
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1984

Nial as a Prototyping Tool for Discrete Simulations.
Rickey L. Sell

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Industrial Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Sell, Rickey L., "Nial as a Prototyping Tool for Discrete Simulations." (1984). Theses and Dissertations. Paper 2114.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=preserve.lehigh.edu%2Fetd%2F2114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2114?utm_source=preserve.lehigh.edu%2Fetd%2F2114&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

Nial as a Prototyping Tool

for Discrete Simulations

by

Rickey L. Sell

A Thesis

Presented to the Graduate Committee

<i^J^ of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Industrial Engineering

Lehigh University

1984

ProQuest Number: EP76387

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest

ProQuest EP76387

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Certificate of Approval

This thesis is accepted and approved in partial
fulfillment of the requirements for the degree of Master
of Science.

/feft^ -5'/ , /fo^
-/(date)

Prs6f e ssor in Charged

Chairman of Department

11

Acknowledgments

Rick Sell gratefully acknowledges all those people

who have played a role in bringing this thesis to

completion. Special thanks go to his advisor, Professor

John C. Wiginton; he not only provided guidance

throughout this work but, through his progressive

actions, made this thesis possible by introducing the

Nial computer language to Lehigh University. Rick's wife,

Kathryn, deserves his deepest gratitude for her financial

support of their family throughout his education and for

enduring the hardships it has caused. Recognition is also

given to Rick's parents, Douglas and Marjorie Sell; they

offered never-ending encouragement and provided hours of

care for his daughter when time became too short. Robert

Popiak of Air Products is greatly appreciated for his

loan of a computer terminal and modem; without the

late-night programming sessions from Rick's home, this

thesis would still be in the development stage. Also

appreciated is the expertise and cooperation of Doris

Lewis who typed this manuscript and organized its

n contents. Most of all, Rick would like .to...,thank -his

3-year-old daughter, Rebecca, for her patience throughout

the last year and ability to always make things right;

she is truly his best friend and greatest source of

inspiration.

iii

Table of Contents

Page

Certificate of Approval ii

Acknowledgment iii

Table of Contents... iv

List of Tables vii

List of Figures '".' ;,• • • viii

Abstract 1

1. Introduction 3

2. Problem Definition 6

3. Background 3
3.1 History and Programming Concepts

of Nial 3
3.2 Computer Simulations 10
3.3 Discrete Simulation Concepts 11

3.3.1 Systems and Models 11
3.3.2 Next Event Approach;. 13
3.3.3 Alternative World Views

for Discrete Simulation 14
3.4 Event Scheduling Approach Chosen

for Nial-Based Simulations 18
3.4.1 Details of Event Scheduling 18
3.4.2 Additional Features of

i Event Scheduling 22
3.5 Conventional Programming

Considerations 2 5
3.5.1 Data Objects—Generation

and Manipulation 26
3.5.2 Data Structures 27

4. Basics of Nial-Based Discrete Simulations 34
4.1 Modeling Concepts 34

4.1.1 Queues 35
4.1.2 Activities 36

4.2 Simulation Control Program 38
4.3 Data Structures in NBDS 43
4.4 Random Variate Generation... 51
4.5 Data Collection and Statistical

Analysis 54

iv

Data Object Management Efficiently
Handled With Nial 58

5.1 Entity Records—Creation,
Destruction and List Formation 53

5.2 Sorting Record Lists 62
5.3 Search and Selection of Records

From a List 64

Simulation Elements of NBDS 67
6.1 General Format for Operating

Rules 68
6.2 Symbols for Nodes and-Activities 69
6.3 Entity Creation and Destruction 72
6.4 Queue Selection and Service

Selection Nodes 74
6 . 5 SERVICE QUEUE Nodes 84
6.6 Activities 86
6.7 Resource Queues and Related

Simulation Elements 89
6 . 8 ASSIGNMENT Nodes 99
6.9 Collection of Supplementary

Statistics 102
6 .10 CONTINUATION Nodes 106
6.11 MULTIPLY Nodes 10 7
,6 .12 MULTIPLE BRANCH Node 107
6.13 CONDITIONAL BRANCH Node 108
6.14 CLOSE and OPEN Nodes HI
6 .15 SEED Statement. 1T5
6 .16 END Statement 115

Model Building With NBDS Elements 117
7 .1 Simple Queuei ng System 117
7.2 Computer System With

Preemptive Processing ng
1. 3 Serial Work Stations on a

Production Line 121
7.4 Traffic Light 124

General Purpose NBDS Package 130
8.1 Input and Internal Organization

of Operating Rules 131
8.2 Statistical Analysis and

Summary Report 135
8.3 General Purpose NBDS Examples 135

8.3.1 Basic Execution Procedures 136
8.3.2 Computer System With

Preemptive Processing 141
8.3.3 Serial Work Stations on

a Production Line 144
8.3.4 Traffic Light ., 144

9. Verification of Modeling Elements... 148

10. Prototyping Special Purpose
Simulations With NBDS 153

10.1 Communications Line simulation
Prototype V 154

10.1.1 Description of Model 154
10.1.2 Execution of Program 156
10.1.3 Initialization and Input

of Operating Rules 159
10.1.4 Access to'Statistical Arrays

for Summary Report 165
10.1.5 Output of Summary Results 168
10.1.6 Integration of Operations •

into a Working Program 170

11. Conclusions 173

List of References. 176

Appendix A Hierarchical Organization of
NBDS Baseoperations 178

Appendix B ■Location of Baseoperations in
NBDS.NDF Script File 182

Appendix C Components of NBDS Statistical
Arrays , 185

Biography. . 191

VI

List of Tables

Number v Title Page

4-1 Formulas for Calculating Means
and Standard Deviations 57

6-1 Symbols for NBDS Modeling Elements.> 70

6-2 NBDS Random and Program Variables 12

6-3 Decision Rules Used by Q-SELECT-FWD
and Q-SELECT-BHND Nodes 7C

6-4 Decision Rules Used by SRVR-SELECT
Nodes 83

6-5 Queueing Disciplines 85

6-6 Standard Nial Relational and
Boolean Operations 110

8-1 Output Statistics of a General
Purpose NBDS Run 137

9-1 Results of Queueing Model
Verification Runs 151

vn

List of Figures

Number Title Page

3-1 Passage of Time in Next
Event Model i ng 14

3-2 Relationships Between Events,
Activities, and Processes •. 15

3-3 Event Scheduling Approach to a
Single Server Queueing Model 21

3-4 Singly Linked List Structure 30

3-5 Removing a Record From a List 31

3-6 Doubly Linked List Structure 32

4-1 Simple Queueing Model 37.

4-2 NBDS Simulation Control Program 40

4-3 Event Execution Routines 42

4-4 NBDS Entity Record 48

7-1 Network Diagram of Computer
System Model 11.9

7-2 Operating Rules for Computer
System Model... 121

7-3 Network Diagram of Production
Line Model , 123

7-4 Operating Rules for Production
Line Model 124

7-5 Network Diagram of Traffic
Light Model 127

vm

Number Title Page

7-6 Operating Rules for Traffic
Light Model 129

8-1 Nial Code for Read_Input Operation 134

8-2 Echo Listing of Rules for
Computer System Run 142

8-3 Summary Results for Computer
System Run . 143

8-4 Summary Results for Production
Line Run 145

'8-5 Histogram for Production Line Run 146

8-6 Summary Results for Traffic
Light Run 147

10-1 Network Diagram of Communications
Line Model 155

10-2 Input Session From Communications
Line Prototype 157

10-3 Summary Results for Communications
Line Prototype 160

10-4 Histogram for Communications
Line Prototype. 161

10-5 Nial Code for INIT_RULES of
Communications Line Prototype 163

IX

Abstract

Nial (Nested Interactive Array Language) is proposed

as a useful tool for prototyping decision-making systems

employing discrete simulation. Considered a fifth

generation computer language, Nial is based on a

mathematical model of data called array theory which

provides the definitions for its data operations. Nial is

a functional language and is used interactively. Its

value in prototyping discrete simulations stems from the

ease with which it manipulates data objects within its

environment. Discrete simulations demand a great deal of

"bookkeeping" in the form of creating, filing, and

destroying records; sorting lists; searching lists; and

selecting items from a list. The Nial language, with its

array-as-data-object concept, is equipped with a rich set

of primitive operations ideally suited for carrying out

the computer instructions required of those activities.

Nial's functionallity, combined with its concise

programming capabilities, led to the development of an

extensive collection of baseoperations supporting a wide

- 1 -

variety of simulation modeling elements. The individual

modeling elements are used as building blocks in

developing prototype discrete' simulation packages.

Represented by symbols, the modeling elements can be

combined into a network-like diagram to describe the

system of interest. Once defined, the modeling elements

are translated into sets of logical-mathematical

operating rules which are input to a simulation control

program. The control program is supported by the

collection of baseoperations and employs an event

scheduling approach.

A functional description of each modeling element is

given along with the format of its operating rules set.

The use of a general purpose simulation package is also

described which allows one to experiment with the various

modeling elements before developing a specialized

prototype. Finally, the process of designing a prototype

simulation package is presented through an actual

example. Emphasized are the design of an interactive

query session as a means for inputting pertinent

operating rules, the procedures for generating a summary

report, and the organization of the supporting

baseoperations into a working program.

2 -

1. Introduction

Over the last decade, the information systems and

data processing industries have experienced unparalleled

growth. As a result of this expansion, system development

methods and approaches have been under constant review in

an effort to improve the manageability and productivity

of development projects. Among the various new methods

being proposed in recent years, one in particular stands

out—prototyping.

A variety of definitions of the word prototype have

been offered in publications dealing with the subject,

but Jenkins and Naumann (1) feel Webster's description is

adequate:

1. An original model on which something
is patterned;

2. An individual that exhibits the essential
features of a later type;

3. A standard or typical example.

Other definitions compiled by Canning (2) include "a

quick and inexpensive process of developing and testing a

trial balloon" and "the first thing or being of its

kind."

Whichever definition fits best, one thing is for

certain—software prototyping allows end-users a chance

to work with the system they are trying to define. With

- 3 -

prototyping, construction of a quick and dirty system

begins after the bare minimum of a specification has been

prepared. In the end, it has one purpose, and that is to

show the users what they are asking for. It gives them

some working knowledge of the results that can be

achieved by the system they 'have defined. After

definition is complete, the prototype will be discarded

and replaced by the operating version of the system. In

some cases, a prototype also serves as a useful model to

production programmers in designing the logic of the

finished product. These benefits are so great, that many

DP pundits like Appleton (3) feel prototyping will

replace the traditional life cycle approach for

developing and maintaining end-user application systems

and shared databases.

Prototyping requires software tools that allow

designers or programmers to create a working system in a

very short time. These resources include such things as

on-line interactive systems, database management systems,

application development systems, high level languages,

generalized input and output software, and libraries of

-re-usable code. Of all the tools available, the high

level languages offer a more responsive tool for most

prototype situations because of their interpretive nature

and non-procedural code. Because the code is interpreted

- 4 -

and does not require a compilation step, analysts and

programmers can perform iterations at a terminal with the

user. At the same time, productivity is increased due to

the automatic features of the high-level coding. The

interactive environment of high level languages also

gives users the appearance that information processing

resources are physically adjacent and immediately

available. User perception of rapid and efficient

alteration is what encourages them to discover and

evaluate design alternatives.

- 5

2. Problem Definition

The objective of this thesis is to demonstrate how

Nial, a fifth generation computer language, can serve as

a useful tool for prototyping discrete event computer

simulations. Nial was chosen f or,j this ^purpose because it

not only satisfies the criteria for high level

prototyping languages, but is also equipped with a set of

primitive operations that are ideally suited for carrying

out the computer instructions demanded by discrete event

simulations. In contrast to continuous simulation

techniques which rely heavily upon the solution of

algebraic, dfference, or differential equations, discrete

simulations demand a great deal of "bookkeeping" in the

form of creating, filing, and destroying records; sorting

lists; searching lists; and selecting items from a list.

This thesis will demonstrate how easily Nial handles

those tasks with its unique array-as-data-object concept.

Numerous examples will be given displaying the

conciseness and power of Nial as a programming language

for discrete event simulations. However, Nial's real

usefulness as a prototyping tool will be demonstrated by

presenting a broad set of Nial-based functional units (or

baseoperations) that can be combined to quickly build

prototype computer simulation packages. The unified

modeling approach used to design the simulation elements

- 6 -

will be'discussed and a detailed survey of each modeling

element given. The procedures for integrating the

modeling elements into a working simuiyitr'on program will

be presented through the use of a general purpose

simulation package and, finally, the prototyping process

itself demonstrated through an actual example.

- 7 -

3. Background

3.1 History and Programming Concepts of Nial

Nial (Nested Interactive Array Language) is a

computer language based on a mathematical model of data

called array theory. It serves as the model for data

manipulated in the system and provides the definition^

for the data operations of the language (4). The language

was designed through a joint effort of M.A. Jenkins of

Queen's University at Kingston, Canada, his co-workers,

and Trenchard More of the IBM Cambridge Scientific Center

(5,6). Q'Nial, the version implemented on Lehigh

University's DECSYSTEM-20 in early 1984 and used in this

work, is a portable version of the Nial language suitable

for implementation on systems ranging from IBM PCs to the

large scale IBM 4341 (7).

Nial is designed as an interactive language with

both an immediate execution mode and the ability to

execute extensive program texts read from script files or

loaded as predefined operations. As an expression based

language, the principal unit of computation is an

expression that returns a value. Common mathematical

notations form the syntactical basis in which expressions

are written'. Moreover, Nial combines their use with a

variety of programming styles ranging from the structured

constructs of ALGOL to the recursive style of LISP.

- 8 -

V"'

In Nial, the result of an expression evaluation is

an array. In the immediate execution mode, the array is

displayed as a picture on the user's terminal. The

picture shows the structure and content of the evaluation

result which aids in understanding the data structure

concepts of the language.

Nial may also be used in a command oriented way, in

that an expression may be viewed as an imperative by

ignoring its result. The language furnishes the syntax

for this suppression.

Nial execution occurs in a workspace containing the

data and objects defined by the user. For convenience,

access to data outside the workspace and programmed

interaction with the terminal are provided by system

operations for input and output. All text editing is done

through the host system interface.

Nial is a functional language which encourages the

decomposition of problems into functional units. Each

unit is implemented as an operation. Like LISP, it allows

creation of new operations and transformers (functional

objects that map operations to operations to form new

operations), and can treat programs as data.

The value of Nial as a prototyping tool is derived

from its use in an interactive environment. Operations

can be applied to any kind of data which makes it ideal

- 9 -

for experimenting with problem solving. A new command is

entered and immediately the programmer can learn if it

was correct. Interpreted like APL and LISP, Nial executes

each of its input commands immediately which allows one

to observe how the data are transformed by the operation

being defined. Furthermore, when all the statements

re'quired to solve a problem have been proven, the log of
0

the programming session can be saved and edited. Only

those commands that worked are edited into the final

program

3.2 Computer Simulations

Computer simulation has been applied to many

diverse systems. It has been used for design, procedural

analysis and performance assessment for almost three

decades and the literature abounds with numerous

applications. Areas where computer simulation has been

used include air traffic control, communications system

design, job shop scheduling, financial forecasting,

maintenance scheduling, and water resources development

to name just a few (8). Surveys compiled by Shannon (9)

revealed that simulation and statistical methods are the

most widely-used management science and operations

research techniques employed by industry and government.

Computer simulations can be divided into two

distinct classes: 1) discrete simulation, and 2)

- 10 -

continuous simulation. Discrete simulation concerns the

modeling on a digital computer of a system in which, state

changes can be represented by a collection of discrete

events. Simulated time is advanced from one event to the

next and can be a fixed or variable time increment. In

continuous simulation, the dependent variables of the

model change continuously over simulated time causing

smooth changes in the attributes of the system entities.

Continuous modeling involves the characterization of the

behavior of a system by a set of mathematical equations.

3.3 Discrete Simulation Concepts

3.3.1 Systems and Models

A system is defined as an aggregation or

collection of related objects united to perform a

specified function. Each object or entity of the system

can be characterized by attributes that may themselves be

related. For example, a bank, its tellers and the

customers all form a system. The teller entities possess

attributes of sex, age, experience and salary of which

experience and salary may be related. Customers arriving

to the bank are also entities and have attributes of sex,

age and the type of transaction they are about to

request. Any process that causes a change in the state of

a system is called an activity. The phrase "state of the

 • --f^"

- 11 -

system" describes all of the entities, attributes, and

activities as they exist at one point in time. In the

bank system, a customer arriving to the bank is an

arrival activity. Upon arrival, the state of the bank

system changes to reflect the additional person in the

bank. If a teller is free to serve the customer, the

teller begins a service activity which also changes the

state of the system in terms of teller utilization.

Models are descriptions or abstractions of a system.

In the physical sciences, models are usually developed

based on theoretical laws and principles. The models may

be scaled physical objects (iconic models), mathematical

equations and relations (abstract models), or graphical

representations (visual models). The usefulness of models

has been demonstrated in describing, designing, and

analyzing systems.

Computer simulation models are mathematical-logical

representations of systems which can be carried out in

experimental fashion on a digital computer. Therefore, a

simulation model can be considered as a laboratory

version of a system whose components include the

computer, operational rules, mathematical functions, and

probability distributions. The behavior of the model is

^reduced to programmable, logical-decision rules and

operations. Such models have also been described as

- 12 -

input-output models (9). That is, they yield the output

of the system given the input to its interacting

subsystems. Computer simulation models are therefore

"run" rather than "solved" in order to obtain the desired

information or results. They are incapable of generating

a solution on their own in the sense of analytical models

but rather serve as a tool for the analysis of the

behavior of a system under conditions specified by the

experimentor.

3.3.2 Next Event Approach

_ As mentioned earlier, discrete event

simulation on the digital computer involves a system

model in which state changes occur at event times. Since

the state of the system remains constant between event

times, a complete dynamic portrayal of the state of the

system can be obtained by advancing simulated time from

one event to the next. This timing mechanism is referred

to as the next event approach and is used by all modern

computer simulation programming languages. By repeatedly

advancing to the time of the next event, a simulation is

able to skip over the inactive time whose passage in the

real world must be endured.

Figure 3-1 illustrates how time is represented and

managed when using a next event approach to discrete

"0.13 -

simulations. A sequence of events (e.) are depicted on

TIME

Figure 3-1. Passage of Time in Next Event Modeling

horizontal time axis. The arrows point to the time values

at which time is updated and the events occur. Following

each event, time is advanced to the exact time of the

earliest of all future events. Each event would also

represent some change in the state of the system being

simulated. For instance, in the bank example presented

earlier, an event depicted in Figure 3-1 could represent

the arrival of a -customer to the bank or the

end-of-service and departure of a previous arrival. In

the case where there is a simultaneous occurrence of

events (e. and e^), e. might represent the departure of a

previous arrival and e- the arrival of a new customer.

3.3.3 Alternative World Views for Discrete
Simulation

In developing computer simulation models,

the analyst needs to select a conceptual framework for

describing the system to be modeled. The framework or

- 14 -

j

perspective within which the system functional

relationships are perceived, and described has come to be

known as the term "world-view" (10). The world-view

employed by the modeler provides a conceptual mechanism

for articulating the system description and can be

implicitly defined in a simulation language or, where the

modeler elects to employ a general purpose computer

language, is organized by—the modeler^himself.

Discrete simulation models can be formulated by: 1)

defining the changes in state that occur at each event

time; 2) describing the activities in which the entities

in the system engage; or 3) describing the process

through which the entities in the system flow. The

relationships between these concepts are demonstrated in

Figure 3-2 by considering the bank system once again. The

Process

Arrival of
Customer Event

Start-of-Service
Event

End-of-Service TIME
Event

Figure 3-2. Relationships Between Events, Activities,
and Processes

15 -

arrival of a customer to the bank, the start-of-service

for the customer, and the end-of-service for the customer

all signify events. As shown, events take place at

isolated points in time and bring about a change in the

state of the system. Decisions are made at events to

start or end activities. An activity is an operation or

collection of operations that transform the state of an

entity. The service activity in,ithe bank example results

in a busy teller and transforms the customer from an

arriving to a departing entity. A process is a sequence

of events ordered on time and may comprise several

activities. In Figure 3-2, the process encompasses the

arrival of a customer to its completion of service.

Together, the concepts of event, activity, and

process give rise to three alternative world-views for

building discrete event models. These are called: event

scheduling, activity scanning, and process interaction.

The event scheduing and process interaction approaches

employ a next-event method of organizing event notices.

The principal difference among them is the scanning of

simultaneous events which may produce different results

if there is some interaction between them.

The event scheduling approach sees a system as a

collection of overlapping activities. The beginning and

ending of each activity are regarded as separate events

16 -

which are independently scheduled. A conditional event .

can be treated as a sub-event within the event routine

that causes its release, or it can be scheduled as a ^

separate, concurrent event. Similarly, if an entity is

created and is to be involved in an immediate event, that

event might be a sub-event or a separately scheduled

event.

The process interaction approach concentrates on the

individual entities. The system is seen as a set of

overlapping activities, causing events as they start and

finish, but the activities form related groups, which are

the processes. Once committed to a process, an entity

will generally proceed through all the activities of the

process. If the end of one activity implies the start of

another for the same entity, these two events will be

executed in sequence, and not scheduled separately.

Similarly, if a non-zero activity is encountered, so that

the start of an activity implies its immediate end, those

two events will also be executed in sequence. An entity

will, therefore, be carried through as many events of a

process as presently possible.

The activity scanning approach does not specifically

use the next-event method,- although the simulation

proceeds in uneven steps through successive events. All

activities have a statement giving the conditions under

17 -

s

which they may be started, including a specification of

what entities and resources mus1 oe available. Each

active entity has an associated clock giving the time

when the entity will end the activity in which it is

engaged. Scanning the clocks determines which event

occurs next. Following the change of state that ocnirs,

all activities are scanned to see which can then be

started.

3.4 Event Scheduling Approach Chosen for Nial-Based
Simulations

In designing the Nial-based elements for prototyping

discrete simulations, it was necessary to choose a single

world-view approach to provide a unified conceptual

framework within which any combination of elements could

function together. Implicit in this decision was the need

to provide just one simulation control program (or timing

routine) which determines which event is the next to be

selected. With these points in mind, the event scheduling

approach was selected to provide this unified perspective

and therefore deserves a more detailed examination.

3.4.1 Details of Event Scheduling

Discrete event simulation deals primarily

with queueing or waiting line problems. In a queueing

problem an arrival occurs and demands that a service be

18 -

performed. The system responds by performing the service

if it can, or by keeping the demand waiting until it can

perform it.

Three considerations play roles in the study of

problems using queueing-oriented models: 1) the nature of

the jobs to be performed; 2) the resources available to

complete a job; and 3) the way in which jobs are selected

for service. The nature of jobs includes their frequency

of occurrence, the number of tasks per job, the resource

requirements per task, and the service time per task.

Questions relating to available resources might include

number and skill types, the assignment of resources by

station, and the assignment of resources to tasks. The

way in which jobs are selected is defined by the system's

logical operating rules.

In the simplest form of a queueing problem a job

requiring service arrives at a facility that has one

server. If the server is idle he services the job; if he

is busy the job is placed in a queue or waiting line to

await later service. The state of the system is defined

by the number of jobs (or entities) in the facility at a

given moment of time. The queue length is measured either

by the total number of jobs waiting for service plus the

number of jobs in service or by just the number of jobs

waiting for service. A state change occurs every time a

- 19 -

job arrives and every time a job departs. Each arrival

and departure is an event.

Two additional events occur in this simple queueing

system: 1) when the server becomes busy; and 2) when the

server is freed or becomes idle. The events, however, are

conditional on the occurrence of an arrival or departure

event. For example, an arrival when the server is idle

causes him to become busy. A departure, when no jobs are

waiting, causes him to become idle.

Figure 3-3 displays a flowchart which describes

each element of the queueing problem from an event

scheduling approach. as shown, the. first thing that

occurs at an arrival event is a check on the status of

the server. If the server is already busy, the arrival

entity is filed in a queue where it waits until the

server is freed. If the server is not busy, a service

time is determined and the arrival scheduled for

departure. Since the departure time coincides with the

time that service ends, this time is determined by adding

the arrival's service time to the time at which service

begins. Service times are attributes of every arrival and

may be random or nonrandom. Regardless of their

character, a simulation model must provide a mechanism

for generating these times. Figure 3-3 explicitly shows a

computational block for determining service times just

- 20 -

\ARRtVAL

^"SEfWER^N.
<f ausY?^>

M b-
PUT SERVED

IN pp.
BUSY—AWTOE,,

V 1
CttEATE

RECORD OF
THIS T0fc

DETERMINE-

SERVICE TIME.

1

(

1

FILE RECORD

IN QUEUE

SCHEUILE.
tJEPWTuHE. OF

THIS J"06

<

I

V
SELECT

NEXT EVE

')

PUT SERVER
IN

IDLE STATE

SELECT
A ToB

FOR S.E-RYICE

J

*
DETERMINE

SEV.VICE T\ME.

