ + 
IACT3!ASS3I IN/SI 
+ + +-+ ♦ 
+ + + + 

IASS3ITRM1I0UAR<1)J-GUAR(1)-1I 
+ + + + 
+ +~+ 
ITRM1I       t -■■  ■ 
+ +--+ 
+ +—., +_+ 
ITIMDINuabar Jobs in Swstee.il I 
+ + +_+ 
+ + + 
I END I 36001 
+ + + 

Check Input statements for obvious errors. If noner kew RETURN 
else keu CTRL G to abort run. 

Proarae. executing. Please wait...... 

Figure  8-2.     Echo  Listing  of   Rules   for  Computer 
System Run 
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SUMMARY RESULTS 

Run IdI COMPUTER SYSTEM EXAMPLE 
Slaulatorl RICK SELL, 
Run Data I t AUGUST 1764 

Simulation Startad I Tlaa  1 0 
Simulation Ended » Tlaa   I 3600 

• •♦• RESOURCE QUEUE STATISTICS ♦♦♦• 

QUEUE DELAY STATISTICS 

+ + + + + + 
IQua «l   Ava Lnath    .IMax LnathlNo. RaaainlAva Dal aw Tlaa * I 

I    1I3.1B27 +/- 3.53931       131 3111.368 ♦/- 2S.666I 

ARRIVAL TO START-OF-SERVICE STATISTICS 

+ ♦- -+ 
IQua *IAva Watt Tlaa ** IMax Halt TINo. BalkalAva T Btun Baikal 
+ 1 + + + + 

I    117.001* ♦/- 33.0041    3BI.B4I        Olno valua        I 
+ + +_ + + + 

a for thoaa arrlvala which do not iaaadlatalv acoulra raaourcaa 
** far  all arrivals .to oueua which acoulra raaourcaa 

Mil RESOURCE BANK STATISTICS •»#• 

+ + + + + * 
IRea tICurrent CareclAva Utilization  IHax UtlllCurrant Utlll 
4 + + + 1 + 
I    II           1301106.13 +/- 39.6111  149.941      103.461 
+ + + + + + 

*••• REGULAR ACTIVITY STATISTICS ***• 

+ + 1 ♦ y + 

lAct tIAva Utilization    IMax UtlllCurrant UtlllCount I 
f 4 + . + + + 

I    112.0323 +/- 1.1321  I       61 II 16331 

I    210.27763 ♦ /- 0.304031       21 
t 1 + 1. 

II  1341 
—♦ + 

»•♦• TIME DEPENDENT VARIABLE STATISTICS •••» 

t + + + 
IMln   ValueiMax   ValualCurrant   Veluel I   Mean Valua I Identification 

»   + 4 
INuaber Jobs In Sxateal3.3137 ♦ /- 4.00731 71 

 + 

Figure  8-3.     Summary  Results   for  Production  Line  Run 
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8.3.3 Serial Work Stations on a ProductionffLine 

After adding an identification statement 

to the beginning of the operating rules listed in Figure 

7-4, the example of the production line model in Section 

7.3 was simulated. The summary report is listed in Figure 

8-4 and -dembnstrates the standard set of results for 

service queues, service activities, and time independent 

variables.  Statistics of interest in this simulation run 

might include the number of autos waiting at each station 

for service (average queue lengths), the time those autos 

spent in the queue waiting for service (average delay 

time and average wait time),'the numberof" autos which 

had to be bypassed to storage in the yard (number of 

balks), the utilization of each work station (average 

utilization of service activity), fraction of time the 

workers at the first work station were blocked while 

transporting autos to the next two parallel stations 

(average blockage of Srv 1), and the average time a unit 

spent in the system (mean value for time independent 

variable"Time in System).  Also generated by this 

simulation run was a histogram displaying the 

distribution of times-in-the-system for all the autos 

processed (see Figure 8-5). 

13& 3 . 4  Traffic Light 

For the sake of completeness, the traffic 
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Run Id! PRODUCTION LINE EXAMPLE 
Slaulatorl RICK SELL 
Run Data) 1 AUGUST 1984 

Slaulatlon Startad I Till  I 0 
Slaulatlon Endad 9   Tlaa    t 1000 

♦ HI REGULAR 0.UEUE STATISTICS •••» 

QUEUE DELAY STATISTICS 

+ 1 + + + ____+ 
IQua »l   Ava; Lnath      IMax LnathI Ho. RaaalnlAva Dalau Tlaa * I 
+ + + + +_: .—j 
I    111.2481 ♦/- 1.1297  I        31         2134.834 +/- 21.0941 
+ + + + + + 
I    210.88165 +/- 0.323021        II 1134.534 +/- 19.2291 
T + + + + T 
I    310.85425 +/- 0.332861        II         1140.925 +/- 22.8511 
f 1 + + + _ 1 

ARRIVAL TD 8TART-0F-SERVICE STATISTICS 

{Qua »IAva Ualt Tlaa *« IHax Walt TINo. BalkalAva T Btwn Balks I 
+ T + + + r 
I    1122.578 +/- 26.8091    106.871        6160.137 +/- B1.26SI 

I    2131.976 ♦ /- 20.6461    73.0721        Olno valua I 

I    3135.587 ♦ /- 25.4871    107.051        Olno valua I 
+ f :,+ + 1 : ♦ 

* for thoaa arrivals which do not racalva laaadlata aarvlca 
»* for all arrivals to ouaue which racaiva sarvlc* 

**** SERVICE ACTIVITY STATISTICS «•♦♦ 

UTILIZATION-RELATED STATISTICS 

+ +__-__-„_+ + + +  
ISrv *INo.   SrvrslNo.   Bus* » End I No.   SrvdlAva Utilization          lAvg Blockaaa 
4 + + + + +  
I li 21 21 5310.55139   +/-   0.339851 0.35547 
T T + + + i  
I    21        II             II      2610.97205 +/- 0.164841         0. 
t 1 + + + +  
I    31         II              II      2210.92174 ♦ /- 0.268581          0. 
+ + + + + +  

SERVICE TIME-RELATED STATISTICS * 

+ + + + + f + 
ISrv tlAva Sarvica Tlaa IHln Srv TIMax Srv TIMax Idla T/SrvrslMax Buaw T/Srvrsl 
+ + + «. + 1 r 

I    1143.053 +/- 27.9661   8.88961   130.041                21  '             21 
+ ., + + + + 1 
I    2168.846 ♦ /- 27.34 I   13.8061   142.281 17.921 938.241 
T 1 + + + + + 
I    3175.074 +/- 31.7371   12.5631   128.121           64.1311          894.631 
f i + + T + + 

* includa wait in auaua 

»••* TIME INDEPENDENT VARIABLE STATISTICS ♦ ♦## 

t + 1 (. + + + 
lldantlflcatlonl   Maan Valua   IHln ValualMax ValualNo. Obarvsl 
+ + + + + ♦ 
ITlaa in Swstaa1128.32 T/- 49.791   27.9941   220.431        481 
f f 1 + 1 ♦ 

Figure  8-4.     Summary  Results   for   Production  Line  Run 
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HISTOGRAM FOR Tin* in Sw»t« 

I 

+ +— -+ + — —+-  +— —+ —  +   + 
1 Count 1 IRcl Freal ICu» Freal ICell Ll»ltl 20 40 60 80 1001 

