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ABSTRACT

The stress rupture beﬁavior of a Ni/NlBAl-Niij
(Ni-21.5 wte % Nb=-2.5 wt. % Al) directionally solidified
eutectic composite grown at 5 cm/hr was investigated in
the temperature range 480 to 950°C.

The microstructure of the alligned eutectlic composite
consisted of Ni (¥) lamellae strengthened by NisAl (¥')
precipitates and reinforced by N13Nb (S) lamellae.,

An attempt was made to relate the deformation and
fracture mechanisms which occurred during stress
rupture testing to the three deformation and fracture
mechanisms ldentified by Bertorello, et al in their
investigation of the hot tensile propertiles.

Under short time 550°C stress rupture (less than
100 hours), the eutectic composite deforms by slip in
the ¥ phase, by twinning in the S phase on §211& type
planes and by cracking at the 8tw1n- gmafrix inter-
face. Fallure was caused by the link up of these
cracks and by eutectic grain boundary delamination

limited to a region near the fracture surface. Grain

boundary delamination was observed to be the result of
premature rupture of the brittle Klfilm at the eutectic
grain boundaries which caused transverse cracks to be
deflected. This Region I deformation and fracture
behavior in stress rupture is similar to Reglon I tenslile

deformation and fracture behavior which was found to
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operate in the *emperature range 20 to uL00°cC.

At intermediate exposure time at 550°C. adiditional
grain boundarv Aelamination occurred away from the
fracture surface. Deformation and fracture behavior in
this Region Il was also observed under tensile con-
ditions from 400°C to 690°C.

Under long time exposure at 550°C cooperative
twinning of the ¥ and § phases occurred, resulting in
the appearance of two variants of deformation bands.
Bertorello, et al have also observed the same deformation
behavior during tensile testing between 690°C and 926°C. .

Minimum creep rates were measured in the tempera-
ture range 480 to 580°C and yielded a value of 380
k joules/mole for the activation energy of the creep
process. The significance of this result was dilscussed
in terms of known activation energy data. It was
proposed that the grain boundary delamination process
might be rate-controlling during steady-state creep,
and therefore would contribute to the creep of the
eutectlc composite.

Unlike *he % -5 system, at 750°C the stress rupture
behavior of K/‘CS eutectic composite was characterized
by a transition from Region I behavior to a void
nucleation and voild coalescence process.

The 850°C stress rupture behavior and the long
*ime 950°C s*tress rupture behavior were characterized

by void nucleation and void coalescence, with the

2



highest creep ductllity belng related to the highest

amount of voids produced during composite deformation.
A longitudinal section of a short time 950°C

stress rupture specimen exhibited features character-

istic of Reglon II tensile behavior.



CHAPTER 1

INTRODUCTION

l.1 Introduction to High Temperature Materials.

The development of Ni and Co-base superalloys has
played an important role in the increased performance
of the alrcraft gas turbine (1). These materials
derive their high temperature capability by several
strengthening mechanisms: solid solution hardening by
aidition of Ta, Nb, Mo, W, Cr for example; dlispersion
strengthening by carbldes of these elements; and age
hardening by precipltation of ordered intermetallic
phases such as WCKTQ or S .

Conventional superalloy turbine blades have
equlaxed grain structure. At high temperatures, the
grain boundarles that are normal to the major stress
axis are preferential sites for crack nucleation and
propagation whilch results in the fallure of the part.
Directional solidification of superalloys provided a
means to eliminate these grain boundaries. Indeed,
nickel based alloys containing columnar grains and
monocrystals were successfully produced by this novel
process and were found to have longer creep rupture
life, higher creep ductility and better thermal shock
reslstance than thelr conventional counterparts (2-5).

