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SOSIMUIATION MOSEL OF THE I05M CUSTOMED TITO-MATICYM CONTROT
SYLTE!M e gonald 5. Hoch

AZSTEACT

One of the wmeasures of usefulness of an information system
is its ability to process a recuest within a desived time frawe.
If, for some reason, the s.stem is unable to responc within this
time frame, then it loses all or paft af its effectiveness.

This paper desciibes a simulation model for IBM's Customer
Information Control Systcm, an on-line computer systewm which
processes iucuiries and updates to a user data base. The in-
auiries and undates ave initiated from telecommunications
terminals and vesponses are divected baclk to these same term-
inals. If tnhe time taken to respond to these transactions
becomes too ;reat, the svstem loses its effectivencess. This
model can be used to discover those areas within CICS which act
as hottleneciks _siven various input arameters.

Several simulation +uns rere mace and their results are
outlined within. One wajor :vablew discovered in thesc runs
was in the voutine which loads projrams into cove stova;e which
are to be exccuted. Under certain circumstances this routine
performs a considerable amount of extra work which is not re-
quired and which de;rades the system to a ureat extent. A

solution has been rvoposed for this problem.



CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 INTRODUCTION

To understand the reasoning behind and intent of this Master's
thesis, it is necessary to delve into the background of on-line real-
time computer systems, the reasons they came about and what they
intended to accomplish. It would be best to start by defining what
is meant by an on-line computer system. An on-line computer system
is "one in which the input data enter the computer directly from the
point of origination and/or output data are transmitted directly to
where they are used. The intermediate stages of punching data onto
cards or paper tape or of writing wmagnetic tape or off-line printing
are largely avoided." [ 1

On-line systems came about primarily because computers could
not always provide information to a user within the time frame when
it was most needed. This was true for a number of reasons:

1) Not every person or even company could afford one of
these expensive machines, and hence, they might be
forced to use a computer situated some distance away.
Thus, there was the problem of getting the input to the
computer and output returned from the computer within
a reasonable period of time.

2) Once the data reached the computer, the problem still

existed of scheduling and coordination of the necessary



events in order to get usable output.
An on-line system, in itself, solves part of this problem, which
is the getting of the data to and the output back from the computer
in a short period of time. This is accomplished by transmitting
the data over transmission lines between a main computer and
terminals, which themselves could be computers. Now, due to
electronic speeds, time to get a job to the main computer is
measured in seconds, rather than minutes, hours or even days.
However, the problem of producing the output within a short period
of time still exists.

It is here that the concept of 'real-time' enters. A real-
time system is defined as 'one which controls an environment by
receiving data, processing them, and taking action or returning
results sufficiently quickly to affect the functioning of the
environment at that time.'" [ 1] It is the concept of sufficiently
quick results that is of the essence here; that is, the provision
of a system which provides a response time within which the user
can function effectively. Within this concept, response time
cannot be given a universal value since it is dependent upon the
application in progress. A response time in seconds or less may
be necessary to control an industrial production system, versus
only a response time of minutes or hours for some commercial or
managerial functions. However, in all cases the system must meet
the time-dependent needs of the user to be considered real-time.
It should be noted here that while some authors consider a real-

time system, one which has a response time of seconds or fractions
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of seconds, in this work we shall use the term only in its more
general sense.

The data pro;essing system has now expanded from the central-
ized computer and its assorted auxiliary equipment to include such
things as terminals and telecommunication lines and their controllers.
Also, what was once a basic operating system has now been expanded
into an extremely complex set of software routines, hopefully capable
of controlling the system equally well under varying conditions of
stress and various requirements of individual requests to the system.
Many, if not all, of the manual tasks which were present under the
former 'batch' method of computing have now been replaced with
automated controls as part of these software routines. Also, the
telecommunications controller has taken on some new tasks due to
the additional capabilities of the system. Some of these new
functions include:

1) Polling of terminals to determine which have a request

on the central processor.

2) Analyzing where input and output messages are to be routed.

3) Queuing up requests on various components of the system.

4) Translation between external transmission code and

internal processing code.

5) Checking for transmission errors.

It is the Customer Information Control System from IBM upon
which attention will be focused. This system was chosen because of
its widespread existence in installations and also because the author
intends on making practical use of the results of this system study.

The above system is ''a transaction-oriented, multiapplication data
4



base;data communication interface between a System/360 or

System/370 operating system and user-written application programs.
Applicable to most on-line systems, CICS provides many of the
facilities necessary for standard terminal applications: message
switching, inquiry, data collection, order entry, and conversational
data entry." [ 2]

1.2 PERFORMANCE EVALUATION TECHNIQUES

As described in detail by Baafi [ 3] and mentioned by Shulman
[ 4] ., there are three performance evaluation techniques available
for a computer system;:

1) Monitoring (hardware or software)

2) Analytic evaluation

3) Simulation
Each particular method has its own advantages and disadvantages
which must be weighed together with the system to be evaluated.

For further information refer to table 1.1 for the major advantages
and disadvantages of each method.

With respect to the system being studied, it can be seen that
the only feasible technique is that of simulation. A hardware
monitor is not available for CICS and is not worth any further
consideration. It would be much too expensive to attempt to develop
a hardware monitor to study the installation upon which this paper
is based. Software monitors of the system are available, but they
have two major drawbacks:

1) They only provide the user with an analysis of the system

operation, and with no means of interpreting the analysis.



TABLE 1.1
Pertoimance Evaluation Technicues Advantages,Disadvantages

Evaluation
Technicques Advantages Disadvantages

Hardware monitor Has no effect on Costly, not readily
operation ot system

Sortware monitor Easy to write and Affects system
change operation
Apnalytic Can be changed to Difricult and
evaluation model difterent sometimes im-
situations possible to

construct

Simulation Flexible for present Costly to con-
and future operation struct and run

6



For example, they might indicate that the system perform-
ance degraded quite substantially at a particular point in
time, but they give no indication as to the actual cause
of the degradation.

2) Software monitoring does not provide a means of a priori
measurement of statistics; that is, measurement before
actual changes have been made to the system.

Analytic evaluation improves upon software monitoring in that it is
possible to do a priori measurement, but an analytic evaluation of
even some of the most simplistic systems is extremely time con-
suming. 1In the case of more involved systems, it has been impossible
to develop an exact model of the system [ 5] .  The complexity of
CICS with its many possible interrelationships rules out this form

of evaluation.

Simulation has been chosen because it is the best suited method
for studying CICS. Refer to table 1.2 for the major advantages and
disadvantages of simulation as prepared by Maisel and Gnugnoli [ 6]
The major reason why simulation is the best tool for performance
evaluation for this system is that it can model tﬁe system compara-
tively easily. Another reason is that it has the extra and vastly
important feature of flexibility. ©Not only can one consider many, if
not all, states of a model in a properly prepared simulation, but one
can easily adjust the model to test future system configurations and
parameters.

1.3 OBJECTIVES

The main objective of this study will be to write and implement

a simulation model of the IBM Customer Information Control System.
7



TABLE 1.2%

Summarv of Advantages and Disadvantaces of Computer Simulations
Advantages Disadvantaces
Permits controlled experimen- Verv costly

tation with:
Uses scarce anua expensive

(a) consideration of many resources
tactors
(b) manipulation of manv Recuires fast, high
individual units capacity computers
(c) ability to consider
alternative policies Takes a lonyg time to develop
(d) little or no disturbance
of the actual svstem Mav hide critical assump-
tions

Efiective training tool
May recuire extensive
Provides operational insicht field studies

May dispel operational myths

May make middle mana;gement more
eflective

* Reter to page 5 of Maisel and Gnugnoli 6 .



In order to do this, a comprehensive study will he done of the on-
line environment of CICS as it is operating at Pennsylvania Power
and Light Company. As a secondary objective the simulation model
will then be used to determine the areas of the svstem which act

as bottlenecks under normal and peak-load operating conditions.

As a consequence of these bottlenecks, the response time of the
system is often impaired. Once these bottlenecks have been found,
solutions for them will be proposed. These solutions will then

be tested by using the simulation model in order to ensure that

no other potential bottleneck is created. Also, because of the
flexibility and ease of modification inherent in simulation models,
the model will be used to study the effect possible future revisions
will have on the CICS system before the time and expense is incurred

in making the revisions.



CHAPTER 2

CICS ENVIRONMENT

2.1 GENERAL DESCRIPTION

CICS consists of ten functional program modules which can be
groomed by a@ user to mecet his exact specifications. These modules
interact with user-constructed tables to contirol the CICS envivon-
ment and to process the user application program recuests. Another
main component of the CICS environment is the set nf systewm input/
out put datasets which are used to support the yeal-time envitronment,
and the user innput/output facilities such as the terminals for inter-
acting with CICS and the user data base. Even though CICS is a con-
trol system in its own vight, it still must interact with and oper-
ate within the restrictions of the operating system on the Systewm/
360 or System/370. Ekefer to Figure 1 for a conceptual diagram of
a CICS system.

2.2 FUNCTIONAL COMPONENTS

As mentioned above theve are ten functional modules provided
for a CICS system. They are:

Task Management

Storage Mana;ewent

Program Management

4, Terminal Managzement

File Management

Transient Data Management
Temporary Storvage Maunagzement
Program Interrupt Manaiement
Time Management

Dump Managzewment
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CICS,0S SYSTEM FIGURE 1

OPERATING SYSTEM,360 and SYSTEM/370
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Data MANAGEMENT
Base

|
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|
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Application
Programs

* Refer to page 18 of IBM's CICS General Information Manual 2
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In the discussion of these facilities it should be noted that
in a CICS environment the words task and transaction are used
synonymously.

2.2.1 TASK MANAGEMENT

Task Management provides the ability to process
multiple transactions concurrently by use of a Task Control
Program. This facility schedules and initiates processing of
available tasks according to priorities assigned by the user
and entered in one of the system control tables. When the task
is complete, task management removes the task from the CICS
environment. Also, the task program can dynamically change
the priority of a task, and can delay the execution of a task
by enqueueing it in order to synchronize the task with some
other event in the CICS system. This event might be the notifi-
cation of the completion of an input/output event or the request
for a different task to be purged from the system. Task
Management uses this enqueueing facility to control the number
of active tasks processing within the system by not allowing
any new tasks to be initiated once a user-supplied limit has
been reached or if the amount of available main storage is
insufficient to support those tasks already present.

2.2.2 STORAGE MANAGEMENT

Since CICS is a multitasking system, that is a program
operating within a multiprogramming environment which is
multiprogramming within itself, it is necessary for CICS to

sub-allocate any resources which the operating system has

12



allocated to it. It is the function of the Storage Control
Program of Storage Management to dynamically acquire and free
main storage as requested by CICS system routines and user-
written application programs. The main storage which is requested
may be used for input/output areas, program load areas, system
work areas or transaction work areas. Once the main storage area
has been acquired, it may optionally be initialized to any
desired bit configuration. For example, storage acquired as
an output area might be initialized to all blanks before further
processing.
A request for main storage may be issued by the user in

one of two modes, either conditional or unconditional. If a
conditional request is made and there is insufficient main
storage to handle the request, Storage Control only returns
control to the user with an indication that the request has not
been satisfied. However, if the request was unconditional and
there was insufficient storage, then Storage Control will take
the following actions. It will:

1. suspend the requesting task until more core

storage becomes available,
2. inhibit any new transactions from being initiated,
and

3. release what is known as a 'Storage Cushion'.
A 'Storage Cushion' is an area of main storage which is held
in reserve by CICS until a short-on-storage condition arises.
At this time it is released and those transactions which are
already in progress use it to satisfy their requests. The storage

cushion is returned to a reserve status and new transactions may

again be initiated whemever the short-on-storage condition has
13



been abated. This occurs whenever enough transactions have
completed their processing and have been purged and the demands
for main storage have decieased. 1If an additional request for
core storage is issued when there is no more available storage
in the cushion, then a stall condition may arise. If this is
the case, then CICS can purge those tasks with low priority in
order to allow the higher priority tasks to continue to process.
The tasks which are purged are lost to the system and must be
re-entered.

Another important function of Storage Control is to
chain all acquired storage for a task together. This allows
CICS to easily release any storage still owned by a transaction
when that transaction ends, either normally or abnormally.