I
SCHETjiJLE-

DEFA3TUPE OF
THIS ToS

,CLECT

NEXT E.VENT"/

Figure 3-3. Event Scheduling Approach to a Single Server Uueueing Model

*-****

\.

before the arrival's departure time is scheduled. Service

times could also be determined when a job arrives.

Upon processing a departure event, the first

instruction is to check whether additional jobs are

waiting for service in the queue. If none exist, then the

server's status is placed in an idle mode. If more jobs

are waiting, then the next job is selected for service,

its service time determined, and finally its departure "-. '■ >■'

time scheduled.

Note that the final instruction in each event

routine is "select next event." This instruction combined

with the scheduling instruction forms the basis for

making a discrete event simulation work. Whenever an

event is scheduled, a record identifying the event and

the time at which it is to occur is filed in a special

list. When the instruction to select the next event is

encountered, the computer simulation searches this list

to find and perform the event with the earliest scheduled

time. Then simulated time is advanced to this scheduled

time, thus skipping the "dead" time. This procedure is

the essence of the next event approach to simulation.

3.4.2 Additional Features of Event Scheduling

Whenever the event scheduling approach to

simulation modeling is used, a computer program is needed

to conduct a search of the list of scheduled events (or

- 22 -

event calendar) to determine which is the next to be

executed. This simulation control program has many

titles, among which the name timing routine is one of the

most common. After every event is performed, control

returns to the timing routine, which selects the next

event from the list of scheduled events. The event

selected is the one with the scheduled time closest to

the current simulated time. When time advances to the

scheduled occurrence time of the event, control transfers

to a code block that executes the steps comprising the

event. The code block then transfers control back to the

timing routine, which then selects the next event.

As mentioned earlier, a queue is a set of jobs

waiting for service. A queue may be thought of as a list

from which arrivals are selected for service according to

a rule called the queue discipline. For example, jobs may

be selected as follows:

1. in the order of their arrival (FIFO),

2. in the reverse order of their arrival
(LIFO),

3. in the order of shortest service time,

4. in the order of longest service time,

5. according to a priority number that each
job has for service, or

6. at random.

A queue discipline is a rule by which a system'operates.

- 23 -

In a computer simulation this rule is translated into a

logical operating rule whose form depends on the queue

discipline adopted. For example, adoption of the FIFO

discipline means that records are filed in the queue in

the order of their arrival times. The next job to receive

service is then the first job in the queue. Figure 3-3

provides for this eventual search by including the

creation of a record for each job that waits. If

selection is a function of a priority number or service

time, then that attribute must be part of the job record.

Another procedural feature which needs to be added

to the arrival event in Figure 3-3 concerns the

generation of additional arrivals. Two methods exist: 1)

a sequence of arrivals are preparecfain advance of the

simulation (no interaction between exogenous arrivals and

the endogenous events of the system); or 2) the arrival

time of the next entity is determined at the time of

arrival of its predecessor. The second method is often

referred to as "bootstrapping." It requires keeping only

the arrival time of the next entity and is the preferred

method of generating arrivals for computer simulations.

The last feature pertains to recordkeeping. As

Figure 3-3 appears, all records of arrivals that wait

remain in the model. Clearly the list of records grows as

a function of simulated time and occupies increasing

24 -

storage space in the computer memory. One way to limit

this growth is to destroy a record when the corresponding

job receives service. The idea of creating and destroying

records and searching lists is one of the principal

concepts on which discrete event digital simulation is

based.

3.5 Conventional Programming Considerations

The concepts of discrete simulation just

presented imply a capability to carry out a variety of

programmed computer instructions. These include creating,

filing, and destroying records; searching lists; sorting

lists; selecting members from a list; generating random

variates; collecting and analyzing data; and model

initialization. By far, most of the work of a simulator

is devoted to manipulating various collections of ordered

data items, such as event lists and queue files. In a

later section of this thesis, it will be demonstrated how

Nial, with its array-as-data-object concept, can easily

handle these programming requirements. However, in order

to appreciate the power of Nial in building computer

simulations, this section will detail some of the more

frequently encountered data structures used when

programming simulations with languages like FORTRAN,

PL/1, PASCAL and ALGOL.

- 25 -

3.5.1 Data Objects—Generation and Manipulation

Data structure manipulation is an inherent

part of any discrete event simulation. Typical operations

during a simulation include:

1. gaining access to the j record of
a list to examine or change the contents
of its fields,

A

2. inserting a new record after the j
but before the j + 1st record,

3. deleting the j record from a list,

4. determining the record count in a list,

5. ordering records in a list in ascending
order based on the values stores in
specified fields, and

6. searching the list for records with given
values in certain fields.

Every computer simulation program contains data

structures that represent objects of different classes.

More specifically, the data structures consist of records

of the objects in the simulation, each record containing

information regarding the characteristics of a distinct

object. A simulation operates on these records as

simulated time elapses.

Some simulation programs are designed to deal only ■

with fixed data structures that are allocated either

during compilation or at the start of execution. These

structures represent fixed numbers of objects of

different classes. Other simulation programs are written

- 26 -

to allow both fixed and varying numbers of objects. The

way in which a simulation program handles the generation

of objects is related to the way it sees a system through

its world-view and to whether its base-language is

compiled or interpreted.

3.5.2 Data Structures

Rigid and dynamic data structures have

important implications for simulations. In FORTRAN, a

DIMENSION statement reserves storage space. For example,

the statement DIMENSION ATRIB (20,10) instructs the

computer to reserve a block of 20x10 = 200 storage

locations for the array called ATRIB. Once the 20x10

memory locations are allocated to ATRIB, they remain so

until the program terminates.

Rigid data structures like the DIMENSION statement

do not always provide an efficient means of utilizing

memory space in the computer. For example,' consider a

simple simulation problem in which entities travelling

through a system collect varying numbers of attributes.

Using the same 20x10 arrangement, let ATRIB (K,l) denote

the first attribute (eg. arrival time to the system) of

the K arrival and ATRIB (K,2), ... , ATRIB (K,10) the

remaining nine attributes. Depending upon the logical

routing rules through the system, a particular entity

might collect just one attribute or up to all ten. The

- 27 - '

\

straightforward use of a dimension statement in' this case

would result in the following disadvantages:

1. not all of the column positions would
be utilized, thus wasting memory space,

2. it may not be necessary to keep the
attribute records of entities that have
left the system, and

3. the number of arrivals to the system
would be limited, in this case, to 20.

• Crude Data Structure

One method of increasing the utilization of

available storage space in the previous example is to

vacate the registers once the information is no longer

needed and make it available to new arrivals. For

example, at the start of the simulation, all the

registers are set to zero indicating they are empty. Let

the first attribute of each K arrival, ATRIB (K,l),

hold its nonzero order of arrival. As entities arrive to

the system, ATRIB (1), ATRIB (2), ATRIB (3), ... is

checked until a K (K^-20) for which ATRIB (K) = 0 is

found. The order number of that entity is then placed in

ATRIB (K,l) and the K row of storage space reserved for

that entity during its lifetime in the system.

When an entity leaves the system, its row of storage

space is located in the ATRIB array and cleared by

setting each register to zero. This release of space

allows those positions to be used again. Although the

- 28 -

maximum number of entities in €*he system at one time

cannot exceed 20, it is clear that the number of entities

processed can be considerably greater than 20.

The benefit of space conservation in this example is

obtained, unfortunately, at the cost of added computer

time. Note that, upon an entity's arrival, the registers

must be checked sequentially until an empty set is found

for storage. A sequential search must also be conducted

when attempting to locate a particular attribute or set

of attributes based on order (e.g. minimum service time).

In a system with rapid state change and many entities,

the computing time consumed in a search of this kind can

be expensive.

• Ordered Chains

One way to reduce the search time of ordered

arrays is to add information to the record of an entity

which points it to the record of the next ordered entity.
\

For instance, if the ATRIB array in the previous example

must be ordered by increasing time of arrival"'to the

system, ATRIB (K,l) could contain the arrival time of

that entity while ATRIB (K,2) would hold the register

address of the next arrival to the system.

This is an effective programming technique for

handling records like these and embodies the principles

of list processing (11). The records are said to be

- 29 -

chained together or in a l^st. In general, the records of

the entities in the ordered chain are identified in the

computer memory by an address. If the records have more

than one word, the address is assigned to one of the

words, such as the first. One word, or field in a word,

called a pointer, is set aside in each record for the

purpose of constructing the list. In addition, a special

word called the list header is provided for entering the

list.

The records are chained together into a structure

known as a singly linked list and is illustrated in

Figure 3-4. The list header contains the address of the

Record A

Addr. of B

Record C

Addr. of Next

Addr. of A

Record B

Addr. of C

Last
Record

find Chain

LIST HEADER

Figure 3-4. Singly Linked List Structure

first record in the list. The pointer of the first record

contains the address of the second record, and so on down

the list. The last record in the list contains a special

end-of-chain symbol in the pointer space to indicate that

it is the last member. If the list happens to be empty,

- 30 -

the list header contains the end-of-chain symbol.

Beginning from the header, a search is able to move

down the list by following the chain of pointers. If the

program needs to remove a record from the list, say

record B from list ABC, it simply changes the pointer in

A to point C, as illustrated in Figure 3-5.

Addr. of A

Record A Record C

Addr. of C — Addr. of Next
I
/

Record B
i Last

Record

End Chain

LIST HEADER

Figure 3-5. Removing a Record From a List

Correspondingly, to insert a record into the list, (for

example, to put Z in the list ABC between B and C) the

pointer B is set to Z and the pointer of Z set to C.

Re-sorting is achieved by a series of removals and

insertions.

With a first-in-first-out rule of ordering records,

it is also convenient to keep a list trailer that has the

address of the last record, because new additions are

made at the end. The trailer record avoids the necessity

of working along the list to find the last entry. The

trailer will also contain the end-of-chain symbol when q,

- 31 -

the list is empty.

While it is easy to insert a new record after a

given record in a singly linked list, it is not so easy

to do that before a given record. This is because each

record points to its successor, but not to its

predecessor. A similar observation applies to deletions:

to remove an element from the list one needs a reference

to its predecessor.

These difficulties can be avoided by adding a second

pointer to the records pointing to the record preceding

it (if any). The result is a doubly linked list and is

illustrated in Figure 3-6. Now, given references to the

LIST TRAILER

Figure 3-6. Doubly Linked
List Structure

LIST HEADER

list header and trailer, the list can be traversed in

32 -

both directions; insertions can be made either before or

after any given element in the list; any element can be

removed from the list without having' to know its

successor or predecessor.

Other, more complicated data structures exist that

improve the efficiency of handling lists. Directed

graphs, binary trees, and heaps are included in these

(12). However, they all have one thing in common: while

increasing data storage space, the amount of computer

time spent checking for data elements is greatly reduced.

Even though execution time is minimized, there still

exists the drawback of having to reserve space at the

beginning of a program arid the need not to exceed the

specified array size. As a result, many special purpose

discrete simulation languages are implemented with

programming systems that have list processing and dynamic

data structuring capabilities.

P
■saji

- 33 -

4. Basics of Nial-Based Discrete Simulations

The previous section touched on the basic concepts

of data structures and their manipulation when

programming discrete simulations with general purpose

computer languages. The next section will demonstrate how

those tasks are concisely and efficiently handled using

Nial. However, before those examples are presented, some

basic modeling and design concepts of Nial-based discrete

simulations (NBDS) need to be described first.

4.1 Modeling Concepts
i

As stated earlier, event scheduling was chosen

as the world-view approach to designing the elements of

discrete simulation presented here. While this approach

is embedded in the simulation control program and

supporting operations, the task of modeling a prototype

simulation actually employs a process-oriented
•6

perspective. Each element of the process, such as a queue

or server, can be represented pictorially using symbols.

When these elements are combined together they form

network-like structures, similar to those employed by

SLAM, a special purpose simulation language (13). Each

element of the network represents a set of

mathematical-logical operating rules that are provided by

the modeler when building the simulation. As entities

enter the syst-em, they flow through the network as

- 34 -

prescribed by the operating rules of the particular

element they encounter.

To provide the tools for quickly developing a

prototype simulation, several different kinds of modeling

elements were designed and translated into Nial-based

operations. A detailed description of the elements will

be presented in a later section of this thesis. However,

to expand the modeling concepts being presented here, the

basic modeling elements of queues and activities will be

introduced.

4.1.1 Queues

Two types of queues can be modeled in these

simulations. The first one is known as a service" queue

and represents an area or site to which entities arrive

and request the service of a single resource. If a

service entity is not available, the arrival waits in the

queue until one is freed.

The second type of queue is known as a resource/

queue. Resource queues are similar to service queues

except entities arriving to them can request the service

of discrete or variable amounts of resources. If the

requested amount of resources is not available, the

arrival waits in the resource queue until they are

relinquished. Unlike service queues which are associated

with a single service activity devoted specifically to
■ t

- 35 -

that queue, resource queues can share a bank of resources

with other resource queues. In addition, the units of a

resource available for use by resource queues can be

altered during the computer simulation. This option is

not available with service queues where the number of

entities serving them remains fixed throughout simulated

time.
i

i

4.1.2 Activities

Like queues, there are two types of

activities—service activities and regular activities.

Both allow entities to flow through them to other

elements in the network. The passage of an entity through

an activity can be delayed for a prescribed period of

time although regular activities can be used with no time

delays.

The major difference between the two types of

activities is the number of concurrent entities they

allow to pass through them. Service activities limit the

number of entities flowing through them at one time to

the number of servers represented by the activity. On the

other hand, regular activities have no restriction on the

number of entities that can simultaneously flow through

them. Service activities are also used exclusively with

service queues while regular activities can direct the

flow of entities away from any other kind of modeling

- 36 -

element. In particular, regular activities are used to

delay the time resources and are utilized by an entity

acquiring them at a resource queue.

As an example of how queues and activities are used

in the modeling process, Figure 4-1 illustrates a network

diagram of a simple queueing model. Note how node-like

X /\ / \ Service

r-^ < ^ -^ Kntitv

Entity
Generator

Entity
Queue Destructor

Figure 4-1. Simple Queueing Model

symbols are used to represent the entity generator, the

service queue, and the entity destructor while a

branching or connecting symbol is used to represent the

service activity (the branching symbol is also used to

represent regular activities). Various symbols will be

used to represent other types of nodes which include

milestones and decision points.

The network pictured in Figure 4-1 represents an

entire process. Entities arrive to a service area where

they are either served immediately or wait for service in

the queue. Upon completing the service activity, the

37

entities depart the system as represented by the entity*

destructor or termination node. Service and regular

activities represent the time delay that an entity

encounters as it flows through the system and are two

elements responsible for the advance of simulated time in

the model.

4.2 Simulation Control Program

The queueing model pictured in Figure 4-1

represents an entire process through which entities flow.

However, the computer program which controls that process

is designed to sequentially select event notices from an

event calendar and execute blocks of code or base-

operations corresponding to that, particular event or

element of the process. The event notices contain both

information which is used to transfer control of the

program to appropriate operations and information which

is used to reference a look-up table of operating rules

provided by the modeler before execution of the

simulation begins. The operating rules define the unique

characteristics of each element of the model and are

referenced during events in which those elements are

involved. For example, if the next event on the calendar
f

is an arrival to the queue node shown in Figure 4-1, the

operating rules for that node are referenced to determine

what service activity serves that station and whether or

- 38 -

not the server is busy. If the server is already

occupied, the rules would be referenced to determine the

queueing discipline for that queue, the maximum number of

entities allowed in the queue, etc. Together that

information determines what transactions take place

during the event and controls the directional flow of the

program. Upon completing those transactions, control

returns to the timing routine, the next event is selected

from the event calendar, and the process repeated until a

termination notice is detected. The simulation can be
■6

terminated at a given point in simulated time or after a

certain number of entities have been processed. Upon

detecting a termination notice, the program updates

time-persistent statistics and then generates a summary

report.

Figure 4-2 presents a flow chart diagram of the NBDS

simulation control program. The above discussion includes

everything after the event selection block. The first

three blocks include all of the initialization steps;

here various constants, program variables, and flags are

set to their starting values and the operating rules

established. Finally, the last executable block before

the loop structure initializes the event calendar. Here

each set of operating rules for the generation nodes in

the model is scanned and the first entities scheduled for

- 39

/~\

f BECVN J

INITIALIZE
CONSTANTS

tr
VARIABLES

OPEftATlMC
■RULES

EXECUTE
VRRWAl EVEHT
OVE'Rf.TioN.S

V

>
SET CLOCK

TO TERMINATION
TIME.

H>
EXECUTE

OETO'RTUKt
EVENT

OfeRfiTIONS

Y
>

UPDATE TtfAE
fE^S^-TENT
STATISTICS

PRINT

C'jfAMfcflY

*/!>»■»r

v
(FlHlCH j

-Figure-..-4=2.* JJBDS- Si.mula±ixm £ontrol Program

40

arrival. The operations in this block also establish

queue nodes with initial entities in the queue if

indicated.

Every simulation program has a three-level

hierarchial structure in which the simulation control

program occupies the top level and housekeeping functions

such as the collection of statistics and generation of

random variables occupy the lower level. The middle level

is occupied by the arrival and departure routines and the

associated operations which process the individual

events. These two routines are depicted in Figure 4-3.

Note the "bootstrapping" technique for generating the

next arrival from a previous arrival in the arrival

routine. Except for queue nodes, arrivals to nodes always

resul.t in the scheduling of a departure event (in some

cases where a zero-time activity follows, the scheduling

of a departure is skipped and an arrival to the next node

scheduled instead). In the case of an arrival to a queue

node, a departure event is scheduled only if the

necessary resources or servers are available. Otherwise,

the arrival is filed in the queue (see Figure 3-3).

In the departure event, the first task determines

whether the departure is from a service activity or a

regular activity. Once that has been determined, the

appropriate set of operating rules is referenced and the

- 41

<■- f

Y
KEFESENCE.

0PERAT1N& RULEfc
OP ofli&'NM-

NO'DE

I
SCHEDULE

HEW /VRRWAL.

REFERENCE
OPERATING RULES
OF SERVICE.

A.CTWITY

■REFERENCE,

OPERATING P'JLES
OF REGULAR

ACTIVITY

iO-
REFERENCE

OPERATING RUt£!
OF AR.RWA.U

NODE.

EXECUTE CO\5E

ASSOCIATED

WITH ACTIVITY

EXECUTE CODE
ASSOCIATED

V ITH NOtlE.

I

I
SCHEt:UL£

A*R\VAL TO
NEXT MODE

£ELECT
N:XT EVENT

V

SELEC;

NEXT EVENT/

Figure 4-3. Event Execution Routines

a

code for the given type of activity executed. Unlike the

arrival routine, an event is always scheduled at the end

of a departure. In this case it is an arrival to the

destination node poi'nted to by the activity. While not

detailed in Figure 4-3, a departure event might also lead

to the scheduling of another departure. This could result

from a service activity which has been freed to service a

queue that holds waiting entities. As shown in Figure

3-3, the next entity is selected for service, its service

time determined, and the entity scheduled for a

departure.

4.3 Data Structures in NBDS

• Statistical Arrays

Two basic data structures were employed in

building the simulation operations of this thesis. The

first structure resembles a FORTRAN-like one- or

two-dimensional array which is used to maintain

statistical data and flags associated with queue nodes,

service activities, etc. Each row-major ordered array

belongs to a particular class of elements and each row of

that array belongs to a given element within that class.

For two-dimensional arrays, the total number of rows is

determined during the program initialization steps and is

dependent upon the number of modeling elements in the

system. However, the first row of each matrix is never

- 43 -

•&* \ used to hold data in order to maintain a logical

correspondence to the element number to which those data

belong. This is due to the addressing feature of Nial in

which the first element of. an array is address 0. For

example, the address (0 2) refers to the third element in

the first row of a matrix. Since the modeling elements in

the program are logically ordered (e.g. if there are $,

three service activities they are known as servers 1,2

and 3), the first element owns the second row of the

matrix and so forth. While the first row of each matrix

represents wasted workspace, a logical relationship

between element numbers and the position of its data in

the matrix is maintained. It also eliminates the need for

a costly base-address-plus-offset calculation each time

the data for a particular element are referenced in the

, simulation program.

Nial conveniently establishes and initializes arrays

with just one primitive operation, the "reshape"

operation. As an example, consider the following

expression and its evaluated result pictured in the

sketch mode:

ACTSTATS:= A 6 reshape 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

44 -

In the simulation operations to be presented later,

the array Actstats is used to maintain statistics on all

regular activities. Therefore, the array created above

would represent storage space for three activities

(including the dummy first row).

Direct assignments can be made to any member of an

array in a FORTRAN-like fashion. For example, observe the

effect of the following operation on the array Actstats:

ACTSTATS 0 (1 1):= 45

0 0 0 0 0 0
0 45 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Similar insertions are carried out with the "place"

and "placeall" operations which can replace single and

multiple items in an array respectively. Observe the use

of the latter operation in the example below:

ACTSTATS:= (10 10 5 9) (3 cart 0 12 3) placeall ACTSTATS

0 0 0 0 0 0
0 45 0 0 0 0
0 0 0 0 0 0

10 10 5 9 0 0

Selections from an array are carried out with operations

corresponding to those demonstrated ab:>v-?:

ACTSTATS 0 (1 1)

(3 cart 0 12 3) choose ACTSTATS

10 10 5 9

- 45 -

The selection and insertion operations demonstrated in

the previous examples provide the mechanism by which most

of the data are manipulated in the statistical arrays

supporting the various NBDS simulation elements. They're

especially useful in combination with each other .where

one operation selects data from a statistical array and

passes them as arguments to a computational operation;

the computational operation then returns the same array

with new values which are inserted back, into the old o

array.

• Entity Records

In Section 3.5, the basic data structures

and bookKeeping concepts involved in programming discrete

simulations with general purpose computer languages was

presented. Demonstrated was the complex and cumbersome

need to provide pointers for each* record in ordered lists

serving as queue files or event calendars. In NBDS

simulations, this task is totally eliminated. The

array-as-data-object concept of Nial combined with the

entity record structure designed for NBDS produce a
-tit

highly efficient means for manipulating the data objects

within the program. As a result, elements of the

simulation and their associated operations are quickly

and easily designed—a critical factor of the prototyping

process.

- 46 -

In the simulation operations presented here, a

single record is created for each entity as it enters the

system. The record is a solitary array (or list) of

ordered data items which are program and user-defined

attributes of the entity. Certain attributes play an

important role during the top level execution of the

simulation control program while others are only accessed

during event routine operations. The entity record's

lifetime in the system is spent either on the event

calendar or filed in some queue awaiting service. The

most important aspect of the entity record is that it

"flows" through, the simulation program as a complete

unit, much like an entity with all its attributes would

in a real-world system. This aids^the programmer greatly

in conceptualizing the simulation element under design.

There are a minimum of eight program-defined

attributes in an entity record which occupy addresses

0,1,2, ... 7. All but one of these attributes change

dynamically during the simulation run. An entity record

can also contain an unlimited number of user-defined

attributes beginning at address 8. Thus, from run to run,

the length of the entity record can vary but, once set

during the initialization steps, remains fixed throughout

an individual simulation run.

Figure 4-4 displays an example of an entity record

- 47 -

<i

(U-t-W-t-i-t-5~4A-!-*
! D ! 14 . 8 ■' 79 . 5 ! QUE1! SRV 1:14.8! ,' ! 30 . J
+_+ + + + + + - + - + f

Figure 4-4. NBDS Entity Record

containing the eight basic attribute positions common to

all records plus one user-defined attribute. The contents

of the first eight fields could describe the state of an

entity record on the event calendar of a run simulating

the simple queueing problem depicted in Figure 4-1. The

following definitions are identified by an address and

summarize what type of attribute each field holds and its

relevance to the simulation program:

©The first field indicates whether the entity is

scheduledNfor a departure or an arrival. In this example

the character D indicates the entity is scheduled for a

departure. The character strings AO and Al are used to

indicate a freshly generated arrival to the system or a

later arrival to.a node somewhere else in the system

respectively. This field is referenced each time an event

is selected from the event calendar to determine which

event routine is to be executed.

(T)This field holds the generation time or time

the entity first entered the system and is the only

- 48 -

program-defined attribute that remains frxed throughout

the simulation. The example in Figure 4-4 indicates the

entity was generated at time 14.8.

(2) The third field contains scheduled event times

and is the field on which the event calendar is ordered.

In the example given, the entity is scheduled to depart a

service activity at time 79.5. Each time an event is

selected from the event calendar, this field is

***' referenced and simulated time advanced to the value

contained there.

(3)At the time of generation or at the end of each

departure event, an arrival is scheduled and the

destination of that arrival entered into the fourth field

of the entity record. That field is then referenced at

the start of each arrival event to determine which blocks

of code will be executed next. In the given example, the

four-membered character string QUEl indicates that, prior

to its scheduled departure, the entity had arrived at

service queue #1.

(4_}whenever an entity's departure is scheduled

from a node, the activity over which it is to be routed

is entered into the fifth position of the entity record.

This field is then referenced during a departure event to

determine which type of activity is ending as well as its

activity number. The character string SRVl in the sample

- 49

record indicates that the entity is being served by

service activity #1.