One crucial problem of conventidnal and directionally
solidified superalloys 1s the resolutioning of the
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strengthenine phases upon exposure at high temperatures.
From the standpoint of the engline Adesigner, engine per-
formance can be increased by increasing turbine inlet
temperature. The phase stability problem concomitant to
a zood retention of strength and ductility seems to bhe
solved in directionally solidified eutectics.,

In the early sixties, Kraft and his co-workers
(6-10) discovered that in-situ composites can be
produced by unidirectionally solidifying binarv eutectics.
Coupled plane front growth, established under specific
condlitions of growth rate, temperature gradient at the
so0lid«llquid interface and purity of the elements,
resulted in an aligned lamellar or fibrous hiphase
anisotropic structure which exhiblted a composite
behavior. Unlike in man-made composites, microstructures
of directionally solidified binary eutectics exhibited
thermal stabllity when exposed fto temperatures close to
thelr melting points, due to the presence of low energy
interfaces established under growth conditions approasching
equilibrium (11-17).

Subsequently, coupled plane front growth was success-
fully achieved for other blnary and pseudo-binary eutectics,
for off-eutectic compositions which allowed variation of the
volume fraction of the phases, and for monovariant eutectics
which permitted variation of the volume fraction and composi-
tion of the phases (18-28).

Nevertheless, multivariant, multicomponent
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eutectic systems (29-41) appeared to be the short term
answer to the requirements of the turbine designer
since the increased flexibility in varylng the volume
fraction and the chemlstry of the phases provided a
means to produce materials whose matrices can be
strengthened by mechanisms similar to those found in
conventional superalloys.

l.2 Objectives of the Current Investigation.

In an extensive study, Gangloff and Hertzberg (24)
ldentifled three deformatlion and fracture mechanisms
which govern the hot tenslle and creep behavior of the
unidirectionally solidified Nl—NlBNb eutectic composite.

In tensile testingbbetween 25°C and 600°C and in
short time 600°C stress rupture testing, the eutectic
composite deforms by twinning of the &(NiBNb) phase on
{211} type planes and by twin boundary cracking.
Fracture occurs by the coalescence of sub-critical $
phase cracks.

Cooperative twinning of theSenm‘Kphases was found
to operate in tension between 600°C and 875°c, during
long time creep exposure at 600°C and short time creep
testing at 750°C. Coalescense of sub-critical cracks
along transgranular bands of ¥ and D twins promoted
fracture of the eutectlc composite.

Under 875°C and 1000°C tensile conditions and
upon long time creep exposure at 750°C. deformation was

caused by vold nucleatlon at lamellae ends and eutectic
6.



graln boundaries while fracture was due to void
coalescence into transgranular cracks.

It was concluded that, in the unidirectionally
soljdifled Ni—NiBNb eutectic composite, there existed
a time-dependent transition of the deformation and
fracture processes in creep which was analogous to a
temperature-dependent transition in tensile deformation
and fracture, the transition in creep occurring at a
shorter time as the testing temperature was increased,

In a recent study of the hot tenslle propertles of
a @%iS(N1-21.5 wt® Nb-2.5 wt® Al) eutectic composite
grown at 5 cm/hr., Bertorellé et al (40) identified
three reglilons of deformation and fracture behavior. In
Region I, from 20°C to uoo°c. deformation of the eutectic
composite was caused by twinning and cracking of the S
phase, and by slip in the% phase. This deformation
behavior was similar to that observed at low temperatures
in the ¥.$ eutectic composite.

Furthermore, it was found that extensive grain
boundary delamination occurred in a region near the
fracture surface. The investlgators proposed that pre-
mature rupture of the brittle ¥/ film at the eutectic
grailn boundarles caused the transverse cracks to be
deflected. Grain boundary delamination was found at the
fracture surface and along the gage length of specimens

tested in the temperature range from 400°C to 69OOC.
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In this Region II tensile deformation moie, it was found
tha*t the considerable Auctility of 27% observed at 550°C
could be related to the previously recognized ductility
minimum of U’and its key role in the Aelamination
process. It was suggested that the critical temperature
range 600-750°C associated with the Auctility minimum

of U’ strengthened superalloys could be depressed by
addition of niocbium.