2.2.3 PROGRAM MANAGEMENT

Program Management is the area of CICS which supports
the multiprogramming of transactions which is necessary in a
real-time system. The Program Control program is responsible
for dynamically loading, deleting, transferring control to and
returning control from a program in the CICS environment.
Program Management aids in the efficient use of main storage
by allowing concurrent use of the same program 'copy' in main
storage by multiple transactions. The only restriction imposed
by the system is that the programs must be written in at least
a quasi-reentrant manner. A fully reentrant program is one
which does not alter any of its instructions or data during
its execution, whereas a quasi-reentrant program is allowed

to alter instructions or data, but it must restore anything
14



that has been altered to its original form before an exit is
made from the program.

Program Management controls the programs in main storage
by using a table known as the Processing Program Table. This
table contains an entry for every program known to CICS. The
entry contains the program's address in a direct access library,
its address in main storage if it is currently resident and a
use count indicating whether a program is currently active. Once
loaded, a program remains in main storage until there is a short-
on-storage indication. At that time any programs which are not
currently in use are purged. When they are again required,
they must be re-loaded into main storage.

2.2.4 TERMINAL MANAGEMENT

One of the necessary ingredients for a real-time on-line
system is its terminal configuration and communications lines.
Terminal Management is the area within CICS responsible for the
control of this telecommunications network and which "provides
for communication between terminals and user-written application
programs through the Terminal Control Program.” [ 2] The
Terminal Control programs interacts with the Terminal Control
Table when performing its duties in order to obtain information
regarding the terminal device type, input,;output access method
to be used and line control data. Terminal Management also
performs reads trom and writes to the terminals, and converts

the data, if necessary, to internal or terminal code.

2.2.5 FILE MANAGEMENT

As mentioned before, a prime component of CICS is the
15



user data base. The File Control Program, using the File
Control Table, controls the input from and the output to

the data base. File Management supports two types of IBM
datasets, the Indexed Sequential Access Method and the Basic
Direct Access Method. The Indexed Sequential Method, an
indirect accessing scheme, constructs one or more indexes
which refer to the position within the dataset where the
desired physical record is located. Once the physical record
has been located, it is directly read and the File Control
program performs deblocking, if necessary. 1In contrast to
the Indexed Sequential Method, the Basic Direct Access Method
calculates the position of the physical record in the dataset
by performing various functions on a user-supplied key. Through
the interaction of these two access methods, File Management
has the capability of presenting the records from a dataset
to the user in either a random or sequential manner.

File Management also provides for the protection of
the data base through a feature called 'exclusive control'.
Exclusive Control prevents two or more transactions from
concurrently attempting to update a logical record by en-
queueing all transactions after the first which request a
'read for update' operation to the same logical record. Note
that this does not imply that multiple transactions may not
be updating the dataset concurrently, provided that each
transaction is attempting to update a different logical record.

2.2.6 TRANSIENT DATA MANAGEMENT

Transient Data Management provides a means within CICS
15



for accumulating and transmitting data to terminals other
than the one which initiated the task, to a dataset either
within or outside of the CICS environment or to a program
for subsequent processing. Those destinations which are
within the CICS environment and which can only be adcessed
by CICS transactions are referred to as intrapartition
destinations. Intrapartition destinations are queues of data
which reside on a direct access device for eventual disposition
to a CICS-related facility. Those destinations which are
outside of the CICS environment are referred to as extra-
partition destinations. These destinations may be datasets
residing on either magnetic tape or direct access devices.
Transient data which has been sent to an intrapartition
queue cdn be used to automatically initiate a transaction to
handle the data. Whenever the number of records in the queue
reaches a pre-defined level, the transaction is automatically
initiated. This concept is known as a 'trigger level'. An
example where this concept could be used would be in a process
such as message switching. A transaction could perform a
transient data writé to an intrapartition queue which has a
trigger level of one. This would automatically initiate a
transaction which would read the data from the queue and
send it to a specified terminal or group of terminals.
Extrapartition queues could be a dataset used to collect
statistics or act as a transaction log for CICS and which would
be examined at a later time. They could also be datasets used

to collect or batch data being entered from remote terminals
17



and to be used for eventual offline processing.

2.2.7 TEMPORARY STORAGE MANAGEMENT

Liek Transient Data Management, Temporary Storage
Management provides a facility within CICS for allocating
and controlling working space for transactions which are
being executed. However, unlike Transient Data Management,
Temporary Storage Management is used when working storage
(either main storage or direct access storage) is needed 3
for use within the processing of a transaction. This allows
the user to conserve main storage during the course of a
transaction, a very important consideration in a8 system where
the demands for storage space, at any one point in time, could
far exceed that which is available. Also, this allows more
transactions to be active concurrently, and increases the overall
system throughput. The ability to multitask to a greater deggee
increases the overall system resource utilization, even though
the time to process an individual transaction may be slightly
increased. This has the effect of reducing the queue length
of those transactions waiting to be initiated and of increasing
the queues for many of the system resources. Also, from the
viewpoint of the terminal operator, this generally has the
effect of reducing the response time, a much sought-after
attribute of an on-line real-time system.

2.2.8 ©PROGRAM INTERRUPT, TIME AND DUMP MANAGEMENT

The three remaining functional modules of CICS, Program

Interrupt Management, Time Management and Dump Management,

18



provide important services to CICS, although thev do not
have the complexity of the previous seven which have already
been discussed. 1In fact, all three functional areas are only
optional features within CICS and are not necessary to have a
functional on-line CICS environment.

Both System/360 and System/370 of IBM achieve their
multiprogramming capabilities through a device known as
an interrupt. An interrupt provides for the transfer of
control of a computer system from a user's application program
to the supervisor when certain exceptional conditions arise.
There are five exceptional conditions which can trigger an
interrupt in the System/360 or System/370 operating scheme.
They are: input/output events, unusual program conditions,
supervisor call or service requests, hardware errors and
external conditions such as operator requests. The Program
Iﬁterrupt Management facility of CICS intercepts and analyzes
all interrupts caused by unusual program conditions within CICS.
The normal action which the System/360 or System/370 operating
system takes for an interrupt such as this is to abnormally
terminate the program. However, this would mean that the
entire CICS environment would be abnormally terminated. 1In
its analysis of these program check interrupts, Program
Interrupt Management determines which task was responsible
and only abnormally terminates that task.

The Time Management function of CICS provides for many
time-dependent functions to assist in the operation of CICS.

It is used to determine when the transactions within the
19



system are at an impasse and to initiate corrective action
as well as to detect and terminate a task which appears to
be in a program loop. 1In addition, by using Time Management
transactions can be made to wait for a specified period of
time, can be notified after a specified time interval has
elapsed or even be automatically initiated after a specified
time interval or at a particular point in time.

Dump Management is used to write out to output datasets
images of main storage, such as program working storage, in-
put/output areas or system tables. Normally, this is most
important when used in a testing environment, but it is also
useful in error analysis of a task which has been abnormally
terminated.

2.3 SYSTEM TABLES

As mentioneéd before, CICS uses a number of user-constructed
tables to control its environment. These tables define for the
CICS system all of those elements which in total comprise the CICS
environment. The main tables and their components are described
below. The Program Control Table contains one entry for each
valid transaction code available to the system. Coded into the
table is:

1. the priority and security code required by each
transaction, and

2. information necessary for the processing of each
transaction, such as the first program to be called
by the transaction.

The Processing Program Table contains one entry for each

application program available to the system. The information
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contained in the entry describes the program source language and
whether the system is resident or non-resident in main storage.

The Terminal Control Table is used to define the user's
terminal environment. There is one entry for every terminal,
communications line or control unit available to the system. Each
entry contains descriptive information about the device or line and
also various device dependent characteristics.

The File Control Table describes the user's data base which
is available to CICS, with one entry needed for each dataset to
be accessed. Each entry describes in detail all characteristics
the dataset.

The Destination Control Table describes the environment which
is accessible by Transient Data Management. It contains one entry
for each intrapartition or extrapartition destination. The entries
are used to describe the characteristics of the destinations.

While CICS contains other optional tables and facilities, a
description thereof is not necessary to an understanding of system
operation and will not be discussed. An interested reader is

referred to references [ 2, 8, 9]
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SIMUTATION MODET. Or CICS

3.7 INTRODUCTION

The writing of the simulation model for CICS entailed two

major and distinct steps:

1. The standard FORTRAN-bDased GASF2 routines as uvsed at
Lehish University were ''translatec' into PL.I, a
nronramming lan-uape wvith which the author is much
more familiar., In addirion to the trarsiation,
several wodifications were wade (o fhe romt nes which
werve felt teo he pecoesary f

oy successful feplement-

atinr o7 the CICS model,
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. The vser subonro.
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ans were written which re
tae CICS svsten beiny nodeled.

In rreparins thie simulatiner mouel it was accessgary [0

make some vrderlyving assum tiore Yy order to lirit the

SC i T oEhe bt L~z oondel of CICE ylen, sove
assuctiore vole veceseans Lo ohviate the aoed o7 e

comin dpvalved Tn trivialities, The - piney s ageumeition
wag tnaet only those p.oblems which we:rco divectly r1elatahle
to the CICS evvircnment wevegstudics. secondary assurntiong

were that all vresources were orerating with ro rechanical

viablene ard that all code i all rrovurams was cfficien:,
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the SASE? to PL, I translietiyn carp he [Jound iy pendis

while a aore Jevailed Jleonegine of the usel svb v 03¢
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CICS MODEL

n
Z
-

Taue CICS wodel vhich nhas bheen devel vped conzists l
neer-written subroutines in addition to the 21 JASP?
system subroutires, the user-wuriltier eveut colection
cubrouti-e and the nsev-written OTFUT yourtire., Theve
are Lthree input files to the wndel with the followin:
[unctions:

1. The stardard GASPZ input cards containio, run contrn?

data. sarametei cata, file data ard initia’® ecvents.

(3%

. The file containiry the initialization Jdaca {or the

Frocessin Trogpran, Fro var Cortyal and rile Control

-

2. The file ¢ontainin: variahle nararnrter dJata "oy the
gveiem, such As the mpsber of cove storane bloc’s
availanle tu be allocated, tne mear tine hetweer

travsaction a:vivales, variog ravarvetric distrihbi-

tions and so fo;th.

These files will be referred o thvov hnout t
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discussion a8s the GASPZ Event tile, Initialization rile anc
Parameter tile, respectivelv. There are also seven internal
"files'" which are stored in the GASP2 tilinyg arrav (QSET.
These tiles are discussed more thorcughly in Appendix A.

Perhaps the best way to explain this complex set ot
procedures is to discuss the routines as they might be en-
countered during a normal run of the model, while referring
to a logic flowchart oi each routine.

A main program (Fi%ure 2) essentially just initializes
variables before it exits to GASP2. The first initial event
to be entered into the GASPZ Event file causes routine
SYSINIT (Figure 3) to be executed. This routine models the
start-up of CICS. The second and final initial event to be
entered into the GASPZ Event file calls routine TC_NEXT
(Figure 4). TC _NEXT is used to schedule the time of the
next terminal requesting transaction processing. The routine
also is used to determine the transaction type. An event for
this transaction is entered into the GASP2 Event tile. When
this entry is removed from the file, it calls routine
TC_GET (Figure 5). This routine simulates the actions
necessary to perform a read from the terminal.

After completing these actions, it inserts an event into
the GASP2 Event file with an event time egual to the curreét
time. This event calls routine KC_A (Figure 6), the Task
Control Attach routine. This routine simulates all the

necessary actions required to initiate a rew task in CICS.
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Atter crhmpleting all its actions, routine KC A exits ¢
Routine DSPTCHR (Figure 7). This routire is the hub -t a'l
CICS processing because it cetermines what tasx is to have
use of the CPU in order to execute. After a task has been
Using the CPU for a period of time, various conditions may
arise which cause it to be suspenced or placed into a wait
state. A task is suspended in routine KC_S (Figure 8)
because some condition prohibits the task trom proceeding
beyond its current status. A task is placed into a wait
state in routine KC_W (Figure Y) because some specified

o
event must be completed before it can continue. When that
event has been consummated, routine KC R (Figure 10) is used
to resume the active execution of the task. When the task
has been completed, either normally or abnormallv, routine
KC T (Figure 11) simulates the actions necessary to purge
the task from the system. Two other functions are modeled
by the system at the task level. Routine KC_C (Figure 12)
is used to dynamically change the dispatching jriority of
any task in the system, while routine KC_RS (Figure 13) is
used to model the testing of various resources to determine
their state.

Several routines are used to model CICS actions at the
program level. They should not be contused with those
routines at the task level, because it may take several
programs to pertorm all the actions reguired by one task.

