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A   SIMULATION   MOj£.L   OF   THE   I AM   CUSTOME!-   J KFOi-.MATIOK   CONTROL 
SYJTEM        . . . JonaA:!   .L   Hocii 

A?STKACT 

One of the measures nf usefulness nf an information system 

is its ability to process a request within a desired time frame. 

If, for some reason, the system is unable to respond within this 

time frame, then it loses all or part of its effectiveness. 

This paper desciibes a simulation model for IBM's Customer 

Information Control System, an on-line computer system which 

processes incuiries and updates to a user data base.  The in- 

quiries and updates are initiated from telecommunications 

terminals and responses are directed back to these same term- 

inals.  If the time taken to respond to these transactions 

becomes too yreat, the system loses its effectiveness.  This 

model can be used to discover those areas within CICS which act 

as bottlenecks piven various input parameters. 

Several simulation nips Tere made and their results are 

outlined within.  One major problem discovered in these runs 

was in the routine which loads programs into core storape which 

are to be executed.  Under certain circumstances this routine 

performs a considerable amount of extra work which is not re- 

quired and which degrades the system to a ppreat extent. A 

solution has been proposed for this problem. 



CHAPTER 1 

INTRODUCTION AND BACKGROUND 

1.1  INTRODUCTION 

To understand the reasoning behind and intent of this Master's 

thesis, it is necessary to delve into the background of on-line real- 

time computer systems, the reasons they came about and what they 

intended to accomplish.  It would be best to start by defining what 

is meant by an on-line computer system.  An on-line computer system 

is "one in which the input data enter the computer directly from the 

point of origination and/or output data are transmitted directly to 

where they are used.  The intermediate stages of punching data onto 

cards or paper tape or of writing magnetic tape or off-line printing 

are largely avoided."   [ 1] 

On-line systems came about primarily because computers could 

not always provide information to a user within the time frame when 

it was most needed.  This was true for a number of reasons: 

1) Not every person or even company could afford one of 

these expensive machines, and hence, they might be 

forced to use a computer situated some distance away. 

Thus, there was the problem of getting the input to the 

computer and output returned from the computer within 

a reasonable period of time. 

2) Once the data reached the computer, the problem still 

existed of scheduling and coordination of the necessary 



events in order to get usable output. 

An on-line system, in itself, solves part of this problem, which 

is the getting of the data to and the output back from the computer 

in a short period of time.  This is accomplished by transmitting 

the data over transmission lines between a main computer and 

terminals, which themselves could be computers.  Now, due to 

electronic speeds, time to get a job to the main computer is 

measured in seconds, rather than minutes, hours or even days. 

However, the problem of producing the output within a short period 

of time still exists. 

It is here that the concept of 'real-time' enters.  A real- 

time system is defined as "one which controls an environment by 

receiving data, processing them, and taking action or returning 

results sufficiently quickly to affect the functioning of the 

environment at that time." [ 1]  It is the concept of sufficiently 

quick results that is of the essence here; that is, the provision 

of a system which provides a response time within which the user 

can function effectively.  Within this concept, response time 

cannot be given a universal value since it is dependent upon the 

application in progress.  A response time in seconds or less may 

be necessary to control an industrial production system, versus 

only a response time of minutes or hours for some commercial or 

managerial functions.  However, in all cases the system must meet 

the time-dependent needs of the user to be considered real-time. 

It should be noted here that while some authors consider a real- 

time system, one which has a response time of seconds or fractions 

3 



of seconds, in this work we shall use the term only in its more 

general sense. 

The data processing system has now expanded from the central- 

ized computer and its assorted auxiliary equipment to include such 

things as terminals and telecommunication lines and their controllers. 

Also, what was once a basic operating system has now been expanded 

into an extremely complex set of software routines, hopefully capable 

of controlling the system equally well under varying conditions of 

stress and various requirements of individual requests to the system. 

Many, if not all, of the manual tasks which were present under the> 

former 'batch' method of computing have now been replaced with 

automated controls as part of these software routines.  Also, the 

telecommunications controller has taken on some new tasks due to 

the additional capabilities of the system.  Some of these new 

functions include: 

1) Polling of terminals to determine which have a request 

on the central processor. 

2) Analyzing where input and output messages are to be routed. 

3) Queuing up requests on various components of the system. 

4) Translation between external transmission code and 

internal processing code. 

5) Checking for transmission errors. 

It is the Customer Information Control System from IBM upon 

which attention will be focused.  This system was chosen because of 

its widespread existence in installations and also because the author 

intends on making practical use of the results of this system study. 

The above system is "a transaction-oriented, multiapplication data 



base/data communication interface between a System/360 or 

System/370 operating system and user-written application programs. 

Applicable to most on-line systems, CICS provides many of the 

facilities necessary for standard terminal applications: message 

switching, inquiry, data collection, order entry, and conversational 

data entry. " [ 2] 

1.2  PERFORMANCE EVALUATION TECHNIQUES 

As described in detail by Baafi [ 3]  and mentioned by Shulman 

[ 4]  , there are three performance evaluation techniques available 

for a computer system: 

1) Monitoring (hardware or software) 

2) Analytic evaluation 

3) Simulation 

Each particular method has its own advantages and disadvantages 

which must be weighed together with the system to be evaluated. 

For further information refer to table 1.1 for the major advantages 

and disadvantages of each method. 

With respect to the system being studied, it can be seen that 

the only feasible technique is that of simulation.  A hardware 

monitor is not available for CICS and is not worth any further 

consideration.  It would be much too expensive to attempt to develop 

a hardware monitor to study the installation upon which this paper 

is based.  Software monitors of the system are available, but they 

have two major drawbacks: 

1)   They only provide the user with an analysis of the system 

operation, and with no means of interpreting the analysis. 



TABLE 1.1 

Perroi.mance Evaluation Techniques Advantages / Disadvantages 

Evaluation 
Technicues Advantages Disadvantages 

Hardware monitor    Has no effect on Costly, not readily 
operation of system 

Sortware monitor    Easy to write and Affects system 
change operation 

Analytic Can be changed to Difficult and 
evaluation        model different sometimes im- 

situations possible to 
construct 

Simulation Flexible for present Costly to con- 
and future operation struct and run 



For example, they might indicate that the system perform- 

ance degraded quite substantially at a particular point in 

time, but they give no indication as to the actual cause 

of the degradation. 

2)   Software monitoring does not provide a means of a   priori 

measurement of statistics; that is, measurement before 

actual changes have been made to the system. 

Analytic evaluation improves upon software monitoring in that it is 

possible to do £ priori measurement, but an analytic evaluation of 

even some of the most simplistic systems is extremely time con- 

suming.  In the case of more involved systems, it has been impossible 

to develop an exact model of the system [ 5]  .  The complexity of 

CICS with its many possible interrelationships rules out this form 

of evaluation. 

Simulation has been chosen because it is the best suited method 

for studying CICS.  Refer to table 1.2 for the major advantages and 

disadvantages of simulation as prepared by Maisel and Gnugnoli [ 6] 

The major reason why simulation is the best tool for performance 

evaluation for this system is that it can model the system compara- 

tively easily.  Another reason is that it has the extra and vastly 

important feature of flexibility.  Not only can one consider many, if 

not all, states of a model in a properly prepared simulation, but one 

can easily adjust the model to test future system configurations and 

parameters. 

1.3  OBJECTIVES 

The main objective of this study will be to write and implement 

a simulation model of the IBM Customer Information Control System. 

7 



TABLE 1.2* 

Summary of Advantages and Disadvantages ox Computer Simulations 

Advantages Disadvantages 

Permits controlled experimen-        Very costly 
tation with: 

Uses scarce ana expensive 
(a) consideration of many resources 

factors 
(b) manipulation of many Requires fast, high 

individual units                capacity computers 
(c) ability to consider 

alternative policies Takes a long time to develop 
(d) little or no disturbance 

of the actual system May hide critical assump- 
tions 

Effective training tool 
May require extensive 

Provides operational insight field studies 

May dispel operational myths 

May ma See middle management more 
effective 

* Refer to page 5 of Maisel and Gnugnoli  6 



In order to do this, a comprehensive study will be done of the on- 

line environment of CICS as it is operating at Pennsylvania Power 

and Light Company.  As a secondary objective the simulation model 

will then be used to determine the areas of the system which act 

as bottlenecks under normal and peak-load operating conditions. 

As a consequence of these bottlenecks, the response time of the 

system is often impaired.  Once these bottlenecks have been found, 

solutions for them will be proposed.  These solutions will then 

be tested by using the simulation model in order to ensure that 

no other potential bottleneck is created.  Also, because of the 

flexibility and ease of modification inherent in simulation models, 

the model will be used to study the effect possible future revisions 

will have on the CICS system before the time and expense is incurred 

in making the revisions. 



CHAPTEK 2 

CICS ENVIRONMENT 

2.1 GENERAL DESCRIPTION 

CICS consists of ten functional program nodules which can be 

groomed by a user to meet his exact specifications.  These modules 

interact with user-constructed tables to control the CICS environ- 

ment and to process the user application program rec.uests.  Another 

main component of the CICS environment is the set of system input/ 

output datasets which are used to support the real-time enviionment, 

and the user input/output facilities such as the terminals for inter- 

acting with CICS and the user data base.  Even though CICS is a con- 

trol system in its own right, it still must interact with and oper- 

ate within the restrictions of the operating system on the System/ 

360 or System/370.  Refer to Figure 1 for a conceptual diagram of 

a CICS system. 

2.2 FUNCTIONAL COMPONENTS 

As mentioned above there are ten functional modules provided 

for a CICS system.  They are: 

1. Task  Management 
2. Storage  Management 
3. Program  Management 
4. Termina1   Ma nageme nt 
5. File   Management 
6. Transient   Data   Management 
7. Temporary   Storage   Management 
8. Program   Interrupt   Management 
9. Time   Management 

10. Dump   Management 

10 



CICS/OS SYSTEM FIGURE 1 

Programs 

Main 
Storage 

w 

Data 
Base 

OPERATING   SYSTEM/360   and   SYSTEM/370 

Task 
Mgmt . 

BDAM 

BSAM 
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B.TAM 
TCAM 

ISAM 
BDAM 

PROGRAM 
MANAGEMENT 

TERMINAL 
MANAGEMENT 

STORAGE 
MANAGEMENT 

FILE 
MANAGEMENT 

I 
Application 
Programs 

*  Refer   to   page   18   of   IBM's   CICS  General   Information Manual     2 
11 



In the discussion of these facilities it should be noted that 

in a CICS environment the words task and transaction are used 

synonymously. 

2.2.1 TASK MANAGEMENT 

Task Management provides the ability to process 

multiple transactions concurrently by use of a Task Control 

Program.  This facility schedules and initiates processing of 

available tasks according to priorities assigned by the user 

and entered in one of the system control tables.  When the task 

is complete, task management removes the task from the CICS 

environment.  Also, the task program can dynamically change 

the priority of a task, and can delay the execution of a task 

by enqueueing it in order to synchronize the task with some 

other event in the CICS system.  This event might be the notifi- 

cation of the completion of an input/output event or the request 

for a different task to be purged from the system.  Task 

Management uses this enqueueing facility to control the number 

of active tasks processing within the system by not allowing 

any new tasks to be initiated once a user-supplied limit has 

been reached or if the amount of available main storage is 

insufficient to support those tasks already present. 

2.2.2 STORAGE MANAGEMENT 

Since CICS is a multitasking system, that is a program 

operating within a multiprogramming environment which is 

multiprogramming within itself, it is necessary for CICS ti 

sub-allocate any resources which the operating system has 

12 
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allocated to it.  It is the function of the Storage Control 

Program of Storage Management to dynamically acquire and free 

main storage as requested by CICS system routines and user- 

written application programs.  The main storage which is requested 

may be used for input/output areas, program load areas, system 

work areas or transaction work areas.  Once the main storage area 

has been acquired, it may optionally be initialized to any 

desired bit configuration.  For example, storage acquired as 

an output area might be initialized to all blanks before further 

processing. 

A request for main storage may be issued by the user in 

one of two modes, either conditional or unconditional.  If a 

conditional request is made and there is insufficient main 

storage to handle the request, Storage Control only returns 

control to the user with an indication that the request has not 

been satisfied.  However, if the request was unconditional and 

there was insufficient storage, then Storage Control will take 

the following actions.  It will: 

1. suspend the requesting task until more core 
storage becomes available, 

2. inhibit any new transactions from being initiated, 
and 

3. release what is known as a 'Storage Cushion'. 

A 'Storage Cushion' is an area of main storage which is held 

in reserve by CICS until a short-on-storage condition arises. 

At this time it is released and those transactions which are 

already in progress use it to satisfy their requests.  The storage 

cushion is returned to a reserve status and new transactions may 

again be initiated whenever the short-on-storage condition has 
13 



been abated.  This occurs whenever enough transactions have 

completed their processing and have been purged and the demands 

for main storage have decreased.  If an additional request for 

core storage is issued when there is no more available storage 

in the cushion, then a stall condition may arise.  If this is 

the case, then CICS can purge those tasks with low priority in 

order to allow the higher priority tasks to continue to process. 

The tasks which are purged are lost to the system and must be 

re-entered. 

Another important function of Storage Control is to 

chain all acquired storage for a task together.  This allows 

CICS to easily release any storage still owned by a transaction 

when that transaction ends, either normally or abnormally. 

