
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1977

A simulation model of the IBM customer
information control system.
Donald S. Hoch

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Industrial Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Hoch, Donald S., "A simulation model of the IBM customer information control system." (1977). Theses and Dissertations. Paper 2107.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2107&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2107&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2107&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=preserve.lehigh.edu%2Fetd%2F2107&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2107?utm_source=preserve.lehigh.edu%2Fetd%2F2107&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

A SIMULATION MODEL OF THE IBM CUSTOMER

IVFOIIMATIOK CO\TKOL SYSTEM

L'V

Donald S. Hoch

A The Ri s

Presentpr! tn the Grarluate Conrnittee

of Leh i;\h Univers 1t ■■

i.ti Canciiiiacy fox- the Decree of

Mas 1".er of Scicnce

i n

Industrial En ineerin ,

Lehiyh Universit;
197 7

ProQuest Number: EP76380

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest

ProQuest EP76380

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

This thesis is accepted and approved in partial fulfill-

ment of the renti i rements for the degree of Master of Science

~ 'Tda't

,r?7
(date)

Piofessor in Ch/3r;-,e

Cha i rraa n o f' Je pa r t me n t

: 1

ACKNOWLEDGEMENTS

Theie are several people who have been of immense aid and assist-

ance in the development of this thesis. My wife, Lucia, has

always been ready with the necessary virgin" and has endured many

inconveniences dm ins the term of this paper. Tom Morrisette, a

systems programmer at Pennsylvania power and Light Company has

provided me with much assistance and has patiently answered

questions regarding CICS. finally, my thesis advisor, Dr.

Ben Wechsler, kept faith in me and continued to lead me along

the path to completion. To the three persons named above and

to any others who have provided me assistance, my gratitude.

in.

TABLE OF CONTENTS

SECTION PAGE

ACKNOWLEDGMENTS
LIST OF TABLES
LIST OF FIGURES
ABSTRACT

11:

vi
vii

]

CHAPTER 1. INTRODUCTION AND BACKGROUND

1.1 INTRODUCTION
1.2 PERFORMANCE EVALUATION TECHNIQUES
1.3 OBJECTIVES

CHAPTER 2. CICS ENVIRONMENT 10

2.1 GENERAL DESCRIPTION
2.2 FUNCTIONAL COMPONENTS
2.2.1 TASK MANAGEMENT
2.2.2 STORAGE MANAGEMENT
2.2.3 PROGRAM MANAGEMENT
2.2.4 TERMINAL MANAGEMENT
2.2.5 FILE MANAGEMENT
2.2.6 TRANSIENT DATA MANAGEMENT
2.2.7 TEMPORARY STORAGE MANAGEMENT
2.2.8 PROGRAM INTERRUPT, TIME AND DUMP MANAGE-
2.3 SYSTEM TABLES MENT

10
10
12
12
14
15
15
16
1G
10
20

CHAPTER 3. SIMULATION MODEL OF CICS 22

3.1 INTRODUCTION
3.2 CICS MODEL
3.3 FREQUENCY DISTRIBUTIONS IN THE MODEL
3.4 VALIDATION OF THE MODEL

22
23
20
30

CHAPTER 4. ANALYSIS OF PROBLEMS

CHAPTER 5. SUMMARY AND CONCLUSIONS

36

54

5.1 CONCLUSIONS AND RECOMMENDATIONS
5.2 SUMMARY
5.3 AREAS FOR FUTURE STUDY

54
55
5 5

BIBLIOGRAPHY
APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D

GASP2 Internal Files
Model Assumption
GASP2 FORTRAN to PL/I Translation
User Subprograms-Discussion

58
61
63
65
69

IV

APPENDIX E User Subprograms-Flowcharts i7
APPENDIX F Letter or Expert Testimonial]._Si

BIBLIOGPvAPHICAL NOTE 15o

LIST OF TABLES

Tablj

] .1

UesctJ_£t toy.

Perfoinance Evaluation Technicues Advantages/
Dl sadvanta^es

1 .2

4.1

4.2

Summary of Advantages and Disadvantages of Com-
puter Simulations

Simulation Run Statistics - Initial Run

Simulation Run Statistics - Core Storage Increased
25%

4.3 Simulation Run Statistics - Initial Run with
Program Loader Revised

4.4

4.5

Simulation Run Statistics - Core Storage Increased
25% v;ith Program Loader Revised

Simulation Run Statistics - Core Storage Increased
100% without Program Loader Revised

4.6

4.7

Simulation Run Statistics - Core Storage Decreased
50% without Program Loader Revised

Simulation Pun Statistics - Core Storage Increased
100% with Program Loader Revised

4 . S Simulation Run Statistics - Core Storage Decreased
50% with Program loader Revised

4.9 Simulation Run Statistics - Core Storage Increased
257o with Program Loader Revised and Maximum Tasks
Increased 25%,

4.10 Simulation Run Statistics - Core Storage Increased
100% with Program Loader Revised and Maximum Taskr
Increased 25%

VI

LIST OF FIGURES

Fi -,ures Description

1 CICS/OS System. Conceptual Diagram

2 Flowchart - Main Routine

3 Flowchart - SYSINIT

£ Flowchart - TC_NEXT

5 Flowchart - TC_GET

h Flowchart - KC_A

7 Flowchart - DSPTCHR

ii Flowchart - KC_S

9 Flowchart - KC_W

10 Flowchart - KC_R

11 Flowchart - KC_T

12 Flowchart - KC_C

13 Flowchart - KC_RS

14 Flowchart - PC_F

15 Flowchart - FC_L

16 Flowchart - PC_R

17 Flowchart - PC_D

18 Flowchart - PCABEND

19 Flowchart - SC_0

20 Flowchart - SC_0S

21 Flowchart - SC_R

22 Flowchart - SC FS

VLl

Fi.r;u res Descr ipt:' on

2 3 Flowchart - SC_F

2 4 Flowchart - TS_P

25 Flowchart - TS_GR

2G Flowchart - FC_OCL

27 Flowchart - FC_S

2'J Flowchart - FC_GN

2 9 Flowchart - FC_RES

30 Flowchart - FC_GET

31 Flowchart - FC_FUT

32 Flowchart - FC_GA

33 Flowchart - FC_RL_E

3A Flowchart - DMPCNTL

35 Flowchart - 0S_WAIT

36 Flowchart - EEADWKT

37 Flowchart - 0S_P0ST

38 Flowchart - END SIM

\n n

A SIMULATION MOj£.L OF THE I AM CUSTOME!- J KFOi-.MATIOK CONTROL
SYJTEM . . . JonaA:! .L Hocii

A?STKACT

One of the measures nf usefulness nf an information system

is its ability to process a request within a desired time frame.

If, for some reason, the system is unable to respond within this

time frame, then it loses all or part of its effectiveness.

This paper desciibes a simulation model for IBM's Customer

Information Control System, an on-line computer system which

processes incuiries and updates to a user data base. The in-

quiries and updates are initiated from telecommunications

terminals and responses are directed back to these same term-

inals. If the time taken to respond to these transactions

becomes too yreat, the system loses its effectiveness. This

model can be used to discover those areas within CICS which act

as bottlenecks piven various input parameters.

Several simulation nips Tere made and their results are

outlined within. One major problem discovered in these runs

was in the routine which loads programs into core storape which

are to be executed. Under certain circumstances this routine

performs a considerable amount of extra work which is not re-

quired and which degrades the system to a ppreat extent. A

solution has been proposed for this problem.

CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 INTRODUCTION

To understand the reasoning behind and intent of this Master's

thesis, it is necessary to delve into the background of on-line real-

time computer systems, the reasons they came about and what they

intended to accomplish. It would be best to start by defining what

is meant by an on-line computer system. An on-line computer system

is "one in which the input data enter the computer directly from the

point of origination and/or output data are transmitted directly to

where they are used. The intermediate stages of punching data onto

cards or paper tape or of writing magnetic tape or off-line printing

are largely avoided." [1]

On-line systems came about primarily because computers could

not always provide information to a user within the time frame when

it was most needed. This was true for a number of reasons:

1) Not every person or even company could afford one of

these expensive machines, and hence, they might be

forced to use a computer situated some distance away.

Thus, there was the problem of getting the input to the

computer and output returned from the computer within

a reasonable period of time.

2) Once the data reached the computer, the problem still

existed of scheduling and coordination of the necessary

events in order to get usable output.

An on-line system, in itself, solves part of this problem, which

is the getting of the data to and the output back from the computer

in a short period of time. This is accomplished by transmitting

the data over transmission lines between a main computer and

terminals, which themselves could be computers. Now, due to

electronic speeds, time to get a job to the main computer is

measured in seconds, rather than minutes, hours or even days.

However, the problem of producing the output within a short period

of time still exists.

It is here that the concept of 'real-time' enters. A real-

time system is defined as "one which controls an environment by

receiving data, processing them, and taking action or returning

results sufficiently quickly to affect the functioning of the

environment at that time." [1] It is the concept of sufficiently

quick results that is of the essence here; that is, the provision

of a system which provides a response time within which the user

can function effectively. Within this concept, response time

cannot be given a universal value since it is dependent upon the

application in progress. A response time in seconds or less may

be necessary to control an industrial production system, versus

only a response time of minutes or hours for some commercial or

managerial functions. However, in all cases the system must meet

the time-dependent needs of the user to be considered real-time.

It should be noted here that while some authors consider a real-

time system, one which has a response time of seconds or fractions

3

of seconds, in this work we shall use the term only in its more

general sense.

The data processing system has now expanded from the central-

ized computer and its assorted auxiliary equipment to include such

things as terminals and telecommunication lines and their controllers.

Also, what was once a basic operating system has now been expanded

into an extremely complex set of software routines, hopefully capable

of controlling the system equally well under varying conditions of

stress and various requirements of individual requests to the system.

Many, if not all, of the manual tasks which were present under the>

former 'batch' method of computing have now been replaced with

automated controls as part of these software routines. Also, the

telecommunications controller has taken on some new tasks due to

the additional capabilities of the system. Some of these new

functions include:

1) Polling of terminals to determine which have a request

on the central processor.

2) Analyzing where input and output messages are to be routed.

3) Queuing up requests on various components of the system.

4) Translation between external transmission code and

internal processing code.

5) Checking for transmission errors.

It is the Customer Information Control System from IBM upon

which attention will be focused. This system was chosen because of

its widespread existence in installations and also because the author

intends on making practical use of the results of this system study.

The above system is "a transaction-oriented, multiapplication data

base/data communication interface between a System/360 or

System/370 operating system and user-written application programs.

Applicable to most on-line systems, CICS provides many of the

facilities necessary for standard terminal applications: message

switching, inquiry, data collection, order entry, and conversational

data entry. " [2]

1.2 PERFORMANCE EVALUATION TECHNIQUES

As described in detail by Baafi [3] and mentioned by Shulman

[4] , there are three performance evaluation techniques available

for a computer system:

1) Monitoring (hardware or software)

2) Analytic evaluation

3) Simulation

Each particular method has its own advantages and disadvantages

which must be weighed together with the system to be evaluated.

For further information refer to table 1.1 for the major advantages

and disadvantages of each method.

With respect to the system being studied, it can be seen that

the only feasible technique is that of simulation. A hardware

monitor is not available for CICS and is not worth any further

consideration. It would be much too expensive to attempt to develop

a hardware monitor to study the installation upon which this paper

is based. Software monitors of the system are available, but they

have two major drawbacks:

1) They only provide the user with an analysis of the system

operation, and with no means of interpreting the analysis.

TABLE 1.1

Perroi.mance Evaluation Techniques Advantages / Disadvantages

Evaluation
Technicues Advantages Disadvantages

Hardware monitor Has no effect on Costly, not readily
operation of system

Sortware monitor Easy to write and Affects system
change operation

Analytic Can be changed to Difficult and
evaluation model different sometimes im-

situations possible to
construct

Simulation Flexible for present Costly to con-
and future operation struct and run

For example, they might indicate that the system perform-

ance degraded quite substantially at a particular point in

time, but they give no indication as to the actual cause

of the degradation.

2) Software monitoring does not provide a means of a priori

measurement of statistics; that is, measurement before

actual changes have been made to the system.

Analytic evaluation improves upon software monitoring in that it is

possible to do £ priori measurement, but an analytic evaluation of

even some of the most simplistic systems is extremely time con-

suming. In the case of more involved systems, it has been impossible

to develop an exact model of the system [5] . The complexity of

CICS with its many possible interrelationships rules out this form

of evaluation.

Simulation has been chosen because it is the best suited method

for studying CICS. Refer to table 1.2 for the major advantages and

disadvantages of simulation as prepared by Maisel and Gnugnoli [6]

The major reason why simulation is the best tool for performance

evaluation for this system is that it can model the system compara-

tively easily. Another reason is that it has the extra and vastly

important feature of flexibility. Not only can one consider many, if

not all, states of a model in a properly prepared simulation, but one

can easily adjust the model to test future system configurations and

parameters.

1.3 OBJECTIVES

The main objective of this study will be to write and implement

a simulation model of the IBM Customer Information Control System.

7

TABLE 1.2*

Summary of Advantages and Disadvantages ox Computer Simulations

Advantages Disadvantages

Permits controlled experimen- Very costly
tation with:

Uses scarce ana expensive
(a) consideration of many resources

factors
(b) manipulation of many Requires fast, high

individual units capacity computers
(c) ability to consider

alternative policies Takes a long time to develop
(d) little or no disturbance

of the actual system May hide critical assump-
tions

Effective training tool
May require extensive

Provides operational insight field studies

May dispel operational myths

May ma See middle management more
effective

* Refer to page 5 of Maisel and Gnugnoli 6

In order to do this, a comprehensive study will be done of the on-

line environment of CICS as it is operating at Pennsylvania Power

and Light Company. As a secondary objective the simulation model

will then be used to determine the areas of the system which act

as bottlenecks under normal and peak-load operating conditions.

As a consequence of these bottlenecks, the response time of the

system is often impaired. Once these bottlenecks have been found,

solutions for them will be proposed. These solutions will then

be tested by using the simulation model in order to ensure that

no other potential bottleneck is created. Also, because of the

flexibility and ease of modification inherent in simulation models,

the model will be used to study the effect possible future revisions

will have on the CICS system before the time and expense is incurred

in making the revisions.

CHAPTEK 2

CICS ENVIRONMENT

2.1 GENERAL DESCRIPTION

CICS consists of ten functional program nodules which can be

groomed by a user to meet his exact specifications. These modules

interact with user-constructed tables to control the CICS environ-

ment and to process the user application program rec.uests. Another

main component of the CICS environment is the set of system input/

output datasets which are used to support the real-time enviionment,

and the user input/output facilities such as the terminals for inter-

acting with CICS and the user data base. Even though CICS is a con-

trol system in its own right, it still must interact with and oper-

ate within the restrictions of the operating system on the System/

360 or System/370. Refer to Figure 1 for a conceptual diagram of

a CICS system.

2.2 FUNCTIONAL COMPONENTS

As mentioned above there are ten functional modules provided

for a CICS system. They are:

1. Task Management
2. Storage Management
3. Program Management
4. Termina1 Ma nageme nt
5. File Management
6. Transient Data Management
7. Temporary Storage Management
8. Program Interrupt Management
9. Time Management

10. Dump Management

10

CICS/OS SYSTEM FIGURE 1

Programs

Main
Storage

w

Data
Base

OPERATING SYSTEM/360 and SYSTEM/370

Task
Mgmt .