Routine FC F (Figure 1¢) models the first necessary action,

25



the lnauing of a prasras inte main storage. A program in
CICS can be branched tv in two ways. It can be linkec to or
have control transferred to it. Routine PC_L (Figure 15)
models the actions of linking from one grogram to another,
where linkage is set up in ordeyr to return to the calling
program. In order to simulate transter of control, routine
PC R (Figure lt) models the release of the currently-
allocated program in order to start execution or the next
program. If, due to a short-on-storage condition, it is
necessary to obtain more core storage, routine PC_D

(Figure 17) simulates the deletion of unused programs from
core storage residency. The last remaining function of
program control is to handle the abnormal termination of
user-written programs. Routine PCABEND (Figure 18) simulates
those actions.

Storage Control routines are used by both user-written
and CICS system routines to perform and monitor the alloca-
tion and deal location of core storage. Routines SC O
(Figure 19) and SC_OS (Figure 20) model the allocation of
core stovrage, while routines SC_R (Figure 21) ana SC_FS
(Figure 22) simulate the deal location ot core storage.
Routine SC_F (Fizure 23) models the monitoring ot core
storage usage, and attempts to restart any task which has
been suspended cue to a short-on-storage condition.

Temporary Storage Conti»nl in CICS provides a means ot



e used L 'r an extended

(>

ontylling task workin: space which is to
pevioc oL time.  woutine Is P o(Fiaure Y<) simulates the alliycation
ancg writing ol a block of cata to a Tempovrary Storaze Lile.
toutine TS GR (Frgure 2>) simulates reading a block ot data trom
the Temporary Storage tile, andsor deallocatin, that block rrom
task ownership.

The routines or File Control pertorm all operations necessary
to communicate with the user data base. FEight major areas are
simulated by the moael. Routine FC_OCL (Figure 26) simulates the
actions of creating a linkage between a task and @ user file and
of removing the linkage. Routine FC S (Figure 2/) models the
creation of several file work areas and control areas which make
it possible tor a task to retrieve records in a logically se-
cuential order from a direct-access tyve trile. Routine FC GN
(Fiqure 28) models the retrieval »f a record from a secuential
orcer as detinec by routine FC_S. koutine FC _RES (Figure Zv) is
usec to model tne re-iniciaiization ot the work énu contiol areas
used in sequential recoru accessing when a diflerent secuential
string Oor records is cesived. The two rouctines which simulate
the 1nput anu outpul 01 records in a cviiect fasion are FC GEI
(Figure 30) and FC_PUT (Figure 31). foutine FC _GA (Figutre 32)
models the actiorns necessary to initialize and create a record to
ve written to the user uata base. Finally, rouvtine FC_KL E
(Figure 33) models the reiease i work and control areas natainca

to. all tne above fije vperations.



The remaince: oI tne routines can be cateyvilzec as
either service routines o1 misceliarerus rontines. OMPCNTL
(Figure 34) models the actions necessarv t» ''dump’™ all or
portions of a task's storage to an output device when a
program in the task has encountered some condition which
forces it to terminate abnormally. Routine OS WAIT (Figure

¢
35) wodels the conaition ot placing CICS in a wait state and
branching to the computer's supervisory program when there is
no active work which can be performed within CICS. Two
routines of the model are used to simulate the start and
completion of input,output events. Routine READWRT (Figure
36) models the initiation of the input,output event, while
routine OS POST (Figure 37) models the actions taken upon
completion of an input, output event, as well as other con-
ditions which cause wait states. Finally, routine END SIM
(Figuie 38) is used to close out all time-generated statis-
tice being collected in the model when the model has operated
for its intended period of time. It also sets indicators to
notify the GASP2 control routines to end the simulation and
prepare the summa@ry reports.

FREQUENCY DISTRIBUTIONS TN THE MODEL

The basic piece of intormation around which CICS functions
is the task. Therefore, a8 model of CICS must have a way of
representing this information. The two characteristic pieces
of data which the model uses to repregent tasks are the time

of arrival and the task type.
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Normally, in modeling a system such as CICS, statistics
and observations from the actual system are usea to orovidge
insight into the distributions ot arrival time anu task type.
However, in the CICS svstem being observeu, there are no
detail étatistics at the task level which are available. The
only statistics available are gross summaries which are
printed out at the end of the operating day, indicating such
things as total number of tasks processed by the system and
a breakdown of the total by task ID. This information is
not sutficient to hypothesize a distribution of task type
because the work that a task does is variable in nature.

That is, the parameters supplied to a particular task may,

in one instance, neea one input,output event to determine the
answer and another set ot parameters for the same task may
require 15 input,output events to determine the answer. For
this reason it was decided that there was no present method
of developing a distribution of task types 1or the system
being observed, anad each task type was given én equal chance
of being the one selected by using a uniform distribution,

A similar situation exists for the time of arrival of
tasks. There is even less available information from which
to develop this distribution. For this reason it was decided
to use the Poisson distribution to describe the arrival tines
of tasks. The Poisson distribution is used to describe the

probability of N events occurring per time unit, where N in

/
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3.

this case would be the avera.e number O tasks presentec to
the system per second. The Poisson wuistrivbution uives equal
probabilitv of a task arriving at one point in time as in
another, and as such implies that there will be no peaks or
vallevs in demand for the system. This may not be the case,
but no data is available to prove otherwise. It has been
shown that if the arrival times ot events are Poisson dis-
tributed, then the time between arrivals is exponentially
distributed [ 15] . This exponential distribution is used
to determine the point in time when the next task will
arrive.
VALIDATION OF THE MODEL

According to Webster's New Collegiate Dictionary, valid-
ity is '"'the state of having a conclusion correctly derived
trom given premises'. In modeling, be it mathematical or
simulation modeling, the output of a model is only as
credible as the model is valid. This implies that before
the task is undertaken to construct a model, it is mandatory
to know what is expected as the output or results of the
model. Said in another way it is necessary to deifine ob-
jectives prior to constructing the model upon which the
model can be predicated. The stated objective of this
simulation model was to use it to gain insights as to the
possible areas and causes ot backlogs in IBM's Customer

Information Control System.
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Given the stated objective, it is necessary tO determine
whether the simulation model output satisties the objective.
As with any computer program, attention was ziven trom the
onset of computer programming to precisely representing the
system in a computer language. Until all programming
language errors are eliminated, it is impossible to proceed
further with the validation. After all coding errors had
been found and corrected, it was possible to make simulation
runs tc deteirmine the logical consistency of the model; that
is, whether all subprograms in the model accurately represent
the corresponding subsystem in CICS. The running of the
model was done under the control of the PL/I Checkout Com-
piler, as was the running of the GASP2 routines which were
translated from FORTRAN into PL;I. The great rlexibility of
the compiler increased the ease and shortened the time span
in finding logical inconsistencies within the model. Artter
all this was done, it was now possible to determine whether
the model met its objective.

Several distinct options have been expressed on the sub-
ject of what constitutes a validation of a model. 1In
referencel 6] bv Maisel and Gnugnoli, three separate sets
of checks are suyuzestea:

l. Use paramete:rs in place of constants to facilitate

modification of the model to meet changes in the
system bein; modeled.

2. Get expert opinion as to the closeness of represent-
ation of the model to the real system.
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3. Compaire model 1esults to known standards ov statisti-
cal measures.

It is rurther suguyested that a comninatinn o1 all thiee

sets of checks mi;ht produce the best valigation o1 the
model. However, other authors do not share the same con-
tidence in these checxks. The use of parameters in model
ecuations is nothing more than zood computer programming
nractice and will in no wa» juarantee a better end result.
Also, as stated by P. H. Seamon in referencel[ 17] ,
"ectimators obtained from the model cannot be taken as
predictors oL absolute pertormance ' if necessarvy input
variables or parameters are not available at the rime the
svstem is modeled. This wdould pe true for a simulation
model having manv independent anag dependent variables as in
this stuay's model. Also, due to the complexityv of the
system being modeled, a set oi standards may not ve availabie.
Any estimators from this CICS model coulu at best be labeled
suspect ir thev were to pe used as predictors of validity
due to the inavailability of known details about the CICS
system.

Another author, Jay W. Forrester, in reiecrencel[ 18] ,
alongz with P. H. Seamon in reierence[ 17] , takes a much
airterent approach to the cuestion oi validityv. The, do
not think it is necessary to valivate a mouel b+ statistical
means to known stancaras. Foriester js even much more

outspoken about cuantitative valication, in that he helieves
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it tv 1requently ve @ matter ot velusive exactitucue, a
matter o1 attemptec validation which shoula onl be uone
under certain conditions. He believes that quantitative
measurement shoula onlv be pertormed ir the work and cost
involveu in collecting the standard data is not signiticant.
If any shortcuts aie taken to minimize the time and money
involved in collectin; the data, then the data would prob-
aovly be suspect and no true validation would be periormed.

It is the concept of these authonrs that the validitv ot
a model should be judied tinally on the model's abilitv to
accomplish its statea objective. It is Seamon's teelin; that
a model need not be able to produce absolute results, but ove
able to give the user a feeling of relative results when
changiny the model trom one state to another. Forrester
sets iforth seveial criteria which he reels necessary in the
valication oif a model. His [irst criterion ror validation
is that the model show no obvious inconsistency with observed
actual aata. Althouvh this sounds trivial, Forreste: states
that most models which he has examined have not kept this
criterion in mind. His second criterion used in model de-
velopment is teo initially attempt to make the model plausible
with its results, not 1007 accurate. This approach empha-
sizes the main intent of developing a model, to learn as
much @s possible about the system being modeled. A model
need not be developed to the point of accurately modelin: a
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syvstem, only to the point where a plausiple retationship
exists pvetween the modei anud the svstem bdDein . wmoueleu so
that the model can be ;ut to use. His last criterion
stresses that in lieu of usinyg guantitative measurement
technicues, many models should pe validated by gleenin:
knowledyge and intuitive concepts from the model's author
and a team of experts in the rield. It is his hypothesis
that to validate an area of study which cannot be expressed
numerically requires the validation to take on a non-
numerical approach. He feels that this collection ot
knowledge beiny concentrated on the model will, in the end,
justify it as beinyg representative of the system being
siﬁulateo, and may even do it at a faster pace than quantic-
ative measuring would by itself.

For several reasons the model of CICS developed in this
study was validated using the concepts of Forrester and
Seamon. The statistics available from the CICS system be-
ins observed were only available at a very high level. This
meant that a large number of the tigures needed to run the
model would bDe pure estimates or educated gyuesses, and the
output statistics would be meanin-less as absolute numbers.
Also, one other propvlem area which would have inhibited
quantitative validation was the ract that the CICS system
being studied was being run in a multiprogramming environ-

ment which would have introduced an unknown amount of noise
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into the statistics. Finally, the {inished model was quite
complex and extensive, and the racilities were not available
to validate the model in any other manner. For these reasons
it was deemed necessary to tollow the criteria of Forrester

in validating the model. Several modeling

o

runs were made
which were examined Ior plausibilit, and consistency with
what would ve expected. Also, a systems programmer at the
installation heiny examined was referred to for his opinion
and counseling on the model and its output. The svstems
programmer was responsiole for maintaining and enhancing.tﬁe
CICS network at the installation for wmany vears, and could
easily be qualified as an expert in the field. Appendix F
is a letter of testimony written by this s stem programmer

stating his opinion on the validity of this model.



ChaFlER ¢
aNAT VSIS OF PRUBLEMS

AHfter veaching the ¢oint in the develepment of the simulatior
mocdel that it accurately represented the real world, it was nec-
essary to use the model to gain insights intce IBM's Customer
Intformation Control System. This was the final step in determin-
ing whether or not the model satisfied its design objective.

An initial simulation run was made with an estimate of various
system parameters. The time increment used in the model was
milliseconds, one one-thousandths of a second, and the model was
executed for 60,000 time intervals. Data was accumulated for
three GASP2 COLCT-type statistics, as well as seven GASPZ TMST-
tvpe statistics. The three COLCT-type statistics are:

1. Total time in the system for a task,

2. Wait time in the system for a task, and

3. Core storage usage.

The seven ,TMST-type statistics are:

l. Percent of time that the jyrogram loader is active,
2. Number of active tasks in the system,
3. Percent of time that no task may be attached for

any reason,
4. Percent of time that no task may be attached because
the system was at MAX TASK,

5. Percent of time that no task may be attached because
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the storaqc cushion is allocated,

L. Nimbe:r of tasts juceued, and

~J

tercent of tizme that CICS s {d%¢ Nccausc Lhere are nn
cispatchable tasks.