Region III tensile deformation behavior, found to

operate from 690°C to 926°C was related to the cooperative

twinning of the ¥ and & phases.
The purposes of the current investigation are

threefold:

1) to estabhlish the stress rupture response of *he

eutectic composite s+tudled by Bertorello et al,

11) to identify those mechanisms which promote
deformation and fracture of the eutectlc allov
during stress rupture testing, and possiblv to
relate these mechanlisms to those defined by the hot
tenslle properties investigation, and

111) to measure the activation energy for the creep
process in the temperarure range where Region II

behavior 1is operatlve.



CHAPTER 11
EXPERIMENTAL PROCEDURE

2.1 Melting and Solidification

Solidification procedures employed during this
study were similar to techniques described by Gangloff
(23) and Mills (26). )Niobium of 99.8% purity, pur-
chased in 1 cm. diameter bar was cut into cylinders
which were subsequently ultrasonically degreased in
methanol. Aluminium of 99.99% purity was cut‘into
l cm. cubes, then cleaned by methanol. Nickel,
purchased as 3 cm. X 4 cme X 1.5 cm. slabs was pickled
in a solution of 1 part H,0, 1.5 parts HpoS04,

2.5 parts HNO3’ 10 to 30 grams of NaCl and 0.25
part of HF.

Several 2 kg. master heats of composition
21.5 wt £ Nb - 2.5 wt & Al - balance Ni were induction
melted in an alumina crucible placed in an Inducto
vacuum induction melting furnace powered by a 30 kW
motor generator. The system was pumped down to 2.66 Pa,
then backfilled with argon to provide an inert atmos-
phere at positive pressure. The niobium was placed at
the bottom of the crucible. Power to the crucible coil
was gradually increased until melting of the nickel and
nioblum was achieved. Aluminium was then poured into
the melt. After five to ten minutes of homogenization,

the power to the crucible coil was switched off. Then

9.



the molten charge was poured into a steel split mold to
produce eilght round bars 1l.25 cm. in diameter by

15 cm. long. Prior to casting. the mold walls were
coated with a wash consisting of Mg0O powder in ethyl
alcohol, and placed in a furnace at 200°C,

The as-cast bars were cleaned in the previously
describeévpickling solution, then unidirectionally
solidified in 95.5% pure aluminium oxide crucibles
under a vacuum purged, positive argon pressure at a
growth rate of 5 cm./hr. Solidification was achieved
in a vertical zone melter equipped with an induction
coil and a water cooled chuck which provided a high
thermal gradient (26).

2.2 Stress Rupture Testing

Stress rupture specimens (9.318 cm. diameter,
1.78 cm. gage length) shown in Figure 1 were machined
from the unidirectionally solidified bars. When the
longitudinal structure was deemed satisfactory upon
metallographic examination, the bar was machined to
vield two test specimens.

Constant load testing according to ASTM
specification E 139-69 was conducted in air on Satec
stands and on Dennlsion stands equlpped with Marshall
test furnaces. Temperature was controlled to within
+ 50C by means of two chromel-alumel thermocouples
wired to the specimen. Elongatlion was measured on the
fractured halves of the specimen. Testing on the

10,



Satec stands allowed continuous recording of elongation
by a system consisting of an extensometer clampéd on
the shoulders of the specimen, a linear voltage
differential transformer (LVDT), a demodulator and a
multi-point chart recorder. Because testing was
performed in air and oxidation may result in excessivé'
scaling of the extensometer, the previlously described
system was used for temperatures under 750°C. 1In
several lnstences, because of the instabllity of the
output signal, elongation was measured on the fractured
halves.