BDAM

BSAM
GAM
B.TAM
TCAM

ISAM
BDAM

PROGRAM
MANAGEMENT

TERMINAL
MANAGEMENT

STORAGE
MANAGEMENT

FILE
MANAGEMENT

I
Application
Programs

* Refer to page 18 of IBM's CICS General Information Manual 2
11

In the discussion of these facilities it should be noted that

in a CICS environment the words task and transaction are used

synonymously.

2.2.1 TASK MANAGEMENT

Task Management provides the ability to process

multiple transactions concurrently by use of a Task Control

Program. This facility schedules and initiates processing of

available tasks according to priorities assigned by the user

and entered in one of the system control tables. When the task

is complete, task management removes the task from the CICS

environment. Also, the task program can dynamically change

the priority of a task, and can delay the execution of a task

by enqueueing it in order to synchronize the task with some

other event in the CICS system. This event might be the notifi-

cation of the completion of an input/output event or the request

for a different task to be purged from the system. Task

Management uses this enqueueing facility to control the number

of active tasks processing within the system by not allowing

any new tasks to be initiated once a user-supplied limit has

been reached or if the amount of available main storage is

insufficient to support those tasks already present.

2.2.2 STORAGE MANAGEMENT

Since CICS is a multitasking system, that is a program

operating within a multiprogramming environment which is

multiprogramming within itself, it is necessary for CICS ti

sub-allocate any resources which the operating system has

12

:o

allocated to it. It is the function of the Storage Control

Program of Storage Management to dynamically acquire and free

main storage as requested by CICS system routines and user-

written application programs. The main storage which is requested

may be used for input/output areas, program load areas, system

work areas or transaction work areas. Once the main storage area

has been acquired, it may optionally be initialized to any

desired bit configuration. For example, storage acquired as

an output area might be initialized to all blanks before further

processing.

A request for main storage may be issued by the user in

one of two modes, either conditional or unconditional. If a

conditional request is made and there is insufficient main

storage to handle the request, Storage Control only returns

control to the user with an indication that the request has not

been satisfied. However, if the request was unconditional and

there was insufficient storage, then Storage Control will take

the following actions. It will:

1. suspend the requesting task until more core
storage becomes available,

2. inhibit any new transactions from being initiated,
and

3. release what is known as a 'Storage Cushion'.

A 'Storage Cushion' is an area of main storage which is held

in reserve by CICS until a short-on-storage condition arises.

At this time it is released and those transactions which are

already in progress use it to satisfy their requests. The storage

cushion is returned to a reserve status and new transactions may

again be initiated whenever the short-on-storage condition has
13

been abated. This occurs whenever enough transactions have

completed their processing and have been purged and the demands

for main storage have decreased. If an additional request for

core storage is issued when there is no more available storage

in the cushion, then a stall condition may arise. If this is

the case, then CICS can purge those tasks with low priority in

order to allow the higher priority tasks to continue to process.

The tasks which are purged are lost to the system and must be

re-entered.

Another important function of Storage Control is to

chain all acquired storage for a task together. This allows

CICS to easily release any storage still owned by a transaction

when that transaction ends, either normally or abnormally.

2.2.3 PROGRAM MANAGEMENT

Program Management is the area of CICS which supports

the multiprogramming of transactions which is necessary in a

real-time system. The Program Control program is responsible

for dynamically loading, deleting, transferring control to and

returning control from a program in the CICS environment.

Program Management aids in the efficient use of main storage

by allowing concurrent use of the same program 'copy' in main

storage by multiple transactions. The only restriction imposed

by the system is that the programs must be written in at least

a quasi-reentrant manner. A fully reentrant program is one

which does not alter any of its instructions or data during

its execution, whereas a quasi-reentrant program is allowed

to alter instructions or data, but it must restore anything
14

that has been altered to its original form before an exit is

made from the program.

Program Management controls the programs in main storage

by using a table known as the Processing Program Table. This

table contains an entry for every program known to CICS. The

entry contains the program's address in a direct access library,

its address in main storage if it is currently resident and a

use count indicating whether a program is currently active. Once

loaded, a program remains in main storage until there is a short-

on-storage indication. At that time any programs which are not

currently in use are purged. When they are again required,

they must be re-loaded into main storage.

2.2.k TERMINAL MANAGEMENT

One of the necessary ingredients for a real-time on-line

system is its terminal configuration and communications lines.

Terminal Management is the area within CICS responsible for the

control of this telecommunications network and which "provides

for communication between terminals and user-written application

programs through the Terminal Control Program." [2] The

Terminal Control programs interacts with the Terminal Control

Table when performing its duties in order to obtain information

regarding the terminal device type, input/output access method

to be used and line control data. Terminal Management also

performs reads from and writes to the terminals, and converts

the data, if necessary, to internal or terminal code.

2.2.5 FILE MANAGEMENT

As mentioned before, a prime component of CICS is the
15

user data base. The File Control Program, using the File

Control Table, controls the input from and the output to

the data base. File Management supports two types of IBM

datasets, the Indexed Sequential Access Method and the Basic

Direct Access Method. The Indexed Sequential Method, an

indirect accessing scheme, constructs one or more indexes

which refer to the position within the dataset where the

desired physical record is located. Once the physical record

has been located, it is directly read and the File Control

program performs deblocking, if necessary. In contrast to

the Indexed Sequential Method, the Basic Direct Access Method

calculates the position of the physical record in the dataset

by performing various functions on a user-supplied key. Through

the interaction of these two access methods, File Management

has the capability of presenting the records from a dataset

to the user in either a random or sequential manner.

File Management also provides for the protection of

the data base through a feature called 'exclusive control'.

Exclusive Control prevents two or more transactions from

concurrently attempting to update a logical record by en-

queueing all transactions after the first which request a

'read for update' operation to the same logical record. Note

that this does not imply that multiple transactions may not

be updating the dataset concurrently, provided that each

transaction is attempting to update a different logical record.

2.2.6 TRANSIENT DATA MANAGEMENT

Transient Data Management provides a means within CICS
16

:a

tor accumulating and transmitting data to terminals other

than the one which initiated the task, to a dataset either

within or outside of the CICS environment or to a program

for subsequent processing. Those destinations which are

within the CICS environment and which can only be accessed

by CICS transactions are referred to as intrapartition

destinations. Intrapartition destinations are queues of dat;

which reside on a direct access device for eventual disposition

to a CICS-related facility. Those destinations which are

outside of the CICS environment are referred to as extra-

partition destinations. These destinations may be datasets

residing on either magnetic tape or direct access devices.

Transient data which has been sent to an intrapartition

queue can be used to automatically initiate a transaction to

handle the data. Whenever the number of records in the queue

reaches a pre-defined level, the transaction is automatically

initiated. This concept is known as a 'trigger level1. An

example where this concept could be used would be in a process

such as message switching. A transaction could perform a

transient data write to an intrapartition queue which has a

trigger level of one. This would automatically initiate a

transaction which would read the data from the queue and

send it to a specified terminal or group of terminals.

Extrapartition queues could be a dataset used to collect

statistics or act as a transaction log for CICS and which would

be examined at a later time. They could also be datasets used

to collect or batch data being entered from remote terminals
17

and to be used for eventual offline processing.

2.2.7 TEMPORARY STORAGE MANAGEMENT

Liek Transient Data Management, Temporary Storage

Management provides a facility within CICS for allocating

and controlling working space for transactions which are

being executed. However, unlike Transient Data Management,

Temporary Storage Management is used when working storage

(either main storage or direct access storage) is needed \

for use within the processing of a transaction. This allows

the user to conserve main storage during the course of a

transaction, a very important consideration in a system where

the demands for storage space, at any one point in time, could

far exceed that which is available. Also, this allows more

transactions to be active concurrently, and increases the overall

system throughput. The ability to multitask to a greater degree

increases the overall system resource utilization, even though

the time to process an individual transaction may be slightly

increased. This has the effect of reducing the queue length

of those transactions waiting to be initiated and of increasing

the queues for many of the system resources. Also, from the

viewpoint of the terminal operator, this generally has the

effect of reducing the response time, a much sought-after

attribute of an on-line real-time system.

2.2.8 PROGRAM INTERRUPT, TIME AND DUMP MANAGEMENT

The three remaining functional modules of CICS, Program

Interrupt Management, Time Management and Dump Management,

provide important services to CICS, although they do not

have the complexity of the previous seven which have already

been discussed. In fact, all three functional areas are only

optional features within CICS and are not necessary to have a

functional on-line CICS environment.

Both System/360 and System/370 of IBM achieve their

multiprogramming capabilities through a device known as

an interrupt. An interrupt provides for the transfer of

control of a computer system from a user's application program

to the supervisor when certain exceptional conditions arise.

There are five exceptional conditions which can trigger an

interrupt in the System/360 or System/370 operating scheme.

They are: input/output events, unusual program conditions,

supervisor call or service requests, hardware errors and

external conditions such as operator requests. The Program

Interrupt Management facility of CICS intercepts and analyzes

all interrupts caused by unusual program conditions within CICS.

The normal action which the System/360 or System/370 operating

system takes for an interrupt such as this is to abnormally

terminate the program. However, this would mean that the

entire CICS environment would be abnormally terminated. In

its analysis of these program check interrupts, Program

Interrupt Management determines which task was responsible

and only abnormally terminates that task.

The Time Management function of CICS provides for many

time-dependent functions to assist in the operation of CICS.

It is used to determine when the transactions within the
19

system are at an impasse and to initiate corrective action

as well as to detect and terminate a task which appears to

be in a program loop. In addition, by using Time Management

transactions can be made to wait for a specified period of

time, can be notified after a specified time interval has

elapsed or even be automatically initiated after a specified

time interval or at a particular point in time.

Dump Management is used to write out to output datasets

images of main storage, such as program working storage, in-

put/output areas or system tables. Normally, this is most

important when used in a testing environment, but it is also

useful in error analysis of a task which has been abnormally

terminated.

2.3 SYSTEM TABLES

As mentioned before, CICS uses a number of user-constructed

tables to control its environment. These tables define for the

CICS system all of those elements which in total comprise the CICS

environment. The main tables and their components are described

below. The Program Control Table contains one entry for each

valid transaction code available to the system. Coded into the

table is:

1. the priority and security code required by each
transaction, and

2. information necessary for the processing of each
transaction, such as the first program to be called
by the transaction.

The Processing Program Table contains one entry for each

application program available to the system. The information

20

contained in the entry describes the program source language and

whether the system is resident or non-resident in main storage.

The Terminal Control Table is used to define the user's

terminal environment. There is one entry for every terminal,

communications line or control unit available to the system. Each

entry contains descriptive information about the device or line and

also various device dependent characteristics.

The File Control Table describes the user's data base which

is available to CICS, with one entry needed for each dataset to

be accessed. Each entry describes in detail all characteristics

of the dataset.

The Destination Control Table describes the environment which

is accessible by Transient Data Management. It contains one entry

for each intrapartition or extrapartition destination. The entries

are used to describe the characteristics of the destinations.

While CICS contains other optional tables and facilities, a

description thereof is not necessary to an understanding of system

operation and will not be discussed. An interested reader is

referred to references [2, 8, 9]

21

LhV-

LIMITATION MODEL Of CICS

3 . 7 INTRODUCTION

The writing of !he simulation model for CICS entailed two

major and distinct steps:

1. The standard FORTRAN-basec' GASP2 routines as used at

Lehijh University were "translator' into i'L/I, a

prOv;rar;-iiiin.; lan.-,ua;;,e with which the aulho is much

more familiar. In addition to the translation,

several modifications were made to the routines •.•.'hrch

'-.■ere felt Ln be necessary for successful i mpl ement -

atior of the CICS model.

2. The user suboro -tars >.;ere written whic'~ re. resented

the CICS system be in,-, :node1ed.

In ji'tT'Sri n" this Simula t i '.T m^Je1 it -'as u-cessai" to

make some o nee rl yi n y ass'jir; t i ^ r s in ■ < :der to limit the

sciv.f >f the y-^Me t- a .m>de; of CICS. ,,lso, s^me

a s su■, , ■ 11 or s ""ie r e c e s sa i. - t'' - >

c~H!'.i:r irv>'-''lved ' n t r j v' a 1 i t i es

Ms t 'aa t only those

is _ c cue ;[Oci'

.: he r.' mo i •.■ a s sum-:" : on

iM pOLems which we ■ e directly iel.at.fMe

to the CICS prvi > omrent '•■ere^-studied . Secondarv assMTi.ti'or.s

ueie that all : es xn ces weie orerathi.? with ro mechanical

yr.Tblems ard that all code in all 're-rams was efficient,

99

a s s\■: -.. ', i p.<- , '. hi.- • t- C • e : ■ .'

Ir-u 'iatel y r-l^-;v -i: '-- a;: -" IP •. '.■-■ -" t'• c <<?.■

M!'-> n: o -1 a-s which ate used to P'xb,i CICS. ,\ ': sens s i on <•"

the GASP? to PL, I crai;s]?li >n cap V f >UPP in -\ per-ip C

vhile a .ioie derailed discp ss ; ..">•: ^f" the ;:sci si- r , » '"• :a ;s

can b(found ip Appendix D.

3 .? CICS MODEL

The CICS :iiode] \- hich ha? been developed consis!.? of 3d

p.se t-writ ten subroutines in addition t° the ?] GASP?

system su br out ires , the u ser-v;r i t ter event co lee I i on

5 ubr out i. PC and the usei-^ritten OTFUT routine. There

arc Lhiee input files to the v.oJel wit':- the follow in;

fu.net ions :

1. The standard GASP2 input cards coutai rn n,, run control

data, jaranietei data, file data and initia1 events.

2. The file containing the initialization data fop t h. ■

Frocessin.-. Proaran, Pro praT Control and file Conf?'ol

tables.

3. The file cn:taii'irv; variable parameter data r^r th.e

Evs-iP"!, such at- the number of core stora".e bloc hs

available to be allocated, the "ear t i OP between

transaction a ; \•-' \/a 1 s , varies ;pa~apetric distribn-

t ions a no so fnjth.

These files uill be refet red t- throp ;houi tods

23

discussion as the GASP2 Event tile, Initialization rile anc

Parameter tile, respectively. There are also seven internal

"files" which are storea in the GASP2 filing array QSET.

These tiles are discussed mote thoroughly in Appendix A.

Perhaps the best way to explain this complex set of

procedures is to discuss the routines as they might be en-

countered during a normal run of the model, while referring

to a logic flowchart of each routine.

A main program (Figure 2) essentially just initializes

variables before it exits to GASP2. The first initial event

to be entered into the GASP2 Event file causes routine

SYSINIT (Figure 3) to be executed. This routine models the

start-up of CICS. The second and final initial event to be

entered into the GASP2 Event file calls routine TC_NEXT

(Figure 4). TC_NEXT is used to schedule the time of the

next terminal requesting transaction processing. The routine

also is used to determine the transaction type. An event for

this transaction is entered into the GASP2 Event file. When

this entry is removed from the file, it calls routine

TC_GET (Figure 5). This routine simulates the actions

necessary to perform a read from the terminal.

