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ABSTRACT 

Fluidized bed technology continues to be of growing interest 

in many different industrial applications. The need for dependable 

engineering design capability has increased as the applications 

broaden. Improved understanding and description of funadamental 

mechanisms are required for various aspects of fluidized bed be- 

havior. This work investigates the particular concepts of bed 

dynamics at the surface of heat transfer tubes submerged in fluid- 

ized beds. 

A capacitance sensing technique was used to obtain experi- 

mental measurements of time varying bed behavior at the surface 

of an immersed tube in an air fluidized bed of glass spheres. 

From these measurements the following information was derived: 

residence periods of packets and voids, time averaged void 

fractions, fractional bubble contact times, frequency of packet/ 

bubble exchanges, and transient emulsion densities. Data were 

obtained at various air flow rates for circumferential local 

positions around the tube. To the author's knowledge such 
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Information has not previously been available. 

It is found that three distinct regimes of fluidization exist 

around the tube. These are a solids-dense zone of closely packed 

particles at the top of the tube, a heterogeneous packet/bubble 

zone at the sides, and a lean, gaseous emulsion zone at the bottom 

of the tube. The occurrence of these different regimes depend 

upon fluidization flow rate. The quantitative fluid dynamic in- 

formation and mean residence time information are used for two 

purposes. First, observations are made of the quality of fluid- 

ization around the tube. Secondly, local heat transfer coeffic- 

ients are predicted by a "packet exchange" model and compared 

to previous experimental data. 

Based upon the time varying density of a packet during its 

time of residence at the tube surface, it is proposed that packets 

"squirm" as they contact the wall. The use of time averaged 

packet property values in heat transfer calculations is therefore 

suggested. 

These observations restrict the usefulness of the packet 

renewal model for heat transfer, which is based upon a hetero- 

geneous packet/bubble regime. The packet renewal model, for 

certain velocities, applies only to the sides of the tube where 

it satisfactorily predicts heat transfer coefficients. For this 

same velocity range, the packet renewal model does not accurately 

describe the solids-dense and dilute conditions at the top and 
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bottom of the tube, respectively. It is found that the packet 

renewal model underpredicts heat transfer at the top of the tube, 

and generally overpredicts heat transfer coefficients at the 

bottom of the tube. 
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1. INTRODUCTION 

1.1 Applications of Fluidized Beds 

Fluidized bed technology is rapidly introducing pronounced 

changes into many industrial processes. The good gas/solids contact, 

vigorous mixing and agitation, and excellent heat transfer charac- 

teristics of fluidized beds make them uniquely adaptable for many 

industrial uses. A brief survey of fluidized bed application follows, 

1.1.1    HuucJLuvi Indu&ftiy 

In the nuclear industry the feasability of incorporating fluid- 

ized beds into the fuel processing cycle is being investigated [1]. 

The thermal properties of fluidized beds allow for economical oper- 

ation of process reactions which include: reduction, hydrofluorin- 

ation, fluorination, denitration, and calcination. These reactions 

are essential for preparing feed material, reprocessing spend fuel, 

and disposing of radioactive waste material. 

1.1.1    Coat Combtutlon 

Among the most active areas of coal research is the study of 

fluidized bed coal combustors [2]. In a fluidized bed combustor, 

finely divided limestone and coal particles are fluidized with hot 

air which oxidizes the coal, liberating heat and gaseous products. 

Sulfur is removed from the combustion gases due to reaction with 

the limestone. The heat of combustion is transferred to immersed 
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colls or tubes within the bed.    This heat is efficiently recovered 

due to the high heat transfer coefficients for immersed surfaces in 

fluidized beds. 

7.7.3 Coat Hyd/WQcu^AjCjCution 

Coal  hydrogasification has been achieved by fluidizing coal 

particles with hydrogen to obtain methane [3,4].    The advantages of 

fluidizing this process are several, including:    1) the increase in 

methane production, 2) less hydrogen per pound of coal consumed, 

and 3) reduced capitol  costs. 

7.1.4 En.v-iAoyim2.ntal Cont/iol 

Fluidized beds have proven to efficiently remove sulfur dioxide 

from flue gas [5]. This application makes fluidized beds potentially 

useful as a pollution control device. 

7.7.5 Wa&te. TieaXment 

Fluidized beds are a logical choice of oxidation or pyrolysis 

unit for solid wastes [6]. There is no residual sludge as in usual 

waste treatment processes. The heat transfer characteristics for 

fluidized beds allow for greater thermal recovery from this type 

of burner as compared to a conventional unit. 

7.7.6 MeXattu/iglcat InduA&iy 

The metallurgical industry uses fluidized beds to perform 
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drying and separative processes, and for heat treatment of metal 

parts [7], [8], [9], [10]. 

1.2 Heat Transfer in Fluidized Beds 

1.2.1    ?cu>£ Woik* 

As earlier noted, a consequence of the thermal behavior of 

fluidized beds is their application to processes involving heat ex- 

change. To accommodate fluidized beds as a unit operation for heat 

exchange, the thermal design of both the fluidized bed and immersed 

heat transfer surface is required. This thermal design demands a 

knowledge of the characteristics of bed to surface heat transfer. 

The earliest investigations of heat transfer between a fluid- 

ized bed and an immersed surface were attempts to fit experimental 

heat transfer coefficients to a power law relationship, Nu=A(Re) 

[11]. In order to fit heat transfer data to an equation of this 

type required the manipulation of dimensionless parameters. The 

result was that the power law equations expanded to unwieldy propor- 

tions and became increasingly specific to individual experimental 

conditions [12]. Moreover, relationships of this kind for Nu were 

nonphysical, being the result of dimensional analysis. 

The next generation of bed/surface heat transfer studies were 

attempts to describe the mechanism of heat transfer. These studies 

produced numerous semi-empirical relations for heat transfer co- 

efficient. The more prominent of these models fall into two 
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categories, film model and unsteady penetration model. 

1.2.1.1    flbm ModeZ 

In the film model, Leva et al_. [13], Dow and Jakob [14], and 

Levenspiel and Walton [15] considered that heat is conducted through 

a gas boundary layer adjacent to the heat transfer surface. The heat 

transfer coefficient h = k/6 , is influenced by the solid particles 

only to the extent to which they scour the boundary layer thickness 

6. The particle scouring action is a function of fluidizing velocity, 

u. The shortcoming of this model is the fact that it takes no account 

of the thermal/physical properties of the solid particles. 

1.2.1.1    Pwz&uULon ModeZ 

Historically, the penetration or surface renewal model for heat 

transfer was proposed by Mickley and Fairbanks [16], [17]. This 

model postulates that there is transient conduction of heat from the 

immersed surface to "packets". These packets are loosely locked 

aggregates of particles and interstitial gas which are carried to 

and from the surface by gas bubbles. The heat transfer coefficient 

is strongly dependent on the dwell time and renewal frequency rate 

of packets at the wall. In addition, the thermal/physical proper- 

ties of the packets influence heat transfer. 

There are numerous variations to the original model of Mickley 

and Fairbanks in the literature. One variation is to evaluate the 

packet thermal conductivity based on a heterogeneous two phase 
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gas/sound medium [18]. This differs from the effective thermal con- 

ductivity of the original model, which is based on mean packet prop- 

erties. Other corrections [19] provide for wall thermal contact re- 

sistance included in the evaluation of heat transfer coefficient. A 

third modification is to consider that the penetration heat transfer 

mechanism is due to surface renewal by individual particles instead 

of packets [20], [21]. 