2.2.3  PROGRAM MANAGEMENT 

Program Management is the area of CICS which supports 

the multiprogramming of transactions which is necessary in a 

real-time system.  The Program Control program is responsible 

for dynamically loading, deleting, transferring control to and 

returning control from a program in the CICS environment. 

Program Management aids in the efficient use of main storage 

by allowing concurrent use of the same program 'copy' in main 

storage by multiple transactions.  The only restriction imposed 

by the system is that the programs must be written in at least 

a quasi-reentrant manner.  A fully reentrant program is one 

which does not alter any of its instructions or data during 

its execution, whereas a quasi-reentrant program is allowed 

to alter instructions or data, but it must restore anything 
14 



that has been altered to its original form before an exit is 

made from the program. 

Program Management controls the programs in main storage 

by using a table known as the Processing Program Table.  This 

table contains an entry for every program known to CICS.  The 

entry contains the program's address in a direct access library, 

its address in main storage if it is currently resident and a 

use count indicating whether a program is currently active.  Once 

loaded, a program remains in main storage until there is a short- 

on-storage indication.  At that time any programs which are not 

currently in use are purged.  When they are again required, 

they must be re-loaded into main storage. 

2.2.k     TERMINAL MANAGEMENT 

One of the necessary ingredients for a real-time on-line 

system is its terminal configuration and communications lines. 

Terminal Management is the area within CICS responsible for the 

control of this telecommunications network and which "provides 

for communication between terminals and user-written application 

programs through the Terminal Control Program." [ 2]  The 

Terminal Control programs interacts with the Terminal Control 

Table when performing its duties in order to obtain information 

regarding the terminal device type, input/output access method 

to be used and line control data.  Terminal Management also 

performs reads from and writes to the terminals, and converts 

the data, if necessary, to internal or terminal code. 

2.2.5  FILE MANAGEMENT 

As mentioned before, a prime component of CICS is the 
15 



user data base.  The File Control Program, using the File 

Control Table, controls the input from and the output to 

the data base.  File Management supports two types of IBM 

datasets, the Indexed Sequential Access Method and the Basic 

Direct Access Method.  The Indexed Sequential Method, an 

indirect accessing scheme, constructs one or more indexes 

which refer to the position within the dataset where the 

desired physical record is located.  Once the physical record 

has been located, it is directly read and the File Control 

program performs deblocking, if necessary.  In contrast to 

the Indexed Sequential Method, the Basic Direct Access Method 

calculates the position of the physical record in the dataset 

by performing various functions on a user-supplied key.  Through 

the interaction of these two access methods, File Management 

has the capability of presenting the records from a dataset 

to the user in either a random or sequential manner. 

File Management also provides for the protection of 

the data base through a feature called 'exclusive control'. 

Exclusive Control prevents two or more transactions from 

concurrently attempting to update a logical record by en- 

queueing all transactions after the first which request a 

'read for update' operation to the same logical record.  Note 

that this does not imply that multiple transactions may not 

be updating the dataset concurrently, provided that each 

transaction is attempting to update a different logical record. 

2.2.6  TRANSIENT DATA MANAGEMENT 

Transient Data Management provides a means within CICS 
16 
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tor accumulating and transmitting data to terminals other 

than the one which initiated the task, to a dataset either 

within or outside of the CICS environment or to a program 

for subsequent processing.  Those destinations which are 

within the CICS environment and which can only be accessed 

by CICS transactions are referred to as intrapartition 

destinations.  Intrapartition destinations are queues of dat; 

which reside on a direct access device for eventual disposition 

to a CICS-related facility.  Those destinations which are 

outside of the CICS environment are referred to as extra- 

partition destinations.  These destinations may be datasets 

residing on either magnetic tape or direct access devices. 

Transient data which has been sent to an intrapartition 

queue can be used to automatically initiate a transaction to 

handle the data.  Whenever the number of records in the queue 

reaches a pre-defined level, the transaction is automatically 

initiated.  This concept is known as a 'trigger level1.  An 

example where this concept could be used would be in a process 

such as message switching.  A transaction could perform a 

transient data write to an intrapartition queue which has a 

trigger level of one.  This would automatically initiate a 

transaction which would read the data from the queue and 

send it to a specified terminal or group of terminals. 

Extrapartition queues could be a dataset used to collect 

statistics or act as a transaction log for CICS and which would 

be examined at a later time.  They could also be datasets used 

to collect or batch data being entered from remote terminals 
17 



and to be used for eventual offline processing. 

2.2.7 TEMPORARY STORAGE MANAGEMENT 

Liek Transient Data Management, Temporary Storage 

Management provides a facility within CICS for allocating 

and controlling working space for transactions which are 

being executed.  However, unlike Transient Data Management, 

Temporary Storage Management is used when working storage 

(either main storage or direct access storage) is needed       \ 

for use within the processing of a transaction.  This allows 

the user to conserve main storage during the course of a 

transaction, a very important consideration in a system where 

the demands for storage space, at any one point in time, could 

far exceed that which is available.  Also, this allows more 

transactions to be active concurrently, and increases the overall 

system throughput.  The ability to multitask to a greater degree 

increases the overall system resource utilization, even though 

the time to process an individual transaction may be slightly 

increased.  This has the effect of reducing the queue length 

of those transactions waiting to be initiated and of increasing 

the queues for many of the system resources.  Also, from the 

viewpoint of the terminal operator, this generally has the 

effect of reducing the response time, a much sought-after 

attribute of an on-line real-time system. 

2.2.8 PROGRAM INTERRUPT, TIME AND DUMP MANAGEMENT 

The three remaining functional modules of CICS, Program 

Interrupt Management, Time Management and Dump Management, 



provide important services to CICS, although they do not 

have the complexity of the previous seven which have already 

been discussed.  In fact, all three functional areas are only 

optional features within CICS and are not necessary to have a 

functional on-line CICS environment. 

Both System/360 and System/370 of IBM achieve their 

multiprogramming capabilities through a device known as 

an interrupt.  An interrupt provides for the transfer of 

control of a computer system from a user's application program 

to the supervisor when certain exceptional conditions arise. 

There are five exceptional conditions which can trigger an 

interrupt in the System/360 or System/370 operating scheme. 

They are: input/output events, unusual program conditions, 

supervisor call or service requests, hardware errors and 

external conditions such as operator requests.  The Program 

Interrupt Management facility of CICS intercepts and analyzes 

all interrupts caused by unusual program conditions within CICS. 

The normal action which the System/360 or System/370 operating 

system takes for an interrupt such as this is to abnormally 

terminate the program.  However, this would mean that the 

entire CICS environment would be abnormally terminated.  In 

its analysis of these program check interrupts, Program 

Interrupt Management determines which task was responsible 

and only abnormally terminates that task. 

The Time Management function of CICS provides for many 

time-dependent functions to assist in the operation of CICS. 

It is used to determine when the transactions within the 
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system are at an impasse and to initiate corrective action 

as well as to detect and terminate a task which appears to 

be in a program loop.  In addition, by using Time Management 

transactions can be made to wait for a specified period of 

time, can be notified after a specified time interval has 

elapsed or even be automatically initiated after a specified 

time interval or at a particular point in time. 

Dump Management is used to write out to output datasets 

images of main storage, such as program working storage, in- 

put/output areas or system tables.  Normally, this is most 

important when used in a testing environment, but it is also 

useful in error analysis of a task which has been abnormally 

terminated. 

2.3  SYSTEM TABLES 

As mentioned before, CICS uses a number of user-constructed 

tables to control its environment.  These tables define for the 

CICS system all of those elements which in total comprise the CICS 

environment.  The main tables and their components are described 

below.  The Program Control Table contains one entry for each 

valid transaction code available to the system.  Coded into the 

table is: 

1. the priority and security code required by each 
transaction, and 

2. information necessary for the processing of each 
transaction, such as the first program to be called 
by the transaction. 

The Processing Program Table contains one entry for each 

application program available to the system.  The information 
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contained in the entry describes the program source language and 

whether the system is resident or non-resident in main storage. 

The Terminal Control Table is used to define the user's 

terminal environment.  There is one entry for every terminal, 

communications line or control unit available to the system.  Each 

entry contains descriptive information about the device or line and 

also various device dependent characteristics. 

The File Control Table describes the user's data base which 

is available to CICS, with one entry needed for each dataset to 

be accessed.  Each entry describes in detail all characteristics 

of the dataset. 

The Destination Control Table describes the environment which 

is accessible by Transient Data Management.  It contains one entry 

for each intrapartition or extrapartition destination.  The entries 

are used to describe the characteristics of the destinations. 

While CICS contains other optional tables and facilities, a 

description thereof is not necessary to an understanding of system 

operation and will not be discussed.  An interested reader is 

referred to references [ 2, 8, 9] 
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LhV- 

LIMITATION MODEL Of CICS 

3 . 7  INTRODUCTION 

The writing of !he simulation model for CICS entailed two 

major and distinct steps: 

1. The standard FORTRAN-basec' GASP2 routines as used at 

Lehijh University were "translator' into i'L/I, a 

prOv;rar;-iiiin.; lan.-,ua;;,e with which the aulho is much 

more familiar.  In addition to the translation, 

several modifications were made to the routines •.•.'hrch 

'-.■ere felt Ln be necessary for successful i mpl ement - 

atior of the CICS model. 

2. The user suboro -tars >.;ere written whic'~ re. resented 

the CICS system be in,-, :node1ed. 

In ji'tT'Sri n" this Simula t i '.T m^Je1 it -'as u-cessai" to 

make some o nee rl yi n y ass'jir; t i ^ r s in ■ < :der to limit the 

sciv.f  >f the y-^Me  t- a .m>de; of CICS.  ,,lso, s^me 

a s su■, , ■ 11 or s ""ie r e c e s sa i. - t'' - > 

c~H!'.i:r irv>'-''lved ' n t r j v' a 1 i t i es 

Ms t 'aa t only those 

is _ c    cue   ;[Oci' 

.: he     r.' mo i •.■   a s sum-:" : on 

iM pOLems   which   we ■ e   directly   iel.at.fMe 

to   the   CICS   prvi > omrent   '•■ere^-studied .      Secondarv  assMTi.ti'or.s 

ueie   that   all    : es xn ces   weie   orerathi.?  with   ro  mechanical 

yr.Tblems   ard   that   all   code   in  all    're-rams   was   efficient, 
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a s s\■: -.. ', i   p.<- ,    '. hi.-   • t- C • e : ■ .' 

Ir-u   'iatel y   r-l^-;v        -i:    '--   a;:   -" IP •. '.■-■    -"   t'• c   <<?.■ 

M!'-> n: o -1 a-s   which   ate   used   to   P'xb,i    CICS.      ,\    ': sens s i on    <•" 

the   GASP?   to   PL, I   crai;s]?li >n   cap   V   f >UPP    in   -\   per-ip   C 

vhile   a   .ioie   derailed   discp ss ; ..">•:    ^f"   the   ;:sci    si- r , » '"•   :a ;s 

can   b(    found   ip   Appendix   D. 

3 .?      CICS   MODEL 

The   CICS   :iiode]   \- hich   ha?   been  developed   consis!.?   of   3d 

p.se t-writ ten   subroutines   in  addition   t°   the   ?]   GASP? 

system   su br out ires ,    the   u ser-v;r i t ter    event   co lee I i on 

5 ubr out i. PC   and   the   usei-^ritten   OTFUT   routine.      There 

arc   Lhiee   input   files   to   the   v.oJel   wit':-   the   follow in; 

fu.net ions : 

1. The   standard   GASP2   input   cards   coutai rn n,,   run   control 

data,     jaranietei    data,    file   data   and   initia1   events. 

2. The   file   containing   the   initialization   data   fop   t h. ■ 

Frocessin.-.   Proaran,   Pro praT   Control   and   file   Conf?'ol 

tables. 

3. The   file   cn:taii'irv;  variable   parameter   data    r^r   th.e 

Evs-iP"!,   such  at-   the   number   of   core   stora".e   bloc hs 

available   to   be   allocated,    the   "ear   t i OP   between 

transaction  a ; \•-' \/a 1 s ,   varies   ;pa~apetric   distribn- 

t ions   a no   so   fnjth. 

These   files   uill   be   refet red   t-   throp ;houi    tods 
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discussion as the GASP2 Event tile, Initialization rile anc 

Parameter tile, respectively.  There are also seven internal 

"files" which are storea in the GASP2 filing array QSET. 

These tiles are discussed mote thoroughly in Appendix A. 

Perhaps the best way to explain this complex set of 

procedures is to discuss the routines as they might be en- 

countered during a normal run of the model, while referring 

to a logic flowchart of each routine. 

A main program (Figure 2) essentially just initializes 

variables before it exits to GASP2.  The first initial event 

to be entered into the GASP2 Event file causes routine 

SYSINIT (Figure 3) to be executed.  This routine models the 

start-up of CICS.  The second and final initial event to be 

entered into the GASP2 Event file calls routine TC_NEXT 

(Figure 4).  TC_NEXT is used to schedule the time of the 

next terminal requesting transaction processing.  The routine 

also is used to determine the transaction type.  An event for 

this transaction is entered into the GASP2 Event file.  When 

this entry is removed from the file, it calls routine 

TC_GET (Figure 5).  This routine simulates the actions 

necessary to perform a read from the terminal. 