After completing these actions, it inserts an event into

the GASP2 Event file with an event time equal to the current

time. This event calls routine KC_A (Figure 6), the Task

Control Attach routine. This routine simulates all the

necessary actions required to initiate a new task in CICS.
2L

Alter CTpJeting ali its aclirr.s, routine KC_A exits t >

Routine DSPTCHR (Figure 7). This routine is the hub of a1]

CICS processing because it determines what task is Co have

use of the CPU in order to execute. After a task has been

Using the CPU for a period of time, various conditions may

arise which cause it to be suspended or placed into a wait

state. A task is suspended in routine KC_S (Figure b)

because some condition prohibits the task from proceeding

beyond its current status. A task is placed into a wait

state in routine KC_W (Figure 9) because some specified

event must be completed before it can continue. When that

event has been consummated, routine KC_R (Figure 10) is used

to resume the active execution of the task. When the task

has been completed, either normally or abnormally, routine

KC_T (Figure 11) simulates the actions necessary to purge

the task from the system. Two other functions are modeled

by the system at the task level. Routine KC_C (Figure 12)

is used to dynamically change the dispatching priority of

any task in the system, while routine KC_RS (Figure 13) is

used to model the testing of various resources to determine

their state.

Several routines are used to model CICS actions at the

program level. They should not be confused with those

routines at the task level, because it may take several

programs to perform all the actions recuired by one task.

Routine PC_F (Figure 14) models the first necessary action,

the load ng of a program into nia i n storage. A program in

CICS can be branched to in two ways. It can be linkec to or

have control transferred to it. Routine PC_L (Figure 1;>)

models the actions of linking from one program to another,

where linkage is set up in order to return to the calling

program. In order to simulate transfer of control, routine

PC_R (Figure lb) models the release of the currently-

allocated program in order to start execution or the next

program. If, due to a short-on-storage condition, it is

necessary to obtain more core storage, routine PC_D

(Figure 17) simulates the deletion of unused programs from

core storage residency. The last remaining function of

program control is to handle the abnormal termination of

user-written programs. Routine PCABEND (Figure 18) simulates

those actions.

Storage Control routines are used by both user-written

and CICS system routines to perform and monitor the alloca-

tion and deal location of core storage. Routines SC_0

(Figure 19) and SC_OS (Figure 20) model the allocation of

core storage, while routines SC_R (Figure 21) ana SC_FS

(Figure 22) simulate the deal location of core storage.

Routine SC_F (Figure 23) models the monitoring of core

storage usage, ana attempts to restart any task which has

been suspended due to a short-on-storage condition.

Temporary Storage Control in CICS provides a means of

2 6

onti Miing task iv.uiciiu space viucii is t~- be used r T an extenut^:

peri.'C U Li'lie. tvnitine J S_P (Figure 2<^) simulates the allocation

a;ia writing ci a blocK 01 cata to a Temporary Storage tilt.

Koutine TS_Gk (Figure 2o) simulates reading a block oi data from

the Temporary Storage tile, and/or deallocating that block rrom

task ownership.

The routines or File Control perform all operations necessary

to communicate with the user data base. Eight major areas are

simulated by the moael. Routine FC_OCL (Figure 2b) simulates the

actions o£ creating a linkage between a task and a user file and

of removing the linkage. Routine FC_S (Figure 2/) models the

creation of several file work areas and control areas which make

it possible for a task to retrieve records in a logically se-

quential order from a direct-access type tile. Routine FC_GN

(Figure 28) models the retrieval of a record from a secuential

orcer as defined by routine FC_S. Routine FC_RES (Figure 2-i) is

used to model the re-initiaiization oi the work anu contioi areas

used in sequential record accessing when a different sequential

string or records is desired. The two routines which simulate

the input and output of records in a direct fasion are FC GET

(Figure 30) and FC_FUT (Figure 31). Routine FC_GA (Figure 32)

models the actions necessary to initialize and create a record to

oe written to the user data base. Finally, routine FC_KL E

(Figure jj) models tire release or vorK and control areas obtained

r.i, all the above file operations.

27

The remaincei or cue routines cap. he cate>;ojizec as

either service routines a miscellaneous r HI tines. JMPCNTI.

(Figure o4) models the actions necessarv to "dump" all or

portions of a task's storage to an output device when a

program in the task has encountered some condition which

forces it to terminate abnormally. Routine OS_WAIT (Figure

35) aiodels the condition ot placing CICS in a wait state and

branching to the computer's supervisory program when there is

no active work which can be performed within CICS. Two

routines of the model are used to simulate the start and

completion of input/output events. Routine READWRT (Figure

36) models the initiation of the input/Output event, while

routine OS_POST (Figure 37) models the actions ta«.en upon

completion of an input/output event, as well as other con-

ditions which cause wait states. Finally, routine END_SIM

(Figure 38) is used to close out all time-generated statis-

tics being collected in the model when the model has operated

for its intended period of time. It also sets indicators to

notify the GASP2 control routines to end the simulation and

prepare .the summary reports.

3 . 3 FREQUENCY DISTRIBUTIONS IN__THE_MODEL

The basic piece of information around which CICS functions

is the task. Therefore, a model of CICS must have a way of

representing this information. The two characteristic pieces

of data which the model uses to represent tasks are the time

of arrival and the task type.

Normally, in modeling a system such as CICS, statistics

ana observations from the actual system are useu to proviue

insight into the distributions oi arrival time and task type.

However, in the CICS system being observed, there are no

detail statistics at the task level which are available. The

only statistics available are gross summaries which are

printed out at the end of the operating day, indicating such

things as total number of tasks processed by the system and

a breakdown of the total by task ID. This information is

not sufficient to hypothesize a distriDution of task type

because the work that a task does is variable in nature.

That is, the parameters supplied to a particular task may,

in one instance, neea one input/output event to determine the

answer and another set of parameters for the same task may

require li> input/output events to determine the answer. For

this reason it was decided that there was no present method

of developing a distribution of task types for the system

being observed, and each task type was given an equal chance

of being the one selected by using a uniform distribution.

A similar situation exists for the time of arrival of

tasks. There is even less available information from which

to develop this distribution. For this reason it was decided

to use the Poisson distribution to describe the arrival times

of tasks. The Poisson distribution is used to describe the

probability of N events occurring per time unit, where N ir

29

this case would be the average nurabei of tasks presentee to

the system per second. The Poisson distribution gives equal

probability of a tasK arriving at one point in time as in

another, and as such implies that there will be no peaks or

valleys in demand for the system. This may not be the case,

but no data is available to prove otherwise. It has been

shown that if the arrival times ot events are Poisson dis-

tributed, then the time between arrivals is exponentially

distributed [13] . This exponential distribution is used

to determine the point in time when the next task will

arrive.

3 . 4 VALIDATION OF .THE_MODEL

According to Webster's New Collegiate Dictionary, valid-

ity is "the state of having a conclusion correctly derived

from given premises". In modeling, be it mathematical or

simulation modeling, the output of a model is only as

credible as the model is valid. This implies that before

the task is undertaken to construct a model, it is mandatory

to know what is expected as the output or results of the

model. Said in another way it is necessary to define ob-

jectives prior to constructing the model upon which the

model can be predicated. The stated objective of this

simulation model was to use it to gain insights as to the

possible areas and causes of backlogs in IBM's Customer

Information Control System.

30

Given the stated objective, it is necessary to determine

whether the simulation model output satisfies the objective.

As with any computer program, attention was given from the

onset of computer programming to precisely representing the

system in a computer language. Until all programming

language errors are eliminated, it is impossible to proceed

further with the validation. After all coding errors had

been found and corrected, it was possible to make simulation

runs to determine the logical consistency of the model; that

is, whether all subprograms in the model accurately represent

the corresponding subsystem in CICS. The running of the

model was done under the control of the PL/I Checkout Com-

piler, as was the running of the GASP2 routines which were

translated from FORTRAN into PL/I. The great rlexioility of

the compiler increased the ease and shortened the time span

in finding logical inconsistencies within the model. After

all this was done, it was now possible to determine whether

the model met its objective.

Several distinct options have been expressed on the sub-

ject of what constitutes a validation of a model. In

referenceL b] by Maisel and Gnugnoli, three separate sets

of checks are suggested:

1. Use parameteis in place of constants to facilitate
modification oi the model to meet changes in the
system being modeled.

2. Get expert opinion as to the closeness of represent-
ation of the model to the real system.

31

J. Compare model results to knoun standards gv statisti-

cal measures.

It is rurther suggested that a comni na t i ->n 01 ail ttuee

sets of checks might proauce the best validation or the

model. However, other authors do not share the same con-

fidence in these checKS. The use or parameters in model

ecuations is nothing more than good computer programming

practice and will in no wa-' guarantee a better end result.

Also, as stated by P. H. Seamon in reference[17] ,

"estimators obtained from the model cannot be taken as

predictors 01 absolute performance ' if necessary input

variables or parameters are not available at the time the

system is modeled. This would be true for a simulation

model having many inciependent ana dependent variables as in

this stuciy's model. Also, due to the complexity of the

system being modeled, a set of standards may not oe available.

Any estimators from this CICS model could at best be labeled

suspect if they were to oe used as predictors of validity

due to the inavai lability of icnown details about the CICS

system.

Anothei author, Jay W. Forrester, in reference [18] ,

along with P. H. Seamon in reference [1/] , tatces a much

ciifterent approach to the Question of validity. They do

not tliinK it is necessary to validate a model uv statistical

means to known standards. Fonestei is even much more

outspoicen about Quantitative validation, in that he believes

32

it to nequently !>e a nattei 01 c;eiusive exacLiLuoe, a

matter <u attempted validation which should onl t>e uone

under certain conditions. He believes that quantitative

measurement should only be performed ir the work and cost

involved in collecting the standard data is not significant.

If any shortcuts aie taken to minimize ihe time and money

involved in collecting the data, then the data would proo-

aoly oe suspect and no true validation would be performed.

It is the concept of these authors that the validity of

a model should oe judged finally on the model's ability to

accomplish its stated objective. It is Seamon's feeling that

a model need not be aole to produce absolute results, but ue

able to give the user a feeling of relative results when

changing the model from one state to another. Forrester

sets forth several criteria which he reels necessary in the

validation of a model. His first criterion ior validation

is that the model show no obvious inconsistency with observed

actual aata. Although this sounds trivial, Forrester states

that most models which he has examined have not Kept this

criterion in mind. His second criterion used in model de-

velopment is to initially attempt to make the model plausible

with its results, not 1007, accurate. This approach empha-

sizes the main intent oi developing a model, to learn as

much as possible about the system being modeled. A model

need not be developed to the point of accurately modeling a

33

svstem, only to the point where a plausiole relationship

exists oetween the model ana the svstem be in; Tocelcu so

that the model can be . ut to use. His last criterion

stresses that in lieu of using cuantitative measurement

technicues, many models should be validated by gieenin".

knowledge and intuitive concepts from the model's author

and a team of experts in the field. It is his hypothesis

that to validate an area of study which cannot be expressed

numerically requires the validation to take on a non-

numerical approach. He feels that this collection of

knowledge being concentrated on the model will, in the end,

justify it as being representative of the system being

simulated, and may even do it at a faster pace than quantit-

ative measuring would by itself.

For several reasons the model of CICS developed in this

study was validated using the concepts of Forrester and

Seamon. The statistics available from the CICS system be-

ing observed were only available at a very high level. This

meant that a large number of the figures needed to run the

model would be pure estimates or educated guesses, and the

output statistics would be meaningless as absolute numbers.

Also, one other problem area which would have inhibited

quantitative validation was the fact that the CICS system

being studied was being run in a multiprogramming environ-

ment which would have introduced an unknown amount of noise

34

into the statistics. Finally, the finished model was quite

complex and extensive, and the facilities weie not available

to validate the model in anv other manner. For these reasons

it was deemed necessary to tollow the criteria of Forrester

in validating the model. Several modeling runs were made

which were examined for plausibility and consistency with

what would oe expected. Also, a systems programmer at the

installation being examined was referred to for his opinion

and counseling on the model and its output. The systems

programmer was responsiole for maintaining and enhancing, the

CICS network at the installation for many years, and could

easily be qualified as an expert in the field. Appendix F

is a letter of testimony written by this system programmer

stating his opinion on the validity of this model.

3 5

CHAPI'EK <'■

ANALYSIS OF i'r^BLEMS

After leaching the ;• ir.t in the development of the simulation

model that it accurately represented the real world, it was nec-

essary to use the model to sain insights into IBM's Customer

Information Control System. This was the final step in determin-

ing whether or not the model satisfied its design objective.

An initial simulation run was made with an estimate of various

system parameters. The time increment used in the model was

milliseconds, one one-thousandths of a second, and the model was

executed for 60,000 time intervals. Data was accumulated for

three GASP2 COLCT-type statistics, as well as seven GASP2 TMST-

type statistics. The three COLCT-type statistics are:

1. Total time in the system for a task,

2. Wait time in the system for a task, and

3. Core storage usage.

The seven „TMST-type statistics are:

1. Percent of time that the program loader is active,

2. Number of active tasks in the system,

3. Percent of time that no task may be attached for

any reason,

4. Percent of time that no task may be attached because

the system was at MAX TASK,

5. Percent of time that no task may be attached because

3 6

the ttoiagt cushion is all >caCfi,

'', . Nombe; "f tasks .jucuei!, and

7. K-rcenc of time that CICS is i ;1"" c !;u5usi there are no

c i spatchable tasks.

Table 4.1 is used to give a synopsis of these statistics. For

the interested reader, all com.uter listings, including the pro-

gram compile and all simulation runs referred to in this paper,

are available at the lehigh University Industrial Engineering

Department library.

As mentioned previously, one of the possible areas of con-

cern which could be studied was CJie st'ira-o usage and its effect

on response time and throughput. From the initial simulation

run it can be seen that approximately 11 percent of the time the

system was prohibiting new tasks from being attached because of a

short-on-stoiage condition. As an attempt at lowering this per-

cent and achieving bet tea response and raoip throughput, the

' riir.ary core storage allocation vas increase'.! by 25 percent ant! a

second simulation run was made with all other parameters remain-

ing unchanged. The statistics for this run (run 4.2) are dis-

played in Table L .2 .

At first glance comrarison of the tv< sets ^i statistics

appears to reveal several incongruous facts. For example, even

though the amount of cue storage was significantly increased,

the percent of tine that the system was in a short-on-storage

condition -.as relatively the same (11.0% versus 10.7%)- Also,

even though the throughput improved (203 completed tas.-;s versus

37

2^8), che average time to riocess a ta = K increased hv almost <v0

percent (1,240 milliseconds versus 1,/23 milliseconds).

As an attempt at explaining these apparent puzzles, several

explanations can be rroposed. On the average there are about 30

percent more tasks in the system in run two than in run one at

any point in time (4.2 tasks versus 6.1). This means that there

will be more tasks vying ior all system resources, not just core

storage. This is evidenced by the fact that there are slightly-

more tasks enqueued and suspended in run two than in run one

(1.6 tasks versus 1.8). This is also proven out by comparing a

statistic calculated by taking the difference between the average

system time and the average wait time. This statistic represents

the amount of time spent executing a task, on the average, dis-

regarding any time spent waiting or being suspended. The execu-

tion times in run one and run two compare favorably (149 milli-

seconds versus 153 milliseconds). This implies that the increase

in the response time was strictly due to an increase in the time

spent enqueued.

Also, it aopears that the increase in system throughput is

entirely due to the added core storage. The increase in the

number of active tasks must be due entirely to the added core

storage, since that was the only parameter changed. This in-

crease also resulted in the svstem utilization percent improving.

The system utilization percent is calculated as follows:

1.0 - svstem idle time.

r'oi tun one the ii,one is a ppi oxi mat e 1 v o percent and i u inn

iwi! ') i . J percent. r'ir.aiiv, the ^ro^iani i 'aoei was active- ab nil

2.j percent less in run two than run one (4b.8/c versus <^H.4/,).