7.2.2 Rzcent ReAexwch cut LetUgh 

The transient nature of the packet renewal type model requires 

a knowledge of residence time behavior for packets before heat trans- 

fer coefficients can be calculated. Residence times have tradition- 

ally either been 1) arbitrarily assumed [22], 2) artificially im- 

posed by stirrers [23], or 3) the mean residence time taken to be 

proportional to the reciprocal of the packet renewal frequency at 

the surface [16], [24], An accomplishment of the heat transfer 

study at Lehigh University has been to develop a technique to ex- 

perimentally measure local residence times [25]. 

By using the above technique [25] to obtain packet residence 

time information, Ozkaynak [26] predicted heat transfer coefficients 

for a vertical tube in a fluidized bed. The predicted coefficients 

agreed quite closely with the measured heat transfer coefficients 

for the same system, providing the residence times were not vanish- 

ingly small. For short residence times, it is concluded [26] that 

the expression for packet thermal conductivity must be modified to 
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accommodate increased packet void fraction near the tube surface. 

The Ozkaynak modified packet renewal model successfully predicts 

heat transfer coefficients for a vertical tube, for both long and 

short packet residence times. 

The heat transfer work at Lehigh then proceeded to an investi- 

gation of heat transfer from a horizontal tube in a shallow fluidized 

bed [27]. Heat transfer coefficients were experimentally measured. 

This data was compared to semi-empirical heat transfer correlations 

of Vreedenberg [28], Gelperin et al_. [29], and Genetti et al_. [30] 

for horizontal tubes. It was found that each of these correlations 

was grossly inadequate in predicting heat transfer data for the 

shallow bed system. Due to the previous success of the Ozkaynak 

modified packet model, a study was begun to determine if the modif- 

ied packet model is equally accurate in predicting heat transfer 

coefficients for a horizontal tube in a shallow fluidized bed. The 

subject of this paper is to present the results of this investiga- 

tion. 

1.3 Scope of Present Investigation 

This work considers the packet renewal mechanism for an immer- 

sed horizontal tube in a shallow fluidized bed. The object of this 

work is foremost to investigate the phenomenology of contacting 

packets at the tube surface. Local data around the circumference of 

the tube is generated for: 1) packet void fraction, 2) packet re- 

placement frequency, 3) packet residence times and 4) packet 
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densities. Such data have not been available to date. From the 

data, an observation of the effectiveness of surface renewal around 

the circumference of the tube is possible for the first time. Sec- 

ondly, local and average heat transfer coefficients are predicted 

from the data using the packet renewal model as modified by Ozkaynak 

[26]. These calculated packet renewal model heat transfer coeffic- 

ients are compared to existing measured heat transfer data [27], 

Finally, this comparison permits a discussion of the accuracy of a 

transient packet renewal model to describe heat transfer for hori- 

zontal tube geometry. 
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2. THEORY 

2.1 Packet Renewal Concept 

2.7./    TempeAcrfuSie. V>to{JULq, in. a. Vackzt 

According to the packet renewal model of Mickley and Fairbanks 

[16], heat is transferred from an immersed surface in a cold fluid- 

ized bed to "packets".    A packet is an aggregate of solid particles 

and interstitial  gas, which contacts the surface.    Since these pack- 

ets are intermittently transported to and from the surface by gas 

bubbles, heat conduction into these packets is transient.    Heat 

transfer [16] is modeled by the one dimensional  unsteady state con- 

duction equation: 

ppcP at " kp ^2" l'> 

x is a measured positive outward from the surface, and p , c and k 

describe the thermal/physical properties of a packet. 

The bed is essentially isothermal due to thorough gas/solids 

mixing. Accordingly, the temperature of the fresh packet as it 

newly arrives at the surface, is equal to the interior temperature 

of the bed, 

T(x,0) = Tb (2) 

For brief packet contact times, only the portion of the packet 

directly adjacent to the tube surface undergoes a temperature change. 
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Thus the packet may be closely approximated by a semi-infinite slab 

[16] with the attendant boundary condition, 

T(»,t)  = Th (3) 

If the second boundary condition is either: 1) T (o,t) = con- w 

stant or 2) q (o,t) =constant, equation (1) can be readily solved. 
w 

For constant wall temperature the solution of equation (1) is: 

T(x,t)-T 
j r-b= erfc [-^=] (4) 

For constant wall   heat flux, 

v( T(x.t) -Tb = ^<|[2(ap i)V" 4^]-xerfc  E^^J (5) 

2.7.2    Local. Hzat Inxm^ioA. Co<Liii.CA.2y1t 

To determine the local   instantaneous conduction heat transfer 

coefficient for constant T , differentiate equation (4) and dividing 
W 

by (Tw-Tb) yields 

(6) 

The mean local conduction heat transfer coefficient over one packet 

contact time e , gives 

ep 

h^de 

= 2 
k p c 
P P P 
TT8„ 

(7) 
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Averaging over all packet times, the mean local conduction heat 

transfer coefficient is for T = constant, w 

h = = 2 P P P 
I9D 

(8) 

The expression for total local heat transfer also includes ef- 

fects of 1) radiation, and 2) conduction to gas bubbles: 

hL - hofo + (1-fo>(h> + hr (9) 

f is the fraction of time the local surface is covered by bubbles. 

For wall temperatures less than 800°C, radiative heat transfer is 

negligible. Furthermore, assume heat transfer to bubbles is by con- 

duction, analogous to heat transfer to packets [26]. A comparison 

of the group (kp,) for both gas and packet reveals that h may be 

ignored. The total local heat transfer coefficient is therefore 

given by, 

/k p c   y Jdl 

TT I"l 
T =constant (10) w 

Defining the root square average packet residence time [26] as, 

p     Isr 
_ PJ 

(11) 

The total heat transfer coefficient is finally expressed as 

\ - o-V2 /to 
/ IT 

PCP  J. 
«v 

T   = constant   (12) 
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For the boundary condition of constant wall flux, from equa- 

tion (5), 

h = , , \       ! ■ /^ £- (13) hi  (T(0,t)-Tb)     2   /t ( } 

Following the same procedure as equations (6) through (11), the 

total local heat transfer coefficient for constant wall heat flux 

is: 

hL = (1"V ^pW  ^ <14> 

2.7.3    Packet PiopeAtieA 

2.1.3.1    Vo-ld Tnjxcjtion 

Mickley and Fairbanks assume packet void fraction, E, is equal 

to the corresponding void fraction of a quiescent bed. The value 

of e is approximately equal to the value of void fraction for a 

cubic or hexagonal prism lattice of spheres [16]. This suggested 

to Mickley and Fairbanks that each particle within a packet is in 

contact with six or eight particle neighbors. Because of this par- 

ticle contact, the original renewal model assumes that the packet 

particles are loosely locked together and do not move in relation 

to one another. Accordingly, Mickley and Fairbanks [16] conclude 

that in the reference frame of the packet, non-mobile particles im- 

ply constancy of E and all packet properties. 
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In this work, e is measured for packets contacting the hori- 

zontal tube. The location of the packets varies circumferentially 

around the tube. An additional variable which influences e, is gas 

fluidizing velocity, u. A list of run conditions is given in 

Table 1. 

2.1.3.1    Packzt V<LnA<Lty 

Packet density is considered to equal the density of a quies- 

cent bed in the original packet renewal model of Mickley and 

Fairbanks. Therefore, packet density is expressed as [26]: 

Pp = Ps (1-ep) • (15) 

since PsO-eD) is equal to the density of a loosely packed bed. 

