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ABSTRACT 

The effects of specimen thickness, stress ratio (R) and 

maximum stress intensity factor (Kmax) on crack closure (or 

opening) and on fatigue crack growth kinetics were studied 

using a 2219-T851 aluminum alloy.  The crack length and the 

occurrence of crack closure were measured by an electrical po- 

tential method.  The experimental work was carried out within 

the framework of linear-elastic fracture mechanics. 

The experimental results show that the onset of crack 

closure (or opening) depends on R,» ^max>   and specimen thick- 

ness.  In terms of the "effective stress intensity range 

ratio" (U), as defined by Elber/ the results show that U 

tends to increase for increasing R, decrease for increasing 

Kmax, and decrease with increasing specimen thickness.  From 

these trends, it is shown that the "effective stress inten- 

sity range" (AKeff) does not always increase with increasing 

stress intensity range (AK).  The fatigue crack growth data 

show that the specimen thickness does not have a signifi- 

cant effect on crack growth in this material over the lower 

crack growth rate region; below about 5 x 10   in./cycle 

(1.3 x 10   cm/cycle).  In the higher crack growth rate 



-6 -5 region, above about 5 x 10   in./cycle (1.3 x 10   cm/cycle), 

the crack growth rates are higher for the thicker specimens. 

The viability of the crack closure model is questioned. 

The experimental results show that crack closure cannot fully 

account for the effects of stress ratio and specimen thick- 

ness or Kmax on fatigue crack growth.  The use of &KQ££  as 

a parameter for characterizing the mechanical driving force 

for fatigue crack growth is questioned. 
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I.  INTRODUCTION 

With the increased emphasis on "fail-safe" and "safc- 

life" design of high performance aerospace and other engi- 

neering structures, the ability to accurately predict fati- 

gue lives and fatigue crack growth response in structural 

components has acquired increased importance.  Linear frac- 

ture mechanics has emerged over the past fifteen years, and 

has developed into an important tool for fatigue and fracture 

analyses of structures [1-4].  In its first application, the 

crack tip stress intensity factor (K) or the stress intensity 

range (AK), defined by linear fracture mechanics, was pro- 

posed as the appropriate parameter for characterizing the 

mechanical driving force for fatigue crack growth [5].  The 

overall success of this concept has been well documented 

[3-7] and K or AK has been incorporated into many of the em- 

pirical relationships for describing the fatigue crack growth 

response; that is, 

Aa/AN = f(AK, etc.) (1) 

For example, see the relationships proposed by Paris [4], 

Paris and Erdogan [7].  These empirical relationships, how- 

ever, have been found to be inadequate for most design ap- 

plications.  Other modifications have been proposed in an 

attempt to account for the effects of stress ratio (that is, 

the ratio, R, between minimum and maximum stresses or stress 

intensity factors in a given loading cycle), and for crack 
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growth response near the critical stress intensity factor 

(K|C or Kc) and the so-called fatigue crack growth threshold 

^'iKth* (8-111-  Further modifications have also been proposed 

to account for load interaction effects (12-14J and to account 

for crack growth under randomized loading (4,15-19],  These 

modifications have been used with varying degrees of success. 

More recently, the concept of crack closure, first intro- 

duced by Elber, has been used to formulate additional rela- 

tionships oand to provide rationale for several important 

aspects of fatigue crack growth [20-28].  The crack closure 

concept has been claimed to provide rational explanations 

for stress ratio effect for fatigue crack growth under con- 

stant-amplitude loading [20], and for load interaction effects 

on crack growth (such as crack acceleration, fatigue crack 

growth retardation arid delayed retardation) under 

variable amplitude loading [20-24].  Furthermore, there is 

some belief that the closure concept can be applied also to 

account for the effects of aggressive environments on fatigue 

crack growth [24,25], for crack growth response near the 

threshold [26,27] and for crack growth under randomized load- 

ing [28].  The relevant aspects of the crack closure concept 

are summarized and discussed in the following paragraphs. 

From experiments on a 2024-T3 aluminum alloy, Elber 

observed that the load versus crack-opening-displacement 

curves exhibited a nonlinear region at the lower load levels 

[20].  This behavior was interpreted in terms of crack 
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closure, that is, physical contact between the surfaces pro- 

duced by fatigue.  Elber suggested that the crack is closed 

at the tip over the lower portion of the loading cycle and 

becomes open only after the applied stress exceeded a level 

S0„, and that fatigue crack growth can occur only during that 

portion of the loading cycle in which the crack is fully open. 

