
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1977

Fundamentals of list structures and a pascal
implementation of basic list processing techniques.
Mary J. Capece

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Capece, Mary J., "Fundamentals of list structures and a pascal implementation of basic list processing techniques." (1977). Theses and
Dissertations. Paper 2096.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228650347?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2096&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2096&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2096&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=preserve.lehigh.edu%2Fetd%2F2096&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2096?utm_source=preserve.lehigh.edu%2Fetd%2F2096&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

FUNDAMENTALS OF LIST STRUCTURES AND A PASCAL

IMPLEMENTATION OF BASIC LIST PROCESSING TECHNIQUES

BY

Mary J. Capece

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Computer Science

Lehigh University

1977

ProQuest Number: EP76369

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest

ProQuest EP76369

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

CERTIFICATE OF APPROVAL

This thesis is accepted and approved in partial fulfillment of

the requirements for the degree of Master of Science.

MAY C>J/977
(date]

Professor in Charge

Chairman of the Department

n

ACKNOWLEDGEMENTS

I wish to express my sincere thanks to my advisor,

Professor Samuel L. Gulden for providing his invaluable

direction and inspiration in the preparation of this thesis,

m

CONTENTS

Page

Abstract 1

I. Introduction 3

II. The List Concept 5

III. Representation of Lists 7

IV. Types of Lists . 12

V. A.List Processing System Embedded in PASCAL 17

VI. A LISP Interpreter 28

Bibliography 35

Appendix I: Program TEST 36

Appendix II: Program DEAL 49

Appendix III: Program HUFFMAN 60

Appendix IV: Program LISP 72

Vita 84

iv

List of Figures

Page

Figure 1 29

Abstract

The construction of a program requires a well-designed

algorithm as well as careful attention to the design of

associated data structures. The linked list is a particularly

useful structure type.

Let A be a nonempty set of objects called atoms. We

distinguish one particular atom, called the NIL atom and

designated by A. Let L = A. We define the sets

L-t ,L25. • • »L ,... as follows:

Suppose L ,...,L. have been defined, K >_ 0. Define

L.+, to be the set of all sequences a-,,...,a , m >_ 1, where

a-j,... ,am_.j e (L U L-jU ... O Lk) ^'{A} and am = A. We call

the members of L„ the linear lists of order less than or n

equal to n.

In order to represent this list structure in computer

memory, we utilize and maintain a set of nodes, each including

a symbol field and a link to the next node. Since each node of

the list contains a pointer to the next node, successive list

elements are not required to be consecutive words in computer

memory. This ability to utilize arbitrary, disjoint sections of

memory is one of the powerful features of lists.

The operations on list structures normally consist of

1

accessing an element or series of elements, moving them to

other lists, replacing them by other series, or processing the

entities represented by them.

This paper describes the various types of list structures

and explains the concepts behind list processing techniques.

Several list processing methods are presented. The PASCAL

programming language is used to implement a list processing

system, in order that the reader may obtain a working

knowledge of this beautifully simple and powerful aspect of

programming.

I. Introduction

Computer programs consist of algorithms which transform

informational structures. An informational structure consists

of a collection of relations and properties on a basic set of

elements or atoms. The construction of a program requires, in

addition to a well-designed algorithm, careful attention to the

design of associated informational structures.

Since computer programs are frequently designed to

facilitate the processing of complicated situations, the

informational structures required in such programs may be quite

intricate. A particular structure type which has been used

effectively in the development of informational structures is

that of the list.

The use of lists and their manipulation has all too often

been restricted to a few specialists in several narrow areas.

Moreover, the most frequently used languages, FORTRAN and

COBOL, do not permit the easy use of list processing techniques.

Despite all this, list processing is capable of a wide area of

application and should be known by more programmers.

It is still the case that many programmers feel that list

processing techniques are quite complicated. We will see that

there is nothing magic or mysterious about the methods of dealing

with complex structures. List processing should be one of the

many techniques at the disposal of programmers, for use in those

parts of programs which require it.

The purpose of this paper is to explain the concepts behind

list processing techniques in order that the reader may obtain a

working knowledge of this beautifully simple and powerful aspect

of programming.

It will be shown how several list processing methods can be

easily embedded and used in the language PASCAL.

The basic concepts of list processing may be found in [4],

[7], [9], and [13].

4

II. The List Concept

Let A be a non-empty set of objects. We distinguish one

particular object and designate it by A. The objects of A

are called atoms and in particular A is called the nil atom.

Let L = A. We define the sets L,, L«» ..., L , ... as

follows:

Suppose L , ..., L^ have been defined, k >^ 0. Define

L.+, to be the set of all sequences a-,, ..., a , m >_ 1, where

8| an,1E(L0UL1U...ULk)MA} and am = A.

We call the members of L„ the linear lists of order less n

than or equal to n. A list is said to be of order n if and

only if it has order less than or equal to n, but not order less

than or equal to n-1.

For notational purposes, if a-,, ..., a , A is a list, we

write it as (a-j, ..., a). Observe then that if

A = {a, b, c, A}, then a list of order two might have the form

(a, ((a,b), c), (a,b), a).

Of course there are infinitely many lists of order n for

each n >_ 1. The latter is true even when A is finite.

In order to realize the list structure in computer memory,

we utilize and maintain a set of nodes. Each node consists of

one or more consecutive words of computer memory, divided into

named parts called fields. Every node includes a link field and

a symbol field. The link component contains the address of the

node to be regarded as the successor of the node in question. The

symbol component may represent any defined informational structure,

e.g. a number, a string of characters, or other information. It

may contain the address of another node and thus refer to

another sequence of symbols.

Thus, since the items of a list may themselves be lists, the

general structure obtained in this manner is called a list

structure. Since a list element may contain a pointer to

another list, it is possible to build up list structures of

arbitrary complexity. Ordinarily these are tree structures, but

it is possible to share sublists, build circular structures,

etc.

Since each element of a list points to (that is, contains

the address of) its successor, successive list elements are not

required to be consecutive words in computer memory. This

ability to utilize arbitrary, disjoint sections of memory is one

of the powerful features of lists.

III. Representations of Lists

For simple programs, the space required for execution is

known and allocated prior to execution. Suppose, however, we

wish to store a set of numbers the size of which will not be

known until the reading is completed. In order to make efficient

use of space, the program should allocate space during

execution. The techniques of list processing grew in solution

to this type of problem.

Consider a program which is intended to read in a sentence,

arrange the words in alphabetical order, and then print them

in this order. Assume we store each word at a new address

in memory. This might appear as follows:

100 FOUR
101 SCORE
102 AND
103 SEVEN
104 YEARS
105 AGO

where the column of numbers on the left indicates the storage

location. Arranging the words such that they are ordered

alphabetically yields the following:

200 AGO
201 AND
202 FOUR
203 SCORE
204 SEVEN
205 YEARS

An alternate approach eliminates the unnecessary duplica-

tion of words. We may create a vector which represents the

alphabetical ordering by indicating the address of each of the

words:

300 105
301 102
302 100
303 101
304 103
305 104

where the numbers on the right are the contents of the locations

numbered on the left. This has no effect upon the cells

containing the actua'l characters. Additional words may be

incorporated with this scheme without disturbing those currently

present or the vectors already in existence. The idea is that

it may be advantageous to manipulate the addresses of quantities

rather than the quantities themselves. Such is the fundamental

basis of list processing.

Consider the computer representation of a sentence in

storage. The store for each word will also contain the address

of the location of the next word in the sentence.

100 THE, 101
101 BOY, 102
102 WALKED, 103
103 TO, 104
104 SCHOOL, A

Recall, the use of the greek letter lambda (A) denotes the

end of a list. This structure may be represented

8

diagrammatically as follows:

THE * BOY WALKED m ■* I SCHOOL A

Words can be added to or deleted from this sentence without

moving the existing words, since the sequence of stores in which

the words occur is insignificant.

100 THE 105
101 BOY, 102
102 WALKED, 103
103 TO, 104
104 SCHOOL, 106
105 LITTLE, 101
106 TODAY, A.

I THE| j 1 [BOY

Lr—W ^PLTfTLEI ;

y WALKED * TO 5CRTJ0T

?
TODAY]A|

Linked storage representation allows the possibility of ran-

dom insertions and deletions. These frequently used list

operations are thus accomplished through simple manipulation of

pointers. With sequential allocation of storage, insertion is

particularly difficult since it may involve shifting a large

number of elements. This also holds for deletion if we are

to utilize deleted storage space. Insertion and deletion are

much simpler with linked lists, as we need only alter the

appropriate linkages.

9

The linked list lends itself immediately to more intricate

structures. We can maintain a variable number of variable size

lists; any node of the list may be a starting point for another

list, the nodes may simultaneously be linked together in

several orders, corresponding to different lists.

Suppose the items in the chain are addresses, for example

addresses of strings of letters or perhaps addresses of other

chains.

100 LIST
101 PROCESSING
102 COMPUTER
103 PROGRAMMING

200 101, 201
201 103, A
202 203, 205
203 100, 204
204 101, A
205 206, A
206 102, 207
207 103, A

A chain starts at location 200 which consists of two items - a

pointer to the word "processing", and a pointer to the word

"programming":

I
PROCESSING

1
PROGRAMMING

At location 202 begins another chain consisting of just two items.

The first item is a chain of two items - a pointer to the word

"list" and a pointer to the word "processing". The second item

10

is also a chain of two items - a pointer to the word "computer"

and a pointer to the word "programming". This list structure is

diagrammed as follows:

T
1

7
ra-

LIST PROCESSING COMPUTER
1

PROGRAMMING

The objects which do not have the two-pointer nature represent

the atoms. Their structure is not the concern of the particular

program which is operating on the list in which they occur.

11

IV. Types of Lists

The conventions for the ending of lists may be altered. The

space at the end of each sublist can indicate the place in the

main list from which the sublist has been referenced. The cell

at the end of a sublist must provide an indication that it is an

end point, and not a continuation of the sublist. Extra space

must be available for storing tag markers to imply this. When

the procedure reaches a point in the list that is tagged as end

of a sublist, then attention is transferred back to the main

list. The following representation of the list (A, (B,C), D)

illustrates this concept:

kE

v A

D

where * denotes the marker for the end of a sublist. Note

that the sublist (B,C) points to its referencing node in the

main list and, therefore, cannot be a sublist anywhere else.

This scheme has the serious disadvantage that a list can only

be a sublist of one list, and if required as part of another

list, then it must be duplicated. Some problems suffer

12

severely from shortage of store if common sublists do not exist.