Table 4.1 is used L give a synopsis nf these statistics. [o1
the interested veadeyr, all comyuter listings, inciuding the pro-
pran compile and all simulation runs referrved to in this pagper
are available at the Tehig h University Industrial Engineering
Department library.

As mentioned previously, one of tne possible areas »{ con-
cein which could be studied was core gtora;e usage and jts effect
on response time and throuzhput. From the initial sisulation
run it can be seen that acvproximatelw 11 percent »f the time the
system was prohibiting new tasks from bein; attached because of a

short-op-storage condition. As an attemnt at lowering this ,er-

cert and achieving

2

bettei1 resyronse and mooe thiouhrut, the
rrimary cove stoiage allocation was increased by 25 revcent and a
second simulatinn run was made with all other rarameters vemain-

in;, unchanged. The statistics {or this run (run £.2) are dis-

At {fiist plance cowravisen of the twn sets ni statistics
arrears t reveal several incongrunus facts. For example, even
tnough tne amount of core storage was si:riflicantly increased,
the rercent of time that the system was in & saort-on-storage
condition was relatively the same (11.07 versus 10.77). Also,
even though the thioughout improved (203 c:mpleted tasss versus
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22%), the average time to j10cess a task increasea bv almost 40
percent (1,240 milliseconds versus 1,/2> milliseconds).

As an attempt at explaining these apparent puzzles, several
explanations can be rroposed. On the average there are about 59
percent more tasks in the system in run two tha8n in run one at
any point in time (4.2 tasks versus 6.1). This means that there
will be more tasks vying tor all system resources, not just core
storage. This is evidenced bv the fact'that there are slightly
more tasks encueued and suspended in run two than in run one
(1.6 tasks versus 1.8). This is also proven out by comparing a
statistic calculated by taking the difrerence between the average
system time and the average wait time. This statistic represents
the amount or time spent executing a task, on the average, dis-
regarding any time spent waiting or being suspended. The execu-
tion times in run one and run two compare favorably (149 milli-
seconds versus 153 milliseconds). This implies that the increase
in the response time was strictly due to an increase in the time
spent engueued.

Also, it anpears that the increase in svstem throughput 1is
entirely due to the added core storage. The increase in the
number of active tasks must be due entirely to the added core
storage, since that was the only parameter changeu. This in-
crease also resulted in the svstem utilization percent improving.
The system utilizatrion percent is calculated as follows:

1.0 - system idle time.



For orun one the ligure 1s approximately 43 percert and 11 rul.
twe /.0 percent. Fivaily, the progran !hader was active about
2.3 percent less in run two than run vne (46.87% versus <a.d4i).,
This is signiricant because this indicates that less programs had
to be loaded in run two than run one because thev were alreaay
resident in core storage when needed. The combinétion or these
ractors can explain the ureater througnput in the second run.

In order to further valicate these explanations ot the
cnanges between run 4,2 and run 4.1, two adaitional runs were
made. The tirst run, summarized in Table 4.5, represents an
addition of the core storape available oy 1007 over run £.1, and
the second run, summarized in Table 4.6, represents a reduction
ot the core storage available by 50%. These runs entirely
support the explanations proposed in the preceding paragraphs.
The average number or tasks in the svstem in run 4.5 and the
average time to process a task are greatly increased. Also, the
average number of queued tasks has increasea, which in conjunc-
tion with the increased average response time, indicates the
increased vying ror other system resources. The average execu-
tion time (lo0 milliseconds) is stilil consistent with runs 4.1
anc 4.2, as would be expected. However, the throughput has not
increased because the system was at MAX TASK condition tor 7% of
the time. As expected, the percent of time in which the proyram
loader was active is again reduced, due to the additional core

storage available anu also to the fact that the increased number
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N1 active tasks will inhibtit vro:rams tiom beinyg celeted it not
belug used.

Conversely, run 4.b shows a sharplyv decreased throughput and
a much improved response time. These statistics are keepinu in
line with the above discussion. Also, the percent or time that
the program loader is active is again relatively high. However,
the most revealing statistics are the percent of time short on
storage (33.9%) and the percent oi time when CICS is idle (22.3%).
These two statistics explain the reduced throughput to a great
extent.

However, one of the prime considerations of an on-line system
of this type is to control and minimize the response time. If
core storage was the only or even primary bottleneck within the
svstem, then the 25 percent incredase in core storage from run one
to run two should logically have improved the response time. The
opposite results imply that there aire other factors affecting the
response time more so than the amount oi core storage available
to the system. One area which certainly warrants further in-
vestigation is the relationship of a tasks total time in the
system to its total wait time. In run 4.1 the percentage of
time spent waiting was bout 38 percent while in run 4.2 it was
about Y1 percent. 1If this percentage could be reduced, the
average response time would improve.

To determine how to reduce this percent, it is necessary to

know exactly what factors make it up. The main reasons for a
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task to wait in the model are:
I. Unavailability of coie storage,

Wwaiting for use ot the program lnader,

o

3. Waiting ror the completion of an input/output event,

4. Waiting tor use of the Temporary Storage ftacilities.

As mentioned previously, the percent ot time which the program
loader was busy was relatively high (46.5% versus 44.4%) and since
the period of time necessary to load a program is relatively
lengthy, it is quite probable that a significant proportion ot a
task's waiting time is attributable to the program loader oper-
ation. ’

One way of improving the operation would be to decrease the
number of program loads in a period of time by increasing the
number of programs made permanently resident. A second way would
be to reorganize the program libraries to give the optimum con-
figuration for loading. A third way would be to optimize the
program loader itself. After reviewing the situation with a
systems programmer a8t Pennsylvania Power and Light who is
familiar with the operations of CICS, a combination of the sgcond
and third methods was tried.

User programs for CICS can be written in either IBM's
Assembler language or one of two high-level languages, COBOL or
PL/I. Programs written in the high-level languages are stored

in load libraries in executable form and have up to five control

records preceding the first record of text. Under many
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circumstances these contro]l records are not neecged arc rlv act as
overheaa. It was this area which was attacked.

Additional runs were made with revisioqg to the 'rogram
locader routine to encompass the above-mentioned cnan-e. Run 4.3
used the same parameters as run 4.1 and run 4.4 the same as run
4.2. Toneir results are outlined in Tables 4.3 and 4.4, respect-
ively. By comparing runs 4.1 and 4.3, it can be seen that there
is an improvement in some areas, but not the total task time,
wait time or time with a short-on-storave condition. By comparin
runs 4.2 and 4.4, all areas have improved. The total system time,
wajt time, percent of time at a NO ATTACH condition and total
throughput are all at their best wvalues.

Aza81n, two corroborating runs were made similar to runs 4.5
and 4.6, only using the revised vrogram loader routine. These
runs, 4.7 and 4.8 again substantiate the original conclusions.
Again, it should be noted that by merely increasing the core
storage, 8s in run 4.7, one cannot continue to improve upon all
conditions. Eventually, as has happened, a bottleneck will de~
velop in some other area of the system, and the wait time will
increase. At some point in time, all practical and relatively
inexpensive improvements will have been made to the CICS environ-
ment and only such changes as upgrading the CPU or additional
channels will improve performance.

This concept is easily visible in two final simulation runs,

runs 4.9 and 4.10. Run 4.9 used the same parameters as run 4.4
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except that the maximum number of tasks allowable within the

svstem was increased riom Z0 to Z>. This not only had the dgesirec
erftect ol reducing the percent ot time at NO ATTACH due to a MAX
TASK condition, but it also resulted in an increase in the response
time and a8 decrease in the throughput, two nondesirable results.

As was explained above, some other bottleneck has developed anau
arrected the system in a negative manner. Run 4.10 parallels run
4.7 except tor the increase in maximum allowea number of tasks

trom 20 to 25. This run likewise shows the developmeunt ovi a

different bottleneck.

£
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Total Time
Vlait Time

Core Storage Usage

Percent Frogram
lLoader Active

Active Tasks

Percent nf Time at
No Attach

Percent of Time at
Max Task

Percent of Time at
Short-on-Storage

(ueued Tasks

Percent »f Time at
CICS Idle

TARIE 4.1
COLCT-TYPE STATISTICS

MEAN STD.DEV. MIN MAX

1249.3 757.2 131.9 £551.0
1091.2 678.6 35.3 4019.7
156.9 5.6 5.4 36.5

TMST-TYPE STATISTICS

MEAN STD.DEV. MIN MAX

46.4% 49.97% D.0% 109.0%
4.2 3.7 9.0 12.90
11.0% 31.3% 0.0% 100.0%
0.0% 0.0% 0.9% 0.0%
11.0% 31.3% 0.0% 100.0%
1.6 1.9 0.0 5.0
6.9% 25.4%  0.0% 100.07

L4

OBs

60000

60000

62009

60000

60009

62000

69000



Total Time
Wait Time

Core Storage Usage

Percent Program
Loader Active
Active Tasks

Petrcent of Time at
No Attach

Perceut of :Time at
#ax Tasl

Fercent of Time at
Short-on-Stoxra,e

yueued Tasks

Percent of Time at
CICS Idle

TaBIE 6.2

COLCT-TYPE STATISTICS

MEAN  STD.DEV.
1725.8  1226.0
1572.9 1145.3

22.7 7.1

TMST-TYPE STATISTICS

MEAN STD.DEV.
44 .47, 49.77%
6.1 5.4
10.7% 39.9%
0.0% D.0%
10.77% 39.9%
1.8 2.1
2.5% 15.5%

45

MIN

112.4

)

£0

7.

MIN

.0%

.0

.0%

oy
.

/o

Oa/
=Y

.0%

.6

0

MAX

6426.9

A
N
)
&)

o

100.0%

19.0

100.

10C.

]

‘o

10.0

100.

OBS

60000

60000

60000

60000



TA:’,‘. L 4 . ?

COLCT-TYPE STATISTICS

MEAN STL.DEV. MIN MAXN
Tocal Time 1252.9 954, 1 1oy 24702
vait Time 1094.5 sE2L8 171.9  =0n72.2
Core Stora.e Usaze 17.2 h.d 6.9 EESIS
TMST-TYPE STATISTICS
MEAN STh.DEV. MT N MAX
Fercent Prosran
Loader Active 20.0% 40.0% 0.0% 100.07%
Active Tasks 4.4 4.6 0.0 20.0
Percent of Time at
No Attach 10.47, 30.5% 0.07% 1091.0%
Percent of Timwe at
Max Task 0.97% 9.3% 0.0% 100.9%
Percent of Time at
Short-on-Storage 9.5% 29.3% 0.07% 100.2%
Queued Tacks 1.0 1.1 0.7 7.0
Percent of Time at
CICS Idle 2.0 17.0% 0.0% 100.07%
4

OBS

60000

60000

60000

60000

60000

60000



TAULE 4.4
COLCT-TYPE STATISTICS

MEAN STD.DEV. MIN MAY OB S

Total! Time 115.9 701,10 163.9 <4104.7 227
Wait Time 776.6 £57.5 112.1 3203.9 235
Core stora.ge Usaue 15.8 S .7 ¢1.2 5724
TMST-TYFE STATISTICS
MEAN STD.DEV. MIL MAX ORS
Percent Program
I.nader Aclive 19, 0% 39.27% 0.0% 109.0%, 50909
Active Taclks a.° 2.9 ANRS! z20.0 L0000
Percent of Iive at
No Attach 1.0% 12.57% D, 1400.07% 5000
Percent »f Time at
Max Task n.1% 2.7% 0.07% 190.0% ANNDO
Percent ol Time at
Shovt-on-Stora e 1.0% 10.0% 0.07% 100.0% 67000
Cveued Tasks 0.9 1.1 N0 6.0 50700

FPercent of Time at
CICS Idle 3.77% 13,

[&v]
o
]
o~

)

1.0% 120.0% €000



TARIE 4.0
CO1CI-TYPE STATISTICS

MEAN STD.DEV. MIN

Total Time 2853.0 1968.2  420.5
Wait Time 2693.1 1864.8 372.3
Core Storage Usage 33.9 6.7 16.0

IMST-TYPE STATISTICS
MEAN STD.DEV. MIN

PYercent Prorram

lLoader Active 38.27% 43.6% 0.0%
Active Tasks 10.5 7.2 7
Percent Hf Time at

No Attach 7.0% 25,47 C.0%
Fercent of Time at

Max Task 7.7 25.47 0.0%
Percent of Time at:

Short-on-Storaze 0.0% C.0% 0.0%
gueued Tasks 2.0 2.1 0.0
Percent of Time at

CICS Idle 0.07% 0.9% 0.2%

MAX

14420.0

13656.2

Lrghe]

DIl

MAX

100.0%

20

10C. 2%

100.0%

10.0

0, 0%

0BS

£2000

60000

320000

60000

50009

673000

50000



Total Time

Wwait Time

Core Storape Usage

Percent Fro;ram
Loader Active

Active Tasks
Fercent of Time at
Mo Attach

Time at
Max Task

Percent of

Fercent of Time at
Short-on-Storage

1

(Gueued Tasks

Fercent »f Time at
CICS Idle

s

TABRLE &4 .¢

MEAN STDL.DEV.