This is significant because this indicates that less programs had

to be loaded in run two than run one because thev uere already

resiaent in core storage when needed. The combination 01 these

racturs can explain the greater throughput in the second run.

In order to further validate these explanations of the

changes between run 4.2 and run 4.1, two additional runs were

made. The first run, summarized in Table 4.5, represents an

addition of the core storage available oy 10o% over run 4.1, and

the second run, summarized in Table 4.6, represents a reduction

of the core storage available oy 50%. These runs entirely

support the explanations proposed in the preceding paragraphs.

The average number or tasks in the system in run 4.3 and the

average time to process a task are greatly increased. Also, the

average number of queued tasks has increased, which in conjunc-

tion with the increased average response time, indicates the

increased vying ror other system resources. The average execu-

tion time (lbO milliseconds) is still consistent with runs £.1

anc 4.2, as would be expected. However, the throughput has not

increased because the system was at MAX TASK condition for 7% of

the time. As expected, tne percent of time in which the program

loader was active is again reduced, due to the additional core

storage available anu also to the fact that the increased number

39

oi active tasK.s wiLJ inhibit programs 11. om being celetea ii not

beiu g u s e ci.

Conversely, run 4.b shows a sharply ciecreasea throughput ana

a much improved response time. These statistics are keeping in

line with the above discussion. Also, the percent or time that

the program loader is active is again relatively high. However,

the most revealing statistics are the percent of time short on

storage (33.9%) and the percent of time when CICS is idle (22.31).

These two statistics explain the reduced throughput to a great

extent.

However, one of the prime considerations of an on-line system

of this type is to control and minimize the response time. If

core storage was the only or even primary bottleneck within the

system, then the 25 petcent increase in core storage from run one

to run two should logically have improved the response time. The

opposite results imply that there aie other factors affecting the

response time more so than the amount or core storage available

to the system. One area which certainly warrants further in-

vestigation is the relationship of a tasks total time in the

system to its total wait time. In run 4.1 the percentage of

time spent waiting was bout 88 percent while in run 4.2 it was

about 91 percent. If this percentage could be reduced, the

average response time would improve.

To determine how to reduce this percent, it is necessary to

know exactly what factors make it up. The main reasons for a

40

task to wait in the model are:

i. Unavailability of coie storage,

2. Waiting for use of the program loader,

3. Waiting tor the completion or an input/output event,

4. Waiting for use of the Temporary Storage facilities.

As mentioned previously, the percent of time which the program

loader was busy was relatively high (46.6% versus 44.6%) and since

the period of time necessary to load a program is relatively

lengthy, it is auite probable that a significant proportion of a

task's waiting time is attributable to the program loader oper-

ation.

One way of improving the operation would be to decrease the

number of program loads in a period of time by increasing the

number of programs made permanently resident. A second way would

be to reorganize the program libraries to give the optimum con-

figuration for loading. A third way would be to optimize the

program loader itself. After reviewing the situation with a

systems programmer at Pennsylvania Power and Light who is

familiar with the operations of CICS, a combination of the second

and third methods was tried.

User programs for CICS can be written in either IBM's

Assembler language or one of two high-level languages, COBOL or

PL/I. Programs written in the high-level languages are stored

in load libraries in executable form and have up to five control

records preceding the first record of text. Under many

41

circumstances these control records are not neeaed fine >r.iv net as

overhead. It was this area which was attacked.

Additional runs were made with revisions to the program

loader routine to encompass the above-mentioned change. Run 4.3

used the same parameters as run 4.1 and run 4.4 the same as run

4.2. Their results are outlined in Tables 4.3 and 4.4, respect-

ively. By comparing runs 4.1 and 4.3, it can be seen that there

is an improvement in some areas, but not the total task time,

wait time or time with a short-on-storage condition. By comparin ,

runs 4.2 and 4.4, all areas have improved. The total system time,

wait time, percent ot time at a NO ATTACH condition and total

throughput are all at their best values.

Again, two corroborating runs were made similar to runs 4.5

and 4.6, only using the revised program loader routine. These

runs, 4.7 and 4.8 again substantiate the original conclusions.

Again, it should be noted that by merely increasing the core

storage, as in run 4.7, one cannot continue to improve upon all

conditions. Eventually, as has happened, a bottleneck will de-

velop in some other area of the system, and the wait time will

increase. At some point in time, all practical and relatively

inexpensive improvements will have been made to the CICS environ-

ment and only such changes as upgrading the CPU or additional

channels will improve performance.

This concept is easily visible in two final simulation runs,

runs 4.9 anci 4.10. Run 4.9 used the same parameters as run 4.4

42

except that the maximum number of tasks allowable within the

system was increased r i om 20 to 2 ;>. This not only had the aesirec

efiect OL reducing the percent oi time at NO ATTACH due to a MAX

TASK condition, but it also resulted in an increase in the response

time and a decrease in the throughput, two nondesirable results.

As was explained above, some other bottleneck; has developed and

affected the system in a negative manner. Run A.10 parallels run

k.7 except for the increase in maximum allowed number of tasks

irom 20 to 25. This run likewise shows the development of a

different bottleneck.

TABLE 4. 1

COLCT-TYrE STATISTICS

MEAN STD.DEV. MIN MAX OBS

Total Time 1240.3 757.2 131.9 4551.6 203

Wait Time 1091.2 678.6 35.3 4019.7 203

Core Storage Usage 18.9 5.6 5.4 36.5 4S18

TMST-TYPE STATISTICS

MEAN STD.DEV. MIN MAX OBS

Percent Program
Loader Active 46.ti% 49.9% 0.0% 100.0% 60000

Active Tasks 4.2 3.7 0.0 12.0 60000

Percent nf Time at
No Attach 11.0% 31.3% 0.0% 100.0% 60000

Percent of Time at
Max Task 0.0% 0.0% 0.0% 0.0% 60000

Percent of Time at
Short-on-Storage 11.0% 31.3% 0.0% 100.0% 60000

Queued Tasks 1.6 1.9 0.0 9.0 60000

Percent of Time at
CICS Idle 6.9% 25.4% 0.0% 100.0% 60000

4 4

Total Time

Wait Time

Core Storage Usage

TABLE 4.2

COLCT-TYPE STATISTICS

MEAN STD.DEV. MIN MAX OBS

1725.S 1226.0 112.4 6426.9 223

1572.0 1145.8 66.6 5900.9 228

22.7 7.1 7.0 43.1 5313

Percent Program
Loader Active

Active Tasks

Percent of Time at
No Attach

Percent of 'Time at
Max Task

Fercent of Time at
Short-on-Storage

queued Tasks

Percent of Time at
CICS Idle

TMST-TYPE STATISTICS

MEAN STD.DEV. MIN

44.4 7.

6.1

10.7%

o.ox

10.77;

1 .8

MAX OBS

49.7 7. 0.0% 100.07. 60000

5.4 1.0 19.0 60000

30.97, 0.07. 100.07; 60000

0.074 0.07; 0.07. 60000

30.97. 0.07; 100.07. 60000

2.1 0.0 10.0 60000

15.57. 0.07. 100.07. 60000

45

TA.'.IE 4.3

COICT-TVPE STAIISTICS

MEAN STD.DEV. MIK MAX ORS

Total Time 12-2.0 934.1 1=6.1 "47...3 217

,v'aiL Tine 1094.6 i.ti.?. 111.9 f.073.2 217

Core Stora-e Usa^e L: . 2 6.4 0.0 30.-'; "70-

TMST-TYPE STATISTICS

MMN STD.DEV. '■•TIN MA:; OBS

20.0% 40.0% 0.0% 100.0% 60000

4.4 4.6 0.0 20.0 60000

Percent Program
Loader Active

Active Tasks

Percent of Time at
No Attach 10.4% 30.5% 0.0% 100.0% 60000

Percent of Time at
Max Task 0.9% 9.3% 0.0% 100.0% 60000

Percent of Time at
Short -on-Storage 9.5% 29.3% 0. . 0% 100. . 0% 60000

Queued Tasks 1.0 1.1 0. , 0 7. ,0 60000

Percent of Time at
CICS Idle 3 . 0% 17.0% 0, .0% 100, . 0% 60000

4 6

COLCT-TYPE _STATIjSTI CS

MEAN STD.DEV. MTN MAX ORS

Iota1 T:-Tie 013.0 701.0 163.0 n.QL .-> 236

Wait Titne 770.6 6 5 ^. 5 112.1 3303.9 236

Core Storage Usa-e 15.S 6.1 6.7 L\.2 5 7 24

TMS T - TYPE .STATIST IC S

MEAN STD.DEV. Mir, MAX OBS

Pei"cent Pro;;raiti
Loader Active ^.O^ 39.9% 0.0% 100.0% 50000

Act f. ve Ta sks 3. ; 3 . " n. 0 20.0 60000

Percent of li're at
Ko Attach 1.0% 10.0% 0.0% 100.0% 60000

Percent >f Time at
Max Task 0.1% 3.7% 0.0% 100.0% 60000

Percent of Tine at
Short-on-Stora.-;e 1.0% 10.0% 0.0% 100.0% 60000

Queued Tasks 0.9 1.1 0.0 6.0 60000

Percent of Tine at
CICS Idle 3.7% 18.8% 0.0% 100.0% 60000

4 7

TAB IE 4 . 5

COT.CT- T YPh S TATI STICS

MEAN STU.DEV. MIN MAX OBS

Total Time 2S53.0 196E.2 420.5 14^20.0 224

Wait Time 2593.1 1864.3 373.3 13656.2 224

Core Storage Usage 33.9 6.7 16.0 53.3 5695

TMST-TYPE ..STATISTICS

MEAN STD.DEV. MIN MAX OBS

Percent Program
Loader Active 38.2% 43 . 6% 0. 01 100.0% 60000

Active Tasks 10.5 7.-5 7 20 60000

Percent. of Time at
No Attach 7.0% 25.*% 0.0% 100.0% 50000

Percent of Time at
Max Task 7.0% 25.4% 0.0% 100.0% 60000

Percent of Time at;
Short-on-Storage

Queued Tasks

Percent of Time at
CICS Idle 0.0% 0.0% 0.0% 0.0% h0000

0. 0% 0.0% 0. 0% 0.0% 60000

2.0 2.1 0.0 10.0 60000

48

TABLE 4.(

COLCT^TYPE STATISTICS

MEAN STD.DEV. MIK MAX OBS

Total Time 1072.6 735.8 125.2 4144.1 132

Wait Time 916.1 655.6 71.9 3591.3 132

Core Storage Usage 13.4 4.7 5.0 28.9 3265

TMST-TYPE STATISTICS

MEAN STD.DEV. MIN MAX OBS

4 5.4% 4 9.8% 0. ox 100.0% 60000

2.4 2.2 0.0 8.0 60000

Percent Program
Loader Active

Active Tasks

Percent of Time at
No Attach 33.9% 47.3?: 0.0% 100.0% - 60000

Percent of Time at
Max Task 0.0% 0.0% 0.0% 0.0% 60000

Percent of Time at
S ho r t - on- St ora %e 33.9% 47.3% 0. 0% 100.0% 60000

1.4 1 . 6 0. 0 7.0 60000 Queued Tasks

Percent of Time at
CICS Idle 22.3% 41.6% 0.0% 100.0% 60000

49

TABLE 4.7

COLCT-IYPE STATISTICS

MEAN STD.DLV. MIN MAX OBS

Total Time 180">.l 1491.3 226.3 9234.1 2^6

Wait Time 1647.7 1428.0 175.1 3b95.8 246

Core Storage Usage 22.4 S.5 7.v 59.9 6123
j

It^Jzl-'PE STATISTICS

MEAN STD.DEV. MIK MAX OBS

Percent Program
Loader Active 19.1% 39.3% 0.0% 100.0% 60000

Active Tasks 6.7 6.3 2.0 2 0.0 60000

Percent of Time at
No Attach 3.4% 18.1% 0.0% 100.0% 60000

0.0% 100.0% 60000

0.0% 100.0% 60000

0.0 9.0 60000

Percent of Time at
CICS Idle 0.2% 4.3% 0.0% 100.0% 60000

Percent of Time at
Max Task 2, .4% 15. .4%

Percent of Time at
Short-on-Storage 1, . 1 % 10 .4%

Queued Tasks 1 .2 1 .3

50

TABLE L .6

COLCT-TYPE STATISTICS

MEAN STD.DEV. MIN MAX

Total Time 673.3 416.3 14].1 2499.4

Wait Time 520.4 358.6 81.0 2338.9

Core Storage Usage 12.1 4.1 5.2 27.1

OBS

172

172

4567

Percent Program
Loader Active

Active Tasks

Percent of Time at
No Attach

Percent of Time at
Max Task

Percent of Time at
Short-on-Storage

Queued Tasks

Percent of Time at
CICS Idle

TMST-TYPE STATISTICS

MEAN STD.DEV. MIN MAX OBS

21.6% 41.1% 0.0% 100.0% 60000

2.1 2.1 0.0 10.O 60000

24.9% 43.2% 0.0% 100.0% 60000

0.0% 0.0% 0.0% 0.0% 60000

24.9% 43.2% 0.0% 100.0% 60000

0.8 1.0 0.0 5.0 60000

10.9% 31.1% 0.0% 100.0% 60000

51

TAi^LE 4 .7

COLCT-TYFE STATISTICS

MEAN STD.DEV. MIN MAX OES

Total Time 1074.6 9 15.2 160.0 6027.1 231

Wait Time 927.6 860.0 112.9 5629.2 231

Core Storage Usage 17.8 6.5 7.1 42.5 5331

TMST-TYPE STATISTICS

MEAN STD.DEV. MIN MAX 03S

Percent Program
Loader Active

Active Tasks

Percent of Time at
No Attach 2.6% 16.0% 0.0% 100.0% 60000

Peicent of Time at
Max Task 0.0% 0.0% 0.0% 0.0% 60000

Percent of Time at
SUort-on-Storage 2.6% 16.0% 0.0% 100.0% 60000

Queued Tasks 1.0 1.1 0.0 7.0 60000

Percent of Time at
CICS Idle 3.2% 17.7% 0.0% 100.0% 6000C

19.4% 39.5% 0. 07. 100.0% 60000

4.1 4.3 0.0 17.0 60000

o. . 0% 0. 07 > ^ /o 0. . 0%

16. . 0% 0. , J ,'o 100. . 0%

1. ,1 o, .0 7 , .0

TABLE 4.10

COLCT-TYPE _STATISTI_CS

MEAN STL. LEV. MIX' MAX OBS

ToLal Time 2432.0 1954.0 261.6 11636.4 224

Walt Time 2326.4 1891.0 217.4 11153.0 224

Core Storage Usage 2^.8 11.6 7.2 62.6 5964

TMST-TYPE STATISTICS

MEAN STU.DEV. MIN MAX OBS

Percent Program
Lp^dev Active li,.0% 38.4% 0.0% 100.0% 60000

Active Tasks 9.7 8.5 1.0 25.0 60000

Pticent of Time at
No Attach 4.jj7 21.3% 0.0% 100.0% 60000

Percent of Time at
Max Task 2.9% 16.i% 0.0% 100.0% 60000

lercent of Time at
Shoj t - on- SL oiac;e

Queued Tasks

Pei cent of Time at
CICS Idle 0.7% 8.3% 0.0% 100.0% 60000

1 0°/
I- • ^ to 13.4% 0.0% 100.0% 50000

1.5 1.6 0.0 d.o 60000

53

CHAPTER ~j

3•1 COKCLUSIONS AND _RECOMMENDATIONS

The model has been used to derive ceitain basic charactei-

istics of the CICS system as seen in Chapter 4. What at first

mav have seemed to be an isolated problem of lack or core storage

turned out to be a complex intertwining of relationships between

various components of CICS. The one absolute problem which was

discovered was that of the program loader. The program loader

routine as implemented by IBM at times performed unnecessary work

when loading programs written in a high-level language such as

PL/I or COBOL. A strong recommendation as a result of this ob-

servation would be to revise those routines which are involved in

program loading to bypass the unnecessary operations.

