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Abstract 

Two  techniques   for demonstrating   the  correctness  of  parallel 

programs  are  analyzed   and   compared:     Keller's  method  and   the 

Invariant method. 

It   is   shown   that  Keller's  method   is   the  more powerful:     any 

fact  proveable  using   the   Invariant method   is  also  proveable  using 

Keller's  method,   but  not conversely. 

It  is  known   that   the   Invariant method   is  generally  too  coarse 

to  handle   a  Petri  net  having  a   transition whose   input  and  output 

places   intersect.     It   is   shown   that   it   is  possible   to  construct  an 

equivalent net  such   that  no   transition  has  this property,   but  that 

the   Invariant method  will  still   fail  on   this  new  net. 

It   is   shown   how,   under   certain  conditions,   a   transition 

system  can  be   transformed   to  a  Petri  net.     It   is   seen   that   if   the 

Invariant method  failed   for   the   transition  system   it  will   also 

fail   on  the   Petri  net. 

An  attempt   is  made   to   construct  a procedure   that  is  more 

general   than   the   Invariant  method  and more mechanical   than 

Keller's  method.     The   analysis   of   several  examples   indicates   that 

the  procedure   is  not  yet   sufficiently  mechanical. 

r^' 
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Chapter 1 

1 .1  Introduction to Petri Nets 

A thorough discussion of Petri nets is given in [3].  We give 

here a very brief and informal introduction. 

A Petri net consists of places (drawn as circles), 

transitions (drawn as bars), and arcs (labelled with positive 

integers.  An unlabelled arc is implicitly labelled 1).  In 

addition, each place is marked with a non-negative integer.  (An 

unmarked place has the implicit mark 0). 

A place pi is called an input place for the transition tj if 

there is an arc from pi to tj.  It is called an output place if 

there is an arc from tj to pi. 
a 

A transition tj is enabled if, for each input place pi of the 

transition tj, the marking at pi is greater than or equal to the 

label on the arc from pi  to tj. 

A transition tj may fire only if it is enabled.  A firing 

causes the markings at the input places to be decreased and the 

markings at the output places to be increased.  The amount by 

which the marking is changed is equal to the label on the arc 

between pi and tj.  (Since a transition may fire only if it is 

enabled, the markings at every place are always non-negative). 

Example (see Fig. 1, which appears on p. 320 of [1]).  In 

the readers/writers problem there are n processes, each of which 

may want to read or write to a data item.  Any number of processes 



may read simultaneously, but a process that desires to write must 

have exclusive access—no other processes may write or read while 

the writing process is accessing the data item. One way to solve 

this problem is: 

n permission slips are constructed. 

In order to read, a process must obtain one permission slip. 

To write, a process must obtain n permission slips.  This 

(alleged) solution is modelled in Fig. 1. 

Note the abbreviations: 

LP ... Local Processing 

WR ... Waiting to Read 

R  ... Reading 

WW ... Waiting to Write 

S  ... Slips 

Initially, S is marked n, indicating there are n available 

permission slips.  LP is marked n, indicating all processes are 

doing local processing.  All other places are marked 0. The 

marking of all places can be represented as a vector in which 

(1.1)  m  = [m(LP) m(WR) m(WW) m(R) m(W) m(S)] 

and, eg, m(R) is the marking at place R . 

Thus, the initial marking mO is 

( 1 .2)  mO = [n 0  0 0  0  n] 

Initially, only the transitions t1 and t2 are enabled. 

Suppose tl fires.  Then we obtain the new marking: 

ml  = [(n-1)  1  0  0  0  n]  At this point, t2 and t3 are 
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enabled.  Suppose t3 fires.  We obtain the newx*m|irking m2_  = 

[(n-1)  0  0  1  0 (n-1)]. If t2 now fires:  m3  = [(n-2)  0  1 

1  0  (n-1)]. 

Note that it is now impossible for t4 to fire, since m(S) = 

n-1 implies t4 is not enabled.  This is comforting, since 

otherwise we could fire t4 and have one process in W and one in R 

... violating our requirement for mutual exclusion. 

We would like to prove that the following always holds: 

m(W) =0 or 1; if m(W) = 1, then m(R) =0. 

There are at least three ways to prove this: 

(i)    Invariant method [1] 

(ii)   Keller's method [2] 

(iii)  list all possible markings and show that the above 

holds for each marking (see Chap. 3). 

1 .2   The Invariant method    „ , ,, 

Returning to the general case, we say the marking m is 

reachable from mO if and only if there is a sequence of 0 or more 

transition firings that change the marking of the Petri net from 

mO  to m. 

If a Petri net has I placesjShd J transitions, we define the 

IxJ incidence matrix W as follows: 

If pi is an input place (and only an input place) for the 

transition tj, then W[i,j]= -k, where k is the marking on the arc 

from pi to tj. 

If pi is an output place (and only an output place) for the 
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transition  tj,   then  W[i,j]   =  k,   where k   is   the  marking  on  the   arc 

from  tj   to  pi. 

If pi   is neither an  input nor an output place  for  tj,   then 

W[i,j]   = 0. 

. If pi     is both an  input and an output place,   then W[i,j]= k2 
... ■ * 

-  k1,   where k2   is  the marking on  the  arc  from  tj   to pi    and k1   is 

the marking  on   the   arc  from  pi   to   tj. 

Summary:   W   [i,j]   gives   the  net  change   in  the  marking  at 

place pi caused  by  the   firing  of  transition  tj. 

If we denote  the   jth column of W as  Wj,   then  if  the  current 

marking   is m_1_ ■   and   if   tj   fires,   then  the  new marking m2     is 

related   to mj_    by: 

m2     =  ml     + _W_2 

Further,   if  tk now  fires  we  obtain  m3 ,   where m3_ = m2  +   Wk  = 

ml   + _Wj. +   Wk.        In   general,   if m   is reachable   from mO   ,   then m = 

mO  + 5[wjt . 
1/ 
In matrix  notation,   if jm  is  reachable  from mO   then   there   is  a 

vector    x  >=     0_    such  that in  = m£ +W x_^ 

(   x     >= 0 means each entry of x. is non-negative.) 



In our example, 

i>: -1 T.1-, 0 0 1 1 

1 0 -1 0 0 0 

(1.4) W = 0 1 0 -1 0 0 

0 0 1 0 -1 0 

0 * 0 0 1 0 -1 

0 0 -1 -#i~n 1 n 

and if m is reac habl e fr om mO, then m >= 0 and 

m = [n 0 0 0 0 JI]  + W x for some vector x >= 0 . 

Note:  In the general case, m^ >= 0^ and in = mO + W x where x 

>= 0 is necessary, but not; sufficient, for m  to be reachable from 
- %> —- - ,      . 

mO. (In  Chapter   3,   we   show  that  for  the   above   example   if  m  >=  0 

and  m  =  mO  +   VI x_ for  some   X_L  then m   is  reachable   from mO.) 

The   above  vector  equation  leads   to  the   Invariant method, 

which   is  based  on  the   following   theorem:, 

Thm.   1 :        If ^ » W = JD   and   if m   >=  0^  is  reachable   from mO, 

then c[ . m =       q_ • mO . 

Pf :     Merely multiply   the   equation 

ni   =  m(D   +W x by  q_   . 