Operations on list structures normally consist of

accessing an element or a series of elements, moving them to

other lists, replacing them by other series, or processing the

entities represented by them. Accessing an element in a list

is usually restricted to the first element after a particular

given element. Thus it is possible to access any list element,

but only by traversing the list from the first element. This is

the situation with simple linked lists.

Doubly linked lists. If each node of a list has two links,

pointing to the nodes on either side of it, then a more

flexible method of handling lists is obtained at the expense of

extra storage space for links. This is intended to make movement

about the list easily possible in both directions, as is

illustrated in the following diagram:

LEFT A 1 -4-^>- 1 I -+-*>- I I -f-£M--~l |A RIGHT

Here, LEFT and RIGHT are pointer variables to the left and right

of the doubly linked list. Each node includes two links, called,

for example, LLINK and RLINK.

Manipulations of doubly linked lists almost always become

much easier if a list head node is part of each list. We have

13

the following typical representation:

LIST HEAD

The LLINK and RLINK fields of the list head replace LEFT and

RIGHT in the previous illustration. If the list is empty, then

both link fields of the head point to the head itself.

This representation clearly satisfies the condition that

RLINK(LLINK(X)) = LLINK(RLINK(X)) = X where X is the location

of any node in the list (including the head). It is for this

reason that a list head is desirable.

In addition to the obvious advantage of the ability to move

in either direction when examining a doubly linked list, one of

the important new abilities is that we can delete a node X

from the list containing it, given only the value of X. In a

simple linked list with only one-directional links, we cannot

delete the node X without knowing its predecessor in the

chain, since the link of the preceding node requires alteration

in performing a deletion of the node X.

Suppose we wish to write a particular routine to search a

list of atoms to find the predecessor of a given atom A. With

singly linked list structures, it becomes necessary to keep

track of two atoms at all times as we search the list. Everytime

we compare an atom with A, its predecessor must be known, in

14

the event of a match between the current atom and the atom A.

With doubly linked list structures, however, this is not

necessary. The desired result can be obtained by first locating

A, and then ensue its predecessor pointer. A doubly linked list

also permits easy insertion of a node adjacent on either side.

The obvious disadvantages of doubly linked lists are that

more memory space is required, and more pointers need by

manipulated than with singly linked lists.

Circular lists. A circular list is a list in which every element

is the successor of exactly one other element of the list. A

circular list possesses the property that its last node links

back to the first node, instead of to A. There is no need to

think of a first or last element. We require only one pointer

to the list. The entire circular list may be accessed from

any given node of that list.

The following diagram illustrates a (singly-linked) circular

list. The nodes have just two fields: INFO and LINK:

-PTR

Circular lists can represent not only inherently circular

structures, but also linear structures. A circular list with

one pointer to the rear node is essentially equivalent to a

simple linked list with two pointers, one to the front and one

15

to the rear.

In view of the circular symmetry, and since there is no A

link to signal the end, how do we recognize the end of the list?

We must record our starting point, process the list as desired,

and stop when we encounter the starting node (assuming that

node is still present in the list). An alternate solution is to

include a special recognizable node in each circular list, as a

convenient stopping point. This list head is quite convenient

for applications. An obvious advantage is that the circular list

will then never be empty.

Given only X, it is possible to delete the node X in a

circular list. This is accomplished by progressing through the

entire list in order to locate the predecessor of X. This

operation may be inefficient. Some operations, however, become

very efficient with circular lists. For example, it is very

convenient to move an entire list to become part of another list,

or to divide a circular list into two lists.

16

V. A List Processing System Embedded in PASCAL

While there may exist some programming tasks best solved

entirely within some list processing system, most tasks facing the

ordinary programmer require the application of a number of

distinct techniques. Many programs contain sections which are

suitable for list processing. The packaging of a variety of

tools within a single tool box seems to be the best way to

outfit a worker setting out to solve complex problems.

We shall use the PASCAL programming language and embed in it

various procedures to implement a list processing system.

Familiarity with the PASCAL language is assumed [6]. The task

of understanding these new techniques, then, is that of adding

to a vocabulary rather than that of learning an entirely new one.

The ideas for the approach taken here come from [11].

PASCAL provides pointer variables as a simple tool for the

construction of complicated and flexible data structures. The

lists considered here (with the exception of the free list) are

circular.

The declaration part of the main program will define the

type PTR as a pointer to NODE, where NODE is defined as a record

type including a LINKfield of type PTR. Also, a variable

identifier FREE of type PTR must be declared. Nodes are deleted

by moving them to the list containing all freed nodes. FREE

17

will point to this list.

We shall first need a procedure to initialize the free list,

which is initially empty. The free list is the only non-

circular list being considered in this section. Procedure ORG

performs the initialization:

PROCEDURE ORG;
BEGIN

FREE : = NIL;
END;

A very useful function is one which acts on a pointer variable

P by finding its antecedent in the list. P remains unchanged.

The value of the function is the pointer to the antecedent of P.

FUNCTION ANTE(P : PTR) : PTR;
VAR

TEMP : PTR;
BEGIN

TEMP : = P;
WHILE TEMPT. LINK } P DO

TEMP : = TEMPt. LINK;
ANTE : = TEMP;

END;

A node, pointed to by P, which is to be "erased" is

moved to the free list by Procedure RELEASE. P is changed

to point to its successor in the original list, unless P was

from a list of just one element. In this case, P is set to

NIL.

18

PROCEDURE RELEASE (VAR p : PTR);
VAR

TEMP, PTI : PTR;
BEGIN

IF Pt. LINK = P THEN PTI : = NIL
ELSE
BEGIN

TEMP : = ANTE (P);
TEMPT. LINK : = Pt. LINK;
PTI : = Pt. LINK;

END;
Pt. LINK : = FREE;
FREE : = P;
P : = PTI;

END;

Procedure RELIST (P,Q) may be used in the same way as

RELEASE, the only difference being that it will free the string

of nodes starting with that node pointed to by P and ending

with the node pointed to by Q. Q remains unchanged. P be-

comes what was QT. LINK unless P through Q was the entire

list. In that case, P is set to NIL.

PROCEDURE RELIST (VAR P:PTR; Q:PTR);
VAR

TEMP,PTI:PTR:
BEGIN

IF Qt.LINK = P THEN PTI : = NIL
ELSE

BEGIN
TEMP : = ANTE (P);
TEMPt. LINK : = Qt . LINK;
PTI : = Qt. LINK;

END;
Qt. LINK : = FREE;
FREE : = P;
P : = PTI

END;

19

Procedure ALLOCATE (P) allocates a variable of type PTR

and assigns Its address to P. This is done utilizing nodes

from the free list, if there are any. Storage space is generated

dynamically by the procedure new if the free list is empty.

PROCEDURE ALLOCATE (VAR P : PTR);
BEGIN

IF FREE = NIL THEN NEW (P)
ELSE
BEGIN

P : = FREE*
FREE : = FREE?. LINK;

END;
END;

A new (circular) list of one element may be established by

means of the Procedure INIT (P). P then points to that one node.

PROCEDURE INIT (VAR P : PTR);
BEGIN

ALLOCATE (P)
Pt . LINK : = P;

END;

The Procedure INSERT (P) creates a variable of type PTR and

inserts it as the antecedent of the variable to which P points

in the list containing P. P becomes the pointer to this newly

created variable.

20

PROCEDURE INSERT (VAR p : PTR);
VAR

TEMP, PTI : PTR;
BEGIN

ALLOCATE (TEMP);
PTI : = ANTE (P);
PTI t • LINK : = TEMP;
TEMP t . LINK : = P;
P : = TEMP;

END;

One of the most important processes in list structuring is

the moving of list elements from one list to another. The

Procedure MOV (P,Q) moves the element to which P points such

that it becomes the antecedant of the element to which Q points.

Q is set equal to P and P becomes the pointer to what was

its successor, unless P is an entire list. In that case,

moving the node to which P points eliminates that list and

thus, P is set to NIL.

PROCEDURE MOV (VAR P,Q : PTR);
VAR

TEMP,PTI,PT2 : PTR;
BEGIN

IF PT, LINK = P THEN TEMP : = NIL
ELSE
BEGIN

PTI : = ANTE (P);
PTI ?. LINK : = Pt . LINK; '
TEMP : = P T . LINK;

END;
PT2 : = ANTE (Q);
PT2 t- LINK : = P;
P T, LINK : = Q;
Q : = P;
P : = TEMP;

END;

21

The following example shows a simple use of MOV(P.Q).

Before: (a,b,c,d,e) (f,g,h,i)

+ +

P Q

After: (a,b,d,e) (f,g,c,h,i)

+ +

P Q

Suppose we now call M0V(P,Q) again:

Then we have (a,b,e) (f,g,d,c,h,i)

+ +

P Q

Now a call of M0V(Q,P) will yield the following

(a,b,d,e) (f,g,c,h,i)

P Q

And a second call to M0V(Q,P) brings us back where we started:

(a,b,c,d,e) (f,g,h,i)

+ , +
p L^ Q

Procedure INC0R(,Q,R) given below may be used in the same

way as MOV, the only difference being that it will move each of

the nodes starting with that to which P points and ending with

the node to which Q points. This string of elements is then

inserted to precede the node to which R points. Q remains

unchanged. R is set to P, and P becomes Q +. LINK unless

22

P through Q is an entire list. If this is so, then P is set

to NIL.

PROCEDURE INCOR (VAR P:PTR; Q:PTR; VAR R:PTR);
VAR

TEMP, PTI.PT2 : PTR;
BEGIN

IF Q +. LINK = P THEN TEMP : = NIL
ELSE

BEGIN
PTI = ANTE (P);
PTI +. LINK : = Q +. LINK;
TEMP : = Q +. LINK;

END;
PT2 : = ANTE (R);
PT2 +. LINK : = P;
Q +. LINK : = R;
R : = P;
P : = TEMP;

END;

The following illustrates the effect of Procedure INCOR (P,Q,R):

Before: (a,b,c,d,e,f,g) (h,i,j,k)

P Q R

After: (a,f,g) (h,b,c,d,e,i,j,k)

P R Q

Function ELEM (P,N) will have as its value the pointer to the

n-th element after the element to which P points. P remains

unchanged.

23

FUNCTION ELEM (P:PTR, N:INTEGER) : PTR;
VAR

I : INTEGER:
BEGIN

FOR I : = 1 TO N DO
P : = P +. LINK;

ELEM : = P;
END;

Program TEST is included as the Appendix I so that the

reader may inspect the performance of a few of these procedures.

As a simple example of the use of these list processing

techniques, we consider the dealing of a deck of cards in a

bridge game [11]. Declare a node to be a record with three

fields: card value, card suit, and a link to the next card in

the list. A program to simulate the deal has been written

in five sections.