An interesting observation made auring the above study is

that it is absolutely necessary to place some realistic constraints

on the amount of core storage available and on the maximum

allowed number of tasks in the system. This is necessary because

it has been shown during the simulation study that the throughput

of the system and the average response time will reach optimum

figures and any further increases in the core storage or task

limit will actually start to produce system degradation. This

occurs because the increasing number of tasks active in the system

at any one time cause larger queues to be formed for the other

resources of the system and the average wait time for the tasks

i'-'creases. However, using this model it is not possible to

54

necessary for any installation interested in these parameters to

accurately represent their configuration in the model in order t ■>

derive their.. The recommendation can je made, however, that in

lieu of :erforming this type of study, an improvement in system

performance could very veil he obtained by reducing the cere

storage available and/or the maximum allowed number of tasks.

5.2 SUMMARY ^

It has been demonstrated that the use of this model is a

viable tool in solving problems relating to a CICS installation,

and as such satisfied the stated objective of this paper. It

must be kept in mind that the model will not supply the user with

all the answers; knowledge of CICS is a necessity and the ability

to interpret the results is a must.

5-3 AREAS FOR FUTURE STUDY

A model of this type enables a user to get an understanding *

of a complex system and its inter-relationships, other than that

for 'which he has intuitive feelings. This is invaluable in

problem solving and planning for future revisions. However, for

some cuestions concerning the functioning, of CICS, it may be of

much more value to be able to derive exact quantitative results

rather than onlv proportional data. To achieve a model of this

type, many changes would have to be made to the existing model in

four primary areas:

1. A facility would have to be developed within CICS itself

55

Co provide data which could be used Co 'drive" Che model.

This daca would probably be necessary whenever any change

of state occurred in CICS and would have to at least in-

clude any necessary parameters which accompanied this

change of state. Also, CICS would have to be modified

to provide much more detailed statistics than are now

available which would be used.as input parameters or

constants within the model.

2. All of the data available in the system tables would have

to be made available to the model in some form.

3. Revisions to the model would have Co be made so that it

is ''driven" by the trace data provided by CICS. It is

also conceivable that areas within the model would have

to be done in greater deCail to support this new scheme

of operation.

h. Attention would have to be given to the hardware config-

uration of the system and in particular to those areas

of the model involving input/outpuC operations.

To refine the model to this extent would require considerable

effort, but would open up new areas of use.

One additional area which deserves some consideration is the

effect of running CICS in a multiprogramming environment. This

would introduce "noise" into the model in many areas, and should

be considered insomuch as it affects the CICS system. For

example, suppose an input/output request external to CICS is

56

tying up some iacility needed by CICS. This should be observed

so that measures can be taken to relieve the contention. This

enhancement would also be quite extensive, but would improve the

effectiveness and usefulness of the model.

57

BIBLIOGRAPHY

1. Ma r t i n, J., Design of Real-time Computer Systems,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, l^tw.

2. International Business Machines Corp., Cu s t ome i Infoimat ion
Control System (CICS) Genei_al_Information Manua 1, IBM,
Publication No. GH20-H)28-2, White Plains', New York, 1972.

3. Baafi, R. K., A Simulation Model of the Control Data 6400
±1?_0PE Operating System, Masters Thesis, Lehigh University,
1973."' ~ " , j

4. Shulman, F. D., "Hardware Measurement Device for IBM
System/3b0 Time-sharing Evaluation", Proceedings of the
Association foi_ Computing Machineiy National Conference,
1967, pp. 103:"ll0."

5. Oakes, D. A., "Teleprocessing Systems Design and Design
Considerations", Unpublished IBM Internal Document, Toronto,
Ontario, 1968.

6. Maisel, H., and Gnugnoli, G., Simulation of Discrete
Stochastic Systems, Science Research Associates, Inc.,
Chicago, 1972.

7. Chow, J. V., "What you need to know about DBMS Part 1,"
Journal of Systems Management, Vol. 26, No. 5, May 1975,
pp. 22-29.

8. International Business Machines Corp., Customer Information
Control System (CICS) Application Programmer's Reference
^tenual, IBM, Publication No. SH20-1047-3, White Plains,
New York, 1972.

9. International Business Machines Corp., Customer Information
Control System (CICS) System Programmer's Reference
Manual, IBM, Publication No. SH20-1043-3, White Plains,
New York, 1972.

10. Martin, F. F., Computer Modeling and Simulation,
John Wiley & Sons, Inc., New York, 1968.

11. Mar tin, J., Telecommunications and the Computer,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1969.

12. Pritsker, A. A. B., and Kiviat, P. J. , Simulat ion with
GASP II, Prentice-Hall, Inc., Engiewoou Cliffs, New Jeisey,
1959. "

13. Reardon, R. S., "The Problem or the Peak in Real-time
Systems", Unpublished IBM Internal Document, London,
England, 19 6b.

14. Sayers, A., Operating Systems Survey, Aueibach Publishers,
New York, 1971.

15. Schmidt, J. W., and Taylor, R. E., Simulation and Analysis
of Industrial Systems, Richard D. Irwin, Inc., Georgetown,
Ontario, 1970.

16. Sippl, C. J., Computer Dictionary and Handbook, Howard R.
Sams & Co., Inc., Indianapolis, 1966.

17. Bourne, C. P. and Donald F. Ford, "Cost Analysis and
Simulation Procedures for the Evaluation of Large Inform-
ation Systems", American Documentation, Vol. 15, No. 2,
1964, pp. 142-149.

18. Forrester, Jay W. , Industrial Dynamics, The M.I.T. Press,
Massachusetts Institute of Technology, Cambridge,
Massachusetts, 1961.

19. Vaucher, Jean G. and Pierre Duval, "A Comparison of
Simulation Event List Algorithms', Communications of the
ACM, Vol. 18, No. 4, April 1975, pp. 223-230.

20. Bard, Y., "Performance Criteria and Measurement for a
Time-Sharing System", IBM Systems Journal, Vol. 10, No. 3,
1971, pp. 193-216.

21. Drummond, M. E., "A Perspective on System Performance
Evaluation", .IBM Systems Journal, Vol. 8, No. 4, 1969,
pp. 252-263. '

22. Seamon, P. H. and R. C. Soucy, "Simulating Operating
Systems", IBM Systems Journal, Vol. 8, No. 4, 1969,
pp. 264-279.

23. Cheng, P. S., "Trace-Driven System Modeling", IBM Systems
Journal, Vol. 8, No. 4, 1969, pp. 280-289.

24. International Business Machines Corp., Customer Information
Control System Program Description Manual, IBM, Publication
No. H20-0605-0, White Plains, New York, 1969.

59

^

25. Seamon, P. H., "On Teleprocessing System Design - Part VI -
The Role of Digital Simulation", IBM Systems Journal,
Vol. 5, No. 3, 1966.

26. Sherman, S., et.al., "Trace-Driven Modeling and Analysis
of CPU Scheduling in a Multiprogramming System",
Communications of the ACM, Vol. 15, No. 12, December 1972,
pp. 1063-1069.

27. Stimler, S. and K. A. Brong, "A Methodology tor Calculating
and Optimizing Real-Time System Performance",
Communications of the ACM, Vol. 11, No. 7, July 1968,
pp. 509-516.

60

APPENDIX A

Following is a brief discussion of the GASP2 internal tiles

used in the model. For each file the title is yiven, the sequence

and sequence element and a description of the file elements.

FILE 1: Event Queue
Ascending sequence on element 1

Element 1: Event time
Element 2: Event code

FILE 2: Allocated Storage Queue
Ascending sequence on element 1

Element 1
Element 2
Element 3
Element 4
Element 5

Owner identification
Beginning allocation address
Length of storage request
Storage type
Transaction number

FILE 3: Suspended Task Queue
Ascending sequence on element 3

Element 1: Transaction number
Element 2: Length of storage request if

suspended for short-on-storage
Element 3: Time into queue
Element 4: Suspend code

FILE 4: Active Task Queue
Descending sequence on element 2

Element 1: Transaction number
Element 2: Priority of the transaction

(
61

FILE b: Fragmented Free Storage Queue
Ascending sequence on element 1

Element 1
Element 2
Element 3

Storage address
Length or free area
Storage type

FILE 6: Program Loader Backlog Queue
Ascending sequence on element 1

Element 1
Element 2
Element 3

Time entered into the queue
Transaction number
Program to be loaded

FILE 7: Exclusive Control Record Queue
Ascending sequence on element 1

Element 1
Element 2
Element 3

Transaction number
User data base file number
Storage address of record

62

APPENDIX B

was

a

In preparing this simulation moael it was necessarv to make

some underlying assumptions in order to limit the scope of the

problem to a model of CICS. Also, some assumptions were necess-

ary in order to obviate the need or becoming involved in

trivialities. The primary assumption was that only those

problems which were directly relatable to the CICS environment

were studied. No problems which indirectly affected the system

were considered. For example, it was assumed that CICS was being

executed in a dedicated environment; that is, one in which it

the only user job being queued for the resources of the system.

This assumption was necessary because an unfavorable job mix in

multiprogramming environment could itself cause a severe de-

gradation in response time, even though there was nothing wrong

with the CICS operation itself. The solution to a problem such

as this is completely trivial. It would be to create as favor-

able a job mix as possible, and running stand-alone would be the

most favorable job mix. Also, it \s'as assumed that all resources

were operating with no mechanical problems. It was again obvious

that a loss of a channel or a direct-access storage facility

would result in longer queues being formed to use the remaining

racilities, and this in itself would cause a longer response

time. One final assumption was made, that all code in all

programs, either user-written application piograms or IBM-written

63

control . r .1 :-,rar.is, was eiticient, -.ooa" cot,e a nc that it. nade

opti-num use of core storage ana other resources. This is not to

say that the lo;;ic behind the code is p'-'re, but that the code ''s.

An attempt at exposing problems of a cod in;; nature are not vithin

the scope of this paper, and in themselves are not even worthy M

extensive research to discover theii.

64

APPENDIX C

From Che author's standpoint it was aeemeci imperative that-

the GASP2 routines be rewritten from FORTRAN into PL,I. The

author has much more experience using PL:I than FORTRAN, the

installation where ail of the development and testing work was

done lor the model offered much greater benetits to the PL, I uses

than the FORTRAN user, and the PL, I language itself offered some

reatures which simplified the programming and made it a more vi-

able solution than if it had been done in FORTRAN.

The initial step was to transcribe the existing routines

from FORTRAN to PL/I. Primary concern was given to exact repres-

entation of the reproduced code, and to determine the best vari-

able type tor each scalar and array, since PL/I has available

several more, data types than the INTEGER and REAL types which

FORTRAN employs.

The next step was to make the appropriate revisions to all

routines that were necessary to transform GASP2 to GASP2A as de-

scribed in reference [12] . GASP2A differs from GASP2 in the

fact that the filing array in GASP2A is floating point and

pointers for the filing array are in a different fixed-point

array, while GASP2 only employs one fixed-point array which is

used to store program data and pointers for this data. With

GASP2 there was always the potential problem of truncation be-

cause a scaling factor had to be applied to each element before

it was entered to the array. One minor difference between the

65

moael's version "i GASP2A ana that discussed in rererence [12] is

that both integer and real values are stored in the same array

in the model's version, where as in Pritsker's version rrom

reference [12] , integer values are stored in the array contain-

ing the pointers. The major reason for this is that Pritsker was

attempting to conserve on the use or core storage, since in some

computers floating point variables require more core than do

fixed point variables. However, in the preparation of the model,

core storage was never a restriction, and the benefit accrued by

having all file variables in a single filing array was considered

a desirable benefit.

The third and final step of the translation of a FORTRAN-

based GASP2 to a PL/I-based GASP2 was to add programming logic to

take advantage of several options available in PL,I and to tailor

the routines to meet some of the specifications of the model and

to provide for easier program testing. These changes follow:

1. All arrays were DECLARED with a variable for the dimension,

and were given the CONTROLLED attribute. This enables

these arrays to be dynamically allocated during program

execution time by use of the ALLOCATE statement. Thus,

by reading the dimensions of these arrays on a data card,

the size of the arrays can be varied without recompiling

the model.

2. The double-dimensioned array which is used to store the

filing elements was transposed so that the number of rows

66

is Che total number of tiling elements in the array and

number of columns is the number of entries for each filing

element. This was desirable because PL/I stores double-

dimension arrays in row major order, while FORTRAN stores

double-dimensioned arrays in column major order.

3. Subroutine SET was modified in the routine which adds

elements to highest-value-first (HVF) files. Previously,

if the ranking value of the row being added to the file

was equal to the ranking value of the row being tested in

the file, then the new row was added ahead of the tested

row. This logic was revised to add the new row following

all current rows which have equivalent ranking elements.

4. Subroutine MONTR was revised to give a third type of

potential monitoring information. When an event code

greater than 200 is encountered, MONTR calls subroutine

SUMRY which prints out all generated data, time generated

data and filing arrays. Also, MONTR was revised when

handling the case where the event code is between 100 and

200. Previously, the subroutine would have printed out

the entire filing array. This was judged to serve no

useful purpose, and was wasteful of both time and paper.

Thus, the routine now only prints out that portion of

the filing array which is "active". Starting from the end

of the array, all elements are tested for a non-zero

value. The first such row encountered would be the

67

delimiting point or the printout.

Once the translation had been completed, the task still re-

mained of verifying the equivalence ot the PL/I version of GASP2

to the FORTRAN version. This verification step took two forms.

The most obvious form was to run an identical model using both

versions of the simulator, and then to compare the output. This

was done with several or the example models in reference [12] .

Secondly, all of this testing was done in a time-sharing environ-

ment using the PL/I Checkout Compiler. The PL/I Checkout Com-

piler is an interpretative type compiler written by IBM primarily

to be used in interactive testing sessions. By using various

facilities of this compiler, values of any or all variables could

be displayed whenever they were changed, the flow of the execution

could be observed as a trace of statement numbers was printed or

the execution of the program could be temporarily halted to check

on or change the values of variables. By testing in this manner,

it was possible to quickly duplicate the results of the FORTRAN

version while using the PL/I version.

68

APFENDIX D

The CICS model which has been developed consists ol 3b user-

written subroutines in addition to 14 GASP2 system subroutines,

the user-written event selection subroutine and the user-vritten *

OTPUT routine. There are throe input files to the model with the

following funct:ons:

1. The standard GASP2 input cards containing run control

data, parameter data, file data and initial events.

2. The file containing the initialization data for the

Processing Program, Program Control and File Control tables.

3. The file containing variable parameter data for the

system, such as the number of core storage blocks to be

allocated, the mean time between transaction arrivals

and so forth.

These files will be referred to throughput this discussion as

the GASP2 file, Initialization file and Parameter file, respect-

ively. There are also seven internal "files" which are stored in

the GASP2 filing array QSET. These "files" are discussed more

thoroughly in Appendix A.