2.3 Metallography

Fracture surfaces were plated in a nickel plating
bath (5 parts Enplate NI-415 A, 1 part Enplate NI-415 B,
8 parts water) at 85°C. then cut iongitudinally by
electrodischarge machining. ILongitudinal sections were
mounted in bakelite, polished through 600-grit wet
polishing papers, 6 micron-1 micron diamond pastes,
0.3-0.6 micron alumina powders and electropolished in a
solution consisting of 37 parts H3P0uo 56 parts glycerin
and 7 parts water, with a voltage of 10 volts accross

the electrodes,

11,



CHAPTER III
PRESENTATION AND DISCUSSION OF RESULTS

3.1 Microstructure and Crystallography

The composition of the alloy chosen for the
present study was 2l.5 wt % Nb. 2.5 wt £ Al and
balance Ni. Upon solidification, the liquid separates
into +wo solid phases, the face-centered cubic ¥ -Ni
s0lid solution and the orthorhombic 5-N13Nb phase.
Flgure 2 shows a representative transverse section of
the microstructure. Also shown 1s the presence of
KLN13A1 preclpitates obtained by precipitation from the
N1 solid solution upon cooling from the solidus tempera-
ture. Lemkey and Thompson (37, 38) have determined that
the crystallographic habit of the KQ{S alloys 1is:
growth | [611], | [100]s
interrace | (112), | (020)5

3.2 Stress Rupture Behavior

The testing program 1s summarized in Table 1.
Flgure 3 is a stress-time to rupture plot which shows
the effect of temperature and initial stress level on
the stress rupture life and depicts the expected increase
In stress rupture life with decreasing applied stress.
A Larson-Miller parameter plot shown in figure 4
compares the results of the present study with those
obtained by United Ailrcraft Research Laboratories for a

37{15 alloy (Ni-21.75 wt % Nb-2.55 wt % Al) grown at
38 cm./hr. (The empirical constant in the Larson-Miller

12,



Parameter in both cases was assumed to be 20 ). At this
stage of our unferstanding of eutectice composite bhehavior,

it is not certaln that the Larson-Miller Parame‘ter 1is
the best compaflson criterion; similarly, the marterial
constant in the relation Parameter = T (C + log t) taken
as 20, may not represent the best fit tor thils allov.
As seen in figure 4, the UARL alloy 1s superior to the
alloy prepared for thls investigation. It is not
surprising to find such a difference since Thompson
et al (25) demonstrated that reduction of the lamellar
spacling increased the creep reslstance of the eutectic
composite. In fact, if the Larson-Miller plot 1s
normalized relative to tensile strengrth, the two sets
of data are in berter agreement (figure 5).

It was shown that the minimum creep rate (steady
stare creep rate) of lamellar eutectic composites

(25, 38) follows the relation:

Ess =k (6%/T) exp ( - Gm)

where k = material constant

n creep exponent

T

absolute temperature (°K)
AH = activation energy (joules/mole)
R = universal gas constant = 8.314 joules/mole-neg.
Table 2 gives the minimum creep rate of three specimens
tested at the same stress level and at dirterent

temperature. Based on the previouslyv described
13,



relationship between minimum creep rate and temperature,
the temperature compensated creep rate was computed

from the data of Table 2 and plotted .on a log-log scale
with respect to (1/RT), see figure 6. Using a least mean
squares method, a stralght line was drawn through the
data points. The slope of the line yields the activation
energy for the creep process and is equal to 380

k joules/mole.

A value of 349 kjoules/mole for the creep
activation energy of 37525 alloys was reported by
Breinan (4l1l). Although the value found during this
investigation is in agreement with Breinan's result, it
1s not possible to ascertaln conclusively as to which
phase 1s in fact controlling the creep process in the
temperature range 480 to 580°C owing to the paucity of
creep activation energy data. For example, the generally
accepted activation energy for steady-state creep of
pure Ni i1s 276 kjoules/mole while the values assocliated
with the creep of the intermetallic compounds NijNb and
Ni3Al1 are respectively 657 kjoules/mole and 685
kjoules/mole (47). Furthermore, Ni3 (Al, Mo) was found
to have an actlvation energy of 446 kjoules/mole (48)
whereas creep activation energy data for N13A1 contaln-
ing Nb or N13Nb containing Al have not been reported yet.