(5) The next field contains the simulated clock

time at which an entity arrives to a node. This value is

always entered when an entity is newly generated or at

the end of each departure event. It is used to calculate

the time an entity has been waiting for service in a

queue. As shown in Figure 4-4, the value of this time is

14.8, the same time the entity entered the system. °

(§) & (7) The next two fields are utilized only when

resource queues are specified in the model. Since the

example in Figure 4-4 is only modeling a service queue,

these two fields would remain empty throughout the

simulation as" indicated. The first field at address 6.is

reserved to hold the identification number of the last

resource queue encountered while the next field is used

to indicate the number of resources acquired at that

queue and currently being utilized by the entity. These

two attributes play an important role in the preemption

of entities utilizing a particular resource'which will be

detailed later in the thesis.

(§)The last field pictured in Figure 4-4 holds one

of a possibly infinite number of user-defined attributes.

While not yet discussed, entities can acquire

user-defined attributes anywhere in the network by

- 50 -

passing through ASSIGNMENT nodes. ASSIGNMENT nodes

compute the value of a given attribute using program

variables, simple mathematical expressions, or by

accessing one of the program random variate generators.

While not included in the network pictured in Figure

4-1, suppose an ASSIGNMENT node preceded the service

queue and was used to compute the service time for that

entity. Assuming this was the first user-defined

attribute, it would be stored in field 8 and its value

referenced at the time that entity would be scheduled for

service. In the given example, field 8 contains a service

time of 30.0 time units. Since the entity is scheduled

for a departure at time 79.5, a quick subtraction

indicates that service began for this entity at time

49.5. Furthermore, subtracting the time contained in

field 5 from the start-of-service time reveals the entity

waited in the service queue for 34.7 time units before

receiving service.

4.4 Random Variate Generation

Since the modeling elements presented in this

thesis are designed to simulate stochastic processes, a

mechanism must be available for generating random

variables. This requires a source of uniformly

distributed random numbers which, in turn, are

transformed into a new set of random variates from a

- 51 -

variety of continuous and discrete probability

distributions. Independent samples that are uniformly

distributed in the interval (0,1) provide the basis for

generating samples from all other distributions. Nial

provides a utility for generating random integers which,

when divided by the largest value of the specified

interval, would^produce random numbers between 0 and 1.

However, the random number generator of the version

implemented on the DECSYSTEM-20 and used ihvthis work
\.

(Q'Nial, release 1, version 3.02) did not function.

Therefore, a new operation was built to provide uniformly

distributed random numbers between 0 and 1.

A wide variety of methods have been developed for

random number generation. One of the more common ones is

the multiplicative congruential generator which was the

choice for this work. It has the form:'

Z. , = a.Z. (mod m) (1)

ri+l =
Zi+l/

m (2)

where Z~ is the initial seed value and r. is the i

B-2 pseudorandom number. It provides a maximal period of 2

before recycling occurs on a computer with B bits/word.

The assignment of values to the constants a and m and the

seed value Z~ has been the subject of a great amount of

research. Fishman (14) presents a widely accepted set of

procedures for choosing those values that was the basis

- 52 -

for designing the random number generating operation used

in this work. In addition, Deo (15) demonstrates how the

correct choice of constants can save the modulus division

step during the computation. The guidelines proposed by

both authors resulted in a random number generator having

the form:

Zi+1 = 189277 * zi (3).

I ri+l = Zi+1 /34359738368 (4)

The value of m i*'s one greater than the largest integer

held in one word by the DECSYSTEM-20. Its choice makes

the division of the product a Z.. unnecessary for the

modulo operation in the original equation. A machine word

cannot hold an integer larger than (m-1). Therefore, as

soon as the product exceeds (m-1), overflow would

automatically occur, leaving only the remainder. In the

DECSYSTEM-20 no action is taken when this occurs but

overflow sets the sign bit and the result becomes

negative. Therefore, the result is simply adjusted by

taking the additive inverse of Equation 4.

The NBDS operation which contains this random number

generator is named RANNUM. Any odd integer can be used as

an initial seed value for RANNUM which is provided at the

start of a simulation run. RANNUM actually employs two

random number generators of the form just given. However,

they are seeded with different values and alternate

- 53 -

between each other 'when RANNUM is called upon,to generate

a random number. The use of alternating generators helps,

reduce the potential for nonrandomness when a 2-tuple of

independent uniform random numbers is called for (14).

With the means to generate uniformly distributed

random numbers from 0 to 1, transformation algorithms

were built into operations to generate random variates

from several probability distributions. They include the

exponential, uniform, Erlang and normal distributions and

were all adopted from FORTRAN-like algorithms presented

in various simulation textbooks (10,15,16). Their use as

a modeling element will be detailed in a later section.

4.5 Data Collection and Statistical Analysis

Each of the basic simulation elements presented

earlier are supported in the event routines with^—

baseoperations designed solely for the purpose of

collecting data. Those operations act upon statistical

arrays maintained for each of the elements in the model

as demonstrated earlier. Those data are automatically

collected during each event routine or each time there is

a change in the state of a system variable. The user can

also initiate the collection of statistics on

user-defined entity attributes and global system

variables. This is carried out during the passage of

entities through a specialized modeling element known as

- 54 -

a TALLY node whose use will be detailed later.

There are two basic types of statistics collected

during an NBDS run. The first class is derived from time

independent samples and include the accumulated sums and

squares on discrete observations of such variables as

service time or time spent in a queue. If specified in a

TALLY node, certain attributes or global variables can be

maintained as grouped data and displayed later as

frequency and cumulative distributions in a histogram.

The second class of statistics is derived from time

dependent samplings. They are collected over intervals of

simulated time with tne points between each interval

marked by a change in the sjfeate0 df the variable under
f • ' "

observation. Time-weighted statistics on variables such

as the number of entities waiting in a queue or

utilization of an activity or resource fall into this

class.

In the general purpose NBDS program, the data

collected during an simulation run is automatically

analyzed during summary operations at the end of the run.

In special purpose prototypes, the user has the freedom

to determine which summary statistics are needed and

codes his own summary operations. Where applicable,

sample means and standard deviations are calculated for

both types of statistics. The formulas used for

- 55 -

calculating those statistics are summarized in Table 4-1,

The components of those equations represent several of

the components of the statistical arrays maintained for

each element.

- 56 -

Table 4-1 Formulas for Calculating Means
and Standard Deviations

Statistics Based
Upon Observations

Sample Mean

x = 1/n
1 = 1

Sample Standard Deviation

\|

n 2 ,-,2
jr x. - n • (x)

i = i
n - 1

Statistics For
Time-Persistant
Variables

x(t)«dt
x =/0

T N

x (t).dt
- (x)2

n = number of samples

T = Total Time interval

5. Data Object Management Efficiently Handled With Nial

Section 3.5 reviewed some of the basic recordkeeping

tasks involved when programming discrete event

simulations with general purpose computer languages.

Those nontrivial tasks deal mainly with maintaining

ordered lists of records representing entities waiting

for service in a queue or serving as a file for event

notices. Now that the reader has just gained a basic

understanding of the modeling concepts, data structures,

and program control associated with NBDS, this section of

the thesis will demonstrate how easily and efficiently

Nial handles those same programming requirements. Nial's

usefulness will also be exhibited through examples of

record creation, record destruction, searching, sorting

and selecting records from a list of records.

5.1 Entity Records—Creation, Destruction and List
Formation

Every discrete event simulation program must be

able to create records of entities representing new

arrivals to the system and most programs will have a need

to destroy unwanted records to free up space in the

computer memory. Section 4.2 detailed the points of

entity record creation which clearly indicate that most

of the record creation during a simulation run occurs as

a result of the bootstrapping step in the arrival event.

- 58 -

Here -each new arrival to the system triggers^ the

scheduling of its successor. In NBDS the CREATE operation

serves this purpose by returning as its value a record

(or array) of the next arrival to be placed on the event

calendar. In CREATE, the variable is assigned this new

record as follows:

NXTARVL: = AO ARVT ARVT (SECOND GRULES)

AVRT ' ' ' ' LINK (N.TRIBS RESHAPE 0)

In this example AVRT represents the arrival time of the

entity which is the sum of the present simulated time and

a random interarrival time period. The interarrival time

period is chosen from a probability distribution

specified in the operating rules for the source

generation node as is the destination node of the new

entity ind-icated by SECOND GRULES. The variable N.TRIBS

specifies the total number of user-defined attributes

each entity can be assigned and together with the RESHAPE

0 operation initializes each value to zero. The primitive

LINK operation "links" the resultant attribute array with

the other items in the record to create a single

heterogeneous linear data structure known as the entity

record. As an example, suppose the arrival of the next

entity was determined to occur at time 30.0, its first

destination is QUEl, and it can be assigned up to two

user-defined attributes. A picture of NXTARVL would

59

<M

appear as:

+—+—+—+ +_+_+_+_+
!A0I30.!30.IC1UE1I I :0I0!
+ —+ + + + _ + _ + _+_ +

Noteihow the use of blank character strings in place of

unassigned variables maintains the correct address

spacing described in the previous section.

The record in the above example completely

characterizes that particular entity upon its arrival to

the system. It can be entered into any other list as a

complete unit by simply nesting all its members into a

single array and linking it to the other members of the

list. For example, consider an arrival event in which the

above record represents an entity arriving to QUEl.

Assume that all the service activities are occupied when

it arrives and must therefore wait for service in the

queue. Also assume that prior to filing this record in

the queue, the queue already contains two other entities

waiting for service. Identified as QRECS, a picture of

this file might appear as follows:

+ + +
+— + + + + _+ + - + - + ! + — + + + + - + + - + - +
! AO 15,2 i 5.2! C1UE1 ! I 5 . 2 I 0 I 0 I I I AO I 9 . 9 ! 9 . 9 i DUE 1 ! ,' 9 . 9 ! 0 I 0 !
+—+—+—+ +-+—+-+-+: +—+—+—+ +-+—+-+-+
 + ,,—-+

Since the leftmost member of QRECS is usually served

first, the ordering of records in QRECS could reflect a

FIFO queueing discipline (note event time in each third

- 60 -

field). If the record representing the arrival is

assigned to the variable ARVLREC, its entrance into this

file simply requires the following expression:

QRECS: = QRECS LINK SOLITARY ARVLREC

A picture of this file would now appear as:

+ + + +
+__+—+—+ +_+—+-+-+ : +--+—+—+ +-+—+-+-+ i +--+—+—+ +-+—+-+-+
:AOI5.2:5.2:QUEI: :5.210101::AO:9.9:9.910UE1: 19.9:010:::AO:3O. 130.IQUEII I30.:O:O:
+__+—+—+ +_+—+-+-+ 1 +—+—+—+ +-+—+-+-+:+—+—+—+ +-+—+-+-+
 ,„, + +

ARLVREC, with all its attributes, has now become the

third member of the array QRECS. In"actual practice,

QRECS is placed in a collective file known as QFILE (a

file containing all the service queue files). The

resulting three level nested array is a good example of

Nial's array-within-an-array concept. The example also

demonstrates how easily lists can be created without

having to provide a system of pointers to the individual

data objects—the pointers are naturally embedded in the

Nial language itself.

Once an entity waiting in a queue file has been

scheduled for service, there must be a means to destroy

or eliminate that record from the file. In NBDS this is

carried out with the primitive "rest" operation which

drops the first member from a list, leaving everything

after the first item still intact. Since all queue fi,les

are usually served in order of lowest-address-first, the

- 61 -

first reaprd in QRECS would be the next to receive

service. Once scheduled, its record would be destroyed

using the following expression:

QRECS: = REST QRECS

If QRECS started with the same three records shown above,

the resultant picture of this last operation would appear

as:

+ + +
i+—+—+ + +-■(+-+-■):+—+—+-—+ +-+—+-+-+
i,' A0i9.?:?.?:OUEI : :9.9loso: 11 AO:3O, :30. :OUEI : ,'3o.:oio:
i+—+) + f-+—+-+-+;+—+—^—^ +- +—+-+-+
+ +

5.2 Sorting Record Lists

In the previous example, QRECS identified a

file of records representing a queue with a FIFO queueing

discipline. Therefore, to maintain a FIFO (or LIFO)

ordering when records are added to the list, the new

record needs only to be "linked" to one end of the list.

However, at times the records in a queue file are ordered

using a discipline which keys on certain attributes such

as service time or time-in-system. In these cases the

NBDS operation S'o'lftTUP or SORTDOWN is used depending upon

which direction the file is to be ordered. As an example,

consider the three-membered QRECS file used before but

this time with a service time value stored in the first

user-defined attribute position (address 8). A picture of

the FIFO-ordered file would still appear like this:
tj + + +
1+—+—+—t +-+—+-+-+—+!+—+—+—+ +-+—+-+-+—+: t—+—+—+ +-+—+-+-+—+:
I lft0!5.2!5:2!0UEi: !5.2:0!0!25. ! I .' flO i 9 . 9 ,' 9, 9 I DUE! ,' : 9 . 9 \0 ,'0 ! 12 . ! ! ! AO 1 30 . ! 30 . iQUEl ! ! 30. ! 0 !0 ! 7.6 i !
It — + + 1 + - + + - + - + +1 t — + + + + - + + - + - + + It.-t—,+ + + + - + + - + - + +1
+ + ,.« +

- 62 -

However, given the expression:

QRECS: = SORTUP 8 QRECS

a picture of QRECS would now appear as:

. +—+—+—+ +_+—+-+-+—+1 +—+-««•+—+—^+-+—+-+-+—+: +—+—+ + +-+—+-+-+—+
I i (MJ130. 130. lOUEl! !30. i 010: 7.6! 1 1AO 1 9.9 \ 9.9 ! CIUEI ! 19. 9:0101112.! i i AO ! 5.2 1 5.2 i 0UE1 1 ! 5.2: 0 : 01 23. !
. t_^—+ + +-+ +-+-+ + i t—+ + + +-+ +-+-+ + : +—+ + + +-+ +-+-+ +
+ :- + +

with the records having the shortest service time in a

position to receive the earliest service. Here an entire

list of records, each containing its own list of

attributes, is reordered simply by supplying the address

of the key attribute in each record and the file itself

as arguments to the operation SORTUP.

This complex sort operation was built from just the

following bit of code:

SORTUP IS OP KEY ARAYS (LINK (GRADEUP EACH

KEY PICK ARAYS) EACHLEFT PICK ARAYS)

The complimentary SORTDOWN operation is identical except

the primitive "GfrADEUP" is replaced with "GRADEDOWN."

While each of these operations is used to provide

low-value-first or high-value-first ordering to queue

files, the SORTUP operation is used most extensively in

ordering the event calendar based on the event time of

each record. That is, each time a new event is scheduled

and added to the event calendar, CALENDAR, the entire

list of records -is passed to SORTUP along with address

- 63 -

number 2 (event time). The value then returned by SORTUP -,

is the event calendar of records in order^of earliest

event time. By physically maintaining the event calendar

in this order, each time the "select next event"

instruction is encountered in the simulation control

program, the program merely selects the first record from

CALENDAR as the next to be processed. Again a rather

complicated recordkeeping task is reduced to just a few

lines of code using Nial.

5.3 Search and Selection of Records From a List

As mentioned earlier, an important programming

consideration in discrete event simulation is the ability

to search lists for records with a given value in certain

fields. There may also be a need to remove that record

from the list for use elsewhere in the program. A good

example where this is used in NBDS is during the

preemption of entities utilizing a particular resource.

This element of NBDS allows entities arriving to a

specialized preemption node to preempt the activity of

other entities using a specified resource and acquire

those resources for its own use. The preempted entities

are then sent to a given resource queue until additional

resources are made available again while the entity

causing the preemption is scheduled for departure with

the newly acquired resources.

- 64 -

*7

An initial step in the preemption process is a

search of the event calendar to find those entities

currently utilizing the resource in question. For

example, consider an event calendar containing the

following records at the time of a preemption:

+-+—+—+—■*■—+—-f-f--+-+
:[i:6.;: ?t,.; ifiout :ACT: :6.::I:S.:2: ;^o: lot.: 101. :RCIUI : : 101. :

+-*- + + + + +-+--+-4
:D:25.6 1132. IRQUlIftCTl!25.6 I 1 IS. I 2 I
+ -+ + + + + +- + --T- +

Assuming the number identifying the desired

resource, RN, is 1, a visual search of each record's

field #6 indicates the first and last entities scheduled

for departure from regular activity #1 are each currently

utilizing 5 units of the resource. A programmed search

for these two records is achieved through use of the

following expression:

POSTNS: = RN FINDALL EACH (6 PICK) CALENDAR

where POSTNS is assigned as its value the array (0 2)

containing the positional addresses of the records in

CALENDAR utilizing resource RN. Assuming both entities

are preempted, their records can be culled from the event

calendar and assigned to the array PRMPTRECS for

selective processing elsewhere using the expression:

PRMPTRECS: = POSTNS CHOOSE CALENDAR

whose resultant picture would appear as:

- 65

;t_+ + ^ + + T_ + __T-+:+-+ + 4. + + +- + -- + -+;

i:D:A.i:,?5.2:R(iui;fiCTi:4.i:i:5.:2:::n:2S.i:i3:. IRGUI IACTI:25.&:I:s.;2::
:+-+ + + ■»- -<- +- +—+-+:+-+ + + r + +-+—T-+:

However, CALENDAR still contains the preempted records.

To remove them simply requires the expression:

CALENDAR: = ((TELL TALLY CALENDAR) EXCEPT

POSTNS) CHOOSE CALENDAR

which would leave the record scheduled for an arrival to

RQUl as the only record on the event calendar.

Obviously there are more steps involved in the

preemption routine. However, the three lines of code

presented in these examples demonstrate how simply a list

search and item selection is carried out using Nial. From

these and the previous programming examples, the reader

should be able to appreciate how the power of Nial

reduces many of the routine programming chores demanded

by other computer languages.

- 66 -

6. Simulation Elements of NBDS

The process of developing prototype discrete

simulation systems using NBDS requires the following

steps:

1. model development and translation into
a network diagram,

2. provision of a set of operating rules
for each element of the model,

3. design and coding of operation(s) to
provide a means for input of the
system operating rules into the
control program,

4. design and coding of operation(s) to
generate a summary report, and

5. integration of simulation control
program, element operations, input
operation(s), and output operation(s)
into a working simulation program.

The basic concepts of modeling and network diagrams

involved in the first step were described earlier in

Section 4. The last three steps will be dealt with later

in the thesis when examples of the general and special

purpose NBDS programs are presented. The purpose of this

section is to provide the reader with enough information

about the different modeling elements of NBDS to be able

to complete the second task listed above. Presented will
c

be /th£—-frtrffction of each element along with the content

and format of its associated operating rules. Also, for

each element Appendix A lists the names of the

baseoperations built to support them in NBDS programs.

- 67 -

The operations are listed in a hierarchical fashion to

indicate which operations are used within another. In

addition, Appendix B contains an alphabetical listing of

each NBDS operation and the beginning line number of its

location in the general purpose NBDS script file. That

script file is named NBDS.NDF and resides in the Lehigh

University Computer Center tape library under Volume

Serial Number JCW002. Together, Appendix A ,and B provide

a quick reference to the operations and their source code

required to support a particular simulation element in an

NBDS prototype.

6.1 General Format for Operating Rules

Before each simulation element is presented,

some general guidelines concerning the written format of

the operating rules need to be introduced:

• Each component in a single set of operating

rules becomes a member of a solitary array or list.

Therefore, the members within a single set of operating

rules must be delineated from each other by maintaining

one or more spaces between them—not by separating them

with commas or some other special character.

• All alphabetic data is entered in upper case.

• Non-numeric information is entered as Nial

character strings and must therefore be enclosed by

single quotes (eg. 'FIFO' or 'QUEl'). In some cases

- 68 -

/

numeric information must be entered as character strings

as well.. Those cases will be specifically indicated. «^

• Numeric data can be entered as integers or real

numbers.

• The ordering of components in each set of rules

is critical. Therefore, if a particular component does

not need to be specified, it should be replaced by a

blank character string (eg. ' ').

• The first member of every set of rules is at

least a four-membered character string of which the first

three characters identify its element type (eg. QUE or

ACT). The last character(s) is an integer which uniquely

identifies that set of rules among several of the same

type (eg. QUEl, QUE2, etc.). Numbering begins with 1 and

should (although not necessary in the general purpose

package) be continuous.
<>

6.2 Symbols for Nodes and Activities •

Table 6-1 provides a listing of suggested

symbols for depicting network models of NBDS systems. Any

symbol can be employed by a modeler to represent a.

& particular element as long as it distinguishes itself

from others and fits nicely into the network diagram.

Table 6-1 also lists the page number of this text in

which the operating rules format for t,he given node or

activity can be found.

- 69 -

Table 6-1 Symbols for NBDS Modeling Elements

Name Symbol
Page Containing

Operating Rules format

GENERATE

SERVICE QUEUE

-> 72

84

SERVICE or REGULAR
ACTIVITY

SRVn or ACTn
trvrordur 87. 88

Q-SELECT-BHND

Q-SELECr-FWD

SRVR-SELECT

81

77

83

CONTINUATION 107

CONDITIONAL BRANCH <^B«V>^---> 109

MULTIPLY (Wn (O > 107

MULTIPLE BRANCH
-*7.

 ^

108

70

d> Table 6-1 (continued)

Symbol

RESOURCE QUEUE

Resource Bank

RESOURCE FREE

RESOURCE ALTER

RESOURCE PREEMPT

^ nrlI+ S RQUn

/RSCr, \
/ Capac \

/n.n.... \

nrtl

FREn

\nolt „)
ALT*

Jnnjst
-)

|p/ATn

Page Containing
Operating Rules format

90

92

93

95

98

CLOSE C^!v® 113

OPEH 0?M 114

ASSIGNMENT

ASSn
expi
exp 2 101

TALLr LY, titlt

r;p
104

TERMINATE <Qg) 74

71

6.3 Entity Creation and Destruction

As mentioned earlier, every simulation program

must provide a means for entity creation and destruction.

These are provided for in NBDS through the use of

GENERATE and TERMINATE nodes respectively.

• GENERATE Node

The operating rules format for the GENERATE

node is shown below:

'GENn' 'dest' 'tint' tfg gmax

Collectively these rules are known as Genrules. In the

leading label above (as in all other rules labels), n

represents the unique integer number assigned to each set

of rules within the given class. The character string

dest is the destination node of each new entity which

corresponds to that node's identifying label. The next

character string, tint, refers to the time interval

between generations. It can be substituted with a

constant value or any NBDS probability distribution or

program variable. The codes and associated parameters for

the latter two options are displayed in Table 6-2. The

next two rules, tfg and gmax, are the simulated time at

which the first entity is generated and the maximum

number of entities generated by that node respectively.

Gmax becomes infinity if not specified and is the only

member of those rules allowed to be left blank.

- 72 -

Table 6-2. NBDS Random and Program Variables

Name Associated Parameters

UNFRM

EX PON

NORML

ERLNG

ATRIB

GVAR

CLOCK

TGEN

RANNUM

MIN MAX

MN

MN STD

MN NS

N

Definition

A sample from a uniform
distribution between
the interval MIN and
MAX

A sample from an
exponential
distribution with mean
MN

A sample from a normal
distribution with mean
MN and standard
deviation STD

A sample from an Erlang
distribution which is
the sum of NS
exponential samples
each with mean MN

N user-defined
attribute of an entity

N global variable

Current simulated time

Generation time of an
entity

A sample from a uniform
distribution of random
numbers in the interval
(0,1)

- 73 -

An example of a set of GENERATE rules is shown

below:

■GENl1 'QUEl' 'UNFRM 5 10' 0 100

where GENl generates entities with a time interval

between generations that is drawn from a sample of times

uniformly distributed between 5 and 10. GENl is also

shown to direct its newly created entities to the node

QUEl and begins generating them at time 0. Generation of

entities ceases once a total of 100 have been created.

• TERMINATE Node

The TERMINATE node only requires two members in

its operating rules: •«-

'TRMn * tc

where tc is the termination count for the node TRMn. When

the total number of entities terminated by that node is

equal to tc, the simulation run is ended. If more than

one TERMINATE node exists, the first one to reach its tc

will end the simulation run. If tc is left blank, there

is no limit to the number of entities destroyed by that

node. The following is an example of a set of TERMINATE

rules which would end a simulation run after processing

1000 entities at1 node TRMl:

•TRM1' 1000

6.4 Queue Selection and Service Selection Nodes

As described earlier, service queues are

o

- 74 -

locations in a network where arriving entities request

the service of one or more discrete service entities

represented by a single service activity. If all the

servers are busy upon its arrival, the entity waits in

the queue until one becomes available. These simple

concepts are easily modeled. However, before a

description of QUEUE nodes and service activities is

given, several features and modeling elements related to

them deserve attention first.

• Q-SELECT-FWD Node

Q-SELECT-FWD nodes provide one of several

ways"in which entities can be routed to different

locations in a network. When an entity arrives to a

Q-SELECT-FWD node, it is routed without delay to one of

several parallel queues designated by the node. The

choice of queues is made based upon a priority decision

rule specified in the set of rules for the node. A

summary of those decision rules is listed in Table 6-3.

