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Abstract

YSEal (Nested iﬁteractive Array Language) is proposed
as a useful tool for protofyping decision-making systems
employing discrete simulation. Considered a fifth
generation computer language, Nial is based on a
mathematical_model of data called array theory which
provides the definitions for its data operations. Nial is
a functional language and is used interactively. 1Its
value in prototyping discrete simulations stemsAfrom the
ease with which it manipulates data objects within its
environment. Discrete simulations demand a great deal of
"bookkeeping" in the form of creating, filing, and
destroying records; sorting lists; searching lists; and
selecting items from é list. The Nial language, with its
array-as—-data-object concept, is equipped with a rich set
of primitive operations ideally suited for carrying out
the computer instructions required of those‘activities.

Nial'ﬁ functionallity, combined with its concise
programming capabilities, led to the development of an

extensive collection of baseoperations supporting a wide



variety of simulation modeling elements. The individual
modeling eleménts are used as building blocks iﬂ
developing prototype discrete simulation packages.
Represented by symbols, the modeling elements can be
combined into a network-like diagram to describe the

. 'system of interest. Once defined, the modeling elements
are translated into sets of logical-mathematical
operating rules which are input to a simulation control
program. The control program is supportedlby the
'collection of baseoperations and employs an event
scheduling approach.

A functional description of each modeling element is
given along with the format of its operating rules set.
The use of a general purpose simulation package is also
described which allows.one to experiment with the various
modeling elements before developing a specialized
prototype. Finally, the process of designing a prototype
simulation package is presented through an actual
example. Emphasized are the design of an interactive
query session as a means for inputting pertinent
operating rules, the procedures for generating a summary
report, and the organization of the supporting

baseoperations into a working program.



1. Introduction

Over the last decade, the information systems and
data processing industries have experienced unparalleled
growth. As a result of this expansion, SY?EE@ development
methods and approaches have been under constant review in

an effort to improve the manageability and productivity

s

of development projects. Among the various new methods
being prébosed'in recent years, one in particular stands
out--prototyping.

A variety of definitions of the word prototype have
been offered in publications dealing with the subject,
but Jenkins and Naumann (1) feel Webster's descripgion is

adequate:

1. An original model on which something
is patterned;

2. An individual that exhibits the essential
features of a later type;

‘3. A standard or typical example.
Other definitions compiled by Canning (2) include "a
quick and inexpensive process of developing and testing a
trial balloon" and "the first thing or being of its
kind." )
Whichever definition fits best, one thing is for

certain--software prototyping allows end-users a chance

to work with the system they are trying to define. With



prototyping, construction of a quick and dirty éystem
begins after the bare minimum of a specification has been
prepared. 1In the end, it has one purpose, and that is to
show the users‘what they are asking for. It gives them
some working knowledge of the results that can be
achieved by the system they ‘have defined. After
definition is complete, the protoﬁype will be discarded
and replaced by the operatigé version of the system. 1In
some cases, a prototype also serves as a useful model to
production programmers in designing the logic of the
finished product. These benefits are so g;eat, that many
DP pundits like Appleton (3) feel prototyping will
replace the traditional life cycle approach for
developing and maintaining end-user application systemé
and shared databases.

Prototyping requires software tools that allow
designers or programmers to create a working system in a
very short time. These resources include such things as
on-line interactive systems, database management systems,
application development systems, high level languages,
generalized input and output software, and libraries of
'reéﬁsabié”code. of all the‘tOOlS avaiiablé, theuﬁigh
level languages offer a more responsive tool for most
prototype situations because of their interpretive nature

and non-procedural code., Because the code is interpreted



.and does not require a compilation step, analysts and
programmers can perform iterations at a terminal with the

user. At the same time, productivity is increased due to

-

the automqtic features of the high-level coding. The
interactive environment of high level languages also
gives users the appearance that information processing
resources are physically adjacent and immediately
available. User perception of rapid and efficient
alteration is what encourages them to discover and

evaluate design alternatives.



2. Problem Definition

The objective of this thesis is to demonstrate how
Nial, a fifth generation computer language, can serve as
a useful tool for prototyping discrete event computer

simulations. Nial was chosen for«this “purpose because it

not only satisfies the criteria for high level

prototyping languages, but is also equipped with a set of
primitive operations that are ideally suited for carrying
out the computer instructions demanded by discrete event
simulations. 1In contrast to continuous simulation
techniques which rely heavily upon the solution of
algebraic, dfference, or differential equations, discrete
simulations demand a great deal of "bookkeeping" in the
form of creating, filing, and destroying records; sorting
lists; searching lists; and selecting items from a list.
This thesis will demonstrate how easily Nial handlés
those tasks with its unique array-as-data-object concept.
Numerous examples will be given displaying the
conciseness and power of Nial as a programming language
for discrete event simulations, However, Nial's real
usefulness as a prototyping tool will be demonstrated by
presenting a broad set of Nial-based functional units (or
baseoperations) that can be combined to gquickly build
prototype computer simulation packages. The unified

modeling approach used to design the simulation elements



will be'discussed and a detailed survey of each modeling
element given. The procedures for integrating the
modeling;eléments into a working siﬁﬁ&atfbn program will
be presented througb the use of a general purpose

simulation package and, finally, the prototyping process

itself demonstrated through an actual example.
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3. Background

3.1 History and Programming Concepts of Nial

Nial (Nested Interactive Array Language) is a
computer language based on a mathematical model of data
called array theory. It serves as the model for data
manipulated in the system and provides the definition§
for the data operations of the language (4). The language
was designed through a joint effort of M.A. Jenkins of
Queen's Unive:siﬁ& at Kiﬁgséoﬁ, Canada, his co-workers,
and Trenchard More of the IBM Cambridge Scientific Center
(5,6). Q'Nial, the version implemented on Lehigh
University's DECSYSTEM-20 in early 1984 and used in this

work, is a portable version of the Nial language suitable

" for implementation on systems ranging from IBM PCs to the

large scale IBM 4341 (7).

Nial is designed as an interactive language with
both an immediate execution mode and the abilig; to
execute extensive program texts read from script files or
loaded as predefined operations. As an expression based
language, the principal unit of computation is an
expression that returns a value. Common mathematical
notations form the syntactical basis in which expressions
are written. Moreover, Nial combines their use with a

variety of programming styles ranging from the structured

constructs of ALGOL to the recursive style of LISP.



In Nial, the result of an expression evaluation is
an array. In the immediate execution mode, the array is
displayed as a picture on the user's terminal. The
picture shows the .structure and content of the evaluation
result which aids in understanding the data structure
concepts of the language.

Nial may also be used in a command oriented way, in
that an expression may be viewed as an imperative by
ignoring its result. The language furnishes the syntax
for this suppression.

Nial execution occurs in a workspace containing the
data and objects defined by the user. Fdr convenience,
access to data outside the workspace and programmed
interaction with the terminal are provided by system
operations for input and output. All text editing is done
through the host system interface.

’ Nial is a functiqnal language which encourages the
decomposition of problems into functional units. Each
unit is implemented as an operation. Like LISP, it allows
creation of new operations and transformers (functional
objects that map operations to operations to form new
operations), and can treat programs as data.

The value of Nial as a prototyping tool is derived
from its use in an interactive environment. Operations

can be applied to any kind of data which makes it ideal



for experimenting with ﬁroblem solving. A new command is
entered and immediately the programmer can learn if it
was correct. Interpreted like APL and LISP, Nial executés
each of‘its inpgt commands immediately which allows one
to observe how the data are transformed by the operation
being defined. Furthermore, when all the statements
required to solve a problem have been prov%p, the log of
, ¥
the programming session can be saved and edited. Only

those commands that worked are edited into the final

program

3.2 Computer Simulations

Computer simulation has been applied to many
diverse systems; It has been used for design, procedural
analysis and perfofmance assessment for almost three
decades and the literature abounds with numerous
applications. Areas where computer simulation has been
used include air traffic control, communications system
design, job shop scheduling, financial forecasting,
maintenance scheduling, and water resources development
to name just a few (8). Surveys compiled by Shannon (9)
revealed that simulation and statistical methods are the
most widely-used management science and operations
research techniques employed by industry and government.

| Computer simulations can be divided into two

distinct classes: 1) discrete simulation, and 2)

- 10 -

@



continuous simulation. Discrete simulation concerns the
modeling on a digital computer of a system in which state
changes can be represented by a collection of discrete
events. Simulated time is advanced from one event to the
next and can be a fixed or variable time increment. 1In
continuous simulation, the dependent variables of the
model‘change continuously over simulated time causing
smooéh changes in the attributes of the system entities.
Continuous modeling involves the characterization of the

behavior of a system by a set of mathematical equations.

3.3 Discrete Simulation Concepts

3.3.1 Systems and Models

A system is defined as an aggregation or

collection of related objects united to pérfofm a
specified function. Each object or entity of the .system
can be characterized by attributes that may themselves be
related. For example, a bank, its géllers and the
customers all form a system. The teller entities possess
attributes of sex, age, experience and salary of which
experience and salary may be related. Customers arriving
to the bank are also entities and have attributes of sex,
age and the type of transaction they are about to
request. Any process that causes a change in the state of

’

a system is called an activity. The phrase "state of the

it



s&stem" describes all of fhe entities, attributes, and
activities as they exist at one point in time. 1In the
bank system, a customer arriving to the bank is an
arrival activity. Upon arrival, the state of the bank
system changes to reflect the additional person in the
bank. If a teller is free to serve thé customer, the
teller begins a service activity which also changes the
state of the system in terms of teller utilization.

| Models are descriptions or abstractions of a system.
In the physical sciences, models are usually developed
based on theoretical laws and principles. The modéls may
be scaled physical objects (iconic models), mathematical
equations and relations (abstract models), or graphical
representatioﬁs (visual models). The usefulness of models
has been demonstrated in describing, designing, and
analyzing systems.

Coﬁputer simulation models are mathematical-logical
representations of systems which can be carried out in
experimental fashion on a digital computer. Therefore, a
simulation model can be considered as a laboratory
version of a system whose componentg‘include the
computer, operational rules, mathematical functions, and
probability distributions. The behavior of the model is

» reduced to programmable, logical—decisionnrules and

operations. Such models have also been described as



input—éutput models (9). That is, they yield the output
of the system given tﬁe input to its interacting
subsystems. Computer simulation models are therefore
"run" rather than "solved" in order to obtain the desired
information or results. TH;y are incapable of generating
a solution on their own in the sense of analytical models
but rather serve as a tool for the analysis of the
behavior of a system under conditions specified by the

experimentor.

3.3.2 Next Event Approach

- As mentioned earlier, discrete event
simulation on the digital computer involves a system
model in which state changes accur at event times. Since
the state of the system remains constant between event
times, a complete dynamic portrayal of the state of the
system cgn be obtained by advancing simulated time from
one event to the next. This timing mechanism is referred
to as the next event approach and is used by all modern
computer simulation programming languages. By repeatedly
advancing to the time of the next event, a simulation is
able to skip over the inactive time whose passage in the
real world must be endured.

Figure 3-1 illustrates how time is represented and
managed when using a next event approach to discrete

-, 13 -



simulations. A sequence of events (ei) are depicted on a

€s

el e 2 e 3 eu 86
.\j\_&/’\/‘ TIME >

Figure 3-1. Passage of Time in Next Event Modeling

horizontal time axis. The arrows point to the time values
at which time is updated and the evénts occur. Following
each event, time is advanced to thé exact time of the
earliest of all future events. Each event would also
represent some change in the state of the system being
simulated. For instance, in the bank example presented
earlier, an even£ depicted in Figure 3-1 céuld represent
the arrival of a-customer to the bank or the

end-of -service and departure of a previous arrival. 1In
the case where there is a simultaneous occurrence of
events (e4 and e5), ey might represent the departure of a

previous arrival and e the arrival of a new customer.
‘ v

3.3.3 Alternative World Views for Discrete
Simulation

In developing computer simulation models,
the analyst needs to select a conceptual framework for

describing the system to be modeled. The framework or



. perspective within which-the system functional
relationships are perceived and described has come to be
known as the term "world-view" (10). The world-view
employed by the modeler provides a conceptual mechanism
for articulating the system description and can be
implicitly defined in'a simulation language or, where the
modeler elects to employ a general purpose computer
language, is organized by-the modeler_ himself.

Discrete simulation models can be formulated by: 1)
defining the changes in state that occur at each event
time; 2) describing the activities in which the entities
in the system engage; or 3) describing the process
through which the entities in the system flow. The
relationships belween these concepts.are demonstrated in

3

FPigure 3-2 by considering the bank system once again. The

Process
N
T N\
Activity
— P
Arrival of Start-of-Service End-of-Service TIME
Customer Event Event Event

Figure 3-2. Relatiohships Between Events, Activities,
e and Processes



arrival of a customer to the bank, the start-of-service
for the customer, and the end-of-service for the customer
all signify events. 'As shown, events take place at
isolated points in time and bring about a cﬁange'in the
state of the system. Decisions are made at events to
start or end activities. An activity is an operation or
collection of operations that transform the state of an
entity. The service activity in@the bank example results
in a busy teller and transforms Qhe customer from an
arriving to a departing entity. A process 1is a seguence
of events ordered on time and may comprise several
activities. 1In Figure 3-2, the process encompasses the
arrival of a customer to its completion of service.
Tagether, the concepts of event, activity, and
process give rise to thre€e alternative world-views for
building discrete event models. These are called: event
scheduling, activity scanning, and process interaction.
The event scheduing and process interaction approaches
employ a next-event method of organizing eveﬁt notices.
The principal difference among them is the scanning of
simultaneous events which may produce different results

if there is some interaction between them.

The ‘event scheduling approach sees a system as a

collection of overlapping activities. The beginning and

ending of each activity are regarded as separate events



which are independently scheduled. A conditional event .
can be treated as a sub-event within the event routine
that causes its release, or.it can be schedulea as a A
separate, concurrent event. Similarly, if an entity is
created and is to be involved in an immediate event, that
event might be a sub-event or a separately scheduled
event,

°

The process interaction approach concentrates on the

individual entities. The system is seen as a set of
overlapping activities, causing events as they start and
finish, but the activities form related groups, which are
the processes. Once committed to a process, an entity
will generally proceed through all the activities of the
process. If the end of one activity implies the start of
another for the same entity, these two events will be
executed in sequence, and not scheduled separétely.
Similarly, if a non-zero activity is encountered, so that
the start of an activity implies its immediate end, those
two events will also be executed in sequence. An entity
will, therefore, be carried thrcugh as many events of a
process as presently possible.

The activity scanning approach does not specifically

use the next-event method, although the simulation
proceeds in unevan steps through successive events. All

activities have a statement giving the conditions under



—

which.ﬁhey may be started, inclading a specification of
what entities and resources‘mu$~ ne available. Each
active'entity has an associated clock giving the time
when the entity will end the aétivity in which it 1is
engaged. Scanning the clocks determines which évent
occurs next. Following the change of state that ocrurs,
all activities are scanned to see which can then be
started.

3.4 Event Scheduling Approach Chosen for Nial-Based
Simulations

In designing the Nial-based elements for prototyping
discrete simulations, it was necessary tq choose a single
world-view approach to provide a unified conceptual
framework within which any combination of elements céuld_
function together. Implicit in this decision was the need
to provide just one simulation control program (or timing
routine) which determines which event is the next to be
selected. With these points in mind, the event scheduling
approach was selected to provide this unified perspective
and therefore deserves a more detailed examination.

*

3.4.1 Details of Event Scheduling

Discrete event simulation deals primarily
with queueing or waiting line problems. 1In a queueing

problem an arrival occurs and demands that a service be
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performed. The system responds by performing the service
if it can, or by keeping the demand waiting until it can
perform it.

Three considerations play roles in the study of
problems using queueing-oriented models: 1) the nature of
the jobs to be performed; 2) the resources available to
complete a job; and 3) the way in which jobs are selected
for service. The nature of jobs includesvtheir frequency
of occurrence, the number of tasks per job, the resource
requirements per task, and the service time per task.
Questions relating to available resources might‘include
number and skill types, the assi;nment of resoufces by
station, and the assignment of resources to tasks. The
way in which jobs are selected is defined by the system's
logical operating rules,

In the simplest form of a queueing problem a job
requiring service arrivés at a facility that has one
server. If the server is idle he services the job; if he
is busy the job is placed in a queue or wai£ing line to
await later(service. The state of the system is defined
by the number of jobs (or entities) in the facility‘at a

given moment of time. The gqueue length is measured either

by the total number of jobs waiting for service plus the
number of jobs in service or by just the number of jobs

s

waiting for service. A state change occurs every time a



job arrives and every time a job departs. Each arrival
and departure is an event.

Two additional events occur in this simple queueing
system: 1) when the server becomes busy; and 2) when fhe
éerver is freed or becbmes idle. The events, however, are
conditional on the occurrence of an arrival or departure
event. For example, an arrival when the ser&er is idle
causes him to becpme busy. A departure, when no jobs are
waiting, causes him to become idle.

Figure 3-3 displays a flowchart which describes
each element of the queueing problem from an event
scheduling approach. as shown, the first thing that
occurs at an arrival event is a check on the status of
.the server. If the server 1is al;eady busy, the arrival
entity is filed in a gqueue where it waits until the
server is freed. 1f the server is not busy, a service
time is determined and the arrival scheduled for
departure. Since the departure time coincides with the
time that service ends, this time is determined by adding
the arrival's service time to the time at which service
begins. Service times are attributes of every arrival and
ﬁay be random or nonrandom. Regardless of their
character, a simulation model must provide a mechanism
for generating these times. Figure 3-3 explicitly shows a

computational block for determining service times just
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before the arrival's departure time is scheduled. Service
times could also be determined when a job arrives.

Upon processing a departure event, the first
instruction is to check whether additional jobs are
waiting for service in the queue. If none exist, then the
‘server's status is placed in an idle mode. If more Jjobs
are waiting, then the next job is selected for service,
its service time determined, and finally its departure
time scheduled,

Note that the final instruction in each event
routine is "select next event." This instruction combihed
with the scheduling instruction forms the basis for
making a discrete event simulation work. Whenever an
event is scheduled, a record identifying the event and
the time at which it is to occur is filed in a special
list. When the instruction to selecf the next event is
encountered, the computer simulation searches this list
to find and perform the event with the earliest scheduled
time. Then simulated time is advanced to this scheduled
time, thus skipping the "dead"“timéL This procedure is

the essence of the next event approach to simulation.

3.4.2 Additional Features of Event Scheduling

Whenever the event scheduling approach to
simulation modeling is used, a computer program is needed

to conduct a search of the list of scheduled events (or
A
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event caleh r) to determine which is the next to be
executed. This simulation control progéfm has many
titles, among which the name timing routine is one of the
most common. After every event is performed, control
returns to the timing‘routine, which selects the next
event from the list of scheduled events. The event
selected is the one with the scheduled time closest to
the current simulated time. When time advances to the‘
scheduled occurrence time of the event, control transfers
to a code block that executes the steps comprising the
event. The code block then transfers cbntrol back to the
timing routine, which then selects the next event.

As mentioned earlier, a queue is a set of jobs‘
waiting for service. A queue may be thought of as a list
from which arrivals are selected for service according to
a rule called the queue discipline. For example, jobs may
be selected as follows:

1. in, the order of their arrival (FIFO),

2. 1n the reverse order of their arrival
(LIFO),

3. in the order of shortest service time,
4. in the order of longest service time,

5. according to a priority number that each
job has for service, or

6. at random.

A gueue discipline is a ruie by which a system operates.
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In a computer -simulation this rule is translated into a
logical operéting rule whose form depends on the queue
discipline>adopted. For example, adoption of the FIFO
discipline means that records are filed in the quéue in
the oraer of their arrival times. The next job to receive
service is then the first job in the queue. Figure 3-3
provides for this eventual search by including the
creation of a record for each job that waits. If
selection is a function of a priority number or service
time, then that attribute must be part of the job record.
Another procedural feature which needs to be added
to the arrival event in Figure 3-3 concerns the
generation of additional arrivals.w Two methods exist: '1)
a sequence of arrivals are prepare@gin advance of the |
simulation (no interaction between exogenous arrivals and
the endogenous events of the system); or 2) the arrival
time of the next entity is determined at the time of
arrival of its predecessor. The second method is often
raferred to as "bootstrapping." It requires keeping only
the arrival time of the next entity and is the preferred
method of generating arrivals for computer simulations.
The last feature pertains to recordkeeping. As
Figure 3-3 appears, all records of arrivals that wait
remain in the model., Clearly the list of records grows as

a function of simulated time and occupies increasing



storage space in the computer memory. ‘One way‘éa‘limit
this growth is to destroy a record when the corresponding
job receives service. The idea of créatingvand destroying
records and searching lists is one of the principal
concepts on which discrete event digital simulation is

based.

3.5 Conventional Programming Considerations

The concepts of discrete simulation just
presented imply a capability to carry out a variety of
programmed computer instructions. These include creating,
filing, and destroying records; searching lists; sorting
li;ts; selecting members from a list; generating random
variates; collecting and analyzing data; and model
initializatioh. By far, most of the work of a simulator
is devoted to'manipulating various collections of ordered
data items, such as event lists and queue files. 1In a
later section of this thesis, it will be demonstrated how
Nial, with its array-as-data-object concept; can easily
handle these programming requirements. However, in order
to appreciate the power of Nial in building computer
simulations, this section will detail some of the more
frequently encountered data structures used when
programming simulations with languagés like FORTRAN,

PL/1, PASCAL and ALGOL.



3.5.1 Data Objects—-Generation and Manipulation

Data structure maﬂipulation is an inherent
part of any discrete event simulation. Typical operations
during a simuiation include:

1. gaining access to the jth record of

a list to examine or change the contents
of its fields,

&

2. inserting a new record after the jth

but before the j + 1lst record,
3. deleting the jth record from a list,
4. determining the record count in a list,
5. ordering records in a list in ascending
order based on the values stores in

specified fields, and

6. searching the list for records with given
values in certain fields.