After completing these actions, it inserts an event into 

the GASP2 Event file with an event time equal to the current 

time.  This event calls routine KC_A (Figure 6), the Task 

Control Attach routine.  This routine simulates all the 

necessary actions required to initiate a new task in CICS. 
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Alter CTpJeting ali its aclirr.s, routine KC_A exits t > 

Routine DSPTCHR (Figure 7).  This routine is the hub of a1] 

CICS processing because it determines what task is Co   have 

use of the CPU in order to execute.  After a task has been 

Using the CPU for a period of time, various conditions may 

arise which cause it to be suspended or placed into a wait 

state.  A task is suspended in routine KC_S (Figure b) 

because some condition prohibits the task from proceeding 

beyond its current status.  A task is placed into a wait 

state in routine KC_W (Figure 9) because some specified 

event must be completed before it can continue.  When that 

event has been consummated, routine KC_R (Figure 10) is used 

to resume the active execution of the task.  When the task 

has been completed, either normally or abnormally, routine 

KC_T (Figure 11) simulates the actions necessary to purge 

the task from the system.  Two other functions are modeled 

by the system at the task level.  Routine KC_C (Figure 12) 

is used to dynamically change the dispatching priority of 

any task in the system, while routine KC_RS (Figure 13) is 

used to model the testing of various resources to determine 

their state. 

Several routines are used to model CICS actions at the 

program level.  They should not be confused with those 

routines at the task level, because it may take several 

programs to perform all the actions recuired by one task. 

Routine PC_F (Figure 14) models the first necessary action, 



the load ng of a program into nia i n storage.  A program in 

CICS can be branched to in two ways.  It can be linkec to or 

have control transferred to it.  Routine PC_L (Figure 1;>) 

models the actions of linking from one program to another, 

where linkage is set up in order to return to the calling 

program.  In order to simulate transfer of control, routine 

PC_R (Figure lb) models the release of the currently- 

allocated program in order to start execution or the next 

program.  If, due to a short-on-storage condition, it is 

necessary to obtain more core storage, routine PC_D 

(Figure 17) simulates the deletion of unused programs from 

core storage residency.  The last remaining function of 

program control is to handle the abnormal termination of 

user-written programs.  Routine PCABEND (Figure 18) simulates 

those actions. 

Storage Control routines are used by both user-written 

and CICS system routines to perform and monitor the alloca- 

tion and deal location of core storage.  Routines SC_0 

(Figure 19) and SC_OS (Figure 20) model the allocation of 

core storage, while routines SC_R (Figure 21) ana SC_FS 

(Figure 22) simulate the deal location of core storage. 

Routine SC_F (Figure 23) models the monitoring of core 

storage usage, ana attempts to restart any task which has 

been suspended due to a short-on-storage condition. 

Temporary Storage Control in CICS provides a means of 
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onti Miing task iv.uiciiu space viucii is t~-   be used r T an extenut^: 

peri.'C U Li'lie.  tvnitine J S_P (Figure 2<^) simulates the allocation 

a;ia writing ci a blocK 01   cata to a Temporary Storage tilt. 

Koutine TS_Gk (Figure 2o) simulates reading a block oi data from 

the Temporary Storage tile, and/or deallocating that block rrom 

task ownership. 

The routines or File Control perform all operations necessary 

to communicate with the user data base.  Eight major areas are 

simulated by the moael.  Routine FC_OCL (Figure 2b) simulates the 

actions o£   creating a linkage between a task and a user file and 

of removing the linkage.  Routine FC_S (Figure 2/) models the 

creation of several file work areas and control areas which make 

it possible for a task to retrieve records in a logically se- 

quential order from a direct-access type tile.  Routine FC_GN 

(Figure 28) models the retrieval of a record from a secuential 

orcer as defined by routine FC_S.  Routine FC_RES (Figure 2-i)   is 

used to model the re-initiaiization oi the work anu contioi areas 

used in sequential record accessing when a different sequential 

string or records is desired.  The two routines which simulate 

the input and output of records in a direct fasion are FC GET 

(Figure 30) and FC_FUT (Figure 31).  Routine FC_GA (Figure 32) 

models the actions necessary to initialize and create a record to 

oe written to the user data base.  Finally, routine FC_KL E 

(Figure jj) models tire release or vorK and control areas obtained 

r.i, all the above file operations. 
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The remaincei or cue routines cap. he cate>;ojizec as 

either service routines a miscellaneous r HI tines.  JMPCNTI. 

(Figure o4) models the actions necessarv to "dump" all or 

portions of a task's storage to an output device when a 

program in the task has encountered some condition which 

forces it to terminate abnormally.  Routine OS_WAIT (Figure 

35) aiodels the condition ot placing CICS in a wait state and 

branching to the computer's supervisory program when there is 

no active work which can be performed within CICS.  Two 

routines of the model are used to simulate the start and 

completion of input/output events.  Routine READWRT (Figure 

36) models the initiation of the input/Output event, while 

routine OS_POST (Figure 37) models the actions ta«.en upon 

completion of an input/output event, as well as other con- 

ditions which cause wait states.  Finally, routine END_SIM 

(Figure 38) is used to close out all time-generated statis- 

tics being collected in the model when the model has operated 

for its intended period of time.  It also sets indicators to 

notify the GASP2 control routines to end the simulation and 

prepare .the summary reports. 

3 . 3  FREQUENCY DISTRIBUTIONS IN__THE_MODEL 

The basic piece of information around which CICS functions 

is the task.  Therefore, a model of CICS must have a way of 

representing this information.  The two characteristic pieces 

of data which the model uses to represent tasks are the time 

of arrival and the task type. 



Normally, in modeling a system such as CICS, statistics 

ana observations from the actual system are useu to proviue 

insight into the distributions oi arrival time and task type. 

However, in the CICS system being observed, there are no 

detail statistics at the task level which are available.  The 

only statistics available are gross summaries which are 

printed out at the end of the operating day, indicating such 

things as total number of tasks processed by the system and 

a breakdown of the total by task ID.  This information is 

not sufficient to hypothesize a distriDution of task type 

because the work that a task does is variable in nature. 

That is, the parameters supplied to a particular task may, 

in one instance, neea one input/output event to determine the 

answer and another set of parameters for the same task may 

require li> input/output events to determine the answer.  For 

this reason it was decided that there was no present method 

of developing a distribution of task types for the system 

being observed, and each task type was given an equal chance 

of being the one selected by using a uniform distribution. 

A similar situation exists for the time of arrival of 

tasks.  There is even less available information from which 

to develop this distribution.  For this reason it was decided 

to use the Poisson distribution to describe the arrival times 

of tasks.  The Poisson distribution is used to describe the 

probability of N events occurring per time unit, where N ir 
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this case would be the average nurabei of tasks presentee to 

the system per second.  The Poisson distribution gives equal 

probability of a tasK arriving at one point in time as in 

another, and as such implies that there will be no peaks or 

valleys in demand for the system.  This may not be the case, 

but no data is available to prove otherwise.  It has been 

shown that if the arrival times ot events are Poisson dis- 

tributed, then the time between arrivals is exponentially 

distributed [13]  .  This exponential distribution is used 

to determine the point in time when the next task will 

arrive. 

3 . 4  VALIDATION OF .THE_MODEL 

According to Webster's New Collegiate Dictionary, valid- 

ity is "the state of having a conclusion correctly derived 

from given premises".  In modeling, be it mathematical or 

simulation modeling, the output of a model is only as 

credible as the model is valid.  This implies that before 

the task is undertaken to construct a model, it is mandatory 

to know what is expected as the output or results of the 

model.  Said in another way it is necessary to define ob- 

jectives prior to constructing the model upon which the 

model can be predicated.  The stated objective of this 

simulation model was to use it to gain insights as to the 

possible areas and causes of backlogs in IBM's Customer 

Information Control System. 
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Given the stated objective, it is necessary to determine 

whether the simulation model output satisfies the objective. 

As with any computer program, attention was given from the 

onset of computer programming to precisely representing the 

system in a computer language.  Until all programming 

language errors are eliminated, it is impossible to proceed 

further with the validation.  After all coding errors had 

been found and corrected, it was possible to make simulation 

runs to determine the logical consistency of the model; that 

is, whether all subprograms in the model accurately represent 

the corresponding subsystem in CICS.  The running of the 

model was done under the control of the PL/I Checkout Com- 

piler, as was the running of the GASP2 routines which were 

translated from FORTRAN into PL/I.  The great rlexioility of 

the compiler increased the ease and shortened the time span 

in finding logical inconsistencies within the model.  After 

all this was done, it was now possible to determine whether 

the model met its objective. 

Several distinct options have been expressed on the sub- 

ject of what constitutes a validation of a model.  In 

referenceL b] by Maisel and Gnugnoli, three separate sets 

of checks are suggested: 

1. Use parameteis in place of constants to facilitate 
modification oi the model to meet changes in the 
system being modeled. 

2. Get expert opinion as to the closeness of represent- 
ation of the model to the real system. 

31 



J.   Compare model results to knoun standards gv statisti- 

cal measures. 

It is rurther suggested that a comni na t i ->n 01 ail ttuee 

sets of checks might proauce the best validation or the 

model.  However, other authors do not share the same con- 

fidence in these checKS.  The use or parameters in model 

ecuations is nothing more than good computer programming 

practice and will in no wa-' guarantee a better end result. 

Also, as stated by P. H. Seamon in reference[ 17] , 

"estimators obtained from the model cannot be taken as 

predictors 01 absolute performance ' if necessary input 

variables or parameters are not available at the time the 

system is modeled.  This would be true for a simulation 

model having many inciependent ana dependent variables as in 

this stuciy's model.  Also, due to the complexity of the 

system being modeled, a set of standards may not oe available. 

Any estimators from this CICS model could at best be labeled 

suspect if they were to oe used as predictors of validity 

due to the inavai lability of icnown details about the CICS 

system. 

Anothei author, Jay W. Forrester, in reference [ 18] , 

along with P. H. Seamon in reference [ 1/] , tatces a much 

ciifterent approach to the Question of validity.  They do 

not tliinK it is necessary to validate a model uv statistical 

means to known standards.  Fonestei is even much more 

outspoicen about Quantitative validation, in that he believes 
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it to nequently !>e a nattei 01   c;eiusive exacLiLuoe, a 

matter <u attempted validation which should onl  t>e uone 

under certain conditions.  He believes that quantitative 

measurement should only be performed ir the work and cost 

involved in collecting the standard data is not significant. 

If any shortcuts aie taken to minimize ihe time and money 

involved in collecting the data, then the data would proo- 

aoly oe suspect and no true validation would be performed. 

It is the concept of these authors that the validity of 

a model should oe judged finally on the model's ability to 

accomplish its stated objective.  It is Seamon's feeling that 

a model need not be aole to produce absolute results, but ue 

able to give the user a feeling of relative results when 

changing the model from one state to another.  Forrester 

sets forth several criteria which he reels necessary in the 

validation of a model.  His first criterion ior validation 

is that the model show no obvious inconsistency with observed 

actual aata.  Although this sounds trivial, Forrester states 

that most models which he has examined have not Kept this 

criterion in mind.  His second criterion used in model de- 

velopment is to initially attempt to make the model plausible 

with its results, not 1007, accurate.  This approach empha- 

sizes the main intent oi developing a model, to learn as 

much as possible about the system being modeled.  A model 

need not be developed to the point of accurately modeling a 
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svstem, only to the point where a plausiole relationship 

exists oetween the model ana the svstem be in; Tocelcu so 

that the model can be . ut to use.  His last criterion 

stresses that in lieu of using cuantitative measurement 

technicues, many models should be validated by gieenin". 

knowledge and intuitive concepts from the model's author 

and a team of experts in the field.  It is his hypothesis 

that to validate an area of study which cannot be expressed 

numerically requires the validation to take on a non- 

numerical approach.  He feels that this collection of 

knowledge being concentrated on the model will, in the end, 

justify it as being representative of the system being 

simulated, and may even do it at a faster pace than quantit- 

ative measuring would by itself. 

For several reasons the model of CICS developed in this 

study was validated using the concepts of Forrester and 

Seamon.  The statistics available from the CICS system be- 

ing observed were only available at a very high level.  This 

meant that a large number of the figures needed to run the 

model would be pure estimates or educated guesses, and the 

output statistics would be meaningless as absolute numbers. 

Also, one other problem area which would have inhibited 

quantitative validation was the fact that the CICS system 

being studied was being run in a multiprogramming environ- 

ment which would have introduced an unknown amount of noise 
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into the statistics.  Finally, the finished model was quite 

complex and extensive, and the facilities weie not available 

to validate the model in anv other manner.  For these reasons 

it was deemed necessary to tollow the criteria of Forrester 

in validating the model.  Several modeling runs were made 

which were examined for plausibility and consistency with 

what would oe   expected.  Also, a systems programmer at the 

installation being examined was referred to for his opinion 

and counseling on the model and its output.  The systems 

programmer was responsiole for maintaining and enhancing, the 

CICS network at the installation for many years, and could 

easily be qualified as an expert in the field.  Appendix F 

is a letter of testimony written by this system programmer 

stating his opinion on the validity of this model. 
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CHAPI'EK <'■ 

ANALYSIS OF i'r^BLEMS 

After leaching the ;• ir.t in the development of the simulation 

model that it accurately represented the real world, it was nec- 

essary to use the model to sain insights into IBM's Customer 

Information Control System.  This was the final step in determin- 

ing whether or not the model satisfied its design objective. 