As' an example, consider the diagram of a

Q-SELECT-FWD node and associated queue nodes shown below:

,-^°'J"ii-

X

-*<;
- 75 -

%

Table 6-3. Decision Rules Used by Q-SELECT-FWD
and Q-SELECT-BHND Nodes

Code Definition

PRI Select first available queue node from given
order

CYC Selection of queue nodes still designated in
order but choose first available node after
last one selected

RAN Select queue node at random

LNQ Select queue with largest number of waiting
entities

SNQ Select queue with smallest number of waiting
entities

SRC Select queue with smallest remaining capacity

LRC Select queue with largest remaining capacity

- 76

If the queue selection rule designated by the

Q-SELECT-FWD node was PRI and the given order was (1 2),

an entity arriving to the node would always be routed to ,

QUEl providing room was available in the queue.

Otherwise, the entity would default to QUE2. This

particular node is useful in modeling the arrival of

customers to a multi-queueing service area such as a

supermarket checkout area or fast-food counter where the

customer has a choice among several service lines.

The operating rules for this selection node are

collectively known as Qsfrules. Their format is shown

below:

'QSFn1 (n^^ n2 ...) 'qsr' 'BLK or Balk To'

where the second component is an array of integer values

identifying the numbers of the possible destination queue

nodes (note: these values must be enclosed in parentheses

to maintain their identity as a single component in the

top level of the rules array). The character string

designated by qsr refers to the code of one of the

decision rules listed in Table 6-3. The last member of

these rules describes a feature of queue nodes not yet

discussed—balking and blocking.

When an entity arrives to a queue whose servers are

fully occupied and there is no more room in the queue,

two different actions are possible: 1) the entity can be

- 77 -

routed to another node in the network (called balking);

or 2) if the entity was routed to the service queue by a

service activity, it can wait outside the queue until

room becomes available; however, until that entity can

enter its destination queue, the service activity which

served it is prevented from servicing any other entities.

Trie second possi-b-i^iiy is called blocking and can only

a-ffect service activRies. In this case the server tied

up by the blocked entity is not considered to be utilizea

but is not free to resume service either. A situation

like this can be represented by a forklift transporting

commodities to a loading zone. If on arrival to the

loading zone there is no more room available to unload

its goods, the forklift and goods must sit idle until the

next set of goods is removed from the queue. In the case

of the first possibility, an entity can balk out of the

system by being routed to a TERMINATE node or it can

assume a new destination anywhere else in the network

(note: balking is not permitted to queues which allow

blocking).

In the Qsfrules example listed earlier, the

character string 'BLK' entered in the last position would

allow entities arriving to the Q-SELECT-FWD node to be

blocked if they were routed there by a service activity

and all the possible destination queues were full. If

- 78 -

balking was desired instead, the code for the destination

node would be entered in this position (note: statistics

are automatically kept on balks from individual queues

but not in the case of balks from a Q-SELECT-FWD node).

If neither balking or blocking was desired, the last

position in the single set of Qsfrules would be left

blank. Below are the symbols for balking and blocking

respectively, used here with Q-SELECT-FWD nodes:

An example of a single set of Qsfrules is shown

below:

'QSF1' (12) 'PRI' 'TRM2'

These rules could describe the two parallel queues

example presented earlier but indicate that entities

would balk out of the system (destroyed by TERMINATE node

2) if both destination queues were at capacity.

• Q-SELECT-BHND Node

A second node used in conjunction with a set

of parallel queue nodes is the Q-SELECT-BHND node. It is

associated with single or multiple service activities and

- 79

is responsible for selecting the next queue to be

serviced when a service entity is freed from a previous

activity. It provides a "look behind'1 capability in

contrast to the "look forward" capability of a

Q-SELECT-FWD node and is referenced only when a service

entity it precedes completes a service activity. The

Q-SELECT-BHND node does not interfere with the

request-for-service of an entity arriving to one of the

parallel queues it polices. If a service entity is

available, that entity is immediately served; otherwise,

the entity waits in the queue and is then selected for

service based upon the decision of the Q-SELECT-BHND

node. Like the Q-SELECT-FWD node, this node selects the

next queue to be serviced based upon a priority decision

rule. The decision rules and their codes for the

Q-SELECT-BHND node are the same as those used by

Q-SELECT-FWD nodes which are listed in Table 6-3.

Below is a partial network diagram of a

Q-SELECT-BHND node and its associated queues:

33V1

Assuming SRVl just finished a service activity, QSBl

- 80 -

would check to see if any entities were waiting in QUEl

or QUE2. If both queues were in use, the choice to serve

a particular queue would be made based upon QSBl's

decision rule. For instance, if the rule was specified as

LNQ, the queue containing the largest number of entities

would be served next. If both queues contained an equal

number of entities, the first queue in the list of queues

would be served. It's easy to see from this example that

the Q-SELECT-BHND node models the perspective of a

service activity. A situation where this would be a

useful modeling element is in a manufacturing process

where separate queues develop along a line that are

serviced by one or several activities.

The operating rules for the Q-SELECT-BHND node are

collectively designated as Qsbrules. Their individual

format is shown below:

'QSBn' (n, n ...) 'qsr' 'srvid'

where the second and third members are identical to those

in Qsfrules. The last element refers to the

identification code of the service activity or service

selection node following the Q-SELECT-BHND node. Service

selection nodes provide a choice among several different

service activities and will be discussed in the next

segment. As an example of a set of Qsbrules, consider the

following:

- 81 -

'QSBl' (1 2) 'LNQ' 'SRVl'

These rules would describe the example given earlier in

which SRVl selected from either QUEl or QUE2 depending

upon which had the greater number of waiting entities.

• SRVR-SELECT Node

The last preliminary node that needs to be

described is the SRVR-SELECT node. This node is used when

there is a need for an entity arriving to a queue to

select a particular service activity from among several

serving that same queue. That is, every service activity

is allowed multiple service entities but this node allows

for multiple service activities as well. A SRVR-SLCT node

is situated between its associated queue and the service

activities it polices as shown below:

Like the previous two selection nodes, the SRVR-SELECT

node is governed by a set of priority decision rules

listed in Table 6-4. if the rule for the above example

was specified as RAN, an entity arriving to QUEl would

select either SRVl or SRV2 at random if both service

activities were idle.

- 82 -

Table 6-4. Decision Rules Used by SRVR-SELECT Nodes

Code Definition

PRI Select first available service activity from a
given order

CYC Select service activities from a given order but
select first available one after last one selected

SBT Select service activity having smallest busy time

LBT Select service activity having largest busy time

RAN Select service activity at random

The collective name for the operating rules of this

node is Sllrules. Below is the format for a single set:

'SSLn' (n, n~ ...) 'ssr'

where (n, n~ ...) represents the solitary array of

service activity numbers provided for selection and ssr

is the decision rule code. The following is an example of

these rules based on the diagram presented earlier:

'SSLl1 (12) 'RAN'

Again, only integer numbers identifying each service"

activity is used in the second component while the entire

list is enclosed in parentheses to maintain its

singularity among the other members.

SRVR-SELECT nodes are useful when modeling a system

where a particular source of entities require different

processing times or a particular service activity is

given a higher priority. For instance, customers arriving

- 83 -

to a fast-food counter with multiple servers might choose

the counterperson who takes the least time to prepare

their order based on previous experience or management

might encourage such a situation themselves by the proper

line arrangement. As mentioned earlier, SRVR-SELECT nodes

can also be used with Q-SELblCT-BHND nodes. The partial

network diagram shown below demonstrates such a

combination:

6.5 SERVICE QUEUE Nodes

By now the reader should be familiar with the

function of SERVICE QUEUE nodes and their network symbol.

Therefore, this next section will be devoted entirely to

a discussion of its operating rules format.

The operating rules for a QUEUE node are referred to

collectively as Qrules. The format for a single set is

shown below:

'QUEn1 'disc' qn qmax 'BLK or Balk To' 'srvid' 'qsid'

The character string disc refers to the queueing

discipline for that queue. Table 6-5 lists the codes and

- 84 -

Table 6-5. Queueing Disciplines

Code Definition

FIFO Entities served in order of arrival

LIFO Entities served in reverse order of arrival

LVFn Entities served in order based on low-value-first
of n user defined attribute

HVFn Entities served in order based on high-value-first
of n user defined attribute

RAND Entities served at random

descriptions of those available in NBDS. The elements 311

and qmax refer to the initial number of entities in the

queue at the start of the simulation and the maximum

allowable number of entities in the queue at any one time

respectively. If qn is greater than 0, service begins

immediately at the start of the simulation for as many

entities as there are available servers (note: if

beginning simulation with entities already in the queue,

LVF or HVF queueing discipline cannot be used). If there

is no limit to the number of entities a QUEUE node can

hold, then qmax should contain a blank character string.

Blocking and balking can be specified if qmax is zero or

greater. If blocking is desired, the fifth position

should contain the character string 'BLK'. If balking is

desired, this element should be replaced with the code

name of the destination balked to. The next position

represented by srvid holds the identification of the
c

- 85 -

associated service activity or SRVR-SELECT node. Finally,

the element qsid refers to the code name of a

Q-SELECT-FWD or Q-SELECT-BHND node associated with the

queue. As implied by the single position for two

different options, an individual QUEUE node can only be

r
associated with one type of queue selection node at a

time.

" As an example of a set of Qrules, consider the

following:

'QUE11 'FIFO' 0 ' ' ' ' *SRVl' ' '

This represents the simplest QUEUE node possible. QUEl

maintains a FIFO queueing discipline, starts with no

entities in the queue, and is serviced by the activity

SRVl. Note the blank character strings which indicate no

limits on the queue length, no blocking or balking, and

no association with queue selection nodes respectively.

Again, their inclusion is important as the position of

each rule in a set is critical.

6.6 Activities

-. Since the role of activities in a network has

already been established, this next section will simply

highlight the differences between the two types and

describe their respective operating rules content and

format. **'

• Service Activities

Service activities limit the number of

concurrent entities travelling over them and are used

only in conjunction with service queues. Their operating

rules are known collectively as Srvrules and each set has

the following structure: ; >

'SRVn' 'dest' ' srvt' nsrvs 'ssl'

As in the rules for a GENERATE node, dest represents the

code for the destination node to which ari; e/i'tity is

delivered by the activity. The character string srvt is

the designated service time for that activity and is the

time period by which an entity's passage through the

activity is delayed. Like the tint rule of Genrules, srvt

is substituted with a constant value or any code and

associated parameters for the random variates and program

variables listed in Table 6-2. The descriptor nsrvs is

the number of parallel servers represented by the service

activity. Lastly, the character string ssl represents the

name of a SRVR-SELECT node with which the service

activity is associated. If the service activity is not

associated with one, this last position is left blank.

As an example of a set of Srvrules consider the

following:

'SRV1' 'QUE3' 'ATRIB(l)1 1 'SSLl'

Here the last member indicates SRVl*s association with.

- 87 -

SRVR-SELECT node SSLl (as in the previous example where

SRVl was named as one of two possible service activities

an entity could select from when arriving to the node

SSLl). In this case, the destination of an entity

utilizing SRVl is the service queue QUE3. In addition,

the service time for that entity is determined by the

value of its first user-defined attribute, ATRIB(l).

Finally, the value at address 3 indicates this is a

single server activity.

• Regular Activities

Regular activities are used to transport

entities away from nodes other than QUEUE nodes and have

no restriction on the number of entities utilizing them

at one time. A collection of operating rules describing

regular activities is referred to as Actrules. A single

set of Actrules has the following format: ' ./

'ACTn' 'dest' 'dur' 'N/S'

where dest again represents the code of the destination

node to which the activity delivers its entities and dur

represents the duration of time an entity's progress is

delayed through the activity. Dur is similar to srvt of

Srvrules except a zero time duration can be specified for

the activity by simply leaving its character string

blank. The last member in this set of rules gives a

modeler the choice of whether or not to collect

- 88 -

lOrf

iaar the

descriptive statistics on a given activity. In some cases

regular activities are required only to provide a link /-^„^

between nodes with no need to report their utilization^

statistics, etc.. In these situations, the modeler has

option of supplying the character string 'N/S' in the

last position pf the operating rules statement to prevent

the wasted collection of statistics.

Below is an example of a set of Actrules:

'ACTl' 'TRMl1 ' * 'N/S'

where entities passing through AGTl are directed to

TERMINATE node 1 without delay. Also, the last member in

this set of rules indicates that no statistics describing

the use of this activity are to be collected during the

simulation run.

6.7 Resource Queues and Related Simulation Elements

As described in Section 4.1, resource queues are

similar to service queues except entities arriving to the

latter type must acquire "resources" as opposed to

discrete service entities to continue their passage

through the queue. Resources are delegated to a queue

from an external source which can be shared by multiple

resource queues. Arriving entities can request variable

amounts of a given resource and, once acquired, depart

from the queue over a regular activity branch. This next

section details the operating rules required by resource

queues and also introduces several of the modeling

- 89 -

elements used with them.

• RESOURCE QUEUE Node

Below is the format of a set of operating

rules for a RESOURCE QUEUE node which, are referred to

collectively as Rqrules:

'RQUn' 'disc' qn qmax 'Balk To1 rn 'nrqst' 'actid'

Except for the leading label, the first four components

are identical in name? and function to those in a set of

Qrules. The Balk To variable at address 4 is also the

same as that for Qrules but, as this rule implies,

resource queues only allow balking—not blocking. The

last three members of this set of rules are unique to

RESOURCE QUEUE nodes. Rn is an integer number identifying

the source of resources for the queue (see next section).

The character string nrqst represents the number of

resources an entity arriving to the queue requests and is

one of three rules in this family of elements where

numeric information must be entered as a character

string. The value,, might be a constant but, like the time

delays for activities, the value of nrqst may also be

obtained by specifying one of the random variates or

program variables listed in Table 6-2. Finally, actid

refers to the identifying code for the regular activity

emanating from the RESOURCE QUEUE node.

An example of an individual set of Rqrules is given

- 90 -

■y

below:

' RQUl>**LVF2, 0 ' ' ' ' 1 'ATRIB(2)' 'ACTl'

Going from left to right, this set of rules specifies

that entities waiting for resources in RQUl queue up in

order of low-value-first based on their second

user-defined attribute. The third component indicates the

simulation begins with no entities in the queue. The next

two blank character strings mean there is no limit to the

capacity of the queue and, hence, no balking from the

queue respectively. The value at address 5 indicates that

resources acquired at RQUl are held by resource bank #1.

Furthermore, the next position specifies that entities

arriving to the queue request resource amounts equal to

the value contained in its second user-defined attribute

(therefore, by virtue of the queueing discipline, waiting

entities requesting the least amount of resources are

served first). Finally, the last component indicates that

entities travel from RQUl over regular activity ACTl.

• Resource Banks

Resource banks are used to hold specified

amounts of resource for allocation to designated resource

queues. A bank of resources varies dynamically throughout

a simulation run but can never exceed its capacity or

drop to a negative amount. They lie outside the actual

network model but must be specified in the operating

91 -

<y

rules when RESOURCE QUEUE nodes are used.

Together the operating rules for Resource Banks are

known as Rscrules. A single set of rules assumes the

following format:

'RSCn' capac (n, n2 ...)

where RSCn identifies the particular bank of resources

and capac specifies the number or amount of resources

available for allocation at the start of the simulation.

The last member of these rules is a solitary array which

lists the integer numbers of those RESOURCE QUEUE nodes

associated with the resource bank. The order in which

those queues are listed is important during the

reallocation of resources which will be discussed in the

next two segments.

As an example of a set of Rscrules, consider the

following:

•RSC1' 10 (1 2 3)

Here resource bank RSCl starts the simulation run with 10

units of resource which are allocated to entities

arriving at resource queues RQUl, RQU2, and RQU3

(provided the requested amount is still available).

However, if additional resources become available or

previously acquired resources are relinquished during the

simulation run, reallocation of those resources to

waiting entities begins immediately by polling each of

- 92 -

M

the three resource queues in the prescribed order.

• RESOURCE FREE Nodes

Resources previously acquired by an entity

are relinquished by routing the entity through a RESOURCE

FREE node. RESOURCE FREE nodes specify the amount of

resources given up by an arriving entity as well*- as the

originating Resource Bank to which they are returned for

reallocation. Since all entities arriving to a RESOURCE

FREE node will trigger the release of additional

resources, care should be taken by the modeler to

preserve the balance of resources in the system' by not

releasing more than was origjftially available. Where

variable amounts of resources are acquired by entities

arriving to a resource queue, it is a good practice to

record that amount in the entity record as a user-defined

attribute. That attribute can then be referenced upon an

entity's arrival to a RESOURCE FREE node to determine the

correct amount of resources to relinquish. In the event

an excess balance of resources is released at a free

node, the amount of available resources will not increase

beyond the given Resource Bank's capacity.

The operating rules for RESOURCE FREE nodes are

referred to collectively as Freerules. An individual set

has the following format:

'FREn' rn 'nrel' 'actid'

MU^(.vUAnJ\l>-rt.n4i,J\l.4n-/l|.Vlft4n,

- 93 -

«s

0

where rn specifies the number of the Resource Bank to

which nrel resources are returned by entities arriving to

the node. Like the nrqst component of Rqrules, nrel is a

character string which may contain a constant value or

expression derived from the random variates and program

variables listed in Table 6-2.

An example of a set of Freerules is the following:

'FRE1' 1 'ATRIB(2)' 'ACT21

where entities arriving to FREl release acquired

resources in an amount equal to the value stored in its

second user-defined attribute. The relinquished resources

are given back to Resource Bank #1 where they are

immediately reallocated to the resource queues prescribed

by RSCl. The regular activity ACT2 then routes arrivals

away from FREl.

• RESOURCE ALTER Nodes

At certain points in a network&model, there

may%be a need to adjust the capacity of a particular

Resource Bank. This is accomplished in NBDS by routing an

entity through a special element known as a RESOURCE

ALTER node which is a particularly useful element for

simulating employee work breaks or scheduled machine

maintenance.

The operating rules for RESOURCE ALTER nodes are

known collectively as Altrules. An individual set has the

, - 94 -

following structure:

'ALTn' rn 'naif 'actid'

where rn is the number of the Resource Bank whose

resource capacity is being altered and the character

string nalt represents the amount by which the capacity

is altered. Nalt may be negative or positive and may also

be defined by one of the variables listed in Table 6-2.

As in the other related rules, actid represents the name

of the regular activity which routes arrivals away from

ALTn.

An important point should be made concerning the use

of a RESOURCE ALTER node. If the arrival of an entity to

an alter node would reduce the capacity of its designated

Resource Bank below the number of resources currently

available, no effort is made to recover the difference

from entities currently in possession of them. Instead,

the entities flow through the network as usual and when

they finally encounter a RESOURCE FREE node, the

resources released at the node simply aren't reallocated

by the designated Resource Bank. Also related to this is ^

the effect of repeated arrivals to an alter node that

decrements the capacity of a given Resource Bank. Once

the capacity has been reduced to zero, any additional

arrivals to the alter node will not create a negative

deficit.

- 95 -

Consider the following set of Altrules:

•ALTl1 1 '^10' 'ACT3'

Here entities arriving to ALTl will initially cause a

reduction in the capacity of Resource Bank #1 by 10 units

and then be routed away from the node by the regular

activity ACT3. Note the use of the tilda symbol in the

~X^'J value ^ 10 to indicate a negative number. Thi^ is a Nial

convention and is in contrast to the normal dash (-)

reserved as the operation symbol for subtraction.

• RESOURCE PREEMPT Nodes

RESOURCE PREEMPT nodes are useful elements

for modeling situations where the utilization of a

resource by an entity is suddenly interrupted by another

(eg. machine breakdowns or an ^interruption in the

transmission of a message over a shared communications

line). Here entities arriving to a preempt node will

initially request the use of a given amount and type of

resource just as entities do upon arriving to a resource

queue. If a sufficient amount of resources is available,

they are allocated to the entity in the normal fashion

and the entity proceeds on through the network. However,

if the available resources cannot satisfy the entity's

request, then the entity will attempt to preempt that

same resource from entities already utilizing them until

its requirements are satisfied. Resources may only be

- 96

S

preempted from entities currently engaged in a regular

activity (ie. not from entities waiting in a queue or

engaged in a service activity). A preemption attempt on

an entity engaged in a regular activity will only be

successful if the value of a given user-defined attribute

gives the preemption entity a higher priority. If an

entity arriving to a RESOURCE PREEMPT node fails to

acquire its requested number of resources, it balks to a

destination node specified by the modeler.

If more than one entity is preempted in a single

attempt, preemption begins with those entities scheduled

for the latest departure event. If only a portion of the

resources owned by the last entity preempted were

required to satisfy the preemption, the remainder is made

available to other entities waiting for that resource.

Preempted entities are sent to a designated resource

queue where they are established as the first entities

waiting for the resource (in order of earliest departure

time first). Their remaining processing time is saved in

the third program-defined attribute of their entity

record which is later used as their activity duration

when reassigned resources. Preempted entities which

resume activity take up at the same place in the network

from which they were preempted. However, because

preempted entities may be sent back to a queue different

- 97 -

from their original source, they may resume activity with

a resource different from the one they possessed when

preempted. Also, if an entity targeted for preemption is

in possession of more than one resource type, only the

last resource will be given up; all other resources

remain in that entity's possession when sent back to a

resource queue.

The operating rules for a RESOURCE PREEMPTION node

are known collectively as Pmtrules. Below is the rules

format for an individual set:

'PMTn' rn 'nrqst' 'LVn or HVn' rq 'Balk To1 'actid'

where nrqst represents the amount of resources from

Resource Bank # rn initially requested by an entity

arriving to PMTn. The character strings LVn and HVn of

the fourth component specify the type of priority and

attribute number an entity arriving to this nodes assumes

when attempting a preemption of another entity. R(£ is an

integer number identifying the resource queue to which a

preempted entity is sent while Balk To represents the

code name of the node to which an entity is sent when

unsuccessful in a preemption attempt. In the event of a

successful preemption (or normal acquisition of available

resources), the entity arriving at PMTn is routed away

from the node over regular activity actid.

To illustrate the use of a set of Pmtrules, consider

98

the following:

'PMTl' 1 '5' 'HV3' 1 'TRM21 'ACT4'

Here an entity arriving to PMTl requests 5 units of

resource frdm Resource Bank #1. If they are not

available, or only partially available, then an attempt

is made to preempt entities in possession of that

resource until enough .resources are acquired to satisfy

the arrival's request. Entities determined as candidates

for preemption will only be preempted if the value of

their third user-defined attribute is less than that of

the entity arriving to PMTl (equal values using either

priority scheme will not cause a preemption). If a

successful preemption occurs, the preempted entity is

sent to RESOURCE QUEUE node #1 where it waits at the head

of the line for available resources; the entity causing

the preemption then continues its journey through the

network over regular activity ACTl. If unsuccessful in

acquiring the requested units of resource, the entity

arriving to PMTl immediately balks to TRM'2 where' it is

terminated.

6.8 ASSIGNMENT Nodes

Up to now a great deal of attention has been

given to user-defined attributes of an entity. As just

presented in the discussion of the RESOURCE PREEMPTION

node, user-defined attributes are required to establish a

- 99 -

.. . . r
priority system among entities involved in a preemption

attempt. They are also useful to hold pre-determined

service times or record the units of resource acquired at

a given RESOURCE QUEUE node. To carry out these

assignments in an NBDS prototype, entities are routed

through ASSIGNMENT nodes. These elements assign values to

members of an entity record reserved to store

user-defined attributes. The array of attributes is

collectively referred to as ATRIB. Arrivals to an

ASSIGNMENT node can also change the value of a globally

defined program variable contained in the array GVAR.

The statement used to assign values to any of these

variables must begin with the name of the array and the

address value of', its position in the array (addressing

begins with 1). Following the assignment symbol, the

right-hand side of the expression can contain a single

constant or any of the NBDS variables listed in Table

6-2. The expression can also contain any combination of

constants and variables with any number of arithmetic

operations as long as it conforms to the constructs of

Nial and employs the correct arithmetic symbols. As

examples of valid NBDS assignments at an ASSIGNMENT node,

consider the following:

ATRIB(2): = EXPON(IO) + ATRIB(l)

GVAR(1): = GVAR(1) * 2

- 100 -

In the first example, an entity arriving to the node

would have"the value of its second user-defined attribute

replaced with the sum of a sample drawn from an

exponential distribution (with mean 10) and its first

user-defined attribute. In the second example, the global

variable GVAR(l) is assigned as its value the product of

its present value and the constant 2.

The operating rules used to define ASSIGNMENT nodes

are known collectively as Assnrules and have the

following individual format:

'ASSn' 'dest1 'expl' 'exp2' 'expK'

where an individual node can have K separafe expressions.

As shown, ASSIGNMENT nodes are not associated with an

activity. Instead, an entity arriving to the node is

immediately passed to its destination node as indicated

by dest. Also note that each expression must be entered

as a character string.

As an example of an individual set of Assnrules

consider the following:

*ASS1' 'QUE3' 'ATRIB(2): = EXRON(IO) +

ATRIB(l)' 'GVAR(l): = GVAR(l) * 2'

Here the expressions used were given in the previous

examples and would result in the assignments described

there. Also, an entity arriving to ASSl is shown to be

immediately routed to the node QUE3.