1. INITIALIZE. In this procedure, we seed a random number

generator, call Procedure ORG to initialize the free list,

and set the symbols J,Q,K,A to represent the jack, queen,

king, and ace of each suit.

2. GENDECK. This procedure generates a circular list containing

a node for each of the fifty-two different combinations

of card values and suits. The pointer variable, DECK, will

designate the list by pointing to an arbitrary node.

3. STARTLISTS. Sixteen lists are initialized - four per player

(one for each of the four suits). M is a four by four

24

array containing pointers to the first element for each of the

sixteen lists.

4. DEALDECK. In this procedure, a card is randomly chosen from

the remainder of the deck. The card is removed from the deck

list and placed in one of the sixteen lists initialized in

STARTLISTS (which list depends upon the suit of the card

drawn, and which player is to receive the card).

5. PRINT. This procedure prints to output the hands of the four

players, with cards listed according to suit. That is, the

sixteen lists of STARTLISTS are printed. As each card is

printed, it is moved from its current list to the deck list.

At the conclusion of this procedure, the deck is reconstructed.

The program listing and an actual run are presented in

Appendix II in Program DEAL. One deal requires about 0.5 CP

seconds.

As another example of the use of list processing techniques,

we consider the construction of a Binary Huffman Code [5]. Given,

a message source of N possible messages, N >^ 1, each with its

own probability of occurrence, the process is as follows:

1. Organize the possible messages according to probability of

occurrence, in descending order.

2. Combine the two messages with lowest probabilities by

drawing lines from each to a single point. Label the line

25

of the more frequent message with a "1" and the line of

the other message with - "0".

3. Combine the next two messages with lowest probabilities, and

label them.

4. Continue this process until all messages are merged at

one point.

5. Read the labels along the path from the unique point to each

symbol for its code.

For example, suppose we have four messages with probabilities of

occurrence as follows:

SYMBOL PROBABILITY

A .45

B .40

C .10

D .05

Then the following diagram illustrates the construction of a

Huffman Code for this message source.

SYMBOL PROBABILITY

A

B

C

D

26

The computer program to construct a Huffman Code first

reads the symbols and their corresponding probabilities of

occurrence. Each symbol and corresponding probability is repre-

sented in a node of a circular list. This list is then sorted

according to the probability field, in descending order. Then,

the two nodes of lowest probability are removed from this list

to form a new circular list with head. They are substituted by a

single element with a probability equal to the combined

probabilities of the other two nodes. This substitute element

points at, and is pointed at by the head of the circular list

formed by the nodes with low probabiliteis. Now the original

list is sorted again, and the two nodes with lowest probabilities

are combined as before. This process is repeated until just one

element exists in the list.

Now the list structure is complete, and we need only

traverse it properly to obtain a Huffman Code. See Program

HUFFMAN in Appendix III for the program listing and sample run.

27

VI. A LISP Interpreter

LISP lists are simple singly linked structures. Each list

element contains a pointer to a data item and a pointer to the

following list element. The last element of a list points to

the special atom NIL. The two pointers in a list element are

termed the CAR pointer and the CDR pointer. The CAR pointer

indicates the data item while the CDR pointer indicates the

successor to that list item. The CAR value of a list item may

be a pointer to an atom, or to another list.

Of the elementary LISP operations, CAR and CDR dissect a

list, giving as values the left and right pointers, respectively.

Suppose X is the list ((A),B,C,(D,E,(F)),G).

Diagrammatical^, this list may be represented as in figure 1.

Then CAR(X) = (A) and CDR(X) = (B,C,(D,E,(F)),G). These operations

may be applied successively so, for example, CAR(CDR(X)) = B and

CDR(CDR(X)) = (C,(D,E,(F)),G). The functions CAR and CDR are

undefined on atomic objects. Note that successive elements of

a list X are given by CAR(X), CAR(CDR(X)), CAR(CDR(CDR(X))),

CAR(CDR(CDR(CDR(X)))),...

To construct a list, the operator CONS is used. If X is an

atom or a list and Y is a list, then C0NS(X,Y) has as its value

a new list cell whose left pointer indicates X and whose right

28

IAI Rtq

Figure 1

29

pointer indicates Y. To form a list of one element, say A,

we have that C0NS(A,NIL) = (A). Although it would be possible to

allow the second parameter of CONS to be an atom, we shall not do

so but shall preserve the convention that items of a list are

shown by the left pointer and that the right pointer (the

second parameter) links the remaining list cells. The only

exception to this is that the special atom NIL may appear as the

second parameter.

Note that CAR(CONS(A,B)) s A and CDR(CONS(A,B)) = B. But

C0NS(CAR(X), CDR(X)) is a new cell in storage which contains the

same pointers as did X. It is a copy of X, not the cell X

itself.

The function ATOM(X) has the value *T* (representing "true")

if X is an atom and the value NIL otherwise. Function

EQ(X,Y) has the value *T* if the two atoms, X and Y, are

identical. Otherwise, its value is NIL. EQ(X,Y) is undefined if

either X or Y is not an atom.

To implement this system in PASCAL, we create a circular list

with head, to keep track of all atoms. This list is

initialized to contain nodes with name NIL and *T*. Two

types of nodes are considered: atomic and nonatomic. Atomic

nodes contain two fields - one for NAME and another for a LINK

to other elements of the atomlist. Nonatomic nodes contain two

30

fields, a HEAD and a TAIL, both pointers.

When a list containing atoms is input to the program, the

names of the atoms are inserted in the atomlist, unless they

already appear there.

TREW is the name of the pointer to the atom whose name is

"*T*" and NILL is the name of the pointer to the atom whose

name is "NIL". The Function ATOM(Ll) assumes either the value

TREW or the value NILL, depending upon whether LI is an atom or

not:

FUNCTION AT0M(L1 : PTR) : PTR;
BEGIN

IF LI +. STATE = ATOMIC THEN ATOM : = TREW
ELSE ATOM : = NILL;

END;

The value of the Function C0NS(L1, L2) is a pointer to the

cell whose head is LI and whose tail is L2:

FUNCTION CONS (LI, L2 : PTR) : PTR;
VAR

Q : PTR;
BEGIN

NEW(Q):
WITH Q + DO

BEGIN
STATE : = NONATOMIC;

HEAD : = LI;
TAIL : = L2;

END;
CONS : = Q :

END;

The Function CAR(Ll) assumes as its value a pointer to the

31

head of the list LI. If LI is an atom, the function is

undefined.

FUNCTION CARCL'l : PTR) : PTR;
BEGIN

IF ATOM(Ll) = TREW THEN ERROR(1)
ELSE CAR : = LI +. HEAD;

END;

The Function CDR(Ll) assumes as its value a pointer to the

tail of the list LI. If LI is an atom, then the function is

undefined.

FUNCTION CDR(L1 : PTR) : PTR;
BEGIN

IF ATOM(Ll) = TREW THEN ERR0R(2)
ELSE CDR : = LI +. TAIL;

END;

Function EQ(L1,L2) takes on the value TREW or NILL, depend-

upon whether the atoms LI and L2 are identical. If either

LI or L2 is not an atom then the function is undefined.

FUNCTION EQ(L1, L2 : PTR) : PTR;
BEGIN

IF (ATOM(Ll) = NILL) or (AT0M(L2) = NILL)
THEN ERROR (4)
ELSE

IF LI = L2 THEN EQ : = TREW
ELSE EQ : = NILL;

END;

Function EQUAL (LI, L2) performs exactly as does Function

EQ(L1, L2), except that LI, L2 need not be atoms, and the

general list structures, LI and L2, are tested for equality.

32

FUNCTION EQUAL (Ll, L2 : PTR) : PTR;
BEGIN

IF (ATOM(Ll) = TREW) AND (ATOM(L2) = TREW)
THEN EQUAL : = EQ(L1, L2)
ELSE

IF EQUAL (CAR(Ll), CAR(L2)) = TREW
THEN EQUAL : = EQUAL (CDR(Ll), CDR(L2))
ELSE EQUAL : = NILL;

END;

Thus, we have the basic LISP operations. Let us discover

what can be accomplished with these functions.

Consider the Function FLAT(L1, L2) which accepts the

general list Ll and creates another list containing the same

atoms in the identical order as in Ll, but with all atoms on the

same level. This flattened version of Ll is placed in front of

L2 for the final result. For example, let

X = ((A),B,(C,D,(E,F),G)). Then FLAT(X,NILL) is a pointer to

the list structure (A,B,C,D,E,F,G). With the use of the

techniques defined in this section, Function FLAT is defined with

only one program statement.

Another usage of these techniques occurs in Function

REV(L1,L2). This function reverses the top level of the

list Ll, and places it in front of L2. Suppose Ll is the

list ((A),B,C,(D,E,F),G). Then REV(L1,NILL) indicates the

list (G,(D,E,F),C,B,(A)). Also, the programming for this

function requires only one statement.

33

Function EVALUATE (LI) takes the list LI to be the Polish

notation of an arithmetic expression, and creates the corresponding

infix notation for its evaluation. This effort is greatly

simplified by the list processing techniques presented here.

Procedure PRINT (LI) performs a preorder traversal of the

list LI (also, a tree) in order to write to output the

list corresponding to the internal computer representation.

These programs illustrate the utility of general list

processing techniques, and are included in Program LISP in

Appendix IV for the reader's inspection.

34

BIBLIOGRAPHY

1. Cohen, Jacques and Carl Zuckerman. "Evalquote in Simple
FORTRAN: a tutorial on Interpreting LISP." BIT 12 (1972),
pp. 299-317.

2. Comfort, W. T. "Multiword List Items." Comm. ACM 7,6
(June 1964), pp. 357-362.

3. Elson, Mark. Data Structures. Science Research Associates,
Inc., 1975.

4. Foster, J. M. List Processing. American Elsevier
Publishing Company, Inc., 1968.

5. Huffman, David A. "A Method for the Construction of
Minimum-Redundancy Codes." Institute of Electrical and
Electronics Engineers, Inc., 1952.

6. Jensen, Kathleen and Niklaus Wirth. PASCAL User Manual and
Report. 2nd ed. Springer-Verlag, 1974.

7. Knuth, Donald E. The Art of Computer Programming, vol. 1
2nd ed. Addison-Wesley Publishing Company, 1975.

8. McCarthy, J. et al. LISP 1.5 Programmers Manual. M.I.T.
Press, 1969.

9. Page, E. S. and L. B. Wilson. Information Representation and
Manipulation in a Computer. Cambridge University Press,
1973.