An initial simulation run was made with an estimate of various 

system parameters.  The time increment used in the model was 

milliseconds, one one-thousandths of a second, and the model was 

executed for 60,000 time intervals.  Data was accumulated for 

three GASP2 COLCT-type statistics, as well as seven GASP2 TMST- 

type statistics.  The three COLCT-type statistics are: 

1. Total time in the system for a task, 

2. Wait time in the system for a task, and 

3. Core storage usage. 

The seven „TMST-type statistics are: 

1. Percent of time that the program loader is active, 

2. Number of active tasks in the system, 

3. Percent of time that no task may be attached for 

any reason, 

4. Percent of time that no task may be attached because 

the system was at MAX TASK, 

5. Percent of time that no task may be attached because 
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the ttoiagt cushion is all >caCfi, 

'', .  Nombe;  "f tasks .jucuei!, and 

7.  K-rcenc of time that CICS is i ;1"" c !;u5usi there are no 

c i spatchable tasks. 

Table 4.1 is used to give a synopsis of these statistics.  For 

the interested reader, all com.uter listings, including the pro- 

gram compile and all simulation runs referred to in this paper, 

are available at the lehigh University Industrial Engineering 

Department library. 

As mentioned previously, one of the possible areas of con- 

cern which could be studied was CJie st'ira-o usage and its effect 

on response time and throughput.  From the initial simulation 

run it can be seen that approximately 11 percent of the time the 

system was prohibiting new tasks from being attached because of a 

short-on-stoiage condition.  As an attempt at lowering this per- 

cent and achieving bet tea response and raoip throughput, the 

' riir.ary core storage allocation vas increase'.! by 25 percent ant! a 

second simulation run was made with all other parameters remain- 

ing unchanged.  The statistics for this run (run 4.2) are dis- 

played in Table L .2 . 

At first glance comrarison of the tv< sets ^i statistics 

appears to reveal several incongruous facts.  For example, even 

though the amount of cue storage was significantly increased, 

the percent of tine that the system was in a short-on-storage 

condition -.as relatively the same (11.0% versus 10.7%)-  Also, 

even though the throughput improved (203 completed tas.-;s versus 
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2^8), che average time to riocess a ta = K increased hv almost <v0 

percent (1,240 milliseconds versus 1,/23 milliseconds). 

As an attempt at explaining these apparent puzzles, several 

explanations can be rroposed.  On the average there are about 30 

percent more tasks in the system in run two than in run one at 

any point in time (4.2 tasks versus 6.1).  This means that there 

will be more tasks vying ior all system resources, not just core 

storage.  This is evidenced by the fact that there are slightly- 

more tasks enqueued and suspended in run two than in run one 

(1.6 tasks versus 1.8).  This is also proven out by comparing a 

statistic calculated by taking the difference between the average 

system time and the average wait time.  This statistic represents 

the amount of time spent executing a task, on the average, dis- 

regarding any time spent waiting or being suspended.  The execu- 

tion times in run one and run two compare favorably (149 milli- 

seconds versus 153 milliseconds).  This implies that the increase 

in the response time was strictly due to an increase in the time 

spent enqueued. 

Also, it aopears that the increase in system throughput is 

entirely due to the added core storage.  The increase in the 

number of active tasks must be due entirely to the added core 

storage, since that was the only parameter changed.  This in- 

crease also resulted in the svstem utilization percent improving. 

The system utilization percent is calculated as follows: 

1.0 - svstem idle time. 



r'oi tun one the ii,one is a ppi oxi mat e 1 v o percent and i u    inn 

iwi! ') i . J   percent.  r'ir.aiiv, the ^ro^iani i 'aoei was active- ab nil 

2.j percent less in run two than run one (4b.8/c versus <^H.4/,). 

This is significant because this indicates that less programs had 

to be loaded in run two than run one because thev uere already 

resiaent in core storage when needed.  The combination 01 these 

racturs can explain the greater throughput in the second run. 

In order to further validate these explanations of the 

changes between run 4.2 and run 4.1, two additional runs were 

made.  The first run, summarized in Table 4.5, represents an 

addition of the core storage available oy 10o% over run 4.1, and 

the second run, summarized in Table 4.6, represents a reduction 

of the core storage available oy 50%.  These runs entirely 

support the explanations proposed in the preceding paragraphs. 

The average number or tasks in the system in run 4.3 and the 

average time to process a task are greatly increased.  Also, the 

average number of queued tasks has increased, which in conjunc- 

tion with the increased average response time, indicates the 

increased vying ror other system resources.  The average execu- 

tion time (lbO milliseconds) is still consistent with runs £.1 

anc 4.2, as would be expected.  However, the throughput has not 

increased because the system was at MAX TASK condition for 7% of 

the time.  As expected, tne percent of time in which the program 

loader was active is again reduced, due to the additional core 

storage available anu also to the fact that the increased number 
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oi active tasK.s wiLJ inhibit programs 11. om being celetea ii not 

beiu g u s e ci. 

Conversely, run 4.b shows a sharply ciecreasea throughput ana 

a much improved response time.  These statistics are keeping in 

line with the above discussion.  Also, the percent or time that 

the program loader is active is again relatively high.  However, 

the most revealing statistics are the percent of time short on 

storage (33.9%) and the percent of time when CICS is idle (22.31). 

These two statistics explain the reduced throughput to a great 

extent. 

However, one of the prime considerations of an on-line system 

of this type is to control and minimize the response time.  If 

core storage was the only or even primary bottleneck within the 

system, then the 25 petcent increase in core storage from run one 

to run two should logically have improved the response time.  The 

opposite results imply that there aie other factors affecting the 

response time more so than the amount or core storage available 

to the system.  One area which certainly warrants further in- 

vestigation is the relationship of a tasks total time in the 

system to its total wait time.  In run 4.1 the percentage of 

time spent waiting was bout 88 percent while in run 4.2 it was 

about 91 percent.  If this percentage could be reduced, the 

average response time would improve. 

To determine how to reduce this percent, it is necessary to 

know exactly what factors make it up.  The main reasons for a 
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task to wait in the model are: 

i.  Unavailability of coie storage, 

2. Waiting for use of the program loader, 

3. Waiting tor the completion or an input/output event, 

4. Waiting for use of the Temporary Storage facilities. 

As mentioned previously, the percent of time which the program 

loader was busy was relatively high (46.6%  versus 44.6%) and since 

the period of time necessary to load a program is relatively 

lengthy, it is auite probable that a significant proportion of a 

task's waiting time is attributable to the program loader oper- 

ation. 

One way of improving the operation would be to decrease the 

number of program loads in a period of time by increasing the 

number of programs made permanently resident.  A second way would 

be to reorganize the program libraries to give the optimum con- 

figuration for loading.  A third way would be to optimize the 

program loader itself.  After reviewing the situation with a 

systems programmer at Pennsylvania Power and Light who is 

familiar with the operations of CICS, a combination of the second 

and third methods was tried. 

User programs for CICS can be written in either IBM's 

Assembler language or one of two high-level languages, COBOL or 

PL/I.  Programs written in the high-level languages are stored 

in load libraries in executable form and have up to five control 

records preceding the first record of text.  Under many 
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circumstances these control records are not neeaed fine >r.iv net as 

overhead.  It was this area which was attacked. 

Additional runs were made with revisions to the program 

loader routine to encompass the above-mentioned change.  Run 4.3 

used the same parameters as run 4.1 and run 4.4 the same as run 

4.2.  Their results are outlined in Tables 4.3 and 4.4, respect- 

ively.  By comparing runs 4.1 and 4.3, it can be seen that there 

is an improvement in some areas, but not the total task time, 

wait time or time with a short-on-storage condition.  By comparin , 

runs 4.2 and 4.4, all areas have improved.  The total system time, 

wait time, percent ot time at a NO ATTACH condition and total 

throughput are all at their best values. 

Again, two corroborating runs were made similar to runs 4.5 

and 4.6, only using the revised program loader routine.  These 

runs, 4.7 and 4.8 again substantiate the original conclusions. 

Again, it should be noted that by merely increasing the core 

storage, as   in run 4.7, one cannot continue to improve upon all 

conditions.  Eventually, as has happened, a bottleneck will de- 

velop in some other area of the system, and the wait time will 

increase.  At some point in time, all practical and relatively 

inexpensive improvements will have been made to the CICS environ- 

ment and only such changes as upgrading the CPU or additional 

channels will improve performance. 

This concept is easily visible in two final simulation runs, 

runs 4.9 anci 4.10.  Run 4.9 used the same parameters as run 4.4 
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except that the maximum number of tasks allowable within the 

system was increased r i om 20 to 2 ;>.  This not only had the aesirec 

efiect OL   reducing the percent oi time at NO ATTACH due to a MAX 

TASK condition, but it also resulted in an increase in the response 

time and a decrease in the throughput, two nondesirable results. 

As was explained above, some other bottleneck; has developed and 

affected the system in a negative manner.  Run A.10 parallels run 

k.7 except for the increase in maximum allowed number of tasks 

irom 20 to 25.  This run likewise shows the development of a 

different bottleneck. 



TABLE   4. 1 

COLCT-TYrE STATISTICS 

MEAN STD.DEV.        MIN          MAX             OBS 

Total   Time                             1240.3 757.2        131.9     4551.6       203 

Wait   Time                               1091.2 678.6          35.3     4019.7       203 

Core   Storage  Usage               18.9 5.6            5.4          36.5     4S18 

TMST-TYPE STATISTICS 

MEAN STD.DEV.   MIN   MAX     OBS 

Percent Program 
Loader Active       46.ti% 49.9%   0.0%   100.0%   60000 

Active Tasks          4.2 3.7    0.0    12.0   60000 

Percent nf Time at 
No Attach    11.0% 31.3%  0.0%   100.0%  60000 

Percent of Time at 
Max Task    0.0% 0.0%  0.0%    0.0%  60000 

Percent of Time at 
Short-on-Storage    11.0% 31.3%  0.0%  100.0%  60000 

Queued Tasks          1.6 1.9    0.0     9.0    60000 

Percent of Time at 
CICS Idle     6.9% 25.4%  0.0%   100.0%  60000 
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Total   Time 

Wait   Time 

Core   Storage  Usage 

TABLE  4.2 

COLCT-TYPE   STATISTICS 

MEAN        STD.DEV.        MIN MAX OBS 

1725.S       1226.0       112.4 6426.9 223 

1572.0       1145.8          66.6 5900.9 228 

22.7               7.1            7.0 43.1 5313 

Percent   Program 
Loader  Active 

Active   Tasks 

Percent   of   Time   at 
No  Attach 

Percent   of 'Time   at 
Max   Task 

Fercent   of   Time   at 
Short-on-Storage 

queued   Tasks 

Percent   of   Time   at 
CICS   Idle 

TMST-TYPE   STATISTICS 

MEAN STD.DEV.      MIN 

44.4 7. 

6.1 

10.7% 

o.ox 

10.77; 

1 .8 

MAX OBS 

49.7 7. 0.0% 100.07. 60000 

5.4 1.0 19.0 60000 

30.97, 0.07. 100.07; 60000 

0.074 0.07; 0.07. 60000 

30.97. 0.07; 100.07. 60000 

2.1 0.0 10.0 60000 

15.57. 0.07. 100.07. 60000 
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TA.'.IE   4.3 

COICT-TVPE STAIISTICS 

MEAN STD.DEV.      MIK          MAX             ORS 

Total   Time                              12-2.0 934.1         1=6.1      "47...3        217 

,v'aiL   Tine                                 1094.6 i.ti.?.        111.9      f.073.2        217 

Core   Stora-e   Usa^e                L: . 2 6.4             0.0          30.-';      "70- 

TMST-TYPE STATISTICS 

MMN STD.DEV. '■•TIN MA:; OBS 

20.0% 40.0% 0.0% 100.0% 60000 

4.4 4.6 0.0 20.0 60000 

Percent   Program 
Loader  Active 

Active   Tasks 

Percent   of   Time  at 
No Attach 10.4% 30.5%       0.0%       100.0%       60000 

Percent   of   Time   at 
Max   Task 0.9% 9.3%       0.0%       100.0%       60000 

Percent   of   Time   at 
Short -on-Storage 9.5% 29.3% 0. . 0% 100. . 0% 60000 

Queued   Tasks 1.0 1.1 0. , 0 7. ,0 60000 

Percent   of   Time  at 
CICS   Idle 3 . 0% 17.0% 0, .0% 100, . 0% 60000 
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COLCT-TYPE _STATIjSTI CS 

MEAN          STD.DEV.      MTN MAX ORS 

Iota1   T:-Tie                              013.0             701.0        163.0 n.QL .-> 236 

Wait   Titne                                 770.6             6 5 ^. 5        112.1 3303.9 236 

Core   Storage   Usa-e             15.S                  6.1             6.7 L\.2 5 7 24 

TMS T - TYPE .STATIST IC S 

MEAN STD.DEV.      Mir, MAX OBS 

Pei"cent   Pro;;raiti 
Loader  Active ^.O^ 39.9%       0.0%        100.0%       50000 

Act f. ve   Ta sks 3. ; 3 . " n. 0 20.0 60000 

Percent   of   li're   at 
Ko  Attach 1.0% 10.0%       0.0%        100.0%       60000 

Percent    >f   Time   at 
Max   Task 0.1% 3.7%        0.0%        100.0%        60000 

Percent   of   Tine   at 
Short-on-Stora.-;e 1.0% 10.0%       0.0%        100.0%       60000 

Queued   Tasks 0.9 1.1 0.0 6.0 60000 

Percent   of   Tine   at 
CICS  Idle 3.7% 18.8%       0.0%       100.0%       60000 

4 7 



TAB IE  4 . 5 

COT.CT- T YPh   S TATI STICS 

MEAN          STU.DEV.      MIN MAX OBS 

Total   Time                             2S53.0          196E.2     420.5 14^20.0 224 