- 101 -

An additional element associated with ASSIGNMENT

nodes also needs to be introduced here which concerns the

initialization of global variables. Like the attributes

for an entity, the values of all GVAR variables are

automatically initialized to zero at the start of a

simulation run. However, if the modeler wishes to

initialize a particular variable with a non-zero starting

value, this can be accomplished by including one or more

INIT statements with each set of Assnrules during the

input.of the operating rules. One statement is used for

each global variable to be initialized ,'a'nd has the

following format:

'INIT' 'exp'

where the generalized INIT label is used with each ^u.

initialization and exp represents any GVAR assignment

expression discussed earlier. For example, the following

statement would initialize the previously used global

variable to the value 5 at the start of the simulation

run:

'INIT' 'GVAR(l): =5'

The collective name of a group of INIT statements is

Inits.

6.9 Collection of Supplementary Statistics

While most of the simulation elements

presented so far were designed to collect their own set

- 102 -

of descriptive statistics, NBDS also has the capability

to collect supplementary statistics on user-defined

attributes, global variables, and other system variables.

Time independent statistics can be collected on most

system variables by routing entities through a TALLY node

while time dependent statistics can be maintained on any

global variable through use of a TIMD statement.

• ' TALLY Node

Each time an entity arrives to a TALLY node,

one of the following types of variables can be

automatically collected as an individual observation:

1. TSYS - the length of time an entity
has spent in the system to that point.

2. INT(n) - the difference between the
arrival time (CLOCK) of an entity to
the TALLY node and a mark time stored
in user-defined attribute n.

3. BTWN - the time between arrivals to
the TALLY node, using the first
arrival as a reference point.

4. ATRIB(n) - the= value of user-defined
attribute n.

5. GVAR(n) - the current value of global
variable n.

The statistical array Tallystats stores most of the

data collected at TALLY nodes. Those data include minimum

and maximum values, total number of observations, and the

information necessary to estimate means and standard

deviations at the end of the simulation run. TALLY nodes

- 103 -

..£-

can also collect the data required to generate a

histogram at the end of the simulation run. The histogram

is divided into 17 cells and depicts the frequency

distribution of values observed on a designated variable

over the length of a simulation run. Those data are
•1

maintained as separate arrays within ^single array known

as the Freqfile.

The operating rules for a collection of TALLY nodes

are referred to as Tallyrules. The format for an

individual set is shown below:

'TLYn' 'dest' 'title' ' typ' ('HIST' 11 ul)

As with ASSIGNMENT nodes, entities passing through a

TALLY node are immediately routed to the next destination

represented by dest. The character string title is any

name the modeler chooses to identify the type of variable

being observed while typ refers to one of the code names

for the five different variable types listed above. The

last member in these rules is a solitary array specifying"

the need for a histogram. Along with the character string

'HIST1, the modeler must provide an estimated range of

observed values for the variable by specifying its lower

limit (11) and upper limit (ul) respectively. If no

histogram is desired, the three-membered array is

replaced with a blank character string.

Below is an example of an individual set of

- 104

Tallyrules:

'TLY1' 'TRM1' 'Time in System' *TSYS' ('HIST' 10 500)

These rules indicate TLYl is used to collect the duration

of time an entity arriving to that node has spent in the

system to that point. Since the entities are subsequently

terminated, that time period represents their total

lifetime in the system. Furthermore, a histogram is

called for depicting the frequency distribution of those

observations estimated to lie between 10 and 500 time

units.

• TIMD Statement

The TIMD statement is another NBDS element

that is not directly represented'by a network symbol but

instead is used to designate a system global variable for

the collection of time-persistent statistics. Data

describing the value of a global variable over the

duration of the simulation run are maintained in the
f a

statistical array Glbstats. That information can be used

at the end of the simulation to generate mean values and

standard deviations as well as minimum and maximum

observed values.

The TIMD statement is similar to the INIT statement

in that it may only be used to name a single global

variable. A group of TIMD statements are referred to

collectively as Timrules. The structure of an individual

- 105 -

statement is shown below:

'TIMD1 'title' n

where each statement is preceded with the generalized

label TIMD. As before, title refers to a user-supplied

character string which uniquely nasaes the variable of

interest and n represents the integer number of its

address in the GVAR array. For example, in the TIMD

statement shown here:

'TIMD' 'Number in System' 2

GVAR(2) is used to monitor the number of entities in the

system at any one time and is designated to be maintained

as a time dependent variable.

6.10 CONTINUATION Nodes

In many instances during the design of a

network model there is a need to separate regular

activities into two or more activities with distinct time

delays. There may also be a need to immediately follow a

service activity with a regular activity; or where a node

(like the TALLY node) is not associated with an activity,

there may be a need to delay an entity's departure from

that node to its next destination. In all three cases, a

CONTINUATION node can be used to solve the problem.

The operating rules for a CONTINUATION node are

known collectively as Contrules. The format for an

individual set is shown below:

- 106 -

'CONn' 'ACTn1

This two-membered set of rules just contains its

identifying code name and the code name of the regular

activity which delivers entities from the node. As shown,

it simply models a sequential arrival and departure event

with a time delay (specified by ACTn) in between.

6.11 MULTIPLY Node

When a network model calls for the

simultaneous generation of multiple entities, either from

a GENERATE node or some other location, the MULTIPLY node

will satisfy that requirement. When an entity arrives to

a MULTIPLY node, it is replicated any number of times,

afterwhich the parent and its clones are immediately

routed to a single destination node..

A collection of operating rules for MULTIPLY nodes

are referred to as Multrules. An individual set has the

following format:

'MLTn' nm 'dest'

where nm identical entities are routed from MLTn to dest

for each arrival to the node.

6.12 MULTIPLE BRANCH Node

This NBDS modeling element is identical to

the MULTIPLY node just presented except the multiple

entities created at the node are individually routed to

- 107 -

*"wo or nore different destination nodes in the network.

The collective name for the operating rules of „

MULTIPLE BRANCH nodes is Mbrnrules. Individually, a set

of Mbrnrules contains the following format:

'MBRh' Cdest^ 'dest'2 ... 'aest')

where K identic?* icities are routed t^ multiple

destination nodes from MBRn for each a\rrival to the node

(that includes the parent entity as well). Note the use

of a single array to hold all the destination nodes. The

maintenance of this array as a single member in the top

Lerel of the rules is critical.

An example of a single set of Mbrnrules is given

below:

'MBR1' ('QUEl' 'QUE2' 'QUE3')

Here an'*«htity arriving to MBRl is replicated three times

and evenly distributed to three different service queues.

6.13 CONDITIONAL BRANCH Node

CONDITIONAL BRANCH nodes are useful NBDS

modeling elements in that they provide important decision

points within a network. An entity arriving to a

CONDITIONAL BRANCH node is confronted with a sequence of

conditional statements, each of which is associated with

a different destination node. The entity begins testing

each condition and is routed to the destination of the

first one satisfied.

- 108 -

Below is the format for a set of CONDITIONAL BRANCH

node operating rules collectively known as Cbrnrules:

'CBRn' ('cond' 'dest^) (' cond' 2 'dest'2)

... ('cond' 'dest')
i\ J\

where CBRn contains K sets of conditions and associated

destination nodes. Hera each condition (cond) and
J

destination node (dest) are defined together as a single

array within the array of operating rules and represent a

single branch from the node CBRn. When an entity arrives

to a CONDITIONAL BRANCH node, it begins testing each

condition in the order given in the set of Cbrnrules. If

a given condition is satisfied, the entity automatically

departs the node to the destination node associated with

the conditional statement and no further testing is

carried out. If a given condition is not satisfied, then

the entity tests the next one in line. If none of the

conditions are satisfied, the entity is routed to the

last destination node specified as a failsafe measure.

Therefore, the modeler could actually substitute a blank

character string for the last condition to be tested but,

for clarity's sake, should be spelled out explicitly.

The conditional statements can contain any

constants, random variates, or program variables listed

in Table 6-2 but must be used with the Nial relational

and Boolean operations listed in Table 6-6. Note that the

- 109

Table 6-6. Standard Nial Relational and Boolean
Operations

Operation Definition

> greater, than

< less than

= equal to

>= greater than or equal to

<= less than or equal to

^ = not equal to

and A logical and of items of A

Not A reverse the logical value of A

or A' logical or of items of A

- 110 -

NBDS variable RANNUM can be used to specify a probability

in a conditional statement such as the following:

RANNUM > 0.20

Here the condition is satisfied if the uniformly

distributed random number generated by RANNUM is greater

than 0.20. If used in a set of Cbrnrules, an arriving

entity would face an 80% chance of being routed to the

associated destination node.,

As an example of a set of Cbrurules, consider the

following:

'CBR1' ('ATRIB(l) = 1' 'CONl') ('ATRIB(l) = 2' 'CON2')

Here the conditional statements are testing for a certain

p" .'■'■ ■■■

attribute value of the entity arriving to CBRl. If the

entity's first user-defined attribute is equal to 1, it

is routed to the CONTINUATION node CONl.. Otherwise the

attribute value is considered to be equal' to 2 and the

entity departs to CON2.

6.14 CLOSE and OPEN Nodes /

In many queueing situations there is often a

need to temporarily suspend service to a particular queue

or group of queues. Such might be the case when a bank

teller takes a lunch break or a machine on an assembly

line is shutdown for maintenance. Another example would

be a traffic light at"an intersection where the flow of

traffic is halted in one' or more directions for a given

- Ill -

period of time. In the case of the ban)?: teller breaking

for lunch, the customers lined up for service in his

queue would most likely be directed to another teller

still in service. However, in the last example, the

drivers lined up at a traffic light would be forced to

wait in line until they could pass through a green light.

All of the situations described above can be modeled

with CLOSE and OPEN nodes. In addition, these modeling

elements can be applied to both service queues and

resource queues.

• CLOSE Nodes

When an entity arrives to a CLOSE node, a

designated queue or group of queues is closed for

service. In the case of a service queue, any entities

currently in a service activity are permitted to complete

that service. Likewise, entities from a resource queue

currently in possession of a resource are allowed to keep

it until scheduled for release. However, when the service

activity is over, its servers are idled or when the

resource is relinquished, the designated resource queue

is not polled for reallocation. At the time of closure,

an additional action may take place. If the designated

queue permits balking (as indicated by its fifth

operating rule), the modeler has the option of sending

all the entities currently in that queue to the

112 -

destination node specified by the balking rule. Any

additional arrivals to the queue automatically balk to

the given destination node while that queue remains

x.| closed. If balking is not specified, then any additional

arrivals to the queue simply enter the queue and wait

until service resumes.
i

The operating rules for a CLOSE node are referred "to

collectively as Clsrules. An individual set has the

following format:

'CLSn1 'qtyp' ^ n2 . . .) ' BALK' 'actid'-

where the character string qtyp specifies the type of

queue (/s) to be closed. Here the code QUE specifies a

service queue while RQU specifies a resource queue. The

third member of these rules is an array of integer

numbers identifying the queue or queues of that type to

be closed. (Note: CLOSE nodes cannot specify service

queues associated with Q-SELECT-FWD nodes). The next item

gives the modeler the option to balk all current and

future entities to the balking destination node specified

by that queue. If this rule is left as a blank character

string, balking will only occur if: 1) the operating

rules for the queue specify it; and 2) the queue's

capacity is reached while the queue remains closed. The

last operating rule for a CLOSE node specifies which

regular activity routes the arrival away from the node.

- 113 -

An example of a set of CTsrules is shown below:

•CLS1' 'RQU' (12) ' ' 'ACT5'

Here an entity arriving to CLSl forces the closing of

resource queues 1 and 2 and is routed away from the node

on ACT5. The blank character string at address 3 allows

normal balking to occur from those nodes if indicated in

their respective Rqrules.

• OPEN Node

OPEN nodes are used to resume service on a

previously closed queue. When an entity arrives to an

OPEN node associated with service queues, the specified

queues are served immediately if a service entity is

available. Likewise, an entity arriving to an OPEN node

associated with resource queues results in the immediate

polling of those queues if available resources exist.

Also, if.automatic balking was specified, that

restriction is lifted as well. \

A collection of operating rules for OPEN nodas are

referred to as Opnrules. An individual set is structured

as follows:

'OPNn' 'qtyp' (n, n2 ...) 'actid1

where the rules are identical to those of Clsrules by the

same name. As an example of an individual set, consider

the following:

'0PN1' , 'RQU' (12) 'ACT61

- 114

Here an 'entity arriving to OPNl would allow the same

queues closed by the earlier example to resume normal

activity.

6.15 SEED Statement

The SEED statement is another" statement

which is read into the program along with the operating

rules at the start of. a simulation run. It allows the

user a choice of ten different seed values for the random

number generating operation RANNUM (actually two

different seed values are picked with this statement, one

for each of the two alternating generators within

RANNUM). The format of this statement is:

'SEED' n

when n is any integer from 1 to 10 inclusive. If no SEED

statement is included with a group of operating rules,

the seed value defaults to the first one.

6.16 END Statement

The last NBDS element to be presented is

appropriately named the END statement. It is read into

the NBDS program like all other statements and gives a

user the option to end a simulation run at a particular

simulated time. The statement has the simple format:

'END''time

where time is the CLOCK time at which the simulation run

- 115 -

is terminated. Together with the termination count

specification of TERMINATE nodes, a modeler has the

option of terminating the simulation run based on number

of entities processed or simulated time elapsed.

- 116 -

7, Model Building With NBDS Elements

Now that the reader has been introduced to the

modeling elements of NBDS, this section will present a

few examples of how those elements can be combined to

model systems. Emphasis will be placed upon the method by

which the elements are symbolized and integrated into a

pictorial representation of the system and, more

importantly, how that information is translated into the

appropriate operating rules for input into an NBDS

simulation program. Having developed some actual sets of

operating rules, the next section will demonstrate how

they are input into the general purpose NBDS program and

internally organized into a working set of rules.

7.1 Simple Queueing System

As an introductory example of how a network

model can be translated into a set of NBDS operating

rules, refer back to Figure 4-1. Pictured is a network

diagram of a simple queueing system. Assume the system

has the following characteristics:

• the time between arrivals to the queue is
exponentially distributed with a mean of
5 minutes,

• arrivals to the queue wait for service in
order of their arrival,

• the queue is serviced by a single service
entity whose service time is uniformly
distributed between 2 and 15 minutes,

- 117 -

• the simulation run ends after 1000
entities have been processed.

To translate Figure 4-1 into a set of NBDS operating

rules requires just four lines:

'GENl' '0UE1' 'EXPON 5' 0 ' '
'QUE1' 'FIFO' '0' ' ' ' ' 'SRV1'
'SRV1' 'TRM1' 'UNFKM 2 15' 1 ' '
'TRM1' 1000

When properly interpreted by the control program, this

set of rules is all the NBDS program needs to

successfully execute the simulation of this system.

7.2 Computer System With Preemptive Processing

As a means of introducing a network model

containing the family of resource nodes, consider the

network diagram pictured in Figure 7-1. The system

pictured there could represent a simple computer system

in which incoming jobs are placed in a queue until

allocated a sufficient amount of memory space for

processing by the CPU. The job queue in this case is

modeled by a RESOURCE QUEUE node. Jobs arriving to the

system queue up in an order inversely proportional to

their memory requirements. Memory is allocated to the

jobs from a finite source, here modeled by a Resource

Bank. Once a job acquires memory space, processing begins

by the CPU, represented in this case by regular

- 118 -

Mtwory

O

A5S1

to 7

Tots
ASSZ

^ ATftl6(2y.-«N0f!»L
'ACT 2

PMTi
NoftAM. "J 3.5

-^P

Figure 7-1. Network Diagram of Computer System Model

activities. Upon completion, the job relinquishes the

memory by passing through a RESOURCE FREE node and leaves

the system. While most of the jobs are processed in an

order based on their memory requirement, some jobs enter

the system that hold priority over all jobs irregardless

of their memory demands. Those jobs will preempt jobs

already being processed if enough memory is not available

for use when they arrive. This element of the system is

modeled with the RESOURCE PREEMPT node shown in Figure

7-1.

For illustrative purposes, assume the system..has, the

following characteristics:

• normal jobs arrive to the system with
exponentially distributed interarrival
times whose mean is 2.5 sec; high priority
jobs arrive with the time between jobs
distributed exponentially and having%
mean of 20 sec, /

• the memory requirement of normal jobs is
uniformly distributed between 10 and 70
pages; the memory required by high
priority jobs is normally distributed
with a mean of 75 i 20 pages,

• the total available memory is 150 pages,

• CPU time of normal jobs is exponentially
distributed with a mean of 5 sec; CPU
time of high priority jobs is normally
distributed with a mean of 8 ± 3.5 sec.

Figure 7-2 lists the set of translated operating

rules describing the system above.. Note how the priority

between the two types of jobs is assigned with ATRIB(l)

120 -

'GEN1' 'ASS1' 'EXPON 2.5' 0 ' '
'GEN2' 'ASS2' 'EXPON 20.0' 0 ' '
'ASS1' 'RQU1' 'ATRIB(l) : = 1' ' ATRIEK 2) ! =UNF:RM 10 70' 'GVAR<1)!=GVAR(1H1'
'ASS2' 'PMT1' 'ATRIB(l)!=2' 'ATRIB(2>:=NORML 75 20' 'GVAR(1):-GVAR<1) + 1'
'RSC1' 150 1
'R0U1' 'LUF2' 0 ' ' ' ' 1 'ATRIB<2)' 'ACT1'
'FMT1' 1 'ATRIB(2)' 'HM1' 1 'RGU1' 'ACT2'
'ACT1' 'FRE1' 'EXPON 5' ' '
'ACT2' 'FRE1' 'NORML 8 3.5' ' '
'FRE1' 1 'ATRIB(2)' 'ACT3'
'ACT3' 'ASS3' ' ' 'N/S'
'ASS3' 'TRM1' 'GYAR(l)}=GUAR(1>-1'
'TRM1' ' '
'TIMD' 'Number Jobs in System' 1
'END' 3600

Figure 7-2. Operating Rules for Computer System Model

when the jobs enter the system. This attribute is

later referenced in the priority rule of PMTl (see HVlj) .

Also note how the global variable GVAR(l) is used to keep

track of the number of jobs in the system at any one

time. Together with the TIMD statement, GVAR(l) is

reported as a time dependent variable at the end of the

simulation run. Also demonstrated i"s the use of ACT3 as a

timeless activity to the next node with no statistics

collected on it. Finally, the END statement indicates the

simulation run is to end after 3600 simulated time

seconds have elapsed.

7.3 Serial Work Stations on a Production Line

A more complicated scheme of SERVICE QUEUES

is presented in this example where a portion of an

automobile production line is modeled containing a series

- 1.21 -

7

of work stations. The network depicting this model is

shown in Figure 7-3 where*units arrive to the first work

station for a particular set of operations and are then

distributed between two separate work stations for

another series of operations. The first work stahdon is

an area large enough to store three automobiles at a time

(not including the ones being operated on) but the

succeeding stations have room to store only one

automobile apiece. Therefore, if each of the downstream

work stations has a unit awaiting service when another

arrives, the arrival is blocked. If the storage capacity

of the first work station is exceeded, the excess

automobiles are transported to a yard outside the

manufacturing plant and stored there for later service.

For the purpose of this illustration, assume the

additional system characteristics:

• the time between arrivals to the first
work station is uniformly distributed
between 12 and 20 minutes,

• the first work station is serviced by
two parallel workers whose service
times are normally distributed with a
mean of 20± 5 minutes,

• the next two work stations are each
manned by one person whose respective
service times follow an Erlang distribu-
tion of 3 samples each with means of 12
and 15 minutes respectively,

• automobiles completing service by the
first work station are distributed to
the first of the next two parallel

- 122 -

WortC Stat..« *1
fllocK ERLN& IZ 3

<QSFi .)

^ QUE3_ V "iflVS

v_v ERUNfa \s 3

TLYjJ Ti nc in SMTVI

TSYS P

Figure 7-3. Network - Diagram of Production Line Model

'V->

stations which has room in/ists queue.

The system described abeVe is translated into the

set of operating rules shown in Figure 7-4. The concepts

'GEN1' 'QUEl' 'UNFRh 12 20' 0 ' '
'C1UE1' 'FIFO' 0 3 'TRM2' 'SRV1' ' '
'SRV1' 'GSF1' 'NORML 20 5' 2 ' '
'QSF1' (2 3) 'SNO' 'BLK'
'QUE2' ' ' ' ' i ' ' 'SRU2' 'QSF1'
'0UE3' ' ' ' ' i ' ' 'SRV3' 'QSF1'
'SRV2' 'TLY1' 'ERLNG 12 3' 1 ' '
'SRV3' 'TLY1' 'ERLNG 15 3' 1 ' '
'TLY1' 'TRM1' 'Time in System' 'TSYS' ('HIST' 40 180)
'TRM1' ' '
'TRM2' ' '
'END' 1000

Figure 7-4. Operating Rules for Production
Line Model

demonstrated in this example include balking, blocking,

and queue selection. Also included in the network is a

TALLY node to collect statistics on the time each unit

spends in the system. Those data are summarized in a

histogram at the end of the simulation as specified in

TLYl.

7.4 Traffic Light

This last example of a traffic light

features a more extensive network of resource nodes and

also demonstrates the use of CONDITIONAL BRANCH nodes,

the CLOSE node, and the OPEN node. It models a traffic

light at a 3-way intersection pictured in the diagram

- 124 -

below:

MALI.

*-<? -E
>^C^^

The heavily travelled east-west street intersects

with the entrance to a shopping mall. Eastbound traffic

desiring to enter the mall must make a left turn in front

of westbound traffic. Because these are single lanes,

eastbound traffic backs up behind any cars waiting to

make a left turn.

Again, for the purpose of^illustration, assume the

system has the additional characteristics:

• if cars arrive' to the intersection when
the light is green and there are no cars
waiting in front of them, they pass >
straight through without delay; when
traffic is backed up, cars passing
through the intersection are delayed by
a normally distributed time period of
3 ± 1.5 seconds which represents the time
it takes the car to regain momentum,

• cars making a left turn into the mall
are also delayed by a constant time
of 1 second; cars turning right from
the westbound lane experience no time
delays and therefore right turns have
no effect on the system,

• the light stops traffic in the E-W

- 125 -

•"V.^

directions for a period of 30 seconds
while cars exit the mall; it then turns
green on the eastbound side only for
15 seconds to give any cars starting out
a clear path to make a left turn; after
that 15 seconds, the light turns green on
the westbound side and both lanes are
allowed passage for the next 45 seconds
until the light turns red again,

• the arrival pattern of cars from each
direction in exponentially distributed with
an average of 7 seconds between cars west-
bound and an average of 8.5 seconds between
cars eastbound; also, one out of every ten
eastbound cars make a left turn.

Figure 7-5 contains the network diagram of this

traffic light system. Note how the lanes are modeled with

Resource Banks, each having a capacity of one unit. To

pass through the intersection, therefore, each car must

acquire the unit of resource assigned to its lane at its

respective RESOURCE NODE. However, eastbound cars turning

left into the mall also request the use of the resource

unit assigned to westbound traffic. Since westbound

traffic has priority over that resource, any cars making

a left turn must wait until all westbound traffic passes

or until they are allowed the 15 second free period at

the start of a cycle. This network model also

demonstrates several uses of CONDITIONAL BRANCH nodes. In

the first case they are used with probability branching

to direct 10% of the eastbound arrivals to ASSl while the

remainder are directed to ASS2. At each ASSIGNMENT node

the arrivals are assigned a value in their first ATRIB

- 126 -

r\j

E*vt'D#-.n<J ArrmU

Vl*tbo*mi Arritf*\ft

\UTWT

GEN2

Aerg
3o

ACT 10
45

Network Diagram of Traffic Light Model

array which is used by CONDITIONAL BRANCH nodes later in

the network to separate those cars making a left turn.

Also note how a set of CONDITIONAL BRANCH nodes and the

use of the NBDS variables CLOCK and TGEN determines

whether a car has been waiting in line or not. If found

to be waiting, the car is directed over an activity

having the appropriate time delay. Finally, an effective

use of CLOSE and OPEN nodes is illustrated in which they

simulate the phases of the traffic light. Note how only

one entity is initially generated to CLSl to begin the

traffic light cycle. Figure 7-6 lists the NBDS operating

rules required to carry out a simulation of this model

for a simulated time period of one hour.