1    31 1  0.06251 1 0.06251 1 401*** 1 

1    01 1      0. 1 1 0.06251 1 ^0.66'T'l  C 1 

1    11 

1    01 

10.0208331 IC I.0B3333I 1 61.3331*  C ! 

1      0. 1 IC 1.0833331 1 72.1   C 1 

1    SI 1 0.104171 1 0.18751 1 "•§236671***** »C 1 
+ + — •- + + — -+-  + -- ._+_.  +  
1    11 10.0206331 1 0.208331 1 93.3331* c 1 
+ +— ._+ + — —+-  + — —+-  +   + 
1    71 1 0.14S83I 1 0.354171 1 104.1******* C 1 

1    61 1   0.1251 1 0.479171 1 114.671****** c 1 

1    21 10.0416671 1 0.520831 1 125.331** C 1 
+ + — •- + + — —+-  + -  + ._.  + 
1    31 1  0.06251 1 0.5B333I 1 136.1*** C ' 
1    31 1  0.06251 1 0.645831 1 146.671*** C 1 

1    41 10.0833331 1 0.729171 1 157.331**** C I 

1    21 10.0416671 1 0.770B3I 1 168.1** C 1 
+ +-■ —+ +~ — + -  + -■ —+-  +  
1    01 1      0. 1 1 0.77083 1 1 178.671 C 1 

1    31 1  0.06251 0.833331 1 189.331*** c 1 

1    3! 1  0.06251 0.895831 1 200.1*** c :     i 

1    51 1 0.104171 1 1. 1 II nfinitw  1***** *' Cl 

1   481 1         1 1 1 1 1 20 40 60 80 1001 

Figure 8-5.  Histogram for Production Line Run 



light example in Section 7.4 was simulated with the 

operating rules listed in Figure .7-6.  The summary report 

is displayed in Figure 8-6.  Obviously the statistics of 

interest for a traffic light simulation would be the line 

length of cars stemming in both directions from the light 

(average queue lengths) and the time a driver had to wait 

at the light until he could pass (average wait time in 

queue). 

- 146 - 



.SUMMARY RESULTS ******** 

Run Idt TRAFFIC LIGHT EXAMPLE 
81.ul.torl RICK SELL 
Run Date I IS JULY If84 

Slaulatlon Started t Tiaa  t 0 
Simulation Endad 0 Tlaa    I 3600 

• •at RESOURCE QUEUE STATISTICS »••♦ 

QUEUE DELAY STATISTICS 

+ +  
I Qua *l  Ava Lnath 
+ 4  
I    112.MM ♦/- 2.3983 
4 +  
I    213.7688 +/- 3.383 
4 4  
I    310.11577 +/- 0.31994 
+ 4  

Max LnathlNo. RaaalnlAva Da law TiM * I 
 + + + 

141         8123.846 +/- 18.3891 
 4 + 4 

151         3130.021 ♦/- 17.2S9I 
 4 4 + 

II        1122.903 +/- 13.0971 

ARRIVAL TO START-OF-SERUICE STATISTICS \-' 

- ♦ 1 
lOua flAva Walt Tlaa ** IMaK Walt TINo, BilKllAvi T Btwn Bilktl 
4 .f -, 4 4 + + 

I    1117.890 ♦/- 19.3331    103.641        Olno valua        I 
4 4 ;.-4 : 4- 4 _f 
I    2)26.03 ♦ •- 19.037 I    80.6921        Olno valua        I 

I    318.4648 ♦ /- 14.3321    44.1081        Olno valua        I 

* for thosa arrivals which do not laaadlatalw acaulra raaourcaa 
l~t for all arrival! to auaua which acaulra raaourcaa 

• ••• RESOURCE BANK STATISTICS »•«• 

4 4 4 4 4         I 
IR.i 4 I Currant CaraclAv* Utilization    IMaK UtlllCurrant Utlll 

I    II             110.38297 ♦ /- 0.486111       II            II 
4 4 + 1 + + 

I    21 110.37902 +/- 0.483141       II II 

«♦♦» REGULAR ACTIVITY STATISTICS • ••• 

4 4 4 + 4 j 
lAct IIAvl Utilization     IMaK UtlllCurrant UtillCountl 
4 4 + ,+ + + 

I    110. ♦/- 0. I        II 01  4131 
4 4 + + 4 4 
I           310.012778   + /-   0.112311                    II                             01         461 
4 4 4 4 4 4 
I           610.    W-   0.                              Ill                             01      3191 
4 4 4 4 + 4 

SIMULATION RUN COMPLETE!I I 

Figure   8-6.      Summary  Results   for   Traffic 
Light   Run 
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9.  Verification of Modeling Elements 

Each NBDS modeling element presented in this 

thesis underwent a battery of manual checks to verify 

that the functional units of code performed as they were 

intended, generating the correct statistical results.  In 

addition to simple hand simulations on paper, visual 

run-time checks were carried out by taking advantage of 

Nial's useful "picture" facility.  Entire arrays 

containing statistical data or entity records filed iyf a 

queue or on the event calendar were output before and 

after each important step by inserting simple "write" 

commands in the code.  For instance, a WRITE QSTATS 

command placed before and after a record was filed in a 

queue would display the entire contents of the 

statistical array QSTATS.  The components of the array 

acted upon during the event were then immediately checked 

for correctness.  Another useful facility was the BREAK 

command; when encountered during execution, evaluation of 

the expression it was contained in would stop 

immediately, giving the user total control of the 

environment.  The contents of any array or the value of 

any variable could then be. inspected by simply entering 

its name.  By typing RETURN,, execution resumed at the 

exact point where it was interrupted. 

To present verification checks for each NBDS 
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modeling element is beyond the scope of this thesis. 

However, the application of some basic queueing theory 

will demonstrate that the underlying queueing principles 

of the elements are valid. 

The basic theory of a single-server queueing system 

was developed by Khintchine and Polloczek and results in 

the following formula (17): 

E(w) = r 
2(1 -P) 

\ 1 + 

/>' 

crt. 
E(t ) s _ 

> (5) 

W* 

where  E(w)  = mean number of items waiting for service 
(not including one being served) 

P =  facility utilization of one serving 
facility 

E(t ) = mean service time for all items s 

CTt    = standard deviation of service times s 

This formula is used to make queue size estimates in a 

variety of applications.  It applies to exponential 

interarrival times, any distribution of service time's, 

and any dispatching discipline provided that its 

selection of the next item to be serviced does not depend 

on the service time. 

To test whether this formula applies to the queueing 

mechanisms built into the NBDS modeling elements, a set 

of operating rules (like the ones in Section 7.1) were 

created to model a single-server queueing system. 

Exponential interarrival times and service trmes were 
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specified with mean values of 5 and 10 time units 

respectively.  A series of 25 general purpose NBDS runs 

were conducted with this set of rules, each with 

different initial seed values for the random number 

generators.  Each run was allowed to proceed until 1000 

entities were processed. 

Having collected 25 independent determinations for 

E(w), its sample mean and standard deviation were 

estimated.      Table   9-1   lists   those   results   as   0.481± 0.093 

respectively along with the individual values of E(w) for 

each run. Since G"t  = E(t ) for exponential distributions s      s       c 

and 1° = 0.50*, the Khintchine-Polloczek formula predicts 

E(w) to be 0.50 for these simulation runs.  Assuming 

the results for E(w) are normally distributed, a 

test-of-hypothesis was performed to determine whether the 

queueing model agrees with the P-K theory.  The test 

statistic used was: 

,   x - u 

where  x = sample mean 

u = population mean 

s = sample standard deviation 

n = sample size 

* /° = E(n)«E(tJ where E(n) is the inverse of the 
interarrival time. 