2.7.3.3 FaakeX Hzat CapacUty 

The specific heat is assumed to equal the heat capacity of 

the solid material. 

1.1.3.4 Va.ok.2A ThoJunaZ CondtLctlviAy 

Effective thermal conductivity of a packet is calculated from 

the correlation of Kunii and Smith [31], and Yagi and Kunii [32]. 

This model for two phase solid/gas thermal conductivity assumes 

that there are always particles in contact for even the loosest 

packing state of spheres. 
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According to this model, 

pee 

k is the contribution to effective conductivity arising from: 1) 

thermal conduction through solid; 2) thermal conduction through the 

contact surface between adjacent particles; 3) conduction through 

the stagnant fluid near the contact surfaces between particles; 4) 

radiation between solid surfaces; and 5) heat transfer through the 

fluid by radiation between and conduction in the void spaces. The 

term k is the effective contribution from heat transfer due to 

motion of the fluid. 

In references [31], [32] 

B(l-eD) 

Equation (17) neglects heat conduction through the contact surfaces 

of particles, and ignores heat transfer by radiation between solid 

surfaces and voids. 

6 refers to the ratio of the distance between the centers of 

two particles, divided by the particle diameter. It is here consid- 

ered equal to unity [26]. 

The term <t> is proportional to the effective thickness of gas 

slab through which heat is conducted between particles. The quan- 

tity <|> is evaluated by the expression: 
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1 /K-K2. 2. 

♦ ?(^)S1"e° K, |i        (,8) 
*n { K-(K-l)coseo } - ^ (l-cose0) 

J * 

K is the ratio k$/kq and 6Q relates to the angle subtended by the 

circumferential boundary of heat flow for a particle. 

y is proportional to the effective length of solid through 

which heat is conducted in a particle. The effective length is 

assumed to be equal to the length of a cylinder whose volume is 

equal to the volume of the given spherical particle. Accordingly, 

Y-f (19) 

To account for heat transfer due to the motion of gas within 

a packet, 

ke = ctBDpCgG . (20) 

The product a& is taken to be equal to 0.12 for glass spheres. 

A summary of particle properties is given in Table 2. 

2.7.4 Ozkaynak Modeled VacJuzt Renewal ModeZ 

Ozkaynak and Chen [26] predicted heat transfer coefficients 

for a vertical tube in a fluidized bed according to equation (12) 

using correlation (17). The predicted values were compared to 

measured heat transfer coefficients. It was observed that for 

very short residence times, the predicted heat transfer coeffic- 

ients significantly exceed the measured values for h. The 
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discrepancy is explained by the unaccounted increase in void frac- 

tion for packets of short contact time with the tube surface. 

The temperature profile of a packet may be determined from 

either equation (4) or (5). The penetration depth is defined [26] 

as that distance x for which 

Tw-T(*} -f-T = °-9 (21) 

If the penetration depth x into a packet is less than the particle 

diameter D , the packet cannot be assumed to have the properties 

of a packed bed. This is because for short residence times, i.e. 

small penetration depth, the total packet void fraction is domina- 

ted by the large void fraction of the portion of the packet adjacent 

to the wall. The effect of the wall is studied by Kimura et al_. [33] 

For the above packet, void fraction is described by Kimura: 

e = e_ - .304 an (■#-) £- <1 (22) 

e = eq ^ >1 (23) 

Instead of averaging e over the total length of a packet, Ozkaynak 

defines effective e for void fraction evaluated at y equals 4- . 

The increase in e when x is less that D , decreases k according 

to equation (17). It follows that k and h. also decrease. In- 

cluding this effect of the wall for short packet residence times, 
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Ozkaynak recalculated values for h,, which now closely agreed with 

measured h [26]. 

Due to the success of the correction for Ozkaynak's investiga- 

tion, the present study includes this modification for packets of 

short contact time, i.e. small penetration depth. 

2.2 Proposed Modification 

The data generated in this study indicates a further modifica- 

tion to the packet renewal model of Mickley and Fairbanks. This 

modification is the observation that packet properties are not 

constant but exhibit a time variation. The degree to which packet 

properties vary depends upon packet location on the tube surface 

and fluidizing gas velocity, as will be further discussed in 

Section 3.3.1. Because of this time dependence, the expressions 

for k and p as previously developed must be time averaged over 

the total time of contact before being used in equation (12) or 

(14). 
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3.    EXPERIMENT 

3.1    Test System and Experimental Procedure 

3.1.1    FtuuxUzeA Bed A&tanbly 
\ 

The fluidized bed vessel  is a rectangular tank of .635 cm 

plexiglass with cross sectional area of .304 mx .152 m.    A brass 

horizontal  tube of .304 m length and 2.54 cm diameter is mounted 

at each end on teflon tracks on the inside of the side walls.    The 

vertical  position of the tube is  .152 m above the distributor 

pHate  which is made of sintered steel of average porosity of 10 

microns. 

The fluidizing gas is air which is provided by one of two 
-2    i -2 compressors of maximum capacity 3.74x10     mJ/sec and 5.85x10 

m /sec respectively.    The flow circuit from either compressor to 

the bed distributor plate includes passing air through:    1) a 

dehumidifier, 2) a nullmatic  pressure regulator to maintain con- 

stant upstream pressure of approximately 2.06x105 N/m2,   and 3) 

one of three Shutte and Koerting rotameters to measure air flow. 

The type and maximum flow rate for the meters used is listed 

below: 

METER TUBE NO. FLOAT NO. MAXIMUM FLOW RATE 

C 5-HCF 54-J 1.88 x 10~2 m3/sec 

E 6-HCF 64-J 2.94 x 10"2 m3/sec 

D 8-HCF 83-J 6.27 x 10"2 m3/sec 
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Pressure drop measurements in the bed are made by positioning 

taps axially along the length of the bed. The taps are connected 

to a water manometer. 

A schematic drawing of the fluidized bed is given in Fig. 1. 

The solid material is a .22 m static bed of glass spheres. 

The properties of this material are listed in Table 2. 

3.1.2   Ca.pa.CAJja.ncz MzaAuA.eme.nti> 

The capacitance probe in this work [25] incorporates a design 

feature not applied before to a horizontal tube geometry, Fig. 2. 

This feature is the implantation of two small condenser plates 

flush with the surface of the tube, which are connected in series 

with a Boonton capacitance bridge. The angular position of the 

plates is variable through 360° by rotating the brass tube in the 

teflon guides at the side walls. 

Optimal condenser plate dimensions and the optimal separation 

distance between the plates are determined on a trial and error 

basis. The dimensions must be as small as possible to insure that 

the area of both plates is commensurate with an area equal to or 

less than the contact area of only one packet. At the same time, 

the plate dimensions must be large enough to provide a readable 

capacitance output signal. The chosen plate dimensions are .388 cm 

by .19 cm with separation distance equal to .127 cm. Magnitude of 

the capacitance signal is .01 pF. 
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A local value of capacitance provided by the condenser plates 

1s proportional to the value of the dielectric constant of the solid 

material between the plates: 

c B  n.. , «. A/d (24) dielectric ' 

However, n varies as the amount of solid material between the plates 

changes. A consequence of this is that capacitance vs. time infor- 

mation for the probe at any angle, can be directly related to local 

time variations in solids density. Determining the time variation 

in solids density from the capacitance time history, respective 

packet and bubble dwell times can be identified in the signal ac- 

cording to the methods of Section 3.1.4. 