In the hot tensile propertles investigation by
Bertorello, et al (40), it was found that the ¥’ film

at the eutectic grain boundarles played an important role
14.



during tensile deformation at 550°C. 1t was shown that
rupture associated with the K’film allowed the
deflection of transverse cracks to occur along the
direction of the major stress axlis, resulting in an
increase in ductility. The hypothesis that this grain
boundary delamination process is rate-controlling
during steady-state creep cannot be ruled out; therefore
it would be expected that the X,grain boundary film
would contribute to the creep of the eutectic alloy in
the 550°C temperature range.

3.3 Deformation and Fracture Mechanisms

3.3.1 Deformation and Fracture in the Low
Temperature Range (480°C to 580°C)

It was reported elsewhere (22, 23, 24) that
in the Y_S eutectic composite the intermetallic N1,Nb
deforms by twinning on {211& type planes while the Ni
phase slips during deformation of the composite.
Figures 7 and 8 give evidence that the same deformation
mechanism occurs during exposure up to 700 hours in the
temperature range 480°C to 580°C. Note the slip
markings in the ¥ lamellae and the way the cracks
propagate at the § twin- S'matrix interface. Fallure
of the eutectic occurred by the link up of these cracks
and by eutectic grain boundary delamination, as depicted
in figures 9 and 10.

Specimen L6-5 which falled after less than 100

hours exposure at 550°C shows grain boundary

15.



delamination at the fracture surface (figure 10 a)
characteristic of Reglon i tensile deformation (40).

At intermedlate exposure time at 550°C. grain
boundary delamination occurs also away from the fracture
surface (figure 10 b), the extent of which is less than
that found on specimens deformed in Reglion II tenslle
behavior (40). Bertorello et al proposed that the
Auctility maximum of 27% obtained during tensile
deformation at 550°C could be attributed to premature
fractures assoclated with the U' grain boundary film at
550°C which permitted the structure to deflect
transverse cracks by grain boundary delamlnation. The
ductllity found on specimen J2-5-2 (about 7%) can be
rationalized on the basls of thls proposed deformation
mechanism.

Figure 11 shows that § phase twin density 1is
approximately equal in both Region I and Region II
creep specimens, whereas cracking 1s more evident in
Reglion II creep specimens.

Under long time exposure at 550°C. a transition
from Region II deformation behavior to Region III
deformation behavior occurred. Longitudinal sections
showed two variants of deformation bands (figure 12),
consisting of colinear ¥ and § twins (23, 24, 40).
Note that the & twin density has decreased markedly.
Thls cooperative twinning process is quite similar to

that found in the ¥«0 eutectic composite after long
16.



time 600°C and short time 750°C creep (23, 24).
Metallographic observatlion revealed that cooperative
twinning occurred in the ’6/3'-5 eutectic composite to
a lesser extent than in the ¥-& eutectic alloy. It
1s believed that, because of the 'K'precipitates, the
¥ phase cannot deform readily by twinning in conjunc-
tion with the twinning of the 6 phase.

3¢3.2. Deformation and Fracture at 750°C

Under 750°C stress rupture conditions,

longitudinal sectlions of specimens which exhlblted a
rupture life of less than 100 hours showed that composite
deformation occurred by twinning in the § phase and by
grain boundary delaminatlon limited to a region near the
fracture surface (figure 13). The S phase twins
appeared to be thinner, resultlng in a drastic decrease
in the frequency of cracking at the & twin- Smatrix
interface. Deformation under short time 750°C stress
rupture conditions 1s thus typical of Region I tensile
deformation. \

The deformation mechanism observed from
metallographlic examination of long time 750°C stress
rupture specimens was characterized by void nucleation
at lamellae ends and eutectic graln boundaries.
Flgure 14 a shows that fracture occurred by the link
up of these volds. It is believed that, because of
the disruption of the crystallographic relationships at

lamellae ends and eutectic grain boundaries, these
17.



sites have a high energy confipuration and would become
preferred sites for vold nucleation during composite
deformation.