10. Pratt, Terrence W. Programming Languages: Design and
Implementation. Prentice-Hall, Inc., 1975.

11. Svejgaard, Bj. "Algol Programming." BIT 6 (1966), pp. 164-
175.

12. Weizenbaum, J. "Symmetric List Processor." Comm. ACM 6,9
(Sept. 1963), pp. 524-536.

13. Wirth, Nicklaus. Algorithms + Data Structures = Programs.
Prentice-Hall, Inc., 1976.

35

Appendix I: Program TEST

36

<*$U*tWl,561 MARY CAPECE *)
PROGRAM TESTCINPUT, OUTPUT);

TYPE
PTR = f NOOE;
NODE = RECORD

VAL* INTEGER;
NAMES ALFA;
LINKI PTR;

END;

VAR
x: REAL;
FREE* PTR;
II INTEGER;
ja INTEGER;
ELI PTR;

PROCEDURE ORG;
(* INITIALIZE THE FREE LIST *)

BEGIN
FREE := NIL;

END (*ORG*);

FUNCTION ANTECPI PTR)I PTR;
<* POINTS TO THE ANTECEDENT OF P *)
(* P REMAINS UNCHANGED *)

VAR
TEMPI PTR;

BEGIN
TEMP i= p;
WHILE TEMP*.LINK <> P DO

TEMP 1= TEMP*.LINK;
ANTE := TEMP;

END (*ANTE*);

PROCEDURE RELISTCVAR Pi PTR; Q.I PTR);
(* MOVES THE STRING OF ELEMENTS,
BEGINNING WITH THE ELEMENT TO WHICH P POINTS,

37

ANO ENDING WITH THE ELEMENT TO WHICH Q POINTS ♦!
(* INSERTS IT IN THE FREE LIST *)
(* IF P THRU Q IS AN ENTIRE LIST, THEN PT- MIL ELSE PL=
Q*.LINK; *)
(* Q REMAINS UNCHANGEO *)

VAR
TEMPI PTR;
PTI« PTR;

BEGIN
IF Qr.LINK = P
THEN

PT1 «= NIL
ELSE

BEGIN
TEMP »= ANTE(P);
TEMP*.LINK « = Q^.LINK;
PT1 1= Qt.LINK;

END;
QT.LINK 8= FREE;
FREE t- P;
p *= PTI;

END (*RELIST*);

PROCEDURE ALLOCATE(VAR Pi PTR);
(♦ CREATES A VARIABLE OF TYPE PTR, POINTED TO BY P ♦)
<* UTILIZES SPACE FROM THE FREE LIST, IF THERE IS ANY

. BEGIN
IF FREE = NIL
THEN

NEWCP)
ELSE

BEGIN
P t= FREE;
FREE 1 = FREE*.LINK;

END;
END (*ALLOCATE*);

PROCEDURE INIT(VAR P: PTR);
(* ESTABLISHES A NEW CIRCULAR LIST OF ONE ELEMENT *)
(* P POINTS TO THAT ELEMENT *)

38

BEGIN
ALLOCATE(P);
pt.LiNK i= P;

END (*INIT*M

PROCEDURE INSERKVAR PI PTR) ;
(* CREATES A VARIABLE OF TYPE PTR *)
(* INSERTS IT AS THE ANTECEDENT OF THE VARIABLE TO WHICH
P POINTS *)
(* P BECOMES THE POINTER TO THIS NEWLY CREATED VARIABLE

♦)

VAR
TEMPI PTR;
PTII PTR;

BEGIN
ALLOCATE(TEMP);
PTi 1 = ANTE(P);
PTi*.LINK i= TEMP;
TEMP*.LINK := P;
p i= TEMP;

END (*INSERT*>;

FUNCTION ELEMCPJ PTR; Nt INTEGER)* PTR;
C* POINTS TO THE N-TH ELEMENT AFTER THE ELEMENT TO WHICH
P POINTS *)
(* P REMAINS UNCHANGED *)

VAR
it INTEGER: i i

BEGIN
FOR I 1= = i TO N DO

P 1 = Pf, .LINK;
ELEM 1= p;

END <*ELEM«);

FUNCTION RANDOM* REAL;
EXTERN;

39

PROCEDURE SKIPCNI INTEGER);

VAR
IS INTEGER;

BEGIN
FOR I is 1 TO N 00

WRITELN;
END (*SKIP*>;

PROCEDURE WRITEPTRCPTJ PTR) ;

BEGIN
WRITELN(EPT E, ORD(PT): 7, E NAME E, PTf.NAMEl 10,

E VAL E, PT^.VALI 2, E PTt.LINK E, ORD(PT*.LINK
) t 7);

END (*WRITEPTR*);

PROCEDURE MRITELISTCLIST: PTR) ;

VAR
ELI PTR;
II INTEGER;

BEGIN
EL »= LIST;
IF EL = NIL
THEN

WRITELN(E PT = NILE)
ELSE

BEGIN
I «= i;
REPEAT

WRITE(E E, IX 3, E E);
WRITEPTR(EL);
I 1= I ♦ i;
EL 1= EL*.LINK;

UNTIL (EL = LIST) OR (EL = NIL);
END;

END (*WRITELIST*);

40

PROCEDURE TESTELEM;

VAR
PTI PTR;
I, Nt INTEGER;

BEGIN
WRITELNCE TESTING FUNCTION ELEMEM
SKIPCI) ;
WRITECE ELI E) ;
WRITEPTR(EL);
SKIPC2);
FOR I « = 1 TO 3 00

BEGIN
N 1= TRUNC(RANDOM * 7);
PT »= ELEMCEL, N);
WRITE(E N=E, Nt 2, E EM
MRITEPTR(PT);
SKIP(i);

END;
END (*TESTELEM*>;

PROCEDURE TESTANTE;

VAR
NI INTEGER;
PTX PTR;

BEGIN
WRITELNCE TESTING FUNCTION ANTEE)
SKIP(I);
WRITECE ELJ E) ;
WRITEPTR(EL);
SKIPC2);
FOR I J= i TO 3 DO

BEGIN
N t- TRUNC(RANDOM * 7);
PT 1= ELEMCEL, N);
WRITECE N=E, N* 2, = =) ;
WRITEPTR(PT);
WRITE(E ANTEJE);
WRITEPTRCANTE(PT)) ;
SKIPCI);

END;
END C*TESTANTE*);

41

PROCEDURE TESTRELIST;

VAR
TEMPI PTR;
I, NI INTEGER;

BEGIN
WRITELNCE TESTING PROCEDURE RELISTE)
SKIPCi);
WRITELNCE EL - LISTE);
WRITELIST(EL);
SKIPCi);
WRITELNCE FREE - LISTE);
WRITELISTCFREE) ?
SKIPC3M
I i= 7;
WRITECE EL: =);
WRITEPTRCEL);
N := TRUNCCRANDOM * I);
TEMP 1= ELEMCEL, N) ;
WRITECE N=E, N: 2, = =);
WRITEPTRCTEMP);
SKIPCI) ;
RELISTCEL, TEMP);
WRITELNCE EL - LISTE)?
WRITELISTCEL);
SKIPCI);
WRITELNCE FREE - LIST E)?
WRITELISTCFREE);
SKIPC3);
I := I - CN + i);
IF I > 0 THEN

BEGIN
RELISTCEL, ANTECED);
WRITELNCE EL - LISTE);
WRITELISTCEL);
SKIPCD;
WRITELNCE FREE - LISTE);
WRITELISTCFREE);

END;
END C*TESTRELIST») ;

PROCEDURE TESTALLOCATE;

42

VAR
it INTEGER;

BEGIN
WRITELNCE TESTING PROCEDURE ALLOC ATE EM
SKIP(l);
WRITELNCE FREE - LISTE);
WRITELIST(FREE);
SKIPC3);
FOR I J= i TO 10 DO

BEGIN
ALLOCATE(EL);
WRITECE ELt E) ;
WRITELNCEPT E, ORDCELM 7) i
SKiP(i);
WRITELNCE FREE - LISTE IM
WRITELIST(FREE);
SKIPC3);

END;
END (*TESTALLOCATE*);

BEGIN C*TEST*)
FOX I t= 1 TO CLOCK MOD 750 DO

X 1= RANOOM;
ORG;
SKIPC^);
FOR I S= 1 TO 7 DO

BEGIN
IF I = 1
THEN

INIT(EL)
ELSE

INSERT(EL);
FOR J 1= 1 TO 10 00

ELf.NAMECJ] := CHR(I);
EL*.VAL «= i;

END;
WRITELNCE EL - LISTE);
WRITELISTCEL);
SKIPC<*>;
TESTELEM;
SKiPCti;
TESTANTE;
SKIPC^I;
TESTRELIST;
SKIPC**) ;

43

TESTALLOCATE;
SKIPC») ;

END (*TEST*).

44

- LIST
1 PT 2100709 NAME GGGG6GGGG6 VAL 7 PT^.LINK 1838569
2 PT 1838569 NAME FFFFFFFFFF VAL 6 PTf.LINK 1576429
3 PT 1576429 NAME EEEEEEEEEE VAL 5 PT^.LINK 1314289
4 PT 1314289 NAME OOOOOOOOOO VAL 4 PT^.LINK 1052149
5 PT 1052149 NAME CCCCCCCCCC VAL 3 PTf.LINK 790009
6 PT 790009 NAME BBBBBBBBBB VAL 2 PT*.LINK 527869
7 PT 527869 NAME AAAAAAAAAA VAL 1 PT^.LINK 2100709

TESTING FUNCTION ELEM

EL» PT 2100709 NAME GGGGGGGGGG VAL 7 PT«".LINK 1838569

N= 5 PT 790009 NAME BBBBBBBBBB VAL 2 PTf.LINK 527869

N= 4 PT 1052149 NAME CCCCCCCCCC VAL 3 PT*.LINK 790009

N= 0 PT 2100709 NAME GGGGGGGGGG VAL 7 PT^.LINK 1838569

TESTING FUNCTION ANTE

EL» PT 2100709 NAME GGGGGGGGGG VAL 7 PT*.LINK 1838569

N= 6 PT 527869 NAME AAAAAAAAAA VAL 1 PT^.LINK 2100709
ANTE:PT 790009 NAME BBBBBBBBBB VAL 2 PT*.LINK 527869

N= 3 PT 1314289 NAME DODDOODOOO VAL 4 PT^.LINK 1052149
ANTEXPT 1576429 NAME EEEEEEEEEE VAL 5 PTf.LINK 1314289

N= 6 PT 527869 NAME AAAAAAAAAA VAL 1 PT^.LINK 2100709
ANTEXPT 790009 NAME BBBBBBBBBB VAL 2 PTf.LINK 527869

45

TESTING PROCEDURE RELIST

EL - LIST
i PT 2100709 NAME GGGGGGGGGG VAL 7 PT*.LINK 1838569
2 PT 1838569 NAME FFFFFFFFFF VAL 6 PT*.LINK 1576429
3 PT 1576429 NAME EEEEEEEEEE VAL 5 PT*.LINK 1314289
4 PT 1314289 NAME DOODOOODOO VAL 4 PT*.LINK 1052149
5 PT 1052149 NAME CCCCCCCCCC VAL 3 PT*.LINK 790009
6 PT 790009 NAME BBBB8B8BBB VAL 2 PT*.LINK 527869
7 PT 527869 NAME AAAAAAAAAA VAL 1 PT*.LINK 2100709