The   Invariant method  consists  of  2   steps: 

( 1)   Find   the  most general  vector ^ such  that c[. W = jK 

(This   is  a  standard  problem   in  linear  algebra.     Note   that c[ 



involves   (I-r)   arbitrary  constants  where   I  =  number  of rows   of  W 

and  r  =  rank  of   W.) 

(2)   Specialize   the  constants   to  obtain  specific  vector(s)  Q 

such   that 

_q_. m =     £ . mO   is   "interesting" 

(This   step  is  ad  hoc,   but   frequently  obvious.) 

In  our   example,   the most  general ^  is: 

3 =   a-[1      1      1     0     -(n-1)      -1]   + 

b-[0     0     0      .1     n     1] 

where   a,   b   are  arbitrary  constants.     The   "interesting"   choice   is  a 

=   0   and  b =   1   which  leads   to: 

m(R)   +   n-m(W)   +  m(S)   =  n ^ 

for  alY  reachable  markings  m^       Since  m  > =  0_j_  the   above  equation 

implies m(W)   =0  or   1;   if m(W)   =   1,   then m(R)   =   0.     I.e.,   we   have 

just proved  mutual  exclusion   for  our  alleged  solution  to   the 

readers/writers  problem. 

Under  certain  conditions,   there   is  a   converse   to  Thm.1: 

Thm ..,,2 ,L    The   initial  marking     m£ is  given.     Suppose   that   for 

each  transition  t   there   is   a  firing  sequence   (that depends  on  t) 

that'produces  a  marking     mt  such   that  t   is  now  enabled. 

Claim:       ^  «   mO       = ^. m     for  each marking  reachable   from    ni 

if  and  only   if    ^ .   W =     0. 

Proof:     The   "if part"   is  Thm.   1.     "Only   if":     for   the 

transition  t,   reach  a  marking     m_1^  such   that   t   is  enabled.     Fire   t, 

obtaining     m2   where 



H^« m2_ = m_1_ +    _W£    and     Wt   is'the   column  of  W that.corresponds 

to the transition t. Then ^ . m_1_ = c[ . m0_ and c^ . TO2_ = g^ . m£ 

implies c[ • Wt = 0. Doing this for each transition t, we obtain 

£ . W =     0^ 

Checking that each transition is "enable-able" is generally- 

easy. 

Assuming  each   transition   is,   then  all   statements  of  the   form 

"if _m_is  reachable   from    mO,   then   the  components  of    m  satisfy     a1« 

ml   +   ...  +   al«ml  =   c     (where   ai,   c  are   specified  constants)"   can 

be obtained  by   specializing   the  general  solution    ^ of    C[.W =     CK 

1.3  Keller's Method 

This method makes no use of linear algebra. Instead, a set 

of statements is asserted. To prove these assertions are always 

true : 

(1) verify by inspection that the assertions are true when 

the net has the initial marking. 

(2) Assuming that the assertions are currently true and 

assuming the transition t is enabled, show that the assertions are 

true after t is fired.  Do this for every transition t. 

Assuming (1) and (2) have been verified, it is clear that the 

assertions hold for each marking reachable from mO. 

In our example, the assertions would be: 

( 1 .5a)   m(W) <= 1 

(1.5b)  m(W) =0 or m(R) =0 

Unfortunately, we cannot carry out step (2). 

C 

8 



Suppose m(W)   =  0,  m(R)   =   1,   and  t4   is  enabled.     Then  after 

firing  t4,   (1.5b)   is   false. 

We  will  see,   in  fact,   that  the  assumption  that m(R)>0   and   t4 

is  enabled   is   impossible.     This   fact,   though,   cannot be deduced 

from   the   assertions   ( 1 .5). 

The major difficulty with Keller's method  is  that  it  is 

non-mechanical:     it   is necessary   to  discover  a superset of 

assertions   for  which  it   is possible   to  carry  out   (2).     Then  the 

invariance of the  original  assertions  follows at once. 

For  our   example,   an  appropriate  set of  assertions   is: 

( 1.6) (i) m(W)   <   =   1 

(ii)       m(W)   =   0  or m(R)   =0 

(iii)     m(w)   *  0     implies  m(S)   + m(R)   =  n 

(iv)       m(W)   =   1       implies m(S)   =0 

(v)       • m(S)   <   =     n 

Pf. :     If   (i)-(v)   are   true  before   t1   (or  t2)   fires,   they are  true 

after  firing  since  firing   t1   (or   t2)   does not change m(R),   m(W)   or 

m(S) . 

If   (i)   -   (v)      hold  and   t3   is   enabled,   we  conclude   that  before 

t3   fires: 

1     <   =  m(S)   (t3   is  enabled) 

and    m(W)   =  0   (from   (i),   (iv)   and   1<=m(S)). 

So,   after  t3   fires,   it  is clear  that  (i)   -   (v)   still  hold. 

If   (i)-(v)   hold and  t4   is  enabled: 

m(S)   = n   ((v)   and t4   is  enabled) 



m( w) = 0 •((iv)  and m(S)=n) 

m(R) = 0 ((iii)and m(S)=n) 

Thus, after t4 is fired, (i)-(v) are still true. 

t5 and t6:  exercise . 

Comparison:  Keller's method is stronger than the Invariant 

method:  any result proveable using the Invariant method is 

proveable using Keller's method, but not conversely.  (sec. 2.3) 

However, the Invariant method is mechanical, while Keller's method 

requires the ingenuity to determine a superset of assertions for 

which the inductive step can be carried out. 

1 .4   Colored Petri Nets 

As an example, consider the "dining philosophers" problem 

discussed in [1]: 

Five philosophers are seated at a circular table and between 

each'pair of philosophers is a single fork. Each philosopher 

alternately thinks and eats (spaghetti, presumably).  In order to 

eat, a philosopher must use two forks:  the two forks on either 

side of himself.  This can be modelled as a Petri net in the usual 

way (see Fig. 2). 

Note that each philosopher has a THINK place and an EAT 

place; each fork has a FORK place it occupies when not in use. 

Constructing the Petri net is easy but tedious.  An 

alternative is to construct a much smaller Petri net using 

"colors" (Fig. 3). • 

Fig. 3 differs from a "plain" Petri net in the following 

10 



ways': 

(i) For each place, the marking is a vector instead of a 

scalar, eg., m (T) = [1   0   1   0   1] indicates philosophers 1, 

3, 5 are currently thinking.  The total marking of the net is then 

a vector of vectors; i.e., 

( 1 .7)  m = [ m (T)  m (E)  m (F)] 

(   m   is   the  concatenation  of  3   vectors.     In  actuality,     rn  has 

15   components.) 

(ii)   Each   transition  can   fire  with  any  of  the   "colors"   1,   2, 

3 ,   4  or   5.     In  Fig.   3   there   are  actually   10  possible   firings. 

Note   that  it  may  happen,   e.g.,   that  t1   is   enabled  for   color  3  but 

not  for  color  4. 

(iii)   Each  arc   is now  labelled by  a matrix   instead  of  a 

scalar.      (Unlabelled   arcs   have   the   implicit label   I,   where   I   is 

the   identity  matrix.) 