Ever§ computer simulation program‘contains data
structures that represent objects of different classes.
More specifically, the data structures consist of records
of thé objects in the simulation, each record containing
information regarding the characteristics of a distinct
object.A A simulation operates on these records és
simulatedvtime elapses. |

Some simulation programs are designed to deal only -
with fixed data structures that are allocated either
during compilation or at the start of execution. These
structures represent fixed numbers of objects of

different classes. Other simulation programs are written
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to allow both fixed and varying numbers of objects. The
way#in which a simulation program handles the generation
of objects is related to the way it sees a sysEém through
its world-view and to whether its base-language is

compiled or interpreted.

tr

3.5.2 Data Structures

Rigid and dynamic data structures have
important implica}ions for ;imulations. In FORTRAN, a
DIMENSION statement reserves storage space. For example,
" the statement DiMENSION ATRIB (20,10) instructs the
computer to reserve a Block of 20x10 = 200 storage
locations for the array called ATRIB. .Once the 20x10
memory locations are allocated to ATRIB, they remain so
until the program terminates.

Rigid data structures like the DIMENSION statement
do not always provide an efficient means oﬁ utilizing
memory space in the computer. For example, consider a
simple simulation problem in which entities travelling
through a system collect varying numbers of attributes.
Using the same 20x10 arrangement, let ATRIB (K,l) denote
the first attribute (eg. arrival time to the system) of

the Kth arrival and ATRIB (K,2), ...

, ATRIB (K,10) the
remaining nine attributes. Depending upon the logical
routing rules through the system, a particular entity

might collect just one attribute or up to all ten. The
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straightforward use of a dimension statement in this case
would result in the following disadvantages:

1. not all of the column positions would
be utilized, thus wasting memory space,

2. it may not be necessary to keep the
attribute records of entities that have
left the system, and

3. the number of arrivals to the system
would be limited, in this case, to 20.

® Crude Data Structure
One method <f increasing the utilization of
available storage space in the previous example is to
vacate the registers once the information is no longer
needed an< make it available to new arrivals. For
.exa?ple, at the start of the simula@ion; all the
lregisters are set to zero indicating they are empty. Let
the first gttribute of each Kth arrival, ATRIB (K,1),
hold its nonzero order of arrival. As entities arrive to
the system, ATRIB (1), ATRIBV (2), ATRIB (3), ... is’
checked until a K (K<20) for which ATRIB (K) = 0 is
found. The order number éf that entity is then placed in
ATRIB (K,l)\and the Kth row of storage space reserved for
that entity during its lifetime in the system.
When an.entity leaves the system, its row of storage
space is located in the ATRIB array and cleared by
setting each register to zero. This rglease of space

allows those positions to be used again. Although the
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maximum number of entities in fhe system at one time
cannot e#ceed 20, it is clear that the number of entities
processed can be considerably greater than 20. |

The benefit of space conservation in this example is
obtained, unfortunately, at the cost of added computer
time. Note that, upon an entity's arrival, the registers
must be checked sequentially until an empty set is found
for storage. A sequential search must élso be conducted
when attempting to locate a particular attribute or set
of attributes based on order (e.g. minimum service time).
In a system with rapid-state change and many entities,
the computing time consumed in a search of this kind can
be expengive.

® Ordered Chains

One way to reduce the search time of ordered

arrays is to add information to the record of an entity
which points it to the Kecord of the next ordered entity.
For instance, if the ATR&B array in the previous example
must be ordered by increasing time of arrival”to the
system, ATRIB (K,l) could contain the arrival time of
that entity while ATRIB (K,2) would hold the register
address ofﬁthe next arrival to the system.

This is an effective programming technique for
handling records like these and embodies the principles

of list processing (1l1). The records are said to be



chained together og in ‘a Sist. In general, the records of
the entities in the ordered chain are identified in the
computer memory by an address. If the records have more
than one word, the address is assigned to one of the
words, such as the first. One word, or field in a word,
called a pointer, is set aside in each record for the
pufpose of constructing thg list. 1In addition, a special
word called the list header is provided for entering the
list.

THe records are chained together into a structure

known as a singly linked list and is illustrated in

Figure 3-4. The list header contains the address of the

Record A Record C
Addr. of B Addr. of Next N
1
'
| ———
Record B N Rg?zif‘d
Addr. of A Addr. of C End Chain

LIST HEADER

Figure 2-4. Singly Linked List Structure

first record in the list. The pointer of the first record
contains the address ©of the second record, and so on down
the list. The last record in the list contains a special
end-of -chain symbol in 'the pointer space to indicate that

it is the last member. If the list happens to be empty,



the list header.contains the end-of-chain symbol.

| Beginning from the header, a search is able to move
down the list by following the chain of pointers. If the
program needs to remove a record from the list, say
record B from list ABC, it simply éhanges the pointer "in

A to point C, as illustrated in Figure 3-5,.

® i
4| HRecord A Record C
Addr., of C >|AMddr. of Next
— r. of Nex .
I
' !
! Last
Record B ‘sl Record
addr. of A | End Chain

LIST HEADER

Figure 3-5. Removing a Record From a List

Correspondingly, to insert a reéord’into the list, (for
example, to‘put Z in the list ABC between B and C) the
pointer‘B is éet to Z and the pointer of Z set to C.
Re-sorting is achieved by a series of removals and
insertions.

With a first-in-first-out rule of ordering records,
it is also convenient to keep a list trailer that has the
address of the last recérd, because new additions are
made at the end. The trailer record avoids the necessity
of working along the list to find the last entry. The

trailer will also contain the end-of-chain symbol Qhen @

A



the list 1is empty.

While it is easy to insert a new record after a
given record in a singly linked list, it is not so easy
to do that before a given record. This is because ead%
record points to its successor, but not to its
predecessor. A similar observation. applies to delgtions:
to remove an element from the list one needs a reference
to its predecessor.

These difficulties can be_avoided by adding a second
pointer to the records poi%;;ng to the record preceding
it (if any). The result is a doubly linked list and is

illustrated in Figure 3-6. Now, given references to the

LIST TRAILER

Figure 3-6. Doubly Linked
List Structure

LIST HEADE

list header and trailer, the list can be traversed in



botﬁ directions; insertions can be made either before or
after any given element in the 1list; anyielement can be
removed from the list without having to know its
successor or predecessor.

Other, more complicated data structures exist that
improve the efficiency of handling lists. Directed
graphs, binary trees, and heaps are included in these
(12). However,ithey all have one thing in common: while
increasing data storage space, the amount of computer
time spent checking for data elements is greatly reduced.
Even though execution time is minimized, there still
exists the drawback of having to reserve space at the
beginning of a program arid the need not to exceed the
specified array size. 'As a result, many special purpose

discrete simulation languages are implemented with

programming systems that have list processing and dynamic

data structuring capabilities.

e

14
=3



4. Basics of Nial-Based Discrete Simulations

The previous section touched on the basic concepts
of data structures and their manipulation Qhen
programming discrete simulations with general purpose
computer languages. Thé next section will demonstrate how
those tasks are concisely and efficiently handled using
Nial. However, before those examples are presented, some
basic modeling and design concepts of Nial-based discrete

simulations (NBDS) need to be described first.

4.1 Modeling Concepts

X |
As stated earlier, event scheduling was chosen

as the world-view approach to designing the elements of
discrete simulation presented here. While this approach
is embedded in the simglation control program andb
supporting operations, the task of modeiing a prototype
simulation actually employs a process—orientﬁd
perspective. Each element of the process, such aé a queue
or server, can be represented pictorially using symbols.
When these elements are combined together they form
network-like structures, similar to those employed by
SLAM, a special purpose simulation language (13). Each
element of the network represents a set of
mathematical-logical operating rules that are provided by
the modeler when building the simulation. As entities

enter the system, they flow through the network as
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prescribed by the operating rules of the particular
element they encounter.

To provide the tools for quickly developing a
prototype simulation, several different kinds of modeling
elements were designed and translated into Nial-based
operations. A detailed description of the elements will
be presented in a later section of this thesis. However,
to expand the modeling concepts being presented here, the

basic modeling elements of queues and activities will be

)

introduced. -

4.1.1 Queues
Two types of queues can be modeled in these
simulations. The first one is known as a service gueue
and represents an area or site to which entities arrive
.and request the service of a single resource. If a
service entity is not available, the arrival waits in the
queue until one is freed.

The second type of queue is known as a resourch/
gueue. Resource gqueues are similar to service queues
except entities arriving to them can request the service
of discrete or variable amounts of resources. If the
requésted amount of reéources is not available, the
arrival waits in the resource queue until'they are
relinquished. Unlike service queues which are associated

with a single service activity devoted specifically to
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that queue, rescurce queues can share a bank of resources
with other resource queues., 1In addition, the units of a
resource available for use by resource gqueues can be
altered during the computer simulation. This option is
not available with service queues where the number of

entities serving them remains fixed throughout simulated

time.
|

4.1.2 Activities
Like queues, there are two types of

activities--service activities and regdlar activitie§.
Both allow entities to flow through them to other
elements in the network. The passage of an entity through
an activity can be delayed for a prescribed period of .
time although regular activities can be used with no time
delays.

The major difference between the two types of
activities is the number of concurrent entities they
allow to pass through them. Service activities limit the
number of entities flowing through them at one time to
the number of servers represented by the activity. On the
other hand, regular activities have no restriction on the
number of entities that can simultaneously flow through
them. Service activities are also used exclusively with
service gqueues while regular activities can direct the

flow of entities away from any other kind of modeling
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element. 1In particular, regular activities are used to
delay the time resources and are utilized by an entity
acquiring them at a resource queue,

As an example of how queues and activities are used
in the modeMjing process, Figure 4-1 illustrates a network

diagram of a simple queueing model. Note how node-like

( 4 >Q&O®

"Entity

| Queue Destructor

Entity
Generator

Figure 4-1. Simple Queueing Model

symbols are used to represent the entity generator, the
service queue, and thé'entity destructor while a
branching or connecting symbol is used to represent the
service activity (the branching symbol is also used to
represent regular activities). Various symbols will be
used to represent other types of nodes which include
milestones and decision points.

The network pictufed in PFigure 4-1 represents an
entire process. Entities arrive to a service area where
they are either served immediately or wait for service in

the gueue. Upon completing the service activity, the

anwbl} ~



entities depart the system as represented‘by the entitye
destructor or termination node. Service and regular
activities represent the time delay that an entity
encounters as it flows through the system and are two
elements responsible for the advance of simulated time in

the model.

4.2 Simulation Control Program

The gueueing model pictured in Figure 4-1
represents an entire process through which entities flow.
However, the computer program which controls that.process
is designed to sequentially seléct event notices from an
event calendar and execute blocks of code or base-
operations corresponding to that particular event or
element of theAprocéss. The event notices contain both
information which is used to transfer control of the
program to appropriate operations and information which
is used to reference a look-up table of operating rules
provided by the modeler before execution of the
simulation begins. The operating rules define the unique
characteristics of each element of the model and are
referenced during events in which those elements are
involved. For example, if the next event on the calendar
is an arrival to the queue node sgadﬁxin Figure 4-1, the
operating rules for that node are referenced to determine

what service activity serves that station and whether or
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not the server is busy. If the server is already
occupied; the rules wquld be referenced to determine the
gueueing discipline for that queue, the maximum number of
entities allowed in the queue, etc. Together that
information determines what transactions take place
during the event and controls the directional flow of the
program. Upon completing those transactions, control
returns to the timing routine, the next event is selected
from the event calendar,’and the process repeated until a
termination notice is %etected. The simulation can be
terminated at a given point in simulated time or after a
certain number of entities have been processed. Upon
detecting a termination notice, the program updates
s

time-persistent statistics and then generates a summary
report. |

Figure 4-2 presents a flow chart diagram of the NBDS
simulation control program. The above discussion includes
everything after the event selection block. The first
three blocks include all of the initialization steps;
here various constants, program variables, and flags are
set to their startihg values and the operating rules
established. Finally, the last executable block before
the loop structure initializes the event calendar. Here
each set of operafing rules for the generation nodes in

the model 1s scanned and the first entities scheduled for
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arrival. The operations in tﬁis block also estabiish
gqueue nodes with initial entities in the queue if
indicated,

Every simulation program has a three-level
hierarchial structure in which the simulation control
program occupies the top level and housekeeping functions
such as the collectioh of statistics and generation of
random vériables occupy the lower level. The middle level
is occupied by the arrival and departure routines and the
associated operations which process the individual
events., These two routines are depicted in Figure 4-3,
Note the "bootstrapping" teghnique for generating the
next arrival from a previous arrival in the arrival
routine. Except for gueue nodes, arrivals to node; always
result in the scheduling of‘a departure event (in some
céses where a zero-time actibity follows, the scheduling
of a departure is skipped and an arrival to the next node
scheduled instead). 1In the case of an arrival to a queue
node, a departure event is scheduled only if the
necessary resources or servers are available. Otherwise,
the arrival is filed in the queue (see Figure 3-3).

In the departure event, the first task determines
whether the departure is from a service activity or a
regular activity. Once that has been determined, the

appropriate set of opérating rules is referenced and the

1
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code for the given type of activity executed. Unlike the
arrival routine, an event is always scheduled at the end
of a departure. 1In this case it is an érrival to the
destination node pointed to ﬁy the activity. While not
detailed in Figure 4-3, -a departure event might also lead
to the scheduling of another departure. This could result
from a service activity which has been freed to service a
gueue that holds waiting entities. As shown in'Figure
3-3, the next entity is selected for service, its service
time determined, and the entity scheduled for a

departure,

4.3 Data Séructures in NBDS

® Statistical Arrays

building the simulation operations of this thesis. The
first structure resembles a FORTRAN-like one- or
two—dimensional array which is used to maintain
statistical data and flags associated with gueue nodes,
service activities, eté, Each row-major ordered array
belongs to a particular class of elements and each row of
that array belongs to a given element within that class.
For two-dimensional arrays, the total number of rows is
determined during the program initialization steps and ig

dependent upoh the number of modeling elements in the

system. However, the first row of each matrix is never
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used to hold data in order to maintain a logical
correspoﬁdence to the element number to which those data
belong. This is due to the addressing feéture of Nial in
which the first element of an array is address 0. For
example, the address (0 2) refers to the third element in
the first row of a matrix.vsince the modeling elements in
the program are logically ordered (e.g. if there are
three service activities the§ are known as servers 1,2
and 3), the first element owns the second row of the
matrix and so forth. While the first row of each matrii
represents wasted workspace, a logical relationship
between element numbers and the position of its data in
the matrix is maintained. It‘also eliminates the need for
a costly base-address-plus-offset calculation each time
the data for a particular element are referenced in the

, Simulation program,

Nial conveniéntly establishes and initializes arrays
with just one primitive operation, the "reshape"
operation. As an example, consider the following
expression and its evaluated result pictured in the

sketch mode:

ACTSTATSI= 4 & reshare O

000000
000000
00 0000
000000



In therimulation dperatiéns to be presented later,
the array Actstats is used to maintain statistics on all
regular activities. Therefore, the array created above
would represent storage space for three activities
(including the dummy first row).

Direct assignments can be made to any member of an
array in a FORTRAN-like fashion. For example, observe the

effect of the following operation on the array Actstats:

ACTSTATS @ (1 1):i= 45

0O 00000
0 45 0 0 0 0
0 00 00O
0O 00000

Similar insertions are carried out with the "place"
and "placeall" operations which can replace single and
multiple items in an array respectively. Observe the use

of the latter operation in the example below:

ACTSTATS:!= (10 10 5 9) (3 cart 0 1 2 3) rlacesall ACTSTATS

B3

COOCC
oy

SO UC
o oo
o COo
OO OO
[N eNoNo]

Selections from an array are carried out with operations

corresponding to those demonstrated aboywva:

ACTSTATS @ (1 1)

(3 cart 01 2 3) choose ACTSTATS

10 10 &5 9



The selection and insertion operations demonstrated in
the previous examples provide the mechanism by which most
of the data are manipulated in the statistical arrays
supporting the various NBDS simulation elements. They're
especially useful in combination with each other @here
one operation selects data from a statistical array and
passes them as arguments to a computational operation;
the computational operation then returns the same array
with new values which are inserted back into the old o
array.
® Entity Records

In Section 3.5, the basic data structures
and bookkeeping concepts involved in programming discrete
simulations with general purpose computer languages was
presented. Demonstrated was the complex and cumbersome
need to provide pointers for each!record in ordered lists
serving as queue files or event calendars. In NBDS
simula;%ong, this task is totally eliminated. The
array—-as-data-object concept of Nial combined with the
entity record structure designed for NBDS produce a
highly efficient means for manipulating i%e data objects
within the program. As a result, elements of the
simulation and their associated operations are quickly
and easily designed--a critical factor of the prototyping

’

process.




In the simulation opérations presented here, a
single record.is created for each entity as it enters the
system. The record is a solitary array (or iist) of
ordered data items which are program and user-defined
attributes of the entity. Certain attributes play 'an
important role during the top level execution of the
simulation control program while others are only accessed
during event routine opé?ations., The entity.record's
lifetime in the system is spent either on the event
calendar or filed in some queue awaiting service. The
most important aspect of the entity record is that it
"flows" through the simulation program as a complete
unit, much like an entity with all its attributes would
in a real-world system. This aids  the programmer greatly
in conceptualizing the simulation element under design.

There are a minimum of eight program-defined
attributes in an entity record which occupy addresses
0,1,2, ces 7. All but one of these attributes change
dynamically during the simulation run. An entity record
can also contain an unlimited number of user-defined
attributes beginning at address 8. Thus, from run to run,
the length of the entity rechd can vary but, once set
during the initialization steps, remains fixed throughout
an individual simulation run,

Figure 4-4 displays an example of an entity record
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Figure 4-4. NBDS Entity Record

containing the eight basic attribute positions common to
all records plus one user-defined attribute. The contents
of the first eight fields‘could describe the state of an
entity record on the event calendar of a run simulating
the simple gueueing problem depicted in Figure 4-1. Thé
following definitions are identified by an address and
summarize what type of attribute each field holds and its
relevance to the simulation program:

,C)The first field indicates whether the entity is
scheduled or a departure or an arrival. In this example
the character D indicates the entity is scheduled for a
departure. The character strings A0 and Al are used to
indicate a freshly generated arrival to the system or a
later arrival to,a‘node somewhere else in the system
respectively. This field is referenced each time an event
is selected from the event calendag to determine which
event routine is to be executed.

mTfBThis field holds the generation time or time

the entity first entered the system and is the only



program-defined attribute'£hat remains fixed throughout
the simulation. The example in Figure 4-4 indicates the
entity was generated at time 14.8.

(Z)The third field contéins scheduled event times
and is the field on which the event calendar is ordered.
In the examble given, the entity is scheduled to depart a
.service activity aﬁvtime 79.5. FEach time an event is
selected from the event calendar, this field is
referenced and simulated time advanced to the value
contained there.

(:)At the time of generation or at the end of each
departure event, an arrival is scheduled and the
destination of that arrival entered into the fourth field
of the entity record. That field is t;en re;erenced at
the start of each arrival event to determine which blocks
of code will be executed next. In the given example, the
four-membered character string QUEl indicates that, prior
to its scheduled departure, the entity had arrived at
service queue #1.

(@ whenever an entity's departure is scheduled
from a node, the activity over which it is to be routed
is entered into the fifth position of the entity record.
This field is then referenced during a departure event to
determine which type of activity is ending as well as its

activity number. The character string SRV]1 in the sample



record indicates that the entity is being served by
service activity #1.

(:)The next field conﬁains the simulated clock
time at which an entity arrives to a node. This value is
always entered when an entity is newly generated or at
the end of each departure event. It is used to calculate
the time an entity has been waiting for service in a
queue. As shown in Figure 4-4, thé value of this time is
14.8, the same time the e;tity entered the system. ¢

()éi() The next two fields are utilized only when
resource queues are specified in the model. Since the
example in Figure 4-4 is only modeling a service queue,
these two fields would remain empty throughout the
simulation as-indicated. The first field at address 6.is
reserved to hold the identification number of the last
resource queue encountered while the next field is used
to indicate the number of resources acquired at that
gqueue and currently being utilized by the entity. These

two attributes play an important role in the preemption

of entities utilizing a particular resource-which will be
detailed later in the‘thesis.

The last field pictured in Figure 4-4 holds one
of a possibly infinite number of user-defined attributes.
While not yet discussed, entities can acquire

user-defined attributes anywhere in the network by
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passing thréugh ASSIGNMENT nodes. ASSIGNMENT nodes
compute  the value of a given attribute using program
variables, simple mathematical expressions, or by
accessing one of the program random variate generators.
While not included in the ﬁetwork pictured in Figure
4-1, suppose an ASSIGﬁMENT node preceded the service
queue and was used to compute the service time for that
entity. Assuming this was the first user-defined
attribute, it would be stored in field 8 and its value.
referenced at the time that enﬁity would be scheduled for
service. In the given example, field 8 contains a service
time of 30.0 time units. Since the entity is scheduled
for a departure at time 79.5, a quick subtraction
indjicates that service began for this entity at time
49.5. Furthermore, subtracting the time contained in
field 5 from the start-of-service time reveéls the entity
waited in the service queue for 34.7 time units before

receiving service.

4.4 Random Variate Generation

Since the modeling elements preéented in this
thesis are designed to simulate stochastic processes, a
mechanism must be available for generating random
variables. This requires a source of uniformly
distributed random numbers which, in turn, are

transformed into a new set of random variates from a
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variety of continuous and discrete probability

distributions. ‘Independent samples that are uniformly

‘distributed in the interval (0,1) provide the basis for

generating samples from all other distributions. Nial
provides a utility for generating random integers which,
Qhen divided by the largest value of the specified_
interval, would jproduce random numbers between 0 and 1.
However, the random number generator of the version
implemented on the DECSYSTEM-20 and used ih‘EbiS work

»

(Q'Nial, release 1, version 3.02) did not funcEion.-\

SN

Therefore, a new operation was built to provide uniformly
distributed random numbers between 0 and 1.