Based on these suggestions, an effective stress range, ASeff, 

and an effective stress range ratio, U, were defined. 

n = ASeff _ smax~sop ._. 
As    smax~smin 

smax anc* smin are t^ie maximum an&  minimum values of the ap- 

plied stress in a given loading cycle; and SQp is the crack 

opening stress.  U can be defined equivalently in terms of 

the effective stress intensity range, ^Keff» and AK. 

U = AKeff _ ^ax'^p (3) 
AK    Kmax~Kmin 

K0p is the crack opening stress intensity factor correspon- 

ding to S0p.  Elber further suggested that it would be more 

appropriate to correlate fatigue crack growth rate with AKeff 

and proposed the following modification to the empirical 

equation [20]: 

£! = A (AKeff)
n = A (UAK)n (4) 

where A, n are empirical constants. 

Based on a limited range of data on 2024-T3 aluminum 

alloy, Elber suggested that the effective stress range ratio, 

U, is only significantly dependent on the stress ratio, R, 
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and independent of the stress intensity range, crack length 

or maximum stress intensity.  For the testing conditions used, 

he empirically correlated U with R by Eg. 5, for R values 

ranging from -0.1 to 0.7 (20). 

U = 0.5 + 0.4R (5) 

Using this empirical result, Elber showed that Eq. 4* provided 

a better fit to the experimental data than Paris' [4] or 

Forman's [8] equations. 

There is little question that the crack closure concept 

is deceptively simple and attractive, and appears easy to 

aPPly-  Even though the evidence of closure has been well 

documented, the concept itself and the resulting relation- 

ships have not been thororghly and critically examined over 

a broad range of structural alloys and conditions.  Consid- 

erable controversies exist in the literature regarding the 

values and interpretations of crack closure loads measured by 

the different experimental techniques [29-32].  On the one 

hand, there are methods that respond to physical contact and 

deformation ahead of the crack tip; such as, strain gauges 

[33], extensometers [20] and laser interferometry [34] .  On 

the other hand, there are methods that only respond to the 

physical contact between the crack surfaces; such as the 

ultrasonic [24,25] and electrical potential methods [29,35], 

and optical interferometry [36].  The former methods measure 

*Since Eq. 5 suggests that U is independent of Kmax/ then Eq.4 
(like the Paris-Erdogan relation) cannot account for crack 
growth behavior near AK^ and Kc. 
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the plasticity effects in   addition to the effects of crack 

closure while* the latter group, only measures physical con- 

tact.  The controversies revolve, in part, around the "physi- 

cal meaning of the closure measurements provided by these 

different methods and remain to be resolved.  Much controver- 

sies exist even when the same crack closure load measurement 

technique is used.  For example, the crack opening stress as 

measured by the crack opening displacement techniques is 

known to vary with the position of the gauges [28].  Consid- 

erable uncertainties also exist concerning the effects of 

other pertinent variables on the crack opening load other 

than stress ratio.  Investigators have reported that the 

crack opening load depends on Kmax [35,37], crack length [30], 

specimen thickness [37-39], material [35,39,40], and environ- 

ment [25,29,39]. 

In view of these uncertainties (including the concept of 

effective stress intensity range), the apparent acceptance 

and usage of the crack closure concept at this time do not 

appear to be fully justified.  Additional work is needed to 

critically examine the crack closure phenomenon and to assess 

its possible role in fatigue crack growth and in the develop- 

ment of predictive procedures for fatigue. 

In this work, the influences of Kmax, R and specimen 

thickness on crack closure and on fatigue crack growth, under 

constant-amplitude loading in an inert environment, are exam- 

ined.  A 2219-T851 aluminum alloy was used to complement a 
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previous study of crack closure and fatigue crack growth in 

a Ti-6A1-4V alloy {35].  Crack closure was measured by means 

of an electrical potential technique [35].  The experimental 

work was carried out within the framework of linear-elastic 

fracture mechanics.  The viability of the crack closure model 

to predict fatigue crack growth is also discussed. 

■II.  MATERIAL AND EXPERIMENTAL WORK 

11.1. Material and Text Matrix 

A 3-in.-thick (7.62-cm-thick) plate of 2219-T851 alumi- 

num alloy,* (12 in. by 12 in. or 30.5 cm by 30.5 cm) was ob- 

tained from the Westinghouse Electric Corporation for use in 

examining the effects of specimen thickness, load ratio (R = 

pmin/pmax = Kmin/Kmax* and stress intensity (Kmax or AK) on 

crack closure and on fatigue crack growth.  The chemical com- 

position and room-temperature tensile properties of this 

plate are given in Table I. 