Specifically,   if   there   is   an  arc   from place  p  to   transition 

t,   then   the  arc   is  labelled   A(p,t)   where  A(p,t)[i,j]   is,   by 

definition,   the  change   in   the   ith component of  the  marking  at 

place  p  caused  by  firing   transition   t with color   j. 

In   Fig.   3, 10        0        0        1 

110        0        0 

(1.8) A  =   B  = 0 110        0 

0   0   110 

0   0   0   1   1 

In general, if m >= 0 and m is reachable from mO then 

1 1 



(1.9) m     =     mO^ +   W x   for   some   x.  >=  0_ 

where  W  is   the   incidence matrix 

For  Fig.   3,   (1.9)    is 

-I I 

(1.10) m     =     mO     + I        -I 

-A A 

( 1 .9) is the same as ( 1 .3) except, that now m (and mO ) is a 

"vector whose components are themselves vectors" and W is a 

"matrix  whose  entries  are  themselves matrices." 

In our  example,   m   is   the   "3-vector"   each of whose  components 

is  a   "5-vector."     Alternatively,   we  may   simply view m   as  an 

"ordinary"   vector having   15   components.     Similarly,   for  W.      I.e., 

(1.9)   is  precisely  the   same   type  of  equation  as   (1.3).     We   can 

thus   apply  the   Invariant method  to   ( 1 .9) . 

For   the   example  of  Fig.   3  we   want   to   find 

(1.11) 3.=   [CLL       <£       £3]        such   that    £ W =     0    „ 

i.e. ,   - £_1_    + £2   - £3   A =   0_ 

and     £j_     - £2     + £3   A =     0_ Thus, 

(1.12) £       =   [ (   £2   - £3   A)     £2       £3] 

where  q2,       q3     are   arbitrary  is   the  most general  solution. 

If ni     =   [   in   (T)     m   (E)     in   (F)]   and   if m   is  reachable   from m£ 

= t   1    £    1 ]      ( where J_ = [ 1      1      1      1      1 ] ) ,   then 

(1.13) (£2     -£3A)m(T)    +£2      m(E)    +£3     m(F) 

=   (   q2     -   q3   A)    1   +   q3       1 

12 



Note that (1.13) can hold for all  q2 and c[3_ if and only if 

(1.14) m (T) + m (E) = _1_ and 

(1.15) -Am (T) + m (F) = -A J_ + j. 

The scalar equations corresponding to (1.15) are 

(1.16) ^ 

1 + ml(F) = ml(T) + m5(T) 

1 + m2(F)    =   m1(T) + m2(T) . 

1 + m3(F)    =   m2(T) + m3(T) """^ 

1 + m4(F)    =   m3(T) + m4(T) 

1 + m5(F)    =   m4(T) + m5(T) 

This indicates that for each pair of adjacent philosophers, 

at least one is -thinking; i.e., no pair of adjacent philosophers 

can be eating simultaneously. 

Summary:  For a system with a high degree of regularity a 

colored Petri net is a more compact model tlian a plain Petri net. 

The Invariant method may be applied,A^g(> a colo,red Petri net.  The 

calculations appear to be easiest if we continue to view the 

incidence matrix as a "matrix whose entries are matrices" as in 

[1].  Since colored Petri nets are not substantially different 

from plain Petri nets, we will restrict future discussion to plain 

nets. 

13 



Chapter 2 

-> 

2 .1   Inadequacy of the Invariant Method 

Consider the Petri nets in Figs 4a and 4b.  Both nets have 

the initial marking [1  0  0].  If we use the Invariant method, we 

'* 
obtain for both nets: 

(2.1)    m  = [ 1  0  0] 

1  -1 

-1 ... 1 

0   1 

i.e., the Invariant method makes no distinction between the two 

nets.  However, the nets are quite different:  for the net in Fig. 

4a the transition t2 can never fire, while in Fig. 4b it can fire 

infinitely often.  This indicates that we should not apply the 

Invariant method to a net having a place that is both an input and 

an output place for the same transition.  Instead, we will 

construct an "equivalent" net for which the input places and 

output places are disjoint for each transition. 

One possibility: 

For each trantition t and for each place p that is both 

an input and an output place for t, perform the transformation 

indicated in Fig. 5.  Note that if place pi is both an input and 

an output place for Ni - many transitions, the above construction 

will produce M new places and M new transitions, where M is the 

sum of all Ni. 

The new net P2 is equivalent to the original net P1 in the 

14 
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following sense : 

Give both nets the same initial marking mO. (More carefully: 

P1 is given the marking mO; P2 is given the marking ml, where mj_ 

is 0 on the new places and coincides with mO on the old places.) 

(i) If m  is reachable from m£ on the net P1, then m   is also 

reachable from mO on the net P2.  (Refer to Fig. 5:  if, e.g., m 

is reached via the firing sequence t1, t2, t3 , ..., tk (on„P1), 

then m can be reached via the firing sequence t1, t1' , t2, t2' , 

t3, t3' , ...tk, tk' (on P2). 

(ii) Suppose  m'  is reachable from mO on, the net P2.  We 

define ni to be the marking on P2 reached by firing every new 

transition in P2 that is enabled when P2 has the marking m_|_ 

(Note that m is 0 at each new place.)   Claim:   m  is reachable 

fromrmO on the net P1 .  (Suppose m     (on P2)"is reached (e.g.) via 

the firing sequence: 

(2.2) t1, "',,   t2 , ' •', t3, ''', ... tk, ,'' where the primes 

denote a sequence of firings of new transitions.  Then m is 

reached (on P1) via the firing sequence: 

(2.3) t1, t2, t3,   tk 

A formal proof can be given using induction on k.  An 

informal argument (see Fig. 5):Imagine that the marks in p' are 

actually in p, but invisible. Firing t makes these marks visible; 

i.e., P2 is P1 with a "visibility delay" introduced.  Comparing 

(2.2) and (2.3), we see that if tj on P2 is enabled, then tj on P1 

is also enabled.) 

15 



(2.5) [ 1  0  0  0] + 

Unfortunately, this construction produces a net for which the 

Invariant method is still inadequate: 

For the net of Fig. 4a, we obtain: 

(2.4) ml + m2 = 1 for every marking reachable from [1  0  0]. (use 

(2.1))  This is the only invariant. -• 

If we apply the above construction to Fig. 4a we obtain the 

net in Fig. 4c and the resulting equation:    ^ 

1-1.0 

-1   1   0 

0-12 

0   2-2 

The Invariant method applied to (2.5) still yields (2.4) as the 

only invariant. 

The above result is typical.  To be specific, suppose the net 

has I places and J transitions.  Suppose only pi is both an input 

and an output place for the same transition.  Further, suppose pi 

is "bad" only for the.transition tJ. 

Let W be the incidence matrix for the original net, P1, and 

let W be the incidence matrix for the new net, P2, constructed as 

in Fig . 5 .  Then : 

16 



(2.6)      W = 

row  I 

Col J 

1 

k2-k1 

Col J Col  J+1 

0 

0 

0 

0 

-k1 k2 

k2 -k2 

(2.7) W    = 

row  I 

row   1+1 0   (0\ ...   0   .... 0 

(corresponding  blank  entries   of   W and   W   are  equal) 

The   following   is  easily  verified: 

Thm: If   [q1   q2   ...   qI]K = £  , 

then   [q1   q2   ...   ql   ql]    W   =   0. 