FREE - LIST
PT = NIL

ELI PT 2100709 NAME GGGGGGGGGG VAL
N= 5 PT 790009 NAME BBBBBBBBBB VAL

7 PT*.LINK
2 PT*.LINK

1838569
527869

EL - LIST
1 PT 527869 NAME AAAAAAAAAA VAL 1 PT*.LINK 527869

FREE - LIST
1 PT 2100709 NAME GGGGGGGGGG VAL
2 PT 1838569 NAME FFFFFFFFFF VAL 6 PT*. LINK 1576429
3 PT 1576429 NAME EEEEEEEEEE VAL 5 PT*. LINK 1314289
4 PT 1314289 NAME OOOOOOOOOO VAL 4 PT*. LINK 1052149
5 PT 1052149 NAME CCCCCCCCCC VAL 3 PT*. LINK 790009
6 PT 790009 NAME BBBBBBBBBB VAL 2 PT*. ,LINK 1310 71

EL - LIST
PT = NIL

FREE - LIST
1 PT 527869 NAME AAAAAAAAAA VAL 1 PT*. .LINK 2100709
2 PT 2100709 NAME GGGGGGGGGG VAL 7 PT*, .LINK 1838569
3 PT 1838569 NAME FFFFFFFFFF VAL 6 PT*. .LINK 1576429
4 PT 1576429 NAME EEEEEEEEEE VAL 5 PT*. .LINK 1314289
5 PT 1314289 NAME DOOOOOODOO VAL 4 PT*. .LINK 1C52149
6 PT 1052149 NAME CCCCCCCCCC VAL 3 PT*, .LINK 790009
7 PT 790009 NAME BBBBBBBBBB VAL 2 PT*. .LINK 131071

46

TESTING PROCEDURE ALLOCATE

FREE
1
2
3
4
5
6
7

- LIST
PT
PT
PT
PT
PT
PT
PT

527869
2100709
1838569
1576429
1314289
1052149
790009

NAME AAAAAAAAAA VAL 1 PTf.LINK 2100709
NAME GGGGGGGGGG VAL 7 PT+.LINK 1838569
NAME FFFFFFFFFF VAL 6 PT*.LINK 1576429
NAME EEEEEEEEEE VAL 5 PT^.LINK 1314289
NAME DODDDOODOO VAL 4 PT^.LINK 1052149
NAME CCCCCCCCCC VAL 3 PT^.LINK 790009
NAME BBBBBBBBBB VAL 2 PT*.LINK 131071

ELI PT 527869

FREE - LIST
1 PT 2100709 NAME
2 PT 1838569 NAME
3 PT 1576429 NAME
4 PT 1314289 NAME
5 PT 1052149 NAME
6 PT 790009 NAME

GGGGGGGGGG VAL 7 PT^.LINK 1838569
FFFFFFFFFF VAL 6 PT^.LINK 1576429
EEEEEEEEEE VAL 5 PT*.LINK 1314289
DDDOOOOODO VAL 4 PT^.LINK 1052149
CCCCCCCCCC VAL 3 PTf.LINK 790009
BBBBBBBBBB VAL 2 PT^.LINK 131071

ELI PT 2100709

FREE - LIST
1 PT 1838569 NAME
2 PT 1576429 NAME
3 PT 1314289 NAME
4 PT 1052149 NAME
5 PT 790009 NAME

FFFFFFFFFF VAL
EEEEEEEEEE VAL
OODDODOOOO VAL
CCCCCCCCCC VAL
BBBBBBBBBB VAL

6 PT^.LINK 1576429
5 PT^.LINK 1314289
4 PTt.LINK 1052149
3 PT^.LINK 790009
2 PT1-.LINK 131071

ELI PT 1838569

FREE - LIST
1 PT 1576429 NAME
2 PT 1314289 NAME

EEEEEEEEEE VAL
OOOOOOOOOO VAL

3 PT 1052149 NAME CCCCCCCCCC VAL
4 PT 790009 NAME BBBBBBBBBB VAL

5 PTf.LINK 1314289
4 PTf.LINK 1052149
3 PT^.LINK 790009
2 PTt.LINK 131071

47

ELI PT 1576429

FREE - LIST
i PT 1314289 NAME DODOOOODOO VAL 4 PT*.LINK 1052149
2 PT 1052149 NAME CCCCCCCCCC VAL 3 PT*.LINK 790009
3 PT 790009 NAME BBBBBBBBBB VAL 2 PT^.LINK 131071

ELI PT 1314289

FREE - LIST
1 PT 1052149 NAME CCCCCCCCCC VAL 3 PTf.LINK 790009
2 PT 790009 NAME BBBBBBBBBB VAL 2 PT^.LINK 131071

ELI PT 1052149

FREE - LIST
1 PT 790009 NAME BBBBBBBBBB VAL 2 PT+.LINK 1310 71

EL* PT 790009
FREE - LIST
PT = NIL

ELI PT 2362849
FREE - LIST
PT = NIL

EL« PT 2624989
FREE - LIST
PT = NIL

ELI PT 2887129
FREE - LIST
PT = NIL

48

Appendix II: Program DEAL

49

C*$U«-[Wlt56] MARY CAPECE *)
PROGRAM OEAL(OUTPUT);

TYPE
COLOR =

(SPAOESF HEARTS, DIAMONDS, CLUBS);
PTR = ♦ NODE;
NODE = RECORD

VALI 0..1M
SUITI COLOR;
LINK: PTR;

END;

VAR
FREE: PTR;
SYMI ARRAY C11..1A1 OF CHAR;
OECKX PTR;
Ml ARRAY [l..i», COLOR] OF PTR;
xi. X2x INTEGER;

PROCEDURE ORG;
C* INITIALIZE THE FREE LIST *)

BEGIN
FREE 1 = NIL;

END (*ORG*);

FUNCTION ANTECPI PTR): PTR;
(* POINTS TO THE ANTECEDENT OF P »)
(* P REMAINS UNCHANGED *)

VAR
TEMPI PTR;

BEGIN
TEMP 1= P;
WHILE TEMP*.LINK <> P DO

TEMP := TEMP*.LINK;
ANTE 1= TEMP?

END C*ANTE*);

PROCEDURE RELEASECVAR P: PTR);

50

(♦ MOVES THE ELEMENT TO WHICH P POINTS, TO THE FREE LIST
*)

<* IF P IS AN ENTIRE LIST, THEN PJ= NIL ELSE P«= P^.LINK
*)

VAR
TEMP* PTR;
PTi« PTR;

BEGIN
IF P^.LINK = P
THEN

PTi S= NIL
ELSE

BEGIN
TEMP 1 = ANTE(P1;
TEMP*.LINK t- Pt.LINK;
PTi := Pr.LINK;

END;
PT.LINK «= FREE;
FREE 1= P;
p *= PTI;

END (*RELEASE*);

PROCEDURE RELIST (VAR P: PTR; Q: PTR);
(* MOVES THE STRING OF ELEMENTS,
BEGINNING WITH THE ELEMENT TO WHICH P POINTS,
ANO ENOING WITH THE ELEMENT TO WHICH Q POINTS *)
C* INSERTS IT IN THE FREE LIST *)
(* IF P THRU Q IS AN ENTIRE LIST, THEN PL= NIL ELSE PT
Q*.LINK; *)
C* Q REMAINS UNCHANGED *)

VAR
TEMPI PTR;
PTil PTR;

BEGIN
IF Q*.LINK = P
THEN

PTI J= NIL
ELSE

BEGIN
TEMP t= ANTE(P);
TEMP*.LINK «= Of.LINK;
PTi 1= Q*.LINK;

51

END;
Qf.LIMK 1= FREE;
FREE 1= P;
p t= PTI;

END <*RELIST»>;

PROCEDURE ALLOCATEtVAR Pt PTR>;
(♦ CREATES A VARIABLE OF TYPE PTR, POINTED TO BY P *)
<♦ UTILIZES SPACE FROM THE FREE LIST, IF THERE IS ANY *)

BEGIN
IF FREE = NIL
THEN

NEW(P)
ELSE

BEGIN
P »= FREE;
FREE 1 = FREE*.LINK;

END;
END (*ALLOCATE»);

PROCEDURE INITCVAR P: PTR);
(* ESTABLISHES A NEW CIRCULAR LIST OF ONE ELEMENT *)
C* P POINTS TO THAT ELEMENT *)

BEGIN
ALLOCATECP);
P*.LINK := P;

END (*INIT*>;

PROCEDURE INSERT(VAR P: PTR);
(* CREATES A VARIABLE OF TYPE PTR *)
C* INSERTS IT AS THE ANTECEDENT OF THE VARIABLE TO WHICH
P POINTS *)
(* P BECOMES THE POINTER TO THIS NEWLY CREATED VARIABLE

*)

VAR
TEMPI PTR;
PTII PTR;

BEGIN

52

ALLOCATE(TEMP);
PTi «= ANTE(P);
PTi^.LINK «= TEMP;
TEMP^.LINK « = P;
p t= TEMP;

END (*INSERT*>;

PROCEDURE MOVCVAR P, QJ PTRI ;
(* MOVES THE ELEMENT TO WHICH P POINTS, SUCH THAT IT IS
THE ANTECEDENT
OF THE ELEMENT TO WHICH Q POINTS »)
(* IF P IS AN ENTIRE LIST THEN P:=NIL ELSE P«=P*.LINK *)
(* 0 NOW POINTS TO WHAT WAS ORIGINALLY POINTED TO BY P

*)

VAR
PTi, PT2t PTR;
TEMPI PTR;

BEGIN
IF Pf.LINK = P
THEN

TEMP 1= NIL
ELSE

BEGIN
PTi «= ANTECP);
PTi*.LINK Z- Pt.LINK;
TEMP t= Pr.LINK;