Wait   Time                               2593.1          1864.3     373.3 13656.2 224 

Core   Storage  Usage              33.9                 6.7        16.0 53.3 5695 

TMST-TYPE ..STATISTICS 

MEAN STD.DEV.     MIN MAX OBS 

Percent Program 
Loader Active 38.2% 43 . 6% 0. 01 100.0% 60000 

Active Tasks 10.5 7.-5 7 20 60000 

Percent.   of   Time   at 
No Attach 7.0% 25.*%       0.0%       100.0%       50000 

Percent   of   Time   at 
Max  Task 7.0% 25.4%       0.0%       100.0%       60000 

Percent   of   Time   at; 
Short-on-Storage 

Queued   Tasks 

Percent   of   Time   at 
CICS  Idle 0.0% 0.0%       0.0% 0.0%       h0000 

0. 0% 0.0% 0. 0% 0.0% 60000 

2.0 2.1 0.0 10.0 60000 
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TABLE   4.( 

COLCT^TYPE STATISTICS 

MEAN          STD.DEV. MIK MAX OBS 

Total   Time                             1072.6          735.8 125.2 4144.1 132 

Wait  Time                                 916.1          655.6 71.9 3591.3 132 

Core   Storage   Usage                13.4               4.7 5.0 28.9 3265 

TMST-TYPE   STATISTICS 

MEAN STD.DEV. MIN MAX OBS 

4 5.4% 4 9.8% 0. ox 100.0% 60000 

2.4 2.2 0.0 8.0 60000 

Percent Program 
Loader Active 

Active Tasks 

Percent of Time at 
No Attach   33.9%    47.3?:   0.0%   100.0% -  60000 

Percent of Time at 
Max Task    0.0%     0.0%   0.0%    0.0%    60000 

Percent of Time at 
S ho r t - on- St ora %e 33.9% 47.3% 0. 0% 100.0% 60000 

1.4 1 . 6 0. 0 7.0 60000 Queued Tasks 

Percent of Time at 
CICS Idle    22.3%     41.6%    0.0%   100.0%     60000 
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TABLE   4.7 

COLCT-IYPE   STATISTICS 

MEAN          STD.DLV.         MIN MAX OBS 

Total   Time                             180">.l          1491.3       226.3 9234.1 2^6 

Wait   Time                                 1647.7           1428.0        175.1 3b95.8 246 

Core   Storage  Usage               22.4                 S.5            7.v 59.9 6123 
j 

It^Jzl-'PE STATISTICS 

MEAN    STD.DEV.   MIK    MAX       OBS 

Percent Program 
Loader Active      19.1%    39.3%   0.0%   100.0%    60000 

Active Tasks 6.7      6.3    2.0    2 0.0     60000 

Percent of Time at 
No Attach    3.4%    18.1%   0.0%   100.0%    60000 

0.0%   100.0%    60000 

0.0%   100.0%    60000 

0.0     9.0     60000 

Percent of Time at 
CICS Idle    0.2%     4.3%   0.0%  100.0%    60000 

Percent of Time at 
Max Task 2, .4% 15. .4% 

Percent of Time at 
Short-on-Storage 1, . 1 % 10 .4% 

Queued Tasks 1 .2 1 .3 
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TABLE   L .6 

COLCT-TYPE STATISTICS 

MEAN STD.DEV. MIN MAX 

Total   Time                             673.3            416.3 14].1 2499.4 

Wait   Time                               520.4            358.6 81.0 2338.9 

Core   Storage  Usage            12.1                 4.1 5.2 27.1 

OBS 

172 

172 

4567 

Percent   Program 
Loader  Active 

Active   Tasks 

Percent   of  Time   at 
No Attach 

Percent   of   Time   at 
Max   Task 

Percent   of   Time   at 
Short-on-Storage 

Queued   Tasks 

Percent   of  Time  at 
CICS  Idle 

TMST-TYPE STATISTICS 

MEAN STD.DEV.        MIN MAX OBS 

21.6% 41.1% 0.0% 100.0% 60000 

2.1 2.1 0.0 10.O 60000 

24.9% 43.2% 0.0% 100.0% 60000 

0.0% 0.0% 0.0%    0.0% 60000 

24.9% 43.2% 0.0% 100.0% 60000 

0.8 1.0 0.0     5.0 60000 

10.9% 31.1% 0.0% 100.0% 60000 
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TAi^LE   4 .7 

COLCT-TYFE   STATISTICS 

MEAN          STD.DEV. MIN MAX OES 

Total   Time                             1074.6          9 15.2 160.0 6027.1 231 

Wait  Time                                 927.6          860.0 112.9 5629.2 231 

Core   Storage  Usage               17.8               6.5 7.1 42.5 5331 

TMST-TYPE   STATISTICS 

MEAN STD.DEV.        MIN MAX 03S 

Percent   Program 
Loader  Active 

Active   Tasks 

Percent   of   Time  at 
No Attach 2.6% 16.0% 0.0%       100.0% 60000 

Peicent   of   Time   at 
Max   Task 0.0% 0.0% 0.0% 0.0% 60000 

Percent   of   Time   at 
SUort-on-Storage 2.6% 16.0% 0.0%       100.0% 60000 

Queued   Tasks 1.0 1.1 0.0 7.0 60000 

Percent   of   Time   at 
CICS   Idle 3.2% 17.7% 0.0%       100.0% 6000C 

19.4% 39.5% 0. 07. 100.0% 60000 

4.1 4.3 0.0 17.0 60000 

o. . 0% 0. 07 > ^ /o 0. . 0% 

16. . 0% 0. ,   J ,'o 100. . 0% 

1. ,1 o, .0 7 , .0 



TABLE   4.10 

COLCT-TYPE _STATISTI_CS 

MEAN          STL. LEV. MIX' MAX OBS 

ToLal   Time                              2432.0          1954.0 261.6 11636.4 224 

Walt   Time                                 2326.4           1891.0 217.4 11153.0 224 

Core   Storage   Usage              2^.8               11.6 7.2 62.6 5964 

TMST-TYPE   STATISTICS 

MEAN STU.DEV.        MIN MAX OBS 

Percent   Program 
Lp^dev Active li,.0% 38.4% 0.0%       100.0% 60000 

Active   Tasks 9.7 8.5 1.0 25.0 60000 

Pticent   of   Time   at 
No Attach 4.jj7 21.3% 0.0%       100.0% 60000 

Percent   of   Time   at 
Max  Task 2.9% 16.i% 0.0%       100.0% 60000 

lercent   of   Time   at 
Shoj t - on- SL oiac;e 

Queued   Tasks 

Pei cent   of   Time   at 
CICS   Idle 0.7% 8.3% 0.0%       100.0% 60000 

1  0°/ 
I-  • ^ to 13.4% 0.0% 100.0% 50000 

1.5 1.6 0.0 d.o 60000 
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CHAPTER ~j 

3•1  COKCLUSIONS AND _RECOMMENDATIONS 

The model has been used to derive ceitain basic charactei- 

istics of the CICS system as seen in Chapter 4.  What at first 

mav have seemed to be an isolated problem of lack or core storage 

turned out to be a complex intertwining of relationships between 

various components of CICS.  The one absolute problem which was 

discovered was that of the program loader.  The program loader 

routine as implemented by IBM at times performed unnecessary work 

when loading programs written in a high-level language such as 

PL/I or COBOL.  A strong recommendation as a result of this ob- 

servation would be to revise those routines which are involved in 

program loading to bypass the unnecessary operations. 

An interesting observation made auring the above study is 

that it is absolutely necessary to place some realistic constraints 

on the amount of core storage available and on the maximum 

allowed number of tasks in the system.  This is necessary because 

it has been shown during the simulation study that the throughput 

of the system and the average response time will reach optimum 

figures and any further increases in the core storage or task 

limit will actually start to produce system degradation.  This 

occurs because the increasing number of tasks active in the system 

at any one time cause larger queues to be formed for the other 

resources of the system and the average wait time for the tasks 

i'-'creases.  However, using this model it is not possible to 
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necessary for any installation interested in these parameters to 

accurately represent their configuration in the model in order t ■> 

derive their..  The recommendation can je made, however, that in 

lieu of :erforming this type of study, an improvement in system 

performance could very veil he obtained by reducing the cere 

storage available and/or the maximum allowed number of tasks. 

5.2  SUMMARY ^ 

It has been demonstrated that the use of this model is a 

viable tool in solving problems relating to a CICS installation, 

and as such satisfied the stated objective of this paper.  It 

must be kept in mind that the model will not supply the user with 

all the answers; knowledge of CICS is a necessity and the ability 

to interpret the results is a must. 

5-3  AREAS FOR FUTURE STUDY 

A model of this type enables a user to get an understanding * 

of a complex system and its inter-relationships, other than that 

for 'which he has intuitive feelings.  This is invaluable in 

problem solving and planning for future revisions.  However, for 

some cuestions concerning the functioning, of CICS, it may be of 

much more value to be able to derive exact quantitative results 

rather than onlv proportional data.  To achieve a model of this 

type, many changes would have to be made to the existing model in 

four primary areas: 

1.  A facility would have to be developed within CICS itself 
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Co provide data which could be used Co 'drive" Che model. 

This daca would probably be necessary whenever any change 

of state occurred in CICS and would have to at least in- 

clude any necessary parameters which accompanied this 

change of state.  Also, CICS would have to be modified 

to provide much more detailed statistics than are now 

available which would be used.as input parameters or 

constants within the model. 

2. All of the data available in the system tables would have 

to be made available to the model in some form. 

3. Revisions to the model would have Co be made so that it 

is ''driven" by the trace data provided by CICS.  It is 

also conceivable that areas within the model would have 

to be done in greater deCail to support this new scheme 

of operation. 

h.     Attention would have to be given to the hardware config- 

uration of the system and in particular to those areas 

of the model involving input/outpuC operations. 

To refine the model to this extent would require considerable 

effort, but would open up new areas of use. 

One additional area which deserves some consideration is the 

effect of running CICS in a multiprogramming environment.  This 

would introduce "noise" into the model in many areas, and should 

be considered insomuch as it affects the CICS system.  For 

example, suppose an input/output request external to CICS is 

56 



tying up some iacility needed by CICS.  This should be observed 

so that measures can be taken to relieve the contention.  This 

enhancement would also be quite extensive, but would improve the 

effectiveness and usefulness of the model. 
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APPENDIX A 

Following is a brief discussion of the GASP2 internal tiles 

used in the model.  For each file the title is yiven, the sequence 

and sequence element and a description of the file elements. 

FILE 1: Event Queue 
Ascending sequence on element 1 

Element 1:  Event time 
Element 2:  Event code 

FILE 2: Allocated Storage Queue 
Ascending sequence on element 1 

Element 1 
Element 2 
Element 3 
Element 4 
Element 5 

Owner identification 
Beginning allocation address 
Length of storage request 
Storage type 
Transaction number 

FILE  3:   Suspended  Task  Queue 
Ascending sequence on element 3 

Element 1:  Transaction number 
Element 2:  Length of storage request if 

suspended for short-on-storage 
Element 3:  Time into queue 
Element 4:  Suspend code 

FILE 4: Active Task Queue 
Descending sequence on element 2 

Element 1:  Transaction number 
Element 2:  Priority of the transaction 

( 
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FILE b: Fragmented Free Storage Queue 
Ascending sequence on element 1 

Element 1 
Element 2 
Element 3 

Storage address 
Length or free area 
Storage type 

FILE 6: Program Loader Backlog Queue 
Ascending sequence on element 1 

Element 1 
Element 2 
Element 3 

Time entered into the queue 
Transaction number 
Program to be loaded 

FILE 7: Exclusive Control Record Queue 
Ascending sequence on element 1 

Element 1 
Element 2 
Element 3 

Transaction number 
User data base file number 
Storage address of record 
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APPENDIX B 

was 

a 

In preparing this simulation moael it was necessarv to make 

some underlying assumptions in order to limit the scope of the 

problem to a model of CICS.  Also, some assumptions were necess- 

ary in order to obviate the need or becoming involved in 

trivialities.  The primary assumption was that only those 

problems which were directly relatable to the CICS environment 

were studied.  No problems which indirectly affected the system 

were considered.  For example, it was assumed that CICS was being 

executed in a dedicated environment; that is, one in which it 

the only user job being queued for the resources of the system. 

This assumption was necessary because an unfavorable job mix in 

multiprogramming environment could itself cause a severe de- 

gradation in response time, even though there was nothing wrong 

with the CICS operation itself.  The solution to a problem such 

as this is completely trivial.  It would be to create as favor- 

able a job mix as possible, and running stand-alone would be the 

most favorable job mix.  Also, it \s'as assumed that all resources 

were operating with no mechanical problems.  It was again obvious 

that a loss of a channel or a direct-access storage facility 

would result in longer queues being formed to use the remaining 

racilities, and this in itself would cause a longer response 

time.  One final assumption was made, that all code in all 

programs, either user-written application piograms or IBM-written 
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control . r .1 :-,rar.is, was eiticient,  -.ooa" cot,e   a nc that it. nade 

opti-num use of core storage ana other resources.  This is not to 

say that the lo;;ic behind the code is p'-'re, but that the code ''s. 

An attempt at exposing problems of a cod in;; nature are not vithin 

the scope of this paper, and in themselves are not even worthy M 

extensive research to discover theii. 
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APPENDIX C 

From Che author's standpoint it was aeemeci imperative that- 

the GASP2 routines be rewritten from FORTRAN into PL,I.  The 

author has much more experience using PL:I than FORTRAN, the 

installation where ail of the development and testing work was 

done lor the model offered much greater benetits to the PL, I uses 

than the FORTRAN user, and the PL, I language itself offered some 

reatures which simplified the programming and made it a more vi- 

able solution than if it had been done in FORTRAN. 