A wide variety of methods have been developed for
réhdbﬁ'humber generation. One of the more common ones is
the multiplicative congruentiai generator which was the

choice for this work. It has the form::

7

i+l a.z; (mod m) ‘ (1)
Tigl T Zig1/m | (2)

where 7, is the initial seed value and r; is the iD

pseudordndom number. It provides a maximal period of 2B—2
before recycling occurs on a computer with B bits/word.
The assignment of values to the constants a and m and the
seed valge ZO has been the subject of a great amount of

research. Fishman (14) presents a widely accepted set of

procedures for choosing those values that was the basis
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for designing the random number generating operation used
in this work. 1In addition, Deo (15) demonstrates how the
correct choice of constants can save the modulus division
step durihg the computation. The guidelines proposed by
both authors resulted in a random number generator having
the form:

Zis1

189277 * Z; (3)
UTie1 = Zy4p /34359738368 (4)
ihe value of m i's one greater than the largest integer
held in one word by the DECSYSTEM-20. 1Its choice makes
the division of the product a Z., unnecessary for the
modulo operation in the original equation. A machine word
cannot hold an integer larger than (m-1). Therefore, as
soon as the product exceeds (m-1l), overflow would
automatically occur, leaving only the remainder. 1In the
DECSYSTEM-20 no action is taken when this occurs but
overflow sets the sign bit and the result becomes
negative, Therefore, the result is simply adjusted by
taking the additive inveﬂse of Eguation 4.

The NBDS operation which contains this random number
generator is named RANNUM. Any odd integer can be used as
an initial seed value for RANNUM which is provided at the
start of a simulation run. RANNUM actually emplsys two

random number generators of the form just given. However,

they are ceeded with different values and alternate



between each other 'when RANNUM ié callea upon, to generaﬁe
a random number. The use of alternating generators helps.
reduce the potential for nonrandomness when a 2-tuple of
~independent uniform random numbers is called for (14).
'éi With the means to generate uniformly distributed
random numbers from 0 to 1, transformation algorithms
were built into operations to generate random variates
from several probability distributions. They include the
exponential, uniform, Erlang and normal distributions and
were all adopted from FORTRAN-like algorithms presented
in various simulation textbooks (10,15,16). Their use as

a modeling element will be detailed in a later section.

4.5 Data Collection and Statistical Analysis
Each of the basic simulation elements presented

earlier are supported in the event routines wigg,*
baseoperations designed golely for the purpose of
collecting data. Those operations act upon statistical
arrays maintained for each of the elements in the model
as demonstrated.earlier. Thqse data are automatically
collected during each event routine or each time there is
a change in the state of a system variable. The user can
also initiate the collection of statistics on
user-defined entity attributés and global system

variables. This is carried out during the passage of

entities through a specialized modeling element known as
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a TALLY node whose use will be detailed later.

There are two basic types of statistics Eollected
during an NBDS run. The first class is derived from time
independent samples and include the accumulated sums and
squares on discrete observations of such variables as
service time or time spent in a quéue. If specified in a

.
TALLY node, certain attributes or global variables can be
maintained as)grouped data and displayed later as
frequéncy and cumulative distributions in a histogram.
The second class of statistics is derived‘from time
dependent samplings. They are collected over intervals of
simulated time with the points between each interval
marked by a change in the,ﬁ%apepdf the variablecunder
observation. Time—weighteg/statistics on variables such
as the number of entities waiting in a queue or
utilization of an activity or resource fall into this
class.

In the general purpose NBDS program, the data
collected during an simulation run is”automatically
analyzed during summary operations at the end of the run.
In special purpose prototypes, the user has the freedom
to determine which summary statistics are needed and
codes his own summary operations. Where applicable,

sample means and standard deviations are calculated for

both types of statistics. The formulas used for
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calculating those statistics are sufmarized in Table 4-1.
The components of those equations represent several of
the components of the statistical arrays maintained for

each element,.



Table 4-1 Formulas for Calculating Means
and Standard Deviations

Sample Mean Sample Standard Deviation
Statistics Based n g: x.2 - n~(§)2
Upon Observations X = 1/n £ «x, 5 = i=1  *
i=i *t n - 1
o
<1
T T 2
Statistics For x(t)edt o x“(t)edt
Time-Persistant % =)0 5 = 0 - (2)2
variables T T T T
! n = number of samples

- T = Total Time interval



5. Data Object Managément Efficiently Handled With Nial

Section 3.5 reviewed some of the basic recordkeeping
tasks involved when programming discrete event
simulations with general purpose computer languages.
Those nontrivial tasks deal mainly with maintaining
ordered lists of records representing entities waiting
for serbice in a queue or serving as a file for event
notices. Now that the reader has just gainea a”basic
understanding of the modeling concepts, data structures,
and program control associated with NBDS, this section of
the thesis will demonstrate hdw easily and efficiently
Nial handles those same programming requirements., Nial's
usefulness will also be exhibited through examples of
 record creation, record destruction, searching, sorting
and selecting records from a list of records.

5.1 Entity Records--Creation, Destruction and List
Formation

Every discrete event simulation program must be
able to create records of entities representing new
arrivals to the system and most programs will have a need
to destroy unwanted records to free up space in the
computer memory. Section 4.2 detailed the points of
entity record creation which clearly indicate that most
of the record creatién during a simulation run occurs as

a result of the bootstrapping step in the arrival event.
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Here .each new arrival to the system ﬁriggerﬁlthe
scheduling of its successor. In NBDS the CREATE operation
serves this purpose by returning as its value a record
(or array) of the next arrival to be placed on the event
calendar. 1In CREATE, the variable is assigned this new
record as follows: h

.‘NXTARVL: = AQ ARVT ARVT (SECOND GRULES)

AVRT ' ' ' ' LINK (N_TRIBS RESHAPE 0)

In this example AVRT represents the arrival time of the
entity which is the sum of the present simulated time and
a random interarrival time period. The interarrival time
pefiod is chosen from a probability distribution
specified in the oberating rules for the . source
generation‘node as is the destination node of the new
entity indicated by SECOND GRULES. The variable N_TRIBS
specifies the total number of user-defined attributes
each entity can be assigned and together with the RESHAPE
0 operation initializes each valué to zero. The primitive
LINK operation "links" the resultant attribute array with
tems in the record to create a single
heterogeneous linear data structure known as the entity
record. As an example, suppose the arrival of the next
entity was determined to occur at time 30.0, its first
destination is QUEl, and it can be assigned up to two

user-defined attributes. A picture of NXTARVL would



-appear as:

ot —dmmm -t —
1A0:30, 130, 1QUEL! | (010!
e S T R e

Note:how the use of blank character strings in place of
undssigned variables maintains the correct address
spacing described in the previous section.

"The record in the above example completely
characterizes that particular entity upon its arrival to
the system. It can be entered into any other list as a
complete unit by simply nesting”all its members into a
single array and linking it to the other members of the
list, For example, consider an arrival event in which the
above record represents an entity arriving to QUEL.
Assume that all the service activities are occupied when
it arrives and must therefore wait for service in the
queue. Also assume that prior to filing this record in
the gueue, the queue already contains two other entities
waiting for service. 1Identified as QRECS, a picture of

this file might appear as follows:

ikl R R iniadeie bbbt bkl et +
R R i b Sttt el b bk Sut fuk (HE Aiad bbeh et R el dok Sttt AL )
1IA0IS.21S.21QUELY !S.21010111A0IP. 219, IQUEL! 19.,91010101
HR Sal Sotaduh Sntainh dubuubnd tuk Seiniuh Sub dak SHE Sink el S i kit Sk Snteluk Sk St o1
B e ittt o e - -4

Since the leftmost member of QRECS is usually served
first, the ordering of records in QRECS could reflect a

FIFO queueing discipline (note event time in each third



field). 1If the record representing the arrival ié
assigned to the variable ARVLREC, its entrance into this
file simply requires the following expression:

QRECS: = QRECS LINK SOLITARY ARVLREC

o ‘
A picture of this file would now appear as:

b T T o e e +
e e I St et B e B e e e B e e et I ettt S St 31
11A0IS.215.210UEL! 15,2:010:!:A0!9.9!9,9/QUEL! 19.9!010!!:A0:30..30.:QUEL; !30.:0!0!!
e A e T B e e L B At S s S Tt S
tommmrm Am e T o e +

ARLVREC, with all its attrigutes, has now become the
third member of the afray QRECS. In actual practice,
QRECS is placed in a collective file known as QFILE (a
file containing all the service queue files). The
resulting three level nested array is a good example of
Nial's array-within-an-array concept. The example also
demonstrates how eaéily lists.can be created without
having to provide a system of pointers to the individual
data objects--the pointers are naturally embedded in the
Nial language itself.

Once an entity waiting in a queue file has been
scheduled for service, there must be a means to destroy
or eliminate that record from the file. In NBDS this is
carried out with the primitive "rest"™ operation which
drops the first member from afffii, leaving everything
after the first item still intact. Since all queue f%les

are usually served in order of lowest—add;ess—first, the

L



first record in QRECS would be the next to receive
service. Once scheduled, its record would be destroyed
. using the following expression: |

" QRECS: = REST QRECS
If QRECS started with the same three records shown above,
the  resultant picture of this last operation would appear
as:

Hom ———m oo e e +
e ST e e it A St S e B s e SR
11A019.919.91QUEL! 19.910!051:A0130,!30,1QUEL! 130,:0101!
R e e i T FF et S S B e S A
e Fm e e +

5.2 Sorting Record Lists

In the previous example, QRECS identified a
file of records representing a gqueue with a FIFO queueing
discipline. Therefore, to maintain a FIFO (or LIFO)
ordering when records are added to the list, the new
record needs only to be “linkéa“ to one end of the list.
However, atktimes the records in a queue file are ordered
using a discipline which keys on certain attributes such
as service time or time-in-system. In these cases the
NBDS operation SORTUP or SORTDOWN is used depending upon
which direction the file is to be ordered. As an example,
consider the three-membered QRECS file used before but
this time with a service time value stored in the first
user-defined attribute position (address 8). A picture of

the FIFO-ordered file would still appear like this:

D T D +-- eSS E LR +
D o T e Gt et e T B e S e e e S PRt
15.215i21QUEL! (5.21010!25.111A0!9.9!9,910UEL! (9.9:1070112.111A0:30.130.i0UEL: (30.:1010(7.65!
T T ST e B et et B e et S T I e e B e RE AL Tt
o e pmommmm e -- e -—+
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However, given the expression:
QRECS: = SORTUP 8 QRECS

a picture of QRECS would now appear as:

- - -——t - + -~ +
I e S T e el B R L totmm—t—t-t et e e e e St St ek
1iAQ:30.130.0UEL: !30.:0:0!7.6111A0!9.919.9IQUEL! i9,9:010:12.i!1A0!I5.2!I5,2I0UE1 15.21010125,1:
e et et I T e e e R e it Dt 3 B e e B e et B e e I A antn 3

’ + +

+
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with the records having the shortest service time in a
position to receive the earliest service. Here an entire
list of records, each containing its own list of
attributes, is reordered simply by supplying the address
of the key attribute in each record and the file itself
as arguments to the operation SORTUP.

This complex sort operation was built from just the
following bit of code:

SORTUP IS OP KEY ARAYS (LINK (GRADEUP EACH
KEY PICK ARAYS) EACHLEFT P;CK ARAYS)

The comp%imentary SORTDOWN operation is identical except
the primitive "GRADEUP" is replaced with "GRADEDOWN."
While each of these operations is used to provide
low-value-first or high-value-first ordering to queue
files, the SORTUP operation is used most extensively in
ordering the event calendar based on the event time of
each record. That is, each time a new event is scheduled
and added to the event calendar, CALENDAR, the entire

list of records is passed to SORTUP along with address



number 2 (event time). The value then returned by SORTUP -
is the event calendar of records in ordervof earliest

event time. By physically maintaining the gvent calehdar=“
in this order, each time the "select next event"
instrﬁc&ion is encountered in the simulation control
program, the program merely selects the first record from
CALENDAR as the next to be processed. Again a rather
complicated recordkeeping task is reduced to just a féw

lines of code using Nial.

5.3 Search and Selection of Records From a List

As mentioned earlier, an important programming
consideration in discrete event simulation is the ability
to search lists for recofds with a given value in certain
fields. There may also be a need to remove that record
from the list for use elsewhere in the program. A good
example where this is used in NBDS is during the
preemption of entities utilizing a particular resource.
This element Of NBDS allows entities arriving to a
specialized preemption node to preempt the activity of
other entities using a specified resource and acquire
those resources for its own use. The preempted entities .
are then sent to a given resource gueue until addi£ional
resources are made available again while the entity
causing the preemption is scheduled for departure with

. M"

the newly acquired resources.
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An initial step in the preemption process is a
search of the event calendar to find those entities

currently utilizing the resource in guestion. For

example, consider an event calendar containing the

following records at the time of a preemption:

B T b e N ]
Le- +___+____+____;____+_--, PR oo A St St Sttt S PO Rt e il Sttt Sretet et St et SR S
PIDI6.1IPS, TIRAULIACT: N ] .
LSOO S O O o S U P O O S S S G S S
B e it TPy e ———————— e —m e +

Assuming the number identifying the desired
resource, RN, is 1, a visual search of each record's
field #6 indicates the first and last entities scheduled
for departure from regular activity #1 are each currently
utilizing 5 units of the resource. A programmed search
for these two records is achieved through use of the
following expression:

POSTNS: = RN FINDALL EACH (6 PICK) CALENDAR
where POSTNS is assigned as its value the array (0 2)
containing the positional addresses of the records in
CALENDAR utilizing resource RN. Assuming both entities
are preempted, their records can be culled from the event‘
calendar and assigned to the array PRMPTRECS for
selective processing elsewhere using the expression:
- PRMPTRECS: = POSTNS CHOOSE CALENDAR

whose resultant picture would appear as:
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However, CALENDAR still contains the preempted records.
To removeiﬁhem simply requires the expression:
CALENDAR: = ((TELL TALLY CALENDAR) EXCEPT
POSTNS) CHOOSE CALENDAR ¢
which would leave the record scheduled for an arrival to
RQU1l as the only record on the event'calendar.

Obviously there are more steps involved in the
preemption routine. However, the three lines of code
presented in fhese examples demonstrate how simply a list
search ‘and item selection is carried out using Nial. From
these and the previous programming examples, the reader
should be able to appreciate how the power of Nial
reduces many of tﬁe routine programming chores demanded

by other computer languages.
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6. Simulation Elements of NBDS

The process of developing prototype discrete
simulation systems using NBDS requires the following
steps:

1. model development and translation into
a network diagram,

2, provision of a set of operating rules
for each element of the model,

3. design and coding of operation(s) to
provide a means for input of the
system operating rules into the
control program,

4. design and coding of operation(s) to
generate a summary report, and

5. integration of simulation control

program, element operations, input

operation(s), and output operation(s)

into a working simulation program.

The basic concepts of modeling and network diagrams
involved in the first step were described earlier in
shs

Section 4. 'The last three steps .will be dealt with later
in the thesis when examples of the general and special
purpose NBDS programs are presented. The purpose of this

section is to provide the reader with enough information

about the different modeling elements of NBDS to be able

to com‘*ege the second task listed above. Presented will
ction of each element along with the content
and format of its associated operating rules. Also, for
each element Appendix A lists the names of the

!
baseoperations built to support them in NBDS programs.
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The operations are listed in a hierarchical fashion to
indicate which operations are used within another. 1In
addition, Appendix B contains an alphabetical listing of
each NBDS operation and the beginning line number of its
location in the general purpose NBDS script file. That
script file is named NBDS.NDF and resides in the Lehigh
University Computer Center tape library under Volume
Serial Number JCW002. Together, Appendix A.and B provide
a quick reference to the operations and their source code
required to support a particulaf simulation element in an

NBDS. prototype.

6.1 General Format for Operating Rules

Before each simulation element is presented,
some general guidelines concerning the written format of
the operating rules need to be introduced:

® Each component in a single set of operating
rules becomes a member of a solitary array or list.
Therefore, the me&bers within a single set of operating
rules must be delineated from each other by maintaining
one or more spaces between them--not by separating them
with commas or some other special character.

® All alphabetic data is entered in upper case.

® Non-numeric information is entered as Nial
character strings and must therefore be enclosed by

single quotes (eg. 'FIFO' or 'QUEl'). 1In some cases -
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numeric information must be entered as character strings

as welL. Tﬁose cases will be specifically indicated. *\\
® Numeric data can be entered as integers or real

numbers.

® The ordering of components in each set of rules
is critical. Therefore, if a particular component does
not need to be specified, it should be replaced by a
blank character string (eg. ' ').

@ The first member of every set of rules is at
least a four—membered‘character string of which the first
three characters identify its element type (eg. QUE or
ACT). The last character(s) is an integer which uniquely
identifies that set of rules among several of the same
type (eg. QUEl, QUE2, etc.). Numbering begins with 1 and
should (although not necessary in the general purpose

package) be continuous.
9

6.2 gSymbols for Nodes and Activities

Table 6-1 provides a listing of suggested
symbols for depicting network models of NBDS systems. Any
symbol can be employed by a modeler to represent a.
particular element as long as it distinguishes itself
from others and fits nicely into the network diagram.
Table 6-1 also lists the page number of this text in
which the operating rhles format for the given node or

activity can be found.

e



Table 6-1 Symbols for NBDS Modeling Elements

Eamg

GENERATE

SERVICE QUEUE

SERVICE or REGULAR -

ACTIVITY

Q-SELECT-BHND

Q-SELECT-FWD

SRVR-SELECT

CONTINUATION

CONDITIONAL BRANCH

MULTIPLY

MULTIPLE BRANCH

Page Contalining

Symbol --Qperating Rules Format
0 -——- > 72

84
SRVn ar ACT
ervt :r dur“ ’ 87, 88
81
7?7
83
L2
’<’:7——> 109
\\)\
v
AN



Table 6-1 (contihued)

Page Containing

ame ’ Symbol : Qperating Rules Pormat
nrgst rn
RESOURCE QUEUB 90 .
Resource Bank m 92
| ™S
RESOURCE FREE nret o frn 93
IFRE'n l
it
RESOURCE ALTER natt rn 95
‘ ALTh :
nrq_sf rn
RESOURCE PREEMPT 98
PMTn
CLOSE @.:. 113
OPEN 114
ASSn
i
ASSIGNMENT f:;z 101
PALLY LYn 'fiﬂt 1084
tye
TERMINATE 7%

~
oy



6.3 Entity Creation and Destruction

As mentioned earlier, every simulapion program
must provide a means for enti%y creation and destruction.
These are provided for in NBDS through the use of
GENERATE and TERMINATE nodes respectively.

® GENERATE Node

The operating ruies format for the GENERATE
node is shown below:

'GENn' 'dest' 'tint' tfg gmax
Collectively these rules are known as Genrules. 1In the
leading label above (as in all other rules labels), n
represents the unique integer number assigned to each set
of rules within the given class. The character string
dest is the destination node of each new entity which
corresponds to that node's identifying label. The next
character string, tint, refers to the time interval
between generations. It can be substituted with a
coﬁstant value or any NBDS probability distribution-.or
program variable. The codes and associated parameters for
the latter two options are displayed in Table 6-2. The
next two rules, tfg and gmax, are the simulated time at
which the first entity is generated and the maximum
number of entities generated by that node respectively.
Gmax becomes infinity if not specified and is the only

member of those rules _allowed to be left blank.

U



Table 6-2. NBDS Random and Program Variables

Name Associated Parameters Definition

UNFRM MIN MAX A sample from a-uniform
distribution between
the interval MIN and

MAX

EXPON MN ' A sample from an
exponential
distribution with mean
MN

NORML  MN STD A sample from a normal

distribution with mean
MN and standard
deviation STD

ERLNG MN NS A sample from an Erlang
distribution which ig
the sum of NS

. exponential samples
‘ each with mean MN
th . :
ATRIB N N user—-defined
attribute of an entity
GVAR N Nth global variable
CLOCK Current simulated time
TGEN ' Generation .time of an
entity
RANNUM . A sample from a uniform

distribution of random
numbers in the interval
(0,1)



An example of a set of GENERATE rules is shéwn
below:
'GEN1l' 'QUEL' 'UNFRM 5 10' 0 100
whHere GENl generates entities with a time interval
between generations that is drawn from a sample of times
uniformly distributed between 5 and 10. GEN1l is also
shown to direct its newly created entities to the node
QUEl and begins generating them at time 0. ‘Generation of
entities ceases once a total of 100 have been created.
@ TERMINATE Node

The TERMINATE node only requires two members in

its operating rules: ~
'"TRMn' tc

whefé tc is the termination count for the node TRMn. When
the total number of entities terminated by that node is
equal to tc, the simulation run is eﬁded. If more than
one TERMINATE node exists, the first one to reach its tc
will end the simulation run. If tc is left blank, there
is no limit to the number of entities destroyed by that
node. The following is an example of a set of TERMINATE
rules which would end a simulation run after processing
1000 entities at' node TRML:

'TRM1' 1000

6.4 Queue Selection and Service Selection Nodes

As described earlier, service queues are
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“locations in a network where arriving'entities request
the service of one or more discrete service entities
represented by a single service activ}ty. If all the
servers are busy upon its arrival, the entity waits in
the queue until one becomes available. These simple
concepts are easily modeled. However, before a
description of QUEUE nodes and service activities is
given, several features and modeling elements related to
them deserve attention first.

[ Q;SELECT—FWD Node.

Q-SELECT-FWD nodes proviae one of several
ways 'in which entities can be routed to different
locations in a network. When an entity arrives to a
Q-SELECT~FWD node, it is routed without delay to one of
several parallel gueues designated by the node. The
" choice of queues is made based upon a priority decision
rule specified in the set of rules for the node. A |
summary of those decision rules ‘is listed in Table 6-3.

As an example, consider the diagram of a

Q-SELECT-FWD node and associated queue nodes shown below:



Code

PRI
cyYc
RAN
LNQ
SNQ

SRC

LRC

Table 6-3.