END;
PT2 X= ANTE(Q);
PT2*.LINK « = P;
P*.LINK »= Q;
Q t= p;
p := TEMP;

END (*MOV*);

PROCEOURE INCORCVAR PI PTR; Q: PTR; VAR RJ PTR);
(* MOVES THE STRING OF ELEMENTS, BEGINNING WITH THE ELEM
ENT TO WHICH
P POINTS, AND ENDING WITH THE ELEMENT TO WHICH Q POINTS

*)
(* INSERTS IT TO PRECEDE THE ELEMENT TO WHICH R POINTS

*)
(♦ IF P THRU Q IS AN ENTIRE LIST, THEN P»=NIL ELSE Pl = Q*

53

.LINK ♦)
(* Q REMAINS UNCHANGED *)
<* R NOW POINTS TO WHAT WAS ORIGINALLY POINTEO TO BY P

♦)

VAR
PTit PT2i PTR;
TEMP: PTR;

BEGIN
IF GK.LINK - P
THEN

TEMP 1= NIL
ELSE

BEGIN
PTi t= ANTE(P);
PTii'.LINK 1= Qr.LINK;
TEMP »= Q*.LINK;

END;
PT2 * = ANTE(R);
PT2*.LINK « = P;
Q/f.LINK 1 = R;
R i= P;
p := TEMP;

END <*INCOR*);

FUNCTION ELEM(PJ PTR; N: INTEGER)* PTR;
(* POINTS TO THE N-TH ELEMENT AFTER THE ELEMENT TO WHICH
P POINTS *)
(* P REMAINS UNCHANGED *)

VAR
II INTEGER;

BEGIN
FOR I := i TO N DO

p * = P«-.LINK;
ELEM «= P;

END <*ELEM*);

FUNCTION RANDOMI REAL;
EXTERN;

54

PROCEDURE WRITELISTCLISTI PTR) ;

VAR
PTii PTR;
IS INTEGER;

BEGIN
PTI t= LIST;
I t= 1;
REPEAT

WRITELNCE =, IJ 2, PT1*.VAL, ORO{PTI*.SUIT));
i i= i + i;
PTI := PTI*.LINK;

UNTIL PTI = LIST;
END (*WRITELIST*);

PROCEOURE INITIALIZE;

VAR
it INTEGER;
x: REAL;

BEGIN
FOR I 1= I TO CLOCK MOO 750 DO

x t= RANOOM;
ORG;
SYM[iij := =J=;
SYMC12J » = =Q=;
SYMC13] »= =K=;
SYM£1<*1 «= EAE;

END ('INITIALIZE*);

PROCEDURE GENDECK;

VAR
n INTEGER;
J» COLOR;

BEGIN
INIT(DECK);
FOR J := SPADES TO CLUBS DO

FOR I 1= 2 TO Ik DO
BEGIN

55

IF CJ <> SPAOES) OR CI <> 2) THEN
INSERT(DECK);

DECK*.VAL := i;
DECK*.SUIT a= j;

END;
END C*GENDECK*>;

PROCEDURE STARTLISTS;

VAR
is INTEGER;
JJ COLOR;

BEGIN
FOR I J= i TO 4 00

F0* J * = SPADES TO CLUBS DO
BEGIN

INITCMCI, JD;
M[i, j] I-.VAL : = o;

END;
END C*STARTLISTS*);

PROCEDURE OEALOECK;

VAR
it INTEGER;
P* PTR;

BEGIN
FOR I » = 52 DOWNTO 1 DO

BEGIN
DECK 1= ELEM(DECK, TRUNC(RANDOM * I));
P 1= MC (I MOD <♦> «■ It DECK*.SUIT];
REPEAT

P *= P*.LINK;
UNTIL P*.
VAL < DECK*.VAL;
MOVCDECK, P) ;

END;
END (*DEALDECK*);

PROCEDURE PRINT;

56

VAR
ST, NAME! ALFA?
v, is INTEGER;
jt COLOR;
pt PTR;

BEGIN
FOR I t= i TO <t 00

BEGIN
CASE I OF

IS
NAME S= ENORTH

2*
NAME S= EEAST

3X
NAME S= ESOUTH

NAME 1= EWEST
END;
WRITELN;
WRITELN(E E» NAME);
FOR J »= SPAOES TO CLUBS 00

BEGIN
CASE J OF

SPAOES:
ST »= ESPAOES

HEARTS*
ST S= EHEARTS

OIAMONOS:
ST S= EDIAMONOS E

CLUBS:
ST S= ECLUBS

ENO;
WRITE(E E, ST);
p «= MII, j] ».LINK;
V S= Pt.VAL;
WHILE V > 0 DO

BEGIN
IF V < ii
THEN

WRITECE E, V» 3)
ELSE

WRITE(E E, SYMCVH 3);
IF OECK = NIL
THEN

BEGIN
INIT(DECK);

57

END

BEGIN (*OEAL*l
INITIALIZE;
GENDECK;
STARTLISTS;
WRITELN;
WRITELN;
WRITELN;
WRITELN;
DEALDECK;
WRITELN;
PRINT;

ENO <*DEAL*>.

DECKf.VAL 1= v;
DECK*.SUIT I: = J;
^ELEASE(P);

ENO
ELSE

MOVCP. DECK);
V «= P*.VAL;

END;
WRITELN;

ENO;
END;

(♦PRINT *>;

58

V

NORTH
SPADES A 8 7 3
HEARTS Q 9 3
(DIAMONDS K Q <» 3
CLUBS K J

EAST
SPADES Q 10 6
HEARTS K
DIAMONDS J 8 7 6
CLUBS A Q 7 6

SOUT H
SPAOES t* 2
HEARTS A 10 8 7
DIAMONDS A 10 9 2
CLUBS 5 2

WEST
SPADES K J 9 5
HEARTS J 5 *t 2
DIAMONDS
CLUBS 10 9 8 t*

59

Appendix III: Program HUFFMAN

60

C*$U+CWif561 MARY CAPECE *)
PROGRAM HUFFMANdNPUT, OUTPUT);

TYPE
PTR = ♦ NOOE;
NODE = RECORO

LINK: PTR;
CODEI INTEGER;
FREQI REAL;
CASE CONTINUE* BOOLEAN OF

TRUE« (MORE: PTR);
FALSE* (SYMBOL: ALFA);

ENO;

VAR
FREE: PTR;
FIRSTREAD: BOOLEAN;
HEAD: PTR;
P, Q, R: PTR;

PROCEDURE WRITELIST(LIST: PTR);

VAR
P: PTR;

BEGIN
P := LIST*.LINK;
REPEAT

WRITE(= P:=, ORD(P), ECODEE, PF.CODE: 3, EFREQ:
, P^.FREQ);

CASE P*.CONTINUE OF
TRUE:

WRITE(= MOREE, ORD(Pt.MORE));
FALSE:

WRITE(= SYMBOLE, PI>.SYMBOL);
END;
WRITE(= P*.LINKE, ORD(P*.LINK));
WRITELN;
P := P*.LINK;

UNTIL P = LIST;
WRITELN;

END (*WRITELIST*);

PROCEDURE ORG;

61

<* INITIALIZE THE FREE LIST ♦)

BEGIN
FREE 1= NIL;

END C*ORG») ;

FUNCTION ANTECP* PTR)t PTR;
<* POINTS TO THE ANTECEOENT OF P *)
(* P REMAINS UNCHANGED *)

VAR
TEMPJ PTR;

BEGIN
TEMP »= p;
WHILE TEMP*.LINK <> P 00

TEMP J= TEMP*.LINK;
ANTE 1= TEMP;

END (*ANTE*M

PROCEDURE RELEASE<VAR PJ PTR);
(♦ MOVES THE ELEMENT TO WHICH P POINTS, TO THE FREE LIST

*)
I* IF P IS AN ENTIRE LIST, THEN Pl= NIL ELSE Pl= P*.LINK

*)

VAR
TEMPI PTR;
PTIJ PTR;

BEGIN
IF P*.LINK = P
THEN

PT1 1= NIL
ELSE

BEGIN
TEMP J= ANTE(P);
TEMP*.LINK := P*.LINK;
PTI t= P*.LINK;

END;
P*.LINK «= FREE;
FREE « = P;
p i= PTI;

END ('RELEASE*);

62

PROCEDURE RELISTCVAR PI PTR; Q« PTR)?
(♦ MOVES THE STRING OF ELEMENTS,
BEGINNING WITH THE ELEMENT TO WHICH P POINTS,
ANO ENDING WITH THE ELEMENT TO WHICH Q POINTS *»
(* INSERTS IT IN THE FREE LIST *)
(* IF P THRU Q IS AN ENTIRE LIST, THEN Pl= NIL ELSE Pl=
Q.*.LINK; *)
(* Q REMAINS UNCHANGED ♦)

VAR
TEMPI PTR;
PTIJ PTR;

BEGIN
IF Q*.LINK = P
THEN

PT1 1= NIL
ELSE

BEGIN
TEMP := ANTECP);
TEMP*.LINK t- Q1-.LINK;
PTI i= Q*.LINK;

END;
Qf.LINK := FREE;
FREE ts P;
p i= PTI;

END (*RELIST*>;

PROCEDURE ALLOCATE<VAR Pi ' PTR) ;
(* CREATES A VARIABLE OF TYPE PTR, POINTED TO BY P *)
C* UTILIZES SPACE FROM THE FREE LIST, IF THERE IS ANY *)

BEGIN
IF FREE = NIL
THEN

NEW(P)
ELSE

BEGIN
P 1= FREE;
FREE 1 = FREE*.LINK;

END;
END (*ALLOCATE*);

63

PROCEDURE INITCVAR PI PTR);
i* ESTABLISHES A NEW CIRCULAR LIST OF ONE ELEMENT »)
{* P POINTS TO THAT ELEMENT *)

BEGIN
ALLOCATE(P);
Pt.LINK I* P;

END C*INIT*>;

PROCEDURE INSERTWAR P: PTR);
(* CREATES A VARIABLE OF TYPE PTR *)
(* INSERTS IT AS THE ANTECEDENT OF THE VARIABLE TO WHICH
P POINTS *)
(* P BECOMES THE PCINTER TO THIS NEWLY CREATED VARIABLE

♦)

VAR
TEMPI PTR?
PT1I PTR;

BEGIN
ALLOCATE(TEMP);
PT1 1= ANTE(P);
PTH-.LINK := TEMP;
TEMP*.LINK 1 = P;
p := TEMP;

END <*INSERT*);