The initial step was to transcribe the existing routines 

from FORTRAN to PL/I.  Primary concern was given to exact repres- 

entation of the reproduced code, and to determine the best vari- 

able type tor each scalar and array, since PL/I has available 

several more, data types than the INTEGER and REAL types which 

FORTRAN employs. 

The next step was to make the appropriate revisions to all 

routines that were necessary to transform GASP2 to GASP2A as de- 

scribed in reference [ 12] .  GASP2A differs from GASP2 in the 

fact that the filing array in GASP2A is floating point and 

pointers for the filing array are in a different fixed-point 

array, while GASP2 only employs one fixed-point array which is 

used to store program data and pointers for this data.  With 

GASP2 there was always the potential problem of truncation be- 

cause a scaling factor had to be applied to each element before 

it was entered to the array.  One minor difference between the 
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moael's version "i GASP2A ana that discussed in rererence [12] is 

that both integer and real values are stored in the same array 

in the model's version, where as in Pritsker's version rrom 

reference [12] , integer values are stored in the array contain- 

ing the pointers.  The major reason for this is that Pritsker was 

attempting to conserve on the use or core storage, since in some 

computers floating point variables require more core than do 

fixed point variables.  However, in the preparation of the model, 

core storage was never a restriction, and the benefit accrued by 

having all file variables in a single filing array was considered 

a desirable benefit. 

The third and final step of the translation of a FORTRAN- 

based GASP2 to a PL/I-based GASP2 was to add programming logic to 

take advantage of several options available in PL,I and to tailor 

the routines to meet some of the specifications of the model and 

to provide for easier program testing.  These changes follow: 

1. All arrays were DECLARED with a variable for the dimension, 

and were given the CONTROLLED attribute.  This enables 

these arrays to be dynamically allocated during program 

execution time by use of the ALLOCATE statement.  Thus, 

by reading the dimensions of these arrays on a data card, 

the size of the arrays can be varied without recompiling 

the model. 

2. The double-dimensioned array which is used to store the 

filing elements was transposed so that the number of rows 
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is Che total number of tiling elements in the array and 

number of columns is the number of entries for each filing 

element.  This was desirable because PL/I stores double- 

dimension arrays in row major order, while FORTRAN stores 

double-dimensioned arrays in column major order. 

3. Subroutine SET was modified in the routine which adds 

elements to highest-value-first (HVF) files.  Previously, 

if the ranking value of the row being added to the file 

was equal to the ranking value of the row being tested in 

the file, then the new row was added ahead of the tested 

row.  This logic was revised to add the new row following 

all current rows which have equivalent ranking elements. 

4. Subroutine MONTR was revised to give a third type of 

potential monitoring information.  When an event code 

greater than 200 is encountered, MONTR calls subroutine 

SUMRY which prints out all generated data, time generated 

data and filing arrays.  Also, MONTR was revised when 

handling the case where the event code is between 100 and 

200.  Previously, the subroutine would have printed out 

the entire filing array.  This was judged to serve no 

useful purpose, and was wasteful of both time and paper. 

Thus, the routine now only prints out that portion of 

the filing array which is "active".  Starting from the end 

of the array, all elements are tested for a non-zero 

value.  The first such row encountered would be the 
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delimiting point or the printout. 

Once the translation had been completed, the task still re- 

mained of verifying the equivalence ot the PL/I version of GASP2 

to the FORTRAN version.  This verification step took two forms. 

The most obvious form was to run an identical model using both 

versions of the simulator, and then to compare the output.  This 

was done with several or the example models in reference [ 12] . 

Secondly, all of this testing was done in a time-sharing environ- 

ment using the PL/I Checkout Compiler.  The PL/I Checkout Com- 

piler is an interpretative type compiler written by IBM primarily 

to be used in interactive testing sessions.  By using various 

facilities of this compiler, values of any or all variables could 

be displayed whenever they were changed, the flow of the execution 

could be observed as a trace of statement numbers was printed or 

the execution of the program could be temporarily halted to check 

on or change the values of variables.  By testing in this manner, 

it was possible to quickly duplicate the results of the FORTRAN 

version while using the PL/I version. 
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APFENDIX D 

The CICS model which has been developed consists ol 3b user- 

written subroutines in addition to 14 GASP2 system subroutines, 

the user-written event selection subroutine and the user-vritten  * 

OTPUT routine.  There are throe input files to the model with the 

following funct:ons: 

1. The standard GASP2 input cards containing run control 

data, parameter data, file data and initial events. 

2. The file containing the initialization data for the 

Processing Program, Program Control and File Control tables. 

3. The file containing variable parameter data for the 

system, such as the number of core storage blocks to be 

allocated, the mean time between transaction arrivals 

and so forth. 

These files will be referred to throughput this discussion as 

the GASP2 file, Initialization file and Parameter file, respect- 

ively.  There are also seven internal "files" which are stored in 

the GASP2 filing array QSET.  These "files" are discussed more 

thoroughly in Appendix A. 

Perhaps the best way to explain this complex set of proced- 

ures is to discuss the routines as they might be encountered 

during a normal run of the model. 

SYSTEM INITIALIZATION 

When CICS is to be brought up from a 'cold start', it is 
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necessary for several initialization procedures to be per rormeci. 

One ot these 'procedures is to load the system tables and those 

programs which are marked as being permanently resident.  The 

function of subroutine SYSINIT is to obtain core storage for these 

tables and programs, and also to obtain core storage for a stand- 

ard system area used by CICS.  Naturally, the amount of core 

storage obtained for the tables is dependent on the number of 

entries in each table.  The number of entries for each table is 

one of the parameters entered in the Parameter file.  A call to 

this subroutine must be the first initial event entered into File 

One from subroutine DATAN.  After CICS has been initialized, 

SYSINIT branches to Terminal Control to commence polling of the 

terminals for activity. 

TERMINAL CONTROL 

In the model the action of Terminal Control is represented 

by two subroutines, TC_NEXT and TC_GET.  TC_NEXT determines the 

time of the next Terminal Control read; that is, when, through 

polling, a terminal was found requesting activity.  The sub- 

routine uses an exponential distribution to determine the inter- 

val to the next read request, with the mean time between requests, 

XMU_ARRVL, being entered as one of the parameters on the Para- 

meter file.  TC_NEXT also determine which transaction type is 

being requested by taking a random sample from a uniform dis- 

tribution of transaction numbers.  Then an event to call TC_GET 

is entered to File One for the generated next read.  Since only 
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one task can be attached to an individual terminal at any one 

time, TC_NEXT locks itself out whenever the condition aiises that 

all terminals have an active task.  The routine is unlocked when- 

ever one of the tasks is terminated.  To initially call TC_NEXT, 

it is necessary for the second initial event in the GASP2 file to 

be a request for this subioutine. 

TC_GET simulates the actions necessary to perform a read from 

a terminal.  The first thing that it does is to make a conditional 

renuest for a block of core storage eoual to the message length 

from the terminal.  Since the system being studied uses video 

tubes exclusively, the message length was set eoual to the size 

of the screen image, 480 bytes.  However, the model could easily 

be revised to handle other terminal models or configurations with 

multiple types of terminals.  Since the reouest for core storage 

was conditional, a short-on-storage condition will cause the 

terminal that is requesting the action to remain in a pending 

status.  Initialization of the terminal event will again be 

attempted in the next polling loop.  However, if the storage re- 

quest was successful, TC_GET will initiate the I/O event to read 

the input from the terminal.  At this time, TC_GET will go into 

a wait state on this operation; that is, no more action can be 

done for this terminal until the input event is completed.  Some- 

time into the future, the input event will be completed.  Now, 

when TC_GET regains control, it confirms that the read was error 

free, translates the innut to internal machine code and releases 
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the cue storage which it had initially obtained tor this teiminal 

The final action is to "attach  a task within CICS to process 

the request fmm trie terminal.  TC_GET simulates this by insert- 

ing an event into File One with the ev^nt time being enual to the 

current time and the event code being that of the Task Control 

Attach subroutine. 

TASK CONTROL 

Task Control consists of eight routines '.'hich simulate the 

actions of CICS at the task level.  Among these actions are: 

1. Attach a new task. 
2. Suspend an active task. 
3. Place a task into a wait state until completion of a 

pending event. 
A. Resume a tasK that has been in a wait state. 
o. Change the priority of an active task. 
b. Test the CICS system for the availability of resources. 
7. Dispatch a task which is not suspended or waiting. 
y. Terminate an existing tasK. 

As mentioned previously, the iiist action to be taken with a 

new task by Task Control is to attach the task.  This entails 

verification of the Task ID, obtaining core storage for a task 

control area (TCA) and task work area (TWA), placing the task 

into the active task queue and loading the initial program to be 

used by the task it it is not yet resident in core storage.  Sub- 

routine KC_A simulates these actions.  An additional function 

performed by IC_A is to determine if the condition of maximum 

allowed number of tasks has occurred.  The maximum number of 

tasks allowed to be attached at any point in time is a value read 

from the Parameter file.  If this condition has occurred, then no 
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r.ore new tasks are atiacnec until an exist in,; task has terminated. 

While pi'icessin.i;, a task may encounter certain conditions 

which prohibit it from processing further.  Among these conditions 

are : 

1. A storage request was made but not enough core storage 
is available. 

2. A recuest was made to load a program module or table and 
the loader routine was already servicing another task. 

3. An error has occurred in a task a no the task is attempt- 
ing to 'dump" out to a file; however, anothei task is 
already using the dump resource. 

4. A recuest was made for temporary storage, either internal 
or external, but not enough was available. 

Under any of these circumstances, the task is suspended and placed 

in a non-active state until the jrohibiting condition has abated. 

Subroutine KC_S of Task Control is used to simulate these actions. 

The routine finds the appropriate entry in the active task queue 

and places a copy of the entry into a suspend queue.  This queue 

is ordered by the time into the queue so that if multiple tasks 

are suspended for the same reason, then the task suspended for 

the longest period of time will be re-started first.  The 

routine also places an indicator into the Task Control Area (TCA) 

to indicate that the tasic can no longer be dispatched. 

A similar condition to being suspended is being placed into 

a wait state.  Here the task is not being delayed because of some 

external condition which is affecting it, but because of some 

task-related event which is pending until some time in the future. 

The most familiar reason for waiting is an outstanding input/ 

output event.  Once the input/output event has been initiated by 
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the task, it is placed into a wait state until the actual 

physical actions have taken place to either read or write the 

record.  This seauence or events is necessary it a multipro- 

gramming/multiprocessing environment is to be maintained.  Sub- 

routine KC_W simulates these actions in much the same way that 

subroutine KC_S simulates the suspension of a task, except for 

the following exceptions: 

1. Instead of indicating in the TGA that the task is sus- 
pended, subroutine KC_W indicates that it is waiting for 
a pending event. 

2. An entry is placed into a list of tasks which are 
currently waiting.  In the event that the condition 
arises that there are no tasks which can be dispatched, 
CICS will return control to the operating system for a 
maximum of two seconds.  Whenever one of the tasks in 
the list has its pending event completed or the two 
seconds has elapsed, the operating system will again 
return control to CICS. 

Whenever all the pending events for a task have been com- 

pleted, it is necessary to remove the task from the suspended 

task queue and indicate that the task is again an active dis- 

patchable task.  Subroutine KG_R performs this function.  A 

search is made of the suspended task queue to find the task, and 

when found it is removed from the queue.  Also, the indicator in 

the TCA that shows that the task is waiting is turned off. 

Finally, control is returned to the task for further processing. 

At times during the processing of a task, it is advantageous 

for CICS to dynamically change the priority of the task.  One 

particular instance is when that task is using the loader.  Since 

only one task can make use of the loader at any one time, it 
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would be beneficial tor this task to make use 01 the loader anci 

release it in as short a time as possible.  This is accomplished 

by giving the task the highest possible priority while it is usim.-, 

the loader, so that it will always be the first task to be dis- 

patched if it is not suspended or waiting.  Routine KC_C simulates 

this by removing the task from the active task queue, revising 

the priority and re-inserting the task back into the queue. 

Again, an indicator is turned on to show that the task has had 

its original priority changed. 

One of the main focal points of the CICS system is the Task 

Dispatch routine.  This routine is responsible for selecting the 

task that has the highest priority and which is not suspended 01 

waiting and to give that task use of the CPU; that is, to either 

start or resume execution of the task.  Routine DSPTCHR performs 

this function by searching through the active task queue for a 

task which meets the above criteria.  If none are found, then 

the dispatched issues a wait and control return to the operating 

system, as described above.  While stepping through the active 

task queue, the routine examines the dispatching indicator for 

each task.  If it indicates that the task is active, control is 

transferred directly to the task.  If the indicator says the task 

is waiting for a pending event, but there are no more pending 

events outstanding for this task, then the dispatched will branch 

to routine KC_R and resume execution of the task.  If the indica- 

tor shows that the task is suspended, the dispatcher examines 
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the suspend code and tries to determine if the tasK can be re- 

started.  If the task was suspended because of an inadequate 

amount of core storage available, then the dispatched determines 

whether there is enough core storage available at the present time 

If there is, the dispatcher returns control to the task at the 

point where it was suspended; that is, where the task was request- 

ing core storage.  If the task was suspended for any other reason, 

the dispatcher then increments to the next task and attempts to 

dispatch it. 