3.1.3   VigiXal VnoczAbinQ 

The capacitance data is digitized and processed by a PDP-8 

mini computer. The analog capacitance signal from the capacitance 

bridge is digitized by an analog to digital converter. The digitized 

signal is sampled at a rate of 100 capacitance points per second. 

Capacitance points are collected for fifteen seconds at a given 

probe angle and gas fluidizing velocity. The 15 second sampling is 

then repeated five times for the same angle and velocity. 

The angular position of the condenser plates varies from 0° 

to 180° in 45° intervals measured from the vertical. At each of 

these probe angles, capacitance data is sampled for a total of 90 
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seconds for each of the air velocities 0.060 m/sec, .125 m/sec, 

0.265 m/sec and .781 m/sec. Capacitance data for angles 180° to 

360° is not collected. This is because symmetry of fluid dynamic 

and heat transfer behavior is assumed on both sides of the tube in 

the direction of gas flow. 

The PDP-8 performs the calculations necessary for determining: 

1) packet void fraction, 2) the number of packet to bubble exchanges, 

3) bubble fraction time, f , 4) root mean square residence time, 5) 

average packet density and 6) time averaged density. The capaci- 

tance data is stored on paper tapes, for the purpose of submitting 

it to a CDC computer with plotting capability. Typical capacitance 

vs. time plots are given in Figures 3 to 27. 

3.7.4 knaJLy&<U> o& the. Signal 

The capacitance signal is analyzed by first calibrating the 

signal according to an upper and lower bound. The upper bound is 

the capacitance value at any given probe angle corresponding to 

the plates fully covered by a static bed of particles. The lower 

bound is the capacitance value corresponding to the probe fully 

exposed to air. The capacitance difference between these two 

limits is normalized. Therefore the capacitance value representing 

a fully packed condition is 1.0, and that for a bubble is 0.0. 

The capacitance signal oscillates between the two bounds. 

The excursion of the signal means that the probe is successively 
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exposed to packets or bubbles and intermediate conditions between 

these two limits. The attitude of this work is to neglect the 

possibility of intermediate conditions. The value of the capaci- 

tance signal is considered at all times to represent either a 

packet or a bubble only. 

This binary interpretation demands a definition of packet in 

terms of a capacitance value between 0.0 and 1.0. The choice of 

capacitance value represents a "cutoff" between bubble and packet 

condition. Whatever capacitance level is chosen, capacitance 

values equal to or exceeding this level correspond to packet, and 

capacitance values less than this level correspond to bubble. The 

choice of capacitance definition for packet is arbitrary. There- 

fore, three definitions are successively employed to determine the 

sensitivity of the values of the calculated quantities to the ar- 

bitrary choice of packet definition. These packet definitions 

are the normalized capacitance levels: 0.333, 0.500, and 0.667, 

as shown in Figure 2. 

The justification for this binary approach is the fact that 

it has successfully been used elsewhere. For example in boiling 

heat transfer the gas and liquid phases are considered to be com- 

pletely disparate, describing a separated model. In boundary layer 

theory, the effect of viscosity exists on only one side of the 

boundary layer, and not the other. 
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Finally, this binary approach 1s justified on the basis of 

providing a simple and workable model. From this model, at the 

very  least, qualitative Information and trends for comparison pur- 

poses can be Inferred, as will be discussed in Sections 3.3.2-3.3.3. 

Moreover, considering the order of magnitude of calculated average 

and local heat transfer coefficients, indicates that, at least for 

this study, useful quantitative information can be derived from a 

binary approach. 

3.2 Results 

3.2.7 CapacAXance. Scg notA 

Capacitance vs. time data is plotted in Figures 3 to 27 for all 

run conditions listed in Table 1. Examination of the plots reveals 

three types of signal patterns which are described below. 

First a "constant" capacitance signal approximately equal to 

1.0 in value is displayed by the probe in Figures 3, 4 and 8. This 

flat signal occurs when the probe is at or near the twelve o'clock 

position for low fluidizing velocities. The degree of "noise" to 

the signal increases with gas velocity until, as in Figure 7, the 

signal no longer has a flat character. 

The second pattern,as in Figure 23 is a signal which rapidly 

oscillates between 1.0 and 0.0 on the normalized capacitance scale. 

The mean capacitance value is noticeably lower than the constant 

capacitance value for the first type of signal. 
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Thirdly, the last type of signal includes all patterns inter- 

mediate to the first two patterns. This signal as in Figure 15 

does not oscillate as vigorously as the second type, but is not as 

"flat" as the first. The mean capacitance value is bounded by the 

mean capacitance values of the other two signal categories. 

3.2.2 Void Fraction 

The time avaraged void fraction of the reduced capacitance vs. 

time signal is plotted in Figure 28, corresponding to the following 

conditions: 

RUN PROBE ANGLE (DEGREE)       VELOCITY (M/SEC) 

1,2,3              0° 0.060, 0.265, 0.783 

4,5,6              45° 0.060, 0.265, 0.783 

7,8,9              90° 0.060, 0.265, 0.783 

10,11,12 135° 0.060, 0.265, 0.783 

13,14,15 180° 0.060, 0.265, 0.783 

At the top of the tube, for probe angles 0°, 45° and 315°, the 

void fraction successively increases as gas velocity increases. For 

probe angle 315°, identical behavior to that at probe angle 45° is 

assumed and plotted accordingly. Henceforth in all polar plots, all 

points from 180° to 360° are assumed identical to corresponding 

points between 0° and 180°, as discussed in Section 3.1.3. 

For the probe oriented at an angle of 90°, there is a minimum 

void fraction for the intermediate velocity of .265 m/sec. As at 
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the top of the tube, maximum void fraction occurs for the highest 

gas velocity of .783 m/sec. 

For probe angle 135°, a minimum void fraction occurs for the 

intermediate velocity as for the 90° case. However, distinct from 

the other angles considered thus far, the maximum void fraction 

occurs for the smallest gas velocity of .060 m/sec. 

At the bottom of the tube for probe angle 180°, the void 

fraction successively decreases as gas velocity increases. 

3.2.3 Rzpta.ceme.yvt ¥A.zquzncieJ> 

The number of packet to bubble exchanges is plotted in Fig- 

ures 29, 30 and 31 for the probe angle positions and gas veloci- 

ties listed in Section 3.2.2. In addition, for each angle and 

velocity condition, the replacement frequency is calculated ac- 

cording to all three packet definitions, Section 3.1.4. 

As gas velocity increases for probe angles 0° and 45°, the 

number of packet to bubble exchanges increases from 0 to a finite 

value, depending upon the packet criterion used. Since the number 

of packet to bubble exchanges is proportional to the number of 

bubbles, this trend is consistent with the increase in void frac- 

tion at these angles, as discussed in 3.2.2. 

For angles 90° and 135°, the minimum replacement frequency 

as well as minimum void fraction, Section 3.2.2, occurs for the 
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Intermediate velocity .25 m/sec. This means that when the mini 

number of bubbles occurs, the void fraction Is minimum. 

The maximum replacement frequency for both 90° and 135° occurs 

at the minimum gas velocity. For this same minimum velocity, the 

void fraction is maximum at 135°, corresponding to the maximum 

number of bubbles at the probe. However at 90° for the minimum ve- 

locity .060 m/sec, the void fraction is not correspondingly a maxi- 

mum, Section 3.2.2. The reasons will be discussed in Section 3.2.4. 