Perhaps the best way to explain this complex set of proced-

ures is to discuss the routines as they might be encountered

during a normal run of the model.

SYSTEM INITIALIZATION

When CICS is to be brought up from a 'cold start', it is

69

necessary for several initialization procedures to be per rormeci.

One ot these 'procedures is to load the system tables and those

programs which are marked as being permanently resident. The

function of subroutine SYSINIT is to obtain core storage for these

tables and programs, and also to obtain core storage for a stand-

ard system area used by CICS. Naturally, the amount of core

storage obtained for the tables is dependent on the number of

entries in each table. The number of entries for each table is

one of the parameters entered in the Parameter file. A call to

this subroutine must be the first initial event entered into File

One from subroutine DATAN. After CICS has been initialized,

SYSINIT branches to Terminal Control to commence polling of the

terminals for activity.

TERMINAL CONTROL

In the model the action of Terminal Control is represented

by two subroutines, TC_NEXT and TC_GET. TC_NEXT determines the

time of the next Terminal Control read; that is, when, through

polling, a terminal was found requesting activity. The sub-

routine uses an exponential distribution to determine the inter-

val to the next read request, with the mean time between requests,

XMU_ARRVL, being entered as one of the parameters on the Para-

meter file. TC_NEXT also determine which transaction type is

being requested by taking a random sample from a uniform dis-

tribution of transaction numbers. Then an event to call TC_GET

is entered to File One for the generated next read. Since only

70

one task can be attached to an individual terminal at any one

time, TC_NEXT locks itself out whenever the condition aiises that

all terminals have an active task. The routine is unlocked when-

ever one of the tasks is terminated. To initially call TC_NEXT,

it is necessary for the second initial event in the GASP2 file to

be a request for this subioutine.

TC_GET simulates the actions necessary to perform a read from

a terminal. The first thing that it does is to make a conditional

renuest for a block of core storage eoual to the message length

from the terminal. Since the system being studied uses video

tubes exclusively, the message length was set eoual to the size

of the screen image, 480 bytes. However, the model could easily

be revised to handle other terminal models or configurations with

multiple types of terminals. Since the reouest for core storage

was conditional, a short-on-storage condition will cause the

terminal that is requesting the action to remain in a pending

status. Initialization of the terminal event will again be

attempted in the next polling loop. However, if the storage re-

quest was successful, TC_GET will initiate the I/O event to read

the input from the terminal. At this time, TC_GET will go into

a wait state on this operation; that is, no more action can be

done for this terminal until the input event is completed. Some-

time into the future, the input event will be completed. Now,

when TC_GET regains control, it confirms that the read was error

free, translates the innut to internal machine code and releases

71

the cue storage which it had initially obtained tor this teiminal

The final action is to "attach a task within CICS to process

the request fmm trie terminal. TC_GET simulates this by insert-

ing an event into File One with the ev^nt time being enual to the

current time and the event code being that of the Task Control

Attach subroutine.

TASK CONTROL

Task Control consists of eight routines '.'hich simulate the

actions of CICS at the task level. Among these actions are:

1. Attach a new task.
2. Suspend an active task.
3. Place a task into a wait state until completion of a

pending event.
A. Resume a tasK that has been in a wait state.
o. Change the priority of an active task.
b. Test the CICS system for the availability of resources.
7. Dispatch a task which is not suspended or waiting.
y. Terminate an existing tasK.

As mentioned previously, the iiist action to be taken with a

new task by Task Control is to attach the task. This entails

verification of the Task ID, obtaining core storage for a task

control area (TCA) and task work area (TWA), placing the task

into the active task queue and loading the initial program to be

used by the task it it is not yet resident in core storage. Sub-

routine KC_A simulates these actions. An additional function

performed by IC_A is to determine if the condition of maximum

allowed number of tasks has occurred. The maximum number of

tasks allowed to be attached at any point in time is a value read

from the Parameter file. If this condition has occurred, then no

72

r.ore new tasks are atiacnec until an exist in,; task has terminated.

While pi'icessin.i;, a task may encounter certain conditions

which prohibit it from processing further. Among these conditions

are :

1. A storage request was made but not enough core storage
is available.

2. A recuest was made to load a program module or table and
the loader routine was already servicing another task.

3. An error has occurred in a task a no the task is attempt-
ing to 'dump" out to a file; however, anothei task is
already using the dump resource.

4. A recuest was made for temporary storage, either internal
or external, but not enough was available.

Under any of these circumstances, the task is suspended and placed

in a non-active state until the jrohibiting condition has abated.

Subroutine KC_S of Task Control is used to simulate these actions.

The routine finds the appropriate entry in the active task queue

and places a copy of the entry into a suspend queue. This queue

is ordered by the time into the queue so that if multiple tasks

are suspended for the same reason, then the task suspended for

the longest period of time will be re-started first. The

routine also places an indicator into the Task Control Area (TCA)

to indicate that the tasic can no longer be dispatched.

A similar condition to being suspended is being placed into

a wait state. Here the task is not being delayed because of some

external condition which is affecting it, but because of some

task-related event which is pending until some time in the future.

The most familiar reason for waiting is an outstanding input/

output event. Once the input/output event has been initiated by

73

the task, it is placed into a wait state until the actual

physical actions have taken place to either read or write the

record. This seauence or events is necessary it a multipro-

gramming/multiprocessing environment is to be maintained. Sub-

routine KC_W simulates these actions in much the same way that

subroutine KC_S simulates the suspension of a task, except for

the following exceptions:

1. Instead of indicating in the TGA that the task is sus-
pended, subroutine KC_W indicates that it is waiting for
a pending event.

2. An entry is placed into a list of tasks which are
currently waiting. In the event that the condition
arises that there are no tasks which can be dispatched,
CICS will return control to the operating system for a
maximum of two seconds. Whenever one of the tasks in
the list has its pending event completed or the two
seconds has elapsed, the operating system will again
return control to CICS.

Whenever all the pending events for a task have been com-

pleted, it is necessary to remove the task from the suspended

task queue and indicate that the task is again an active dis-

patchable task. Subroutine KG_R performs this function. A

search is made of the suspended task queue to find the task, and

when found it is removed from the queue. Also, the indicator in

the TCA that shows that the task is waiting is turned off.

Finally, control is returned to the task for further processing.

At times during the processing of a task, it is advantageous

for CICS to dynamically change the priority of the task. One

particular instance is when that task is using the loader. Since

only one task can make use of the loader at any one time, it

1U

would be beneficial tor this task to make use 01 the loader anci

release it in as short a time as possible. This is accomplished

by giving the task the highest possible priority while it is usim.-,

the loader, so that it will always be the first task to be dis-

patched if it is not suspended or waiting. Routine KC_C simulates

this by removing the task from the active task queue, revising

the priority and re-inserting the task back into the queue.

Again, an indicator is turned on to show that the task has had

its original priority changed.

One of the main focal points of the CICS system is the Task

Dispatch routine. This routine is responsible for selecting the

task that has the highest priority and which is not suspended 01

waiting and to give that task use of the CPU; that is, to either

start or resume execution of the task. Routine DSPTCHR performs

this function by searching through the active task queue for a

task which meets the above criteria. If none are found, then

the dispatched issues a wait and control return to the operating

system, as described above. While stepping through the active

task queue, the routine examines the dispatching indicator for

each task. If it indicates that the task is active, control is

transferred directly to the task. If the indicator says the task

is waiting for a pending event, but there are no more pending

events outstanding for this task, then the dispatched will branch

to routine KC_R and resume execution of the task. If the indica-

tor shows that the task is suspended, the dispatcher examines

75

the suspend code and tries to determine if the tasK can be re-

started. If the task was suspended because of an inadequate

amount of core storage available, then the dispatched determines

whether there is enough core storage available at the present time

If there is, the dispatcher returns control to the task at the

point where it was suspended; that is, where the task was request-

ing core storage. If the task was suspended for any other reason,

the dispatcher then increments to the next task and attempts to

dispatch it.

The last function which can be performed upon a task is for

it to be terminated. After every task has completed processing,

either normally or abnormally, the system branches to routine

KC_T to perform task termination. Subroutine KC_T is responsible

foi releasing all resources held by the task while it was active.

These resources included both task-related ana terminal-related

core storage, and any temporary storage which may have been

acquired. Also, KC_T collects statistics on the task such as the

total time in the system and the total time spent waiting by the

task. Its last function is to determine if the system was at an

impasse' due to having reached the maximum allowed number of

tasks in the system. If this was the case, then KC_T turns otf

the maximum task indicator which tells Terminal Control that

additional tasks may now be read in.

PROGRAM CONTROL

The routines or Program Control work within the system at

76

Che next lower level below Task Control. This hierarchical

structure is necessary because a single task mav use multiple

programs and also because a single program may oe usea b_.

multiple tasks at any point in time. The runctions performed bv

the live Program Control subroutines modeled within the system

are :

1. Load a program/module from external storage.
2. Link from the currently-executing pro^iam to a lower

program.
3. Return from the currently-executing program to a program

at the next highest level.
U, Transfer control from the currently-executing program

to one at the same level.
3. Delete a program/module from being resident in core

storage.

Obviously, oefore a program can oe executed, it must oe

resident in core storage. This implies that before a task can

perform its function, the initial program used by that task must

be resident in core storage. It is the function of the Program

Control Fetch routine to ensure that a requested program is

loaded into core storage, if necessary, and of subroutine PC_F

to model this routine. When a task is ATTACHED, the name of the

initial program to be used by the task is placed in the TCA, and

the address of the Program Control Fetch routine is stored in

the TCA as the address to which the Task Dispatcher will transfer

control whenever the task is dispatched. When routine PC_F is

entered, the first action to be performed is a search of the

Processing Program Table (PPT) to determine if the program is

already resident. If it is not, then PC_F changes the priority

77

of the task so that it has the highest possible priority. This

helps to minimize the time spent by the task in PC_F. Then the

routine reads a series of control blocks, dictionary blocks and

finally text blocks until the program is loaded into core storage.

Once it is loaded, the routine indicates in the PPT that the

program is now resident, and returns the task to its original

priority. Since the function of loading a program is relatively

slow, a queue of load requests can easily develop while another

request is being processed. Thus, after the active request has

been processed, PC_F searches the ciueued tasks to determine if

any have been suspended because PC_F was not available. If a

task has been suspended, then PC_F removes it from the suspend

queue and raises its priority to the maximum. Thus, the next

task to be dispatched will be this request for the program loadei

When PC_F determines that the program is loaded (either from a

previous use of the loader or from the current use), it concludes

with one of the following actions:

1. It branches to the program and commences execution.
2. It returns to the program which issued the request for

the loader.

The latter alternative only occurs when the program being loaded

has a status of load-only. In this way it is possible for a

program to dynamically load tables or other data needed for its

operat ion.

Since a task may use more than one program in providing its

service, CICS must provide a means of transferring from one

76

program to another. Two Program Control routines provide this

function in two different ways. Control can either be transferred

from one program to the next, or it can be linked from one to the

next. Transfer of control will be discussed first, followed by

linking.

If control is transferred the system branches from a program

to another one at the same logical level, and the ability of

returning to the first program by simply ending the branched-to

program is relinguished. When the first program relinguishes

control, it must be released from the task, a function modeled

by subroutine PC_R. PC_ R releases any core storage which was

obtained by, and used "by, the program. It also reduces a count

in the PPT indicating the number of users of a program at any

point in time. After the first program is released, control is

transferred to the second program by using routine PC_F. If this

program would call no others, then at its end control would

return to the task control routines and the task would terminate.

Linking from one program to another means that the system

branches from the currently executing program to one at a lower

logical level, and it maintains the information necessary to

return to the calling program in an area called the register

storage area. After saving this necessary information, the second

program is initiated by using routine PC_F, without first releas-

ing the initial program. However, when the second program has

completed and been released, control is not returned to CICS but

79

to the calling program. This type of control transfer is generally

used when a program calls a routine to perform some generalized

common function, and is modeled by subroutine FC L.

A final function performed by Program Control is to delete

a program or module from residency in core storage. Normally,

all programs remain core resident as long as the CICS system is

not short on storage. However, the user has the option of

dynamically deleting a program, possibly because it is unusually

large, or because it does not have a high frequency of use. Sub-

routine PC_D simulates this by checking the PPT to determine if

there are any users of the program or if the program is marked as

permanently resident. If either one of these conditions holds

true, then the program cannot be deleted and PC_D ends. However,

if it can be deleted, then PC_D frees; the core storage used by

the program and then marks the program as non-resident in the PPT.

STORAGE CONTROL

The Storage Control routines have, perhaps, the most far-

reaching impact on the entire CICS system, since, along with the

CPU, core storage is one of the most precious commodities of a

computing system. In the use of CICS, every effort should be

placed upon judicious use of this commodity, both by internal

CICS routines and also by user-written routines. Thus, although

they comprise only three of the 38 user routines of this model,

they are logically the most complex and extensive. Throughout

this discussion it will be necessary to keep in mind that IBM's

30

System/360 and System/370 computers allocate core storage in

blocks of 2048 bytes of 8 bits each. That storage is then sub-

divided into smaller segments, as required, when needed by the

using routines.

The routine which simulates obtaining core storage operates

under a first fit criterion. It first attempts to find one of

the 2048-byte blocks from which storage has already been

allocated. If it is successful in this, and there is sufficient

remaining storage in that block to satisfy the current request,

Storage Control Obtain (SC_0) allocates the needed storage out of

that block by updating a storage accounting area and then returns

the address of the allocated storage to the requesting task. If,

however, there are no 2048-byte blocks from which storage has

already been allocated, or if there is not sufficient storage in

one of the already-allocated 2048-byte blocks, then SC_0 will

select an unused 2048-byte block from the pool of blocks made

available at system start-up time. The storage request will then

be allocated from this block, starting at the low order byte.

If the storage request is for greater than 2048 bytes, then ad-

jacent blocks of 2048 bytes are necessary to fill the request.

However, if the request cannot be filled from the storage

configuration available to the system at the present time, then

SC_0 will take measures to attempt to provide sufficient free

core storage for the request. The first action it will take

will be to free any areas occupied by programs which are

31

resident in core storage, vhich are not marked as permanently

resident, and which have no curient users. It accomplishes this

by stepping through the PPT, starting at the end, and find in;; a

program which satisfies the above-mentioned criteria", and then

freeing this core storage. It then again attempts to satisfy the

request. If the request still cannot be satisfied, SC_0 continues

up the PPT, freeing programs and testing the request, until the

top of the PPT is reached.

If the storage request is yet unsatisfied, SC_0 takes one

final, drastic action; it makes available to CICS a separate area

of core storage vhich was set aside at start-up time. This area

is known as the storage cushion. When this happens, SC_0 also

sets an indicator which prohibits any new tasks from being in-

itiated from the terminals. It is the hope of CICS that the

storage cushion can satisfy all the requirements of all the tasks

which are currently active, so that those tasks can be terminated,

their core storage released to the system and the core storage

environment returned to a more normal state of use. Unfortun-

ately, there are times when the storage cushion cannot satisfy

all requests being made upon it, and CICS has no final option

except to suspend the task which is requesting core storage. An

entry is placed into the suspend queue for this task, and an in-

dicator is turned on in the task's TCA indicating that the task

is suspended. This task will only be re-started when there is

sufficient core storage available to handle its request.