1072.6 735.8

916.1 H55.6
13.4 .7

MEAN STD.DEV.
45.49, 49,87
2.4 2.2
33.9% 47 .37%
0.0% 0.0%
33.9% 47 .3%
1.4 1.6
22.32% 41.6%

COLCT-TYPE >TATISTICS

TMST-TYPE STATISTICS

0.

MIN

MIN

0%

o7
v

[&]
2

(-7
[

.0

0%

HMAX

MAX

1906.

100.

100.

0%

[of
N7

132

32C5

OBS

60000

60000

60000

60000

60000

60000

60000



TABLE 4.7

CULCT-1YPE STATISTICS

MEAN STD.DEV. MIN

Total Time 1809.1 1491.72 226.2
Wait Time 1647 .7 1428.0 175.1
Core Stovage Usage 22.4 3.5 7.0

)

TMST-TYPE STATISTICS
MEAN STD.DEV. MIN

Fercent Prog:am

Loader Active 19.1% 39.3% 0.0%
Active Tasks 6.7 6.3 2.0
FPercent cf Time at

No Attach 3.47 13.1% 2.0%
Percent of Time at

Mayx Tasi 2.4 15.4% 0.0%
fercent of Time at

Short-on-Storage 1.1% 10.47 0.0%
Queued Tasks 1.2 1.3 0.0
Percent of Time at ‘

CICS Idle 0.2% 4.3% 0.0%

MAX

3234,

pmst

2695,

[e.d]

59.9

MAX

120.0%

120.0%

190.90%

130.0%

9.0

100.0%

0BS

60000

62000

67000

60000

60000

60000

60000



Total Time
wait Time

Core Storapge Usage

Percent Program
Loader Active

Active Tasks

Percent of Time at
No Attach

rercent of Tiwme at
Max Task

Percent of Time at
Short-on-Storage

yueued Tasks

Percent of Time at
CICS Idle

TABLE L.¢

MEAN

673.3

529.4

12.1

STD.DEV.

COLCT-TYVE STATISTICS

416 .3

358.

6

N

TMST-TYPE STATISTICS

MEAN

21.6%

0.0%

24.9%

STD.DEV.

41

43

31.

1%

1

2%

.0%

2%

1%

0

0.

Q.

MIN

MIN

0%
N

%

.0%

MAX

2439

MAX

100.

—
()

100.

100,

100.

L

0%

%

0%

OBSs

172

172

4567

0OBS

&nooe

60000

600073

00000

0000

63000

60000



TAGLE & .4

COLCT-TYre STATISTIC:E

MEAN S>TD.DEV. MIN MAX

Total Time 174,06 915.2 1606.0 6127.1
Wait Time 927 .¢& 860.0 112.9 5623.2
Core Storage Usage 17.8 6.5 7.1 42.5
TMST-TYFE STATISTICS
MEAN STD.DEV. MIN MAX
rerceunt Program
l.oader Active 19.47% 39.5% 0.0% 1900.07%
Active Tasks 4.1 &3 2.0 17.0
Percent of Time at
N0 Attach 2.6% 16.0% 0.0% 100.90%
Peicent of Time at
Max Task 0.0% 2.9% 0.0% q.0%
Percent of Time at
Short-on-Storage 2.6% 16.0% 0.07% 100.0%
Queued Tasks 1.2 1.1 0.0 7.0
Percent of Time at
CICS Idle 2.2% 17.7% 0.0% 122.99%

OLS

07
- N

0BS

62000

60000

600NN

63209

60000

50000



Total Tiwme
Wait Time

Core Stovage Usage

Iercegnt Progiram
Loader active

-

Active Tasks

Time ac
No &attach

PYeicent of

of Time at
Max Task

Percent

lercent of Time at
Shoeryt-on-Storage

Queued Tasks

of Time at
CICS Idle

Peicent

TABLE 4.10

O

COLCI-TYPE STATISTICS
MEAN sTLLOLPEV., MIN MA X
2432 .0 19584 .0 261.6  11d3b.4
22264 1891.0 217.4 11153,
23.8 11.¢ 7.2 62,
TMST-TYPE STATISTICS
MEAN STD.DEV. MIN MAXN
15.9% 38.47% N.0% 170.9%
5.7 E.0 1.9 25.0
Lo 21.37% 0.0% 120.07%
2.97% 16.47% 3.0% 100,07
1.C7% 13.47 0.0% 100.57%
1.5 1.6 .0 5.0
0.7% .37 0.0% 100. 2%

(W]

69909

62000

60000

(@)Y
NS
w2
(]
Q

52090

400060

60000



CHAPTER >

5.1 CONCLUSIONS AND RECOMMENDATTONS

The model has been used to derive cextain hasic characte: -
istics of the CICS svstem as seen in Chapter 4. What at [irst
mav have seemed to be an isolated prohblem of lack of core storace
turned out to be a complex intertwinina of relationships between
various components or CICS. The one absolute problem which was
discovered was that of the program loader. The prooram loader
routine as implemented by IBM at times pertormed unnecessary work
when loading programs written in a high-level language such as
PL/1I or COBOL. A strong recommendation as a result ot this ob-
servation would be to revise those routines which are involved in
prouzram loading to bvpass the unnecessary cperations.

An interestin; observation made during the above study is
that it is absolutely necessary to place some realistic constraints
on the amount ot core storage available and on the maximum
allowed number of tasks in the system. This is necessary because
it has been shown during the simulation study that the throuyhput
of the system and the average response time will reach optimum
figures and any further increases in the core storage or task
limit will actually start to produce system degradation. This
occurs because the increasingz number of tasks active in the system
at any one time cause larger queues to be formed for the other
resources OI the system and the average wait time for the tasks

irncreases. However, using this model it is not possible to
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derive ahsolute fiwures {H>r these Lwo jarameters. It - oull be
necescary for any installation interested in these ;arameters t.
accuratel, vrepresent their configuration in the wodel in order tH
derive thewr. The vecommendation can be made, however, that in
lieuw of revinrming thie tyye of studv, an improveuent in swslem
performance could verv well be obtained Ly reducin. the core
storase available and/or the maximum allowed ruwmber of tasks.

5.2 SUMMARY )

It has been demonstratecd that the use cf this wodel is a
viable tool in solving problems velating to a CICS installation,
and as such satisfied the stated ob'ective of this paper. It
must be kept in mind that the model will not supply the user with
all the answers; knowledye of CICS is a necessity and the ability

to interpret the results is a must.

5.3 AREAS FOR FUTURE STUDY

A model of this tvpe enables a usev to get an understanding
of a8 complex system and its inter-relationships, other than that
for which he has intuitive feelings. This is invaluable in
problem solving and planning [or future revisinns. However, for
some cuestinns concernin: the functionin of CICS, it maw be of
much more value tn be able to derive exact cuantitative results
rather than onlv proportional data. To achieve a model of this
tvre, manv chanzes would have to be made to the existin® mocdel in
fouy primarv arveas:

1. A facility would have tc be developed within CICS itself

o
w



to provide data which could be used to ''drive’ the model.
This data would probablv he necessary whenever anv chan:ze
of state occurred in CICS and would have to at least in-
clude any necessary parameters which accompanied this
change of state. Also, CICS would have to be modified

to provide much more detailed statistics than are now
available which would be used as input parameters or
constants within the model.

All of the data available in the system tables would have
to be made availabie to the model in some form.

Revisions to the model would have to be made so that it
is Ydriven' by the trace data provided by CICS. It is
also conceivable that areas within the model would have
to be done in greater detail to support this new scheme
of operation. -
Attention would have to be given to the hardware config-

uration of the svstem and in particular to those areas

of the model involving input/output operations.

To refine the model to this extent would require considerable

but would open up new areas of use.

One additional area which deserves some consideration is the

]

effect of running CICS in a multiprogramming environment. This

would introduce ''noise' into the wmodel in many areas, and should

be considered insomuch as it affects the CICS system. For

example,

suppose an input/output request external to CICS is
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tying up some tacility needed by CICS. This should be observed

so that measures can be taken to relieve the contention. This

enhancement would also be quite extensive, but would improve the
i

errectiveness and usefulness of the model.
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APPENDIX A Q?
(

Following is a brief discussion of the GASP2 internal tiles
used in the model. For each file the title is ziven, the sequence
and sequence element and a description of the rile elements.

FILE 1: Event Queue

Ascending sequence on element 1
Element 1: Event time

Element 2: Event code

FILE 2: Allocated Storage Queue
Ascending sequence on element 1

Element 1: Owner identification

Element 2: Beginning allocation address
Element 3: Length of storage request
Element 4; Storage type

Element 5: Transaction number

FILE 3: Suspended Task Queue
Ascending sequence on element 3

Element 1: Transaction number

Element 2: Length of storage request it
suspended for short-on-storage

Element 3: Time into qgueue

Element 4: Suspend code

FILE 4: Active Task Queue
Descending sequence on element 2

Element 1: Transaction number
Element 2: Priority of the transaction

[on)
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FILE >: Fragmented Free Storage Queue
Ascendiny sequence on element |

Element 1: Storage address
Element 2: Length or free area
Element 3: Storage type

FILE 6: Program Loader Backlog Queue
Ascending sequence on element 1

Element 1: Time entered into the queue
Element 2: Transaction number
Element 3: Program to be loaded

FILE 7: Exclusive Control Record Queue
Ascending sequence on element 1
Element l: Transaction number

Element 2: User data base file number
Element 3: Storage address of record
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APPENDIX B

In preparing this simulation model it was necessarv to make
some underlving assumptions in order to limit the sccpe or the
problem to a model of CICS. Also, some assumptions were necess-
ary in order to obviate the need or becoming involved in
trivialities. The primary assumption was that only those
problems which were directly relatable to the CICS environment
were studied. No problems which indirectly affected the system
were considered. For example, it was assumed that CICS was being
executed 1in a dedicated environment; that is, one in which it was
the only user job being queued for the resources of the system.
This assumption was necessary because an unfavorable job mix in a
multiprogramming environment could itself cause a severe ae-
2radation in response time, even though there was nothing wrong
with the CICS operation itseltf. The solution to a problem such
as this is completely trivial. It would be to create as favor-
able a job wmix as possible, and running stand-alone would be the
most favorable job mix. Also, it was assumed that all resources
were operating with no mechanical problems. It was again obvious
that a loss of a channel or a direct-access storage facility
would result in longer qgueues being tormed to use the remaining
racilities, and this in itselt would cause a lonzer response
time. One final assumption was made, that all code in all

prozrams, either user-written application programs or IBM-written
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contrl o rocrams, was eirticient, ~ood' coue anc that i1t made

optimum use Of core stora.e and other resources. This is not to
sa that the louzic bhehind the code is rure, but that the code is.
An attempt at expnsing problems of a coding nat%re are not within
the scope of this paper, and in themselves are not even worthv Ot

extensive research to discover then.
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APPENDIX C

From the avthor's standpoint it was veemed imperative that-
the GASP2 routines he rewritten from FORTRAN into PL, T. ne
author has much more experience using PL.I than FORTRAN, the

W
installation where alil or the deveiopment and testin work was
gone tor the model ofrfered much 2reater benetrits to the PL.T use:
than the FORTRAN usey, and the PL,I lanwua.;e itself otfered some
reatures which simplified the programming and made it a more vi-
able solution than if it had been done in FORTRAN.

The initial step was to transcribe the existingz routines
from FORTRAN to PL;I. Primary concern was given to exact repres-
entation oi the reproduced code, and to determine the best vari-
able tvpe for each scalar and array, since PL;I has available
several more data types than the INTEGER and REAL tvypes which
FORTRAN employs.