- 150 - 



Table 9-1. Results of Queueing Model Verification Runs 

Seed Observed 
Stream E(w) 

1 0.394 
2 0.468 
3 0.440 
4 0.644 
5 0.496 
6 0.364 
7 0.490 
8 0.412 
9 0.502 
10 0.582 
11 0.485 
12 0.372 
13 0.337 
14 0.610 
15 0.68 0 
16 0.463 
17 0.524 
18 0.396 
19 0.475 
20 0.558 
21 0.410 
22 0.449 
23 0.635 
24 0.466 
25 0.384 

x = 0.481 

s = 0.093 

s / «fn 

0.481 - 0.50 
0.093 / f75 

1.018 

d.f. = n-1 24 
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Equation 6 has a student's t distribution with (n-1) 

degrees of freedom (18). 

To reject the null hypothesis that E(w) = 0.50 at a 

0.05 level of significance, the absolute value of t must 

exceed 2.064 for a two-tailed test (18). Substituting the 

given values of x, u , s, and n into Equation 6 yields a 

value of 1.018 with 24 degrees of freedom. Therefore, the 

null hypothesis is not rejected and NBDS is shown to be 

an adequate tool for ^simulating the behavior of normal 

queueing systems. 
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10.  Prototyping Special Purpose Simulations With NBDS 

The largest tasks involved in prototyping 

special purpose NBDS systems are understanding the 

individual modeling elements, their associated set of 

operating rules, and the organization of those rules 

within the NBDS program.  Once this has been accomplished 

and a model of the system of interest is in hand, the job 

is reduced to designing a user interface for entering the 

variables of the system into the NBDS program and 

designing a summary report of the results. Since users of 

the prototype should not be required to understand how to 

use NBDS itself, the batch technique of inputting the 

operating rules to the program employed by the general 

purpose NBDS package is unacceptable.  Therefore, the 

basic structure of the operating rules used in the 

simulation must be defined beforehand followed by an 

interactive mode by which the user inputs only those 

rules (or variables) of interest.  Likewise, a prototype 

simulation package should not have to rely on the 

generalized summary report provided by the general 

purpose program.  More descriptive headings are required 

and only those descriptive statistics that are pertinent 

to the simulation should be reported.   ""''      "^ 

This next section will highlight some of the basic 

operations of input and output for specialized NBDS 
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packages.  The integration' of those procedural operations 

with the baseoperations already provided by NBDS will 

also be discussed.  However, in order to provide a basis 

for that discussion, this section will begin by 

presenting an example of a specialized NBDS prototype 

that could be used by telecommunications network 

analysts. 

10.1  Communications Line Simulation Prototype 

10.1.1  Description of Model 

This prototype simulation package was 

designed to investigate the behavior of a full-duplex 

multidrop communications line linking several terminals 

to a central computer.  Since terminals along a multidrop 

line must share the line, a queueing problem will develop 

for both input and output messages.  Of particular 

interest is the average response time of messages sent 

from the terminals (ie. time interval from the operator's 

pressing the last key of the input to the terminal's 

displaying of the last character of the response).  In 

this model, two types of messages are allowed, each 

having its own distribution of input/output*character 

lengths and each having the ability to be assigned its 

own queueing priority. 

Figure 10-1 displays the network diagram of this 

system.  Note how service queues and activities are used 
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Figure 10-1.  Network Diagram of Communications Line Model 



\ 

to simulate the input and output lines respectively. Only 

one GENERATE node is used to represent the arrival of all 

input messages to the system.  Also note the use of a 

CONDITIONAL BRANCH node and ASSIGNMENT nodes to 

\ characterize the different percentage and type of each 

input message.  Regular activities are used to model the 

time spent in the computer by each message.  TALLY nodes 

preceeded by CONDITIONAL BRANCH nodes are used to collect 

statistics throughout the network. 

10.1*2  Execution of Program 

The script file of operations for this 

package is named COMLINE.NDF and also resides in the 

Lehigh University Computer Center tape library under 

Volume Serial Number JCW002.  Like the general purpose 

NBDS script file, COMLINE.NDF is loaded into a Nial 

workspace using the "loaddefs" command.  Once loaded, 

program execution begins by typing GO.  At this point the 

initialization steps are performed by the INITIALIZE 

operation and operation PRINT_INTRO prints a header and 

message describing the purpose of the simulation package. 

Next follows a lengthy dialog containing a mixture of 

question-answer statements and menu listings.  This 

interface is carried out by READ_INPUT and allows1 the 

userjto input all the variables required by the program. 

Figure 10-2 displays a sample of this input session. 
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O'Nlal! Iwenex RtJiiii 1 Version 3.02 
clear workspace 

LOADDEFS 'COML1NE 0 
00 

* ♦ 
* Mlal-Based • 
* Special Purpotf Slaulations  t 
* Prototype < 
* t 

SIMULATION  OF   FULL-DUPLEX 

COMMUNICATIONS   LINE 

The following special purpose siaulatlon Is deslaned to investigate 
tha bahavlor of a full-duplex Multidrop coaaunlcatlans Una linklna 
aavaral terelnals to a cantral coaputar.  Tha line handles two types 
of Input ■»■!»•* Type A and TWP* B» whose character lengths and 
dispatching Priorities ara uaer-deflnad*  To datrralna aueue lengths 
for Input and output as wall as teralnal response tlaes for Individual 
aessage tvpesr supply the following lnforaatlonl 

1. Froa tha following what probability distribution describes the 
tlae between arrivals (in seconds) of Ml input transactions! 

1. UNIFORM * 
2. EXPONENTIAL 
3* NORMAL 
4. ERLANO 

Enter nuaber of choice! 4 
Enter aean and nuaber of exponential aaaples! 0.7  3 

2. Enter the fraction of input transactions that ara of Type Al 0.30 

3. Froa tha following* what probability distribution describes the 
input aesaase character lenaths of Type A transactions? 

1. UNIFORM 
2. EXPONENTIAL 
3. NORMAL 
4. ERLANO 

Enter nuaber of cholcet 2 
Enter expected value! 50. 

4. Froa the following, what probability distribution describes the 
input aessaae character lenatha of Type B transactions? 

1. UNIFORM 
2. EXPONENTIAL 
3. NORMAL 
4. ERLANO 

Enter nuabar of cholcet 2 
Enter .expected value! 43. 

3. How do input transactions contend for the line? 

1. FIFO 
2. LIF0 
3. Type A First 
4. Type B First 

Enter nuabar of choice! 1 

Figure   10-2.      Input   Session   From Communications 
Line   Prototype 
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6. Enter Input 1 ine preparation tin* (seconds)1 O.S 

7. Enter the line speed (characters/second)! 600 

8. Fro* the following what probability distribution describes the 
length of time (seconds) Type A messages spend In the computer? 

1. UNIFORM 
2. EXPONENTIAL 
3. NORMAL 
4. ERLANG 

Enter number of choicel 3 
Enter expected value and standard deviationl 1.0  0*3 

9. Fro* the following* what probabllltw distribution describes the 
lendth of time (seconds) Twpe B messaaei spend in the computer? 

1. UNIFORM 
2. EXPONENTIAL 
3. NORMAL 
4. ERLANG 

Enter number of choicel 1 
Enter minimum and maximum values! 0*2  2.0 

10. From the following what probability distribution describes the 
output message character lengths of Twpe A transactions? 