82

^

The counterpart of the Storage Control Obtain routine is the

Storage Control Release routine, SC_R. Storage Control gives the

user and other CICS routines some degree of flexibility in re-

leasing core storage, since core storage, when it is allocated,

is tagged as being either task, program or terminal related, and

since all storage for a task is chained together and all storage

for a terminal is chained together. The user or CICS routine has

the option of releasing all storage attached to a specific term-

inal, all storage owned by a particular task, or any specific

block of terminal, program or task related storage which is

identified by its storage address. The routine essentially re-

verses the process performed by the SC_0 routine; that is, it

removes that block or those blocks which were designated from

the allocated storage queue and updates counts on the number of

users and number of free bytes in each 2048-byte block. It also

updates, if possible, the queue of fragmented free storage blocks

or core in an attempt to develop one contiguous block or core

storage rather than two or more disjointed blocks. The final

action of SC_R is to scan the blocks of storage allocated by the

storage cushion to determine if any of its blocks have any

allocated storage. If not, the cushion is returned to the system,

and the restriction of ATTACHing new tasks is removed.

A third routine in Storage Control is a routine which

attempts to remove from the suspend queue those tfcsks which had

been suspended due to insufficient core storage and which can
n

33

now be restarted. This routine is represented by subroutine

SC_F in the model. The routine searches thr^uy.h the suspend

cueue to determine if any tasks are waiting for additional core

storage to become available. Once a task is found, SC_F calls

routine SC_0 in an attempt to obtain the requested storage. If

it is obtained the task is again marked as dispatchable and the

routine ends. If the storage was not obtained, then SC_F incre-

ments to the next suspended task and attempts to do the same

thing. If, after processing through the entire suspend queue, no

tasks are found which were suspended due to insufficient core

storage, then SC_F will attempt to release the storage cushion if

it is allocated. If it is allocated but cannot be released, then

SC_F will attempt to release programs which are in core but not

bein0 used. After a program has been released, an attempt is

again made to release the storage cushion, in the hope that the

storage released by deleting the irogram was in the storage

cushion. The actual intent of this entire section of logic in

CICS is to get the storage cushion released back to CICS so that

the restriction on starting new tasks while the storage cushion

is allocated can be removed. In effect, it is an attempt to de-

crease the response time of the system by freeing one of the

constraints.

TEMPORARY STORAGE

As mentioned previously Temporary Storage provides for a

"scratch pad" to be used by a task, especially if it is lon^

34

runm'p. ; or reauires more than one set i[data to be written to a

terminal. CICS, as implemented by IBM, provides for Temporary

Storage data areas to be either on a Direct Access Storage Device

or in main storage, but the CT.CS system which is the basis for

this model only implemented that part of Temporary Storage which

uses Direct Access Storage Device data areas, and hence, that is

the only part modeled.

Data is written out to the Temporary Storage file through the

Temporary Storage Put routine, TS_P. The routine first determines

if there is an available block in the file. If there is none,

the task is suspended. If there is an available block, core

storage is allocated for the record and the record is written to

the file. After the write is complete, TS_P releases the core

storage where the data record was constructed. Then, since there

is a restriction that there can only be one input/output event

pending to the Temporary Storage dataset at any c-oint in time,

TS_P searches the suspend cueue to determine if any tasks have been

suspended because of the inavailability of Temporary Storage. If

there is such a task, it is removed from the suspend queue and

made dispatchable again. If not, TS_F returns control to CICS.

The routine which retrieves a task's data from the Temporary ':

Storage file is TS_GR, Temporary Storage Get/Release. This

routine also releases ownership by a task of a Temporary Storage

block, or, in combination, gets the block and then releases it.

When the request includes a get from the file, TS_GR must obtain

85

a c ire storage aiea into ---'nich Lhp record will be read. Then the

routine initiates the read. Once the read has been corvpleted,

TS_GR, like TS_P, vill restart a task which has been suspended

because of the inavailability of Temporary Storage, if there is .

such a task.

If the request was for a release only, TS_GR releases owner-

ship of the block. If any task was suspended because there were

not enough Temporary Storage blocks allocated, then it is given

ownership of the block and marked as dispatchable. If the request

was for a combination yet and release, both sections of applicable

logic are performed.

FILE CONTROL

File Control routines are those routines in CICS responsible

for all operations involving the user data base. The system

models the eight major areas of File Control with the following

routines:

1. FC_OCL -- This subroutine is responsible for opening and
closing files in the user data base; that is, it creates
a linkage between the task and the file to enable
input/output operations.

2. FC_S -- This subroutine sets up woik areas so that a task
may browse through a file; that is, it makes possible for
a task to obtain the next logically sequential record
from a file upon request.

3. EC_GN -- This subroutine retrieves the next sequential
record as set up by a browse operation.

A. FC_RES -- This subroutine resets file work areas to
facilitate browsing at a new logical location in the file.

5. FC_GET -- This subroutine performs a direct read upon the
user data base.

6. FC_PUT -- This subroutine performs a direct write of a
new or updated record to the user data base.

86

7. FC_GA -- This subroutine allocate? a file v^rk area in
which a new record can be constructed.

8. FC_RL_E -- This subroutine releases control of a record
read v.'ith exclusive control or can be used to release
file input/Output and browse work areas.

The first action that a task must take with the user data

base is to issue an open, for unless the file is opened for the

task, no operations can be directed towards that file. FC_OCL

searches the File Control Table (FCT) for the appropriate file.

If it is found, it is indicated as being open in the task's TCA.

If it is not found, then an error indicator is returned to the

task and the task will abnormally end. A similar set of opera-

tions occurs when routine FC_OCL is used to close a file, except

that the indicator in the task's TCA is shown as closed.

Four of the remaining seven routines, FC_S, FC_GN, FC_RES

and FC_RL_E, are primarily concerned with presenting records to

the task in a sequential manner, while the other three, FC_GET,

FC_PUT and FC_GA, are concerned with direct operations on the file.

At times it may not be possible for a user to uniquely identify a

particular record which he wishes to interrogate in a user data

base. This may be due to the fact that several records have

identical keys. In this case CICS makes it possible for the

task to access part or all of the records which have synonymous

keys and allows the user to determine which one is the appropriate

record. At other times there may be no duplication of keys ana

CICS will directly access the desired record.

When it is desired to sequentially access a series of records,

87

it is necessary to obtain three areas of core storage, a file

input/output area (FIOA), a file browse work area (FBWA) and a

file work area (FWA). This is the duty of routine FC_S. It

searches the FCT for the appropriate file ID, and if found, uses

lengths stored in the FCT for the file to initialize for the

storage reauests. If the file is not found in the FCT, control

is returned from FC_S with the indication that the file was not

found and the task is abnormally ended. FC_S calls Storage

Control routine SC_0 for each of the three areas. If the storage

is not available for any of the three areas, then the calling-

task is suspended at that point. After all three areas have been

successfully obtained, an indicator is turned on in the task's

TCA to indicate successful completion of the function.

To retrieve the next (or first) logical record as specified

by a generic or specific key (a generic key is one where only the

high order portion is assigned and the low order portion is zeroes

or blanks), the system uses subroutine FC_GN. The routine first

verifies that subroutine FC_S has been previously executed for

this task/file combination. Then, if this is the first sequential

read, the file is unblocked, or the end of a physical block has

been reached, the routine issues a read to the file. However, if

a physical blocked record is available in the FWA and the end of

the block has not yet been reached, then subroutine FC_GN will

only de-block the next logical record and present it to the task.

Finally, after retrieving the logical record, FC_GN releases the

38

storage occupied by the FIOA by using Storage Control routine

SC_R.

Subroutine FC_RL_E is provided by CICS to perfoim two basic

functions:

1. To release all input/output and work areas associated
with a task/file combination.

2. To release all exclusive control attributes for a spec-
ified task/file combination.

The latter function does not apply for sequential accessing of

records, and its discussion will be deferred until later. However,

the first function is applicable to the browse operation. This

routine supplies an easy method of releasing the core storage

allocated by routine FC_S for the FIOA, FBWA and FWA. Again, it

first verifies that the file has had a browse operation initiated

for it by the task. If so verified, it then uses Storage Control

routine SC_R to release all three areas.

It may occasionally be desirable for a task to end sequential

processing at one point on a file and resume sequential process-

ing at a different logical record. One way of doing this would

be to call routine FC_RL_E followed by another call to routine

FC_S for the new logical key. However, to minimize system over-

head, a routine, FC_RES, is provided to perform the same function.

All that is really necessary for the desired operation is to re-

lease the current FWA and to obtain a new FWA pertinent to the

new logical request. After first verifying that the task has

initiated this file for browsing, subroutine FC_RES performs a

Storage Control release (SC_R) for the existing FWA and allocates

39

a new one by usin; the Storage Control Obtain (SC_0) routine.

If a record can be uniquely identified by its key, it would

be desirable for the task to retrieve that record directly, for

there would normally be much less overhead involved. The model

uses subroutine FC_GET to simulate the direct reading of a logical

record. CICS provides for two modes of direct reading:

1. Read-only, where a record is accessed and can only be
used for inquiry purposes, and

2. read-for-update, where the record is read with the in-
tention of updating some field or fields in the record
and then putting the updated version of the record out
to the file again.

In order to use the latter mode, it is necessary for the task to

have exclusive control of the record. This means that no other

task may access this record for update until it has been re-

written to the file or the exclusive control has been removed.

This other function of subroutine FC_RL_E was referred to above.

It will release exclusive control of all records for a specified

task/file. This would be necessary if the task never rewrote the

records that it read, possibly because it abnormally ended or

for some other reason. Subroutine FC_GET first verifies that

the file is opened for either input or update. If so, the

routine uses Storage Control SC_0 to obtain a FIOA into which

the record is read. If the record is being read with exclusive

control, an area (an FWA) is also obtained into which the record

will be queued. FC_GET then initiates the read operation. After

the appropriate record has been read, FC GET releases the core

90

storage obtained lor the FIOA 'inly if core stn'a-e had been ob-

tained for a FWA. Otherwise, the record is returned to the user

in the FIOA, Finally, the routine updates some statistics and

ends .

The counterpart of the routine to directly read a record is

the one which directly writes a record (FC_PUT). This routine is

used to both add new records to a file and to rewrite a record

which had previously been read by routine FC_GET. FC_PUT finds

the correct entry in the FCT for this task's file. If the task

is a tt eiv.pt in;-, to write a new record to the file, the routine will

verify whether the file can accept new records by interrogating

the FCT entry. Also, it verifies that the file has been opened

by the task for output or update. If any one of the above con-

ditions is not met, the write is terminated and the task is

abnormally ended. If everything checks out with FCT entry,

FC_PUT will initiate the write operation. When the write opera-

tion has been completed, FC_PUT uses the Storage Control Release

(SC_R) routine to deallocate the core storage for the output area.

Alos, if the record had been obtained with exclusive control, the

cueue element for the record is freed. Again, as in FC_GET,

FC_PUT collects some statistics and then ends.

Before a new record can be written to an outnut file, it is

necessary for the task to obtain an area of core storage in which

the record will be created. The task cannot directly use the

Storage Control Obtain (SC_0) routine because it is necessary for

91

File C";tr"l t ■ ■ be able t" acctfs ; n fo i -na L : - "i i'i v the i'rs: 1'

bytes <■>[this-' aiea which atf 'ert'r.crt t "> the wi i L e ipcratiir.

For this reason the model riovides a routine (FC_GA) to yet an

area of core storage in which the ortput record is cteated. The

routine, as in all other File Control routines, searches foi the

correct entry in the FCT and abnormally ends the task if it is

\
not found. FC_GA then uses the information coded in the FCT

entry to obtain the proper length work area. As in all other

routines which use SC_0 to obtain core storage, if the core

storage is not obtained, the task Is suspended. If the storage

is obtained, FC_GA ends normally.

MISCEJJ^^qUS^ROUTINES

Occasionally while processing, a task or CICS control routine

may encountei a condition which prevents it from accomplishing

its designated duty. When this happens, it is highly desirable

that the program problem can be determined, and if possible,

eventually fixed. CICS provides the ability to list all or

portions of the core storage associated with a task as an assist

in determining the cause of the trouble. In the model this

function is represented by the routine DMPCNTL. DMPCNTL deter-

mines which areas of core storage are to be dumped and writes

images of them out to a sequential file. To simplify the dumping

operation, DMPCNTL operates as a serially reusable resource so

that all of the core image records for a particular task appear

consecutively on the file. Since it is serially reusable, only

92

u-.e Cask may be native in DMPCNTL at ary loint in time. If

another task enters DMFCNTL while it is active, t:-,c secmd task

must be suspended pending completion " f the dumping of the acLive

task. If it is not active when entered by a task, DMFCNTL de-

termines which portions of the task's storage are to be dumped.

Then, preceding the writing out of each area of core storage,

DMFCNTL writes out a header identification record. After finish-

ins dumping all recuested areas of core storage for the present 'to

active task, DMPCNTL interrogates the suspended task r.ueue for

any tasks which may be awaiting its services. If a task is found,

it is removed from the suspended task cueue and marked as' being

dispatchable. Also, DMPCNTL is again marked as being active so

that the currently-restored task is assured of getting control.

The demand for the services of CICS is not constant through-

out the period of time that it is active. In fact there may be

times when there is an extended lull of activity. In order to

take full benefit of the operating system's multiprogramming

capabilities and to use the computing system to its fullest, CICS

can relinguish control back to the operating system for a specif-

ied period of time or until some component of CICS requests control

again. If, after stepping through the entire active task queue,

no task is found by the DSPTCHR routine which can be initiated,

the model branches to routine 0S_WAIT. This routine puts an

event into the Event queue which will be executed at the current

time plus two seconds. Also, it places an entry into a list of

9 3

tasks which are waiting upon a pending event. If any task in the

list has its pending event satisfied vhile control is not with

CICS, it will again be given control.

Several times throughout the above discussion the initiation

and return from input/output events has been alluded to. As in

other multiprogramniing systems there is a continuing interaction

foi all the resources of the computing system, especially the

central processing unit (CPU) and the input/output channels. One

method of controlling the sharing of these resources, the method

employed by the operating system on the IBM System/360 and

System/370, is the use of interrupts. For instance, vhen a pro-

gram wants to perform an input,output operation, it essentially

only informs the operating system of its intentions rather than

performing the input,output action itself. When the operating

system is aware of the program's intention, it interrupts the

program so that it no longer has control of the CPU. It then

schedules the input/output event with the channel. From this

point on the channel controls the operation. Upon completion of

an input/output event, it notifies the operating system and the

program is marked as being dispatchable.

The model uses two subroutines to simulate the above actions.

Routine READWRT schedules the completion time of the input/out put

event, while routine OS_POST receives the notification that a

pending event has been completed and posts the task as being

dispatchable again. READWRT uses an algorithm developed in

94

reference 5 to deteimi ne" the time when .m i nput ,/ou t ; u i event is

to be completed. The algorithm states that the total tine for a

Erie event is the sum of the seek time, command transfer time,

data transfer time, rotational delay and average wait time for

the channel. Seek time is the time renuired to position the

read/write heads of the disk drive at the correct cylinder.

Command transfer time is the time taken to transfer the appropri-

ate channel commands for the input/output event from core storage

to the channel. Data transfer time is the length of time needed

to move the data from the disk to core storage or from core

storage to the disk. Rotational delay is the time for the rotat-

ing disk to spin so that the appropriate record is under the

read/write head. The average wait time .for the channel is a

function of the probability that the channel is busy, the

average service time per file event and an interference factor

based on the utilization of all disk arms available to the

channel. Subroutine READWRY uses the algorithm to calculate the

elapsed time for the input/output event based on the access times

for an IBM 3330 type disk storage unit. Once the elapsed time

has been calculated, the routine adds it to the current time

TNOW and inserts an event into File One to indicate the end of

the file event. The event is used to initiate routine 0S_P0ST.