The test matrix given in Table II was designed for ex- 

amining the effects of specimen thickness, load ratio and 

stress intensity. 

11.2. Test Specimen 

Wedge-opening load (WOL) specimens, having a half-height 

to width ratio (H/W) of 0.486 and the same planar dimensions 

(Fig. 1), were selected for these studies.  0.1-, 0.2-, 0.5- 

and 1.0-in.-thick (0.25-, 0.51-, 1.27- and 2.54-cm-thick) 

*This material is being used by Westinghouse Electric Cor- 
poration in an HFML program under Contract F33615-75-C-5064. 
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specimens, oriented in the longitudinal (I,T) orientation 

(42], were machined from the 3-in.-thick (7.62-cm-thick) 

plate.  The specimen', locations within the plate were ran- . 

derailed in the thickness direction.  An initial {or crack 

starter) notch, about 0.77 in. (1.96cm) in length was intro- 

duced into each specimen by electro-discharge machining (EDM). 

Each specimen was precra'cked in fatigue through a decreasing 

sequence of loads that terminated at the desired load-level 

for the actual experiments.  The precracking procedure pro- 

vided a fatigue crack about 0.13 in. (0.33 cm) in length from 

the end of the starter notch; corresponding to a crack length 

of about 0.9 in. (2.29 cm).  This precracking procedure en- 

sures that the subsequent fatigue crack growth will be through 

material that has not been altered by the notch preparation 

procedure and will be unaffected by the starter notch geometry. 

Stress intensity factor, K, for this WOL specimen was 

computed from Eq. 6 [43,44]: 

K  = g| /if   [30.96  -   1^5.8 (|)   +  730.6(|)2   -  1186.3(|)3 

a  4 (6) 

+  754.6(|)4] 

Where P = applied load, 

B = specimen thickness, 

W = specimen width, and 

a = crack length. 

Both specimen width and crack length were measured from the 

line of loading, as shown in Fig. 1. 



11.3.  Bxperbenta1 Procedures 

(IracK closure and fatigue crack growth (including fa- 

tigue precracking) ex per ir.er.ts were carried out, in dehumidi- 

fied argon, in a closed-loop electrohydraulic testing machine 

operated in load control.  Load control was estimated to be 

better than ± 1 percent.  Fatigue cr.acks were extended by 

constant load-amplitude (sinusoidal wave) fatigue cycling at 

5 to 10 Hz* for selected maximum loads (Pmax^ 
anc* J°a<3 ratio 

(R); Pmax and R being maintained constant for a given test 

specimen.  Fatigue cycling was interrupted at a crack length 

of about 0.9 in (2.29 cm) and, subsequently, following each 

0.1 in. (0.25 cm) of crack extension for crack closure mea- 

surements.  For these crack closure measurements, the speci- 

men was unloaded from the maximum load to the minimum load 

used in fatigue and reloaded to the maximum load, using the 

single-cycle feature of the testing machine at cyclic loading 

frequency of 0.01 Hz.  Three such unloading-reloading se- 

quences were made at each crack length. 

An electrical potential technique was used for monitor- 

ing fatigue crack growth and for making crack closure mea- 

surements [35,45,46].  Details of this technique and of the 

environmental control system are described separately in the 

following sections.  For fatigue crack growth, changes in 

potential (crack length) were recorded as a function of time 

*Previous results suggest that there should be little or no 
effect of frequency on crack growth in an inert environment 
over this range of frequencies [45]. 
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for subsequent conversion to growth rate (Aa/AN) and K.  For 

the crack closure experiments, autographic recordings of 

changes in potential versus load were made, 

II.4.  Crack Monitoring System 

The electrical potential technique used for monitoring 

crack growth and crack closure is based on the change in 

electrical resistance of the specimen with crack length [45, 

46].  A constant d.c. current was applied to the specimen, 

and changes in electrical potential (V) were measured between 

fixed points above and below the crack.  A schematic diagram 

of the measurement system is shown in Fig. 2.  During a 

fatigue crack growth test, V was monitored as a function of 

time by the potential measurement circuit and recorded on a 

strip chart recorder.  For the crack closure experiments, 

changes in potential were recorded as a function of applied 

load on a X-Y recorder.  This method has been shown to be 

accurate and sensitive, and to agree well with other crack 

measurements-techniques for a number of material tested in 

different environments [46].  The major advantages of this 

technique are that it permits measurement of crack length 

while the crack is completely covered, thus allows complete 

freedom for using environmental chambers which completely 

cover the crack area (see next section), arid that it provides 

a direct measure of the area of crack surfaces in physical 

contact during closure. 