Decision Rules Used by Q-SELECT-FWD

and Q-SELECT-BHND Nodes

Definition

Select first available gqueue node from given

order

Selection of queue nodes still designated in
order but choose first available node after

last one selected

Select queue

Select queue
entities

Select queue
entities

Select gueue

Select queue

node

with

with

with

with

at random

largest number 2; waiting
smallest number of waiting

smallest remaining capacity

largest remaining capacity

(IR EREYS
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If the queue selection rule designated by the
Q-SELECT-FWD node was PRI and the given order was (l 2),
an entity arriving to the node would "always be routed to
QUELl providing room was available in the queue.
Otherwise, the entity would default to QUE2. This
particular node is useful in modeling the arrival of
customers to a multi-gueueing service area such as a
supermarket checkout area or fastffood counter where the
customer has a choice among several service lines.

The operating rules for this selection node are
collectively known as Qsfrules. Their format is shown
below:

'QSFn' (n

n, ...) 'gsr' 'BLK or Balk To'

1
where the second compbnent is an array of integer values
identifying the numbers of the possible dqﬁtination'queue
nodes (note: these values must be enclosed in parentheses
to maintain their identity as a single component in the
top level of the rules array). The character string
designated by gsr refers to the code of one of the
decision rules listed in Table 6-3. The last member of
these rules describes a feature of gueue nodes not yet
discussed-~balking and blocking.

When an entity arrives to a queue whose servers are
fully occupied and there is no more room in the queue,

,

two different actions are possible: 1) the entity can be



routed to another node in the network (called balking);
-or 2) if the entity was routed to the service queue by a
service activity, it can wait outside the gueue until
room becomes available; however, until that entity can
enter its destination queue, the service activity which

served it is prevented from servicing any other entities.

The second possi

affect service acti

. ’ [
up by the blocked entity is not considered to be utilizeu

y is called blocking and can only

‘ies, In this case the server tied

but is not free to resume service either. A situation
like this can be represented by a forklift transporting
commodities to a loading zone.. If on arrival to the
loading zone there is no more room available to unlocad
its goods, the forklift and goods must sit idle until the
next set of goods is removed from the queue. 1In the case
of the first possibility, an entity can balk out of the
system by being routed to a TERMINATE node or it can
assume a new destination anywhere else in the network
(note: balking is not permitted to queues which allow
blocking).

In the Qsfrules example listed earlier, the
character string 'BLK' entered in the last position would
allow entities’arriving to the Q-SELECT-FWD node to be
blocked if they were routed there by a service activity

and all the possible destination queues were full. If’

-~
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balking was desired instead, the code for the destination
node would be entered in this position (note: statistics
are automatically kept on balks from individual queues
but not in the case of balks from a Q-SELECT-FWD node).
If neither balking or blocking was desired, the last
position in the single set of Qsfrules would be left
blank. Below are the symbols for balking and bloéking

respectively, used here with Q-SELECT-FWD nodes:

Block

N\
N ?)a\K
= > D&S“hnﬁ-k‘mn

An example of a single set of Qsfrules is shown
below:
'QSF1' (1 2) 'PRI' 'TrRM2'
These rules could describe the two parallel queues

example presented earlier but indicate that entitieg
would balk out of the system (destroyed by TERMINATE node
2) if both destination queues were at capacity.
® Q-SELECT-BHND Node
A second node used in conjunction with a set

of parallel queue nodes is the Q-SELECT-BHND node. It is

associated with single or multiple service activities and



is reséonsible for selecting the next gueue to be
serviced when a service entity is ffeed from a previous
activity. It provides a "look behindﬁ capability in
contrast to the "look forward" capability of a
Q-SELECT~FWD node and is referencea only when a service
entity it precedes completes a service activity. The
Q-SELECT-BHND node does not interfere with the
requesf-for—service of an entity arriving to one of the
parallel queues it polices. 1If a serviceAentity is
available, that entity is immediately served; otherwise,
the entity waits in the queue and is then selected for
service based upon the decision of the Q-SELECT—BHND'
node. Like the Q—SEﬁECT—FWD node, this node selects the
next gueue to be serviced based uponhe priority decision
rule. The decision rules and their codes for the
Q-SELECT~-BHND node are the same as those used‘by
Q-SELECT-FWD nodes which are listed in Table 6-3.

Below is a partial network diagram of a

Q-SELECT-BHND node and its associated queues:

Assuming SRV1 just finished a service activity, QSB1l



would check to see if any entities were waiting in QUEL
or QUE2. If both queues were in use, the choice to serve
a particular gueue would be made based upon QSBl's
decision rule. For ihstance, if the rule was specified as
LNQ, the queue containing the largest number of entities
woﬁld be served next. If both gueues contained an eqgual
number of entities, the first queue in the list of qﬁeués
would be served. 1It's easy to see from this example that
the Q-SELECT-BHND node models the perspective of a
service activity. A situation where this would be a
useful mddeling element is in a manufaéturing process
where separate queues develop along a line that are
serviced by one or several activities.

The operating rules for the Q-SELECT-BHND node are
collectively designated as Qsbrules. Their individual
format is shown below:

'QSBn' (nl n, ...) 'gsr' 'srvid'
where the second and third members are identical to those
in Qsfrules. The last element refers to the
identification code of the service activity or service
selection node following the Q-SELECT-BHND node. Service
selection nodes provide a choice among several different
service activities and will be discussed in the next

segment. As an example of a set of Qsbrules, consider the

following:



'QSB1' (1 2) 'LNQ' 'SRV1’
These rules would describe the example given earlier in
which SRV1 selected from either QUEl or QUEZ2 depending
upon which had the greater number of waiting entities.
® SRVR-SELECT Node

.The :last preliminary node that needs to be
described is the SRVR~-SELECT node. This node is used when
there is a need for an entity arriving to a queue to
select a particular service activity from among several
serving that same queue. That is, every service activity
is allowed multiple service entities but this node allows
for multiple service activities as well. A SRVR-SLCT node

is situated between its associated queue and the service

o

activities it polices as shown below:

Like the previous two selection nodes, the SRVR-SELECT
node is governed by é set of priority decision rules
listed in Table 6-4. If the rule for the above éxample
was specified as RAN, an entity arriving to QUEl would
select either SRV1 or SRV2 at random if both service

activities were idle.
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Table 6-4. Decision Rules Used by SRVR-SELECT Nodes

Code Definition

PRI Select first available service activity from a
given order

CYC Select service activities from a given order but
select first available one after last one selected

SBT Select service activity having smallest busy time
LBT Select service activity having largest busy time
RAN Select service activity at random

The collective name for the operating rules of this

node is Sllrules. Below is the format for a single set:.
' [ ’ ' v
SSLn (nl n, «e.) 'ssr

n, ...) represents the solitary array of

whe;e (nl

service activity numbers provided for selection and ssr
.1s the decision‘rule code. The following is an example of
these rules based on the diagram presented earlier:
'SSL1' (1 2) 'RAN'

Again, ohly integer numbers identifying each service
activity is used in the second componegt while the entire
list is enclosed in parentheses to maintain its
singularity among the other members.

SRVR-SELECT nodes are useful when modeling a system
where a particular source of entities require different
processing times or a particular service activity is

given a higher priority. For instance, customers arriving



to a fast-food counter with multiple servers might choose
the counterperson who takes the least time to prepare
their order based on previous experience or management
might encourage such a situation themselves bf the proper

line arrangement. As mentioned earlier, SRVR-SELECT nodes

can also be used with Q-SELECT-BHND nodes. The partial
network diagram shown below demonstrates such a

combination:

6.5 SERVICE QUEUE Nodes

By now the reader should be familiar with the
function of SERVICE QUEUE nodes and their network symbol.
Therefore, this ﬁext section will be devoted entirely to
a discussion of its operating rules format.

"The operating rﬁles for a QUEUE node are referred to
collectively as Qrules. The format for a single set is
shown below:

'QUEn' 'disc' gn gmax 'BLK or Balk To' 'srvid' 'gsid'
The character string disc refers to the queueing

discipline for that queue. Table 6-5 lists the codes and



Table 6-5. Queueing Disciplines

Code Definition

FIFO Entities served in order of arrival
LIFO Entities served in reverse order of arrival

LVFn EntiE%es served in order based on low-value-first
of n”" user defined attribute

‘HVFn EntiE%es served in order based on high-value-first
of n user defined attribute

RAND Entities served at random

descriptions of those availabie in NBDS. The elements gn
and gmax refer to the initial number of entities in the
gueue at the start of the simulation and the maximum
allowable number of entities in the gqueue at any one time
respectively. If gn is greater than 0, service begins
immediately at the start of the simulation for asvhany
entities as there are available servers (note: if
beginning simulation with entities already in the queue,
LVF or Hvz’queueing discipline cannot be used). If there
s
is no limit to the number of entities a QUEUE node can
hold, then gmax should,contéin a blank character string.
Blocking and balking can be specified if gmax is zero or
greater. If blocking is desired, the fifth pdsition
shouldlsontain the character string 'BLK'. If balking is
desired, this element should be replaced with the code

name of the destination balked to. The next position

represented by srvid holds the identification of the:

o
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associated service activity or SRVR-SELECT node. Finally,
the element gsid refers to the code name of a
Q-SELECT-FWD or Q-SELECT-BHND node associated with the
gueue. As implied by the single position for two

different options, an individual QUEUE node can only be

-

associated with one type of gueue selection node at a
time.
As an example of a set of Qrules, consider the
following:
'QUE1' 'FIFO' 0 ' ' ' ' 'SRVl' ' !

This represents the simplest QUEUE node possible., QUE1l

"maintains a FIFO dueueing discipline, starts with no

entities in the queue, and is serviced by the activity
SRV1. 'Note the blank character strings which indicate no
limits on the gueue length, no blocking or balking, and
no association with queue selection nodes respectively.
Again, fheir inclusion is important as the position of

each rule in a set is critical.

6.6 Activities
. Since the role of activities in a network has
already béen established, this next sectioh will simply
highlight the differences between the two types and
describe their respective operating rules content and

format. =

ol Ny
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® Service Activities
Service activities limit the number of
concurrent entities travelling over them and are uged
only in conjunction with service queues. Their operating

rules are known collectively as Srvrules and each set has

the following structure: ) : M

'SRVn' 'dest' 'srvt' nsrvs 'ssl'
As iﬁ the rules for a GENERATE node, dest fepresents ﬁhe
code for the destination node to which an gﬂtity is
delivered by the activity. The character string srvt is
the designated service time ﬁor tha£ activity and is the
time period by which an entity's passage through the
activity is delayed. Like the tint rule of Genrules, srvt
is substituted with a constant value or any code and
associated parameters for the random variates and program
variables listed in Table 6-2. The descriptor nsrvs is
the number of parallel servers represented by the service
activity. Lastly, the character gtring s8sl represents the
name of a SRVR-SELECT node with which the service
activity is associated. If the service activity is not
associated with one, this last position is left blank.

As an example of'a set of Srvrules consider the

following:’

'SRV1' 'QUE3' 'ATRIB(1l)' 1 'SSL1'

Here the last member indicates SRV1's association with.



SRVR-SELECT node SSL1 (as in the previous example where
SRV1 was named as one of two possible service activities
an entity could select from when arriving to the node
SSL1). 1In this éase, the destination of an entity

utilizing SRV1 is the service queue QUE3. 1In additiomn,

the service time for that entity is determined by the
value of its first user-defined attribute, kTRIB(l).
Finally, the value at address 3 indicates this is a
single server activity.
® Regular Activities

Regular activities are used to transport
entitieé away from nodes other than QUEUE nodes and have
no restriction on the number of entities utilizing them
~at one time. A collection of operating rules describing
regular activities is referred to as Actrules. A single
set of Actrules has the following format: e

'ACTn' 'dest' 'dur' 'N/S'

where dest again represents the code of the destination
node to which the activity delivers its entities and,gEE
represents the duration of time an entity's progress ls
delayed through the activity. Dur is similar to srvt of
Srvrules except a zero time duration can be specified for
the activity by simply leaving its character string

blank. The last member in this set of rules gives a

modeler the choice of whether or not to collect

15



descriptive statistics on a given activity. In some cases
regular activities are required only to provide a link
between nodes with no need to report their utilizati

statistics, etc. In these situations, the modeler hag the

option of supplying the charactgr string 'N/S' in the
last position of the operating rules statement to prevent
the wasted collection of statistics.

Below is an example of a set of Actrules:
'aACT1' 'TRM1' ' ' 'N/S'

where entities passing through AGgl are directed to
TERMINATE node 1 without delay. Also, the last member in
this set of rules indicates that no statistics describing

the use of this activity are to be collected during the

simulation run.

6.7 Resource Queues and Related'Simulation Elements

As described in Section 4.1, resource queues are
similar to serviceJQueues except entities arriving to the
latter type must acquire "resources" as opposed to
discrete service entities to continue their pasnge
through the gqueue. Resources are delegated to a queue
from an external source which can be shared by muitiple
resource queues. Arrivinéventities can request variable
amounts of a given resource and, once acquired, depart
from the queue over a regular activity branch. This next
section details the operating rules required by resource

queues and also introduces several of the modeling
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elements used with them.
® RESOURCE QUEUE Node
Below is the format of a set of operating
rules for a RESOURCE QUEUE node which. are referred to
collectively as Rgrules:

'RQUN' 'disc' gn gmax 'Balk To' rn 'nrgst' 'actid'
Except for the leading label, the first four components
are identical in name and function to éhose in a set of
Qrules. The Balk To variable at address 4 is also the
same as that for Qrules but, as this rule implies,
resource queues only allow balking--not blocking. The
last three members of this set of rules are unique to
RESOURCE QUEUE nodes.‘gg is an integer number identifying
" the source of resources for the queue (see next section).
The character string nrgst represents the number of
resources an entity arriving to the queue requests and is
one of three rules in this family of elements where
numeric information must bé entered as a character ®
string. The value.might be a constant but, like the time
delays for activities, the value of nrgst may also be
obtained by specifying one of the random variates or
program variables listed in Table 6-2., Finally, actid
refers to the identifying code for the regular activity
emanating from the RESOURCE QUEUE node.

An example of an individual set of Rgrules is given



below:
'RQUL'A'LVF2' O ' ' ' ' 1 'ATRIB(2)' 'ACT1'
Going from left to right, this set of rules specifies
that entities waiting for resources in RQUl gqueue up in
order of low-value~first based on their second
user-defined attribute. The third component indicates the
simulation begins with no entities in the queue. The next
two blank character strings mean there is no limit to the
capacity of the queue and, hencé, no balking from the
queue respectively. The value at address 5 indicates that
resources acquired at RQUl are held by resource bank #1.
Furthermore, the next position specifies that entities
arriving to the gqueue request resource amounts egual to
the value contained in its second user—defined attribute
(therefore, by virtue of the gueueing discipline, waiting
entities requesting the least amount of resources are
served first). Finally, the last component indicates that
entities travél from RQUl over regular activity ACT1.
® Resource Banks
Resource banks are used to hold specified
amounts of resource for allocation to designated resource
queues. A bank of resources varies dynamically throughout
a simulation run but can never exceed its capacity or
drop to a negative amount. They lie outside the actual

network model but must be specified in the operating



rules whén RESOURCE QUEUE nodes are used.

Together the operating rules for Resourcg Banks are
known as Rscrules. A single set of rules assumes the
following format:

'RSCn' capac (nl n, o)
where RSCn identifies the particular bank of resources
and capac spegifies the number or amount of resources
available for allocation at the start of the simulation.
The last member of these rules is a soliﬁary array whiqh
lists the integer numbers of those RESOURCE QUEUE nodes
associated with the resource bank. The ordervin which
those queues are listed ig important during the
féallocation of resources which will be discussed in the
next two segments.

As an example of a set of Rscrules, consider the
following:

'RSC1' 10 (1 2 3)
Here resource bank RSCl starts the simulation run with 10
units of resource which are allocated to entities
arriving at resource gueues RQUl, RQU2, and RQU3
(provided the requested amount is still available).
However, if additional résources become available or
previously acquired resources are relinquished during the
simulation run, reallocation of those resources to

waiting entities begins immediately by polling each of



the three resource queues in the prescribed order.
® RESOURCE FREE Nodes
Resources previously acquired by an entity

are relinquished by routing the entity through a RESOURCE
FREE node. RESOURCE FREE nodes specify the amount of
resources given up by an arriving entity as well as the =
originating Resource Bank to which they are returned for
reallocation, Since all entities arriving to a RESOURCE
FREE node will trigger the release of additional
resources, care should be taken by the modeler to
preserve the balance of resources in the systeli by not
releasing more than was orig®nally available. Where
variable amounts of resourées are acquired by entities
arriving to a resource queue, it is a good practice to
record that amount in the entity record as a user-defined
attribute. That attribute can then be referenced upon an
entity's arrival to a RESOURCE FREE node to determine the
correct amount of resources to relinguish. 1In the event
an excess balance of resources is released at a free
node, the amount of available resources will not increase
beyond the given Resource Bank's capacity.

The operating rules for RESOURCE FREE nodes are
referred to collectively as Freerules. An individual set
has the following format:

'FREn' rn 'nrel' 'actid'

LY N
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where rn specifies fhe number -of the Resource Bank to
which nrel resources are returned by entities arriving to
the node. Like the nrgst component of Rgrules, nrel is a
character string which may contain a constant value or
expression derivéd from the random variates and program
variables listed in Table 6-2.

An example of a set of Freerules is the following:

'FRE1' 1 'ATRIB(2)' 'ACT2'
where enfities arriving to FREl release acquired
resources in an amount equal to the value stored in its
second user-defined attribute. The relinguished resources
are given back to Resource Bank #1 where they are
immediately reallocaﬁed to the resource gqueues prescribed
by RSCl. The regular activity ACT2 then routes arrivals
away from FREL.
® RESOURCE ALTER Nodes
At certain points in a networksmodel, there

may,be a need to édjust the capacity of a particular
Resource_Bank.lThis is accomplished in NBDS by routing an
entity thfough a special element known as a RESOURCE
ALTER node which is a particularly useful element for
simulating employee work breaks or scheduled machine
maintenance.

The operating rules for RESOURCE ALTER nodes are

known collectively as Altrules. An individual set has the

B
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following structure:
'ALTn' rn 'nalt' 'actid’
where rn is the numbe;qof the Resource Bank whose
resource capacity is being altered and the character
string nalt represents the amount by which the capacity
is altered. Nalt may be negative or positive and may also
be defined by one of the variables listed in Table 6-2.
As in the other related rules, actid represénts the name
of the regular activity which routes arrivals away from
» ALTR.

An important point should be made concerning the use
of a RESOURCE ALTER node. If the arrival of an‘entity to
an alter node would reduce the capacity of its designated
Resource Bank befgw the number of resources currently
available, no effort is made to recover the difference
from entities currently in posseséion of them. instead,
the entities flow through the network as usual and when
they finally encounter a RESOURCE FREE node, the
resdurces released at the node simply aren't reallocated
by the designated Resource Bank. Also related to this is &
the effect of repeated arrivals to an alter node that
decrements the capacity of a given Resource Bank. Once
the capacity has been reduced to zero, any additional
arrivals to the alter node will not create a negative

deficit.



Consider the following set of Altrules:
'ALT1' 1 '~~10' 'ACT3'
Here entities arriving to ALT1 will initially cause a
reduction in the capacity of Resource Bank‘#l by 10 units
and then be routed away from the node by the regular
activity ACT3. Note the use of the tilda symbol in the
value “~ 10 to indicate a negétive number. Thig is a Nial
convention and is in contrast to the normal dash (-)
reserved as the operation symbol for subtraction.
® RESOURCE PREEMPT Nodes

RESOURCE PREEMPT nodes are useful elements
for modeling situations where the utilization of a
resource by an entity is suddenly interrupted by another
(eg. machine breakdowns or an‘in£erruption in the
transmission of a message over a shared chmunications
line). Here entities arriving to a preempt node will
initially request the use of a given amount and type of
resoﬁrce just as entities do upon arriving to a resource
queue. If a sufficient amount of resources is available,
they are allocated to the entity in the normal fashion
and the entity proceeds on through the network. However,
if the avéilable resources cannot satisfy the entity's
request, then the entity will attempt to preempt that
same resource from entities already utilizing them until

its requirements are satisfied. Resources may only be



preempted from entities currently engagea in a regular
activity‘(ie. not from entities waiting in a queue or
engaged in a service activity). A preemption attempt on
an entity engaged in a regular activity wilf onlf be
successful if the valué of a given user-defined attribute
gives the preemption entity a higher priority. If an
entity arriving to a RESOURCE PREEMPT node fails to
acqguire its requested number of resources, it balks to a
destination node specified by the modeler.

If more than one entity is preempted in a single
attempt, preemption begins with those entities scheduled
for the latest departure event. If only a portion of the
resources owned by the 1ast"gntity preemﬁted were
required to satisfy the preemption, the remainder is made
available to other entities waiting for that resource.
Preempted entities are sent to a designated resource
queue where they are established as the first entities
waiting for the resource (in order of earliest departure
time first). Their remaining processing time is saved in
the third program-defined attribute of their entity
record which is later used as their activity duration
when reassigned resoufces. Preempted entities which
resume activity take up at the.same place in the network
from.which they were preempted. However, because

preempted entities may be sent back to a queue different



iy

from their original source, they may resume activity with
a resource different from the one they possessed when
preempted. BAlso, if an entity targeted for preemption is
in possession of more than one resource type, only the
last resource will be given up; all other resources
remain in that entityfs bossession when sent back to a
resource queue.

The operating rules for a RESOURCE PREEMPTION node
are known collectively as Pmtrules. Below is the rules
format for an individual set:

'"PMTn' rn ‘nrgst’' 'LVn or HVn' rq 'Balk To' 'actid'
where nrgst represents the amount of resources from
Resource Bank # rn initiélly fequested by an entity
arriving to PMTn. The character stffngs Lvn and HVn of

the fourth component specify the type of priority and

attribute number an entity arriving to this nodes assumes

when attempting a preemption of another entity. Rg is an
integer number identifying the resource queue to which a
preempted entity is sent while Balk Tq‘rep;esents the
code name of the node to which an entity is sent when
unsuccessful. in a preemption attempt. In the event of a
successful preemption (or normal acquisition of availéble
resources), the entity arriving at PMTn is routed away
from the node over regular acﬁ%vity actid.