1. UNIFORM 
2. EXPONENTIAL 
3. NORMAL 
4. ERLANG 

Enter number of choicet 3 
Enter expected value and standard deviationl 750.  530. 

11. From the following* what probabllltw distribution describes the 
output mes&ade character lendthe of Twpe 0 transactions? 

1. UNIFORM 
2. EXPONENTIAL 
3. NORMAL 
4. ERLANG 

Enter number of choicel 3 
Enter expected value and standard deviationl 395.  200. 

12. How do output transactions contend for the line? 

1. FIFO 
2. LIF0 
3. Tape A First 
4. Tyre P First 

Enter number of choicel 4 

13. Enter output line preparation time (seconds)1 0.7 

14. Enter desired length of   time (minutes) for simulation! 60 

15. A histogram of response times for all transactions is provided. 
Enter bcs.t estimate of minimum and maximum rinse (seconds)1 2.0  7.5 

16. Enter teed stream number (from 1 to 10) for random number sieneretorl 5 

Prouram eHecutinS. Please wait  

Figure   10-2.      (continued) 
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Note the menus of probability distributions and queueing 

priorities to choose from in most of the queries.  Input 

variables requested by the program include:  interarrival 

times of input messages, message size distributions, 

fashion in which messages contend for the input and 

output lines, line speed, line preparation times, and 

length pi   time for the simulation run.  The user is also 

asked to supply a minimum and maximum estimate of all 

response times to set the limits of a histogram 

summarizing those results. 

Upon supplying all the necessary information, 

execution of the simulation run begins followed by a 

printout of the summary results (shown in Figure 10-3). 

The summary results contain queue length and utilization 

statistics for the input/output lines, transmission times 

of input/output messages, and response times for each and 

all message types.  Counts of each message type are also 

given.  The summary results conclude with a histogram 

illustrating the distribution of all response times and 

is shown in Figure 10-4. 

10.1.3  Initialization and Input of Operating 
Rules 

Since the user of an NBDS prototype 

only supplies some c*£ the operating rules to the 

simulation program, the basic framework within which they 
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SUMMART RESULTS 

Simulation Startad t Hinuta  I 0 
Simulation Endad ■ Mlnuta    I 60, 
Sa«d Straaa Nuabar I 3 

LINE STATISTICS * 

I Lin*  lAva Quaua Lanath 
-+-- -♦— 

IHax Quaua LanathlAva Halt For Lina lAva Lina Utilization! 

Ilnrut   I0.00423B4   ♦/-• 0.0649631 

lOutrutlO.49637   ♦ /-  0.81313        I 
♦ + r- 

110.0087472   +/-   0.04707610.27234   +/-   0.44326   I 
__+ + + 
611.0486   +/-   1.9142 10.73346  +/-  0.429B1    I 

INPUT   TIME   STATISTICS   * 

—+  
IMaasaaa Tx*a    I   Haan U»lua       IHin UalualHax ValualNo. Obarva 

ITwra A          10.39714 +/- 0.10309 I  0.300211   1.27361 471 

ITwra B          10.57933 +/- 0.0B8684I  0.300031   1.24331 1234 

IA11 TranaactionalO.38439 +/- 0.0938031  0.300031   1.27361 1703 

OUTPUT TIME STATISTICS * 

+ +  
IHIIIKI TUP* I       Haan Valua 

I TUP.  A 14.0603   +/-   3.2648   I 

IHin  ValualHax ValualNo.   Obsrval 

0.728641        23.3031 4711 
+ + + +_. 
12.1044 ♦/- 0.932961  0.70837.1   6.81361 ITvra » 

I All Tranaactianal2.6433 +/- 2.0893 I  0.708371 

12321 

23.3031      17031 

^>5*v 
RESPONSE TIME STATISTICS * 

IHaaaaaa Twpa 
t  
ITxra A 
♦  
ITwra B 
t  
I All Raaponaa TiaaaI 4.3082 +/- 
+ +  

-4 + + + + 

I   Haan Ualua    IHin ValualHax ValualNo. Obarvll 
.+ 1 + + + 

13.686 +/- 3.3028 I    1.6091   24.9791       4711 
-+ + 1 + + 

13.7814 ♦/- 1.02411   1.74931     B.72I      12321 
.+ 1 1 + j 

17031 
 1 

2,12071 
 +- 

1.6091   24.9791 
 + +. 

a All tlaaa in aaconda 

Figure   10-3.      Summary  Results   for  Communications 
Line  Prototype 
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HISTOGRAM FOR All Rempome Tines 

+ +-- 
ICount i 
+ +-- 
1   161 

-+- 
IR 

■- + - 
10 

 +- 
tl Freo 1 

.00939521 

—+- 
IC 

10 

 +— 
ua Frma   1 

.00939521 

- + -- 
IC. 

-+— 
1 

 +  
11 Liaitl       20 40 60 80 

 4. 

1001 

2. IC 1 

1   671 1 0.0393421 1 0.0487381 1 2.3667UC 1 

I  1111 1 0.0651791 1 0.11392! 1 2.7333ISS* C 1 

1  1G7I 1 0.109811 1 0.223721 1 3.11 *****     C 1 

1  2311 1 0.135641 1 0.359371 1 3.4667!****** C 1 

t  2301 1 0.135061 1 0.494421 1 3.83331****** C 1 

1  2091 1 0.122721 1 0.617151 1 4.21****** C 1 

1  1551 1 0.0910161 1 0.708161 1 4.56671**** C 1 

1  124 1 1 0.0728131 1 0.780971 1 4.93331*** C 1 

1   B7I 1 0.0510861 1 0.832061 1 5.31** C 1 

1   731 1 0.0428661 1 0.874931 1 5.66671** C       1 

1   501 1 0.029361 1 0.904291 1 6.03331* C     1 

1   281 1 0.016442! 1 0.920731 1 6.41 C    1 

1   251 1 0.014681 1 jQ. 935411 1 6.76671 C    ! 

1   101 
+ +- 
1    91 

1 0.0058721 
__+ * + _ 

10.00528481 

1 

1 

0.9412BI 
 + - 
0.946561 

1    7.13331 
—4- +  

i>K>         7.5! 

C   1 
 + 

C   1 

1   911 1 0.0534351 1 1. 1 II nfinity  1** Cl 
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 + - 
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—+- 

1 
 +- 
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—+ - 

1        20 40 60 80 1001 

Figurj; 10-4.  Histogram for Communications Line Prototype 



reside must already exist by the time the READ_INPUT 

operation is executed.  Therefore, it is the job of the 

one who designs the simulation package to define each set 

of operating rules used by the model before execution 

begins.  Furthermore, where member rules exist that must 

be supplied by the user, a position must be reserved for 

them in their parent array so as to maintain the critical 

ordering of rules within that set. 

As an example of how this is carried out in COMLINE,. 

NDF, the code for the initialization operation INIT_RULES 

is illustrated in Figure 10-5.  Each set of operating 

rules used by the program is defined in that operation. 