PROCEDURE MOV(VAR P, Q: PTR);
(* MOVES THE ELEMENT TO WHICH P POINTS, SUCH THAT IT IS
THE ANTECEDENT
OF THE ELEMENT TO WHICH Q POINTS *)
(* IF P IS AN ENTIRE LIST THEN Pl=NIL ELSE PI=P*.LINK *)
(* Q NOW POINTS TO WHAT WAS ORIGINALLY POINTED TO BY P

*)

VAR
PTII PTR;
PT2I PTR;
TEMPI PTR;

BEGIN

64

IF Pf.LINK a P
THEN

TEMP t- NIL
ELSE

BEGIN
PTi 1 = ANTE(P);
PTi*.LINK 1= P*.LINK;
TEMP 1= Pf.LINK;

END;
PT2 1= ANTE(Q);
PT2*.LINK »= P;
Pf.LINK «= Q;
Q «= p;
p i= TEMP;

ENO (*MOV*>;

PROCEDURE INCORCVAR PI PTR; Q: PTR; VAR RJ PTRI;
(♦ MOVES THE STRING OF ELEMENTS, BEGINNING WITH THE ELEM
ENT TO WHICH
P POINTS, ANO ENDING WITH THE ELEMENT TO WHICH Q POINTS

*)
(* INSERTS IT TO PRECEDE THE ELEMENT TO WHICH R POINTS

*)
(* IF P THRU Q IS AN ENTIRE LIST, THEN Pl=NIL ELSE P»=Q*
.LINK *)
C* Q REMAINS UNCHANGED *)
C* R NOW POINTS TO WHAT WAS ORIGINALLY POINTED TO BY P

*)

VAR
PTU PTR;
PT2I PTR;
TEMPI PTR;

BEGIN
IF Qf.LINK = P
THEN

TEMP 1= NIL
ELSE

BEGIN
PTi t= ANTE(P);
PTi*.LINK «= Qt.LINK;
TEMP t= Q^.LINK;

END;
PT2 1= ANTE(R);
PT2*.LINK t= P;

65

Qf.LINK 1= R?
R «= P;
p i= TEMP;

END <*INCOR*>;

FUNCTION ELEM(Pt PTR; Nt INTEGER)! PTR;
«* POINTS TO THE N-TH ELEMENT AFTER THE ELEMENT TO WHICH
P POINTS *)
C* P REMAINS UNCHANGED *)

VAR
II INTEGER;

BEGIN
FOR I J= 1 TO N DO

P 1= P^.LINK;
ELEM t~ P;

END <*ELEM*M

PROCEDURE READLINE;

VAR
CHS CHAR;
NAME! ALFA;

PROCEDURE NEXTCH;

BEGIN
IF FIRSTREAD
THEN

FIRSTREAD «= FALSE
ELSE

GET (INPUT);
CH 1= INPUT*;

END <*NEXTCH*);

PROCEDURE GETNONBLANK;

BEGIN
NEXTCH;

66

WHILE (CH = = =) ANO (NOT EOLN(INPUD) 00
NEXTCH;

END ('GETNONBLANK*);

PROCEDURE GETALFA(VAR NAMES ALFA);

VAR
it INTEGER;

BEGIN
FOR I 1= 1 TO 10 DO

BEGIN
NAMcd] := CH;
NEXTCH;

END;
END (*GETALFA*>;

BEGIN (*REAOLINE*)
P 1= HEAD;
GETNONBLANK;
WHILE NOT EOLN(INPUT) DO

BEGIN
INSERT(P) ;
P*.CONTINUE J= FALSE;
GETALFACNAME);
P*.SYMBOL := NAME;
READ(P*.FREQ);
WRITELN(= E, Pt.SYM80L, P*.FREQ);
FIRSTREAD t= TRUE;
GETNONBLANK;

ENO;
END (*READLINE*);

PROCEDURE SORT;

VAR
vi REAL;
LAST, NEXT: PTR;

BEGIN
LAST * = HEAD*.LINK;
NEXT 1= LAST*.LINK;

67

WHILE NEXT <> HEAO 00
IF LAST+.FREQ < NEXT*.FREQ
THEN

BEGIN
LAST i= NEXT;
NEXT 1= LAST*.LINK;

ENO
ELSE

BEGIN
P 1= HEAD;
v «= NEXT*.FREQ;
REPEAT

P i= P*.LINK;
UNTIL P*.
FREQ > v;
MOV (NEXT, P);

ENO;
ENO C»SORT*) ;

PROCEDURE COMBINE;

VAR
ii INTEGER;
Ft REAL;
TEMP: PTR;

BEGIN
REPEAT

SORT;
P i= HEAD;
F i= o;
FOR I 1= 0 TO 1 DO

BEGIN
P 1= Pf.LINK;
Pt.COOE := i;
F t= F ♦ P*.FREQ;

END;
INIT(Q);
TEMP J = Q;
R «= HEAD*.LINK;
INCORCR, P, Q);
INSERTCR);
R*.CONTINUE » = TRUE;
Rf.MORE 1= TEMP;
Rf.FREQ X= F;
TEMP*.CONTINUE S = TRUE;

68

TEMP*.MORE 1= R;
UNTIL HEAO+.
LINK*.LINK - HEAD;

END (*COMBINE*»;

PROCEDURE ANSWER;

BEGIN
WHILE HEAD*.LINK <> HEAD DO

BEGIN
WRITELNCE =) ;
Q X- HEAD*.LINK;
REPEAT

p i= Q*.MORE;
Q i= P*.LINK;
WRITE(Q*.COOEJ 2);

UNTIL NOT Q*.
CONTINUE;
WRITE<=J =);
WRITE(Q*.SYMBOL) ;
WRITELN;
RELEASE(Q);
WHILE (P = P*.LINK) AND (P <> HEAD) DO

BEGIN
Q 1= P*.MORE;
RELEASE(P);
p «= CK.LINK;
RELEASE(Q);

END;
END;

END (*ANSWER*);

BEGIN <*HUFFMAN*)
WRITELN;
WRITELN;
ORG;
FIRSTREAD X- TRUE;
INIT(HEAD);
WHILE NOT EOF (INPUT) DO

REAOLINE;
COMBINE;
ANSWER;
WRITELN;
WRITELN;

69

ENO (♦HUFFMAN*),

70

i
2
3
4
5
6
7
8
9
10
11
12
13

2.0000
1.8000
1.0000
1.0000
1.0000
6.0000
6.0000
4.0000
4.0000
4.0000
4.0000
3.0000
1.0000

00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000

000QE-
OOOOE-
OQOQE-
OOOOE-
OOQOE-
OQQQE-
OOOOE-
OOOQE-
OOOQt-
OOOOE-
OCOOE-
OOOOE-
OOOOE-

001
001
001
001
001
002
002
002
002
002
002
002
002

0 OS 1

0 1 01 3

0 1 IS 4

lOOt 5

1 0 1 OS 6

1 0 1 1 0 OS

1 0 1 1 0 IS

1 0 1 1 II 8

1 1 OS 2

1 1 1 0 OS 11

1 1 1 0 IS 10

1 1 1 1 OS 9

1 1 1 1 IS 7

13

12

71

Appendix IV: Program LISP

72

(♦$U*IWi,561 MARY CAPECE ♦)
PROGRAM LISPCINPUT, OUTPUT);

TYPE
SYMBOL =

(ATOMSYM, LPAREN, RPAREN, COMMA, DOLM
KIND =

(ATOMIC, NONATOMIC);
PTR = ♦ NOOE;
NODE = RECORD

CASE STATE! KIND OF
ATOMIC! (NAME! ALFA;

LINK! PTR);
NONATOMIC! (HEAD, TAIL! PTR);

END;

VAR
Lit L2! PTR;
NILL, TREW, ATOMLIST! PTR;
SYM! SYMBOL;
IDENT! ALFA;
XX, YY, zzi PTR;

PROCEDURE ERROR(Nl INTEGER);

BEGIN
WRITELN;
WRITE(E =) ;
CASE N OF

II
HRITE(E*** CAR OF ATOM IS UNDEFINED ***=);

2!
WRITE(=**» CDR OF ATOM IS UNDEFINED ***=);

3!
WRITE(

=*** INPUT TO PROCEDURE WRITEATOM MUST BE ATOMIC ***!
);

<♦«
HRITE(E»** EQ OEFINED ONLY ON,TWO ATOMS ***i

);
5!

WRITE(E«* ERROR IN INPUT *»* =);
6!

WRITE(E*** ERROR IN LIST **♦=);
END;
WRITELN;

73

HALT;
END (♦ERROR*) ;

FUNCTION ATOMCLU PTR) t PTR;

BEGIN
IF LI*.STATE = ATOMIC
THEN

ATOM 8= TREW
ELSE

ATOM := NILL;
END (*ATOM*>;

FUNCTION CONSCLi, L2t PTR)J PTR;

VAR
QI PTR;

BEGIN
NEW(Q);
WITH Q* 00

BEGIN
STATE f= NONATOMIC;
HEAD J= Li?
TAIL t= L2;

END;
CONS i= Q;

END (*CONS*);

FUNCTION CAR(Lil PTR)« PTR;

BEGIN
IF ATOM(Ll) = TREW
THEN

ERROR(i)
ELSE

CAR J= Lit.HEAD;

END C*CAR*);

FUNCTION C0RCL1I PTR)« PTR;

74

BEGIN
IF ATOM(Li) = TREW
THEN

ERROR(2)
ELSE

COR *= Li*.TAIL;
ENO (*COR*);

FUNCTION EQ (Li, L2: PTR) » PTR;

BEGIN
IF (ATOM(Ll) = NILL) OR (AT0M(L2) = NILL)
THEN

ERRORC*)
ELSE

IF Li = L2
THEN

EQ 1= TREW
ELSE

EQ »= NILL;
END (*EQ*M

FUNCTION EQUAL(Li, L2: PTR): PTR;

BEGIN
IF (ATOM(Li) = TREW) ANO (AT0M(L2) = TREW)
THEN

EQUAL 1= EQ (Li, L2)
ELSE

IF EQUAL(CAR(Li), CAR(L2)) = TREW
THEN

EQUAL »= EQUAL(CDR(Li), C0R(L2))
ELSE

EQUAL t= NILL;
END (*EQUAL*);

PROCEDURE ENTER(WRDI ALFA; VAR SI PTR);

VAR
Ql PTR;

75

BEGIN
ATOMLIST*.NAME 1= WRD;
Q i= ATOMLIST*.LINK;
WHILE Q*.NAME <> WRD DO

Q 1= Q*.LINK;
IF Q= ATOM.IST THEN

BEGIN
NEW(ATOMLIST);
ATOMLIST*.STATE J= ATOMIC;
ATOMLIST*.LINK 8= Q*.LINK;
Q*.LINK 1= ATOMLIST;