\

To illustrate the use of a set of Pmtrules, consider



the following:

'PMT1' 1 '5' 'HV3' 1 'T§M2' 'ACT4!
Here an entity arriving to ﬁMTl requests 5 units of'
resource from Resource Bank #l. If they are not
available, or only partially available, then an attempt
is made to preempt entities in possession of that
regource until enough .resources are acquired to éaﬁisfy
the arrival's réquest. Entities deterhined as candidates
for preemption will only be preempted if the value of
their third user-defined attribute is less than that of
the entity arriving to PMT1 (equal values using either
priority scheme will not cause a preémption). If a
successful preemption occurs, the preempted entity is
sent to RESOURCE QUEUE node #l-where it waits at the head
of the line for available resources; thé entity causing
the preemptioh then continues its journey through the
network over regular activity ACT1l. If unsuccessful in
acquiring the requested units of resource, the entity
arriving to PMT1 immediately balks to TRM2 where it is

terminated.

6.8 ASSIGNMENT_NodeS
Up to now a great deal of attention has been
given to user-defined attributes of an entity. As just
presented in the discussion of the RESOURCE PREEMPTION

node, user-defined attributes are required to establish a

- 99 -



\
A\

priority system‘amoﬁg eﬁtities'ihvolved in a pre:;;tion
attempt. They are also useful to hold pre-determined
service times or record the units of résource acquired at
a given RESOURCE QUEUE node. To carry out these
assignments in an NBDS prototypé) entities are routed
through ASSIGNMENT rnodes. These elements assign values to
members of an entity record reserved to store
user-defined attributes. The array of attributes is
collectively referred to as ATRIB. Arrivals to an
ASSIGNMENT node can also change the value of a globally
defined program variable contained in the array GVAR.

The statement used to assign values to any of these

L. v
address value of*+its position in the array (addressing

variaQ%ei must begin with the name of the array and the

begins with 1). Following the assignment symbol, the
right-hand side of the expression can contain a single
constant or any of the NBDS variables listed in Table
6-2. The expression can also contain any combination of
constants and variables with'any number of arithmetic
operations as long as it conforms to the constructs éf
Nial and employs the correct arithmetic symbols. As
examples of valid NBDS assignments at an ASSIGNMENT node,
consider the following:

ATRIB(2): = EXPON(1l0) + ATRIB(1)

GVAR(1): = GVAR(1) * 2

-
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In the first example, an entity érriving to the node
@ould have™the value of its second user-defined attgibute
replaced with the“sum of a sample drawn from an
exponential distribution (with mean 10) and its first
user-defined attribute. In the second example, the global
variable GVAR(1l) is assigned as its value the product of
its present value and the constant 2.

The operating rules used to define ASSIGNMENT nodes
are known collectively as Assnrules and have the
following individual format:

'ASSn' 'dest' ‘'expl' ‘'exp2' ... 'expK'
where an individual node can have K separé@e expressions.
As shown, ASSIGNMENT nodes are not associated with an
actiqi}y.' Instead; an entity arriving to the node is
immediately passed to its destination node as indicated
by dest. Also note that each expression must be entered
as a character string.

As an example of an individual set of Assnrules
consider the following:

'ASS1'  'QUE3' 'ATRIB(2): = EXPON(10) +

ATRIB(1)' 'GVAR(1): = GVAR(1l) * 2'
Here the expressions used were given in the previous
examples and would result in the assignments described
there. Also, an entity arriving to ASS1 is shown to be
immediately routed to the node QUE3.

]
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An additional element associated witg ASSIGNMENT
nodes also needs to be introduced here which concerns the
initialization of global variables. Like the attributes
for an enﬁity, the values of all GVAR variables are
automatically initialized to zero at the start of a
simulation run. However, if the modeler wishes to
initialize a partiéular vériable wiph a non-zero starting
value, this can be accomplished by including one or more
INIT statements with each set of Assnrules during the
input of the operating rules. One statement is used for
each global variable to be initialized. dnd has the
following format:

'INIT' 'exp'
where the generalized INIT label is used with each ..
initialization and exp represents any GVAR assignment
expression discussed earlier. For example, the following
statement would initialize the previously used global
variable to the value 5 at the start of the simulation
run:

'INIT' 'GVAR(1): = 5'
The collective name of a group of INIT statements is

Inits,.

6.9 Collection of Supplementary Statistics

While most of the simulation elements

presented so far were designed to collect their own set
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of descriptive statistics, NBDS also has the capability
to collect supplementary statistics on user-defined
attributes, global variables, and other system variables,
Time independent statistics can be collected on most
system variables by routing entities through a TALLY node
while time dependent statistics can be maintained on any
global variable through use of a TIMD statement.
/V. * TALLY Node

Each time an entity arrives to a TALLY node,
oﬂe of the following types of variables can be
automatically collected as an individual observation:

1. TSYS - the length of time an entity
has spent in the system to that point.

2. INT(n) - the difference between the
arrival time (CLOCK) of an entity to
the TALLY node and a mark time stored
in user-defined attribute n.

3. BTWN - the time between arrivals to
the TALLY node, using the first
arrival as a reference point.

4. ATRIB(n) - the: value of user-defined
attriBute n.

5. GVAR(n) - the current value of global
variable n.

The statistical array Tallystats stores most of the
data collected at TALLY nodes. Those data include minimum
and maximum values, total number of observations, and the
information necessary to estimate means and standard

deviations at the end of the simulation run. TALLY nodes
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éan also collect‘the data.reqdired to generate a
histogram at the end of the simulation run. The histogram
is divided.into 17 cells and depicts the frequency
distribution of values observed on a designated variable
over the length of a simulation run. Those data are
maintained as separate arrays within aysingle array known
as the Fregfile. |

The operating rules for a collection of TALLY nodes
are referred to as Tallyrules. The format for an
individual set is shown below:

'"TLYn'  ‘'dest' 'title' ‘typ' ('HIST' 11 ul)

As with ASSIGNMENT nodes, entities passing through a
TALLY node are immediately routed to the next destination
represented by dest. The character string title is any
nameathe modeler chooses to identify the type of variable
being observed while typ refers to one of the code names
for the five different variable types listed above. The
last member in these rules ié a solitary array specifyind
the need for a histogram. Along with the charaéter string
'HIST', the modeler must provide‘én estimated range of
observed values for the variable by specifying its lower
limit (1l1l) and upper limit (ul) respectively. If no
histogram is desired, the three-membered array is
/replaced with a blank character string.

Below is an example of an individual set of
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Tallyrulés:

'TLY1' 'TRM1' 'Time in Systeém' 'TSYS' ('HIST' 10 506)
These rules indicate TLY1 islused to collect the duration
of time an entity arriving to that node has spent in the’
system to that point. Since the entities are subsequently
terminated, that time period repfesents their total
lifetime in the system. Furthermore, a histogram is
called for depicting the frequency distribution of those
observations estimated to iie between 10 and 500>time
units.

® TIMD Statement
The TIﬁD statement is another NBDS element

that is not directly represented by a network symbol but
‘instead is used to desiéﬁégg‘a system global variable for
the collection of time-persistent statistics. Data
describing the value of a global variable over the
duFation of the simulation run are %gintained in the
statistical array Glbsta£s. That info;méiion can be used
at the end of the simulation fo generate mean values and
standard deviations as well as minimum and maximum
observed values.

The TIMD statement is similar to the IﬁIT statement
in that it may only be used to name a single global
variable. A group of TIMD statements are referred to

collectively as Timrules. The structure of an individual
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statement is shown below:
'TIMD' 'title' n

wherg each statement is preceded with the generalized
label TIMD. As before, title refers to a user-supplied
character string which uniquely hames the variable of
interest and n representsrthe integer number of its
address in the GVAR array. For example, in the TIMD
statement shown here:

'TIMD' 'Number in System' 2
GVAR(2) is used to monitor the number of entities in fhe
system at any one time and is designa&ed to be maintained

as-a time dependent variable.

6.10 CONTINUATION Nodes

In many instances during the design of a
"network model there is a need to separate regular
activities into two or more activities with distinct time
delays. There may also be a need to immediately follow a
service activity with a regular activity; or where a node
(like the TALLY node) is not associated with an activity,
there may be a need to delay an entity's departure from
that node to its next destination., 1In all three cases, a
CONTINUATION node can be used to solve the problem.

The operating rules for a CONTINUATION node are
known collectively as Contrules. The format for an

individual set is shown below:
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'CONn' 'ACTn'
This two-membered set of rules just contains its
identifying code name and the code name of the regular
activity which delivers entities from the node. As shown,
it simply models a sequential arrival and departure event

with a time delay (specified by ACTn) in between.

6.11 MULTIPLY Node

When a network model calls for the
‘simultaneous generation of multiple entities, either from
a GENERATE node or some other location, the MULTIPLY node
will satisfy that requirement. When an entity arrives to
a MULTIPLY node, it is replicated any number of times,
afterwhich the parent and its clones are immediately
rouﬁed to a single destination node..

A collection of operating rules for MULTIPLY nodes
are referred to as Multrules. An individual set has the
following format:

'MLTn' nm 'dest'

where nm identical entities are routed from MLTn to dest

for each arrival to the node.

6.12 MULTIPLE BRANCH Node

This NBDS modeling element is identical to
the MULTIPLY node just presented except the multiple

entities created at the node are individually routed to
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two or more difterent destination nodes in the network.
The collective name for the operating rules of »
MULIIPLE BRANCH nodes is Mbrnrules. Inaividually, a set
of Mbrnrules contains théhfollowiug format:
'"MBRn' ('dest'l 'dest'2 ce 'aest'K )
where K identica-;thities are routed t~ multiple
destinationh nodes from MBRn for each é;rival to the node
(that includes the parent entity as well). Note the use
of a single array to hold all the destination nodes. The
maintenance of this array as a single member in the top
.evel of the rules is critical.
An example of a single set of Mbrnrules is given
below:
'MBR1' ('QUEL1' 'QUE2' 'QUE3")
Here an&%htity arriving to MBR1l is replicated Ehree times

and evenly distributed to three different service queues.

6.13 CONDITIONAL BRANCH Node

CONDITIONAL BRANCH nodes are useful NBDS
modeling elements in that théy provide important decision
points within a network. An entity arriving to a .
CONDITIONAL BRANCH node is confronted with a sequence of
conditional statements, each of which is associated with
a different destination node. The entity begins testing
each condition and is routed to the destination of the

first one satisfied.
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Below is the format for a set of CONDITIONAL BRANCH
node operating rules collectively known as Cbrnrules:

'dest' )

‘!l ] ] ] [}
'CBRn' ('cond 1 dest ) ('cond 5 2

1

1 [} 1 [}
«e. ('cond K dest K)
where CBRn contains K sets of conditions and associated

destination nodes. Here each condition (cond) and
. /

destination node (dest) are defined together as a singlé
arrdy within the array of operating rules and represent a
single branch from the node CBRn. When an entity arrives
to a CONQITIONAL BRANCH node, it begins testing each
condition in the order given'in the set of Cbrnrules. 1If
a given condition is satisfied, the entity automatically
departs the node to the destination node associated with
the conditional statement and no further testing is
carried out. If a given condition is not satisfied, then
the entity tests the next one in line. 1If none of the
conaitions are satisfied, the entity is routed tovthe
last destination node specified as a failsafe measure.
Therefore, the modeler could actually substitute a blank
character string for the last condition to be tested but,
for clarity's sake, should be spelled out explicitly.

The conditional statements can contain any
constants, random variates, or program variables listed
in Table 6-2 but must be used with the Nial relational

and Boolean operations listed in Table 6~-6. Note  that the
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Table 6-6. Standard Nial Reiational and Boolean
Operations

Operation Definition

> _ greater. than

< less than

= equal to

>= greater than or equal to

<= less than or egqual to

= not equal to

and A logical and of items of A

Not A reverse the logical value of A
or A’ logiéal or of items of A
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NBDS variable RANNUM can be used to specify a probability
in a conditional statement such as the following: |
RANNUM > 0.20

Here the condition is satisfied if the uniformly
distributed random number generated by RANNUM is greatér
than 0.20. 1If used in a set of Cbrnrules, an arriving
entity would face an 80% chance of being routed to the
associated destination node.

As an example of a set of Cbrurules, consider the
following:

'"CBR1' ('ATRIB(l) = 1' 'CON1l') ('ATRIB(1l) = 2' 'CON2')

T2 T

'He;e'the conditional statements are testing for a certain
at%r;bdte value of the entity arriving to CBR1l. 1If the
entity's first user-defined attribute is equal to 1, it
is routed to the CONTINUATION node goﬁ}.\ Otherwise the
attribute value is considered to be equal to 2 and the

entity departs to CON2.

6.14 CLOSE and OPEN Nodes

In many quegfing situations there is often a
need to temporarily suépend service to a particular queue
or group of queues. Such might be_tﬁe case when a bank
teller takes a lunch break or a machine on an assembly
line is shutdown for maintenance. Another example would
be a traffic light at an intersection where the flow of

traffic is halted in one or more directions for a given
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period of time., In the case of the bank teller breaking

for lunch, thevcustomers lined up for service in his
queue would most likely be directed to another teller
still in service. However, in the last example, the
drivers lined up at a traffic light would be forced to
wait in line until they could pass through a green light.

All of the situations described above can be modeled
with CLOSE and OPEN nodes. “In addition, these modeling
elements can be applied to both service gqueues and
féééﬁ;ce queues.

® CLOSE Nodes
When an entity arrives to a CLOSE node, a -

designated queue or group of queues is closed for
service, In the case of a service gqueue, any entities
currently in a service activity are permitted to complete
that service. Likewise, entities from a resource queue
currently in possession of a resource are allowed to keep
it until scheduled for reléase. However, when the Servicgl
activity is over, its servers afe idled or when the
resource is relinquishad, the designated resource queue
is not polled for reallocation. At the time of closure,
an additional action may take place. If the designated
queue permits balking (as indicated by its fifth
operating rule), the modeler has the opt%on of sending

all the entities currently in that queue to the
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destination node specified by the balking rule. Any
additional arrivals to the queue automatically balk to
the given destination node while that queue remains
closed. 1If balking is not specified, then any additional
arrivals to thé gueue simply enter the gqueue and wait
until service reéumes. o |

The operating rules for a CLOSE node are referred-to
collectively as Clsrules. An individual set has the
following format: |

'CLSn' 'gtyp' (ny, n, ...)'BALK' 'actidf—-

where the character string gtyp specifies the type of'
queué?s) to be closed. Here the code QUE specifies'a
service queue while RQU specifies a resource qqéue. The
third member of these rules is an array of integer
numbers identifying the queue or queues of that type to
be closed. (Note: CLOSE nodes cannot specify service
queues associated with Q-SELECT-FWD nodes). The next item
gives the modeler the option to balk all current and
future entities to the balking destination node specified
by that gqueue. 1If this rule is left as a blank character
string, balking will ;nly occur if: 1) the operating
rules for the queue specify it; and 2) the gueue's
capacity is reached while the queue remains closed. The

last operating rule for a CLOSE node specifies which

regular activity routes the arrival away from the node.
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An example of a set of Clsrules is éhbwn bélow:
'CLS1' 'RQU' (1 2) ' ' 'ACTS'
Here an entity arriving to CLS1 forces the clésing of
resource queues 1 and 2 and is ;outed away from the node
on ACTS5. The blank character string at address 3 allows
normal balking to occur from those nodes‘if indicated in
their respective Rgrules.
® OPEN Node
OPEN nodes are used to resume service on a

previously closed queue. When an entity arrives to an
OPEN node associated with service gqueues, the specified
queues are served immediately if a service entity is
available. Likewise, an entity arriving to an OPEN nodé
aséociated'with resource queues results in the immediate
polling of those gqueues if available resoﬁrces éxist.
Also, if automatic balking was specified, that
restriction is lifted as well.

A collection of operating rules for OPEN n;;;

Q\ire

referred to as Opnrules. An individual set is structured
®

as follows:

'OPNn' 'qup' (ny ny ...) 'actid'
where the rules are identical to those of Clsrules by the
same name. As an example of an individual set, consider
the following:

S

'OPN1' 'RQU' (1 2) 'ACT6'
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Here an entity arriving to OPN1l would allow the same

gueues closed by the earlier example to resume normal

activity.

6.15 SEED Statement

The SEED statement is another statement
which is read into the program along with the operating
rules at the start of a simulation run. It allows the
user a choice of ten different seed values for the random
number generéting operation RANNUM (actually two
different seed values are picked with this statement, one
for each of the two alternating generators within
RANNUM). The format of this statement is:

'SEED' n
when n is any integer from 1 to 10 inclusive. If no SEED
statement is included with a group of operating rules,

the seed value defaults to the first one.

6.16 END Statement

The last NBDS element to be presented is
appropriately named the END statement. It is read into
the NBDS program like all other statements and gives a
user the option to end a simuléfion run at a particular
simulated time. The statement has the simple format:

"END' time

where time is the CLOCK time at which the simulation run

- 115 -



is terminated. Together with the termination count
specification of TERMINATE nodes, a modeler”héé the
option of terminating the simulation run based on number

of entities processed or simulated time elapsed.
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7. Model Building With NBDS Elements

Now that the reader has been introduced to the
modeling elements of NBDS, this section will present a
few’examples of how those eiements can be combined to
‘model systems. Emphasis will be placed upon the method by
which the elements are symbolized and integrated into a
pictorial représentation of the system and, more
importantly, how that information is translated into the
appropriate operating rules for input into an NBDS
simulation program. Having developed some actual sets of
operating rules, the next section will demonstrate how
they.are inpﬁt into the general purpose NBDS program and

internally organized into a working set of rules.

7.1 Simple Queueing System

As an introductory example of how a network
model can be translated into a set of NBDS operating
rules, refer back to Figure 4-1, Pictured is a network
d;agram of a simple queueing system. Assgme the system
has the following characteristics:

‘o the time between arrivals to the gueue is
exponentially distributed with a mean of

5 minutes,

e arrivals to the queue wait for service in
order of their arrival,

® the gqueue is serviced by a single service

entity whose service time is uniformly
distributed between 2 and 15 minutes,

- 117 -



® the simulation run ends after 1000
entities have been processed.

To translate Figure

rules requires just

4-1 into a set of NBDS operating

four lines:

‘GEN1’ ‘QUE1’ ‘EXFON 5’ O * ’

*QUEL’ ‘FIFO’ °0° * < ' * ‘SRVL’ 7 7

*SRV1’ /TRM1‘ ‘UNFRM 2 15° 1 * *
TRM1‘ 1000

When properly interpreted by the control program, this
set of rules is all the NBDS program needs to
successfully execute the simulation of this system.

7.2 Computer System With Preemptive Processing

As a means of introducing a network model
containing the. family of resource nodes, consider the
network diagram pictured in Figure 7-1. “The system
pictured there could represent a simple computer system
in which incoming jobs are placed in a queue until
allocated a sufficient amount of memory space for
The

processing by the CPU. job queue in this case is

modeled by a RESOURCE QUEUE node. Jobs arriving to the

system queue up in an order inversely proportional to
their memory requirements. Memory is allocated to the
jobs from a finite source, here modeled by a Resource

Bank. Once a job acquires memory space, processing begins

by the CPU, represented in this case by regular
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activities. Upon completion, the job rélinquishes the
memory by passing through a RESOURCE FREE node and leaves
the system. While most of the jobs are processed in an
order based on their memory requirement, some jobs enter
the system that hold priority over all jobs irregardless
of their memory demands. Those jobs will preempt Jobs
already being processed if enough memory is not available
for use when they arrive. This element of the system is
modeled with the RESOURCE PREEMPT node shown in Figure
7-1.
For illustrative purposes, assume the system..hag the
following characteristics:
® naormal jobs arrive to the system with
exponentially distributed interarrival
times whose mean is 2.5 sec; high priority
jobs arrive with the time between 7jobs
distributed exponentially and havingfa
mean of 20 sec,
® the memory requirement of normal jobs is
uniformly distributed between 10 and 70
pages; the memory required by high
priority jobs is normally distributed
with a mean of 75 * 20 pages,
® the total available memory is 150 pages;
® CPU time of normal Jjobs is exponentially
distributed with a mean of 5 sec; CPU
time of high priority jobs is normally
distributed with a mean of 8 £ 3.5 sec.
Figure 7-2 lists the set of translated operating

rules describing the system above.. Note how the priority

between the two types of jobs is assigned with ATRIB(1)
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GEN1’ ‘ASS1‘’ ‘EXFON 2.5 0 7 7

“GENZ2’ ’AS827 ‘EXFON 20,07 O ¢ 7

ASS1‘ ‘RQUL’ ‘ATRIB(1):=1‘ ‘ATRIE(2){=UNFRM 10 70’ ‘GVAR(1)!=GVAR(1)+41"
‘ASS2’ ‘PMT1Y ‘ATRIB(1) =2’ ‘ATRIB(2):=NORML 75 20’ ’GUAR(I)ZiGUAR(i){lﬁ
“RSC1’ 150 1

‘RQUL’ ‘LVF2’ 0 * * ¢ “ 1 ‘ATRIB(2)’ 'ACTL”

‘FMT1Y 1 ‘ATRIB(2)’ ‘HV1‘ 1 ‘RQUL’ 'ACTZ2’

‘ACT1’ ‘FRE1’ “EXFON 57 7 7

‘aCT2’ ‘FRE1’ ‘NORML 8 3.5° * 7

‘FRE1‘ 1 ‘ATRIBR(2)’ ’ACT3’

‘ACT3’ ‘ASS3’ * * ‘N/S’

7ASS3/ ‘TRM1’ ‘GVAR(1)!1=GVAR(1)-1"
lTRHll ’ r .
‘TIMOY ‘Number Jobs in System’ 1
‘END’ 3600

Figure 7-2. Operating Rules for Computer System Model

When the jobs enter the system. This attribute is
later referenced in the priority rule of PMT1 (see HVI]).
Also note how the global variable GVAR(1l) is used to kgep
track of the number of jobs in the system at any one
time. Together with the TIMD statement, GVAR(1l) is
reported as a time dependent variable at the end of the
simulation run. Also demonstrated fslthe use of ACT3 asva
timeless activity to the next node with no statistics
collected on it. Finally, the END statement indicates the
simulation run is to end after 3600 simulated time

seconds have elapsed.