The last function which can be performed upon a task is for 

it to be terminated.  After every task has completed processing, 

either normally or abnormally, the system branches to routine 

KC_T to perform task termination.  Subroutine KC_T is responsible 

foi releasing all resources held by the task while it was active. 

These resources included both task-related ana terminal-related 

core storage, and any temporary storage which may have been 

acquired.  Also, KC_T collects statistics on the task such as the 

total time in the system and the total time spent waiting by the 

task.  Its last function is to determine if the system was at an 

impasse' due to having reached the maximum allowed number of 

tasks in the system.  If this was the case, then KC_T turns otf 

the maximum task indicator which tells Terminal Control that 

additional tasks may now be read in. 

PROGRAM CONTROL 

The routines or Program Control work within the system at 
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Che next lower level below Task Control.  This hierarchical 

structure is necessary because a single task mav use multiple 

programs and also because a single program may oe   usea b_. 

multiple tasks at any point in time.  The runctions performed bv 

the live Program Control subroutines modeled within the system 

are : 

1. Load a program/module from external storage. 
2. Link from the currently-executing pro^iam to a lower 

program. 
3. Return from the currently-executing program to a program 

at the next highest level. 
U,   Transfer control from the currently-executing program 

to one at the same level. 
3. Delete a program/module from being resident in core 

storage. 

Obviously, oefore a program can oe executed, it must oe 

resident in core storage.  This implies that before a task can 

perform its function, the initial program used by that task must 

be resident in core storage.  It is the function of the Program 

Control Fetch routine to ensure that a requested program is 

loaded into core storage, if necessary, and of subroutine PC_F 

to model this routine.  When a task is ATTACHED, the name of the 

initial program to be used by the task is placed in the TCA, and 

the address of the Program Control Fetch routine is stored in 

the TCA as the address to which the Task Dispatcher will transfer 

control whenever the task is dispatched.  When routine PC_F is 

entered, the first action to be performed is a search of the 

Processing Program Table (PPT) to determine if the program is 

already resident.  If it is not, then PC_F changes the priority 
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of the task so that it has the highest possible priority.  This 

helps to minimize the time spent by the task in PC_F.  Then the 

routine reads a series of control blocks, dictionary blocks and 

finally text blocks until the program is loaded into core storage. 

Once it is loaded, the routine indicates in the PPT that the 

program is now resident, and returns the task to its original 

priority.  Since the function of loading a program is relatively 

slow, a queue of load requests can easily develop while another 

request is being processed.  Thus, after the active request has 

been processed, PC_F searches the ciueued tasks to determine if 

any have been suspended because PC_F was not available.  If a 

task has been suspended, then PC_F removes it from the suspend 

queue and raises its priority to the maximum.  Thus, the next 

task to be dispatched will be this request for the program loadei 

When PC_F determines that the program is loaded (either from a 

previous use of the loader or from the current use), it concludes 

with one of the following actions: 

1. It branches to the program and commences execution. 
2. It returns to the program which issued the request for 

the loader. 

The latter alternative only occurs when the program being loaded 

has a status of load-only.  In this way it is possible for a 

program to dynamically load tables or other data needed for its 

operat ion. 

Since a task may use more than one program in providing its 

service, CICS must provide a means of transferring from one 
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program to another.  Two Program Control routines provide this 

function in two different ways.  Control can either be transferred 

from one program to the next, or it can be linked from one to the 

next.  Transfer of control will be discussed first, followed by 

linking. 

If control is transferred the system branches from a program 

to another one at the same logical level, and the ability of 

returning to the first program by simply ending the branched-to 

program is relinguished.  When the first program relinguishes 

control, it must be released from the task, a function modeled 

by subroutine PC_R.  PC_ R releases any core storage which was 

obtained by, and used "by, the program.  It also reduces a count 

in the PPT indicating the number of users of a program at any 

point in time.  After the first program is released, control is 

transferred to the second program by using routine PC_F.  If this 

program would call no others, then at its end control would 

return to the task control routines and the task would terminate. 

Linking from one program to another means that the system 

branches from the currently executing program to one at a lower 

logical level, and it maintains the information necessary to 

return to the calling program in an area called the register 

storage area.  After saving this necessary information, the second 

program is initiated by using routine PC_F, without first releas- 

ing the initial program.  However, when the second program has 

completed and been released, control is not returned to CICS but 
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to the calling program.  This type of control transfer is generally 

used when a program calls a routine to perform some generalized 

common function, and is modeled by subroutine FC L. 

A final function performed by Program Control is to delete 

a program or module from residency in core storage.  Normally, 

all programs remain core resident as long as the CICS system is 

not short on storage.  However, the user has the option of 

dynamically deleting a program, possibly because it is unusually 

large, or because it does not have a high frequency of use.  Sub- 

routine PC_D simulates this by checking the PPT to determine if 

there are any users of the program or if the program is marked as 

permanently resident.  If either one of these conditions holds 

true, then the program cannot be deleted and PC_D ends.  However, 

if it can be deleted, then PC_D frees; the core storage used by 

the program and then marks the program as non-resident in the PPT. 

STORAGE CONTROL 

The Storage Control routines have, perhaps, the most far- 

reaching impact on the entire CICS system, since, along with the 

CPU, core storage is one of the most precious commodities of a 

computing system.  In the use of CICS, every effort should be 

placed upon judicious use of this commodity, both by internal 

CICS routines and also by user-written routines.  Thus, although 

they comprise only three of the 38 user routines of this model, 

they are logically the most complex and extensive.  Throughout 

this discussion it will be necessary to keep in mind that IBM's 
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System/360 and System/370 computers allocate core storage in 

blocks of 2048 bytes of 8 bits each.  That storage is then sub- 

divided into smaller segments, as required, when needed by the 

using routines. 

The routine which simulates obtaining core storage operates 

under a first fit criterion.  It first attempts to find one of 

the 2048-byte blocks from which storage has already been 

allocated.  If it is successful in this, and there is sufficient 

remaining storage in that block to satisfy the current request, 

Storage Control Obtain (SC_0) allocates the needed storage out of 

that block by updating a storage accounting area and then returns 

the address of the allocated storage to the requesting task.  If, 

however, there are no 2048-byte blocks from which storage has 

already been allocated, or if there is not sufficient storage in 

one of the already-allocated 2048-byte blocks, then SC_0 will 

select an unused 2048-byte block from the pool of blocks made 

available at system start-up time.  The storage request will then 

be allocated from this block, starting at the low order byte. 

If the storage request is for greater than 2048 bytes, then ad- 

jacent blocks of 2048 bytes are necessary to fill the request. 

However, if the request cannot be filled from the storage 

configuration available to the system at the present time, then 

SC_0 will take measures to attempt to provide sufficient free 

core storage for the request.  The first action it will take 

will be to free any areas occupied by programs which are 
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resident in core storage, vhich are not marked as permanently 

resident, and which have no curient users.  It accomplishes this 

by stepping through the PPT, starting at the end, and find in;; a 

program which satisfies the above-mentioned criteria", and then 

freeing this core storage.  It then again attempts to satisfy the 

request.  If the request still cannot be satisfied, SC_0 continues 

up the PPT, freeing programs and testing the request, until the 

top of the PPT is reached. 

If the storage request is yet unsatisfied, SC_0 takes one 

final, drastic action; it makes available to CICS a separate area 

of core storage vhich was set aside at start-up time.  This area 

is known as the storage cushion.  When this happens, SC_0 also 

sets an indicator which prohibits any new tasks from being in- 

itiated from the terminals.  It is the hope of CICS that the 

storage cushion can satisfy all the requirements of all the tasks 

which are currently active, so that those tasks can be terminated, 

their core storage released to the system and the core storage 

environment returned to a more normal state of use.  Unfortun- 

ately, there are times when the storage cushion cannot satisfy 

all requests being made upon it, and CICS has no final option 

except to suspend the task which is requesting core storage.  An 

entry is placed into the suspend queue for this task, and an in- 

dicator is turned on in the task's TCA indicating that the task 

is suspended.  This task will only be re-started when there is 

sufficient core storage available to handle its request. 
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The counterpart of the Storage Control Obtain routine is the 

Storage Control Release routine, SC_R.  Storage Control gives the 

user and other CICS routines some degree of flexibility in re- 

leasing core storage, since core storage, when it is allocated, 

is tagged as being either task, program or terminal related, and 

since all storage for a task is chained together and all storage 

for a terminal is chained together.  The user or CICS routine has 

the option of releasing all storage attached to a specific term- 

inal, all storage owned by a particular task, or any specific 

block of terminal, program or task related storage which is 

identified by its storage address.  The routine essentially re- 

verses the process performed by the SC_0 routine; that is, it 

removes that block or those blocks which were designated from 

the allocated storage queue and updates counts on the number of 

users and number of free bytes in each 2048-byte block.  It also 

updates, if possible, the queue of fragmented free storage blocks 

or core in an attempt to develop one contiguous block or core 

storage rather than two or more disjointed blocks.  The final 

action of SC_R is to scan the blocks of storage allocated by the 

storage cushion to determine if any of its blocks have any 

allocated storage.  If not, the cushion is returned to the system, 

and the restriction of ATTACHing new tasks is removed. 

A third routine in Storage Control is a routine which 

attempts to remove from the suspend queue those tfcsks which had 

been suspended due to insufficient core storage and which can 
n 
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now be restarted.  This routine is represented by subroutine 

SC_F in the model.  The routine searches thr^uy.h the suspend 

cueue to determine if any tasks are waiting for additional core 

storage to become available.  Once a task is found, SC_F calls 

routine SC_0 in an attempt to obtain the requested storage.  If 

it is obtained the task is again marked as dispatchable and the 

routine ends.  If the storage was not obtained, then SC_F incre- 

ments to the next suspended task and attempts to do the same 

thing.  If, after processing through the entire suspend queue, no 

tasks are found which were suspended due to insufficient core 

storage, then SC_F will attempt to release the storage cushion if 

it is allocated.  If it is allocated but cannot be released, then 

SC_F will attempt to release programs which are in core but not 

bein0 used.  After a program has been released, an attempt is 

again made to release the storage cushion, in the hope that the 

storage released by deleting the irogram was in the storage 

cushion.  The actual intent of this entire section of logic in 

CICS is to get the storage cushion released back to CICS so that 

the restriction on starting new tasks while the storage cushion 

is allocated can be removed.  In effect, it is an attempt to de- 

crease the response time of the system by freeing one of the 

constraints. 

TEMPORARY STORAGE 

As mentioned previously Temporary Storage provides for a 

"scratch pad" to be used by a task, especially if it is lon^ 
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runm'p. ; or reauires more than one set i[ data to be written to a 

terminal.  CICS, as implemented by IBM, provides for Temporary 

Storage data areas to be either on a Direct Access Storage Device 

or in main storage, but the CT.CS system which is the basis for 

this model only implemented that part of Temporary Storage which 

uses Direct Access Storage Device data areas, and hence, that is 

the only part modeled. 

Data is written out to the Temporary Storage file through the 

Temporary Storage Put routine, TS_P.  The routine first determines 

if there is an available block in the file.  If there is none, 

the task is suspended.  If there is an available block, core 

storage is allocated for the record and the record is written to 

the file.  After the write is complete, TS_P releases the core 

storage where the data record was constructed.  Then, since there 

is a restriction that there can only be one input/output event 

pending to the Temporary Storage dataset at any c-oint in time, 

TS_P searches the suspend cueue to determine if any tasks have been 

suspended because of the inavailability of Temporary Storage.  If 

there is such a task, it is removed from the suspend queue and 

made dispatchable again.  If not, TS_F returns control to CICS. 

The routine which retrieves a task's data from the Temporary ': 

Storage file is TS_GR, Temporary Storage Get/Release.  This 

routine also releases ownership by a task of a Temporary Storage 

block, or, in combination, gets the block and then releases it. 

When the request includes a get from the file, TS_GR must obtain 
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a c ire storage aiea into ---'nich Lhp record will be read.  Then the 

routine initiates the read.  Once the read has been corvpleted, 

TS_GR, like TS_P, vill restart a task which has been suspended 

because of the inavailability of Temporary Storage, if there is . 

such a task. 

If the request was for a release only, TS_GR releases owner- 

ship of the block.  If any task was suspended because there were 

not enough Temporary Storage blocks allocated, then it is given 

ownership of the block and marked as dispatchable.  If the request 

was for a combination yet and release, both sections of applicable 

logic are performed. 

FILE CONTROL 

File Control routines are those routines in CICS responsible 

for all operations involving the user data base.  The system 

models the eight major areas of File Control with the following 

routines: 

1. FC_OCL -- This subroutine is responsible for opening and 
closing files in the user data base; that is, it creates 
a linkage between the task and the file to enable 
input/output operations. 

2. FC_S -- This subroutine sets up woik areas so that a task 
may browse through a file; that is, it makes possible for 
a task to obtain the next logically sequential record 
from a file upon request. 

3. EC_GN -- This subroutine retrieves the next sequential 
record as set up by a browse operation. 

A. FC_RES -- This subroutine resets file work areas to 
facilitate browsing at a new logical location in the file. 

5. FC_GET -- This subroutine performs a direct read upon the 
user data base. 

6. FC_PUT -- This subroutine performs a direct write of a 
new or updated record to the user data base. 
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7. FC_GA -- This subroutine allocate? a file v^rk area in 
which a new record can be constructed. 