Because of the complexity of the specimen geometry, an 
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analytical relationship between crack length and potential 

was not available for the WGL specimen and an  experimental 

calibration curve had 19 be established.  Experimental call- 

bration was accomplished by making simultaneous visual and 

electrical potential measurements of crack length on speci- 

mens fatigued in air.  (See Fig. 2 for placement of potential 

and current leads on specimens used in this study.)  The 

calibration results for specimens of different thickness are 

shown in Fig. 3 as crack length (a) versus the normalized 

f potential values (V*).   These results show the reproduc- 

ibility between specimens and confirm that the calibration 

curve is independent of specimen thickness.  The following 

second degree polynomial, Eq. 7, provided the best (least- 

square) fit to the data, and was used as the calibration 

curve: 

a = 0.792 + 3.43V* - 1.54V*2 (a in in.) 

2 (7) 

a = 2.01 + 8.71V* -3.91V* .(a in cm) 

tThe electrical potential method provides measurements of 
crack length averaged through the thickness, while the vi- 
sual method gives measurements of the crack length at the 
specimen surface only.  Crack length measurements made by 
these two methods would differ because of crack front cur- 
vature.  The discrepancy was significant for the thicker 
specimen.  Corrections for crack front curvature were made 
by measuring average crack lengths from the fatigue markings 
(introduced during the calibration tests by changing the 
load amplitude) after specimen fracture.  The average crack 
length was computed on the basis of five measurements - one 
at each specimen surface, one along each of the quarter- 
thickness planes and one along the mid-thickness plane.  The 
"corrected" crack lengths are used in Fig. 3 and in deriving 
Eq. 7. 
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Where a  ~~ crack length 

V* -. (V-Vr)/Vr 

Vr - reference potential associated with the initial 
notch 

V  = potential at a crack length a 

Accuracy of crack length measurements was estimated to 

be better than 1 percent-  The resolution, based on a fixed 

working current of about 10 amperes, however, depended on 

specimen thickness, and was only slightly dependent on crack 

length.  For the 1-in.-thick specimen, crack length resolu- 

tion was better than 0.004 in. (0.01 cm) based on O.lviV 

resolution in electrical potential.  Resolution for the thin- 

ner specimens improved in inverse proportion to the specimen 

thickness, that is, 0.002 in., 0.0008 in. and 0.0004 in. 

(0.005 cm, 0.002 cm and 0.001 cm) for the 0.5, 0.2, and 0.1 

in. (1.27, 0.51, and 0.25 cm) thick specimens respectively. 

For both the crack growth and crack closure studies, the 

electrical potential signal from the specimen was reduced by 

a preset reference d.c. signal from a six dial potentiometer. 

The difference signal was amplified by a high-gain d.c. ampli- 

fier and was recorded by a strip chart or X-Y recorder. 

Ceramic loading pins were used to isolate the specimen from 

the testing machine and to circumvent problems that would have 

been introduced by changes of contact resistance between metal 

pins and specimen during cyclic loading. 
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II.5.  Environment Control System 

It is known that an oxide layer could form on the frac- 

ture surfaces of specimens exposed to air.  This oxide layer, 

having different electrical properties from a clean crack sur- 

face, can interfere with the electrical, potential 'measurement 

and results in an underestimate of the extent of crack 

closure [35].  To circumvent this problem, the crack closure 

and associated crack growth studies were carried out on speci- 

mens tested in dehumidified argon [35] . 

Dehumidified argon was maintained around the crack by 

flowing argon through chambers clamped to the faces of the 

specimen.  Dehumidification was accomplished by passing ultra- 

high-purity grade argon (99.999% purity) through cold traps 

at less than -220°F (-140°C), and through a titanium sublima- 

tion pump (TSP), before admitting the gas into the environ- 

mental chamber through a high-conductance coupling.  (Thus, 

the TSP served a dual role - as a getter and as a pump for 

active residual impurities in the chamber.)  The effluent 

from the chamber was passed through another cold trap, then 

through a silicone fluid back-diffusion trap before being 

discharged.  A schematic diagram of this environment control 

system is shown in Fig. 4.  The effectiveness of this purifi- 

cation system has been demonstrated by Wei and Ritter [48]. 