Note how the first position of each class of rules is a 

blank character string.  This is to maintain the 

correspondence between the integer number of each set of 

rules and its position in the array at the top level (ie. 

there can be no set of Qrules identified as QUEO);  Also 

note the use of asterisks in many of the rule sets. These 

represent rule elements within a character"'StT>ing or 

individual rules themselves that must be supplied by the 

user during the query session.  For instance, observe the 

set of Genrules as it appears after the initialization 

operation is executed: 
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INIT_RULES IS ( 
GENRULES:= ' ' LINK SOLITARY CGEN1' 'CBR1' '* *' 0 ' ')f 
CBRNRULES:= ' ' LINK SOLITARY CCBR1' CRANNUM <=*' 'ASS1' 
CRANNUM>*' 'ASS2')> LINK SOLITARY CCBR2' ( 
CATRIB<1>=2' 'TLY2')) LINK SOLITARY ('CBR3' 

'TLY4'))i 
' LINK SOLITARY CASS1' 'QUE1' 
*)/*)+*') LINK SOLITARY CASS2' 
*>/*>+*') LINK SOLITARY CASS3' 
*)/*)+*') LINK SOLITARY CASS4' 
*)/*>+*') i 

LINK SOLITARY ( 

CATRIB(1>=2' 
ASSNRULES:= ' 
'ATRIB(2)=<<* 
'ATRIBC2>=<<* 
'ATRIB<2)=<<* 
'ATRIB(2)=<<* 
QRULES2= ' 

ATRIB<1>=1' 'TLY1') 
<'ATRIB<1>=1' 'TLY3') 

'ATRIB<1)=1' 
QUE1' 'ATRIB(1)=2' 
0UE2' 'ATRIB<3)=CL0CK' 
GUE2' 'ATRIB(3>=CL0CK' 

SRVRULES! 

TALLYRULES: 

LINK SOLITARY ( 
' ' LINK SOLITARY 

LINK SOLITARY < 
'   '    ' LINK SOULIARY 

LINK SOLITARY 
LINK SOLITARY 
LINK SOLITARY 

SOLITARY CTLY5' 
SOLITARY CTLYA' 

QUE1' '*' 0 ' 
QUE2' '*' 0 ' 
CSRV1' 'CBR2' 
CSRV2' 'CBR3' 
CTLY1' 'CON1' 
<'TLY2' 'C0N2' 

' ' 'SRU1' 
' ' 'SRV2' 

'ATRIB<2)' 
'ATRIBC2)' 
' 'Tape A' 

'Tape B' 

) 
a 
i ■ 
l ■ 

) 

'TRM1' 

LINK 
LINK 
LINK ,SvOLI 
CHI 

CONTRULES:= ' ' L 
CC0N2' 'ACT2')r 
ACTRULES:=» ' ' LINK SOLITARY <'ACT1' 

LINK SOLITARY <'ACT2' 
TERMRULES:= ' ' LINK SOLITARY CTRM1' 
QSFRULES:= VOYDf) 

CTLY3' 'TLY5' 'Tape 
CTLY4' 'TLYA' 'Tape 

'TLY7' 'Tape A' 'TSYS' 
'TLY7' 'Tape B' 'TSYS' 

'TSYS') 
'TSYS' ) 
'INTO)') 
'INT<3>') 
) 
) 

All Response Times' 'TSYS' 

('C0N1' 'ACT1') LINK SOLITARY r 
ASS3' 
ASS4' 
'    ' )» 

'N/S'    > 
'N/S')f 

Figure   10-5.      Nial  Code   for   INIT_Rules   of 
Communications  Line  Prototype 
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+_+ + 

+ f + f._+_ I 

.■GENI.'CBM i* *:o: : 

r( 
The character string '* *' represents the time interval 

between generations where the individual asterisks 

represent the probability distribution and its associated 

set of parameters requested by query No. 1 of the input 

session.  The more complicated sets of asterisks in the 

Assnrules represent the probability distributions and 

their associated parameters describing the individual 

message lengths, the line speed, and the line preparation 

times respectively.  They compute to the service times 

used by each entity in downstream service activities ...and. 

are stored in ATRTB(2). 

Once the operating rules have been defined in the 

initialization step, it's the job of the READ_INPUT 

operation to replace each variable represented by a 

symbol with a real value prompted from the user.  This is 

done by inserting the value returned by a "read" 

operation into its corresponding position in the 

designated set of operating rules. For instance, consider 

the following segment of code which executes the first 

query shown in Figure 10-2: 
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EACH WRITESCREEN ' ' 
'1. From the following what probability distribution describes the ' 
'   time between arrivals (in seconds) of all input transactions?'? 
GENRULES:= ((LINK ((CHOOSE_DIST CHOOSE-PARAMS) (0 2) FLACEALL 

(THIRD SECOND GENRULES))) 2 PLACE SECOND GEfrRULES) 
1 PLACE GENRULES? 

The operation CH00SE_DIST supplies the menu of 

probability distributions, reads the choice of the user, 

and returns as its value the distribution code 

corresponding to the user's choice.  Likewise, CHOOSE^. 

PARAMS prints the statement requesting the parameters 

associated with the given distribution and returns as its 

value the parameters read by it.  Each value is then 

inserted into the first set of Genrules at the positions 

held by the asterisks.  The result is a completed set of 

Genrules pictured below: 

+-+- 
+ + + (■-■(-+ 

:GENI;CBRI:ERLNG 0.7 3:0: : 
+ -"- — + +  -4. .- + -4 

+-+- 

This same technique was used in all the queries of READ_ 

INPUT where dummy rules needed to be replaced with real 

values. 

10.1.4  Access to Statistical Arrays for 
Summary Report 

Section 4.4 detailed the organization of 
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the statistical arrays created for each class of modeling 

elements in an NBDS simulation run. Those classes include 

both types of queues, both types of activities, resource 

banks, designated time dependent variables, and 

designated time independent variables.  Each time a class 

of modeling elements is represented in an NBDS^simulation 

run, a two-dimensional array is created for that set with 

each row but the initial dummy one belonging to a given 

modeling element within that class. It is the task of one 

developing a prototype NBDS package to selectively pick 

from these arrays the data he wishes to process and 

report at the end of a simulation run.  To aid in this 

procedure, Appendix C details the components maintained 

by every statistical array in NBDS.  The components are 

listed in order of their column position in the array and 

are identified by the variable names used within the NBDS 

program.  Each component is also accompanied by a brief 

description of its role in the array. 

In some cases, the statistical components of 

interest need no further processing before reporting (eg. 

maximum queue length, number of entities served, etc.). 

These data are simply selected from the given array using 

the appropriate address and placed in another array 

designated for output. However, in instances where sample 

means and standard deviations are required, additional 
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• processing is required.  Sample means based on 

observations are simply calculated by dividing the array 

member holding the accumulated sum of observations by the 

array member holding the count for that variable.  Sample 

means for time-persistent variables are calculated by 

dividing the array member holding the accumulated sum of 

the x(t)»dt statistic by the program variable CLOCK 

(total time interval).  Standard deviation calculations 

are more complicated and require the use of the specially 

built operations STDV and GRPSTDV.  STDV is used for 

statistics based upon observations and requires as its 

\arguments the previously estimated mean, the array member 

2 
holding the accumulated'sum of the x  statistic, and the 

array member holding the observation.count for that 

variable.  GRPSTDV is used for time-persistent variables 

2 
and requires as its arguments the accumulated x (t)•dt 

statistic, the program variable CLOCK, and the previously 

calculated mean. 