8. FC_RL_E -- This subroutine releases control of a record 
read v.'ith exclusive control or can be used to release 
file input/Output and browse work areas. 

The first action that a task must take with the user data 

base is to issue an open, for unless the file is opened for the 

task, no operations can be directed towards that file.  FC_OCL 

searches the File Control Table (FCT) for the appropriate file. 

If it is found, it is indicated as being open in the task's TCA. 

If it is not found, then an error indicator is returned to the 

task and the task will abnormally end.  A similar set of opera- 

tions occurs when routine FC_OCL is used to close a file, except 

that the indicator in the task's TCA is shown as closed. 

Four of the remaining seven routines, FC_S, FC_GN, FC_RES 

and FC_RL_E, are primarily concerned with presenting records to 

the task in a sequential manner, while the other three, FC_GET, 

FC_PUT and FC_GA, are concerned with direct operations on the file. 

At times it may not be possible for a user to uniquely identify a 

particular record which he wishes to interrogate in a user data 

base.  This may be due to the fact that several records have 

identical keys.  In this case CICS makes it possible for the 

task to access part or all of the records which have synonymous 

keys and allows the user to determine which one is the appropriate 

record.  At other times there may be no duplication of keys ana 

CICS will directly access the desired record. 

When it is desired to sequentially access a series of records, 
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it is necessary to obtain three areas of core storage, a file 

input/output area (FIOA), a file browse work area (FBWA) and a 

file work area (FWA).  This is the duty of routine FC_S.  It 

searches the FCT for the appropriate file ID, and if found, uses 

lengths stored in the FCT for the file to initialize for the 

storage reauests.  If the file is not found in the FCT, control 

is returned from FC_S with the indication that the file was not 

found and the task is abnormally ended.  FC_S calls Storage 

Control routine SC_0 for each of the three areas.  If the storage 

is not available for any of the three areas, then the calling- 

task is suspended at that point.  After all three areas have been 

successfully obtained, an indicator is turned on in the task's 

TCA to indicate successful completion of the function. 

To retrieve the next (or first) logical record as specified 

by a generic or specific key (a generic key is one where only the 

high order portion is assigned and the low order portion is zeroes 

or blanks), the system uses subroutine FC_GN.  The routine first 

verifies that subroutine FC_S has been previously executed for 

this task/file combination.  Then, if this is the first sequential 

read, the file is unblocked, or the end of a physical block has 

been reached, the routine issues a read to the file.  However, if 

a physical blocked record is available in the FWA and the end of 

the block has not yet been reached, then subroutine FC_GN will 

only de-block the next logical record and present it to the task. 

Finally, after retrieving the logical record, FC_GN releases the 

38 



storage occupied by the FIOA by using Storage Control routine 

SC_R. 

Subroutine FC_RL_E is provided by CICS to perfoim two basic 

functions: 

1. To release all input/output and work areas associated 
with a task/file combination. 

2. To release all exclusive control attributes for a spec- 
ified task/file combination. 

The latter function does not apply for sequential accessing of 

records, and its discussion will be deferred until later.  However, 

the first function is applicable to the browse operation.  This 

routine supplies an easy method of releasing the core storage 

allocated by routine FC_S for the FIOA, FBWA and FWA.  Again, it 

first verifies that the file has had a browse operation initiated 

for it by the task.  If so verified, it then uses Storage Control 

routine SC_R to release all three areas. 

It may occasionally be desirable for a task to end sequential 

processing at one point on a file and resume sequential process- 

ing at a different logical record.  One way of doing this would 

be to call routine FC_RL_E followed by another call to routine 

FC_S for the new logical key.  However, to minimize system over- 

head, a routine, FC_RES, is provided to perform the same function. 

All that is really necessary for the desired operation is to re- 

lease the current FWA and to obtain a new FWA pertinent to the 

new logical request.  After first verifying that the task has 

initiated this file for browsing, subroutine FC_RES performs a 

Storage Control release (SC_R) for the existing FWA and allocates 
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a new one by usin; the Storage Control Obtain (SC_0) routine. 

If a record can be uniquely identified by its key, it would 

be desirable for the task to retrieve that record directly, for 

there would normally be much less overhead involved.  The model 

uses subroutine FC_GET to simulate the direct reading of a logical 

record.  CICS provides for two modes of direct reading: 

1. Read-only, where a record is accessed and can only be 
used for inquiry purposes, and 

2. read-for-update, where the record is read with the in- 
tention of updating some field or fields in the record 
and then putting the updated version of the record out 
to the file again. 

In order to use the latter mode, it is necessary for the task to 

have exclusive control of the record.  This means that no other 

task may access this record for update until it has been re- 

written to the file or the exclusive control has been removed. 

This other function of subroutine FC_RL_E was referred to above. 

It will release exclusive control of all records for a specified 

task/file.  This would be necessary if the task never rewrote the 

records that it read, possibly because it abnormally ended or 

for some other reason.  Subroutine FC_GET first verifies that 

the file is opened for either input or update.  If so, the 

routine uses Storage Control SC_0 to obtain a FIOA into which 

the record is read.  If the record is being read with exclusive 

control, an area (an FWA) is also obtained into which the record 

will be queued.  FC_GET then initiates the read operation.  After 

the appropriate record has been read, FC GET releases the core 
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storage obtained lor the FIOA 'inly if core stn'a-e had been ob- 

tained for a FWA.  Otherwise, the record is returned to the user 

in the FIOA,  Finally, the routine updates some statistics and 

ends . 

The counterpart of the routine to directly read a record is 

the one which directly writes a record (FC_PUT).  This routine is 

used to both add new records to a file and to rewrite a record 

which had previously been read by routine FC_GET.  FC_PUT finds 

the correct entry in the FCT for this task's file.  If the task 

is a tt eiv.pt in;-, to write a new record to the file, the routine will 

verify whether the file can accept new records by interrogating 

the FCT entry.  Also, it verifies that the file has been opened 

by the task for output or update.  If any one of the above con- 

ditions is not met, the write is terminated and the task is 

abnormally ended.  If everything checks out with FCT entry, 

FC_PUT will initiate the write operation.  When the write opera- 

tion has been completed, FC_PUT uses the Storage Control Release 

(SC_R) routine to deallocate the core storage for the output area. 

Alos, if the record had been obtained with exclusive control, the 

cueue element for the record is freed.  Again, as in FC_GET, 

FC_PUT collects some statistics and then ends. 

Before a new record can be written to an outnut file, it is 

necessary for the task to obtain an area of core storage in which 

the record will be created.  The task cannot directly use the 

Storage Control Obtain (SC_0) routine because it is necessary for 
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File C";tr"l t ■ ■ be able t" acctfs ; n fo i -na L : - "i i'i v the i'rs: 1' 

bytes <■>[ this-' aiea which atf 'ert'r.crt t "> the wi i L e ipcratiir. 

For this reason the model riovides a routine (FC_GA) to yet an 

area of core storage in which the ortput record is cteated.  The 

routine, as in all other File Control routines, searches foi the 

correct entry in the FCT and abnormally ends the task if it is 

\ 
not found.  FC_GA then uses the information coded in the FCT 

entry to obtain the proper length work area.  As in all other 

routines which use SC_0 to obtain core storage, if the core 

storage is not obtained, the task Is suspended.  If the storage 

is obtained, FC_GA ends normally. 

MISCEJJ^^qUS^ROUTINES 

Occasionally while processing, a task or CICS control routine 

may encountei a condition which prevents it from accomplishing 

its designated duty.  When this happens, it is highly desirable 

that the program problem can be determined, and if possible, 

eventually fixed.  CICS provides the ability to list all or 

portions of the core storage associated with a task as an assist 

in determining the cause of the trouble.  In the model this 

function is represented by the routine DMPCNTL.  DMPCNTL deter- 

mines which areas of core storage are to be dumped and writes 

images of them out to a sequential file.  To simplify the dumping 

operation, DMPCNTL operates as a serially reusable resource so 

that all of the core image records for a particular task appear 

consecutively on the file.  Since it is serially reusable, only 
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u-.e Cask may be native in DMPCNTL at ary loint in time.  If 

another task enters DMFCNTL while it is active, t:-,c secmd task 

must be suspended pending completion " f the dumping of the acLive 

task.  If it is not active when entered by a task, DMFCNTL de- 

termines which portions of the task's storage are to be dumped. 

Then, preceding the writing out of each area of core storage, 

DMFCNTL writes out a header identification record.  After finish- 

ins dumping all recuested areas of core storage for the present 'to 

active task, DMPCNTL interrogates the suspended task r.ueue for 

any tasks which may be awaiting its services.  If a task is found, 

it is removed from the suspended task cueue and marked as' being 

dispatchable.  Also, DMPCNTL is again marked as being active so 

that the currently-restored task is assured of getting control. 

The demand for the services of CICS is not constant through- 

out the period of time that it is active.  In fact there may be 

times when there is an extended lull of activity.  In order to 

take full benefit of the operating system's multiprogramming 

capabilities and to use the computing system to its fullest, CICS 

can relinguish control back to the operating system for a specif- 

ied period of time or until some component of CICS requests control 

again.  If, after stepping through the entire active task queue, 

no task is found by the DSPTCHR routine which can be initiated, 

the model branches to routine 0S_WAIT.  This routine puts an 

event into the Event queue which will be executed at the current 

time plus two seconds.  Also, it places an entry into a list of 
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tasks which are waiting upon a pending event.  If any task in the 

list has its pending event satisfied vhile control is not with 

CICS, it will again be given control. 

Several times throughout the above discussion the initiation 

and return from input/output events has been alluded to.  As in 

other multiprogramniing systems there is a continuing interaction 

foi all the resources of the computing system, especially the 

central processing unit (CPU) and the input/output channels.  One 

method of controlling the sharing of these resources, the method 

employed by the operating system on the IBM System/360 and 

System/370, is the use of interrupts.  For instance, vhen a pro- 

gram wants to perform an input,output operation, it essentially 

only informs the operating system of its intentions rather than 

performing the input,output action itself.  When the operating 

system is aware of the program's intention, it interrupts the 

program so that it no longer has control of the CPU.  It then 

schedules the input/output event with the channel.  From this 

point on the channel controls the operation.  Upon completion of 

an input/output event, it notifies the operating system and the 

program is marked as being dispatchable. 

The model uses two subroutines to simulate the above actions. 

Routine READWRT schedules the completion time of the input/out put 

event, while routine OS_POST receives the notification that a 

pending event has been completed and posts the task as being 

dispatchable again.  READWRT uses an algorithm developed in 
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reference 5 to deteimi ne" the time when .m i nput ,/ou t ; u i   event is 

to be completed.  The algorithm states that the total tine for a 

Erie event is the sum of the seek time, command transfer time, 

data transfer time, rotational delay and average wait time for 

the channel.  Seek time is the time renuired to position the 

read/write heads of the disk drive at the correct cylinder. 

Command transfer time is the time taken to transfer the appropri- 

ate channel commands for the input/output event from core storage 

to the channel.  Data transfer time is the length of time needed 

to move the data from the disk to core storage or from core 

storage to the disk.  Rotational delay is the time for the rotat- 

ing disk to spin so that the appropriate record is under the 

read/write head.  The average wait time .for the channel is a 

function of the probability that the channel is busy, the 

average service time per file event and an interference factor 

based on the utilization of all disk arms available to the 

channel.  Subroutine READWRY uses the algorithm to calculate the 

elapsed time for the input/output event based on the access times 

for an IBM 3330 type disk storage unit.  Once the elapsed time 

has been calculated, the routine adds it to the current time 

TNOW and inserts an event into File One to indicate the end of 

the file event.  The event is used to initiate routine 0S_P0ST. 

As mentioned previously subroutine 0S_P0ST is used to indi- 

cate the completion of a pending event, whether the event is 

associated with a task or with a CICS routine.  It is also to 
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this routine that the operating system returns control if CICS 

itself has been in a wait state due to inactivity.  If the event 

is a terminal write, then the terminal's entry in the TCT is up- 

dated to indicate that there are no pending events outstanding 

for the terminal.  Also, the task which issued the Terminal 

Control write is removed from the suspend queue and is marked as 

being dispatchable again.  If the event is not associated with a 

terminal, then the pending event counter for the task is de- 

cremented by one and the task is removed from the list of tasks 

waiting for the completion of a pending event. 

As required by GASP2 a routine to call the programmer's 

events is needed.  In the model this routine is used to not only 

call the requested routine, but to also provide the logic to 

simulate the flow of .contrnl through various representative tasks 

The last routine to be called in a simulation run is sub- 

routine END_SIM.  This routine is used to close out all time- 

generated statistics used in the model.  This ensures that all 

statistics are updated to their final status at the end of the 

lun.  Finally, END_SIM sets variable MSTOP to -1 to end the 

simulation and variable NORPT to zero to request the final 

summary reports. 
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APPENDIX E 

The following set of program flowcharts represent the logic 

flow of all user routines within the model.  No attempt was made 

to represent each program statement in these flowcharts.  It was 

considered more important to represent the flow of processes 

throu.-h the routines. 
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DMPCNTL FIGURE 34 
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OS WAIT FIGURE 35 
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AITJNDIX,_F 

I am writing this letter to certify that the v.ork cone by 

Donald Hoch for his master's thesis at Lehigh University does 

accurately model the inner workings of IBM's Customer Information 

Control System.  I make this assertion based first on conversa- 

tions with Don as he developed his ideas over the ;.ast sixteen 

months and second on my five years full-tine experience with the 

sys tern. 

^ .X^t/ /f' 7v*^5&%^ 
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