Conversely,   if   [q1   q2   ...   ql   ql1]   W   = £   , 

then ql'   =  ql   and   [q1   q2   ...ql]   W = £_. 

This  means   that_ all  of  the   invariants   for  P2   can be  obtained  from 

the   invariants  for  P1   merely  by  replacing  ml   by   (ml  + ml').     With 

>& 
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respect to the Invariant method, the new net P2 is not helpful. 

For other algebraic calculations, the new net _is_ helpful (see 

chap. 3). In particular, inspection of Fig. 4a (or 4c) indicates 

that njo transition is enabled, so only the initial marking is 

reachable.  However, if we disregard the figure and consider only 

eqn. (2.1) it (erroneously) appears that the marking [0  1  1] is 

reachable from [1  0  0] since 

>= 0 

r* ~i i—   ~i 
1 -1 

0 + 1 

0 1 
i—  J _    _1 

»>»' 
(i.e., t2 is enabled for the marking [1  0  0].)   .; 

If we consider (2.5), we see that no other marking is 

reachable from [1  0  0  0].  (No transition can fire since there 

is no column of W such tha^t [1  0  0  0]  + that column >= 0^ 

I.e., no transition is enabled when the net has the marking [1  0 

0  0].) Summary:  The Invariant method has difficulties when the 

net has a place that is both an input and an output place for the 

same transition.  Constructing the obvious equivalent net does not 

remove the difficulty. 

2 .2    Transition Systems 

Transition systems are described carefully in [2],  Briefly, 

a transition system is a Petri net with conditions and assignments 

labelling some of the transitions. 

In a transition system, a transition is enabled if it is 

enabled in the "marking sense" (i.e., each input place has a 
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marking   >=the   label   on   the   arc   from  the   input  place   to   the 

transition)   and   if  the  conditions   that  appear  at  the   transition 

are  all   true.     Firing  a   transition  causes   the  usual  "marking 

chaUge"   and   the   execution  of  the  assignments   that  appear   at  the 

transition. 

Note   that  the   initial  conditions   consist  of  an  initial 

marking  and   initial  assignments. 

A  transition  system model   for  the  readers/writers  problem   is 

given   in  Fig.  6. 

Keller's method   (see   sec.   1.3)   is  applicable   to   transition 

systems  as well  as  to   "pure"   Petri nets.     Again we   have  the 

difficulty of choosing  an  appropriate  set of assertions.     e.g., 

for  the  system of Fig.   6  we  would  like   to prove: 

(2.8)    (m2   =  0  or m3  =   0)   and m3   <■=   -1   (mutual  exclusion) 

Unfortunately,   this   set of  assertions  cannot be proved using 

Keller's method. 

The  following  set of  assertions  can be proved using  Keller's 

method: 

(2.10)        m2  =   0  or m3  =   0 

m3  .<= 1 

R = 0 if and only if m3 = 1 

(m2 > 0 or R >= 1) implies (m2 = R-1) 

Of course, since (2.10) is true it then follows immediately 

that (2.9) is true. 

Can we avoid the problem of choosing an appropriate set of 
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1 -1 t -1 1 

0 + i -1 0 0 

0 0 0 I,,.. >,-J^ 

assertions? 

As a first attempt, we may view the transition system as a 

Petri net and then use the Invariant method (i.e., we completely 

ignore the conditions and assignments that appear at the 

transitions). 

For Fig. 6 we obtain: 

ml 

(2.11) m2 

m3 

for each reachable marking. 

We obtain as the only invariant: 

(2.12) ml + m2 + m3 = 1 

In particular, we cannot prove (2.8) using the Invariant 

method.  Ignoring the specifications at the transitions is too 

drastic. 

As a second attempt, we will construct a Petri net 

"equivalent" to the original transition system. 

We will restrict ourselves to transition systems that 

satisfy: 

(i) all conditions are of the form:  V r c, where V is a 

variable, c is a positive constant and r is one of the relational 

operators:  >=, =,>, <, <= (but not <>), 

(ii) all assignments are of the form: 

V := V + c, where V is a variable and c is a constant, 

possibly negative. 
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Note   that  because  of   (ii)   we   will  not  treat the  system   in 

Fig.  6.     Rather,   we  will  treat  the  related  system  where  "R:=   0"   is 

replaced by  "R: =  R-1"   and "R: =   1"   is replaced by  "R:=  R +   1." 

If the   transition t has  the  condition  "WHEN V >=  c,"  do  the 

following : 

if there is no place labelled V, draw one. Draw an arc from 

V to t labelled c and an arc from t to V labelled c and erase the 

condition"WHEN V >=  c." 

If  the   transition  t  has  the   condition   "WHEN  V =   c,"   we   have 

some difficulty.     In  effect,   a  Petri net can deal  only with the 

question  "does   the  variable  V have  a value   >=   the   constant  c?" 

(i.e.,   is  the  marking   at place  V>=     the  label   c  on  the   arc   from  V 

to  t?).     Thus,   we  must reformulate   an   equality  condition  as  an 

inequality condition(s). 

One  way:       Introduce  a new variable  Vc with  initial  value 

equal   to   (Z minus   the   initial value  of  V.)      If  we   can  ensure   that 

Vc +  V =  Z always,   then  the  condition "V =  c"   is equivalent to  "Vc 

>=  Z-c  and  V >-  c." 

How should we  choose  Z?     If we choose  Z small,   then  the 

non-negativity requirements on V and  Vc   (we will  construct places 

labelled  Vc  and  V)   plus  the  constraint  Vc +   V =   Z will  restrict  V 

to small values.     Since such a restriction on  V is not necessarily 

imposed by the original  transition system,   we must not choose  Z 

small. 

Instead,   we will  choose  Z to be an unspecified,   large   (but 
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finite)   integer. 

Some  of   the   transformations  are  given   in  Figs.   7a  and  7b. 

Note  that: 

(2.13) V >   c  can be recast as V >= c +   1 

V <=c     n        " " "   Vc   >=   Z-c 

V <   c     "        " " "   Vc   >=   Z-c+1 

Note   that the  resulting  Petri net will  have .a place   that  is 

both  an   input  arid  an  output place  for  the   same   transition. 

Note  that the  original  transition  system may have no explicit 

requirement  that  V be  non-negative,   but   the   "equivalent"  Petri  net 

does.     This  may  be  of no  importance   if   the  original   system 

implicitly  guarantees  that  V >=  0.     If  V >=  0   is  not guaranteed, 

then  the  "equivalent"   Petri net  is  apparently more  restrictive 

than'the  original   transition   system. 

Finally,   we   have  not  g\yen  a precise  definition  of 

"equivalent."     We  merely  observe   that  on  an   intuitive  level   the 

above  construction prodtlces  an  "equivalent"   system. , 

The   Petri net corresponding  to  Fig.  6   is  shown   in  Fig.   8. 