The next step was to make the appropriate revisions to all
routines that were necessary to transform GASPZ to GASP2A as de-
scribed in reference [ 12] . GASP2A aiffers from GASP2 in the
tact that the filing array in GASP2A is floating point and
pointers for the filing array are in a different tixed-point
array, while GASP2 only employvs one fixed-point array which is
used to store program data and pointers for this data. With
GASP2 there was always the potential problem or truncation be-
cause a scaling ftactor had to be applied to each element before

it was entered to the array. One minor difference between the
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moagel's version nt GASP2A and that discussed in reterence [11] is
that both integer and real values are stored in the same arrvav

in the model's version, where as in Pritsker's version rrom
rererence [12] , integer values are stored in the arrvay contain-
ing the pointers. The major reason for this is that Pritsker was
attempting to conserve on the use ot core storage, since in some
computers floating point variables require more core than do
rixed point variables. However, in the preparation of the model,
core storage was never a restriction, and the beneifit accrued by
having all file variables in a single filing array was considered
a desirable benerit.

The third and final step of the translation of a FORTRAN-
based GASP2 to a PL/I-based GASP2 was to add programming logic to
take advantage of several options available in PL;1 and to tailor
the réutines to meet some of the specifications of the model and
to provide for easier program testing. These changeé follow:

1. All arrays were DECLARED with a variable for the dimension,
and were given the CONTROLLED attribute. This enables
these arrays to be dynamically allocated during program
execution time by use of the ALLOCATE statement. Thus,
by reading the dimeunsions of these arrays on a data card,
the size of the arrays can be varied without recompiling
the model.

2. The double-uimensioned array which is used to store the
tiling elements was transposed so that the number of rows

66



is the total number of tiling elements in the array and
number of columns is the number of entries for each ifiling
element. This was desirable because PL;I stores double-
dimension arrays in row major order, while FORTRAN stores
double-dimensioned arrays in column major order.
Subroutine SET was modified in the routine which adds
elements to highest-value-first (HVF) files. Previously,
if the ranking value of the row being added to the file
was equal to the ranking value of the row being tested in
the file, then the new row was added ahead of the tested
row. This logic was revised to add the new row following
all current rows which have equivalent ranking elements.
Subroutine MONTR was revised to give a third type of
potential monitoring information. When an event code
greater than 200 is encountered, MONTR calls subroutine
SUMRY which prints out all generated data, time generated
data and filing arrays. Also, MONTR was revised when
handling the case where the event code is between 100 and
200. Previously, the subroutine would have printed out
the entire filing array. This was judged to serve no
useful purpose, and was wasteful of both time and paper.
Thus, the routine now only prints out that portion of

the filing array which is '"active'. Starting from the end
of the array, all elements are tested for a non-zero

value. The first such row encountered would be the
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delimiting point of the printout.

Once the translation had been completed, the task still re-
mained of verifying the equivalence ol the PL/I version of GASP2
to the FORTRAN version. This verification step took two forms.
The most obvious form was to run an identical model using both
versions of the simulator, and then to compare the output. This
was done with several of the example models in reference [ 12] .
Secondly, all of this testing was done in a time-sharing environ-
ment using the PL,/I Checkout Compiler.i The PL;I Checkout Com-
piler is an interpretative type compiler written by IBM primarily
to be used in interactive testing sessions. By using various
facilities of this compiler, values of any or all variables could
be displayed whenever they were changed, the flow of the execution
could be observed as a trace of statement numbers was printed or
the execution of the program could be temporarily halted to check
on or change the values of variables. By testing in this manner,
it was possible to quickly duplicate the results of the FORTRAN

version while using the PL/I version.



APPENDIX D

The CICS model which has been developed consists of 28 user-
written subroutines in addition to 14 GASP2 system subroutines,
the user-written event selection suvbroutine and the user-written
OTFUT routine. There are three input files to the model with the
following funct-ons:

1. The standard GASP2 input cards containing run control

data, parameter data, file data and initial events.

2. The file containing the initialization data for the

Processing Program, Program Control and File Control tables.

3. The file containing variable parameter data for the

system, such as the number of core storage blocks to be
allocated, the mean time between transaction arrivals
and so forth. .
These ftiles will be referred to throughput this discussion as
the GASP2 file, Initialization file and Parameter file, respect-
ively. There are also seven internal ''files' which are stored in
the GASP2 filing array QSET. These ''files' are discussed more
thoroughly in Appendix A.

Perhaps the best way to explain this complex set of proced-
ures is to discuss the routines as they might be encountered
during a normal run of the model. |
SYSTEM INITIALIZATION

When CICS is to be brought up from a 'cold start', it is
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necessarv for several initialization procecures to be perrormed.
One ot these procedures is to load the system tables and those
programs which are marked as being permanently resident. The
function of subroutine SYSINIT is to obtain core storage for these
tables and programs, and also to obtain core storage for a stand-
ard system area used by CICS. Naturally, the amount ot core
storage obtained for the tables is dependent on the number of
entries in each table. The number of entries tor each table is
one of the parameters entered in the Parameter file. A call to
this subroutine must be the first initial event entered into File
One from subroutine DATAN. After CICS has been initialized,
SYSINIT branches to Terminal Control to commence polling of the
terminals for activity.

TERMINAL CONTROL

In the model the action of Terminal Control is represented
by two subroutines, TC NEXT and TC_GET. TC_NEXT determines the
time of the next Terminal Control read; that is, when, through
polling, a terminal was found requesting activity. The sub-
routine uses an exponential distribution to determine the inter-
val to the next read reqguest, with the mean time between recuests,
XMU_ARRVL, being entered as one of the parameters on the Para-
meter file. TC NEXT also determine which transaction type is
being requested by taking a random sample from a uniform dis-
tribution of transaction numbers. Then an event to call TC_GET

is entered to File One tor the generated next read. Since only
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nne task can he attached to an individual terminal at any cne
time, TC NEXT locks itself out whenever the condition arises that
all terminals have an active task. The routine is wnlocked when-
ever one of the tasks is terminated. To initially call'TC_NEXT,
it is necessary for the second initial event in the GASPZ file to
be a request for this subroutine.

TC_GET simulates the actions necessary to perform a read from
a terminal. The first thing that it does is to make a conditional
recuest for a block of core storage ecual to the message length
from the terminal. Since the system being studied uses video
tubes exclusively, the message length was set equal to the size
of the screen image, 480 bytes. However, the model could easily
be revised to handle other terminal models cor configurations with
multiple types of terminals. Since the reguest for core storage
was conditional, a short-on-storage condition will cause the
terminal that is requesting the action to remain in a pending
status. 1Initialization of the terminal event will again be
attempted in the next polling loop. However, if the storage re-
quest was successful, TC GET will initiate the I/0 event to read
the input from the terminal. At this time, TC_GET will go into
a wait state on this operation; that is, n» more action can be
done for this terminal until the input event is completed. Some-
time into the future, the input event will be completed. Now,
when TC_GET regains control, it confirms that the read was error

free, translates the innut to internal machine code and releases
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the core storage which it haa initially obtained ror this terminal.
The final action is t» "attach a task within CICS t» process

the recuest from the terminal. TC GET simulates this by insert-
ing an event into File Une with the event time beinyg ecuval to the
current time and the event code being that of the Task Control
Attach subroutine.

TASK CONTROL

Task Control consists of eight routines which simulate the
actions of CICS at the task level. Among these actions are:

1. Attach a new task.

2. Suspend an active task.

3. Place a task into a wait state until completion ot a
pending event.

L. Resume a task that has been in a wait state.

5. Change the ypriority of an active task.

b. Test the CICS system for the availability of resources.

/. Dispatch a task which is not suspended or waiting.

. Terminate an existing task.

As mentioned previously, the fiist action to be taken with a
new task by Task Control is to attach the task. This entails
veritication of the Task ID, obtaining core storage for a task
control area (TCA) and task work area (TWA), placing the task

into the active task cueue and loading the initial program to be

used by the tasx it it is not yet resiacent in core storage. Sub-
routine KC_A simulates these actions. An additional function

performed by IC A is to determine if the condition of maximum
allowed number of tasks has occurred. The maximum number of
tasks allowed to be attached at any point in time is a value read

. . » -, . . e
from the Parameter tile. 1If this condition has occurred, then no
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no0re new tasks are attachec until an existin. task has terminated.

v

while processing, @ tas< mayv encunter certain conditions

which prohivit it from processing rurther. Amnny these conuitinns

<

are.

1. A storage request was made but not enough core storage
is available.
2. A recuest was made to load a prugram module or table and
the loader routine was already servicing another task.
An error has occuirea in a task ana the task is attempt-
ing to ‘'dump' out to a file; however, anothe:r task is
already using the dump resource.
4. A reguest was made for temporary storage, either internal
or externdl, but not enough was availaole.

LD

Under any ot these circumstances, the task is suspendced and placed
in a non-active state until the |rohibiting condition has abated.
Subroutine KC S of Task Control is used to simulate these actions.
The routine finds the appropriate entry in the active task queue
and places a copy of the entry into a suspend gqueue. This gueue
is ordered by the time into the queue so that if multiple tasks
are suspended for the same reason, then the task suspended for
the longest period of time will be re-started first. The
routine also places an indicator into the Task Control Area (TCA)
to indicate that the tasx can no longer be dispatchea.

A similar condition to being suspended is being placed into
a wait state. Here the task is not being delayed because of some
external condition which is affecting it, but because of some
task-related event which is pending until some time in the tuture.
The most familiar reason for waiting is an outstanding inputy

output event. Once the inputsoutput event has been jinitiated by
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the task, it is vnlaced into a wait state until the actual
physical actions have taken place to either read or write the
record. This sequence or events is necessary it a multipro-
gramming,multiprocessing environment is to be maintained. Sub-
routine KC_W simulates these actions in much the same way that
subroutine KC_S simulates the suspension of a task, except for
the following exceptions:

1. Instead of indicating in the TCA that the task is sus-
pended, subroutine KC W indicates that it is waiting for
a pending event.

2. An entry is placed into a list of tasks which are
currently waiting. In the event that the condition
arises that there are no tasks which can be dispatched,
CICS will return control to the operating system for a
maximum of two seconds. Whenever one of the tasks in
the list has its pending event completed or the two
seconds has elapsed, the operating system will again
return control to CICS.

Whenever all the pending events for a task have been com-
pleted, it is necessary to remove the task from the suspended
task cueue and indicate that the task is again an active dis-
patchable task. Subroutine KC_R per’orms this function. A
search is made of the suspended task ngueue to find the task, and
when tound it is removed from the queue. Also, the indicator in

\
the TCA that shows that the task is waiting is turned off.
Finally, control is returned to the task for further processing.

At times during the processing of a task, it is advantageous
for CICS to dynamically change the priority of the task. One
particular instance is when that task is using the loader. Since

only one task can make use of the loader at any one time, it
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woula be heneticial for this task to make use o1 the loacer and
release it in as short a time as possible. This is accomplished
bv wiving the task the highest j;possible priority while it is usinv
the loader, so that it will always be the first task to be dis-
patched if it is not suspended or waiting. Routine KC C simulates
this by removing the task trom the active task gueue, revising

the priority and re-inserting the task back into the gqueue.

Again, an indicator is turned on to show that the task has had

its original priority changed.

One of the main focal points of the CICS system is the Task
Dispatch routine. This routine is responsible for selecting the
task that has the highest priority and which is not suspended o1
waiting and to give that task use of the CPU; that is, to either
start or resume execution of the task. Routine DSPTCHR performs
this function by searching through the active task queue for a
task which meets the above criteria. 1If none are found, then
the dispatched issues a wait and control return to the operating
system, as described above. While stepping through the active
task gueue, the routine examines the dispatching indicator for
each task. 1If it indicates that the task is active, control is
transferred directly to the task. If the indicator says the task
is waiting tor a penaing event,‘but thefe are no more pending
events outstanding for this task, then the dispatched will branch
to routine KC R and resume execution of the task. If the indica-

tor shows that the task is suspended, the dispatcher examines



the suspend code and tries to determine it the task can be re-
started. It the task was suspended because of an inadequate
amount of core stprage available, then the dispatched determines
whether there is enouzh core storage available at the present time.
If there is, the dispatcher returns control to the task at the
point where it was suspended; that is, where the task was request-
%ing core storage. If the task was suspended for any other reason,
the dispatcher then increments to the next task and attempts to
dispatch it.

The last function which can be performed upon a task is for
it to be terminated. After every task has completed processing,
either normally or abnormally, the system branches to routine
KC T to pertormrtask termination. Subroutine KC_T is responsible
tor releasing all resources held by the task while it was active.
These resources included both task-related and terminal-related
core storage, and any temporary storage which may have been
acquired. Also, KC_T collects statistics on the task such as the
total time in the system and the total time spent waiting bv the
task. Its last function is to determine if the system was at an
impasse' due to having reached the maximum allowed number of
tasks in the system. If this was the case, then KC T turns otf
the maximum task indicator which tells Terminal Control that

additional tasks may now be read in.