The greatest effect of the choice of packet definition on the 

particular value of replacement frequency occurs at the 180° posi- 

tion for the lowest gas velocity. Using the "0.333" packet criterion 

the number of packet to bubble exchanges continuously decreases as 

gas velocity increases. This is paralleled by the decrease in 

void fraction as velocity increases, Section 3.2.2. Using the 

"0.500" packet criterion, the number of packet to bubble exchanges 

remains approximately constant for the range of gas velocities 

considered. For the "0.667" packet definition criterion,the numb- 

er of packet to bubble exchanges continuously increases as gas ve- 

locity increases. 

These three different trends are the result of three differ- 

ent packet definitions arbitrarily applied to a type 2 signal at 

180° and velocity .060 m/sec. The capacitance signal, Figure 23, 

is highly oscillatory with low mean capacitance, or density, value. 
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Thus, the number of times the signal  traverses the 0.333   normalized 

capacitance level  is much greater than the number of times the sig- 

nal crosses the 0.667 capacitance level.    This produces the disparity 

between the 0.333 and 0.667 criteria replacement frequency shown in 

Figure 29.    Therefore the contradictory trends in replacement fre- 

quency vs. velocity are artifacts of the analysis.    Any interpreta- 

tions of conditions at 180° for low gas velocity should begin with 

the fundamental observation of highly fluctuating density of low 

mean value. 

3.2.4    TncLctlonaUL Contact IJbnoJi 

f  , the fraction of the total  sample time that the probe is 

covered by bubbles, is plotted in Figures 32 to 36    for the run 

conditions listed in Table 1. 

At probe angle 0°, f    increases directly as velocity increases 

above a "critical" velocity of  .267 m/sec.    Below this velocity as 

discussed in Section 3.2.3 and indicated in Figure 29, there are 

zero packet to bubble exchanges.    From Figures 3 and 4,  it is seen 

that at 0° for velocities 0.60 and  .120 m/sec, the probe is contin- 

uously exposed to packet,  using any of the three packet criteria. 

Accordingly,  there are no bubbles and f    is zero at these velocities. 

For the probe oriented at 45°, f    increases continuously as gas 

velocity increases,  similar to the 0° case.    A zero value of f    at 

45° for velocity .060 m/sec is consistent with Figure 29, discussed 
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in 3.2.3, and shown in Figure 8. 

In Figure 34, a minimum value of f for probe angle 90°, occurs 

at gas velocity .267 m/sec. This is consistent with: 1) the obser- 

vation of minimum number of bubbles at 90° for gas velocity .267 

m/sec, Figure 30, and 2) the observation of minimum void fraction 

at 90° for gas velocity .267 m/sec, Figure 28. 

As mentioned in Section 3.2.3, the maximum void fraction for 

probe angle 90° does not occur at velocity .060 m/sec, Figure 28, 

although the number of packet to bubble exchanges is maximum at 

this velocity, Figure 29. In fact, the maximum void fraction occurs 

for velocity .765 m/sec, Figure 28, since f , for the velocity range 

.060 m/sec to .765 m/sec, is greatest at velocity .765 m/sec, Fig- 

ure 34. 

For probe angle 135°, f0 asymptotically increases with gas ve- 

locity, Figure 35. It was previously observed that the maximum 

void fraction, Figure 28, and maximum number of bubbles, Figure 29, 

prevails for velocity .060 m/sec. However, in Figure 35, it appears 

that the minimum value of f0 at .060 m/sec is inconsistent with 

maximum void fraction and maximum replacement frequency. When a 

fourth variable is considered, i.e. average packet density, Fig- 

ure 45, it is seen that packets are less dense at velocity .060 

m/sec than at velocity .765 m/sec. This accounts for larger void 

fraction at .060 m/sec than void fraction corresponding to .765 

m/sec, Figure 29. 
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For probe angle 135° at velocity .267 m/sec: 1) void fraction 

is minimum, Figure 28, and 2) replacement frequency is minimum, Fig- 

ure 30. These observations are consistent with minimum f , for the 

velocity range .267 to .765 m/sec, corresponding to velocity .267 

m/sec, Figure 35. 

f asymptotically decreases as gas velocity increases for probe 

angle 180°, Figure 36. This is paralleled by the decrease in void 

fraction with increasing velocity, Figure 28. This trend is also 

consistent with the decrease in replacement frequency for the 0.333 

packet criterion with increasing velocity, Figures 29 to 31. 

3.2.5 Rei-atence TAJWZA 

In Figures 37 and 38 for probe angles 0° and 45°, the root 

mean square residence time, equation 11, decreases as gas velocity 

increases. This is because the number of bubbles increases dramat- 

ically as velocity increases, indicated by Figures 29-31. The im- 

plication of more bubbles in the total span of the sample time 

is that packets are carried more frequently to and from the probe. 
i 

The greater the packet replacement frequency, the smaller ep. 

Similarly in Figure 39, the variation of e' with velocity for 

angle 90° is inversely proportional to the variation of replacement 

frequency with velocity, Figures 29 to 31. 

Distinct from the previous cases, at angle 135°, the root mean 

square residence time vs. velocity behavior, Figure 40, is not 
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Inversely proportional   to the replacement frequency vs.  velocity 

behavior.  Figures  29 to 31. 

The maximum residence time at 135° occurs  for velocity  .060 

m/sec.    This  is because, as Figure 18 indicates,  the individual 

dwell   times of the packets are small.     Vanishingly small   packet 

dwell   times produce a  small   value for the denominator,  :»i~ ,   for 

the expression  e'.     The result  is a  large numerical   value for  « 
P P 

at velocity  .060 m/sec. 

For the probe at 180°,   the asymptotic   increase  in root square 

residence  time with  increasing  velocity,   Figure 41,   is   inversely 

proportional   to  the variation  in  replacement  frequency. 

3.2.6    Aue-ui^c Packet Vz>it^tLH6 

As a  result of the flat or tending  to  flat capacitance  sig- 

nals,  Figures  3  to  12,   the average  packet  density at 0"  and  4 5= 

are high and relatively  invariant with  velocity,  Figures 42   and 4} 

For both  90° and  135°,   Figures 44  and 45   indicate a  local 

maximum  in packet density corresponding  to  velocity   .267 m/sec. 

This  is  consistent with  the minimum void  fraction at 90°  and  135° 

each occurring at velocity   .267 m/sec. 

In Figure 49, void fractions for 90° and 135° at .765 m/sec 

are greater than the respective minimum values at .267. However 

in Figures 44 and 45,  packet densities at  .765 m/sec are equal   to 
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or greater than the corresponding densities at .267 m/sec. The 

Inconsistency arises from void fraction calculations Integrating 

over the total capacitance signal, and packet density calculations 

Integrating over the "packet" portion of the capacitance signal 

only.  If the bubble durations. Figures 34 and 35, are considered, 

the void fraction and packet density behavior at 90° and 135° are 

compa table. 

The Increase in packet density at 180° as velocity increases, 

Figure 46, parallels the decrease in void fraction, Figure 28. 

3.3 Applications to Heat Transfer Model 

3.1.1    PackeX VnopwtleA 

The expression for heat transfer coefficient according to the 

packet renewal model, equation 12, is a function of certain thermal/ 

physical quantities of a packet. These quantities include the fol- 

lowing: 1) time averaged packet density, 2) thermal conductivity, 

equation 17, based on time averaged packet density, 3) fractional 

bubble contact time and 4) root mean square residence time. 