To demonstrate how some of these calculations are 

carried out at the end of a simulation run, consider the 

array of accumulated statistics for the queue node QUEl 

as it existed at the end of the COMLINE simulation just 
f 

presented: 

o 0 1 34C5.6 15.258 15.258 15.258 3.9129 0.50864   93 1705 0 0 0 0 0 
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If the above array is assigned to the variable Qdat, the 

following expression would estimate the average waiting 

time, Avgw, of all entities receiving service at QUEl: 

Avgw: = (6 pick Qdat)/(10 pick Qdat) 

where the accumulated sum of waiting times (15.258) is 

held at address 6 and the count of entities passing 

through the queue (1705) held at address 10. Furthermore, 

the standard deviation of waiting times, Stdw, is 

estimated with: 

Stdw: = STDV Avgw (7 pick Qdat) (10 pick Qdat) 

where the accumulated sum of squares of waiting times 

(3.9129) is held at address 7. 

10.1.5  Output of Summary Results 

Nial provides two useful operations for 

outputting information to a screen or printer—the 

WRITESCREEN and WRITE operations.  WRITESCREEN displays 

the value of its character string argument and was used 

to generate the introductory script and table headings in 

all the NBD.S examples illustrated in this thesis.  The 

WRITE operation displays the value of its argument and 

was used to print all the summary statistics. As with all 

data in Nial, the results are expressed as arrays which 

can contain a mixture of data types.  Each row in the 

tables of statistical resujJ.££f\<T-e>g>re'sents a single array 

or list of data objects. For instance, the array pictured 
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below is a list of character strings containing all the 

column titles for the table Response Time Statistics of 

COMLINE: 

\ 

message   Typeirtean   ValueJMln   ValueiHax   UalueSNo.   Obsrvs! 
+ + + + + + 

The next array contains the data of the second row of 

Response Time Statistics; note the mixture of data types: 

[Tape fl:5.684 +/- 3.302B!1.60?i24.979 1471 i 
+ + + 1 + + 

After all the necessary calculations have been made and 

the chosen data arranged into arrays like those above, 

the results are conveniently arranged into tables using 

the primitive "mix" operation. A "mix" of a list of lists 

of the same length results in a table with the lists as 

rows. To illustrate this, assume the two arrays presented 

earlier are assigned to the variables A and B 

respectively.  Observe the effect of the next assignment: 

RESULTS:- solitary A link solitary B 

+ + + 
1+ + + + + +|+ + + + + +| 
:!Messa«e TspelMean ValuelMin UaluelMax UaluelNo. Obsrvs ! i I Tupe A,'5.68iS +/- 3.302B ■ 1.60? ! 24. 97? M71 I I 
i + + + + + +: + + + + +—+1 
+ ~ + + 

Here the variable RESULTS becomes a list of 'the 

lists A and B.  Now observe the effect of the "mix" 
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operation on RESULTS; 

•l« RESULTS 

+ + + + + + 
!he*sasle TupeEHean Value      !Hin Yaluelrtax ValueiNo. Obsrvs! 
+ + '-; 1 + f + 
!T*pe A      .'S.A84 +/- 3.3028:    1.609!   24.979!       471! 
+ + + + —+ + 

This technique was used to generate all tlje tables of • 

summaVy statistics displayed in NBDS examples throughout 

this thesis.  Histograms also begin as a list of solitary 

arrays with each array representing an individual cell of 

the histogram.  The "mix" operation is used to create its 

final form. 
r 

10.1.6  Integration of Operations into a Working 
Program 

Once all the input and output operations 

of an NBDS prototype have been defined, the simplest way 

to create a working program is to edit those operations 

into the original script file of baseoperations for the 

general purpose NBDS package (NBDS.NDF).  In many cases 

operations designed for a special purpose simulation have 

a similar function to ones in the general purpose 

package.  When this occurs, the easiest thing to do is 

replace the general purpose operation with the new one 

while retaining its original name.  For example, the INIT_ 

RULES operation of COMLINE.NDF shown in Figure 10-5 

replaced the generalized operation by the same name in 
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NBDS.NDF.  Likewise, the READ_INPUT, SUMMARY.Q, and 

SUMMARY,IND_STATS operations of COMLINE.NDF all replaced 

operations by the same name and with a similar function 

in NBDS.NDF.  The advantage of this procedure lies in not 

having to redefine these operation names in the top level 

GO control—"operation.  It also helps maintain the logical 

sequence of input/output operations.  In some instances, 

new operations (like PRINT_INTRO of COMLINE.NDF) need to 

be added to the original script file.  When this is done, 

a reference to it must be added to the GO operation in 

its logical position. 

After all the new input/output operations have been 

edited into the original NBDS script file, the next task 

is to eliminate all unnecessary operations so that the 

specialized version can be loaded into a Nial workspace 

without exceeding its capacity.  The hierarchical listing 

of baseoperations in Appendix A aids one in determining 

which operations are required to support the given 

elements in the prototype.  Those that are deemed 

unnecessary can be culled from the main script file.  For 

instance, since INIT_RULES of COMLINE.NDF already defines 

the operating rules in logical order, there is no need 

for the SORT_RULES operation.  Therefore, it is edited 

from the new script file and, since SORT_RULES will no 

longer be defined, the reference to it in the higher 
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level operation RULE_SORT is removed as well.  In some 

cases an unneeded operation is referenced many times 

throughout the script file which would result in 

extensive editing if it is eliminated.  A simple remedy 

for these situations is to replace the code for that 

operation with the empty array NULL.  This is the safest 

technique to use in all cases but, as one familiar with 

the evaluation mechanism of Nial can see, either method 

requires experimentation.   That is, make the change, 

reload the script file, and check for any resultant 

errors; repeat this process until all operations are 

fully defined. 
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11.  Conclusions 

The work presented in this thesis demonstrates 

how the Nial language, with its unique approach to 

handling data and its rich pool of primitive operations, 

is ideally suited for programming discrete simulations on 

a digital computer.  Discrete event simulations demand a 

great deal of recordkeeping in the form of maintaining 

ordered lists of records, searching and selecting records 

from those lists, and creating new records as well as 

destroying old ones.  All of these programming tasks are 

conveniently handled with Nial due to its inherent 

array-as-data-object concepts and ability to operate on 

nested arrays with ease.  The result is a greatly reduced 

programming effort compared to that required by other 

general purpose computer languages performing the same 

tasks. 

Nial's ability to treat arrays as single data 

objects provided an efficient means for manipulating 

entity records in the NBDS simulations.  Records 

containing an entity's entire list of attributes were 

transferred from one file to another with little 

programming effort.  The filing of these records in 

ordered lists -also required no need for a complex system 

of pointers—it's all embedded in the language itself. 

Likewise, operations on individual elements of a record 
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were easily carried out and, when used in combination 

with one of Nial's powerful transformers, provided a 

means for accessing a given attribute in several 

different records at oruje. 

Nial's only drawback as a base language for computer 

simulations is its relatively slow execution time 

compared to compiled languages (even the simple 

verification runs of a single-server queueing system 

required 20-30 minutes of run-time under low load 

conditions). For this reason it would not be practical to 

use Nial as a production language for computer 

simulation. However, its functional design, combined with 

the programming features just presented, lend Nial as a 

useful tool for prototyping specialized discrete 

simulation packages.  Thi,s^was,"demonstrated through the 

design of the many functional program units that 

supported a variety pf simulation modeling elements.  A 

generalized simulation package, was designed as a vehicle 

for experimenting with these modeling elements and 

ultimately serves as the framework for developing 

specialized prototypes.  One simply has to design a 

problem-specific interface for inputting the various 

operating rules to the system and tailor the summary 

report to suit the specific needs of the prototype. 