PROGRAM CONTROL

The routines or Proyram Control work within the svstem at
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the next lower level below Task Control. This hierarchical
structure is neccssar. because a single task mav use multiple
vrograms and also because a sin,le pro:ram mav ve used b,
muitiple tasks at any point in time. The runctions pertormec DLV

the rive Program Control subroutines modeled within the system

are:

1. Inad a program/module trom external storage.

2. Link from the currently-executing progziam to a lower

rrosram.

2. Return from the currently-executing uvroj;ram to a pragram

at the next highest level.

4, Transter control frem the currently-executing prozram

to one at the same level.

5. Delete a procoram/mncdule from beiry resident in core

stora_ge.

Obviously, veiore a prosram can oe executed, it must oe
resident in core stora-e. This implies that before a task can
perform its runction, the initial prosvam used by that tasl must
Le resident in core storage. It is the function ot the Prozram

Control Fetch routine to ensure that a requested program is
loaded into core storage, if necessary, and of subroutine PC_F

to model this routine. When a task is ATTACHED, the name of the
initial prosram to be used by the task is placed in the TCA, and
the address of the Program Control Fetch routine is stored in

the TCA as the address to which the Task Dispatcher will transfer
control whenever the task is dispatched. When routine PC F is
entered, the first action to be performed is a search of the
Processing Program Table (PPT) to determine if the program is

already resident. 1If it is not, then PC_F changes the priority
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of the task so that it has the highest possihle priority. This
helps to minimize the time spent by the task in PC F. Then the
routine reads a series of control blocks, dictionary blocks and
finally text blocks until the program is loaded into core storage.
Once it is loaded, the routine indicates in the PPT that the
provyram is now resident, and returns the task to its original
priority. Since the function of loading a program is relatively
slow, @ queue of load requests can easily develop while another
request is being processed. Thus, after the active request has
been processed, PC_F searches the queued tasks to determine if
any have been suspended because PC_F was not available. 1If a
task has been suspended, then PC_F removes it from the suspend
queue and raises its priority to the maximum. Thus, the next
task to be dispatched will be this request for the program loade:.
When PC_F determines that the program is loaded (either from a
previous use of the loader or from the current use), it concludes
with one of the following actions:

1. It branches to the program and commences execution.

2. It returns to the program which issued the request for

the loader.

The latter alternative only occurs when the program being loaded
has a status of load-only. 1In this way it is possible for a
program to dynamically load tables or other data needed for its
operation.

Since a task may use more than one program in providing its

service, CICS must provide a means of transferring from one
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program to another. Two Program Control routines provide this
function in two different ways. Control can either be transferred
from one program to the next, or it can be linked from one to the
next. Transfer of control will be discussed first, followed by
linking.

If control is transferred the system branches from a program
to another one at the same logical level, and the ability of
returning to the first program by simply ending the branched-to
program is relinguished. When the first program relinguishes
control, it must be released from the task, a function modeled
by subroutine PC_ R. PC R releases any core storape which was
obtained by, and used by, the program. It also reduces a count
in the PPT indicating the number of users of a program at any
point in time. After the first program is released, control is
transferred to the second program by using routine PC _F. If this
program would call no others, then at its end control would
return to the task control routines and the task would terminate.

Linking from one program to another means that the system
branches from the currently executing program to one at a lower
logical level, and it maintains the information necessary to
return to the calling program in an area called the register
storage area. After saving this necessary information, the second
program is initiated by using routine PC_F, without first releas-
ing the initial program. However, when the second program has

completed and been vreleased, control is not returned to CICS but
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to the calling nrogram. This type of contrnl transfer is jenerally
used when a rrogram calls a routine to perform some veneralized
common function, and is modeled by subroutine PC_L.

A final function rerformed by Program Control is to delete
a program or module from residency in core storage. Normally,
all programs remain core resident as lony as the CICS system is
not short on storage. However, the user has the option of
dynamically deleting a program, possibly because it is unusually
large, or hecause it does not have a high freguency of use. Sub-
routine PC_D simulates this by checking the FPPT to determine if
there are any users of the program or if the program is marked as
permanently resident. 1If either one of these conditions holds
true, then the program cannot be deleted and PC_D ends. However,
if it can be deleted, ther PC D frees the core storage used by
the program and then marks the program as non-resident in the PPT.

STORAGE CONTROL

The Storage Control routines have, rerhaps, the most far
reaching impact on the entire CICS system, since, along with the
CPU, core storage is one of the most precious commodities of a
computing system. 1In the use of CICS, every effort should be
placed upon judicious use of this commodity, both by internal
CICS routines and also by user-written routines. Thus, although
they comprise only. three of the 38 user routines of this model,
they are logically the most complex and extensive. Throughout

this discussion it will be necessary to keep in mind that IBM's
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System/360 and System/370 computers allocate core storage in
blocks of 2048 bytes of 8 bits each. That storage is then sub-
divided into smaller segments, as required, when needed by the
using routinesf

The routine which simulates obtaining core storage operates
under a first fit criterion. It first attempts to find one of
the 2048-byte blocks from which storage has already been
allocated. 1If it is successful in this, and there is sufficient
remaining storage in that block to satisfy the current request,
Storage Control Obtain (SC_0O) allocates the needed storage out of
that block by updating a storage accounting area and then returns
the address of the allocated storage to the requesting task. If,
however, there are no 2048-byte blocks from which storage has
already been allocated, or if there is not sufficient storage in
one of the already-allocated 2048-byte blocks, then SC_O will
select an unused 2048-byte block from the rool of blocks made
available at system start-up time. The storage request will then
be allocated from this block, starting at the low order byte.
If the storage request is for greater than 2048 bytes, then ad-
jacent blocks of 2048 bytes are necessarf.to fill the request.

However, if the request cannot be filled from the storage
configuration available to the system at the present time, then
SC_O will take measures to attempt to provide sufficient free
core storage for the request. The first action it will take

will be to free any areas occupied by programs which are
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resident in core storage, vhich are not markec as permanently
resident, and which have no curient users. It accomplishes this
by stepping throush the PPT, starting at the end, and finding a
provram which satisfies the above-mentioned criteria, and then
freeing this core storage. It then again attempts to satisfy the
request. If the request still cannot be satisfied, SC_O continues
up the PPT, freeing programs and testing the request, until the
top of the FPPT is reached.

If the storage request is yet unsatisfied, SC O takes one
final drastic action; it makes available to CICS a separate area
of core storage which was set aside at start-up time. This area
is known as the storage cushion. Wh;n this happens, SC_O also
sets an indicatocr which prohibits any new tasks from being in-
itiated from the terminals. It is the hope of CICS that the
storage cushion can satisfy all the requirements of all the tasks
which are currently active, so that those tasks can be terminated,
their core storage released to the system and the core storage
environment returned to a more normal state of use. Unfortun-
ately, there are times when the storage cushion cannot satisf{y
all requests being made upon it, and CICS has no final option
except to suspend the task which is requesting core storage. An
entry is placed into the suspend queue for this task, and an in-
dicator is turned on in the task's TCA indicating that the task
is suspended. This task will only be re-started when there is

sufficient core storage available to handle its request.
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The counterpart of the Storage Control Obtain routine is the
Storage Control Release routine, SC R. Storage Control gives the
user and other CICS routines some degree of flexipbility in re-
leasing core storage, since core storage, when it is allocated,
is tagged as being either task, program or terminal related, and
since all storage for a task is chained together and all storage
for a terminal is chained together. The user or CICS routine has
the option of releasing all storage attached to a specific term-
inal, all storage owned by a particular task, or any specific
block of terminal, program or task related storage which is
identified by its storage address. The routine essentially re-
verses the process performed by the SC_O routine; that is, it
removes that block or t%ose blocks which were designated from
the allocated storage queue and updates counts on the number of
users and number of free bytes in each 2048~-byte block., Tt also
updates, if pos;ible, the queue of fragmented free storage blocks
or core in an attempt to develop one contiguous block or core
storage rather than two or more disjointed blocks. The final
action of SC_R is to scan the blocks of storage allocated by the
storage cushion to determine if any of its blbcks have any
allocated storage. 1If not, the cushion is returned to the systen,
and the restriction of ATTACHing new tasks is removed.

A third routine in Storage Control is a routine which
attempts to remove from the suspend queue those tasks which had

been suspended due to insufficient core storage and which can
1§
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now be restarted. This routine is represented bv subroutine
SC F in the model. The routine searches throu;h the suspend
cueue to determine if any tasks are waiting for additional core
storage to become available. Once a task is found, SC_F calls
routine SC O in an attempt to obtain the requested storage. 1If
it is obtained the task is again marked as dispatchable and the
routine ends. If the storage was not obtained, then SC F incre-
ments to the next suspended task and attempts to do the same
thing. 1If, after processing throush the entire suspend gueue, no
tasks are found which were suspended due to insufficient core
storage, then SC F will attempt to release the storage cushion if
it is allocated. 1If it is allocated but cannot be released, then
SC F will attempt to release programs which are in core but not
bein;, used. After a program has been released, an attempt is
again made to releaégnthe storage cushion, in the hope that the
storape released by deleting the program was in the storage
cushion. The actual intent of this entire section of logic in
CICS is to get the storage cushion released back to CICS so that
the restriction on starfing new tasks while the storage cushion
is allocated can be removed. 1In effect, it is an attempt to de-
crease the response time of the system by freeingz one ot the
constraints.
TEMPORARY STORAGE

As mentioned previously Temporary Storage provides for a
“'scratch pad' to be used by a task, especially if{ it is lonu
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runnin s O1r reguires more than one set of data to be wrilten to a
terminal. CICS, as impleanented by IBM, provides for Temporary
Storage data areas to be either on a Direct Access Storaxe Device
or in main storage, but the CICS system which is the basis for
this model only implemented that part of Temporary Storage which
uses Direct Access Storage Device data areas, and hence, that is
the only part modeled.

Data is written out to the Temporary Storage file through the
Temporary Storage Put routine, TS P. The routine first determines
if there is an available block in the file. If there is none,
the task is suspended. If there is an available block, core
storage is allocated for the record and the record is written to
the file. After the write is complete, TS P releases the cére
storare whefe the data record was constructed. Then, since there
is a restriction that there can only be one input/output event
nending to the Temporary Storaze dataset at any roint in time,
TS P searches the suspend cueue to determine if any tasks have been
suspended because of the inavailability of Temporary Storage. If
there ie such a task, it is removed [rom the suspend cueue and
made Jdispatchable agzain. If not, TS P returns contrnl t> CICS.

The routine which retrieves a task's data fron the Temporary
storage file is TS GR, Temporary Storage Get/Release. This
routine also releases ownership by a task of a Temporarv Storage
block, or, in combination, sets the block and then releases it.
Wihen the request includes a ?5% from the file, TS GR must obtain
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a core stora e area into ~hich the record will bhe read. Then the
routire initiates the read. Once the read has been conpleted,

TS Gk, like TS P, will restart a task which has been suspendcd
because of the inavailability of Temporacry Stora.e, if there is
suchk a rask.

If the request was for a release only, TS GR releases owner-
ship of the block. 1If any task was suspended because there were
not enough Temporary Storage blocks allocated, then it is given
ownership of the block and marked as dispatchable. 1If the reques=®
was for a combination get and release, both sections of applicable
logic are performed.

FILE CONTROL

File Control routines are those routines in CICS responsible
for all operations involving the user data base. The system
models the eight major areas of File Control with the following
routines:

1. FC_OCL -- This subroutine is responsible for cpening and

closing files in the user data base; that is, it creates
a linkage between the task and the file to enable
input /output orerations.

2. FC_S -- This subroutine sets up work areas so that a task

may browse throuzh a file; that is, it makes jpossible for

a task to obtain the next lopgically sequential record
from a file upon rcquest.

3. EC GN -- This subroutine retrieves the next secquential
record as set up by a browse operation.

4. FC_RES -- This subroutine resets file work areas to
facilitate browsing at a new logsical location in the file.

5. FC_GET -- This subroutine performs a direct read upon the
user data bhase.

6. FC_PUT -- This subroutine performs a direct write of a

new or updated record to the user cdata hase.

0
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7. FC GA -- This subroutine allocates a tile work area ir
which a new record can be constructed.

3. FC_RL_E -- This subroutine relegses ccontrol of a record
read with exclusive contrnl or can be used to release
file input.,output and browse work areas.