The mutual variation of k , p , e and f vs. probe angle for 

gas velocity held constant at .060 m/sec, .265 m/sec, and .765 m/sec 

respectively, is plotted in Figures 47 to 49. The increase in f0 

for increasing probe angle tends to decrease h., equation 12. How- 

ever, the decrease in e' vs. angle tends to increase h.. The ef- 

fect of decreasing thermal conductivity and packet density for 
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Increasing angle 1s to decrease h, . 

The variation of k  ,  p  ,  e'  and f   with increasing velocity 

for fixed probe angle of 0°, 90°, and 180° respectively,  1s plotted 

1n Figures  50 to 52.    The opposite  trends  in f    and e' with  Increas- 

ing velocity oppositely effect h.   according to equation 12.    Time 

averaged packet density and packet thermal  conductivity generally 

Increase with increasing velocity,  tending  to increase h.. 

In summary, depending upon the fluid dynamic behavior of the 

bed at any given angle on  the tube surface for any given gas ve- 

locity, one of the effects of p  ,  e    or   f    is dominant.    Whichever 

of these effects  is dominant,  primarily determines  the value of 

local  heat transfer coefficients. 

3.3.2    Local Hoxit Tnxin&^i Coz^-icl^nts 

Using the generated data for root mean square residence time, 

time averaged packet density, and packet thermal  conductivity, 

local  heat transfer coefficients are predicted by the packet renewal 

model, equation 12.    The experimental  error associated with these 

calculations is approximately 20%. 

Figure 59 is a plot of calculated heat transfer coefficients 

for maximum gas velocity u= .783 m/sec. An approximately uniform 

distribution of heat transfer coefficients is obtained around the 

tube,  for any of the three packet criteria.   At each of the angles 
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considered,  the percent deviation 1n calculated heat transfer co- 

efficient for the three different packet criteria  1s less than 331. 

Qualitatively,  this predicted heat transfer behavior for a horizon- 

tal   tube with high fluldlzing gas velocity supports experimental 

observation [34,35,36]. 

For Intermediate and low gas velocities,  there are results 

from previous experimental work to measure heat transfer coeffic- 

ients around a horizontal   tube [34,35,36].    The results of this 

work show that the site for maximum heat transfer activity on the 

tube surface  is the 90° position.    Moreover the local minima  in 

heat transfer coefficients exist in the upstream and downstream 

positions.    However the local  minimum at 0° has been measured to 

be smaller than  that at 180°. 

In the present study,  predicted heat transfer coefficients 

for intermediate velocity u =  .521  m/sec are shown in Figure 56. 

Heat transfer coefficients for the 0.500 and 0.667 packet criteria 

confirm the experimental   findings  [34,35,36] discussed above.     For 

u =  .52 m/sec,  the maximum percent variation in heat transfer co- 

efficient predicted for the three packet criteria is 40%. 

Calculated heat transfer coefficients for u =  .265 m/sec are 

plotted in Figure 55.    Heat transfer coefficients for the 0.667 

packet criterion,  produce the trend predicted by the measurements 

of earlier experimental  work [34,35,36].    The maximum percent 

variation in heat transfer coefficients calculated for the three 
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packet definitions 1s 95X, at gas velocity .265 m/sec. 

For u ■  .125 m/sec and u «  .060 m/sec, experimental  heat trans- 

fer data for approximately the same fluldlzed bed system as used 1n 

the present study 1s available [27,37].    The differences between the 

two systems include:    1) a difference of .076 m 1n static bed height 

and 2) a difference of .076 m In tube elevation.    Both the static 

bed height and tube height are lower for the bed used by Chandran 

[37] and Baker [27]. 

Predicted and measured heat transfer coefficients for u =  .125 

m/sec are plotted in Figure 54.    For probe angles 0° and 45°,  the 

packet renewal model   underpredicts heat transfer coefficients.    At 

90°,  the predicted and measured heat transfer coefficients show 

agreement to within 10% for the 0.667 packet definition.    However, 

the packet renewal  model  overpredicts heat transfer at 135°, as 

shown in Figure 54.    Similarly,  heat transfer coefficients at 180° 

for the 0.333 and 0.500 packet definitions are overpredicted by 

the packet renewal model.    But,  for the 0.667 packet criterion at 

180°,  the calculated heat transfer coefficient underestimates heat 

transfer.    The maximum percent variation in local  heat transfer 

coefficients using the three packet definitions is 77% at 180°. 

For u =  .060 m/sec,  the packet renewal model   underpredicts 

heat transfer at 0°, 45°, 90°, and 180° as shown in Figure 53. 

At 135°,  the packet renewal  model  overestimates heat transfer for 
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the 0.500 and 0.667 packet criteria, but underestimates for the 

0.33 criterion.    The maximum percent variation in calculated heat 

transfer coefficients using the three packet criteria  is 1795 at 

135°. 

3.3.3    KveAagz He.aX Pwitaoe* Coe^iciejitA 

A 

Average heat transfer coefficients for a horizontal tube im- 

mersed in a fluidized bed are measured by Baker [27] and Chandran 

[37]. The differences in these respective fluidized beds and the 

present system used in this study are noted in Figure 58. 

Using the packet renewal  model, average heat transfer coef- 

ficients for the entire tube surface are calculated assuming con- 

stant tube temperature.    The variation in average heat transfer 

coefficient vs.  velocity is plotted in Figure 58.    Baker's and 

Chandran's data are included in Figure 58, and compared to the 

calculated heat transfer coefficients. 

The calculated average heat transfer coefficients are bounded 

above by Chandran's extrapolated data.    The calculated points are 

bounded below by Baker's data.    Figure 58 suggests, at least for 

this study,  that the packet renewal  model  does give reasonable 

order of magnitude prediction for average heat transfer coeffic- 

ients.    However,  the agreement between predicted and measured data 

does not necessarily suggest that the model   is physically correct. 

The reasonable values for calculated average heat transfer 
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coefficients may be the fortuitous result of cancellation of errors 

of the predicted local heat transfer coefficients as they are aver- 

aged around the tube. 
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4. CONCLUSIONS 

4.1 Character of Fluidization 

4.1.1    Interdependence cjj PicpextieA 

The fluid dynamic properties of void fraction, packet replace- 

ment frequency, fractional bubble contact time, root mean square 

residence time, and average packet density vary dependently around 

the circumference of the tube. These properties are a strong func- 

tion of angular position on the tube surface and gas fluidizing 

velocity. Moreover these properties mutually influence heat trans- 

fer characteristics. 

4.1 A    Babble PxoducXion 

The data for packet replacement frequency, described in Sec- 

tion 3.2.3 is explained by two sources of bubble production. 

Source 1 arises from the obstructed gas pocket at the bottom 

of the tube [38]. The gas film is shed at the sides of the tube 

in the form of bubbles. 

In Section 3.2.2, it was shown that at 180°, void fraction 

decreases with velocity and packet density increases with velocity 

This means that the gas pocket of Source 1 becomes more dense and 

less effective for shedding bubbles. A result is the decrease in 

the number of packet to bubble exchanges as velocity increases at 

180°. 
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Source 2 for bubbles is the distributor grid [39]. The number 

of bubbles evicted from the distributor varies with velocity accor- 

ding to: 

uA « u gA ♦ nV. 
BIT D 

The Increase in number of bubbles with velocity explains the increase 

1n bubble activity at 0° and 45°. 