The work presented in this thesis demonstrates 

a 
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Nial's usefulness as a prototyping tool in other 

applications1 as well.  As shown here, the conciseness and 

power of its primitive operations greatly reduces the 

programming effort of complex operations.  Furthermore, 

Nial's design allows one to decompose a problem into 

several functional units, thus, helping to clarify the 

program logic.  However, from this researcher's own 

personal experience, Nial's main attraction as a 

prototyping tool stems from its interactive nature and 

its ability to display the results of an operation on an 

array as a picture.  Each operation contained in the 

library of NBDS baseoperations is the result of several 

iterative sessions at a terminal. Typically, a command or 

expression was issued and its effect on the target array 

examined through its picture.  This experimental process 

continued until the unit of code produced the desired 

result.  Once an entire operation was completed and fully 

tested, it was copied into the permanent script file of 

NBDS baseoperations.  Without this functional approach to 

problem solving and the interactive environment provided 

by Nial, the list of simulation elements resulting from 

this process would never have been as extensive. 

J~ 
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Appendix A.  Hierarchical Organization of 

NBDS Baseoperations 

Simulation Control Program Operations 

•  GO 
INITIALIZE 

INIT_CONSTS 
INIT.RULES 
INIT.VARS 

READ.INPUT 
CHOOSE.SEED 

RULE_SORT 
SORT_ RULES 
SORT_-QRULES . 
SORT_RSCRULES 
SORT.ASSNRULES 
SORT_TALLYRULES 

LOAD_CAL 
CREATE.FIRST 
QUEUE_FIRST 
RQUEUE_FIRST 
SORTUP 

ARRIVE 
CREATE 
CHOOSE_DEST 

(see top level operations of 
Arrival Event Operations) 

SORTUP 
DEPART 

(See top level operations of 
Departure Event Operations) 

All UPDATE operations 
All SUMMARY operations 

- 178 - 



Arrival Event Operations 

• ASIGN 
COMPTRIBS 
COMPGLOBS 
SWITCH.DEST 

• CBRANCH 
SWITCH.DEST 

• Q_SLCT_FWD 
SWITCH_DEST 

• ARV_ QUE 
ENTER_QUE 

QSTATS_IN 
ORDER.QUE 
CHK_IF_BLKD 
BALK 
TERMINATE 

CHECK.SRVRS 
TALLY_SERVICE 
CHK_IF_BLKD 

SET_BLK_FLG 

• ARV_ RQ 
ENTER_RQ 

QSTATS_IN 
ORDER_QUE 
BALK 
TERMINATE 

TALLY_RSC 
START_ACTIVITY 

TALLY_ACT 

• FREE_RSC 
TALLY. RSC 
START_ACTIVITY 

TA£LY_ACT 
POLL.QUI 

PROCESS_RQF 
START.ACTIVITY 

TALLY_ACT 
PROCESS_PRMPTF 

TALLY_ACT 
QSTATS_OUT 
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• ALTER_RSC 
TALLY.RSC 
START.ACTIVITY 
POLL_QUES 

(see POLL.QUES of FREE.RSC 

•PREEMPT 
SWITCH_DEST 
ATEMPT.PRMPT 

PREEMPTED 
ATRIB 

ALLOW.PRMPT 
QSTATS.IN 
TALLY_ACT 
START_ACTIVITY 

TALLY.ACT 
TALLY_RSC 
POLL_QUES 

(see PO&L QUES of FREE RSC'. 
TALLY_RSC 
START_ACTIVITY 

TALLY_ACT 

• MULTIPLY 

• MBRANCH 

• KONTINUE \ 
START_ACTIVITY v 

TALLY_ACT 

• CLOSE.Q 
Q_CLOSED 

QSTATS-IN 
BALK 
TERMINATE 

•START-ACTIVITY 
TALLY_ACT 

• OPEN_Q 
START.ACTIVITY 

TALLY.ACT 
CHECK.SRVRS 
TALLY.SERVICE 
CHECK.QUE 

(see CHECK.QUE in 
Departure Event Operations) 
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TALLY.RSC 
POLL_QUES 

(see POLL.QUES of FREE.RSC) 

• TALLIE 
BTWNTALLY 

TALLY_HISTS 
NUMTALLY 

TALLY_HISTS 
SWITCH_DEST 

• TERMINATE 

3.  Departure Event Operations 

• END_SERVICE 
SUM_SERVICE 
TERMINATE 
TALLY.SERVICE 
Q_SLCT_BHND 

RANNUM 
CHECK_QUE 

TALLY_SERVICE 
SERVICE.QUE 

RANNUM 
QSTATS_OUT 
CHECK_FOR_BLKS 

RESET_BLK_FLG 
TALLY_SERVICE      ^ 
FIND_HOME_QUE 

Q_SLCT_BHND 
RANNUM 

CHECK_QUE 

• END_ACTIVITY 
TALLY_ACT 
TERMINATE 

*-■■??$ 
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Appendix B.  Location of Operations in 

NBDS.NDF Script File 

Operation Name 

ACT.ADDRS 
ACTDAT 
ALLOW.PRMPT 
ALTER_RSC 
ARRIVE 
ARV.QUE 
ARV_ RQ 
AS.IGN 
ATEMPT_PRMPT 
ATRIB 

BALK 
BTWNTALLY 

CBRANCH 
CHECK_FOR_BLKS 
CHECK_QUE 
CHECK_SRVRS 
CHK_IF_BLKD 
CHOOSE_DEST 
CHOOSE_SEED 
CLOSE_Q 
COMPGLOBS 
COMPTRIBS 
CREATE 
CREATE.FIRST 

DEPART 2 4700 

END.ACTIVITY 1 50800 
END.SERVICE 2 1300 

Page Line No. 

1 48900 
1 49100 
2 34200 
2 27000 
2 69900 
2 12100 
2 22000 
2 8200 
2 31900 
1 30000 

1 58800 
2 6p000 

2 10100 
1 92200 
1 97100 
1 83000 
1 74200 
2 67400 
1 22000 
2 49 6 00 
1 7700 
1 21200 
1 36600 
2 73400 
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Operation Name 

ENTER.QUE 
ENTER_RQ 
ERLNG 
EXPON 

FIND_HOME_QUE 
FREE-RSC 

GO 
GRPSTDV 
GVAR 

INIT.CONSTS 
INIT_RULES 
INIT_VARS 
INITIALIZE 

KONTINUE 

LOAD_CAL 

MBRANCH 
MULTIPLY 

NORML 
NUMTALLY 

ORDER_QUE 
OPEN_Q 

POLL.QUES 
PREEMPT 
PREEMPTED 
PRINT.HISTOS 
PROCESS_PRMPTF 
PROCESS_RQF 

Q.CLOSED 
Q_SLCT_BHND 
Q_SLCT_FWD 
QSTATS_IN 
QSTATS_OUT 
QUEUE_FIRST 

Page Line No. 