Metallographic analysis of two specimens creep tested
at 760°C which falled after less than 100 hours of
exposure revealed that cooperative twinning of the &
and ¥ phases became operative. Near the fracture surface,
severe blocky movements of the ¥ and $ lamellae pro-
duced cracking in the two phases (figures 15 b and 16).
This extremely localized deformation mechanism resulted
in faillure of the composite when these cracks linked
up, thereby decreasing the load bearing capability of
the specimen. It was noted that away from the fracture
surface, deformation of the composite was less severe,
with fine bands of colinear ¥ and $ twins being
observed (figure 15 a). It is believed that this ¥-6
cooperative twinning deformation mechanism was not
induced by a change in the testing temperature

from 750°C to 760°C, but rather by some unidentified

metallurgical variable.

3.3.3 Deformation and Fracture at 850°C and 950°C
Composite deformation under 850°C and 950°C
bear some resemblance to the previously described long
time 750°C deformation mechanism (figures 17 a and 19 a),
with the difference that creep ductility was higher for
all test conditions at 850°C and for long time 950°C

creep specimens. The increase 1in creep ductility was



related to an increase in the number of voids as
clearly evidenced in figure 19 a.

Metallographic analvsis of a short time 950°C
creep specimen (specimen M5-5-1) showed that composite
deformation was qualitativelv similar to Region II
tensile behavior: the 5 phase deformed by twinning
and cracking (figure 18 b), whereas grain boundary
delamination was bellieved to be the result of the
coalescence of small volds produced at eutectic grain
boundaries. This type of delamination appears to be
different from that found in Region I hot tenslle
Aeformation behavior, SSOOC and short tilme 750°C creep
exposure.

Two additional observations were considered
important to mentlion. Longitudinal section of specimen
K4-5 crept under 850°C exhibited $ Widmanstatten pre-
cipitates in the K/X/ phase (figure 17 b). S.
Widmanstatten preclpation was previously reported (50)
for the X-«S aligned eutectic as a result of a 1220°C
solutlion treatment and long time static exposure at 800°C.

Metallographic observation gave evidence that
long time exposure under high temperature produced
coarsenling of the X’precipifates (figure 19 b). This
observation suggests that, in order for x/vl-é
eutectic alloys to retain thelr high strength at
elevated temperatures, further alloying with elements
which would stabilize the N13A1 precipitates will be

required, 19.



CHAPTER IV
CONCLUSJONS

Several conclusions were drawn from this study :

1)

i1)

111)

At 550°C. the stress rupture behavior of the
eutectic alloy was characterized by three defor-
mation and fracture mechanisms which were quall-
tatively similar to the three deformation and
fracture mechanisms identifled by Bertorello,

et al in their investigation of the hot tensile
properties. The time-dependent transition in
creep and the temperature-dependent transition
in tensile deformation suggest that the 550°C
stress rupture behavior of the ¥/¥-8 eutectic
composite bears some similarity with the '
elevated temperature tensile and creep rupture

behavior of the ¥-O eutectic composite.

The creep activation energy of the eutectic
composite tested between 480°C and 580°C was

found to be 380 kjoules/mole.

Unlike the V-0 system, at 750°C the stress
rupture behavior of the ¥/§ -9 eutectic
composite was characterized by a transition from
Reglon I behavior to a void nucleation and void

coalescence process. At 760°C, it was found that
20.



iv)

v)

cooperative twinning of the ¥ phase and 5 phase
became operative. It was hypothesized that thils
cooperative twinning process was caused by some
unidentified metallurgical varlable rather than

by a change in the testing temperature.

The 850°C stress trupture behavior and the long
time 950°C stress rupture behavlior were
characterlized by void nucleation and vold
coalescence, with the highest creep ductility
being related to the highest amount of volds

produced during composite deformation.