It is seen that these two bubble sources behave oppositely with 

increasing velocity. Therefore it is possible that the competition 

of the two will produce a minimum amount of bubble activity for 

some intermediate gas velocity. This is in fact the case at 90° 

and 135°, as discussed in Section 3.2.3. 

4.1.3 Reg-cm&A o& Flwidizatcon 

The signal 1 pattern of capacitance vs. time behavior, Sec- 

tion 3.2.2, corresponds to an environment of:  1) high density, 

2) low void fraction, 3) negligible to zero bubble activity, and 

4) maximally large residence times. This kind of environment per- 

tains to 0°, 45° and 315° for low velocities. A fluidized regime 

with these characteristics is described as solids-dense. 

The signal 2 pattern of capacitance vs. time behavior, Sec- 

tion 3.2.3, corresponds to another type of fluidized regime. This 

regime is characterized by: 1) highly fluctuating density of low 

mean value, 2) high void fraction, 3) extensive bubble activity, 
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and, 4) vanishlngly small root mean square residence time. These 

characteristics describe a disperse zone or lean emulsion of gas 

and single particles. This regime prevails at the bottom of the 

tube for low velocities. 

The third type of capacitance vs. time signal. Section 3.2.1, 

refers to a third fluidized regime. This regime includes all fluid- 

ized states intermediate to 1) a highly solids-dense condition and 

2) a low density, gaseous emulsion condition. All the intermediate 

states exhibit, in combination, both features 1) and 2) in varying 

strengths. Therefore all these states are characterized by some 

degree of inhomogeneity. At 90°, for intermediate and high gas 

velocities, the charactenof fluidization is greatly inhomogeneous. 

The above argument for three regimes is paralleled by the 

flow pattern in a heated vertical channel. In the single phase 

liquid region at the lower entrance to the channel, the mass qual- 

ity equals zero. Here the liquid is heated to the boiling point 

temperature. The quality increases as more heat is absorbed by 

the liquid as it flows upward through the channel. Bubbly flow, 

slug flow, and annular flow successively occur at higher eleva- 

tions in the channel. Eventually as the quality approaches unity, 

drop flow is established. 

In this present study, the fluidized analogy to the single 

phase liquid region is the dense zone on top of the tube. 
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Fluldlzed states of varying inhomogeneous character of the third 

type of regime, correspond to the bubbly flow, slug flow, and an- 

nular flow regions.  Lastly, the disperse emulsion zone at the 

bottom of the tube corresponds to drop flow in the heated vertical 

channel. 

4.2 Validity of Packet Renewal Model 

4.2.1    C/iatac £ci cj Pacfccti 

The capacitance vs. time plots indicate that the capacitance 

signal is not constant during any defined packet contact time. 

The variation in capacitance reflects a time variation in packet 

density. Changes in packet density are the result of changes in 

packing state of the component particles. But any variation in 

packing state is produced by relative particle motion within the 

packet. This relative particle motion physically suggests "squirm- 

ing" packets in contact with the tube surface. 

Originally, Mickley and Fairbanks assumed that a packet is a 

loosely locked aggregate of particles of zero relative velocity and 

constant void fraction [16]. Therefore, a squirming packet is a 

significant departure from the previous notion of a packet. 

The expression for local heat transfer coefficient is derived 

by summing heat transfer to individual packets. Since packet den- 

sity and packet thermal conductivity vary during the time of heat 
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conduction  to  these packets,   the appropriate values  to use  in equa- 

tion  12 are  the time averaged values  for p    and k   . 
>        P    P 

i. 

The case for time varying packet properties is suggested in 

Reference [24]. However the argument in the present study is strong- 

er because of the improved capacitance probe used. 

Packet properties p , k , and 9' are sensitive to the choice 

of packet definition. This study indicates that the minimum den- 

sity value which defines a "packet" is not a matter of arbitrary 

choice. 

4.2.2 HzaX TruinA&eA and  Reg-one^ o& Ttuu.dizaution 

Qualitatively, heat transfer coefficients calculated by the 

packet renewal model compare favorably with observed trends for 

intermediate and high velocities. This observation holds true for 

packets defined by the 0.667 criterion. 

At low velocities, measured heat transfer data is available 

for comparison with calculated heat transfer coefficients.  It is 

observed that calculated local heat transfer coefficients favorably 

agree with measured values when the local regime of fluidization is 

relatively inhomogeneous, as at 90° for velocity .120 m/sec. How- 

ever, calculated local heat transfer coefficients do not agree 

with measured data when the local regime of fluidization is solids- 

dense or lean emulsion condition. 
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This lack of agreement arises from the assumptions inherent 

1n the expression for heat transfer coefficient based upon a packet 

renewal mechanism.  The analysis for local heat transfer coeffic- 

ient. Section 3.3.2, includes the unsteady conduction of heat into 

packets of finite contact time with the surface. The contact time 

1s assumed finite since packets are presumably knocked off the sur- 

face by bubbles.  If the fluidized environment does not display 

the characteristics of surface renewal behavior as for type 1 and 

2 regimes, then this analysis for h. is not valid. 

At the top of the tube for low velocities, heat transfer co- 

efficients calculated by the packet renewal model underpredict heat 

transfer. This is because the calculated heat transfer coefficient 

is based upon a packet renewal mechanism, yet no packet renewal 

mechanism exists at the top of the tube for low velocities. As 

discussed in Section 4.1.3, the type 1 fluidized regime which pre- 

vails at the top of the tube, is a dormant, dense zone of solid 

particles. 

At the bottom of the tube for low velocities, most of the cal- 

culated heat transfer coefficients overpredict heat transfer. Again, 

this is becatfse no packet renewal mechanism takes place.  Instead, 

the environment is a type 2 fluidized regime of lean, gaseous emul- 

sion. 

In summary, the packet renewal mechanism applies to the fluid- 
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1zed regime at only certain local positions around the horizontal 

tube. Only at these sites, does the packet renewal model adequately 

predict heat transfer coefficients. In spite of this limited app- 

licability, the packet renewal model, at least for this work, ap- 

pears to reasonably predict average heat transfer coefficient. 

This may be due to a fortunate cancellation of errors in the ex- 

pressions for local heat transfer coefficient as they are averaged 

around the tube. 
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5.  RECOWENQATIONS 

5.1 Heat Transfer Mechanism of Homogeneous Regimes 

The results of this work suggest further topics of inquiry 

relating to the mechanism of heat transfer for a horizontal tube 

1n a fluidized bed.  In order to successfully predict heat transfer 

coefficients, it is necessary to determine the processes around 

the tube by which transfer of heat is achieved. The present study 

Indicates that heat transfer by packet renewal takes place at only 

certain tube positions for certain velocities.  This study does 

not investigate the mechanism of local heat transfer from those 

sites on the tube exposed to solids-dense or lean emulsion fluid- 

ized environments.  Descriptions of these mechanisms are required 

to formulate a physically complete and accurate analytical model. 

Therefore, investigation of the mode of heat transfer to the homo- 

geneous zones is recommended. 

5.2 Multiphase Thermal Conduction 

The calculation of heat transfer coefficient by the packet 

renewal model requires an expression for packet thermal conductivity. 

This thermal conductivity must necessarily be calculated for a multi- 

phase medium since a packet is composed of solid particles and inter- 

stitial gas. 