7.3 Serial Work Stations on a Production Line

A more complicated scheme of SERVICE QUEUES
is presented in this example where a portion of an

automobile production line is modeled containing a series
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of work stations. The network depicting this model is
shown in Figure 7-3 where'units arrive to the first work
station for a particular set of operations and are then

distributed between two sepfffate work stations for
\

-,

another series of operations. The first york stadNon is
an area large enough to store three automobiles at a time
(not including the ones being operated on) but the
succeeding stations have room to store only one
automobile apiece. Therefore, if each of the downstream
work stations has a unit awaiting service when another
L 2
arrives, the arrival is blocked. If the sStorage capacity
of the first work station is exceeded, the excess
auntomobiles are transported to a yard outside the
manufacturing plant and stored there for later service.
‘For the purpoese of this illustratidn, assume the
additional system characteristics:
® the time between arrivals to the first
work station is uniformly distributed
" between 12 and 20 minutes,
® the first work station is serviced by
two parallel workers whose service
times are normally distributed with a
mean of 20 * 5 minutes,
® the next two work stations are each
manned by one person whose respective
service times follow an Erlang distribu-
tion of 3 samples each with means of 12
and 15 minutes respectively,
® automobiles completing service by the

first work station are distributed to
the first of the next two parallel
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stations which has room i%/$¢s qgueue.
: !
~
The system described abevéfzz\lranslated into the

set of operating rules shown in Figure 7-4. The concepts

‘GEN1‘ ‘QUEL‘ "UNFRM 12 20’ 0 * *
‘QUEL’ ‘FIFD’ O 3 ‘TRM2‘ ‘SRV1‘ * -
“SRV1‘ ‘BSF1‘ ‘NORML 20 5% 2 '
‘QSF1’ (2 3) ‘SNQ‘ ‘BLK’ .

‘QUE2” ¢ 4 ¢ /1 © ’ ‘SRY2’ ‘@SF1’
QUE3’ ¢ ¢ ¢ 4 1 ‘ ’ ‘SRU3’ ‘QGSF1’
“SRV2‘ “TLY1’ ‘ERLNG 12 3’ 1 / *
“SRU3’ ‘TLY1’ ‘ERLNG 15 3’ 1 * *
‘TLY1’ ‘TRM1’ ‘Time in Sustem’ ‘TSYS’ (’HIST’ 40 180)
ITRHII ’ ’ .
‘TRM2® ¢ ¢

“END’ 1000

Figure 7-4. Operating Rules for Production
Line Model

demonstrated in this example include balking, b}OCking,
and queue selection. Also included in the network is a
TALLYAnode to collect statistics on the time each unit
spends in the system. Those data are summarized in é

histogram at the end of the simulation as specified in

TLY1.

7.4 Traffic Light

[$

This last example of a traffic light
‘features a more extensive network of fesource nodés and
also demonstrates the use of CONDITIONAIL BRANCH nodes,
the CLOSE node, and‘the OPEN node. It models a traffic

light at a 3-way intersection pictured in the diagram
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MALL

The heavily travelled east-west street intersects
with the entranct to a shopping mall. Eastbound traffic
desiring to enter the mall must make a left turn in froﬁt
of westbound traffic. Because these are single lanes,
eéstbound traffic backs up behind any cars wéiting to
make a left turn. |

\Again, for the purpose of ,illustration, assume the
system has the additional characteristics:

@ if cars arrive to the intersection when
the light is green and there are no cars
waiting in front of them, they pass 2
straight through without delay; when
traffic is backed up, cars passing
through the intersection are delayed by
a normally distributed time period of
3 ¥ 1.5 seconds which represents the time
it takes the car to regain momentum,

® cars making a left turn into the mall
are also delayed by a constant time
of 1 second; cars turning right from
the westbound lane experience no time
delays and therefore right turns have
no effect on the system,

® the light stops traffic in the E-W
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directions for a period of 30 seconds
while cars exit the mall; it then turns.
green on the eastbound side only for
15 seconds to give any cars starting out
a clear path to make a left turn; after
that 15 seconds, the light turns green on
the westbound side and both lanes are
allowed passage for the next 45 seconds
until the light turns red again,
® the arrival pattern of cars from each
direction in exponentially distributed with
an average of 7 seconds between cars west-
bound and an average of 8.5 seconds between
cars eastbound; also, one out of every ten
eastbound cars make a left turn. ‘
Figure 7-5 contains the network diagram of this
traffic light system. Note how the lanes are modeled with
Resource Banks, each having a capacity of one unit. To
pass through the intersection, therefore, each car must
acquiré the unit of resource assigned to its lane at its
respective RESOURCE NODE. However, eastbound cars turning
left into the mall also request the use of the resource
unit assigned to westbound traffic. Since westbound
traffic has priority over that resource, any cars making
a left turn must wait until all westbound traffic passes
or until they are allowed the 15 second free period at
the start of a cycle. This network model also
demonstrates several uses of CONDITIONAIL BRANCH nodes. In
the first case they are used with probability branching
to direct 10% of the eastbound arrivals to ASS1 while the
remainder are directed to ASS2. At each ASSIGNMENT node

the arrivals are assigned a value in their first ATRIB
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array which is used by CONDITIONAL BRANCH nodes later in
the network to separate tﬁose cars making'a left turn.
Also note how a set of CONDITIONAL BRANCH nodes and the
use of the NBDS variables CLOCK and TGEN determines
whether a car has been waiting in line or not. if found
to be waiting, the car is directed over an activity
having the appropriate time delay. Finally, an effective
use of CLOSE and OPEN nodes is illustrated in which they
simulate the phases of the traffic light. Note how only
Hgne entity is initially generated to CLS1 to begin the
traffic light cycle. Figure 7-6 lists the NBDS operating
rules requifed to carry out a simulation of this model

for a simulated time period of one hour.
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‘GEN1’
‘GENZ2”
‘GENJZ’
‘RSC1’
‘R8C2Y
‘RQUL’
‘RAU2’
‘RQU3’
‘FRE1’
“FRE2’
‘FRE3’
‘CBR1’
“CBR2’
‘CBR3"

‘CBR1’
‘ROU2’
‘CLS1/
11

123
‘FIFD’
‘FIFO’
‘FIFO’
2 ‘1°
1 ‘1’

2

’,
’
’

[ 4

‘EXPON 8.5’ 0 * *
‘EXPON 77 0 ¢ ¢
© 01
o ’ ’ 4 ’ 1 11I IACTII
o ’ , 4 , 2 Ill IAchI
o ’ 4 l-\l 2 111 IACTSI
ACTA’ 77
ACTS’ _
ACTS”
(’RANNUM <= 0.10’ ’AS51‘) (‘RANNUM > 0.10’ ‘ASS2’)
‘CBR3’) (’CLOCK >, TGEN’ “CON1’)

(‘CLOCK = TGEN’
(*ATRIB(1)

1/ ‘RQU3’) (’ATRIB(I? = 2/ ‘FRE2’)

‘CBR4’ (‘CLOCK = TGEN’ ‘FRE3‘) (’/CLOCK > TGEN’ ‘CON2%)
‘CON1‘ ‘ACT2”

‘CON2‘ ‘ACT7”

‘ASS1‘ ‘RAQU1‘ ‘ATRIB(1)!=1"

ASS2’ ‘RAU1‘ ‘ATRIB(1):=2"

‘CLS1’ ‘RQU‘ (1 2) * * ‘ACT8”

‘OFNL’ ‘RAU’ 1 ‘ACTY”

OPN2‘ ‘RQU’ 2 ‘ACT10°

IACTII chRzl ’, ’ ’ ’

ACT2’ ‘CER3‘ ‘NORML 3 1.5’ ‘N/S’

‘ACT3* ‘FRE1‘ “1° + ¢ -
‘ACT4’ ‘FRE2‘ * * *N/S’

‘ACTS’ ‘TRML1¢ * * ‘N/S’

IACTéI lc[(qu » ’ , ’

‘ACT7’ 'FRE3’ ’‘NORML 3 1.5’ ‘N/S’

ACTB’ ‘OFPN1‘ ‘30’ ’‘N/S*

‘ACTS®’ ‘OFN2’ ‘15’ ‘N/S’

“ACT10‘ ‘CLS1’ ‘45’ ‘N/S’ .
ITRHII ’ ’

END’ 3600

Figure 7-6.

Operating Rules for Traffic Light Model
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8. General Purpose NBDS Package

One of the primary objectives of this thesis
was to develop a set of Nial-based operations that could
be used to prototype decision-making systems employing
discrete simulation. As the first few simulation elements
were developed and tested for this purpose, an
interactive query/answer routine was used to input the
various operating rules into the control program.
However, as the list of simulation elements grew, this
task became slow and cumbersome which led to the design
of a non-interactive, batch-read technique to inputting
the rules. What evolved as a result of all this work was
actually a rudimentary simulation language whose features
include a set of operating rules having their own
vocabulary and syntax.r Admittedly this general purpose
NBDS package lacks many essential features of a good
simulation language (eg. extensive error checks and
debugging facilities), but its being presented here for
three important reasons:

1. To learn how to build a working proto-

type simulation system using NBDS, one
must understand how to correctly
organize the operating rules so that
the control program is able to in-
terpret them properly; also, one must
learn how to access the statistical
arrays at the end of the simulation

run to report the desired results.

Use of the general purpose NBDS package

provides a good vehicle to learn those
tasks. :
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2. While developing the model of a system
one wishes to build a specific simulation
package for, use of the general purpose
NBDS package is veéry helpful in testing
certain elements of the model, developing
the required set of operating rules, and
deciding what data are necessary to report.

3. The current set of simulation elements
together with the control program provide
a good basis on which to build and test
additional simulation operations when
needed for a specific modeling purpose.

N

The discussion of the general purpose NBDS package
will begin by detailing how the operating rules are
organized within the program. Following this,bfs a
description of the summary statistics automatically
printed at the end of a simulation fun. Finally, examples
of actual general purpose NBDS runs will be 9;§Sented
using some of the operating rules developed in the
previous section.

8.1 Input and Internal Organization of Operating
Rules

Once entered ,nto the NBDS cont;ol program,
eéch set of operating rules is organized into a three
level nested array. At the top level is the single
collective array (eg. Qrules, Srvrules, Inits, etc.)
which’holds the middle level containing one or more
individual sets of like operating rules. At the bottom
level are the individual rule elements owned by each set

of operating rules. To obtain their singularity within
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the top level, each setibf like operating fgles.must be
entered into its collective parent array as a solitary
array. Furthermore, each solitary array'of rules must be-
ordered within its parent array so that its address
corresponds to the integer number of its rules
identificaszon label. Since numbering of the rules always
begins with 1, the first position in eacﬁ parent array
(address 0) is simply a blank character string. Each
parent array is initialized with a blank character string
by the operation INIT_RULES at the start of a simulation
run. The use of this dummy position is simiier to the use
of the first row of dummy values in every statistical
array: it maintains the logical correspondence between
the rules' set number and its position in the parent
array.

As an example of an ordered array of operating
rules, consider the following collection of Srvrules

pictured in the sketch mode:

++~—————————--—--«-—-——-’——-+ —————————————————————————— Fm e +
D S S A S P T e T B atatatatet St Sl X}

{SRULIASFLINCRML 20 S!2! {1ISRV2ITLYLIERLNG 12 351 31!SRVU3LITLYLIERLNG 15 3111 ¢
§) $ommm o g mm o Pt S N S Sisisshu MM S Aot hohab st b P O
J T TS Fo e e e +

The individual sets of rules shown above were taken from
the list of operating rules for the Production Line

"example given in the previous section (see Figure 7-4).
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Note the empty character string in the first position of
the parent array Srvrules and the logical ordering of its
member arrays in the next lower level.

The Srvrules array given above is in a form ready
for execution within the NBDS program. It is an important
task of one developing a prototype simulation package to
organize all the sets of rules used by fhe system in a
similar fashion. In the generél purpose NBDS package this
process is carried out automatically by the operation
READ_INPUT. All one has to do is list the opef%ﬁing rules
in a script file named Iﬁput.Dat in a format similar to

the examples given in the previous section. Once

into the program, converted into a solitary array, and
linked with other member rule sets of its kind.

The code for READ_INPUT that performs these tasks is
displayed in Figure 8-1. Note how the use of the
CASE-expression provides a convenient way to select the
appropriate set of operating rules by keying on the rules
identification label of each set (here assigﬁed to tﬁe
variable Typ). ft also provides the means for an error
"check ©on the rules labels by defaulting to an error
message if the code does not match any of those listed.
Both these technigues are used in many other NBDSE

operations where selections are made from several
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READ_INPUT IS (
EOF t= EXECUTE ‘7?7eof’}
NFILE?=" OPEN *INFUT.DAT *r}
LINE:= EXECUTE READFILE NFILEj}
NAME$= FIRST LINE7 DATE$= SECOND LINE# TITLE:= THIRD LINEj}
EACH WRITESCREEN ’ ’ (’Ineput Statements For ‘ LINK TITLE
LINK 3}
LINE:= EXECUTE READFILE NFILE;}
WHILE LINE ~= EOF DO
WRITE LINE;
TYP:= 3 TAKE (FIRST LINE)$
CASE TYP FROM T
GENRULES:= GENRULES LINK SOLITARY LINE END

‘GEN’ 3

‘QUE’ ¢ QRULES!= QRULES LINK SOLITARY LINE END

‘QSF’ ¢ QSFRULES:!= QOSFRULES LINK SOLITARY LINE END
‘Q5B° ¢ GSBRULES:= QSBRULES LINK SOLITARY LINE END
S8L‘ ¢ SSLRULES:= SSLRULES LINK SOLITARY LINE END ..
SRV’ ¢ SRVRULES!= SRVRULES LINK SOLITARY LINE END
‘RSC’ ¢ RSCRULES:= RSCRULES LINK SOLITARY LINE END
‘RQU‘ ¢ RQRULES:!= RORULES LINK SOLITARY LINE END
‘FRE’ ¢ FREERULES!= FREERULES LINK SOLITARY LINE END
‘ALT’ ¢ ALTRULES:!= ALTRULES LINK SOLITARY LINE END
‘FMT’ ¢ PMTRULES:= PMTRULES LINK SOLITARY LINE END
‘CL.S’ ¢ CLSRULES:!= CLSRULES LINK SOLITARY LINE END
‘OPN’ { OPNRULES:= OPNRULES LINK SOLITARY LINE END
‘ACT’ ¢ ACTRULES:= ACTRULES LINK SOLITARY LINE END
‘TRM’ ¢ TERMRULES:= TERMRULES LINK SOLITARY LINE END
‘MLT’ ¢ MULTRULES!= MULTRULES LINK SOLITARY LINE END
‘CBR’ ¢ CBRNRULES?= CBRNRULES LINK SOLITARY LINE END
‘MBR’ ¢ MBRNRULES:= MBRNRULES LINK SOLITARY LINE END
‘CON’ ¢ CONTRULES:= CONTRULES LINK SOLITARY LINE END
‘ASS’ ¢ ASSNRULES:!= ASSNRULES LINK SOLITARY LINE END
‘TLY’ ¢ TALLYRULES:= TALLYRULES LINK SOLITARY LINE END
‘TIM’ ¢ TIMRULES:= TIMRULES LINK SOLITARY LINE END -
YINI‘ ¢ INITSS= INITS LINK SOLITARY LINE END

SEE” ¢ CHOOSE_SEED (SECOND LINE) END

’END’ ¢ TERMT:!= SECOND LINE END

ELSE EACH WRITESCREEN * “ ((FIRST LINE) LINK ‘ NOT A VALID RULE
CODE.’ )
ABORT:= END_SIMi= 1%

ENDCASE$
LINE!= EXECUTE READFILE NFILE}
ENDWHILE$ N

CLOSE NFILE#®)

Figure 8-1. Nial Code for Read-~Input Operation
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expressions depending upon a kef rules identifier. Also
note line 5 of Figure 8-1. As it implies, the first line
of every-Input.Dat file must contain the name of the
simulator, the date, and title of the run. BAall these
variables are entered as character strings. .
If the sets of operating rules within a given class
are listed in Input.Dat in a continuous, logical order
starting with rule number 1, no further action would be
required by the NBDS program to organize the rules
following READ_INPUT. However, the general purpose NBPS
package goes one step further by providing a set of rules
sort operations which allow one to enter the rules into
rthe_script file in any brde;f‘ The sets of rules are also
allowed- discontinuous numbering. The operation at the top
level of these sorting procedures is named RULE_SORT. It
also performs the critical task of c;eating and
initializing the arrays used to\maihtain statistics on
the various simulation elements. .Becausé%ﬁtxﬁeys on the

number of elements in a given class, RULE_SORT*Exeat%§:
just that amount of storage space required to collect

oy TEET e

statistics on the elements of that/péfticular run.

8.2 Statistical Analysis and Summary Report

N Upon detecting the end of a simulation run,

the general purpose NBDS control program exits the event

processfﬁg/zoop and begins executing a series of
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statistics update and reporting operations. Update
operations are used to update any time related statistics
associated with a given simulation elemeqt. For example,
if service queues were used in a particular run, the
operations UPDATE_Q and SUMMARY.Q would be executed in
that order at the end of the simulation. UPDATE_Q updates
time dependent variables related to service queue lengths
while SUMMARY_Q estimates average queue lengths, waiting
times in the gqueue and average time; between balks from
the queues. 1In addition, SUMMARY-Q.;elects other
pertinent data from Qstats, organizes all the summary
data for output, and then brints a summary report of
descriptive queue statistics. vSimilarroperations\are
carried out for other elements in the simulation. Table
, 8-1 summarizes the statistical results automaticaliy
printed at the end of a general purpose NBDS run for
gueues, activities, resource banks, time independent and

time dependent variables.

8.3 General Purpose NBDS Examples

8.3.1 Basic Execution Procedures

Assuming the user has already prepared a
script file of operating rules and has access to a Nial
workspace, the execution of a general purpose NBDS

requires just three steps:
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Table 8-1.

Qutput Statistics of a General Purpose NBDS
Run :

Service and Resource Queues

Average queue length

Maximum queue length

Number of entities left in queue at end
of those ‘entities receiving service, the
average delay time in the queue for just
those entities not immediately served

the average waiting time of all entities
receiving service

Number of balks from the queue

Average time between balks from the queue

Resource Banks

Current capacity of the bank
Average utilization of bank over time

Maximum number of resource units utilized at
one time

Current number of resource units utilized

Service Activities

Number of servers in activity
Current number of busy servers

Total numbers of entities served
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Table 8-1.

(continued)

Service Activities (continued)

Average utilization of service

Fractional average of time the
activity is blocked

Average service time including
Minimum service time including
Maximum service time including

Maximum idle time for a single
activity or the maximum number

activity

service

wait in gqueue
wait in queue
wait in queue

server
of idle

servers at one time for a multiple server

activity

Maximum busy time for a single
activity or the maximum number

server
of busy

servers at one time for a multiple server

activity

Regular Activities

Average number of entities routed over the

activity at one time

Maximum number of activities routed over the

activity at one time

Current number of entities engaged in

activity

Total number of entities routed over

activity

Time Independent Variables

® Mean and standard deviation of observations

Minimum observed value
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Table 8-1. (continued)

Time Independent Variables (continued)

® Maximum observed value

® Total number of observations

£,

Time. Dependent Variables

® Mean and standard deviation over time
® Minimum observed value
- ® Maximum observed value

® Current value
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1. the script file of NBDS operations*
is loaded into the workspace and
evaluated using the command:

LOADDEFS "NBDS.NDF
(note: for a silent load, use "NBDS 0) N

2. the commahd GO is entered which
initiates execution of the” control
program; at this point, an introductory
header is printed followed by a listing
of all the operating rules as they
appear in the file Input.Dat,

3. after all the operating rules are printed,

e a message follows requesting the user to
check the input statements for obvious
errors; if an error is detected, the user
simply keys CTRL G which aborts the run
and drops him back into the command mode;
from there, the required corrections can
be made by accessing the host editor with
the EDIT "INPUT.DAT.command; if cor-
rections were needed, Step 2 is repeated; ...
otherwise, the user simply keys RETURN
which initiates execution.’

When the simulation is finished executing, a second
header is printed containing all the information in the

\ first line of Input.Dat (simulator's name, run title, and

\\,/

date). Also printed will be the simulated start and
finish times of the run. Finally, the summary statistics
\\ will be printed for”&ll those elements in the simulation )

\>that appear in Table 8-1.

\\ *note: the DECSYSTEM-20 would not allocate
sufficient workspace to load NBDS.NDF in its entirety;
therefore, the script of unused operations was replaced
with the empty array NULL which preserved the operation
in name but freed up needed workspace.
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8.3.2 Compdter System With Preemptive
Processing

As.a first example of a general purpose

NBDS simulation, consider the computer system modeled in
Section 7.2. An idehtification statement was added to Ehe
top of the list of operéting rules sho&n in Figure 7-2
and the entire set entered into the author's DECSYSTEM-20
directory as the file INPUT.DAT.. After loading NBDS.NDF
and entering the GO command, the header was printed along
with an echo listing of the operating rules (in sketch
mode) as shown in Figure 8-2. Upon checking the rules for
errors and keying RETURN, a.message indicating that the
program was executing appeared.