A longitudinal section of a short time 950°C
stress rupture specimen exhiblited features

characteristic of Reglion II tensile behavior.

The current study showed that the deformation
and fracture mechanisms reported by Gangloff
and Bertorello et al have been identified in
this study. The analogy between a temperature-
dependent ftransition in tensile deformation
and fracture, and a ftime-dependent transition
of the deformation and fracture processes 1in
creep which was found for the ¥-5 aligned eu-
tectic was not always found for the @32.5

directionally solidified eutectic at high
21.



temperatures.
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TABLE 1
CREEP RUPTURE DATA

Time To
Specimen* Temperature Stress Rupture Elongatilon
°¢ MPa  (ksi) hrs

Mi-5=1 480 967 (138.5) 718.1 2.6%%
I5-5-1 495 911 (130.4) 5545 S.1%%
Ml-5-1 530 982 (140.6) 52,9 TS 2
Lé-5 547 942 (134.9) 87.7 2. Lnn
16-5-1 550 840 (120.2) 1055.7 0.7
J2-5=2 553 978 (140.0) 397.9 6.9
M6-5=-1 578 967 (138.5) 53.1 U, 6n
L4-5-1 550 911 (130.4) (574 )%nx -
K2-5 653 868 (124.3) 183.6 1.7%%
I15-5=2 750 699 (100.0) 13.7 1.3
T4-5-1 754 699 (100.0) 52,4 1.2
J1-5=2 750 629 ( 90.0) 22.2 0.9
M2-5 750 586 ( 83.9) 390.8 0, 9%
J3-5=2 748 562 ( 80.4) 200.7 -
K3-5-1 750 543 ( 77.8) 247,7 0,9%*
Jl-5-1 750 524 ( 75.0) 261.0 1.2
I4-5=-2 760 765 (109.5) 12.3 2.4
J2-5=1 760 638 ( 91.3) 54,2 0.1
Kb=5 - B50 350 ( 50.1) 105.1 7.0
J7=5 850 Lgg ( 65.,2) 29.3 6.0
J3=5-1 930 2L2  ( 34.6) 32.9 0.7
M5-5=1 950 177 ( 25.3) 12.0 2.0
L5=-5=2 950 154 ( 22.0) 120.2 -
I7-5=2 950 132 ( 18.9) 272.6 13.6

* Third number identified the positian of the specimen with
respect to the ingot: "1" for the tail, "2" for the head.

#% FElongation measured by extensometer.

*#%% Test stopped at time reported.

23.



TABLE 2
MINIMUM CREEP RATE DATA

Minimum
Specimen Stress Temperature Creep Rate
MPa (Ksi) oc (x 106 hr -1)
Mi=5-1 967  (138.5) L80 0.498
Ml-5-1 982 (140.6) 530 54,765
M6-5-1 967  (138.5) 578 458,00

2L,
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Figure 1l: Creep Rupture Speclmen
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Figure 2:

Representative microstructure of a transverse
section of a ¥/y-5 eutectic composite grown

at 5 cm/hr. Electropolished. Magnification
1600X.
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Flgure 7:

Scanning Electron Micrograph of a 530°C
stress rupture fracture (Specimen Ml-5-1)
revealing slip markings in a ¥ phase lamella
and cracking in a b phase lamella .
Magnification 6080X.
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Flgure 9: Longitudinal fracture profile of
a 495°C stress rupture fracture

(Specimen I5-5-1), Electropolished.
Magnification 100X.
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I6-5-1) showing the cooperative twinning
Electropolished.
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Longitudinal section of a long time 550°C stress rupture
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Figure 12:

Magnification

Note the two varients of deformation bands.
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Figure 16:

Iongitudinal photomicrograph of
a 760°C stress rupture specimen
(Specimen J2-5-1) depicting
severe blocky movement of ¥ and

& lamellae near the fracture
surface, producing transgranular
cracks. Electropolisheg.
Magnification 1000X.
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