As mentioned previously subroutine 0S_P0ST is used to indi-

cate the completion of a pending event, whether the event is

associated with a task or with a CICS routine. It is also to

95

this routine that the operating system returns control if CICS

itself has been in a wait state due to inactivity. If the event

is a terminal write, then the terminal's entry in the TCT is up-

dated to indicate that there are no pending events outstanding

for the terminal. Also, the task which issued the Terminal

Control write is removed from the suspend queue and is marked as

being dispatchable again. If the event is not associated with a

terminal, then the pending event counter for the task is de-

cremented by one and the task is removed from the list of tasks

waiting for the completion of a pending event.

As required by GASP2 a routine to call the programmer's

events is needed. In the model this routine is used to not only

call the requested routine, but to also provide the logic to

simulate the flow of .contrnl through various representative tasks

The last routine to be called in a simulation run is sub-

routine END_SIM. This routine is used to close out all time-

generated statistics used in the model. This ensures that all

statistics are updated to their final status at the end of the

lun. Finally, END_SIM sets variable MSTOP to -1 to end the

simulation and variable NORPT to zero to request the final

summary reports.

96

APPENDIX E

The following set of program flowcharts represent the logic

flow of all user routines within the model. No attempt was made

to represent each program statement in these flowcharts. It was

considered more important to represent the flow of processes

throu.-h the routines.

97

MAIN FIGURE 2

START

READ
SYSTEM

PARAMETERS

HOUSEKEEPING,
STORAGE ALLOCATION
and INITIALIZATION

READ CICS
SYSTEM CONTROL)
TABLE VALUES

CALL

G A S P 2

f STOP" J

SYSINIT FIGURE 3

START

YES

CALCULATE
STORAGE

REQUIRED

CALL
SC 6

LOAD
SYSTEM
TABLES

POINT TO
TOP OF

PPT

<3

Allocate storage for
all CICS System Control
Tables

MARK PROGRAM
AS RESIDENT

INCREMENT
POINTER

10RET
YES ^PROGRAMS

Obtain storage for
all programs which
are marked as beiru
' permanent 1y
resident' in the
Processing Program
Table (PPT)

100

TC NEXT FIGURE A

START

RETURN D
YE<

GET RANDOM NUMBER AND
CALCULATE TIME OF NEXT
TERMINAL REQUEST

DETERMINE TASK ID
NUMBER FROM DISTRIBUTION
OF AVAILABLE TASKS

INSERT TERMINAL REQUEST
INTO GASP QUEUE

(RETURN J

101

^v.

TC GET FIGURE 5

START

RELEASE READ RESOURCES

YES

SET STORAGE

REQUIRED AND
STORAGE ID'S

CALL
SC 0

Obtain core storage
for the terminal input
area. if no storage is
available, then return
to dispatch any existing
task.

NO
/ DSPTCHR J

YES

CALL
READWRT

INSERT TERMINAL

EVENT IN WAIT
LIST

f DSPTCHR j

Initiate the read from
the terminal, insert the
task into the wait list
and return to dispatch
any existing task.

SET STORAGE

ADDRESS AND
STORAGE ID'S

CALL
SC R

ENTER EVENT TO
EVENT QUEUE TO
ATTACH THE TASK

f STOP j

103

Release storage acquired
for terminal input.

KC A FIGURE (i

START

VALIDATE
TRANSACTION

TYPE

YES

INITIALIZE
TCA FOR
TASK

YES CALL
TC NEXT

NO

YES

CALL
SC 0

SET MAXIMUM TASK
INDICATOR ON AND
STOP INITIATING
NEW TASKS

(DSPTCHR)

CALL
KC S

104
f DSPTCHR J

DSPTCHR FIGURE 7

START

B -

YES

YES

YES

NO

INCREMENT
TO NEXT
TASK

■(0S_WAIT)

DISPATCH
THE

TASK

NO

(RETURN)

"(KCR)

YES

105

\y

CALL
SC 0

YES

CALL
SC I-:

REMOVE TASK FROM
SUSPENDED STATUS
AND DISPATCH IT

(RETURN)

- 3

106

KC S FIGURE -3

iTART

INSERT RECORE
INTO WAIT
wUEUE

MARK TASK AS
SUSPENDED

RETURN 3

107

KC W

START

FIGURE 9

FIND TASK
IN ACTIVE
QUEUE

NO
"(RETURN)

YES

INSERT TASK
INTO WAIT
QUEUE

MARK TASK
AS WAITING

INSERT TASK
INTO WAIT
LIST

(RETURN)

155

KC R FIGURE 10

START

FIND TASK
IN WAIT
QUEUE

YES
REMOVE TASK
FROM WAIT
QUEUE

MARK TASK AS
DISPATCHABLE

f STOP J

109

KC T FIGURE 11

CALL
SC R

COLLECT
STATISTICS
ON TASK

A

Release all terminal-owned
and task-owned storage.

YES CALL
TS GR

110

(

REMOVE TASK
FROM ACTIVE
QUEUE

111

KC C FIGURE 12

START

FIND TASK IN
ACTIVE TASK
QUEUE

RETURN }
YES

REMOVE FROM
ACTIVE TASK
QUEUE

CHANGE
PRIORITY
OF TASK

RE-INSERT
INTO ACTIVE
TASK QUEUE

(RETURN)

112

KC RS

START

FIGURE 13

DO NOT ALLOW
NEW TASKS TO
ATTACH

(RETURN J

CALL
TC NEXT

ALLOW NEW
TASKS TO
ATTACH

(RETURN J

113

PC F

START

FIGURE U

YES

ENTER REQUEST
TO LOADER
uUEUE

YES

NO

CALL
KC C

DMPCNTL
)

DSPTCLIR ry

CALL
KC S

(DSPTCHR J

Loader is not busy. Give
task with the load request
the highest priority and
allocate core storage for

1U

CALL
KC S

D DSPTCHR

Allocate core storage
for the data control
block.

115

c DSPTCHR

IN,

CALL
READWRT

CALL
KC_W

DSPTCH D

Release data control block
core storage.

Restore task's original
priority.

117

NO

CALL
KC C

USPTCHR
)

REMOVE TASK
FROM SUSPEND
STATUS

Increase priority o f the
next task to use the
I oader.

(DSPTCHR)

118

PC L

START

FIGURE 1.

CALL
SC 0

YES

Attempt to allocate enre
storage for a register
save area, If not available
then suspend the tavsk.

CALL
KC S

f DSPTCHR J

STORE CURRENT
POINTERS IN REGISTER
SAVE AREA

CALL
PC F

(DSPTCHR)

119

PC R

START

FIGURE 16

YES

CALL
SC R

YES

NO

RESTORE REGISTERS
FOR LINKING
PROGRAM

CALL
SC R

•(KCI)

If the program was not
entered by a link, then
the task is finished, and
terminate the task.

Otherwise, restore the
linking program and exit
to the dispatcher.

\^ DSPTCHR^/

120

PC Li

121

t'CABLNI

PURGE TASK
FROM LOADER

YES

NO CALL
KC C

REMOVE TASK
FROM SUSPEND
STATUS

I

122

sc o

START

FIGURE iy

CALL
SC OS

Attempt to allocate
requested core storage

GET "V^YES
STORAGE -f RETURN)

ALREADY
USED

NOT USED

FIND UNUSED PROGRAM IN
CORE STORAGE AND NOT
PERMANENTLY RESIDENT

NO'

NO

RELEASE
CUSHION

CALL
SC FS

YES

(RETURN)

123

SC OS FIGURE 2 0

NO V
SEARCH FOR CONTIGUOUS
UNUSED BLOCKS OF COKE
STORAGE FOR REQUEST

/ RETURN J

YES

ALLOCATE STORAGE BY
SETTING USE INDICATORS
AND QUEUING UNUSED PART

CHAIN STORAGE FOR A TASK
OR TERMINAL BY QUEUING
STORAGE ADDRESSES

(RETURN J

124

SEARCH PARTIALLY USED
BLOCKS FOR LARGE ENOUGH
FREE SPACE FOR REQUEST

NO

UPDATE FREE ELEMENT
QUEUE TO REMOVE
ALLOCATED CORE STORAGE

^

SEARCH FOR UNUSED BLOCK
OF STORAGE TO SATISFY
REQUEST

YES

0

NO
-f RETURN J

125

SC R FIGURE 21

START

FIND START OF STORAGE
CHAIN FOR TASK OR
TERMINAL

NO
"(RETURN)

TYPE \ALL w
J3F RELEASE > ▼

BLOCK

FIND REQUESTED BLOCK
TO BE RELEASED IN THE
STORAGE CHAIN

FOUND \ NO

CALL
SC FS

(RETURN J

CALL
SC FS

YES

-(RETURN J

126

SC FS FIGURE 22

START

CALCULATE STARTING
ADDRESS OF STORAGE
TO BE FREED

DECREMENT
USE COUNTER
FOR BLOCK

YES REMOVE FRAGMENTS OF
CORE FROM FREE
STORAGE QUEUE

INSERT FREED CORE
FRAGMENT INTO FREE
STORAGE QUEUE

COMBINE CONTIGUOUS
FREE ELEMENTS AND
LARGEST FREE SPACE

YES

^

127

YES
"(RETURN J

PUT STORAGE
CUSHION IN
RESERVE

CALL
KC RS

(RETURN J

SC F FIGURE 23

START

YES

NO

YES

SET POINTER
TO TOP OF
TCA TABLE

V
129

"f RETURN J

CALL
SC_OS

V

o

V

REMOVE TASK
FROM WAIT
QUEUE

CALL
SC R

(RETURN J

YES

RETURN STORAGE
CUSHION TO
RESERVE STATUS

CALL
KC RS

130

V

/ RETURN J

FIND PROGRAM IN CORE
STORAGE WHICH IS UNUSED
AND NOT PERMANENTLY
RESIDENT

RETURN J

131

TS P FIGURE 24

START

YES

NO

YES RESERVE FREE
BLOCK FOR
TASK

NO

CALL
KC S

f DSPTCHR J

0
132

Allocate core storage for a
control block.

13:

IDSPTCHR)"

CALL
SC R

Release control block
core storage.

REMOVE TASK
FROM SUSPEND
STATUS

"(DSPTCHR J

(^ I DSPTCHR J

134

r

TS GR FIGURE 25

Allocate core storage for
a control block.

135

c

136

(DSPTCHR \

CZD-

CALL
SC R

Release control block
core storage.

REMOVE TASK
FROM SUSPEND
STATUS

^ DSPTCHR J

CALL
SC R

Release input area core
storage for task.

YES
REMOVE TASK
FROM SUSPEND
STATUS

RELEASE TASK
FROM BLOCK
OWNERSHIP

"(DSPTCHR)

137

FC OCL FIGURE 26

YES

Link to Abnormal Condition Program

"(PC_LINK)

OPEN FILE
FOR SYSTEM
AND TASK

YES CLOSE FILE
FOR TASK

YES
LOCATE ENTRY
IN FILE
CONTROL TABLE

Invalid request

(DSPTCHR)

13S

FC S FIGURE 2 7

Link, to Abnormal Condition
Program

Allocate storage for file I/O
area, browse work area and file
work area.

139

FC GN FIGURE 28

Link to Abnormal Condition
Program

CALL
R& >kDWRT

CA1 A.
KC_ _W

^ DSP
1
: rCHR j

uo

Release file I/O area
which was acquired by
the task.

a Ul

FC RES FIGURE 29

Link to Abnormal Condition
Program

{ PC_LINK)

YES

CALL

SC_R

CALL
sc_o

Release existing browse
work area and allocate
a new one.

142

FC GET FIGURE 30

START
\

YES

Link to Abnormal Condition
Program

PC LINK 3

Obtain storage for the file
I/O area and the file work
area .

CALL
KC S

f DSPTCHR J

YES
PUT REQUEST
IN EXCLUSIVE
CONTROL QUEUE

u:

CALL
READWRT

CALL
KC_W

(DSPTCHR)

Release file I/O area if
not needed.

144

FC PUT FIGURE 31

;

Link to Abnormal Condition
Program

PC LINK
)

Release file I/O area and
file work area.

145

FC GA FIGURE 32

Link to Abnormal Condition
Program

PC LI NIC
)

CALL
sc_o

Allocate storage in v/hich to
create a new record.

146

FC RL E FIGURE 33

Link to Abnormal Condition
Program

X'EXCLUSIVENS
X„CONTROL ^

1 YES

CALL
SC_R

Release all
exclusive control
areas.

Release browse
work area core
storage.

Release I/O area
and work area
core storage.

14 7

DMPCNTL FIGURE 34

C DSPTCHE 2

START

YES CALL
KC S

NO

f DSPTCHR J

DETERMINE WHAT
AREAS OF TASK
TO BE DUMPED

REMOVE FROM SUSPEND
STATUS AND MAKE
ACTIVE IN DUMP CNTL.

(DSPTCHR)

US

CALL
READWRT

CALL
KC_W

^ DSPTCHR XJ

For each area of the task's
storage to be dumped, write
out an identification
record

r

followed by the storage
area.

149

OS WAIT FIGURE 35

START

CALCULATE ENIJ
OF CICS WAIT

ENTER EVENT INTO
EVENT QUEUE AT
TNOW ■:- WAIT TIME

If no tasks are active
in CICS, then set an
interval control event
for the current time
plus 2 seconds and exit
to the operating system.

(DSPTCHR)

150

KEADMT FIGURE 36

START

fS>

CALCULATE TIME TO
COMPLETE AN I/O
EVENT

INSERT EVENT INTO
EVENT QUEUE AT
TNOW + I/O TIME

RETURN 3

\j

151

OS POST FIGURE 37

YES
"f DSPTCHR J

NO

REMOVE FROM
SUSPEND
STATUS

^ DSPTCHR J

YES <?

152

1 5 2

END SIM FIGURE 3i

START

UPDATE STATISTICS FOR
TMST VARIABLES TO
END OF RUN

SET SWITCHES
FOR REPORT
AND TO STOP

(RETURN)

15A

AITJNDIX,_F

I am writing this letter to certify that the v.ork cone by

Donald Hoch for his master's thesis at Lehigh University does

accurately model the inner workings of IBM's Customer Information

Control System. I make this assertion based first on conversa-

tions with Don as he developed his ideas over the ;.ast sixteen

months and second on my five years full-tine experience with the

sys tern.

^ .X^t/ /f' 7v*^5&%^

15:

BIOGRAPHICAL NOTE

Donaia S. Iloch was born in Northampton, Pennsylvania on

July 9, 1947, to Evelyn ana Sterling Hoch, He graduated irom

Catasauqua High School and Grove City College where he received

a Bachelor of Science degree with a major in mathematics in

June of 1969. He also was awarced honors in mathematics. While

at Grove City College, he was elected to Kappa Mu Epsilon, a

national mathematics honorary society. After graduation from

Grove City College, he was employed by Pennsylvania Power and

Light Company of Allentown, Pennsylvania as a computer programmer.

He is currently employed there as a Computer Systems Analyst. In

the spring of 1972 he was married to the former Lucia Marie

Cunningham, and they reside in the Allentown area.

15.'

	Lehigh University
	Lehigh Preserve
	1-1-1977

	A simulation model of the IBM customer information control system.
	Donald S. Hoch
	Recommended Citation

	tmp.1451580486.pdf.pwi4m