1 
1 
1 
1 

75900 
70000 
32600 
31500 

1 
2 

90000 
24700 

3 
1 
1 

27100 
34300 
30200 

1 
1 
1 
1 

2100 
3700 
2800 
4500 

2 43800 

2 83800 

2 
2 

42600 
41100 

1 
2 

31700 
62300 

1 
2 

60400 
51400 

1 
2 
2 
3 
1 
1 

64800 
38100 
29600 
18600 
63600 
62300 

2 
1 
2 
1 
1 
2 

44600 
84400 
15600 
54200 
56100 
75200 
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Operation Name 

RANNUM 
READ_INPUT 
RESET_BLK_FLG 
RQUEUE.FIRST 
RULE_SORT 

SELECT_SRVR 
SERVICE_QUE 
SET_BLK_FLG 
SORT,ASSNRULES 
SORT-QRULES 
SORT_RSCRULES 
SORT_RULES 
SORT_TALLYRULES 
SORTDOWN 
SORTUP 
SRV_ADDRS 
SRVDAT 
START-ACTIVITY 
STDV 
SUM_SERVICE 
SUMMARY.ACT 
SUMMARY^ TND„STATS 
SUMMARY. Q 

'SUMMARY. RQ 
SUMMARY-RSC 
SUMMARY-SRVS 
SUMMARY_TDP_ STATS 
SWITCH_DEST 

TALLIE 
TALLY_ACT 
TALLY.HISTS 
TALLY-RSC 
TALLY-SERVICE 
TALLY_TIMED 
TERMINATE 
TGEN 

UNFRM 
UPDATE-ACT 
UPDATE-Q 
UPDATE-RQ 
UPDATE.RSC 
UPDATE-SRVS 
UPDATE.TDP-STATS 

VALID_NUMS 2 72600 
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Page Line No. 

1 27700 
1 22800 
1 73800 
2 79700 
1 17900 

1 7900 
1 95400 
1 73400 
1 10100 
1 16700 
1 15100 
1 4700 
1 12300 
1 36200 
1 35900 
1 45700 
1 45900 
1 49300 
1 34600 
1 43400 
3 11800 
3 14600 
2 87300 
3 500 
3 7700 
2 94600 
3 24800 
2 7000 

2 64200 
1 46100 
2 57800 
1 52300 
1 39500- 
1 5700 
1 30400 
1 38200 

1 
1 

31300 
3    \ 9900 
2 85500 
2 98600 
3 5900 
2 92700 
3 23100 



Appendix C.  Components of NBDS Statistical Arrays 

Service Queues (Qstats) and Resource Queues (Rqststs) 

Address 
Variable 
Name 

FLG 

1 QN 

2 QMAX 

3 QT 

4 SUMFQ 

SUMFQ 2 

SUMQT 

SUMQT2 

MAXQT 

QDEPART 

Description 

Boolean flag indicating when queue 
is blocked; used only by service 
queues 

number of entities waiting in queue 

maximum queue length 

time of last state change in queue 

cumulative sum of (CLOCK-QT)*QN; 
divided by CLOCK, yields average 
number of entities in queue at any 
one time 

2 
cumulative sum of (CLOCK-QT)*QN ; 
passed as first argument to GRPSTDV 
operation to estimate standard 
deviation of queue length over time 

cumulative sum of waiting times in 
queue 

cumulative sum of squares of waiting 
times in queue; passed as second 
argument to STDV operation to 
estimate standard deviation of 
waiting times 

maximum waiting time in queue 

number of entities departing queue 
that had to wait for service 
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Appendix C (continued) 

10 

11 

12 

13 

14 

15 

NTHRU 

TB 

SUMBT 

SUMBT 

NBALK 

GTFLG 

total number of entities departing 
from queue 

time of last balk from queue 

cumulative sum of (CLOCK-TB) or time 
between last balk 

cumulative sum of squares of times 
between last balk; passed as second 
argument to STDV operation to 
estimate standard deviation of times 
between balks 

number of entities balking from 
queue 

flag indicating whether queue open 
(0) or closed (1) 

Variable 
Address Name 

0 SN 

1 SUMSRVT 

2 SUMSRVT2 

3 

4 

5 

• Service Activities (Srvstats) 

Description 

number of entities served 

cumulative sum of service times 

cumulative sum of squares of service 
times; passed as second argument to 
STDV operation to estimate standard 
deviation of service times 

minimum service time 

maximum service time 

time of last state change in service 
activity- 

Mi NT 

MAXT 

ST 
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Appendix C (continued) 

SUMFT 

SUMFT2 

cumulative sum of (CLOCK-ST)* 
utilization where utilization is 
equal to the number of "busy" 
servers/total number of available 
servers; divided by CLOCK, yields 
average server utilization 
cumulative sum of (CLOCK-ST-)* 
(Uilizatiion) ; passed as first 
argument to GRPSTDV operation to 
estimate standard deviation of 
server utilization over time 

NBUSY number of servers engaged in an 
activity 

MAXIDL     maximum idle time for one server; 
where there is more than one server, 
this holds the maximum number of 
servers idle at one time . 

10 MAXBSY     maximum busy time for one server; 
where there is more than one server, 
this holds the maximum number of 
servers busy at one time 

11 NSRVS designated number of servers for 
activity 

12 SUMBLKT    cumulative sum of (number of 
blocked servers/total number of 
servers)*(CLOCK-ST); divided by 
CLOCK, yields average blocking time 

13 NBLKS number of blocked servers at a given 
time 

14 BLKFLG     flag indicating whether destination 
queue is blocked (1) or free to 
receive entities (0) 

• Regular Activities (Actstats) 
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Appendix C (continued) 

Variable 
Address  Name 

0 AN 

AT 

SUMFT 

SUMFT2 

UMAX 

CNT 

Description 

number of entities currently engaged 
in activity 

time of last state change in 
activity 

cumulative sum of (CLOCK-AT) * AN; 
divided by CLOCK, yields average 
number of entities in activity at 
one time ~ 
cumulative sum of (CLOCK-AT) * AN ; 
passed as first argument to GRPSTDV 
operation to  calculate standard 
deviation of number of entities in 
activity over time 

maximum number of entities In 
activity at one time 

number of entities routed over 
activity 

• Resource Banks (Rscstats) 

Variable 
Address Name 

0 INIT 

1 REMAIN 

Description 

capacity of resource bank 

current number of available 
resources 

RT time of last state change in 
resource bank 

cumulative sum of (CLOCK-RT) * 
utilization where utilization equals 
INIT-REMAIN; divided by CLOCK, 
yields average utilization of 
resource bank 
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Appendix C (continued) 

SUMFT2 

UMAX 

cumulative sum of (CLOCK-RT) * 
(utilization) ; passed as first 
argument to GRPSTDV operation to 
estimate standard deviation of 
resource bank utilization over time 

maximum utilization of resource bank 
at one time 

Variable 
Address Name 

0 NUMS 

1 SUMX 

2 SUMX2 

•Time Independent Variables (Tallystats) 

Description 

number of observations 

cumulative sum of observations 

cumulative sum of squares of 
observations; passed as second 
argument to STDV operation to 
estimate standard deviation of all 
observations 

minimum observed value 

maximum observed value 

time of last observation; used only 
with BTWN option of TALLY nodes 

3 MINX 

4 MAXX 

5 LAST_T 

0 

1 

•Time Dependent Variables (Glbstats) 

LST_VAL    value of last observation 

LT 

FX 

time of last state change in 
variable 

cumulative sum of (CLOCK-LT) * LST. 
VAL; divided by CLOCK,- yCelds 
average value over time 
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Appendix C (continued). 

3 FX2        cumulative sum of (CLOCK-LT) * (LST. 
VAL) ; passed as second argument to 
GRPSTDV operation to estimate 
standard deviation of variable over 
time 

4 MINX      minimum observed value 

5 MAXX      maximum observed value 
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