- 128 -

'GEM1'
'GEN2'
'GEN3'
'RSC1'
'RSC2'
'RQU1'
'RUU2'
'RQU3'
'FRE1'
'FRE2'
'FRE3'
'CBR1'
'CBR2'
'CBR3'
'CBR4'
'C0N1'
'C0N2'
'ASS1'
'ASS2'
'CLB1'
'0PN1'
'0PN2'
'ACT1'
'ACT2'
'ACT3'
'ACT4'
'ACT5'
'ACT6'
'ACT7'
'ACTS'
'ACT9'
'ACTIO
'TRM1'
'END'

'EXPON 8i5'
'EXPON 7' 0
''01

1
2
2

'1'
'1'
'1'

\

'CBR1'
'R0U2'
'CLS1' '
1 1
1 (2 3)
'FIFO' 0
'FIFO' 0
'FIFO' 0
2 '1' 'ACT4'
1 '1' 'ACTS'
2 '1' 'ACT5'

RANNUM s= 0.10' 'ASS1
CLOCK « TGEN' 'CBR3')
ATRIB(l) = 1' 'RQU3')
CLOCK = TGEN' 'FRE3')

ACT2'
ACT7'
RQU1' 'ATRIB(l)t=l'
Raui' 'ATRIB(D:=2'

ACT1'
ACT6'
ACT3'

) ('RANNUM > 0.10' 'ASS2')
('CLOCK X.TGEN' 'C0N1')
CATRIBd) - 2' 'FRE2')
('CLOCK > TGEN' 'C0N2')

'RQU'
'RGU'
'RQU'
'CBR2'
'CBR3'
'FRE1'
'FRE2'
'TRM1<
'CBR4'
'FRE3'
'0PN1'
'0PN2'
'CLS1

3600

<1 2> ' '
1 'ACT9'
2 'ACTIO'

'ACT8'

NORML 3 1.5' 'N/S'
1' ' '

' 'N/S'
' 'N/S'
/ / /

NORML 3 1.5' 'N/S'
30' 'N/S'
15' 'N/S'
'45' 'N/S'

Figure 7-6. Operating Rules for Traffic Light Model

129

8. General Purpose NBDS Package

One of the primary objectives of this thesis

was to develop a set of Nial-based operations that could

be used to prototype decision-making systems employing

discrete simulation. As the first few simulation elements

were developed and tested for this purpose, an

interactive query/answer routine was used to input the

various operating rules into the control program.

However, as the list of simulation elements grew, this

task became slow and cumbersome which led to the design

of a non-interactive, batch-read technique to inputting

the rules. What evolved as a result of all this work was

actually a rudimentary simulation language whose features

include a set of operating rules having their own

vocabulary and syntax. Admittedly this general purpose

NBDS package lacks many essential features of a good

simulation language (eg. extensive error checks and

debugging facilities), but its being presented here for

three important reasons:

1. To learn how to build a working proto-
type simulation system using NBDS, one
must understand how to correctly
organize the operating rules so that
the control program is able to in-
terpret them properly; also, one must
learn how to access the statistical
arrays at the end of the simulation
run to report the desired results.
Use of the general purpose NBDS package
provides a good vehicle to learn those
tasks.

- 130 -

2. While developing the model of a system
one wishes to build a specific simulation
package for, use of the general purpose
NBDS package is very helpful in testing
certain elements of the model, developing
the required set of operating rules, and
deciding what data are necessary to report.

3. The current set of simulation elements
together with the control program provide
a good basis on which to build and test

-<J additional simulation operations when
needed for a specific modeling purpose.

The discussion of the general purpose NBDS package

will begin by detailing how the operating rules are

organized within the program. Following this, is a

description of the summary statistics automatically

printed at the end of a simulation run. Finally, examples

of actual general purpose NBDS runs will be presented

using some of the operating rules developed in the

previous section.

8.1 Input and Internal Organization of Operating
Rules

Once entered j.nto the NBDS control program,

each set of operating rules is organized into a three

level nested array. At the top level is the single

collective array (eg. Qrules, Srvrules, Inits, etc.)

which holds the middle level containing one or more

individual sets of like operating rules. At the bottom

level are the individual rule elements owned by each set

of operating rules. To obtain their singularity within

- 131 -

the top level, each set of like operating rules must be

entered into its collective parent array as a solitary

array. Furthermore, each solitary array of rules must be

ordered within its parent array so that its address

corresponds to the integer number of its rules

identification label. Since numbering of the rules always

begins with 1, the first position in each parent array

(address 0) is simply a blank character string. Each

parent array is initialized with a blank character string

by the operation 'INIT_RULES at the start of a simulation

run. The use of this dummy position is similar to the use

of the first row of dummy values in every statistical

array: it maintains the logical correspondence between

the rules' set number and its position in the parent

array.

As an example of an ordered array of operating

rules, consider the following collection of Srvrules

pictured in the sketch mode:

++ ,- + +
i +—+—+ +-+-+1 +—+—+ +-+-+ i +—+—+ +-+-+
: !SRi.'l lOSFliNCRML 10 5,'2i I ! I5RV2ITLY1 ,'ERLNG 12 3ill ! ! : SRV3 ! TLY1 .' ERLNG 15 3.111 I
I + + + +-+-+ I + + + +- + -+ ! + + + +-+-+

t+ + +

The individual sets of rules shown above were taken from

the list of operating rules for the Production Line

example given in the previous section (see Figure 7-4).

- 132 -

K

Note the empty character string in the first position of

the parent array Srvrules and the logical ordering of its

member arrays in the next lower level.

The Srvrules array given above is in a form ready

for execution within the NBDS program. It is an important

task of one developing a prototype simulation package to

organize all the sets of rules used by the system in a

similar fashion. In the general purpose NBDS package this

process is carried out automatically by the operation

READ_INPUT. All one has to do is list the operating rules

in a script file named Input.Dat in a format similar to

the examples given in the previous section. Once

execution begins, each line of the script file is read

into the program, converted into a solitary array, and

linked with other member rule sets of its kind.

The code for READ_INPUT that performs these tasks is

displayed in Figure 8-1. Note how the use of the

CASE-expression provides a convenient way to select the

appropriate set of operating rules by keying on the rules

identification label of each set (here assigned to the

variable Typ). It also provides the means for an error

check ah the rules labels by defaulting to an error

message if the code does not match,' any of those listed.

Both these techniques are used in many other NBDS

operations where selections are made from several

133 -

READ-INPUT IS (
EOF:= EXECUTE '??eof'f
NFILE'f=" OPEN "INPUT.DAT mrt
LINE:= EXECUTE READFILE NFILE;
NAME:= FIRST LINEF DATE:= SECOND LINE; TITLE:= THIRD LINE;
EACH URITESCREEN ' ' ('Input Statements For ' LINK TITLE

LINK ':')>
LINE!= EXECUTE READFILE NFILEt
WHILE LINE "= EOF DO

WRITE LINEf
TYPt= 3 TAKE (FIRST LINE)f
CASE TYP FROM

GENRULES:= GENRULES LINK SOLITARY LINE END
QRULES:= QRULES LINK SOLITARY LINE END
QSFRULES:= QSFRULES LINK SOLITARY LINE END
QSBRULESS= OSBRULES LINK SOLITARY LINE END

SSLRULES LINK SOLITARY LINE END -
SRVRULES LINK SOLITARY LINE END

RSCRULES:= RSCRULES LINK SOLITARY LINE END
RORULES:= RQRULES LINK SOLITARY LINE END
FREERULES:= FREERULES LINK SOLITARY LINE END
ALTRULES:= ALTRULES LINK SOLITARY LINE END
PMTRULES:= PMTRULES LINK SOLITARY LINE END
CLSRULES:= CLSRULES LINK SOLITARY LINE END
OPNRULES:= OPNRULES LINK SOLITARY LINE END
ACTRULES!= ACTRULES LINK SOLITARY LINE END
TERMRULES:= TERMRULES LINK SOLITARY LINE END

SSLRULES:=
SRVRULES:-

'GEN'
'QUE'
'OSF'
'HSB'
'SSL'
'SRV
'RSC
'RQU'
'FRE'
'ALT'
'PMT'
'CLS'
'OPN'
'ACT'
'TRM'
'MLT'
'CBR'
'MBR'
'CON'
'ASS'
'TLY'
'TIM'
'INI'
'SEE'
'END'
ELSE

CODE.')>
ABORT:« END_SIM:= I»

ENDCASEI
LINE!= EXECUTE READFILE NFILE*

ENDWHILEJ
CLOSE NFILEI)

MULTRULES:>
CBRNRULESJ'

HULTRULES LINK SOLITARY LINE END
CBRNRULES LINK SOLITARY LINE END

: MBRNRULES:= MBRNRULES LINK SOLITARY LINE END
: CONTRULES:= CONTRULES LINK SOLITARY LINE END
: ASSNRULES:= ASSNRULES LINK SOLITARY LINE END
: TALLYRULES:= TALLYRULES LINK SOLITARY LINE END
: TIMRULES:- TIMRULES LINK SOLITARY LINE END
: INITS:- INITS LINK SOLITARY LINE END
I CHOOSE-SEED (SECOND LINE) END
: TERMT:- SECOND LINE END
EACH WRITESCREEN ' ' ((FIRST LINE) LINK ' NOT A VALID RULE

Figure 8-1. Nial Code for Read-Input Operation

134

expressions depending upon a key rules identifier. Also

note line 5 of Figure 8-1. As it implies, the first line

of every Input.Dat file must contain the name of the

simulator, the date, and title of the run. All these

variables are entered as character strings.

If the sets of operating rules within a given class

are listed in Input.Dat in a continuous, logical order

starting with rule number 1, no further action would be

required by the NBDS program to organize the rules

following READ_INPUT. However, the general purpose NBDS

package goes one step further by providing a set of rules

sort operations which allow one to enter the rules into

the script file in any order. The sets of rules are also

allowed- discontinuous numbering. The operation at the top

level of these sorting procedures is named RULE_SORT. It

also performs the critical task of creating and

initializing the arrays used to.maintain statistics on

the various simulation elements. Because rtvkeys on the

number of elements in a given class, RULE_SORT %reat^s-

just that amount of storage space required to collect

statistics on the elements of that particular run.

8.2 Statistical Analysis and Summary Report

■* Upon detecting the end of a simulation run,

the general purpose NBDS control program exits the event

proces-siTng loop and begins executing a series of

- 135 -

statistics update and reporting operations. Update

operations are used to update any time related statistics

associated with a given simulation element. For example,

if service queues were used in a particular run, the

operations UPDATE_Q and SUMMARY_Q would be executed in

that order at the end of the simulation. UPDATE_Q updates

time dependent variables related to service queue lengths

while SUMMARY_Q estimates average queue lengths, waiting *

times in the queue and average times between balks from

the queues. In addition, SUMMARY_Q selects other

pertinent data from Qstats, organizes all the summary

data for output, and then prints a summary report of

descriptive queue statistics. Similar operations are

carried out for other elements in the simulation. Table

8-1 summarizes the statistical results automatically

printed at the end of a general purpose NBDS run for

queues, activities, resource banks, time independent and

time dependent variables.

8.3 General Purpose NBDS Examples

8.3.1 Basic Execution Procedures

Assuming the user has already prepared a

script file of operating rules and has access to a Nial

workspace, the execution of a general purpose NBDS

requires just three steps:

136 -

Table 8-1. Output Statistics of a General Purpose NBDS
Run

Service and Resource Queues

• Average queue length

• Maximum queue length

• Number of entities left in queue at end

• of those entities receiving service, the
average delay time in the queue for just
those entities not immediately served

-•• the average waiting time of all entities
receiving service

• Number of balks from the queue

• Average time between balks from the queue

Resource Banks

• Current capacity of the bank

• Average utilization of bank over time

• Maximum number of resource units utilized at
one time

• Current number of resource units utilized

Service Activities

• Number of servers in activity

• Current number of busy servers

• Total numbers of entities served

- 137 -

V

Table 8-1. (continued)

Service Activities (continued)

• Average utilization of service activity

• Fractional average of time the service
activity is blocked

• Average service time including wait in queue

• Minimum service time including wait in queue

• Maximum service time including wait in queue

• Maximum idle time for a single server
activity or the maximum number of idle
servers at one time for a multiple server
activity

• Maximum busy time for a single server
activity or the maximum number of busy
servers at one time for a multiple server
activity

Regular Activities

• Average number of entities routed over the
activity at one time

• Maximum number of activities routed over the
activity at one time

• Current number of entities engaged in
activity

• Total number of entities routed over
activity

Time Independent Variables

• Mean and standard deviation of observations

• Minimum observed value

- 138 -

Table 8-1. (continued)

Time Independent Variables (continued)

• Maximum observed value

• Total number of observations

Time. Dependent Variables

• Mean and standard deviation over time

• Minimum observed value

• Maximum observed value

• Current value

- 139 -

\

1. the script file of NBDS operations*
is loaded into the workspace and
evaluated using the command:

LOADDEFS "NBDS.NDF

(note: for a silent load, use "NBDS 0) ^

2. the commahd GO is entered which
initiates execution of the' control-
program; at this point, an introductory
header is printed followed by a listing
of all the operating rules as they
appear in the file Input.Dat,

3. after all the operating rules are printed,
a message follows requesting the user to
check the input statements for obvious
errors; if an error is detected, the user
simply keys CTRL G which aborts the run
and drops him back into the command mode;
from there, the required corrections can
be made by accessing the host editor with
the EDIT "INPUT. DAT ..command; if cor-
rections were needed, Step 2 is repeated;
otherwise, the user simply keys RETURN
which initiates execution.

When the simulation is finished executing, a second

header is printed containing all the information in the

s first line of Input.Dat (simulator's name, run title, and
\ ■ .

t

/ date). Also printed will be' the simulated start and

finish times of the run. Finally, the summary statistics

V will be printed for'^ifll those* elements in the simulation

\ that appear in Table 8-1.

V *note: the DECSYSTEM-20 would not allocate
sufficient workspace to load NBDS.NDF in its entirety;
therefore, the script of unused operations was replaced
with the empty array NULL which preserved the operation
in name but freed up needed workspace.

- 140 -

«*\

8.3.2 Computer System With preemptive
Processing

As a first example of a general purpose

NBDS simulation, consider the computer system modeled in

Section 7.2. An identification statement was added to the

top of the list of operating rules shown in Figure 7-2

and the entire set entered into the author's DECSYSTEM-20

directory as the file INPUT.DAT. After loading NBDS.NDF

and entering the GO command, the header was printed along

with an echo listing of the operating rules (in sketch

mode) as shown in Figure 8-2. Upon checking the rules for

errors and keying RETURN, a message indicating that the

program was executing appeared.

The output of summary results for this simulation

run is displayed in Figure 8-3. As shown, the run ended

at simulated time 3600. Reported are the standard results

for resource queues, resource banks, regular activities,

and time dependent variables. Statistics of interest for

this particular run might include the memory queue length

(average length of Que 1), waiting time of all jobs in

the queue (average wait time in Que 1), utilization of

computer memory (average utilization of Res 1), number of

preemptions (count for Act 2), number of jobs processed

by the CPU (count for Act 1), and average number of jobs

in the system at one time (mean value for time dependent

variable "Number Jobs in System.",),

- 141 -

O'Nial! Tuenex Release 1 Usnion 3.02
clear uorkiFice

LOADDEFS 'NBDS 0
GO

*
♦ General Purpose ..#
* Nial-Based «
♦ Discrete Siaulations ,' *
*

/

\ ; } \)
Input Stateeents For COMPUTER SYSTEM EXAMPLE}
+ + + +-+-+
IGEN1IASS1IEXP0N 2.5101 I
+ + + +-+-+
+ + + +-+-+
IGEN2IASS2IEXP0N 20.010! I
+ + + +-+-+
+ + + + + +
IASS1IR0U1IATRIBC1):-1IATRIB(2>I=UNFRM 10 70 I GVARt 1 > :=GUAR(1 > + l I

+--V+ \ + + -— +
IAS§2IPMT1IATRIB<1):«2IATRIB<2)I»N0RML 75 20!GVAR<1)J«GVAR<1>+lI

+ +-—+-+
JRSC1J150111
+ +-—+-+
+—-+ +-+-+-+-+ + +
IRQU1ILVF2I0! I !1!ATRIB<2>IACT1I
+ + +_+_+_+_+ + +
+ +_+ + +_+ + +
IPMT1I1IATRIB<2>IHV111!RQU1IACT2!
+ +_+ + +_+ + f
+ + + +_+

IACT1IFRE1IEXP0N 511
+ + + +_+
+ + + +_+
IACT2IFRE1SN0RML 8 3.51 I
+ + '-+ +-+
+, + -+ + +

IFRE111 IATRIB<2>IACT3I
+ +_+ + +
+ + +-+ +
IACT3!ASS3I IN/SI
+ + +-+ ♦
+ + + +

IASS3ITRM1I0UAR<1)J-GUAR(1)-1I
+ + + +
+ +~+
ITRM1I t -■■ ■
+ +--+
+ +—., +_+
ITIMDINuabar Jobs in Swstee.il I
+ + +_+
+ + +
I END I 36001
+ + +

Check Input statements for obvious errors. If noner kew RETURN
else keu CTRL G to abort run.

Proarae. executing. Please wait......

Figure 8-2. Echo Listing of Rules for Computer
System Run

142

SUMMARY RESULTS

Run IdI COMPUTER SYSTEM EXAMPLE
Slaulatorl RICK SELL,
Run Data I t AUGUST 1764

Simulation Startad I Tlaa 1 0
Simulation Ended » Tlaa I 3600

• •♦• RESOURCE QUEUE STATISTICS ♦♦♦•

QUEUE DELAY STATISTICS

+ + + + + +
IQua «l Ava Lnath .IMax LnathlNo. RaaainlAva Dal aw Tlaa * I

I 1I3.1B27 +/- 3.53931 131 3111.368 ♦/- 2S.666I

ARRIVAL TO START-OF-SERVICE STATISTICS

+ ♦- -+
IQua *IAva Watt Tlaa ** IMax Halt TINo. BalkalAva T Btun Baikal
+ 1 + + + +

I 117.001* ♦/- 33.0041 3BI.B4I Olno valua I
+ + +_ + + +

a for thoaa arrlvala which do not iaaadlatalv acoulra raaourcaa
** far all arrivals .to oueua which acoulra raaourcaa

Mil RESOURCE BANK STATISTICS •»#•

+ + + + + *
IRea tICurrent CareclAva Utilization IHax UtlllCurrant Utlll
4 + + + 1 +
I II 1301106.13 +/- 39.6111 149.941 103.461
+ + + + + +

*••• REGULAR ACTIVITY STATISTICS ***•

+ + 1 ♦ y +

lAct tIAva Utilization IMax UtlllCurrant UtlllCount I
f 4 + . + + +

I 112.0323 +/- 1.1321 I 61 II 16331

I 210.27763 ♦ /- 0.304031 21
t 1 + 1.

II 1341
—♦ +

»•♦• TIME DEPENDENT VARIABLE STATISTICS •••»

t + + +
IMln ValueiMax ValualCurrant Veluel I Mean Valua I Identification

» + 4
INuaber Jobs In Sxateal3.3137 ♦ /- 4.00731 71

 +

Figure 8-3. Summary Results for Production Line Run
- 143 -

8.3.3 Serial Work Stations on a ProductionffLine

After adding an identification statement

to the beginning of the operating rules listed in Figure

7-4, the example of the production line model in Section

7.3 was simulated. The summary report is listed in Figure

8-4 and -dembnstrates the standard set of results for

service queues, service activities, and time independent

variables. Statistics of interest in this simulation run

might include the number of autos waiting at each station

for service (average queue lengths), the time those autos

spent in the queue waiting for service (average delay

time and average wait time),'the numberof" autos which

had to be bypassed to storage in the yard (number of

balks), the utilization of each work station (average

utilization of service activity), fraction of time the

workers at the first work station were blocked while

transporting autos to the next two parallel stations

(average blockage of Srv 1), and the average time a unit

spent in the system (mean value for time independent

variable"Time in System). Also generated by this

simulation run was a histogram displaying the

distribution of times-in-the-system for all the autos

processed (see Figure 8-5).

13& 3 . 4 Traffic Light

For the sake of completeness, the traffic

- 144 -

Run Id! PRODUCTION LINE EXAMPLE
Slaulatorl RICK SELL
Run Data) 1 AUGUST 1984

Slaulatlon Startad I Till I 0
Slaulatlon Endad 9 Tlaa t 1000

♦ HI REGULAR 0.UEUE STATISTICS •••»

QUEUE DELAY STATISTICS

+ 1 + + + ____+
IQua »l Ava; Lnath IMax LnathI Ho. RaaalnlAva Dalau Tlaa * I
+ + + + +_: .—j
I 111.2481 ♦/- 1.1297 I 31 2134.834 +/- 21.0941
+ + + + + +
I 210.88165 +/- 0.323021 II 1134.534 +/- 19.2291
T + + + + T
I 310.85425 +/- 0.332861 II 1140.925 +/- 22.8511
f 1 + + + _ 1

ARRIVAL TD 8TART-0F-SERVICE STATISTICS

{Qua »IAva Ualt Tlaa *« IHax Walt TINo. BalkalAva T Btwn Balks I
+ T + + + r
I 1122.578 +/- 26.8091 106.871 6160.137 +/- B1.26SI

I 2131.976 ♦ /- 20.6461 73.0721 Olno valua I

I 3135.587 ♦ /- 25.4871 107.051 Olno valua I
+ f :,+ + 1 : ♦

* for thoaa arrivals which do not racalva laaadlata aarvlca
»* for all arrivals to ouaue which racaiva sarvlc*

**** SERVICE ACTIVITY STATISTICS «•♦♦

UTILIZATION-RELATED STATISTICS

+ +__-__-„_+ + + +
ISrv *INo. SrvrslNo. Bus* » End I No. SrvdlAva Utilization lAvg Blockaaa
4 + + + + +
I li 21 21 5310.55139 +/- 0.339851 0.35547
T T + + + i
I 21 II II 2610.97205 +/- 0.164841 0.
t 1 + + + +
I 31 II II 2210.92174 ♦ /- 0.268581 0.
+ + + + + +

SERVICE TIME-RELATED STATISTICS *

+ + + + + f +
ISrv tlAva Sarvica Tlaa IHln Srv TIMax Srv TIMax Idla T/SrvrslMax Buaw T/Srvrsl
+ + + «. + 1 r

I 1143.053 +/- 27.9661 8.88961 130.041 21 ' 21
+ ., + + + + 1
I 2168.846 ♦ /- 27.34 I 13.8061 142.281 17.921 938.241
T 1 + + + + +
I 3175.074 +/- 31.7371 12.5631 128.121 64.1311 894.631
f i + + T + +

* includa wait in auaua

»••* TIME INDEPENDENT VARIABLE STATISTICS ♦ ♦##

t + 1 (. + + +
lldantlflcatlonl Maan Valua IHln ValualMax ValualNo. Obarvsl
+ + + + + ♦
ITlaa in Swstaa1128.32 T/- 49.791 27.9941 220.431 481
f f 1 + 1 ♦

Figure 8-4. Summary Results for Production Line Run
145-

HISTOGRAM FOR Tin* in Sw»t«

I

+ +— -+ + — —+- +— —+ — + +
1 Count 1 IRcl Freal ICu» Freal ICell Ll»ltl 20 40 60 80 1001

1 31 1 0.06251 1 0.06251 1 401*** 1

1 01 1 0. 1 1 0.06251 1 ^0.66'T'l C 1

1 11

1 01

10.0208331 IC I.0B3333I 1 61.3331* C !

1 0. 1 IC 1.0833331 1 72.1 C 1

1 SI 1 0.104171 1 0.18751 1 "•§236671***** »C 1
+ + — •- + + — -+- + -- ._+_. +
1 11 10.0206331 1 0.208331 1 93.3331* c 1
+ +— ._+ + — —+- + — —+- + +
1 71 1 0.14S83I 1 0.354171 1 104.1******* C 1

1 61 1 0.1251 1 0.479171 1 114.671****** c 1

1 21 10.0416671 1 0.520831 1 125.331** C 1
+ + — •- + + — —+- + - + ._. +
1 31 1 0.06251 1 0.5B333I 1 136.1*** C '
1 31 1 0.06251 1 0.645831 1 146.671*** C 1

1 41 10.0833331 1 0.729171 1 157.331**** C I

1 21 10.0416671 1 0.770B3I 1 168.1** C 1
+ +-■ —+ +~ — + - + -■ —+- +
1 01 1 0. 1 1 0.77083 1 1 178.671 C 1

1 31 1 0.06251 0.833331 1 189.331*** c 1

1 3! 1 0.06251 0.895831 1 200.1*** c : i

1 51 1 0.104171 1 1. 1 II nfinitw 1***** *' Cl

1 481 1 1 1 1 1 1 20 40 60 80 1001

Figure 8-5. Histogram for Production Line Run

light example in Section 7.4 was simulated with the

operating rules listed in Figure .7-6. The summary report

is displayed in Figure 8-6. Obviously the statistics of

interest for a traffic light simulation would be the line

length of cars stemming in both directions from the light

(average queue lengths) and the time a driver had to wait

at the light until he could pass (average wait time in

queue).