The outputvof summary results for this simulation
run is displayed‘in Figure 8-3. As shown, the run ended
at simulated time 3600. Reported are the standard‘results
for resource queues, resource banks, regular activities,
and time dependent variables. Statistics of interest for
this particular run might include the memory gqueue leﬁgﬁh

&
(average length of Qﬁe 1), waiting time of all jobs in
the queue (average wait time in Que 1), utilization of
computer memory (average utilization of Res 1), number of
preemptions (count for Act 2), number of jobs processed
by the CPU (count for Act 1), and average number of jobs
in the system at one tiﬁe (ﬁean value for time dependent

u

variable "Number Jobs in System.@,
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00800000 BUNNARY RESULTS 60000008

, ' Run 1di COMPUTER SYSTEM EXAMPLE
Siaulstort RICK SELL
Run Datal 1 AUGUST 1984 °

8imulation Started @ Tipe § O
Slaulation Ended @ Time 1 3600

0008 RESBOURCE QUEUE BTATISTICS #0¢¢
OUEUE DELAY STATISTICS

+ + + + + +
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+ + + + +
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Figure 8-3. Summary Results for Producticn Line Run
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- 8.3.3 serial Work Stations on a Production?Line

After adding an identification statement
to the beginning of the operating rules listed in Figure
7-4, the example of the production line model in Section
7.3 was simulated. The summary report is listed in Figure
8-4 and -deménstrates the standard set of results for
service queues, Service activities, and time independent
variables. Statistics of interest in this simulation run
might include the number of autos waiting at each station
for service (average queue lengths), the time those autos
spent in the queue waiting for‘service (average delay
time and average wait time),’the number Of autos whicﬁ
had to be bypassed to storage in the yard (number of
balks), the utilization of each work station (average
utilization of service activity), fraction of time the
workers at the first work station were blocked while
transporting autos to the next two parallel stations
(éverage blockage of Srv 1), and the average time a unit
spent in the system (mean value for time independent
variabli“Time in System). Also generated by this

.
.simulation run was a histogram displaying the
distribution of times-in-the-system for all the autos

processed (see Figure 8-5).

Fg.3.4 rTraffic Light-

For the sake of completeness, the traffic
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Figure 8-4. Summary Results for Production Line Run
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light example in Section 7.4 Qas simulated with the
operating rules listed in Figure .7-6. The summary report
is displayed in Figure 8-6. Obviousi& the statistics of
interest for a traffic lightbsimulation would be the line
length of cars stemming in both directions from the light
(average queue lengthsﬁ and the time a driver had to wait
at fhe light until he could pass (average wait time in

queue).
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Figure 8-6. Summary Results for Traffic
Light Run
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9. vVerification of Modeling Elements

Each NBDS modeling element presented in this
thesis underwent a battery of manual checks to verify
that the functional units of code performed as they were
intended, generating the correct statistical results.  1In
addition to simple hand simulations on paper, visual
run-time checks were carried out by taking advantage of \{iy
Nial's useful "picture" facility. Entire arrays Y*/;
containing statistical data or entityvrecords filed iﬁ/;//
queue or on the event calendar were output before and
after each important step by inserting simple "write"
commands in the code. For instance, a WRITE QSTATS
command placed before and after a record was filed in a
gueue would display the entire contents of the
statistical array QSTATS. The coméonents of the array
acted upon during the event were then immediately checked
for correctness. Another useful facility was the BREAK
command; when encountered during execution, evaluation of
the expression it was contained in would stop
immediately, giving the user total control of the
environment. The contents of any array or the vélue of
any variable could then bg.inspected by simply entering
its name. B; typing RETURN,. execution resumed at the
exéct point‘where it was interrupted.

A

To present verification checks for each NBDS
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hodeling element is beyond the scope of this thesis.
However, the épplication of some basic queueing theory

will demonstrate that the underlying queueing principles

of the elements are valid.
The basic theory of a single-server gueueing system

was developed by Khintchine and Polloczek and results in

the following formula (17):

2
.2 [ Ot
E(w) = [ 1+ S (5)
2(1 —/3)1 E(ts)

where E(w) mean number of items waiting for servige
, (not including one being served)

f’= facility utilization of one serving

facility
E(ts) = mean service time for all items
G%S = gtandard deviation of service times

This formula is used to make queue size estimates in a
variety of appiications. It applies to exponential
interarrival times, any distribution of service times,
and any dispatching discipline provided that its
selection of the next item to be seryiced does not depend
on the service time.

Té test whether this formula applies to the gqueueing
mechanisms built into the NBDS modeling elements, a set
of operating rules (like the ones in Section 7.1) were
created to model a single-server queueing system.

Exponential interarrival times and service times were
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5

speéified with mean values of 5 and 10 time units
réspectiyely. A series of‘éS general purpose NBDS runs
Qére conducted with this set of rules, each with
different initial seed values for the random number
generators. Each run was allowed to proceed‘until 1000
entities were processed.

Having collected 25 indepgndent determinations for
E(w), its sample mean and standard deviation were
estimated. Table 9-1 lists those results as 0.481% 0.093
respectively along with the individual values of E(w) for
each run.msince GES = E(ts) for exponential distributions
and f’= 0.50%*, the Khintchine—Polloczek formula predicts
E(w) to be 0.50 for these simulation runs. Assuming
the results for E{(w) ére normally distributed, a
test-of—hypothesis was performed to determine whether the
queueing model agrees with the P-K theory. ?heltest

statistic used was:

X = U
t=__ 0 (6)
s / {# -
where x = sample mean
u, = population méan
s = sample standard deviation
n = sample size

* L= E(n)¢E(t) where E(n) is the inverse of the
interarrival time.
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Table 9-1. Results of Queueing Model Verification Runs

Seed Observed

Stream E(w)

1 0.394

2 0.468

3 0-.440 ,

4 0.644 X - ug

5 0.496 £t = ————

6 0.364 s / n

7 0.490

8 0.412

9 0.502

10 0.582

11 0.485

,ig 8'3;3 0.481 - 0.50 = 1.018

) ' 0.093 /

14 0.610

15 0.680 ‘ ' )

16 0.463

17 0.524

18 0.396

19 0.475

20 0.558

21 0.410 1 Cy

22 ’ . 0.449 defe = n=1 = 24

23 "0.635

24 0.466

25 0.384
X = 0.481 . ¢
s = 0.093
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Equation 6 has a student's t distribution with (n-1)
degrees of freedom (18).

To reject the null hypothesis that E(w) = 0.50 at a
0.05 level of significance, the absolute value of t must
exceed 2.064 for a two-tailed test (18). Substituting the
given values of x, Ugr S, and n into Equation 6 yields a
value of 1.018 with 24 degrees of freedom. Therefore, the
null hypothesis is not rejected and NBDS is shown to be
an adequate tool for,simﬁlating the behavior of normal

queueing systems.

ry
.
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10. Prototyping Special Purpose Simulations With NBDS

The largest tasks involved in prototyping
épecial purpose NBDS systems are understanding the
individual modeling elements, their associated set of
operating rules, and the organization of those rules
within.the NBDS program. Once this has been accomplished
and a model of the system of interest is in hand, the job
is feduced to designing a user interface for entéring the
variables of the system into the NBDS .program and
designing a summary report of the results. Since users of
the prototype should not be reqﬁired to understand how to
use NBDS itself, the batch technique of inputting the\
operating rules to the program employed by the general\
purpose NBDS package is unacceptable. Thefefofe, the
ﬁbasic structure of the'bperating rules used'in the
simulation must be defined beforehand followid by an
interactive mode by which the user inputs only those
rules (or variables) of interest. Likewise, a prototype
‘simulation package‘shouid not have to rely on the
generalized summary report provided by the general
purpose program. .More descriptive headings are required
ahd only those descriptive statistics that are pertinent
to the simulation should be reported. e T

This next section will highlight some of the basic

operations of input and output for specialized NBDS
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packages. The integration of those procedural operations
with the baseopefations already provided by NBDS will
also be discussed. However, in order to provide a basis
for that discussion, this section will begin by
presenting an example of a ééecialized NBDS prototype-
that could be used by telecommunications network

analysts,

10.1 Communications Line Simulation Prototype

10.1.1 Description'of Model

This prototype simulation package was
designed to investigate the behavior of a full—duplex'
.»multidrop communications line linking several terminals
‘to a central computer. Since terminals along a multidrop
line must share the line, a queueing problem will dgyg;opﬁ
for both input and output messages. Of particular
interest is the average response time of messages sent
from the terminals (ie. time interval from the operator's
pgessing the last key of tﬁe input to the terminal's
displaying of the last character of the response). 1In
this model, two types of messages are allowed, each
having its own distribution of input/output.character
lengths and each having the ability to be assigned its
own gqueueing priority.

Figure 10-1 displays the network diagram'of this

system. Note how service queues and activities are used
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Figure 10-1. Ne twork Diagram of Communications Line Model



to simulate the input and output lines respectivelyi Only
one GENERATE node is used to represent the arrival of all
input méssages td the system. Also note the use of a
CONiDITIONAL BRANCH node and ASSIGNMENT nodes to
characterize the different percentage and type of each
\input message. Regular activities are used to model the
time spent in the computer by each message. TALLY nodes
preceeded by CONDITIONAL BRANCH nodes are used to collect

statistics throughout the network.

10.1.2 Execution of Program

The script file of operations for this
package is named COMLINE.NDF and also resides in the
Lehigh University Cbmputer Center tape library under
Volume Serial Number JCW002. Like the general purpose
NBDS séript file, COMLINE.NDF is loaded into a Nial
workspace using the "loaddefs” command. Once loaded,
program execution begins by typing GO. At this point the
initialization steps ére performed by the INITIALIZE
operation and operation PRINT_INTRO prints a header and
message describing the purpose of the simulation package.
Next follows a lengthy\dialogbcontaining a.mixture of
question-answer statements and menu listings. This

interface is carried out by READ_INPUT and allowg the
user ,to input all ﬁhe variables reguired by the program.

Figure 10-2 displays a sample of this input session.
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G°'Nial! Tuenex Relwsse 1 Version 3,02

clear worksrace
LOADDEFS *COMLINE O
(<]

v

QO0000000000000000000000000000008
M

. ¢
[ ] Mial-Besed ¢
¢ Srecial Purrose Siaulstions ¢
[ ] Prototure [}
] ]
QO0008000000000000000000000000000

SINULATION OF FULL-DUPLEX
COMMUNICATIONS LINE

The followins seecial purrose siaulation is desisned to investisate
the behavior of & full-durlex aultidror cosmsunicstions line linkina
several te s to s central coeruter. The line handles two twres
of insut ses: Ture A and Ture By whone character lensths and
disratching rriorities sre user-defined, To detersine aueus lensths
for inrut and ocutrut ss well as tersinal resronse tises for individual
messaze tvress surrly the followins informationt

1, From the followings what probesbilitw distribution describes the
tine between arrivals (in seconds) of all inrut transactions?

1. UNIFORH 2

2. EXPONENTIAL
3. NORMAL
4. ERLANO

Enter nuaber of choicel 4
Enter mean and nuaber of exronential saarles! 0.7 3

2. Enter the fraction of inrut trensactions thst are of Ture Al 0.30

3. From the followinss what srobabilitv distribution describes the
inrut messase charscter lensths of Twuree A transactions?

1. UNIFDRH

2. EXPONENTIAL
3. NORMAL

4. ERLANO

Enter nusber of choicet 2
Enter exrected value! 50.

4. From the followings, what rrobabilitw distribution describes the
inrut messase chareacter lensths of Twee B transactions?
1. UNIFORM
2, EXPONENTIAL
3. NORMAL
4. ERLANO

Enter nuaber of choicet 2
Enter exrected vaslue! 43,

3. How do inrut transactions contend far the line?
1. FIFQ
2. LIFO
3. Turse A First
4., Twre B First

Enter number of choicel §

Figure 10-2. Input Session From Communications
Line Prototype
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A. Enter inrut line rrerarstion time (seconds)! 0.3
7. Enter the line sreed (characters/second)! 400

8. Froe the following, whst erobabilitw distribution descridbes the
lensth of tise (seconds) Ture A sessasges srend in the comsuter?
1. UNIFORM o
2. EXPONENTIAL
3. NORMAL
4. ERLANG

Enter numsber of choicel 3
Enter exrected value and standard devistiont 3.0 0.5

9. From the followings what probabilitw distridution describes the
lendth af time (seconds) Twre B messagses srend in the cosputer?

1. UNIFORH h
2, EXFONENTIAL

3. NORMAL

4, ERLANG

Enter number of choicet 1
Enter minimum and maximue values! 0.2 2.0

10, From the followinds what rrobabilitw distribution describes the
outeput messade churacter lendths of Twre A transactions?

1, UNIFORM

2. EXPONENTIAL
3. NORMAL

4. ERLANG

el

Enter number of choicet 3
Enter exrected value and standard deviationt 750. 530,

1t. From the followingr» what rrobasbilitw distribution describes the
outrut messade character lendths of Twre B transactions?

1. UNIFORM

2. EXPONENTIAL
3. NORMAL

4. ERLANG

Enter number of choice! 3
Enter exrected value and standard deviationt 395. 200,

12. How da outrut transactions contend for the line?
1., FIFO
2. LIFO
3. Ture A First
4., Ture B First
Enter number of choicet 4
13. Enter outrut line rrersration tise (seconds)t 0.7

14, Enter desired lensth of time (minutes) for simulation! 40

1S. A histodaran of ra;runsc tiaes for all transactions is errovided,
Enter best estimate of minimum and maxismum ranse (seconds)! 2,0 7.3

16, Enter seed stream number (from | to 10) for randos number senerator! 3

Prouram enecuting., Please waitiosees

Figure 10-2. (continued)
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Noteuthe menus of probabilify distfibutiéns and qqeueing
priorities to choose from in most of the queries;- Input
variables requested by the program inc;ude: interarrival
times of input mess&ges, message size distributidns,
fashion in which meésages contend for the input and
output lines, line speed, line preparation times, and
length pf time for the gimulation run, The user is also
asked to supply a minimum and maximum estimate of all
response times to set the limits of a histogram
summarizing those results.

Upon supplying all the necessary information,
execution of the simulation run begins followed by a
printout of the summary results (shown in Figure 10—3).
The summary results coﬁtain gqueue length and utilization
statiétics for the input/output lines, transmission times
of input/output messages, and response times for each and
all message. types. Counts of each message type are also
given. The summary results conclude with a histoéram
lillustrating the distribution of all response times and
is shown in Figure 10-4.

10.1.3 'Initialization and Input of Operating
Rules

Since the user of an NBDS prototype
only supplies some &f the operating rules to the

simulation program, the basic framework within which they
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00000000 SUMMARY RESULTS 08400000

Sisulastion Started @ Minute I} O
Siaulation Ended @ Minute 1 &0,
Ssed Strease Number 13

LINE STATISTICS 8

+ 3 4 + +

+ $ + + +
iLine 1Avs Queue Lensth IMax Queue LensthlAvs Wait For Line iAve Line Utilization

+ + +
{Inrut 10.0042384 4/-°0,06494831

[ T—

110,0089492 +/- 0.04707410,27234 +/- 0.4452

10utrut10.49637 +/- 0.81315

- -

611.0486 +/- 1,9142 10.73546 4/~ 0.42981
+ +

B

+ + + +

INPUT TIME STATISTICS 8

+
+

1Messase Ture

+

+ v

Nean Value Hin ValueiMax VslueiNo. Obsrvs!

-+ -

- — =

ET&?. A {0.59714 +/- 0.10309 O.SOOZIE 1.2756E 4711
;Tupc B 10.57953 +/- 0.0886841 0.50003E l.2435i 1234E
:All Tr-ns.cttonl;0-58439 +/- 0.093805; 0.50003; 1.2756; 1703;
+ + + + + +
OUTPUT YIME STATISTICS & )
+ + + + + +
1"0:-.:. Ture ! Hean Value [Hln Ullunlﬂ.n Ualu.iNo- Dberli
ETur' a E4.oao: +/- 3.2648 Z o.7zsaqi 23.5013 47:1
irup. B iz.xoa« +/- 0.95296E o;7oq;z£ a.ax:oi 12:33
EAll Tr-nlcctlonli2a6453 +/- 2.0893 ! 0.708371 2].503{ 17031
RESPONSE TIHE BTATISTICS %

+ + + + + +
|Hessase Tvre 1 Mean Value IHin ValuetMax ValueiNo. Obsrvel
EYHPI ] ES-&B& +/- 3.,3028 E 1-6091 24.9791 0711 .
E‘UP". 13-7914 /- l.O)‘IE l-7l95i 8-722 lZJZE
;All Resronse 71-0314-3082 /- 2.12071 1.609E 24.97’E l70];
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% Al)] tises in seconds

Figure 10-3. Summary Results for Communicaticns
Line Prototype
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reside must already exist by the time the READ_INPUT
‘operdtion is executed. Therefore, it is the job of the
one who designs the simulation packagelto define each set
of operating rules used by the model before execution
begins. Furthermore, where member rules exist that must
be supplied by the user, a position must be reserved for
them in their parent array so as to maintain the critical
-ordering of rules within thag set.

As an example of how this is carried out in COMLINE,.
NDF, the code for the initializationloperation INIT_RULES
is illustrated in Figure 10-5, Each set of operating
rules used by the program is defined.in that operation.
Note how the first éosition of each class of rules is a
blank character string. This is to maintain the
correspondence between the inteéer number of each set of
rules and its pogition in the array éﬁ the top level (ie.
there can be no set of Qrules identified as QUEO). Also
note the use of asterisks in many of the rule sets. These
represent rulé elements within a characterwstring or
individual rules themselves that must be supplied by the
user during the query sess%on. For instance, observe the
set of Genrules as it appears after the initialization

operation is executed:
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INIT_RULES IS (
GENRULES!= ‘ ‘ LINK SOLITARY (’GEN1‘ “CBR1‘’ ‘X X’ O ‘' )}
CBRNRULES?= 4 “ LINK SOLITARY (’CBR1‘’ (‘RANNUM <=Xx’ ‘ASS1‘)
(’RANNUM>X’ ‘ASS2‘)) LINK SOLITARY (’CBR2’ (’ATRIB(1)>=1‘ ‘TLY1’)
(“ATRIB(1)=2’ “TLY2‘)) LINK SOLITARY (’CBR3’ ('ATRIB(1)=1’ ‘TLY3’)
(“ATRIR(1)>=2’ ‘TLY4’))}% :
ASSNRULES:= “ “ LINK SOLITARY (’ASS51’ ‘QUE1’ ‘ATRIR(1)=1"’
‘ATRIB(2)=((Xx ¥X)/%)>+%’) LINK SOLITARY (‘ASS2‘ ‘QUE1’ ’ATRIB(1)=2’
‘ATRIB(2)=((X X)/%)+%x‘) LINK SOLITARY (’ASS3’ ‘QUE2’ ’“ATRIBR(3)>=CLOCK~’
‘ATRIB(2)=((X X)/%)+%’) LINK SOLITARY (’ASS4‘’ ‘QUE2’ ‘ATRIB(3)>=CLOCK~’
ATRIB(2)=C((X X)/X)+X%X’)} :
OQRULES!= * * LINK SOLITARY (‘0OQUE1’ ‘¥’ 0 * * ’ ¢ ‘SRU1”’)
LINK SOLITARY (‘QUE2’ ‘% 0 ° ¢ 7 ’ “SRV2’)}
SRVRULES?:= ‘ ¢ LINK SOLITARY (‘SRV1’ ’CBR2’ ‘ATRIB(2)“ 1 ’ /)
LINK SOLITARY (‘SRV2‘ ‘CBR3’ ‘ATRIB(2)‘ 1 ‘ )4
TALLYRULES:= * ‘“ LINK SOLIITARY (‘TLY1’ ‘CON1’ ‘Ture A’ ’TSYS’)
LINK SOLITARY (’TLY2‘ ‘CON2’ ‘Ture B’ ‘TSYS’)
LINK SOLITARY (‘TLY3‘ ‘TLY5’ ‘Ture A’ ‘INT(3)’)
LINK SOLITARY (’TLY4’ ‘TLY&’ ‘Ture B’ ‘INT(3)')
LINK SOLITARY (‘TLYS’ ‘TLY7?’ ‘Twure A’ ‘TSYS’ * 7)
LINK SOLITARY (‘TLY&’ ‘TLY?’ ‘Ture B’ ‘TSYS’ * /)

LINK SOLISARY (“TLY?7’ ‘TRM1‘ ‘All Resronse Times’ ‘TSYS’
(‘HI . ‘'%¥))
CONTRULES:= * “ L Bﬁﬁ&?éRY (“CON1’ ‘ACT1’) LINK SOLITARY //s\
(’CON2° *ACT2%)3§ ' Py
ACTRULES:= “ ‘* LINK SOLITARY (’ACT1‘ ‘ASS3’ ‘X X’ ’‘N/S’ ) ///'
LINK SOLITARY (‘ACT2‘ “ASS4’ ‘X X’ ‘N/S’)#¥ "

TERMRULESS= “ * LINK SOLITARY (‘TRM1‘ * “)3}
QSFRULES!= VOYD})

o

Figure 10-5. Nial Code for INIT_Rules of
Communications Line Prototype
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(
The character string '* *' represents the time interval
between generations where the individual asterisks
represent the probability distribution and its associated
set of parameters requested by query No. 1 of the input
session. The more complicated sets of ‘asterisks in the
‘Assnrules represent the probability distributions and
their associated parameters describing the individual
message lengths, the line speed, and the line prepafationﬂ

times respectively. They compute to the service times

used by each entity in downstream service activities and = .

are stored in ATRIB(2).

Once the operating rules have been defined in the
initialization step, it's the jobvof the READ_ INPUT
operation to replace each variable represented by a
symbol with a real value prompted from the user. This is
done by inserting the value returned by a "read"
operation idfo ité corresponding position in the
designated set of operating rules. For instance, consider
the following segment of code which executes the first

guery shown in Figure 10-2:
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EACH WRITESCREEN * /
‘1. From the followinds what rrobability distribution describes the -

‘ time between arrivals (in seconds) of all inrut transactions?’i
GENRULESi= ((LINK ((CHOOSE_IIST CHOOSE_FARANS) (0 2) PLACEALL
(THIRD SECONDI GENRULES))) 2 PLACE SECOND GENRULES)
1 FLACE GENRULESS;

The operation CHOOSE_DIST supplies the menu of
probability distributions, reads the choice of the user,
and returns as its value the distribution code
corresponding to the user's choice. Likewise, CHOOSE_
PARAMS prints the statement reguesting the parameters
associated with the given distribution and returns as its
value the parameters read by it. Each value is then
inserted into the first set of Genrules at the positions

held by the asterisks. The result is a completed set of -

Genrules pictured below:

e e R L T +
S e e e
} VIGEN1ICEBRIVERLNG 0.7 3100 1)
I it s Sk Ik 1
+ +

u

_.+—~-—._.__...._____. S g

This same technique was used in all the queries of READ_

INPUT where dummy rules needed to be replaced with real

values.