[For  convenience,   R  has  been drawn  twice.     There  is actually  only 

one place  labelled  R.] 
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If we now apply the Invariant method to Fig. 8 we obtain: 

n ■1 1      -^t- 1 

0 

-1 

1 

»   x 

(2.14) 0 1        -1 0 

m  =               0+001 

1 1-1-1 

Z-1 -1 1 1-1 

where  m       =   [ml   m2 m3  mR mRc] 

By  a   standard   calculation,   we  obtain  the   invariants: 

(2.15) m1+m2+m3=n 

(2 . 16) m3 + mR = m2 + 1 

(2.17) mR  +  mRc  =   Z 

We attempted to choose transformations that would preserve 

(2.17), and we have succeeded. 

(2.15) is really a statement that processes are neither 

t ■ 

created nor destroyed. 

Clearly, there is nothing in the above invariants that will 

guarantee that m2 = 0 or m3 = 0; i.e., in this example the 

Invariant method does not succeed on the "equivalent" Petri net. 

We can show that in general the transformations in Fig. 7 do 

not produce'a Petri net for which the Invariant method is useful. 
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Ex.:   Consider a transition system such that 

(i) no place is both an input and an output place for 

the same transition 

(ii) there are I places and J transitions 

(iii) only transition J has a condition. 

That condition is:  "WHEN V = c." 

There is no assignment at transition J. 

If we ignore the condition we obtain an incidence matrix W. 

Suppose we now use Fig. 7.  This introduces two new places V 

and Vc.  These are neither input nor output places for any 

transition except J.  For transition J, V  (and Vc) is both an 

input and an output place.  The incidence matrix W for this new 

Ratri net is 

Col  J 

W = 

row (1+1) 

row (1+2) 

0    0 

0    0 

0 

0 

(V is the (1+1)st place; Vc is the (I+2)nd.) 

If we now use sec. 2.1 to construct a Petri net such that no 

place is both an input and an output place for the same transition 

we obtain a net whose incidence matrix W" .^s 
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(2.18)  W"  = 

(J+1)     (J+2) 

0 0 

(1+1) 0    .      . 0 

(1+2) 0 0 

(1+3) 0   .     . .    o 

(1+4) 0 0 

-(Z-c) 

(Z-c) 

0 

0 

(Z-c) 

0 

-(Z-c) 

(V is the (I+3)rd place; Vc' is the (I+4)th) 

Define Q=^_cj:c[.W = _0? 

and Q' = ) c^_   : £_ • W" = £ j 

Claim:     If     cQ   ,    ...,     qjt     is  a basis  for Q,   then 

q1'    ,   ...,     qk' ,     r1,        r2     is   a basis  for  Q'   where  we  define 

q j''      =    gj_    with  four  0  entries   added  at  the   end,   j   =   1,    ...  k 

and       r1   =   [0...0     10     10] 

r2  =   [0 .. .0     0      1     0      1] 

(The   above   follows  easily  from  the   fact   (easily  verified)   that     q'. ■ 

W"   =     0_    implies     c[_|_       =   [   ^    a b  a  b] ,   where     q_ • W =     0_^     a,   b 

are   constants). 

This   says   that  for our  newest net  the   "basic   invariants"   are: 

(i)      qj_   •     m     =     qj_   *,   mO ', 

3   =    ' t    •••>   ^ 

and 
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(ii)   mV +  mV   =  K1 

mVc  +  mVc'   =  K2 

where K1   and K2   are  constants. 

(i)   is  a  "basic  invariant"  set for  the  original  transition 

system.     If  the  original  set  (i)   of basic  invariants was 

inadequate   for proof  purposes,   then  the  set  consisting of   (i)   and 

(ii)   is  also  inadequate. 

2.3 Keller's Method vs  the  Invariant Method 

Suppose we  have  a  Petri net with initial marking mO and 

incidence matrix   W.     The  only  facts  deduceable  using  the   Invariant 

method are: 

(i)   If c[ W       = _0     and   if m  is  reachable   from mO,   then     c^ •   m 

= ^ «   mO^ 

(ii)   facts deduceable  from  facts  in   (i)   e.g.,   in  sec.   1.2  we 

derived  a   "type   (i)   fact"      (2.19)     m(R)   +  n*m   (W)   + m(S)   =  n. 

From  this   (and   the  non-negativity  of markings)   we   can deduce 

the   "type   (ii)   facts" 

m(W)   =  0  or   1 

m(W)   =   1     implies   [m(R)   =  0  and m(S)   =  0] 

m(W)   ■=  0     implies   [m(R)   + m(S)   = n] 

The above observation indicates that if we have a method X 

which can always be used to prove a set of facts that includes 

(i), then any fact that can be proved using the Invariant method 

can also be proved using method X; i.e. method X is "stronger" 
than the Invariant method. 
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Thm.:     For  any  Petri net,   Keller's method  is  stronger  than 

the   Invariant method. 

Pf:     Let m0_    be  the   initial marking,   W the   incidence matrix, 

and  suppose    ^ W = &).'       We  must   show  that    _£  «  m «=  <j • mO     (fork 

each  reachable  marking m_  )   can be  proved  using  Keller's method. 

( 1)     ^ . in = jj • mO   is   trivially  true   initially. 

(2)   Suppose    £ • m.    = 3 • mO  before   the  enabled  transition  t 

fires.     Show _q_ . m = _£ . mO   after   t  fires.   So,   let mB    be   the 

marking  before   firing  and  mA  the  marking   after  firing.     By 

hypothesis,   (2.20)       £• mB =  q « mO . 

Then   (2.2 1)   mA =  mB + _Wt   ,   where   Wt   is   the  column  of W  that 

corresponds   to  transition  t.     Multiplying   (2.20)   by £ and 

recalling  that c^ W =     0^    we  obtain 

c^» mA = £ . mB.        (2 .20)   now   implies  that ^ • niA =  cj • mO 

Remarks :        (1)   The   invariant    c[ . m •= ^. • m£  is  generally  discovered 

more  easily  with   the   Invariant method  than  with Keller's  method 

since   the   Invariant method  is  purely  mechanical.     The  above 

theorem merely   indicates  that  the   invariant,   once discovered,   can 

always  be  proved using  Keller's method. 

(2)   The  following may be  the best way to  analyze  a 

Petri net: 

(i)   use   the   Invariant method  to deduce certain 

facts   (the   invariants)  mechanically. 

(ii)   if- these  facts are  insufficient for proof 

purposes,   use   Keller's  method. 
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(3)   The   converse   of  the   theorem  is   false.     There  are 

facts  proveable  by  Keller's  method  that cannot be proved  by  the 

Invariant method. 

Example : J ( sfee  Fig.   9) 

^        Using   the   invariant method we  get: 

ml 1 -1 1 

m2 =S 0 -   + 1 -1 

m3 0 2 0 

and   the   only   invariant   is 

ml   +  m2   =   1 

i.e.   the   Invariant method can  tell  us  nothing 

p3 . 

Using Keller's method we  can prove: 

m 1   +  m2   =   1 

m3   is  even 

m3>= m2 

about the  marking  at 

"\ 
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Chapter  3 

3.1   An  Alternative  Method 

We  have   seen   that  the   Invariant method  is  sometimes   too weak 

to  analyze  a  Petri  net,   while  Keller's  method  requires  us   to 

"guess"   a proper  set of   assertions.     I.e.,   the   Invariant method   is 

mechanical,   but not general;   Keller's method   is  general,   but not 

mechanical.     Note   that both methods   typically attempt  to prove 

statments  of   the   form: 

(3.1)   "Property X   holds   for  every marking  m  that   is reachable   from 

mO"  . 