- 146 -

.SUMMARY RESULTS ********

Run Idt TRAFFIC LIGHT EXAMPLE
81.ul.torl RICK SELL
Run Date I IS JULY If84

Slaulatlon Started t Tiaa t 0
Simulation Endad 0 Tlaa I 3600

• •at RESOURCE QUEUE STATISTICS »••♦

QUEUE DELAY STATISTICS

+ +
I Qua *l Ava Lnath
+ 4
I 112.MM ♦/- 2.3983
4 +
I 213.7688 +/- 3.383
4 4
I 310.11577 +/- 0.31994
+ 4

Max LnathlNo. RaaalnlAva Da law TiM * I
 + + +

141 8123.846 +/- 18.3891
 4 + 4

151 3130.021 ♦/- 17.2S9I
 4 4 +

II 1122.903 +/- 13.0971

ARRIVAL TO START-OF-SERUICE STATISTICS \-'

- ♦ 1
lOua flAva Walt Tlaa ** IMaK Walt TINo, BilKllAvi T Btwn Bilktl
4 .f -, 4 4 + +

I 1117.890 ♦/- 19.3331 103.641 Olno valua I
4 4 ;.-4 : 4- 4 _f
I 2)26.03 ♦ •- 19.037 I 80.6921 Olno valua I

I 318.4648 ♦ /- 14.3321 44.1081 Olno valua I

* for thosa arrivals which do not laaadlatalw acaulra raaourcaa
l~t for all arrival! to auaua which acaulra raaourcaa

• ••• RESOURCE BANK STATISTICS »•«•

4 4 4 4 4 I
IR.i 4 I Currant CaraclAv* Utilization IMaK UtlllCurrant Utlll

I II 110.38297 ♦ /- 0.486111 II II
4 4 + 1 + +

I 21 110.37902 +/- 0.483141 II II

«♦♦» REGULAR ACTIVITY STATISTICS • •••

4 4 4 + 4 j
lAct IIAvl Utilization IMaK UtlllCurrant UtillCountl
4 4 + ,+ + +

I 110. ♦/- 0. I II 01 4131
4 4 + + 4 4
I 310.012778 + /- 0.112311 II 01 461
4 4 4 4 4 4
I 610. W- 0. Ill 01 3191
4 4 4 4 + 4

SIMULATION RUN COMPLETE!I I

Figure 8-6. Summary Results for Traffic
Light Run

- 147 -

9. Verification of Modeling Elements

Each NBDS modeling element presented in this

thesis underwent a battery of manual checks to verify

that the functional units of code performed as they were

intended, generating the correct statistical results. In

addition to simple hand simulations on paper, visual

run-time checks were carried out by taking advantage of

Nial's useful "picture" facility. Entire arrays

containing statistical data or entity records filed iyf a

queue or on the event calendar were output before and

after each important step by inserting simple "write"

commands in the code. For instance, a WRITE QSTATS

command placed before and after a record was filed in a

queue would display the entire contents of the

statistical array QSTATS. The components of the array

acted upon during the event were then immediately checked

for correctness. Another useful facility was the BREAK

command; when encountered during execution, evaluation of

the expression it was contained in would stop

immediately, giving the user total control of the

environment. The contents of any array or the value of

any variable could then be. inspected by simply entering

its name. By typing RETURN,, execution resumed at the

exact point where it was interrupted.

To present verification checks for each NBDS

- 148 -

modeling element is beyond the scope of this thesis.

However, the application of some basic queueing theory

will demonstrate that the underlying queueing principles

of the elements are valid.

The basic theory of a single-server queueing system

was developed by Khintchine and Polloczek and results in

the following formula (17):

E(w) = r
2(1 -P)

\ 1 +

/>'

crt.
E(t) s _

> (5)

W*

where E(w) = mean number of items waiting for service
(not including one being served)

P = facility utilization of one serving
facility

E(t) = mean service time for all items s

CTt = standard deviation of service times s

This formula is used to make queue size estimates in a

variety of applications. It applies to exponential

interarrival times, any distribution of service time's,

and any dispatching discipline provided that its

selection of the next item to be serviced does not depend

on the service time.

To test whether this formula applies to the queueing

mechanisms built into the NBDS modeling elements, a set

of operating rules (like the ones in Section 7.1) were

created to model a single-server queueing system.

Exponential interarrival times and service trmes were

149 -

V

specified with mean values of 5 and 10 time units

respectively. A series of 25 general purpose NBDS runs

were conducted with this set of rules, each with

different initial seed values for the random number

generators. Each run was allowed to proceed until 1000

entities were processed.

Having collected 25 independent determinations for

E(w), its sample mean and standard deviation were

estimated. Table 9-1 lists those results as 0.481± 0.093

respectively along with the individual values of E(w) for

each run. Since G"t = E(t) for exponential distributions s s c

and 1° = 0.50*, the Khintchine-Polloczek formula predicts

E(w) to be 0.50 for these simulation runs. Assuming

the results for E(w) are normally distributed, a

test-of-hypothesis was performed to determine whether the

queueing model agrees with the P-K theory. The test

statistic used was:

, x - u

where x = sample mean

u = population mean

s = sample standard deviation

n = sample size

* /° = E(n)«E(tJ where E(n) is the inverse of the
interarrival time.

- 150 -

Table 9-1. Results of Queueing Model Verification Runs

Seed Observed
Stream E(w)

1 0.394
2 0.468
3 0.440
4 0.644
5 0.496
6 0.364
7 0.490
8 0.412
9 0.502
10 0.582
11 0.485
12 0.372
13 0.337
14 0.610
15 0.68 0
16 0.463
17 0.524
18 0.396
19 0.475
20 0.558
21 0.410
22 0.449
23 0.635
24 0.466
25 0.384

x = 0.481

s = 0.093

s / «fn

0.481 - 0.50
0.093 / f75

1.018

d.f. = n-1 24

- 151 -

Equation 6 has a student's t distribution with (n-1)

degrees of freedom (18).

To reject the null hypothesis that E(w) = 0.50 at a

0.05 level of significance, the absolute value of t must

exceed 2.064 for a two-tailed test (18). Substituting the

given values of x, u , s, and n into Equation 6 yields a

value of 1.018 with 24 degrees of freedom. Therefore, the

null hypothesis is not rejected and NBDS is shown to be

an adequate tool for ^simulating the behavior of normal

queueing systems.

- 152 -

10. Prototyping Special Purpose Simulations With NBDS

The largest tasks involved in prototyping

special purpose NBDS systems are understanding the

individual modeling elements, their associated set of

operating rules, and the organization of those rules

within the NBDS program. Once this has been accomplished

and a model of the system of interest is in hand, the job

is reduced to designing a user interface for entering the

variables of the system into the NBDS program and

designing a summary report of the results. Since users of

the prototype should not be required to understand how to

use NBDS itself, the batch technique of inputting the

operating rules to the program employed by the general

purpose NBDS package is unacceptable. Therefore, the

basic structure of the operating rules used in the

simulation must be defined beforehand followed by an

interactive mode by which the user inputs only those

rules (or variables) of interest. Likewise, a prototype

simulation package should not have to rely on the

generalized summary report provided by the general

purpose program. More descriptive headings are required

and only those descriptive statistics that are pertinent

to the simulation should be reported. ""'' "^

This next section will highlight some of the basic

operations of input and output for specialized NBDS

153 -

packages. The integration' of those procedural operations

with the baseoperations already provided by NBDS will

also be discussed. However, in order to provide a basis

for that discussion, this section will begin by

presenting an example of a specialized NBDS prototype

that could be used by telecommunications network

analysts.

10.1 Communications Line Simulation Prototype

10.1.1 Description of Model

This prototype simulation package was

designed to investigate the behavior of a full-duplex

multidrop communications line linking several terminals

to a central computer. Since terminals along a multidrop

line must share the line, a queueing problem will develop

for both input and output messages. Of particular

interest is the average response time of messages sent

from the terminals (ie. time interval from the operator's

pressing the last key of the input to the terminal's

displaying of the last character of the response). In

this model, two types of messages are allowed, each

having its own distribution of input/output*character

lengths and each having the ability to be assigned its

own queueing priority.

Figure 10-1 displays the network diagram of this

system. Note how service queues and activities are used

- 154 -
"5*

I. "^

6EN1

Tf4«4MHiHti Tiw*.

&

CGRl
#» .*

n ,
TssT

M«iB(t)S«Tjp«
A Infut T(H,«

'*%>. I ASS 2.

T^sF

ATMeGy.-cuM \

ASS^i

w
/atiB(i)"--Typt
^ Oolfot T.ie

ATRIB6^:=CU>CK
p

OJtfut Timt

a?
A.7 TLY3

~%t A

1NT(3")
>(rLYs Jifi

TSYS

<^A l-Y^
Type fe

1NTC0
LY(,

TypcTSi

TSYS

-ATI

TSYS ->€0

Figure 10-1. Network Diagram of Communications Line Model

\

to simulate the input and output lines respectively. Only

one GENERATE node is used to represent the arrival of all

input messages to the system. Also note the use of a

CONDITIONAL BRANCH node and ASSIGNMENT nodes to

\ characterize the different percentage and type of each

input message. Regular activities are used to model the

time spent in the computer by each message. TALLY nodes

preceeded by CONDITIONAL BRANCH nodes are used to collect

statistics throughout the network.

10.1*2 Execution of Program

The script file of operations for this

package is named COMLINE.NDF and also resides in the

Lehigh University Computer Center tape library under

Volume Serial Number JCW002. Like the general purpose

NBDS script file, COMLINE.NDF is loaded into a Nial

workspace using the "loaddefs" command. Once loaded,

program execution begins by typing GO. At this point the

initialization steps are performed by the INITIALIZE

operation and operation PRINT_INTRO prints a header and

message describing the purpose of the simulation package.

Next follows a lengthy dialog containing a mixture of

question-answer statements and menu listings. This

interface is carried out by READ_INPUT and allows1 the

userjto input all the variables required by the program.

Figure 10-2 displays a sample of this input session.

- 156 -

O'Nlal! Iwenex RtJiiii 1 Version 3.02
clear workspace

LOADDEFS 'COML1NE 0
00

* ♦
* Mlal-Based •
* Special Purpotf Slaulations t
* Prototype <
* t

SIMULATION OF FULL-DUPLEX

COMMUNICATIONS LINE

The following special purpose siaulatlon Is deslaned to investigate
tha bahavlor of a full-duplex Multidrop coaaunlcatlans Una linklna
aavaral terelnals to a cantral coaputar. Tha line handles two types
of Input ■»■!»•* Type A and TWP* B» whose character lengths and
dispatching Priorities ara uaer-deflnad* To datrralna aueue lengths
for Input and output as wall as teralnal response tlaes for Individual
aessage tvpesr supply the following lnforaatlonl

1. Froa tha following what probability distribution describes the
tlae between arrivals (in seconds) of Ml input transactions!

1. UNIFORM *
2. EXPONENTIAL
3* NORMAL
4. ERLANO

Enter nuaber of choice! 4
Enter aean and nuaber of exponential aaaples! 0.7 3

2. Enter the fraction of input transactions that ara of Type Al 0.30

3. Froa tha following* what probability distribution describes the
input aesaase character lenaths of Type A transactions?

1. UNIFORM
2. EXPONENTIAL
3. NORMAL
4. ERLANO

Enter nuaber of cholcet 2
Enter expected value! 50.

4. Froa the following, what probability distribution describes the
input aessaae character lenatha of Type B transactions?

1. UNIFORM
2. EXPONENTIAL
3. NORMAL
4. ERLANO

Enter nuabar of cholcet 2
Enter .expected value! 43.

3. How do input transactions contend for the line?

1. FIFO
2. LIF0
3. Type A First
4. Type B First

Enter nuabar of choice! 1

Figure 10-2. Input Session From Communications
Line Prototype
- 157 -

6. Enter Input 1 ine preparation tin* (seconds)1 O.S

7. Enter the line speed (characters/second)! 600

8. Fro* the following what probability distribution describes the
length of time (seconds) Type A messages spend In the computer?

1. UNIFORM
2. EXPONENTIAL
3. NORMAL
4. ERLANG

Enter number of choicel 3
Enter expected value and standard deviationl 1.0 0*3

9. Fro* the following* what probabllltw distribution describes the
lendth of time (seconds) Twpe B messaaei spend in the computer?

1. UNIFORM
2. EXPONENTIAL
3. NORMAL
4. ERLANG

Enter number of choicel 1
Enter minimum and maximum values! 0*2 2.0

10. From the following what probability distribution describes the
output message character lengths of Twpe A transactions?

1. UNIFORM
2. EXPONENTIAL
3. NORMAL
4. ERLANG

Enter number of choicet 3
Enter expected value and standard deviationl 750. 530.

11. From the following* what probabllltw distribution describes the
output mes&ade character lendthe of Twpe 0 transactions?

1. UNIFORM
2. EXPONENTIAL
3. NORMAL
4. ERLANG

Enter number of choicel 3
Enter expected value and standard deviationl 395. 200.

12. How do output transactions contend for the line?

1. FIFO
2. LIF0
3. Tape A First
4. Tyre P First

Enter number of choicel 4

13. Enter output line preparation time (seconds)1 0.7

14. Enter desired length of time (minutes) for simulation! 60

15. A histogram of response times for all transactions is provided.
Enter bcs.t estimate of minimum and maximum rinse (seconds)1 2.0 7.5

16. Enter teed stream number (from 1 to 10) for random number sieneretorl 5

Prouram eHecutinS. Please wait

Figure 10-2. (continued)

-158 -

Note the menus of probability distributions and queueing

priorities to choose from in most of the queries. Input

variables requested by the program include: interarrival

times of input messages, message size distributions,

fashion in which messages contend for the input and

output lines, line speed, line preparation times, and

length pi time for the simulation run. The user is also

asked to supply a minimum and maximum estimate of all

response times to set the limits of a histogram

summarizing those results.

Upon supplying all the necessary information,

execution of the simulation run begins followed by a

printout of the summary results (shown in Figure 10-3).

The summary results contain queue length and utilization

statistics for the input/output lines, transmission times

of input/output messages, and response times for each and

all message types. Counts of each message type are also

given. The summary results conclude with a histogram

illustrating the distribution of all response times and

is shown in Figure 10-4.

10.1.3 Initialization and Input of Operating
Rules

Since the user of an NBDS prototype

only supplies some c*£ the operating rules to the

simulation program, the basic framework within which they

- 159 -

SUMMART RESULTS

Simulation Startad t Hinuta I 0
Simulation Endad ■ Mlnuta I 60,
Sa«d Straaa Nuabar I 3

LINE STATISTICS *

I Lin* lAva Quaua Lanath
-+-- -♦—

IHax Quaua LanathlAva Halt For Lina lAva Lina Utilization!

Ilnrut I0.00423B4 ♦/-• 0.0649631

lOutrutlO.49637 ♦ /- 0.81313 I
♦ + r-

110.0087472 +/- 0.04707610.27234 +/- 0.44326 I
__+ + +
611.0486 +/- 1.9142 10.73346 +/- 0.429B1 I

INPUT TIME STATISTICS *

—+
IMaasaaa Tx*a I Haan U»lua IHin UalualHax ValualNo. Obarva

ITwra A 10.39714 +/- 0.10309 I 0.300211 1.27361 471

ITwra B 10.57933 +/- 0.0B8684I 0.300031 1.24331 1234

IA11 TranaactionalO.38439 +/- 0.0938031 0.300031 1.27361 1703

OUTPUT TIME STATISTICS *

+ +
IHIIIKI TUP* I Haan Valua

I TUP. A 14.0603 +/- 3.2648 I

IHin ValualHax ValualNo. Obsrval

0.728641 23.3031 4711
+ + + +_.
12.1044 ♦/- 0.932961 0.70837.1 6.81361 ITvra »

I All Tranaactianal2.6433 +/- 2.0893 I 0.708371

12321

23.3031 17031

^>5*v
RESPONSE TIME STATISTICS *

IHaaaaaa Twpa
t
ITxra A
♦
ITwra B
t
I All Raaponaa TiaaaI 4.3082 +/-
+ +

-4 + + + +

I Haan Ualua IHin ValualHax ValualNo. Obarvll
.+ 1 + + +

13.686 +/- 3.3028 I 1.6091 24.9791 4711
-+ + 1 + +

13.7814 ♦/- 1.02411 1.74931 B.72I 12321
.+ 1 1 + j

17031
 1

2,12071
 +-

1.6091 24.9791
 + +.

a All tlaaa in aaconda

Figure 10-3. Summary Results for Communications
Line Prototype

- 160 -

HISTOGRAM FOR All Rempome Tines

+ +--
ICount i
+ +--
1 161

-+-
IR

■- + -
10

 +-
tl Freo 1

.00939521

—+-
IC

10

 +—
ua Frma 1

.00939521

- + --
IC.

-+—
1

 +
11 Liaitl 20 40 60 80

 4.

1001

2. IC 1

1 671 1 0.0393421 1 0.0487381 1 2.3667UC 1

I 1111 1 0.0651791 1 0.11392! 1 2.7333ISS* C 1

1 1G7I 1 0.109811 1 0.223721 1 3.11 ***** C 1

1 2311 1 0.135641 1 0.359371 1 3.4667!****** C 1

t 2301 1 0.135061 1 0.494421 1 3.83331****** C 1

1 2091 1 0.122721 1 0.617151 1 4.21****** C 1

1 1551 1 0.0910161 1 0.708161 1 4.56671**** C 1

1 124 1 1 0.0728131 1 0.780971 1 4.93331*** C 1

1 B7I 1 0.0510861 1 0.832061 1 5.31** C 1

1 731 1 0.0428661 1 0.874931 1 5.66671** C 1

1 501 1 0.029361 1 0.904291 1 6.03331* C 1

1 281 1 0.016442! 1 0.920731 1 6.41 C 1

1 251 1 0.014681 1 jQ. 935411 1 6.76671 C !

1 101
+ +-
1 91

1 0.0058721
__+ * + _

10.00528481

1

1

0.9412BI
 + -
0.946561

1 7.13331
—4- +

i>K> 7.5!

C 1
 +

C 1

1 911 1 0.0534351 1 1. 1 II nfinity 1** Cl

1 1703 1 1 1
 + -

1
—+-

1
 +-

1
—+ -

1 20 40 60 80 1001

Figurj; 10-4. Histogram for Communications Line Prototype

reside must already exist by the time the READ_INPUT

operation is executed. Therefore, it is the job of the

one who designs the simulation package to define each set

of operating rules used by the model before execution

begins. Furthermore, where member rules exist that must

be supplied by the user, a position must be reserved for

them in their parent array so as to maintain the critical

ordering of rules within that set.

As an example of how this is carried out in COMLINE,.

NDF, the code for the initialization operation INIT_RULES

is illustrated in Figure 10-5. Each set of operating

rules used by the program is defined in that operation.

Note how the first position of each class of rules is a

blank character string. This is to maintain the

correspondence between the integer number of each set of

rules and its position in the array at the top level (ie.

there can be no set of Qrules identified as QUEO); Also

note the use of asterisks in many of the rule sets. These

represent rule elements within a character"'StT>ing or

individual rules themselves that must be supplied by the

user during the query session. For instance, observe the

set of Genrules as it appears after the initialization

operation is executed:

- 162

INIT_RULES IS (
GENRULES:= ' ' LINK SOLITARY CGEN1' 'CBR1' '* *' 0 ' ')f
CBRNRULES:= ' ' LINK SOLITARY CCBR1' CRANNUM <=*' 'ASS1'
CRANNUM>*' 'ASS2')> LINK SOLITARY CCBR2' (
CATRIB<1>=2' 'TLY2')) LINK SOLITARY ('CBR3'

'TLY4'))i
' LINK SOLITARY CASS1' 'QUE1'
)/)+*') LINK SOLITARY CASS2'
>/>+*') LINK SOLITARY CASS3'
)/)+*') LINK SOLITARY CASS4'
)/>+*') i

LINK SOLITARY (

CATRIB(1>=2'
ASSNRULES:= '
'ATRIB(2)=<<*
'ATRIBC2>=<<*
'ATRIB<2)=<<*
'ATRIB(2)=<<*
QRULES2= '

ATRIB<1>=1' 'TLY1')
<'ATRIB<1>=1' 'TLY3')

'ATRIB<1)=1'
QUE1' 'ATRIB(1)=2'
0UE2' 'ATRIB<3)=CL0CK'
GUE2' 'ATRIB(3>=CL0CK'

SRVRULES!

TALLYRULES:

LINK SOLITARY (
' ' LINK SOLITARY

LINK SOLITARY <
' ' ' LINK SOULIARY

LINK SOLITARY
LINK SOLITARY
LINK SOLITARY

SOLITARY CTLY5'
SOLITARY CTLYA'

QUE1' '*' 0 '
QUE2' '*' 0 '
CSRV1' 'CBR2'
CSRV2' 'CBR3'
CTLY1' 'CON1'
<'TLY2' 'C0N2'

' ' 'SRU1'
' ' 'SRV2'

'ATRIB<2)'
'ATRIBC2)'
' 'Tape A'

'Tape B'

)
a
i ■
l ■

)

'TRM1'

LINK
LINK
LINK ,SvOLI
CHI

CONTRULES:= ' ' L
CC0N2' 'ACT2')r
ACTRULES:=» ' ' LINK SOLITARY <'ACT1'

LINK SOLITARY <'ACT2'
TERMRULES:= ' ' LINK SOLITARY CTRM1'
QSFRULES:= VOYDf)

CTLY3' 'TLY5' 'Tape
CTLY4' 'TLYA' 'Tape

'TLY7' 'Tape A' 'TSYS'
'TLY7' 'Tape B' 'TSYS'

'TSYS')
'TSYS')
'INTO)')
'INT<3>')
)
)

All Response Times' 'TSYS'

('C0N1' 'ACT1') LINK SOLITARY r
ASS3'
ASS4'
' ')»

'N/S' >
'N/S')f

Figure 10-5. Nial Code for INIT_Rules of
Communications Line Prototype

163 -

+_+ +

+ f + f._+_ I

.■GENI.'CBM i* *:o: :

r(
The character string '* *' represents the time interval

between generations where the individual asterisks

represent the probability distribution and its associated

set of parameters requested by query No. 1 of the input

session. The more complicated sets of asterisks in the

Assnrules represent the probability distributions and

their associated parameters describing the individual

message lengths, the line speed, and the line preparation

times respectively. They compute to the service times

used by each entity in downstream service activities ...and.

are stored in ATRTB(2).

Once the operating rules have been defined in the

initialization step, it's the job of the READ_INPUT

operation to replace each variable represented by a

symbol with a real value prompted from the user. This is

done by inserting the value returned by a "read"

operation into its corresponding position in the

designated set of operating rules. For instance, consider

the following segment of code which executes the first

query shown in Figure 10-2:

- 164 -

EACH WRITESCREEN ' '
'1. From the following what probability distribution describes the '
' time between arrivals (in seconds) of all input transactions?'?
GENRULES:= ((LINK ((CHOOSE_DIST CHOOSE-PARAMS) (0 2) FLACEALL

(THIRD SECOND GENRULES))) 2 PLACE SECOND GEfrRULES)
1 PLACE GENRULES?

The operation CH00SE_DIST supplies the menu of

probability distributions, reads the choice of the user,

and returns as its value the distribution code

corresponding to the user's choice. Likewise, CHOOSE^.

PARAMS prints the statement requesting the parameters

associated with the given distribution and returns as its

value the parameters read by it. Each value is then

inserted into the first set of Genrules at the positions

held by the asterisks. The result is a completed set of

Genrules pictured below:

+-+-
+ + + (■-■(-+

:GENI;CBRI:ERLNG 0.7 3:0: :
+ -"- — + + -4. .- + -4

+-+-

This same technique was used in all the queries of READ_

INPUT where dummy rules needed to be replaced with real

values.

10.1.4 Access to Statistical Arrays for
Summary Report

Section 4.4 detailed the organization of

- 165 -

the statistical arrays created for each class of modeling

elements in an NBDS simulation run. Those classes include

both types of queues, both types of activities, resource

banks, designated time dependent variables, and

designated time independent variables. Each time a class

of modeling elements is represented in an NBDS^simulation

run, a two-dimensional array is created for that set with

each row but the initial dummy one belonging to a given

modeling element within that class. It is the task of one

developing a prototype NBDS package to selectively pick

from these arrays the data he wishes to process and

report at the end of a simulation run. To aid in this

procedure, Appendix C details the components maintained

by every statistical array in NBDS. The components are

listed in order of their column position in the array and

are identified by the variable names used within the NBDS

program. Each component is also accompanied by a brief

description of its role in the array.

In some cases, the statistical components of

interest need no further processing before reporting (eg.

maximum queue length, number of entities served, etc.).

These data are simply selected from the given array using

the appropriate address and placed in another array

designated for output. However, in instances where sample

means and standard deviations are required, additional

- 166

• processing is required. Sample means based on

observations are simply calculated by dividing the array

member holding the accumulated sum of observations by the

array member holding the count for that variable. Sample

means for time-persistent variables are calculated by

dividing the array member holding the accumulated sum of

the x(t)»dt statistic by the program variable CLOCK

(total time interval). Standard deviation calculations

are more complicated and require the use of the specially

built operations STDV and GRPSTDV. STDV is used for

statistics based upon observations and requires as its

\arguments the previously estimated mean, the array member

2
holding the accumulated'sum of the x statistic, and the

array member holding the observation.count for that

variable. GRPSTDV is used for time-persistent variables

2
and requires as its arguments the accumulated x (t)•dt

statistic, the program variable CLOCK, and the previously

calculated mean.