10.1.4 Access to Statistical Arrays for
' Summary Report

Section 4.4 detailed the organization of
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. theréﬁatistical arrays cregﬁed for each class of modeling
elements in an NBDS'simulation run. Those classes include
both types of Queues, both types of activities, resource
banks, designated time dependenﬁ variables, and
designated time independent variables. Each time a class
of modeling elements is represented in an NBDS, simulation
run, a two-dimensional array is created for that set with
each row but the initial dummy one belonginglto a given
modeling element within that class. It is the task of one
developing a prototype NBDS package td selectively pick
from these arrays the data he wishes to process and
report at the end of a simulation run. To aid in this
procedure, Appendix C details the components maintained
by every statistical array in NBDS. The components are
listed in‘ofder of their column position in the array and
are identified by the variable names used within the NBDS
program. Each componeht is also accompanied by a brief
description of its role in the array.

In some caées, the statigtical components of
interest need no further processing before reporting (eg.
maximum queue length, number of entities gérved, etc.).
These data are simply selected from the given array using
the appropriate address and pfgied in another array
designated for output. However, in instances where sample

means and standard deviations are required, additional
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‘processing is required. Sample means based on

observations are simply calculated by dividing the array
member holding the accumulated sum of observations by the
array membe r holding the count for that variable. Sample
means for time-persistent variables are calculated by
dividing the array member holding the accumulated sum of
the x(t).dt statis?ic\by'the program variable CLOCK
(total time interval). Standard deviation calculations
are more complicated and require the use of the specially

built operations STDV and GRPSTDV. STDV is used for

"statistics based upon observations and requires as its

.érguments the previously estimated mean, the array member

holding the accumulated*'sum of the x2 statistic, and the
array member holding the observatiog“count for thag
variable. GRPSTDV is used for time-persistent variables
and requires as its arguments the accumulated xz(t)-dt
statistic, the pfogram variable CLOCK, and the previously
calculated mean.

To demonstrate how some of these calculations are
carried out at the end oan simulation run, considerNthe
array of accumulated statistics for the queue node QUEL
as it existed at the end of the'COMLINE simulation just

4

. 5
presented: ¥

o 0 1 3405.6 15.258 15,258 15,2588 3.9129 0.50864 ?3 1705 0 0 0 0 O



w
If the above array is assigned to the variable Qdat, the

following expression woula estimate the average waiting
time, Avgw, of all entities recei?ing service at QUEl:
Avgw: = (6 pick Qdat)/(10 pick Qdat)
where the accumulated sum of waiting times (15.258) is
held at address 6 and the count of entities passing
through the queue (1705) held at address 10. Fusthermore,
the standard deviation of waiting times, Stdw, is
estimated with:
Stdw: = STDV Avgw (7 pick Qdat) (10 pick Qdat)
where the accumulated sum of squares of waiting times

(3.9129) is held at address 7.

10.1.5 Outpﬁﬁwdfisﬁmmary Results

Nial provides two useful operations for
outputting iﬁformation to a screen or printerf—the
WRITESCREEN and WRITE operétiops. WRITESCREEN displays
the value of its character string argument and was used
to generate the introductory script and table headings in
all the NBDS examples illustrated in this thesis. The
WRITE operation displays the value of its argument and
was used to print allhthe summary statistics. As with all
data 1in Nial, the results are expressed as arrays which
can contain a mixture of data types. Each row in the

Co LY .
tables of statistical resulgignrepreésents a single array

or list of data objects. For instance, the array pictured
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below is a list of character stringé containing all the
column titles for the table Response Time Statistics of

. COMLINE:

e ittt R e pommmm e R +
‘Messade TureiMean ValueiMin Value!Ma» ValueiNo. Obsrvs!
oo + o= e o m e +

The next array contains the data of the second row of

Response Time Statistics; note the mixture of data types:

D $mmmmmmmmmmee o + + TS

iTure AIS.686 +/- 3. JO"B 1.609:24.9791471}
L atate R Gttt SETLL $ommmee -t

After all the necessary calculations have been made and

the chosen data arranged into arrays like those above,

the results are conveniently arranged into tables using
the primitiﬁe."mix" operation. A "mix" of a list of lists
of the same length results in a table with the lists as
rows. To illustrate this, assume the two arrays presented
earlier are assigned to the variables A and B

respectively. Observe the effect of the next assignment:

RESULTS:= splitarw A link solitarw B

+-- + ———— +
R ommmmmmmet + + Hl4mmmmm—t --=+ + ]

‘Hessase Ture!Mean ValueiMin Value!Max Value!No. Obsrvs!iiTure A!5,686 +/- 3.3028°1,609124.97914711}1
x + + + e it pmmmm 'H+ ------ toem e tom——- tomm——— $-——+!

+ 5 + +

Here the variable RESULTS becomes a list of #the

lists A and B. Now observe the effect. of the "mix"
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operation on RESULTS:

mix RESULTS

+ + + + -—-4
‘Messade Twepe!Hean Value iHin ValuelMax Value!No. Obsrvs!
R -+
{Ture A 15.486 +/- 3.3028! 1.609: 24,979 A711

et + + ——— -4

-+

+

This technigue was used té generate all the tables of
summa¥y statistics displayed in NBDS examples throughout
this thesis. Histograms also begin as a list of solitary
arrays with each array representing an individgél cell of
the histogram. The "mix" operation is used to create its

final form.

4

10,1.6 1Integration of Operations into a Working
Program ’

Once all the input and output>operatiohs
of an NBDS prototype have been defined, the simplést way
to create a working program is to edit those operations
into the original script file of baseoperations for the
general purpose NBDS package (NBDS.NDF). 1In many cases
operations designed for a special purpose simulation have
a similar function to ones in the general purpose
package. When this occurs, the easiest thing to do is
replace the general purpose operation with the new one
while retaining its original name. For example, the INIT_
RULES operation of COMLINE.NDF shown in Figure 10-5

replaced the generalized operation by the same name in
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NBDS.NDF. Likewise, the READ_INPUT, SUMMARY_Q, and
SUMMARY_IND_STATS operations of COMLINE.NDF all replaced
operations by the same name and with a similar function
in NBDS.NDF. The advantage of this procedure lies in not
having to redefine these operation names iﬁ the top level
GO control-operation. It also helps maintain the logical
sequence of input/output operations. In some inétances,
new operations (like PRINT_INTRO of COMLINE.NDF) need to
be “added to the original script file. When this is done,
a reference to it must be added £o the GO operatioh in
its logical position. ”

After all the new input/outpyt operations have been
edited into the original NBDS script file, the next task
is to eliminate all unnecessary operations so that the |
specialized version can be loaded into a Nial workspace
without exceeding its capacity. The hierarchical listing
of baseoperations in Appendix A aids one in determining
which operations are required to support the given
elements in the prototype. Those that are deemed
unnecessary can be culled from the main script file. For
instance, since INIT_RULES of COMLINE.NDF already defines
the operating rules in logical order,lthere is no need
for the SORT_RULES operation. Therefore, it is edited
from the new script file and, since SORT_RULES will no
~longer be defined, the reference to it in the higher

&b
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level operation RULE_SORT is removed as well. 1In séme
cases an unneeded operation is referenced many times
throughout the script file which would result in
extensive editing if it is eliminated. A simple remedy
for these situations is to replace the code for that
operation with the empty array NULL. This is the safest
technique to use in all cases but, as one familiar with
"the evaluation mechanism of Nial can see, either method
requires experimentation. That 1s, make the change,
reload the script file, and check for any resultant
errors; repeat this process until all operations are

fully defined.
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11. Conclusions

The work présented in this thesis demonstrates .
how the Nial language, with its unique approach to
handling data and its rich pool of primitive operations,
is ideally suited for programming discrete simulations on
a digital computer. Discrete event simulations demand a
great deal of recordkeeping in the form of maintaining
ordered lists of records, searching and selecting records
from those lists, and creating new records as well as
destroying old ones. All of these programming tasks are
conveniently hgndled with‘Nial due to its inherent
array-as—data-object concepts and ability to operate on
nested arrays with ease. The result is a greatly reduced
programming effort compared to ;hat required by other
general purpose computer languages performing the same
tasks. |

Nial's ability to treat arrays as single data
objects provided an efficient means for manipulating
entity records in the NBDS simulations. Records
containing an entity's entire list of attributes were
transferred from one file to another with little
programming effort. The filing of these records in
ordered lists .also required no need for a complex system
of pointers——it's all eﬁbedded in the language itself.

Likewise, operations on individual elements of a record
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were easily carried‘out and, when used in comBination
Qith one of Nial's powerful transformers, provided a
means for accessing a given attribute in several
differgnt records at onge.

b 3 .

Nial's only drawback as a base language for computer
simulations is its relatively slow execution time
compared to compiled languages (even the simple
verification runs of a single-server queueing syétem
required 20—30‘minutes of run-time under low load
conditions). For this reason it would not be practical to
use Nial as a production language for computer
simulation. However, its functional design, combined with
the programming features just presented, lend Nial as a
déeful tool for prototyping specialized discrete

simulation packages. Thig, was <demonstrated through the

design of the many functiongﬁgnggram units that
supported a variety of simulétiogtmodeling elements. A
generalized simulation package was designed as a vehicle
for experimenting with these modeling elements and
ultimately serves as the framework for developing
specialized prototypes. One simply has to design a
problem-specific interface for inputting the various
operating rules to the system and tailor the summary

report to suit the specific needs of the prototype.

The work presented in this thesis demonstrates



Nial's usefulness as a prbtotyping tool in oﬁher
applications”as well, As shown here, the conciseness and
power of its primitive operations greatly reduces the
programming effort of complex operations. Furthermore,
Nial's design allows one to decompose a problem into
several functional units, thué; helping to clarify the
program logic. However; from this researcher's own
personal experiehce, Nial's main attraction as a
prototyping tool stems from its interactive nature and
its ability to display the results of an opéfation on an
array as a picture. Each operation contained in the
library of NBDS baseoperations is the result of several
iterative sessions at a terminal. Typically, a command or
expression was issued and its effect on the target array
examined through its picture.‘ This experimental procéss
continued until the unit of code produced theé desired
result. Once an entire operation wasﬁcompleted and fully
tested, it was copied into the permanent script file 6f'
NBDS baseoperations., Without this functional approach to
problem solving and the interactive environment provided
by Nial, £he list of simulation elements resulting from

this process would never have been as extensive,
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Appendix A. Hierarchical Organization of

NBDS Baseoperations

1. Simulation Control Program Operations

® GO
INITIALIZE
INIT_CONSTS
INIT_RULES
‘INIT_VARS
READ_INPUT
CHOOSE_SEED
RULE_SORT
SORT_RULES
SORT_QRULES . .
SORT- RSCRULES
SORT_ASSNRULES
SORT_TALLYRULES
LOAD._ CAL .
CREATE_FIRST
QUEUE_FIRST
RQUEUE_FIRST
SORTUP
ARRIVE
CREATE
CHOOSE_DEST
(see top level operations of
Arrival Event Operations)
SORTUP
DEPART
(See top level operations of
Departure Event Operations)
All UPDATE operations '
All SUMMARY operations
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2, Arrival Event Operations

® ASIGN
COMPTRIBS
COMPGLOBS
SWITCH_DEST

® CBRANCH
SWITCH_DEST

® (O _SLCT.FWD
SWITCH_DEST

® ARV_QUE
: ENTER_QUE
QSTATS_IN
ORDER_QUE
CHK_IF_BLKD
BALK
TERMINATE
CHECK_SRVRS
TALLY_SERVICE
CHK_IF_BLKD -
SET_BLK_FLG

® ARV_RQ

ENTER_RQ
QSTATS_IN
ORDER_QUE
BALK
TERMINATE

TALLY_RSC

START_ACTIVITY
TALLY_ACT

® FREE_RSC
TALLY_RS
START_AGTIVITY
TALLY_ACT
POLL_QUH
PROCESS_RQF
START_ACTIVITY
TALLY_ACT
PROCESS_PRMPTF
TALLY_ACT
QSTATS_OUT
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® ALTER_RSC

TALLY_RSC

START_ACTIVITY

POLL_QUES :

(see POLL_QUES of FREE_RSC

®DREEMPT ‘

SWITCH_DEST

ATEMPT_ PRMPT

PREEMPTED
ATRIB
ALLOW_PRMPT
QSTATS_ IN
TALLY_ACT
START_ACTIVITY
TALLY_ACT
TALLY_RSC
POLL_QUES /
' (see POlL QUES of FREE RSC)
TALLY_RSC
START_ACTIVITY
TALLY_ACT
® MULTIPLY
®© MBRANCH
© KONTINUE | "y
START_ACTIVITY '
TALLY_ACT
®© CLOSE_Q
Q_CLOSED
QSTATS_IN
BALK
TERMINATE
.START_ACTIVITY
TALLY_ACT
® OPEN_Q
START_ACTIVITY
TALLY_ACT

CHECK_SRVRS
TALLY_SERVICE
CHECK_QUE
S (see CHECK_QUE in
Departure Event Operations)
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TALLY_RSC
POLL_QUES

(see POLL_QUES of FREE_
® TALLIE
BTWNTALLY
TALLY_HISTS
NUMTALLY

TALLY_HISTS
SWITCH_DEST

® TERMINATE
3. Departure Event Operations

® END_SERVICE
SUM_SERVICE
TERMINATE
TALLY_ SERVICE
Q_SLCT_BHND
RANNUM
CHECK_QUE
TALLY_SERVICE
SERVICE_QUE
RANNUM
QSTATS_OUT
CHECK_FOR_BLKS
RESET_BLK_FLG
TALLY_SERVICE
FIND_HOME_QUE
Q_SLCT_BHND
RANNUM
CHECK_QUE

® END_ACTIVITY

TALLY_ACT
TERMINATE
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Appendix B. Location of Operations in

NBDS.NDF Script File

Operation Name

ACT_ADDRS
ACTDAT
ALLOW_PRMPT
ALTER_RSC
ARRIVE
ARV_QUE
ARV_RQ
ASIGN
ATEMPT_ PRMPT
ATRIB

BALK
BTWNTALLY

CBRANCH
CHECK_FOR_BLKS
CHECK_QUE
CHECK_SRVRS
CHK_IF_BLKD -
CHOOSE_DEST
CHOOSE_SEED
CLOSE_Q
COMPGLOBS
COMPTRIBS
CREATE
CREATE_FIRST

DEPART

END_ACTIVITY
END_SERVICE
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NP NNHERHRRRD DR POROODNNDNDND R

N\

N+

Line No.

48900
49100
34200
27000
69900
12100
22000

8200
31900
30000

58800
60000

10100
92200
97100
83000
74200
67400
22000
49600

7700
21200
36600

73400

4700

50800
1300



Operation Name

ENTER_QUE
ENTER_RQ
ERLNG
EXPON

FIND_ HOME_QUE
FREE_RSC

GO
GRPSTDV
GVAR

INIT_CONSTS
INIT_RULES
INIT_VARS
INITIALIZE

KONTINUE
LOAD_CAL

MBRANCH
MULTIPLY

NORML
NUMTALLY

ORDER_QUE
OPEN_Q

POLL_QUES
PREEMPT
PREEMPTED
PRINT_HISTOS
PROCESS_PRMPTF
- PROCESS_RQF

Q_CLOSED
Q_SLCT.BHND
Q.SLCT_FWD
QSTATS_IN
QSTATS _OUT
QUEUE _FIRST

(=)
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[N NN

o

W NN

NN

Line No.

75900
70000
32600
31500

90000
24700

27100
34300
30200

2100
3700
2800
4500

43800
83800

42600
41100

31700
62300

60400
51400

64800
38100
29600
18600
63600
62300

44600
84400
15600
54200
56100
75200



Operation Name

RANNUM

READ_ INPUT
RESET_BLK_FLG
RQUEUE_FIRST
RULE _SORT

SELECT_SRVR
SERVICE_QUE
SET_BLK_FLG
SORT_ASSNRULES
SORT _QRULES

~ SORT_RSCRULES

SORT_RULES
SORT_TALLYRULES
SORTDOWN

SORTUP

SRV_ ADDRS

SRVDAT
START_ACTIVITY
STDV

SUM_SERVICE
SUMMARY_ACT
SUMMARY. TND. STATS
SUMMARY_Q
'SUMMARY_ RQ
SUMMARY_RSC
SUMMARY _SRVS
SUMMARY_TDP_ STATS
SWITCH_DEST

TALLIE

"TALLY_ACT
TALLY_HISTS
TALLY_RSC
TALLY_SERVICE
TALLY_TIMED
TERMINATE
TGEN

UNFRM
UPDATE_ACT
UPDATE_Q
UPDATE_RQ

UPDATE _RSC
UPDATE_SRVS
UPDATE_TDP_ STATS

VALID_NUMS

o
o))
)
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Line No.

27700
22800
73800
79700
17900

7900
95400
73400
10100
16700
15100
4700
12300
36200
35900
45700
45900
49300 -
34600
43400
11800
14600
87300
500
7700
94600
24800
7000

64200
46100
57800
52300
39500--

5700
30400
38200

31300

9900
85500
98600

5900
92700
23100

72600



Appendix C. Components of NBDS Statistical Arrays

® Service Queues (Qsﬁats) and Resource Queues (Rgststs)

Variable

Address Name Description

0 FLG v Boolean flag indicating when queue
is blocked; used only by service
gueues 9

1 QN number of entities waiting in queue

2 OMAX maximum gueue length

3 QT time of last state change in gqueue

4 SUMFQ cumulative sum of (CLOCK-QT) *QN;
divided by CLOCK, yields average
number of entities in queue at any
one time

. 2

5 SUMFQ 2 cumulative sum of (CLOCK-QT)*QN ;

) passed as first argument to GRPSTDV
operation to estimate standard
deviation of queue length over time

6 SUMQT cumulative sum of waiting times in
queue

7 . SUMQT 2 cumulative sum of squares of waiting
times in queue; passed as second

“ argument to STDV operation to

estimate standard deviation of
waiting times

8 MAXQT maximum waiting time in queue

9 QDEPART number of entities departing queue

that had to wait for service



vl

Appendix C (continued)

©

total number of entities departing
from queue

time of last balk from gueue

cumulative sum of (CLOCK-TB) or time
petween last balk

cumulative sum of sguares of times
between last balk; passed as second
argument to STDV operation to
estimate standard deviation of times
between balks

number of entities balking from
qgueue ’

flag indicating whether gueue open

(0) or closed (1)
’

® Service Activities (Srvstats)

10 NTHRU

11 TB

12 SUMBT

13 SUMBT

14 NBALK

15 GTFLG
Variable

Address Name

0 SN

1 SUMSRVT

2 SUMSRVT 2

3 MINT

4 MAXT

5 ST

Description

number of entities served

cumulative sum of service times
cumulative sum of squares of service
times; passed as second argument to
STDV operation to estimate standard
deviation of service times

minimum service time

maximum service time

time of last state change in service

activity

O
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10

11

12

13

14

SUMFT

SUMFT2

NBUSY

MAXIDL

" MAXBSY

NSRVS

SUMBLKT

NBLKS

BLKFLG

Appendix C (continued)

cumulative sum of (CLOCK-ST)*
utilization where utilization is
equal to the number of "busy"
servers/total number of available
servers; divided by CLOCK, yields
average server utilization
cumulative sug of (CLOCK-ST)¥*
(Uilizatiion)”; passed as first
argument to GRPSTDV operation to
estimate standard deviation of
server utilization over time

number of servers engaged in an

activity

maximum idle "time for one server;
where there is more than one server,
this holds the maximum number of
servers idle at one time '

maximum busy time for .one server;
where there is more than one server,
this holds the maximum number of
servers busy at one time

designated number of servers for
activity

cumulative sum of (number of
blocked servers/total number of
servers) * (CLOCK-ST); divided by
CLOCK, yields average blocking time

number of blocked servers at a given
time

flag indicating whether destination
queue 1is blocked (1) or free to
receive entities (0)

® Regular Activities (Actstats)
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Appendix C (continued)

number of entities currently engaged
time of last state change in

cumulative sum of (CLOCK-AT) * AN;
divided by CLOCK, yields average
number of entities in activity at

cumulative sum of (CLOCK-AT) * ANZ;
passed as first argument to GRPSTDV
operation to calculate standard
deviation of number of entities in

maximum number of entities in
activity at one time

number of entities routed over

capacity of resource bank

current number of available

time of last state change in

Variable
Address Name Description
0 AN
in activity
1 AT
activity
2 SUMFT
one time
3 SUMFT?2
activity over time
4 UMAX
5 CNT
activity
Resource Banks (Rscstats)
Variable
Address Name Description
0 INIT
1 REMAIN
resources
2 RT
! ‘ resource bank
3 SUMET

cumulative sum of (CLCCK~-RT) *
utilization where utilization equals
INIT-REMAIN; divided by CLOCK,
yields average utilization of
resource bank '

- 188 -



Appendix C (continued)

4 SUMFT2 cumulative sum of (CLOCK-RT) *
(utilization)”™; passed as first
argument to GRPSTDV operation to
estimate 'standard deviation of
resource bank utilization over time

5 UMAX maximum utilization of resqurce bank
at one time ‘

e Time Independent Variables (Tallystats)
Variable

Address Name Description

0 NUMS number of observations

1 SUMX cumulative sum of observations

2 SUMX 2 cumulative sum .of squares of
observations; passed as second
argument to STDV operation to
estimate standard deviation of all
observations

3 MINX minimum observed value

4 MAXX maximum observed value

5 LAST_T time of last observation; used only
with BTWN option of TALLY nodes

® Time Dependent Variables (Glbstats)
0 LST_VAL value of last observation
1 LT time of last state change in
v variable
2 FX cumulative sum of (CLOCK-LT) * LST_

VAL; divided by CLOCK,yields

average value over time
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Appendix C (continued).

FX2 cumuiative sum of (CLOCK-LT) * (LST_
VAL)"; passed as second argument to
GRPSTDV operation to estimate
standard deviation of variable over

time
MINX minimum observed value
MAXX maximum observed wvalue
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