There   is  a  third  way  to  prove   this  statement:     explicitly 

list  all  markings  reachable  from mO   and   then verify by exhaustive 

inspection  that property  X holds   for each marking. 

Remarks :     (1)   There   is no method stronger  than the  above. 

I.e.,   if  (3.1)   is  indeed  true,   then   (3.1)   can be proven using the 

above  technique   (assuming  we  can list all  the reachable markings). 

(2) There   is no need  to   "guess"  any set of assertions*.     Thus, 

our new  technique does not suffer the  deficiencies of either 

Keller's method or  the   Invariant method. 
a 

(3) The method, however, does have limitations.  Although 

there is a straightforward method for determining all reachable 

markings, the method does not terminate when the number of 

reachable markings is infinite.  Even in the finite case, the time 

to list all reachable markings may be prohibitive. 

Def.:  Let P be a Petri net such that no place is both an 
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input and an output place for the same transition. The net P has 

initial marking mO and incidence matrix W. We inductively define 

a set R( mO ): ■       , 

(i)  mO is in R( mO ) 

(ii) if m  is in R( mO ) and if 

Wi  is a column of W such that ( m + _Wi ) >= 0^ then ( m + 

Wi ) is in R( mO ). 

It is easy to see (refer to sec 1.2) that R( mO ) is exactly 

the set of markings reachable fom mQ . A program for determining 

R( mO ) is given in Appendix 1. 

Example:  consider the Petri net of Fig. 1. 

(3.2)  mO  = [n  0  0  0  0  n]      and 

(3.3) W = 

-1 

1 

0 

0 

0 

0 

-1 

0 

1 

0 

0 

0 

0 

-1 

0 

1 

0 

-1 

0 1 

0 0 

1 0 

0 -1 

1 0 

•n 1 

1 

0~ 

0 

0 

-1 

n 

It can be  shown   (App.   2)   that  the  cardinality of  R(   mO   )   is: 

(3.4)      1/6'(n  +  9n +   14n  +  6) 

For n =  3,   R(   mO   )   was determined using App.   1   and  it was 

verified   (by  inspection of each marking  in R(   mO   ))that 

m4 =   0  or m5  =   0;   m5<=1   (mutual   exclusion) 
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For larger n, (3.4) indicates the impracticality of App. 1. 

Further, App. 1 can not handle the case that n is finite, but 

unspecified.  Generally, we need a better way to generate R( m£ ), 

3.2  Modifying the Invariant Method 

Note the following: 

(3.5)  m is reachable from  mO if and only if there is a sequence 

Wi. 
—J 

j=M 

j=1     of  columns  of   W such  that 

j=k 

( i)     mO  + Wi .  >=  0   for   1<=k<=M 

j = 1 

j=M 

and        (ii)     m  = mO  + Wi' 

j-1 

(see   sec.    1.1) 

(The   firing   sequence Sti:} then  transforms   the  marking  from 

mO   to  m_2_  )      Determining   that    m   is  reachable   from mO   by  verifying 

that   (i)   and   (ii)   hold   is too difficult.     Instead,   we  will  attempt 

to  determine  reachability by  a   two-step process. 

Note   that  if   (i)   and (ii)   hold,   then 

(3.6)   m  =  niO  +W x     for  some  vector  x. 

The  converse,   however,   is   false:     the   satisfaction of   (3.6) 
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does  not   imply JB   is  reachable   from  mO. 

Example :      (see  Fig.   10) 

0 3 -1 -1 

1 + -1 3 -1 

1 -1 -1 3 

is   satisfied  by 

m  = •   [ N   (N+1)    (N+1)]        and £    =   [N  N N],   for  every 

positive   integer  N.     However^the  only markings reachable   from   [0 

1      1]   are   [0      1      1]   and   [3     0     0]. 

Thus,   (3.6)   is   a necessary,   but not  sufficient,   condition 

that m be  reachable   from  mO.       Nevertheless,   (3.6)   is  useful   in 

determining  reachability: 

Step   1:     Does   there   exist  x     such  that   (3.6)   holds?     If  not, 

then m  is not  reachable   from mO.        If   so,   determine  Xj.    then 

Step   2:     see   if   (i)   and   (ii)   can  be   satisfied  where    ^_    ei 

=  x   •     (   ek  nas   1     in position k  and  0  elsewhere.) 

Summary:     Step   1   is  used to narrow our  search for a  firing 

sequence   that  will   transform  m£  into  nu     Step 2   then  searches 

through   this   smaller list  of  candidates. 

Thm.:     There   is  x  that  satisfies   (3.6)   if  and  only   if   [   £. m 

=    _cj •   mO   for  every <± such  that £ wt   0  ] 

Pf:     easy exercise   in linear  algebra. 

Remark :     The   Invariant method  stops  after  step   1.     After 

finding all jj such  that c^ W = jO^ the  Invariant method  then deals 

J 
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with R' , where R' = i mj_ S 5L = S ££ for ^-^ S such that Q  W = £ f 

R* is a superset of R( mO)t  so there may be properties that 

hold in R( mO ) but not in R1 . 

The Invariant method cannot prove these properties. 

Example 1 :  Suppose jnO and W are given by (3.2) and (3.3). 

Then there is x^ that satisfies (3.6) if and only if: 

(3.7)  n = ml + m2 + m3 + m4 + m5    and 

n = m4 + n » m5 + m6 

If (3.7) is satisfied, then the most general _x satisfying 

(3.6) is 

m2 + m4 + C5 

(3.8) m3 + m5 + C6 

m4 + C5 

m5 + C6 

C5 

_C6 — 

where C5 and C6 are arbitrary constants.  (Again, this is a 

standard linear algebra calculation.) 

To recapitulate :   m is not reachable from mO unless (3.7) 

is satisfied.  If (3.7) is satisfied, then m is reachable provided 

we can specialize C5 and C6 in (3.8) so that there is a "legal 

firing sequence that sums to x" , 

(We may assume m >= 0j_ since otherwise there is no possibility of 

finding a legal firing sequence that sums to X_L ) 

One choice that works : (C5 = C6 •= 0) 
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x       = (m2 + m4) e_[ + (m3 + m5) e:2 

+ m4 e3 + m5 e4 

i.e., fire t1 (m2 + m4) times; then fire t2 (m3 + m5) times; then 

fire t3 (m4) times; then fire t4 (m5) times. 

We have verified 

Result:  For the Petri net of Fig. 1, m is reachable from mO 

if and only if [ m >= 0_  and (3.7) is satisfied.]  i.e., we have 

determined R( m0_ ) without using Appendix 1. 

Remark:  In sec. 1.2 we saw that the net of Fig. 1 could be 

analyzed successfully by the Invariant method.  Let us consider 

Fig. 8, a net for which the Invariant method fails.  In order that 

no place be both an input and an output place for the same 

transition, introduce new places labelled R* and Re'  and new 

transitions labelled tl' and t3'. 