To demonstrate how some of these calculations are

carried out at the end of a simulation run, consider the

array of accumulated statistics for the queue node QUEl

as it existed at the end of the COMLINE simulation just
f

presented:

o 0 1 34C5.6 15.258 15.258 15.258 3.9129 0.50864 93 1705 0 0 0 0 0

- 167

If the above array is assigned to the variable Qdat, the

following expression would estimate the average waiting

time, Avgw, of all entities receiving service at QUEl:

Avgw: = (6 pick Qdat)/(10 pick Qdat)

where the accumulated sum of waiting times (15.258) is

held at address 6 and the count of entities passing

through the queue (1705) held at address 10. Furthermore,

the standard deviation of waiting times, Stdw, is

estimated with:

Stdw: = STDV Avgw (7 pick Qdat) (10 pick Qdat)

where the accumulated sum of squares of waiting times

(3.9129) is held at address 7.

10.1.5 Output of Summary Results

Nial provides two useful operations for

outputting information to a screen or printer—the

WRITESCREEN and WRITE operations. WRITESCREEN displays

the value of its character string argument and was used

to generate the introductory script and table headings in

all the NBD.S examples illustrated in this thesis. The

WRITE operation displays the value of its argument and

was used to print all the summary statistics. As with all

data in Nial, the results are expressed as arrays which

can contain a mixture of data types. Each row in the

tables of statistical resujJ.££f\<T-e>g>re'sents a single array

or list of data objects. For instance, the array pictured

- 168

below is a list of character strings containing all the

column titles for the table Response Time Statistics of

COMLINE:

\

message Typeirtean ValueJMln ValueiHax UalueSNo. Obsrvs!
+ + + + + +

The next array contains the data of the second row of

Response Time Statistics; note the mixture of data types:

[Tape fl:5.684 +/- 3.302B!1.60?i24.979 1471 i
+ + + 1 + +

After all the necessary calculations have been made and

the chosen data arranged into arrays like those above,

the results are conveniently arranged into tables using

the primitive "mix" operation. A "mix" of a list of lists

of the same length results in a table with the lists as

rows. To illustrate this, assume the two arrays presented

earlier are assigned to the variables A and B

respectively. Observe the effect of the next assignment:

RESULTS:- solitary A link solitary B

+ + +
1+ + + + + +|+ + + + + +|
:!Messa«e TspelMean ValuelMin UaluelMax UaluelNo. Obsrvs ! i I Tupe A,'5.68iS +/- 3.302B ■ 1.60? ! 24. 97? M71 I I
i + + + + + +: + + + + +—+1
+ ~ + +

Here the variable RESULTS becomes a list of 'the

lists A and B. Now observe the effect of the "mix"

- 169 -

operation on RESULTS;

•l« RESULTS

+ + + + + +
!he*sasle TupeEHean Value !Hin Yaluelrtax ValueiNo. Obsrvs!
+ + '-; 1 + f +
!T*pe A .'S.A84 +/- 3.3028: 1.609! 24.979! 471!
+ + + + —+ +

This technique was used to generate all tlje tables of •

summaVy statistics displayed in NBDS examples throughout

this thesis. Histograms also begin as a list of solitary

arrays with each array representing an individual cell of

the histogram. The "mix" operation is used to create its

final form.
r

10.1.6 Integration of Operations into a Working
Program

Once all the input and output operations

of an NBDS prototype have been defined, the simplest way

to create a working program is to edit those operations

into the original script file of baseoperations for the

general purpose NBDS package (NBDS.NDF). In many cases

operations designed for a special purpose simulation have

a similar function to ones in the general purpose

package. When this occurs, the easiest thing to do is

replace the general purpose operation with the new one

while retaining its original name. For example, the INIT_

RULES operation of COMLINE.NDF shown in Figure 10-5

replaced the generalized operation by the same name in

- 170 - *. .

NBDS.NDF. Likewise, the READ_INPUT, SUMMARY.Q, and

SUMMARY,IND_STATS operations of COMLINE.NDF all replaced

operations by the same name and with a similar function

in NBDS.NDF. The advantage of this procedure lies in not

having to redefine these operation names in the top level

GO control—"operation. It also helps maintain the logical

sequence of input/output operations. In some instances,

new operations (like PRINT_INTRO of COMLINE.NDF) need to

be added to the original script file. When this is done,

a reference to it must be added to the GO operation in

its logical position.

After all the new input/output operations have been

edited into the original NBDS script file, the next task

is to eliminate all unnecessary operations so that the

specialized version can be loaded into a Nial workspace

without exceeding its capacity. The hierarchical listing

of baseoperations in Appendix A aids one in determining

which operations are required to support the given

elements in the prototype. Those that are deemed

unnecessary can be culled from the main script file. For

instance, since INIT_RULES of COMLINE.NDF already defines

the operating rules in logical order, there is no need

for the SORT_RULES operation. Therefore, it is edited

from the new script file and, since SORT_RULES will no

longer be defined, the reference to it in the higher

- 171

level operation RULE_SORT is removed as well. In some

cases an unneeded operation is referenced many times

throughout the script file which would result in

extensive editing if it is eliminated. A simple remedy

for these situations is to replace the code for that

operation with the empty array NULL. This is the safest

technique to use in all cases but, as one familiar with

the evaluation mechanism of Nial can see, either method

requires experimentation. That is, make the change,

reload the script file, and check for any resultant

errors; repeat this process until all operations are

fully defined.

- 172

11. Conclusions

The work presented in this thesis demonstrates

how the Nial language, with its unique approach to

handling data and its rich pool of primitive operations,

is ideally suited for programming discrete simulations on

a digital computer. Discrete event simulations demand a

great deal of recordkeeping in the form of maintaining

ordered lists of records, searching and selecting records

from those lists, and creating new records as well as

destroying old ones. All of these programming tasks are

conveniently handled with Nial due to its inherent

array-as-data-object concepts and ability to operate on

nested arrays with ease. The result is a greatly reduced

programming effort compared to that required by other

general purpose computer languages performing the same

tasks.

Nial's ability to treat arrays as single data

objects provided an efficient means for manipulating

entity records in the NBDS simulations. Records

containing an entity's entire list of attributes were

transferred from one file to another with little

programming effort. The filing of these records in

ordered lists -also required no need for a complex system

of pointers—it's all embedded in the language itself.

Likewise, operations on individual elements of a record

- 173 -

were easily carried out and, when used in combination

with one of Nial's powerful transformers, provided a

means for accessing a given attribute in several

different records at oruje.

Nial's only drawback as a base language for computer

simulations is its relatively slow execution time

compared to compiled languages (even the simple

verification runs of a single-server queueing system

required 20-30 minutes of run-time under low load

conditions). For this reason it would not be practical to

use Nial as a production language for computer

simulation. However, its functional design, combined with

the programming features just presented, lend Nial as a

useful tool for prototyping specialized discrete

simulation packages. Thi,s^was,"demonstrated through the

design of the many functional program units that

supported a variety pf simulation modeling elements. A

generalized simulation package, was designed as a vehicle

for experimenting with these modeling elements and

ultimately serves as the framework for developing

specialized prototypes. One simply has to design a

problem-specific interface for inputting the various

operating rules to the system and tailor the summary

report to suit the specific needs of the prototype.

The work presented in this thesis demonstrates

a

- 174 -

Nial's usefulness as a prototyping tool in other

applications1 as well. As shown here, the conciseness and

power of its primitive operations greatly reduces the

programming effort of complex operations. Furthermore,

Nial's design allows one to decompose a problem into

several functional units, thus, helping to clarify the

program logic. However, from this researcher's own

personal experience, Nial's main attraction as a

prototyping tool stems from its interactive nature and

its ability to display the results of an operation on an

array as a picture. Each operation contained in the

library of NBDS baseoperations is the result of several

iterative sessions at a terminal. Typically, a command or

expression was issued and its effect on the target array

examined through its picture. This experimental process

continued until the unit of code produced the desired

result. Once an entire operation was completed and fully

tested, it was copied into the permanent script file of

NBDS baseoperations. Without this functional approach to

problem solving and the interactive environment provided

by Nial, the list of simulation elements resulting from

this process would never have been as extensive.

J~

- 175

*fi&

/

List of References

Jenkins, A.M., and Naumann, J.D. "The Prototype Model
as a MIS Design Technique," Discussion Paper No. 163,
Graduate School of Business, Indiana University
(September 1980), p. 1.

Canning Publications, Inc. "Developing Systems by
Prototyping," EDP Analyzer, Vol. 19, No. 9 (.September
1981), pp. 5-6.

Appleton, D.S. "Data Driven Prototyping," Datamation
(November 1983), pp. 259-268.

4. Jenkins, M.A. The Q'Nial Ref ernc» Ma/niM., Release 10,
ren ' s University , Kingston , C%nad* (J«98 3) .

e, T. "Notes on the Diagrams, Logic and Operations
of Array The6ryT"~Tech• RepT G320-2137, IBM
Scientific Center, Cambridge (September 1981).

6. Jenkins, M.A. "A Development System for Testing Array
Theory Concepts," APL81, APL Quote Quad, Vol. 12, No.
1 (September 1981) pp. 152-159.

7. Hinden, H.J. "Lisp/APL Merger Supports Functional
Programming Concepts," Computer Design (April 1984),
pp 29-31.

8. Emschoff, J.R. and Sisson, R.L. Design and Use of
Computer SimulationModels. New York: The MacMillan
Co., 1970, p. 264.

.9. Shannon, R.E. Systems Simulation: The Art and
Science, Englewood Cliffs, NJ: Prentice Hall, 1975.

10. Krasnow, H.S. and Merikallio, R. "The Past, Present,
and Future of General Simulation Languages,"
Management Science, Vol. XI, No. 2 (1964) p. 236-267.

11. Nicholls, J.E. The Structure and Design of
Programming Languages, Reading, MA: Addison Wesley
Publishing Co., 1975.

176 -

12. Mitrani, I. Simulation Techniques for Discrete Event
Systems, Cambridge, Great Britain: Cambridge
University Press, 1982, pp. 27-31.

13. Pritsker, A.B. and Pegden, CD. Introduction to
Simulation and SLAM, New York: Halsted Press, 1979.

14 Fishman, G.S. Concepts and Methods in Discrete Event
Digital Simulation, New York: John Wiley & Sons,
1973, Chap. 7,8.

15. Deo, N. System Simulation With Digital Computer,
Englewood, NJ: prentice-Hall, Inc. 1983, pp. 43-46.

16 Gordon, G. System Simulation. 2nd Edition, Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1978, Chap. 7.

17. Khintchine, A.Y. Mathematical Methods in the Theory
of Queueing, New York: Hafner, 1960.

18. Mendenhall, W., Schaeffer, R.L. and Wackerly, D.D.
Mathematical Statistics With Applications ,„, Second
Ed., Boston: Duxbury Press, 1981.

'1. • l; ^ , >,

- 177

12. Mitrani, I. Simulation Techniques for Discrete Event
Systems, Cambridge, Great Britain: Cambridge
University Press, 1982, pp. 27-31.

13. Pritsker, A.B. and Pegden, CD. Introduction to
Simulation and SLAM, New York: Halsted Press, 1979. .

14 Fishman, G.S. Concepts and Methods in Discrete Event
Digital Simulation, New York: John Wiley & Sons,
1973, Chap. 7,8.

15. Deo, N. System Simulation With Digital Computer,
Englewood, NJ: Prentice-Hall, Inc. 1983, pp. 43-46.

16 Gordon, G. System Simulation. 2nd Edition, Englewood
Cliffs, NJ: Prentice-Hall, Inc., 197,8, Chap. 7.

17. Khintchine, A.Y. Mathematical Methods in the Theory
of Queueing, New York: Hafner, 1960.

18. Mendenhall, W. , Schaeffer, R.L. ajid Wackerly, D.D.
Mathematical Statistics With Applications, Second
Ed., Boston: Duxbury Press, 1981.

<a

- 177 -

Appendix A. Hierarchical Organization of

NBDS Baseoperations

Simulation Control Program Operations

• GO
INITIALIZE

INIT_CONSTS
INIT.RULES
INIT.VARS

READ.INPUT
CHOOSE.SEED

RULE_SORT
SORT_ RULES
SORT_-QRULES .
SORT_RSCRULES
SORT.ASSNRULES
SORT_TALLYRULES

LOAD_CAL
CREATE.FIRST
QUEUE_FIRST
RQUEUE_FIRST
SORTUP

ARRIVE
CREATE
CHOOSE_DEST

(see top level operations of
Arrival Event Operations)

SORTUP
DEPART

(See top level operations of
Departure Event Operations)

All UPDATE operations
All SUMMARY operations

- 178 -

Arrival Event Operations

• ASIGN
COMPTRIBS
COMPGLOBS
SWITCH.DEST

• CBRANCH
SWITCH.DEST

• Q_SLCT_FWD
SWITCH_DEST

• ARV_ QUE
ENTER_QUE

QSTATS_IN
ORDER.QUE
CHK_IF_BLKD
BALK
TERMINATE

CHECK.SRVRS
TALLY_SERVICE
CHK_IF_BLKD

SET_BLK_FLG

• ARV_ RQ
ENTER_RQ

QSTATS_IN
ORDER_QUE
BALK
TERMINATE

TALLY_RSC
START_ACTIVITY

TALLY_ACT

• FREE_RSC
TALLY. RSC
START_ACTIVITY

TA£LY_ACT
POLL.QUI

PROCESS_RQF
START.ACTIVITY

TALLY_ACT
PROCESS_PRMPTF

TALLY_ACT
QSTATS_OUT

- 17.9 - -v

• ALTER_RSC
TALLY.RSC
START.ACTIVITY
POLL_QUES

(see POLL.QUES of FREE.RSC

•PREEMPT
SWITCH_DEST
ATEMPT.PRMPT

PREEMPTED
ATRIB

ALLOW.PRMPT
QSTATS.IN
TALLY_ACT
START_ACTIVITY

TALLY.ACT
TALLY_RSC
POLL_QUES

(see PO&L QUES of FREE RSC'.
TALLY_RSC
START_ACTIVITY

TALLY_ACT

• MULTIPLY

• MBRANCH

• KONTINUE \
START_ACTIVITY v

TALLY_ACT

• CLOSE.Q
Q_CLOSED

QSTATS-IN
BALK
TERMINATE

•START-ACTIVITY
TALLY_ACT

• OPEN_Q
START.ACTIVITY

TALLY.ACT
CHECK.SRVRS
TALLY.SERVICE
CHECK.QUE

(see CHECK.QUE in
Departure Event Operations)

- 180 -

TALLY.RSC
POLL_QUES

(see POLL.QUES of FREE.RSC)

• TALLIE
BTWNTALLY

TALLY_HISTS
NUMTALLY

TALLY_HISTS
SWITCH_DEST

• TERMINATE

3. Departure Event Operations

• END_SERVICE
SUM_SERVICE
TERMINATE
TALLY.SERVICE
Q_SLCT_BHND

RANNUM
CHECK_QUE

TALLY_SERVICE
SERVICE.QUE

RANNUM
QSTATS_OUT
CHECK_FOR_BLKS

RESET_BLK_FLG
TALLY_SERVICE ^
FIND_HOME_QUE

Q_SLCT_BHND
RANNUM

CHECK_QUE

• END_ACTIVITY
TALLY_ACT
TERMINATE

*-■■??$

- 181 -

>>1

Appendix B. Location of Operations in

NBDS.NDF Script File

Operation Name

ACT.ADDRS
ACTDAT
ALLOW.PRMPT
ALTER_RSC
ARRIVE
ARV.QUE
ARV_ RQ
AS.IGN
ATEMPT_PRMPT
ATRIB

BALK
BTWNTALLY

CBRANCH
CHECK_FOR_BLKS
CHECK_QUE
CHECK_SRVRS
CHK_IF_BLKD
CHOOSE_DEST
CHOOSE_SEED
CLOSE_Q
COMPGLOBS
COMPTRIBS
CREATE
CREATE.FIRST

DEPART 2 4700

END.ACTIVITY 1 50800
END.SERVICE 2 1300

Page Line No.

1 48900
1 49100
2 34200
2 27000
2 69900
2 12100
2 22000
2 8200
2 31900
1 30000

1 58800
2 6p000

2 10100
1 92200
1 97100
1 83000
1 74200
2 67400
1 22000
2 49 6 00
1 7700
1 21200
1 36600
2 73400

- 182 -

Operation Name

ENTER.QUE
ENTER_RQ
ERLNG
EXPON

FIND_HOME_QUE
FREE-RSC

GO
GRPSTDV
GVAR

INIT.CONSTS
INIT_RULES
INIT_VARS
INITIALIZE

KONTINUE

LOAD_CAL

MBRANCH
MULTIPLY

NORML
NUMTALLY

ORDER_QUE
OPEN_Q

POLL.QUES
PREEMPT
PREEMPTED
PRINT.HISTOS
PROCESS_PRMPTF
PROCESS_RQF

Q.CLOSED
Q_SLCT_BHND
Q_SLCT_FWD
QSTATS_IN
QSTATS_OUT
QUEUE_FIRST

Page Line No.

1
1
1
1

75900
70000
32600
31500

1
2

90000
24700

3
1
1

27100
34300
30200

1
1
1
1

2100
3700
2800
4500

2 43800

2 83800

2
2

42600
41100

1
2

31700
62300

1
2

60400
51400

1
2
2
3
1
1

64800
38100
29600
18600
63600
62300

2
1
2
1
1
2

44600
84400
15600
54200
56100
75200

% - 183 -

Operation Name

RANNUM
READ_INPUT
RESET_BLK_FLG
RQUEUE.FIRST
RULE_SORT

SELECT_SRVR
SERVICE_QUE
SET_BLK_FLG
SORT,ASSNRULES
SORT-QRULES
SORT_RSCRULES
SORT_RULES
SORT_TALLYRULES
SORTDOWN
SORTUP
SRV_ADDRS
SRVDAT
START-ACTIVITY
STDV
SUM_SERVICE
SUMMARY.ACT
SUMMARY^ TND„STATS
SUMMARY. Q

'SUMMARY. RQ
SUMMARY-RSC
SUMMARY-SRVS
SUMMARY_TDP_ STATS
SWITCH_DEST

TALLIE
TALLY_ACT
TALLY.HISTS
TALLY-RSC
TALLY-SERVICE
TALLY_TIMED
TERMINATE
TGEN

UNFRM
UPDATE-ACT
UPDATE-Q
UPDATE-RQ
UPDATE.RSC
UPDATE-SRVS
UPDATE.TDP-STATS

VALID_NUMS 2 72600

- 184 -

Page Line No.

1 27700
1 22800
1 73800
2 79700
1 17900

1 7900
1 95400
1 73400
1 10100
1 16700
1 15100
1 4700
1 12300
1 36200
1 35900
1 45700
1 45900
1 49300
1 34600
1 43400
3 11800
3 14600
2 87300
3 500
3 7700
2 94600
3 24800
2 7000

2 64200
1 46100
2 57800
1 52300
1 39500-
1 5700
1 30400
1 38200

1
1

31300
3 \ 9900
2 85500
2 98600
3 5900
2 92700
3 23100

Appendix C. Components of NBDS Statistical Arrays

Service Queues (Qstats) and Resource Queues (Rqststs)

Address
Variable
Name

FLG

1 QN

2 QMAX

3 QT

4 SUMFQ

SUMFQ 2

SUMQT

SUMQT2

MAXQT

QDEPART

Description

Boolean flag indicating when queue
is blocked; used only by service
queues

number of entities waiting in queue

maximum queue length

time of last state change in queue

cumulative sum of (CLOCK-QT)*QN;
divided by CLOCK, yields average
number of entities in queue at any
one time

2
cumulative sum of (CLOCK-QT)*QN ;
passed as first argument to GRPSTDV
operation to estimate standard
deviation of queue length over time

cumulative sum of waiting times in
queue

cumulative sum of squares of waiting
times in queue; passed as second
argument to STDV operation to
estimate standard deviation of
waiting times

maximum waiting time in queue

number of entities departing queue
that had to wait for service

18 5 -

Appendix C (continued)

10

11

12

13

14

15

NTHRU

TB

SUMBT

SUMBT

NBALK

GTFLG

total number of entities departing
from queue

time of last balk from queue

cumulative sum of (CLOCK-TB) or time
between last balk

cumulative sum of squares of times
between last balk; passed as second
argument to STDV operation to
estimate standard deviation of times
between balks

number of entities balking from
queue

flag indicating whether queue open
(0) or closed (1)

Variable
Address Name

0 SN

1 SUMSRVT

2 SUMSRVT2

3

4

5

• Service Activities (Srvstats)

Description

number of entities served

cumulative sum of service times

cumulative sum of squares of service
times; passed as second argument to
STDV operation to estimate standard
deviation of service times

minimum service time

maximum service time

time of last state change in service
activity-

Mi NT

MAXT

ST

-18 6

Appendix C (continued)

SUMFT

SUMFT2

cumulative sum of (CLOCK-ST)*
utilization where utilization is
equal to the number of "busy"
servers/total number of available
servers; divided by CLOCK, yields
average server utilization
cumulative sum of (CLOCK-ST-)*
(Uilizatiion) ; passed as first
argument to GRPSTDV operation to
estimate standard deviation of
server utilization over time

NBUSY number of servers engaged in an
activity

MAXIDL maximum idle time for one server;
where there is more than one server,
this holds the maximum number of
servers idle at one time .

10 MAXBSY maximum busy time for one server;
where there is more than one server,
this holds the maximum number of
servers busy at one time

11 NSRVS designated number of servers for
activity

12 SUMBLKT cumulative sum of (number of
blocked servers/total number of
servers)*(CLOCK-ST); divided by
CLOCK, yields average blocking time

13 NBLKS number of blocked servers at a given
time

14 BLKFLG flag indicating whether destination
queue is blocked (1) or free to
receive entities (0)

• Regular Activities (Actstats)

187 -

Appendix C (continued)

Variable
Address Name

0 AN

AT

SUMFT

SUMFT2

UMAX

CNT

Description

number of entities currently engaged
in activity

time of last state change in
activity

cumulative sum of (CLOCK-AT) * AN;
divided by CLOCK, yields average
number of entities in activity at
one time ~
cumulative sum of (CLOCK-AT) * AN ;
passed as first argument to GRPSTDV
operation to calculate standard
deviation of number of entities in
activity over time

maximum number of entities In
activity at one time

number of entities routed over
activity

• Resource Banks (Rscstats)

Variable
Address Name

0 INIT

1 REMAIN

Description

capacity of resource bank

current number of available
resources

RT time of last state change in
resource bank

cumulative sum of (CLOCK-RT) *
utilization where utilization equals
INIT-REMAIN; divided by CLOCK,
yields average utilization of
resource bank

- 181

Appendix C (continued)

SUMFT2

UMAX

cumulative sum of (CLOCK-RT) *
(utilization) ; passed as first
argument to GRPSTDV operation to
estimate standard deviation of
resource bank utilization over time

maximum utilization of resource bank
at one time

Variable
Address Name

0 NUMS

1 SUMX

2 SUMX2

•Time Independent Variables (Tallystats)

Description

number of observations

cumulative sum of observations

cumulative sum of squares of
observations; passed as second
argument to STDV operation to
estimate standard deviation of all
observations

minimum observed value

maximum observed value

time of last observation; used only
with BTWN option of TALLY nodes

3 MINX

4 MAXX

5 LAST_T

0

1

•Time Dependent Variables (Glbstats)

LST_VAL value of last observation

LT

FX

time of last state change in
variable

cumulative sum of (CLOCK-LT) * LST.
VAL; divided by CLOCK,- yCelds
average value over time

189 -

Appendix C (continued).

3 FX2 cumulative sum of (CLOCK-LT) * (LST.
VAL) ; passed as second argument to
GRPSTDV operation to estimate
standard deviation of variable over
time

4 MINX minimum observed value

5 MAXX maximum observed value

- 190 -

Biography

Rick Sell was born in Allentown, PA on July 23, 1952

to Douglas and Marjorie Sell of Emmaus, PA. After

graduating from Emmaus High School in 1970, Rick entered

Pennsylvania State University where he majored in

Biology. Tn May, 1974 he received a Bachelor of science

degree from PSU and graduated with Distinction.

Upon graduating from PSU, Rick joined Air Products

and Chemicals, Inc. of Trexlertown, PA as a

microbiologist in their wastewater treatment research

laboratory. Over the years he advanced to the title of

Research Biologist and assumed responsibilities as a

supervisor of the wastewater laboratory and pilot plant

program.

Rick is married and currently resides in Allentown.

He and his wife, Kathryn, have one child, Rebecca, who is

almost 3 years old.

It was during his experience at Air Products that

Rick developed an interest in working with computers.

- 191 -

After completing several programming courses offered at

area colleges, he entered Lehigh University in the spring

of 1982 as a part-time candidate for an Master of Science

degree in the Industrial Engineering program. Rick's

particular area of interest is information systems. After

a series of job assignments interrupted his studies, Rick

decided to take an educational leave of absense from Air

Products to pursue the degree on a full-time basis. That

endeavor began in August 1983 and continues to the

present.

- 192 -

	Lehigh University
	Lehigh Preserve
	1-1-1984

	Nial as a Prototyping Tool for Discrete Simulations.
	Rickey L. Sell
	Recommended Citation

	tmp.1451580486.pdf.qosA0