The first action that a task must take with the user data
base is to issue an open, for unless the file is opened for the
task, no operations can be directed towards that file. FC OCL
searches the File Control Table (FCT) for the appropriate file.
If it is found, it is indicated as being open in the task's TCA.
If it is not found, then an error indicator is returned to the
task and the task will abnormally end. A similar set of opera-
tions occurs when routine FC OCL is used to close a file, except
that the indicator in the tésk's TCA is shown as closed.

Four of the remaining seven routines, FC_S, FC_GN, FC RES
and FC_RL E, are primarily concerned with ;resenting records to
the task in a sequential manner, while the other three, FC GET,
FC_PUT and FC_GA, are concerned with direct operations on the file.
At times it may not be possible for a user to uniguely identify a
particular record which he wishes to interrogate in a user data
base. This may be due to the fact that several records have
identical keys. 1In this case CICS makes it possible for the
task to access part or all of the records which have synonymous
keys and allows the user to determine which one is the appropriate
record. At other times there may be no duplication cf keys ana
CICS will directly access the desired record.

When it is desired to sequentially access a series of records,
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it is necessary to obtain three areas of cure stocaze, a file
input.,output area (FIOA), a file browse work area (FBWA) and a
file work area (FWA). This is the duty of routine FC_S. It
searches the FCT for the appropriate file ID, and if found, uses
lengths stored in the FCT for the file to initialize for the
storage reguests. If the file is not found in the FCT, control
is returned from FC_S with the indication that the file was not
found and the task is abnormally ended. FC_S calls Storage
Control routine SC_O for each of the three areas. 1If the storage
is not available for any of the three areas, then the calling
task is suspendéd at that point. After all three areas have been

successfully obtained, an indicator is turned on in the task's

TCA to indicate successful completion of the function.

R

To retrieve the next (or first) logical record as specified
by @ generic or specific key (a generic key is:nm where only the
high order portion is assigned and the low order portion is zeroces
or blanks), the system uses subroutine FC_GN. The routine first
verifies that subroutine FC_S has been previously executed for
this task/file combination. Then, if this is the first sequential
read, the file is unblocked, or the end of a physical block has
been reached, the routine issues a read to the file. However, if
a physical blocked record is available in the FWA and the end of
the block has not yet been reached, then sugroutine FC_GN will
only de-block the next logical record and present it to the task.

Y

Finally, after retrieving the logical regbrd, FC_GN releases the
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storage occupied by the FI0A by using Stovage Contynl routine
SC_R.

Subroutine FC_RL E is ;rovided by CICS to perfoim two basic
functions: 1

1. To release all input/output and work areas associated

with a task/file combination.

2. To release all exclusive control attributes for a spec-

ified task,file combination.
The latter function does not apply for sequential accessing of
records, and its discussion will be deferred until later. However,
the first function is applicable to the browse operation. This
routine supplies an easy method of releasing the core storage
allocated by routine FC_ S for the FIOA, FBWA and FWA. Again, it
first verifies that the file has had a browse operation initiated
for it by the task. 1If so verified, it then uses Storage Control
routine SC_R to release all three areas.

It may occésionally be dJesiyable for a task to end sequential
processing at one point on a file and resume sequential process-
ing at a different logical record. One way of doing this would
be to call routine FC_RL E followed by another call to routine
FC_S for the new logical key. However, to wminimize system over-
head, a routine, FC_RES, is provided to perform the same function.
All that is really necessary for the desired operation is to re-
lease the current FWA and to obtain a new FWA pertinent to the
new logical request. After first verifying that the task has

initiated this file for browsing, subroutine FC_RES performs a

Storage Control release (SC_R) for the existing FWA and allocates

Q
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a new one by usin; the Storage Contro] Obtain (SC_0) routine.

If a record can be uniquely identified by its key, it would
be desirable for the task to retrieve that record directly, for
there would normally be much less overhead involved. The model
uses subrqptine FC GET to simulate the direct reading of a logical
record. CICS provides for two modes of direct reading:

1. Read-only, where a récord is accessed and can only be

used for inguiry purposes, and

2. read-for-update, where the record is read with the in-

tention of updating some field or fields in the record

and then putting the updated version of the record out

to the file again.
In order to use the latter mode, it is necessary for the task to
have exclusive control of the record. This means that no other
task may access this record for update until it has been re-
written to the file or the exclusive control has been rehoved.
This other function of subroutine FC RL E was referred to above.
It will release exclusive control of all records for a specified
task/file. This would be necessary if the task never rewrofe the
records that it read, possibly because it abnormally ended or
for some other reason. Subroutine FC GET first verifies that
the file is opened for either input or update. TIf so, the
routine uses Storage Control SC O to obtain a FIOA into which
the record is read. If tﬁe record is being read with exclusive
control, an area (an FWA) is also obtained into which the record

will be cueued. FC _GET then initiates the yead operation. Afte:

the appropriate record has been read, FC_GET releases the core
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storaze obtained for the FI0A only if corve storase had been no-
tained for a FWA. Otherwise, the recovd is returned tw the user
in the FIOA, Finally, the routine updates some statistics and
ends.

The counterpart of the routine to directly read a record is
the one which directly writes a record (FC _PUT). This routine is
used t» both add new records t»> a file and to rewrite a record
wnich had previously been read by i1outine FC_GET. FC PUT finds
the correct entry in the FCT for this task's file. 1If the task
is attemptins to write a new recnrd to the file, the routine will
verify whether the file can accept new records by interrozating
the FCT entry. Also, it verifies that the file has been opened
by the task for output or update. If any one of the above con-
ditions is not met, the write is terminated and the task is
abnormally ended. 1If everything checks out with FCT entry,

FC_ PUT will initiate the write operation. When the write opera-
tion has been completed, FC PUT uses the Storage Control Kelease
(SC_R) routine to deallocate the core storage for the output area.
Alos, if the record had been obtained with exclusive control, the
cueue element for the record is freed. Again, as in FC_GET,

FC PUT collects some statistics and then ends.

Before a new record can be written to an cutnut file, it is
necessary for the tast to obtain an area o[ core stora;e in which
the record will be created. The task cannnt directly use the
Storage Control Obtain (SC_0) routine bhecause it is necessary f-or
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File Crotend to be able to access fnfermation Sy the (rst 1Y
bytes of this area vhich are certirent to the wiile pecaticr.
For this reason Lhe mode! vrovides a rovtine (FC GA) to get an
area of core storage in which the ovtput recHord is created. The
routine, as in all other File Control routires, searches fo:r the
correct entry in the FCT and abnormally ends the task if it is
not found. FC GA then uses the information cnded in the FCT
entry to obtain the proper length work area. As in all othe:
routines which use SC O to obtain core storage, if the cove
storage jis not obtained, the task is suspended. If the storaue
is obtained, FC_GA ends normally.
MISCELLANEOUS ROUTINES

Uccasionally while processingz, a task or CICS contrnl routine
may encounter a condition which prevents it from accomplishing
its designated duty. When this happens, it is highly desirable
that the jrogram problem can be determined, and if rossible,
eventually fixed. CICS isrovides the ability to list all or
portions of the core stnrage assnciated with a task as an assist
in determining the cause of the tvouble. In the model this
function is represented by the routine DMPCNTL. DMPCNTL deter-
mines which areas of core storage are to be dumped and writes
images of them out to a secuential file. To simplify the dumping
operation, DMPCNTL operates as a serially reusable resource so
that all of the core image records for a particular task appear

consecutively on the file. Since it is serially reusable, only
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ane task mav be active in DMPCNTL at avy ioint in time. If
another task enters DMPCNTL while it is active, the second tasi
nmust be suspended ;ending completion ~f the dumping of the active
task. If it is nnt active when entered bv a tasx, DMPCNIL de-
termines which portions of the task's storage are to be dumped.
Then, preceding the writing out of each area of core storage,
DMPCNTL writes out a header identification recovrd. After [nish-
ing dumping all recuested areas of core storayge for the present
active task, DMPCNTL interrogates the suspended task rueue for
any tasks whieh may be awaiting its services. If a task is found,
it is removed fiom the suspended task cueue and marked as’ being
dispatchable. Also, DMPCNTL is ayain marked as heiny active so
that the currently-restored task is assured of getting control.
The demand for the services of CICS is not constant through-
out the period of time that it is active. 1In fact there may be
times when there is an extended lull of activity. 1In order to
take full benefit of the operating system's multiprogramming
carabilities and to use the computing system to its fullest, CICS
can relinguish control back to the operating system for a specif-
ied period of time or until some component of CICS recuests contrnl
again. If, after stepping through the entire active task queue,
no task is found by the DSPTCHR routine which can be initiated,
the model branches to routine OS WAIT. This routine puts an
event into the Event queue which will be executed at the current

time plus two seconds. Alsc, it places an entry into a list of
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n

tasks which are waiting upor a pending event. If any tasx in the
list has its rending event satisfied while control is not with
CICS, it will again be given control.

Several times throughout the above discussion the initiation
and return from input/output events has been alluded to. As in
other multiprogramming systems there is a continuing interaction
for all the resources of the computing system, especially the
central processing unit (CPU) and the input/output channels. One
method of controlling the sharing of these resources, the method
employed by the operating system on the IBM System/360 and
System/370, is the use of interrupts. For instance, vhen a pro-
gram wants to perform an input, output operation, it essentially
only informs the operating system of its intentions rather than
performing the input, output action itself. When the operating
system is aware of the program's intention, it interrupts the
program so that it no longer has control of the CPU. It then
schedules the input/output event with the channel. From this
point on the channel controls the operation. Upon completion of
an input;output event, it notifies the operating system and the
program is marked as being dispatchable.

The model uses two subroutines to simulate the above actions.
Routine READWRT schedules the completion time of the input/output
event, while routine OS POST receives the notification that a
pending event has been completed and posts the task as being

dispatchable again. READWRT uses an algorithm developed in
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reference 5 tco determine’the time when an input/out;ut event is
to be completed. The algorithm states that the total time f[or a
{ile event is the sum of the seek time, command transfer time,
data transfer time, rotational delay and average wait time for
the channel. Seek time is the time recuired to position the
read,write heads of the disk drive at the corgect cylinder.
Command transfer time is the time taken to transfer the appropri-
ate channel commands for the input,output event from core storage
to the channel. Data‘trahsfer time is the length of time needed
to move the data from the disk to core storage or from ccore
storage to the disk. Rotational delay jis the time for the rotat-
ing disk to spin so that the appropriate record is under the
read/write head. The average wait time for fhe channel is a
function of the probability that the channel is busy, the
averaye service time per file event and an interference factor
based on the utilization of all disk arms available to the
channel. Subroutine READWRY uses the algorithm to calculate the
elapsed time for the input/output event based on the access times
for an IBM 3330 type disk storage unit. Once the elapsed time
has been calculated, the routine adds it to the curvent tim@
TNOW and inserts an event into File One to indicate the end of
the file event. The event is used to initiate routine OS POST.
As mentioned previously subroutine OS_POST is used to indi-
cate the completion of a pending event, whether the event is

associated with a task or with a CICS routine. It is alsn to
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this routine that the operating system retuins control if CICS
itself has been in a wait state due to inactivity. If the event
is a terminal write, then the terminal's entry in the TCT is up-
dated to indicate that there are no pending events outstanding
for the terminal. Also, the task which issued the Terminal
Control write is removed from the suspend gueue and is marked as
beiny dispatcnable again. If the event is not associated with a
terminal, then the p{nding event counter for the task is de-
cremented by one and the tas is removed f{rom the list of tasks
waiting for the completion of a pending event.

As required by GASP2 a routine to call the programmer's
events is needed. 1In the model this routine is usec to not only
call the recuested routine, but to also provide the logic to
simulate the flow of .contrnl through various representative tasks.

The last routine to be called in a simulation run is sub-
routine END_SIM. This routine is used to close out all time-
venerated statistics used in the model. This ensures that all
statistics are updated to their final status at the end of the
run. Finally, END SIM sets variable MSTOP to -1 to end the
simulation and variable NORPT to zero to request the final

summary reports.



APPENDIX E

The following set of
flgw of all user routines
to represent each program
considered more important

through the routines.

vrogram flowcharts represent the logic
within the model. No attempt was made
statement in these flowcharts. 1t was

to represent the flow of ;rocesses
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AIFENDIX F

I am writing this letter to certify that the work dore by
bonald Hoch for his master's thesis at Lehigh University does
accurately model the inner workings of IBM's Customer Informatior
Control System. I make this assertion based first on cnversa-
tions with Don as he developed his ideas over the i ast sixteen
months and second on my {ive years full-time experience with the

svsterm.
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