(see Fig. 5).  We obtain the following: 

Example 2 : 

(3.9) 

(3.10) mO 

(3.11) 

W = 

[ml     m2 m3 mR    mR' mRc mRc' ] 

=   [n     0 0 1     0 (Z- ■1) 0] 

t1 t1' t2 t3 t3' t4 

1 -1 0 1 -1 0 1 

2 1 0 -1 0 0 0 

3 0 0 0 1 0 -1 

R -1 2 -1 -1 0 1 

R' 2 -2 0 0 0 ■ !0 

Re -1 0 1 -(Z- -1) z -1 

Re' 0 0 0 Z -z 0 
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Then there is a vector x  satisfying (3.12)   m «= mO + W x 

if and only if 

(3.13a) ml + m2 +m3 = n 

(3.13b) -m2 + m3 + mR + mR' = 1 

(3.13c) mR + mR' + mRc + mRc1 = Z 

Assuming m  satisfies (3.13), then x satisfies (3.12) if and 

only if 

m2 + C1 

m2 + C1 - 1/2-mR' 

(3.14) x C1 

m3 + C2 

m3  +   C2   -   1/Z»mRc' 

C2 

where  C1   and C2   are  arbitrary constants. 

Is  there  a choice of C1   and C2  such that the resulting x  is 

the   "sum of  a  legal   firing  sequence"?   ...   sometimes. 

Lemma   1:     If m  is  reachable   from mO   then mRc'   is  a multiple 

of  Z  and mR'   is  a  multiple  of  2. 

Pf.:     If m is reachable  from mO,     there  is a choice  of C1 

and C2  such  that the  entries of   (3.14)   are non-negative  integers. 

Lemma 2:     If m   is reachable fom mO,     then mRc1   = 0  or Z. 

Pf.:     Use  lemma   1   and   (3.13c) 

Lemma  3:     If m   is  reachable  from mO,     then 

#t,1     >=   #tT 
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#t1      >=   #t2 

#t3     =      #t3'      or  #t3   =   #t3'   +   1 

•   #t3     >=#t4 

(where  #ti  =  number  of   firings   of  transition   ti   in   the   firing 

sequence  used  to  reach m  from mO   ) 

Pf. :     Use   (3.14),   lemma  2,   and note   that 

x =   [#t1   #t1'   #t2  #t3   #t3'   #t4] 

Lemma  4:     If m   is  reachable   from mO,     then m2  =0  or m3   =   ; 

Pf. :     Suppose  not.     Then  there   is   an intermediate  marking _M 

such   that 

(i)     v: M-   =   o,   t3   is  enabled 

(ii)   t-:h .■■-   • • ,   H2  =   0 ,   t1   is   enabled 

(see   (3.11)   )   Note  that M   itself   is reachable,   so  lemma   3 

applies   to  M. 

Suppose   (i) :     by   (3.11),   M2   =   #t1   -   #t2   >   0   and   M3   =   #t3   - 

#t4   =   0. 

Then   mRp  =    (Z-1)-#]t1   +   #t2 

.-      -    (Z   -   1).#t3   +   Z#t3'    -   #t4 

recall  that mRc   is   initially   (Z -   1)) 

Thus,   mRc  =   (Z   -   1)   -   (#t1   -   #t2) 

-   Z-(#t3   -   #t3')   +   #t3   -   #t4   <   (Z  -   1) 

(#t1   -  #t2   =  M2   >   0;   #t3   > ST# t3•   by  lemma  3 ; 

#t3   -   #t4  =   M3  =   0.) 

But  mRc  <   (Z  -   1)   implies   t3   is  not  enabled.      (See   (3.11)   ) 
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This   is  a  contradiction. 

The  case   (ii)   is  an  exercise. 

Lemma  5:     If m   is  reachable   from m0_ then  either   [m2  =  mR1   = 

0]   or   [m3   =  mRc1   =   0] , 

Pf.:      (i)   Suppose  m3  =   0.     Then   (3.13b)   implies mR +  mR'   = 

m2  +   1>0. 

(3.13c)   now   implies mRc  +  mRc'   <   Z.     Lemma  2   now   implies  mRc1 

=   0. 

(ii)   Suppose  m3   >   0.     Then  lemma  4   implies m2   =  0.     (3.13b) 

now  implies mR +  mR'   =  0.     i.e.,   mR'   =0. 

Lemma  6 :     If m   is  reachable   from jnO   then m3   =   0   or   1 . 

Pf.:     m3   >   0   implies  m2   =   0.(lemma  4)      (3.13b)   now  implies 

m3   =   1 . 

Thm.       R(   m£  )   consists precisely of: 

[     n 0 0 10 (Z-1) 0], 

[(n-1)        0 1 0 0 Z 0] , 

[(n-1)        0 10 0 0 Z], 

[(n-x)        x 0 (x+1-2y)        2y        (Z-1-x)   0] 

where 0   <=x   <=n   and  0   <=2y   <=1   +  x. 

Pf. :     We  know m  must  satisfy   (3.13)   and 

(a) [m2   =  mR'   =   0]        or 

(b) [m3 = mRc' = 0] 

Suppose (a) holds.  Then 

(3.13a) yields: m1 + m3 = n 
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^ ■*.. 

-/■• 

* 

.... <'? (3.13b)  yields:  m3  + mR =   1   . 

(3.13c)   yields:  mR + mRc  + mRc'   «=  2 

""*•     Case   1a:    ni3  =  0  implies mR =   1 .    This now  implies   (lemma  2) 
  ,->*,„— 

mRc'   « 0.      ' '     ' '     'V        ' 

i.e.,   [n    0     0     1     0     (Z-1)     0] 

Case  2a:     m3  =   1   implies mR =   0.     This   implies mRc .+  mRc'   = 

Z.     Using   lemma  2 . 

[(n-1)     0     1     0     0     Z    0] 

[(n-1)      0     1     0     0     0     Z] 

and  it is  easily verified  that  these markings are  actuary 

reachable   from mO. 

Suppose   (b)   holds.     Then 

(3.13)   yields: ml   + m2   =  n 

mR + mR' = m2 + 1 

mR + mR' + mRc = Z 

By lemma 1, mR' = 2y.  Denoting m2 as x, the only candidates 

for reachability in case (b) are: 

[(n-x)   x   0   (x+1-2y)   (2y)  (Z-1-x)   0] 

where 0 <= x <= n and 0 <= 2y <= x+1 

That the above is actually reachable can be demonstrated via 

the firing sequence : 

(t1, t1')  fired x times; then 

(t1, t2)   fired y times 

Remark:  Finding R( mO ) was not mechanical after (3.14) was 

derived. 

38 



3.3 Deadlock. 

Roughly  speaking,   we   say  deadlock   is  possible   for  a  Petri net 

if  there   is   a marking  m',     reachable   from  mO,   and   a   "desirable" 

set of markings  MD,   where  each marking   in MD  is reachable   from    m£ 

but no marking   in MD   is   reachable   from m' . 

(In   [1],   a  net   is   said  to be   "deadlock-free"   if   for  each 

reachable  marking  m  at  least one   transition   tm   is  enabled.     This 

definition   is  clearly   inadequate.) 

One way  of   showing   deadlock   is  impossible:     show  that  if m  is 

reachable   from mO,   then mO   is  reachable  from m. 