END;
s i= o.;

END <*ENTER») ;

PROCEDURE GETSYM;

VAR
ii INTEGER;

BEGIN
WHILE INPUT* = E E DO

GET(INPUT);
IF INPUT* = E<=
THEN

BEGIN
SYM := LPAREN;
GETCINPUT);

END
ELSE

IF INPUT* IN [EAE .. EZEl
THEN

BEGIN
SYM J= ATOMSYM;

I «= o;
REPEAT

I i= I + i;
IF I <= 10 THEN

IDENTCU t- INPUT*;
GET(INPUT);

UNTIL NOT (INPUT* IN CEAE .. E9E1)
FOR I 1= I * i TO 10 DO

IOENTCI) := E E;
END

ELSE
IF INPUT* = =,=

76

THEN
BEGIN

SYM t= COMMA;
GET(INPUT);

ENO
ELSE

IF INPUT* = =)=
THEN

BEGIN
SYM «= RPAREN;
GET(INPUT);

ENO
ELSE

IF INPUT* = =$=
THEN

BEGIN
SYM i= OOL;
GET(INPUT);

ENO
ELSE

ERROR<5);
END (*GETSYM*>;

PROCEDURE GETLISTCVAR LI PTR);

VAR
PTSTACKX ARRAY C1..10Q] OF PTR;
pPSTACK: ARRAY C1..100J OF SYMBOL;
PTTOP, OPTOP1 INTEGER;

BEGIN
GETSYM;
PTTOP i= i;
OPTOP := I;
WHILE SYM <> DOL DO

BEGIN
IF SYM = ATOMSYM
THEN

BEGIN
PTTOP := PTTOP ♦ i;
ENTERCIOENT, PTSTACKCPTTOP]);
GETSYM;

END
ELSE

IF SYM = LPAREN
THEN

77

BEGIN
OPTOP 1= OPTOP ♦ 1;
OPSTACKCOPTOPJ «= LPAREN;
GETSYM;

END
ELSE

IF SYM = COMMA
THEN

BEGIN
OPTOP t= OPTOP «■ i;
OPSTACKCOPTOP] 1= COMMA;
GETSYM;

END
ELSE

IF SYM = RPAREN
THEN

BEGIN
PTTOP := PTTOP + 1;
ENTER(ENIL =, PTSTACKt

PTTOP));
PTSTACKCPTTOP - 1] := CONS(

PTSTACKCPTTOP - 13,
PTSTACKCPTTOP!);

PTTOP := PTTOP - i;
WHILE OPSTACKCOPTOPJ = COMMA

00
BEGIN

PTSTACKCPTTOP - 11 :=
CONSIPTSTACKCPTTOP -
11, PTSTACKCPTTOP));

PTTOP := PTTOP - i;
OPTOP t= OPTOP - i;

ENO;
IF OPSTACKCOPTOPJ <> LPAREN
THEN

ERR0RC6)
ELSE

BEGIN
OPTOP J= OPTOP - i;
GETSYM

ENO
END;

END;
L «= PTSTACKCPTTOP];

END (*6ETLIST*);

78

PROCEDURE PRINTCLH PTR) ;

PROCEDURE WRITEATOMCLil PTR);

VAR
WRDS ALFA;
II INTEGER;

BEGIN
IF ATOM(Li) = NILL
THEN

ERROR(3)
ELSE

BEGIN
WRITE(= =>;
HRO X = Lit.NAME;
I t= 1;
REPEAT

HRITE(HRO[I]);
I is I ♦ i;

UNTIL (I > 10) OR (WRDCIJ = = =);
WRITE(E E);

END;
END (*WRITEATOM*);

PROCEDURE TRAVERSE(Llt PTR);

BEGIN
IF LI = NILL
THEN

WRITE(E)E)
ELSE

WITH Lit- DO
BEGIN

IF ATOM(HEAO) = NILL
THEN

BEGIN
WRITE(E (EM
TRAVERSE(HEAD);

END
ELSE

WRITEATOM(HEAD);
TRAVERSE(TAIL) ;

END;

79

END ('TRAVERSE*);

BEGIN (*PRINT*)
WRITELN;
IF ATOM(Ll) = TREW
THEN

WRITEATOM(Ll)
ELSE

BEGIN
WRITE(= c=>;
TRAVERSE(Ll) :

END;
WRITELN;
WRITELN;

END (*PRINT*I ;

PROCEDURE INITIALIZEATOMLIST;

BEGIN
NEW(ATOMLIST) ;
NEW(NILL);
NEW(TREW);
ATOMLIST*.STATE J= ATOMIC;
NILL*.STATE := ATOMIC;
TREW*.STATE J= ATOMIC;
ATOMLIST*.LINK « = NILL;
NILL*.LINK I= TREW;
TREW*.LINK *= ATOMLIST;
NILL*.NAME := ENIL =;
TREW*.NAME 1= E*T* =;

END (*INITIALIZEATOMLIST*);

FUNCTION FLATCL1, L2: PTR): PTR;

BEGIN
IF LI = NILL
THEN

FLAT 1= L2
ELSE

IF ATOM (LI) = TREW
THEN

FLAT 1= CONS(Li, L2)

80

ELSE
FLAT «= FLAT(CAR(Li>, FLAT(CDR(LI)t L2)M

END f*FLAT*i;

FUNCTION REV(L1, L2X PTR) J PTR;

BEGIN
IF LI = NILL
THEN

REV t- L2
ELSE

REV 1= REVCCOR(Li), CONS(CAR(Li), L2)>;
END (*REV*);

FUNCTION EVALUATE(Lil PTR): PTR;

VAR
M, N: PTR;

BEGIN
IF ATOM(Li) = TREW
THEN

EVALUATE := LI
ELSE

BEGIN
M := CAR(CAR(CDR(L1))) ;
N 1 = CAR(CDR(CAR(CDR (LI)))) ;
EVALUATE := CONS(EVALUATE(M), CONS(CAR(LI),

CONSCEVALUATE(N), NILL)));
END;

END {'EVALUATE*);

BEGIN (»LISP*)
INITIALIZEATOMLIST;
WRITELN;
GETLIST(XX) ;
WRITE(= XXE) ;
PRINT(xx);
GETLIST(YY) ;
WRITE(E YYE);
PRINT(YY);
WRITE(E CAR(YY)E);

81

PRI
HRI
PRI
HRI
PRI
HRI
PRI
HRI
PRI
HRI
PRI
HRI
PRI
HRI
PRI
HRI
PRI
HRI
PRI
GET
HRI
PRI
HRI
PRI

END C*

NTCCARCY
TECE CDR
NT(COR(Y
TECE ATO
NTCATOMC
TECE ATO
NTCATOMC
TECS EGK
NTCEQ CN
TECE EQU
NTCEQUAL
TECE CON
NTCCONSC
TECE CON
NTCCONSC
TECS FLA
NTCFLATC
TECS REV
NTCREVCY
LISTCZZ)
TEC= ZZE
NTCZZ) ;
TECE EVA
NTCEVALU
LISP*).

Yn;
CYY)=>;
Y»>;
MCXX)E) ;
xx));
MCYY)E) ;
YY)) ;
NILL,NILL)E)
ILL» NILD);
ALCXX,YY)E);
CXX, YY));
SCXX,YY)=);
XX, YY));
SCYY,XX)E) ;
YY, XX));
TCYY,NILL)
YY, NILD)
CYY,NILL)S
Y, NILD);

E)

);

)

LUATECZZ)E);
ATECZZ));

82

XX
C C A I B I

YY
((E) C F (G H)) I)

CAR(YY)
(E)

COR(YY)
((F (G H)) I)

ATOMCXX)
NIL

ATOM(YY)
NIL

EQ(NILL,NILL)
T

EQUAL(XX,YY)
NIL

CONS(XX,YY)
(((A)B)(E)(F (G H)) I)

CONSCYY,XX)
(((E) (F (G H))I)(A)B)

FLAT(YY,NILL)
(E F G H I)

REV(YY,NILL)
(I (F (G H)) (E))

ZZ
(DIV ((PLUS (A (MINUS (B C))))

(TIMES ((DIV (0 E)) F))))

EVALUATE(ZZ)
((A PLUS (B MINUS C)) DIV

(C 0 OIV E) TIMES F))

83

XX
< (A I B)

YY
{ (E) (F (G H >) I)

CAR(YY)
(E)

CDR(YY)
< (F (G H)) I)

ATOM(XX)
NIL

ATOM(YY)
NIL

EQCNILL,NILL)
T

EQUAL(XX,YY)
NIL

CONS(XX,YY)
(((A)B)(E)(F (G H)) I)

CONS(YY,XX)
(((E) (F (G H))I)(A)B)

FLAT(YY,NILL)
C E F G H I)

REV<YY,NILL)
(I (F (G H)) (E))

ZZ
(DIV ((PLUS (A (MINUS (B C))))

(TIMES ((DIV (0 E)) F))))

EVALUATE(ZZ)
(C A PLUS C B MINUS C)) DIV

C (D DIV E) TIMES F))

83

VITA

Mary J. Capece, daughter of Mr. and Mrs. David S. Capece,

was born in Philadelphia, Pennsylvania on February 10, 1954. She

attended Chestnut Hill College in Philadelphia and graduated

Magna Cum Laude, receiving the degree of Bachelor of Science in

Mathematics. Ms. Capece is a member of Delta Epsilon Sigma

National Scholastic Honor Society. In September 1975, she

began working toward the degree of Master of Science in Computer

Science at Lehfgh University in Bethlehem, Pennsylvania. During

that time, Ms. Capece held a teaching assistantship in the

Department of Mathematics at Lehigh University.

84

LEHIGH UNIVERSITY
BETHLEHEM. PENNSYLVANIA ISOIS

DEPARTMENT OF MATHEMATICS
CHRISTMAS-SAUCON HALL #14

May 6, 1977

Dean Robert D. Stout
Graduate School
Whitaker Laboratory

Dear Dean Stout:

The computer programs included in the master's thesis of
Mary Capece do not have any commercial value nor are there
any copyright problems. The programs have purely educational
content.

Yours, truly,

/ Samuel L. Gulden
Professor of Mathematics

■t/^-

SL:gb

	Lehigh University
	Lehigh Preserve
	1-1-1977

	Fundamentals of list structures and a pascal implementation of basic list processing techniques.
	Mary J. Capece
	Recommended Citation

	tmp.1451580486.pdf.DuYIx