The model of Kunii and Smith [31] and Yagi and Kunii [32] was 
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used 1n this work. Section 2.1.3.4.  This model evaluates thermal 

conductivity for a gas/sol1d two phase medium.  In this mediun, 

Kunii's model assumes there 1s always some extent of particle to 

particle contact, which depends upon the particular packing state. 

The present work concludes that packets at the bottom of the 

tube are dilute with high void fraction.  For these cases, the 

thermal conductivity of a very low density packet may not be ade- 

quately described by the Kunii model based on touching particles. 

Specifically, if the particles are not in contact with each other, 

the terms $  and 6 in equation (17) are increased.  Both $ and 6 

will increase since they are a measure of gas thickness between 

neighboring particles. 

The refinement of Kunii's model for a dilute medium will 

effect the values for heat transfer coefficients at the sites ex- 

posed to dilute packets. Moreover, the use of different existing 

models for two phase k will influence the final values for calcu- r    e 

lated heat transfer coefficients. These effects should be inves- 

tigated, since an accurate model for two phase k is required for 

accurately predicting heat transfer coefficients. 
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TABLE - 2 

PROPERTIES OF SOLID PARTICLES 

Qual i ty of Particles GT-2 Tech.  Qual. 
Glass Beads 

Mean Particle 
Diameter  (cm) 

0.024 

Variance  (cm2) 
U.S.  Sieve Size 

6.01   x 10"u 

Particle Thermal 
Conductivi ty 
(watt/m°K) 

0.89 

Particle Heat 
Capacity 
(J/kg°K) 

0.75 

Particle Density 
(kg/m3) 

2467.0 

Bed Void Fraction 
Loose Packed 
Dense Packed 

0.390 
0.352 

Bed Density (kg/m3) 
Loose Packed 
Dense Packed 

1504.0 
1598.0 

Minimum Fluidization 
Velocity (m/sec) 

0.058 

-49- 



u 
z 
< 
►- 

< OD a. o 
< cr o a. 

z 
< 
t -I 
o < 
< z 
a o 
< — 

r 

o 

cr 

\ 
L.-   «- 1 

1 
T

E
S

T
 

E
C

T
IO

N
 

X( 

►—. 

) 
CO 

u 
z 

< 
a. 
< 

>1 

cr 
< 

UJ 
cr 

cr 
o 
< 

CO _i 
CO 3 
UJ O 

1    ^ UJ 

vj 
cr 

o 
UJ 
CO 
CO 
UJ cr 

o 
o 

c 
o 

c 

3 
u 
♦* 
s 
c 

c 

3 

a 
a, 

c 
<u a 

f-» 

a. 
K 
4) 

» 
si 

o 

a 

taO 
ctJ 
-H 

o 

3 
NO 

•H 



2.85 cm 

COAXIAL — 
SHIELDED 

CABLES 

BRASS  TUBE 

1 I 

PLEXIGLASS 

BRASS 
ELECTRODES 

INSIDE   FILLED 
WITH    CEMENT 

2.22 cm 

figure 2 - Capacitance probe 
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RACTION 

GT-2 GLASS   SPHERES 
STATIC   BED HEIGHT = 0.228m VELOCITY: 
TUBE   ELEVATION = 0.152 m •   =0.060 m/SEC 

O = 0.263 m/SEC 
D = 0.783 m/ SEC 

i'igure   28   - Effect   of  angular  position   on  time  avenged 
void fraction 
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225 

GT- 2 GLASS   SPHERES 
STATIC   BED   HEIGHT = 0.228 m 
TUBE   ELEVATION = 0.152 m 
VELOCITY = 0.060 m/SEC 

0.333 PACKET CRITERION = + 
0.500 PACKET CRITERION = D 
0.667 PACKET   CRITERION  = O 

figure  29   - Effect   of  angular  position   on  number   of 
packet   to  bubble   exchanges 
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180' 

GT-2 GLASS  SPHERES 
STATIC   BED   HEIGHT = 0. 22 8 m 
TUBE   ELEVATION = 0.152 m 
VELOCITY =0.265 m/SEC 

0.333 PACKET CRITERION = + 
0.500 PACKET CRITERION = D 
0.667 PACKET   CRITERION =   A 

Figure  30   - Effect  of angular position  on number  of 
packet   to  bubble  exchanges 
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NUMBER CF PACKET   TO  BUBBLE 
EXCHANGES 

135' 

180' 

GT-2  GLASS   SPHERES 

STATIC   BED   HE IGHT = 0 .228 m 0. 
TUBE   ELEVATION = 0. 152 m 0. 
VELOCITY = 0.783 m/SEC 0. 
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CRITERION = □ 
CRITERION =   A 

figure 31 - Effect of angular position on number of 
packet to bubble exchanges 
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GT - 2 GLASS   SPHERES 
STATIC   BED  HEIGHT = 0.228 m 
TUBE   ELEVATION = 0. 152 m 
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i'igure   47   - Effect   of angular  position   on  packet 
thernio physical  properties 
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S'igure  43   - Effect   of  angular  position  on  packet 
theraophysical  properties 
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figure,49 - Effect of angular position on packet 
theraiophysical properties 
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GT-2 GLASS  SPHERES 
VELOCITY = 0.060 m/SEC 

STATIC   BED   HEIGHT = 0.228 m 
TUBE   ELEVATION = 0.152 m 
0.333   PACKET   CRITERION=  + 
0.500   PACKET   CRITERION   =   D 
0.667  PACKET   CRITERION   =  A 

STATIC  BED   HEIGHT = 15 2 m 
TUBE   ELEVATION = 0.076 
DATA = • 

Figure 5J> - Effect of angular position on Nuaaeit number 
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270 

GT-2 GLASS   SPHERES 
VELOCITY = 0.125 m/SEC 

BY PACKET  MODELS: 
STATIC  BED  HEIGHT = 0.228 
TUBE  ELEVATION   =   0.152 
0.333  PACKET  CRITERION = + 
0.500 PACKET  CRITERION = □ 
0.667 PACKET   CRITERION  = & 

CHANDRAN S    DATA: 
STATIC   BED  HEIGHT= 0.152 m 
TUBE   ELEVATION  =  0.076 
DATA =   • * 

Figure   54   - Effect  ef angular position  on Nuaaelt  number 
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270 f- 90' 

GT-2 GLASS  SPHERES 
STATIC   BED   HEIGHT = 0. 228 m 
TUBE   ELEVATION = 0.152 m 
VELOCITY = 0.265 m / SEC 

0.333 PACKET CRITERION = + 
0.500 PACKET CRITERION = D 
0.667 PACKET  CRITERION = & 

Figura   55   - Effect   of  angular  position   on Nusselt  number 
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270° * 90' 

GT-2 GLASS   SPHERES 
STATIC   BED  HEIGHT = 0.228 m 
TUBE   ELEVATION  = 0.152 m 
VELOCITY = 0.521 m /SEC 

0.333 PACKET CRITERION = + 
0.500 PACKET CRITERION = □ 
0.667   PACKET   CRITERION =  A 

Figure   56   - Effect   of angular  position   on  Nuaselt  number 
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270 + -^-90' 

GT-2 GLASS  SPHERES 
STATIC  BED   HEIGHT = 0. 228 m 
TUBE   ELEVATION = 0.152 m 
VELOCITY = 0.783  m/SEC 

0.333 PACKET CRITERION = + 
0.500 PACKET CRITERION = D 
0.667   PACKET  CRITERION = A 

/ 

Figure o7 - Effect of angular position on Nuaaelt number 
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