(In   [2],  m£ would  be  called  a  "home   state.")      This   implies 

that  if  nM   and  m2   are  both reachable   fom mO,   then  m2   is  reachable 

from ml. 

For  example   1:     If m   is  reachable   from mO,   then m£  is reachable 

from nu        (See   (3.2),   (3.3)   and   (3.7)   and   result   1). 

Proof: 

We  must  show  that   if 

(3.15)        m   >=     0 

n  =  ml   + m2  +  m3  +  m4   +  m5 

n  =  m4   +   n«m5  + m6 

then mO  =[n       0 0 0 0 n]is  reachable   from  nu 

(3.15) implies   there   is     vector  x. such  that 

(3.16) mO  "  m +   W x 

where   W is  given by   (3.3). 

In  fact,   the  most  general jt  satisfying   (3.16)   is 
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C1 - m2 - m4 

(3.17) x     =     C2 - m3 - m5 

a 
C1 - m4 

C2 - m5 

C1 

C2 

where C1 and C2 are arbitrary constants. 

Can we specialize C5 and C6 so that the resulting x. is the "sum of 

a legal firing sequence" beginning with the initial state EQ? 

The "smallest" choice is C1 = m2 + m4; C2 = m3 + m5 

0 

Then x  =       0 

m2 

m3 

m2 + m4 

m3 + m5 

The following firing sequence is legal and sums to x. 

Fire (t6) m5 times; 

fire (t5) m4 times; 

fire (t3) m2 times; 

fire (t5) m2 times; 

(At this time we have reached 

[(n-m3)   0  m3   0   0  n] beginning from [ml  m2  m3  m4  m5 

m6]) , 

fire (t4, t6) m3 times. 
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For example 2:  If m is reachable from mO,  then mO is reachable 

from ou 

(See (3.10), (3.11) and the theorem.) 

Proof:     that mO  =   [n     0     0     1     0     (Z-1)     0]   can be  reached   from 

the   first  three  markings  listed   in  the   theorem  is  an  exercise. 

To  show mO   can  be  reached'from   [(n-x)      x    0     (x+1-2y)   2y   (Z-1-x) 

0] : 

Fire (t1')  y times reaching: 

[(n-x)  x 0  (x+1)  0  (Z-1-x)  0] 

Now fire (t2) x times reaching: 

[n   0 ■ 0   1   0   (Z-1)   0] . 
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Initial   marking:    mO(LP)  = n = mO(S) 
mO  (other)  = 0 

Fig.   1 

a 
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For convenience, several places have been drawn more 
than once. 

Initial marking:  m(Ti) = 1', m(Fi) = 1', 
m(Ei) = 0;  1 < = i < = 5 

Fig. 2 
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tl i_ 

t2    Y 

^ 

Fig.   3 
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A (V 

^ 

ti 

Initial marking: ml = 1; m2 = 0 = m3 

Fig. 4a 
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-1 

^- 50 ^ 

A 

<r I P2 

tl 

Initial marking: ml = 1; m2 = 0 = m3 

Fig. 4b 

P3 
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A t2' 

Initial marking: ml = 1; m2 = m3 = m3' = 0 

*»ir~-= 

Fig. 4c 

47 



Before: 

After: 

Tig.    5 
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pi 

A 

R:=R+1 

R:=R-1 

•<r 

S/_* t4 \/_ 
R: = l 

Initially:    ml =  n; m2 = 0 = m3;  R =  1 

Fig.   6, 
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tl. 
V:=V-c ti 

c 

c 

t2 V:=V+c 

QVC 

£ 

c 

Ov 

.»^nen V >=c 

V:=V+d 

d+c 

Fig.   7a 
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t4 
U+ien V <c 
V:=.V+d 

Z-c + 

t4 

Z-c+l-d 

t5 W-hpn  V=r . 
V:=V-d 

Z-c+d 

Fig.   7b 
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pi 

For convenience, place R has been drawn twice. 

Initial marking: ml =n; m2 = Q = m3;  mR = 1; mRc = Z - l7?n 

Fig. 8 
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tl , t2 

Initial marking: ml = 1; m2 = 0 = m3 

Fig. 9 
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^(V 

Initial  marking:    ml = 0; m2 =  1 = m3 

Fig1.   10 
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Appendix 1 

The following program will generate all markings in Reach 

( mO ).  The program terminates with list = Reach ( mO )if and 

only if Reach ( m0_ ) is a finite set. 

BEGIN 

Initialize a queue to empty; 

Initialize a list to empty; 

Enqueue ( mO^ ) ; 

WHILE the queue is not empty DO 

BEGIN 

Dequeue ( in ) ; 

Append ( m ) to the list; 

FOR i:= 1 to number of columns of W do 

IF ( m + ^tfi >= .£,) AND ( m + _Wi ) is neither 

in the list nor in the queue 

THEN   Enqueue ( m + Wi ) 

END 

END. 
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Apend ix  2 

Def.   1:     We define  F(n)   = number of distinct vectors m =   [ml m2 m3 

m4  m5  m6]   that  satisfy: 

(i)       mi   is  a  non-negative   integer  for  each  i 

(ii)     n = ml   +  m2  +  m3  +  m4  +  m5 
i   ■ 

(iii)   n «= m4  + n«m5 +  m6 

(n  >   0) 

Def .2:     We  define  G(n)   =  number  of  distinct  vectors  m  «=   [ml     m2 

m3] 

tha,t satisfy: 

(i)       mi  is  a non-negative   integer for each  i 

(ii)     .n  = ml   +  m2  +  m3 

(n  >=  0) 

Lemma  1:     For  each- n  >   =  0,   G(n)   =   (n +   1)« (n  +   2)/2 

Proof:     Assign  to m3   the   integer value   j,   where 0  <=   j  <*n. 

Then   (n  -   j)   units  remain  for  assignment  to ml   and  m2.     This 

latter  assignment  can  be  done   in   (n  -   j  +   1)   ways. 

n 
Thus,   G(n)   = J>- (n  -  j +   1) 

j=0 

-   (n  +   1) • (n,i*  2)/2 

n 
Lemma  2:     For each n  >   0,   F(n)   -  G(n  -   1)   +   *EL    G(n  - k) 
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Proof:  (i) and (iii) of Def. 1 Imply that m5 may have only the 

values 0 or 1.  If we assign m5 the value 1, then we must assign 

m4 and m6 the value 0.  We must then assign ml, m2, m3 values such 

that n «= ml + m2 + m3 + 1 . 

This latter assignment can be done in G(n - 1) ways. 

If we assign m5 the value 0, then m6 = n - m4 and n *= ml + m2 

+ m3 + m4 . 

Assign m4 the value k, where p < = k < = n.  Now we must 

assign ml, m2, m3 values such that n = ml + m2 + m3 + k.  This 

latter assignment can be done in G(n - k) many ways. 

Thm.:  For each n > = 0, F(n) = (n + 9n + 14n + 6)/6 

Proof: The above is clearly true for n = 0.  For n> 0, 

n 
lemmas 1 and 2 imply F(n) = n(n + 1)/2  + ^T (n - k + -1),(n - k + 2)/2 

k=0 

Now recall:  >_  k  = n(n + 1)(2n + 1)/6 
k=0 
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