II.6.  Data Reduction Procedures 

II.6.a.  Crack Closure.  Crack closure data were determined 

from autographic recordings of applied load versus changes in 

- 14 - 



electrical potential (or crack length).  Typical curves from 

a,.series of closure tests are shown in Fig, .5   for illustration 

Unlike the case-of Ti-6Al-4V alloy (35], these curves possess 

features that make data interpretation more difficult, and a 

somewhat arbitrary, but consistent, procedure had to be adop- 

ted.  The rationale for the selection of this procedure and 

the procedure itself are described.  A comparison with alter- 

native procedures is made.  A more detailed consideration of 

possible causes for the various features in the load versus 

electrical potential (crack length) curves are given in a 

later section (see DISCUSSIONS). 

Ideally, at maximum load, the electrical potential would 

assume a value V(a) corresponding to the current crack length 

a.  With unloading, it should remain at this value until the 

onset of crack closure, and then decreases with progressive 

crack closure to a lower value corresponding to the minimum 

load.  On reloading, the potential would increase (generally 

on. a different path) until it reaches V(a), corresponding to 

the onset of "full" crack opening, and then remain constant 

with further increase in load to the maximum load.  The value 

of the load at which the potential reaches V(a') on reloading 

is defined as the crack opening load, and the corresponding 

point on unloading as the crack closure load. 

For the 2219-T851 aluminum alloy used in this study, and 

for other aluminum alloys [49], the electrical potential 

tended to increase slightly with initial unloading before 
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becoming nearly constant and then decrease with further un- 

loading (see Figs. 5 and 6).  The reloading portions of the 

curves exhibited the sane general trend, and the final indi- 

cated potential values tended to be higher than what might be 

expected from one cycle of fatigue crack growth.  It is be- 

lieved that these peculiarities were associated with changes 

in crack shape and with instrumental problems which became 

more evident in the case of these low strength, low modulus 

and low resistivity aluminum alloys.  These peculiarities 

made it difficult to determine the crack opening or closure 

load unambiguously.  To circumvent this problem and to develop 

a consistent and rational method for data analysis, several 

methods or criteria were evaluated.  Two separate reference 

points were considered:  (a) the potential (crack length) at 

maximum load, point A in Fig. 6, and (b) the (maximum) poten- 

tial corresponding to the apparent maximum crack length 

(defined by a vertical tangent to the load versus potential 

curve), point B in Fig. 6.  Only the reloading portions of 

the curves were considered.  The various methods are illus- 

trated schematically in Fig. 6.  In Method 1, the crack open- 

ing load (P0p) is defined as the load at the onset of "full" 

crack opening, corresponding to the apparent maximum crack 

length (vertical tangent).  Methods 2 to 5 are off-set meth- 

ods and based on arbitrary choices of average crack closure 

lengths.  Methods 2 and 3 are based on average crack closure 

of 0.005 and 0.010 in. (0.013 and 0.025 cm) measured from 
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the point of apparent maximum crack length, respectively.  'In 

Methods 4 and 5, the same average crack closure lengths are 

used in conjunction with the maximum load point.  A compari- 

son of KQp values obtained by these five methods is shown in 

Fig. 7.  It is seen that Method 1 provided the highest esti- 

mates (although not necessarily upper bound estimates) for 

K0p, and that all five methods produced the same trend in 

data. 

Of the two reference points considered, it is believed .' 

that the second one more closely represents a line crack. 

Based on this belief, Method 1 might appear to be a reason- 

able first choice for use in data analysis.  Unfortunately, 

however, ambiguities are introduced because of the contra- 

vening effects of changes in crack shape and possible onset 

of crack closure, and because of the inherent difficulties 

associated with thn determination of tangency points.  A 

viable alternative appears to be Method 2, which embodies 

the more acceptable second reference point and provides a 

more easily and p.recisely defined (though arbitrary) inter- 

cept on the load-potential curve.  Since all five methods 

provide the same trend, and since Method 2 yields values . 

that fall between the other methods, it was selected for use 

in estimating crack opening loads in all of the experiments. 

It is to be recognized that the actual crack opening loads 

would, in all likelihood, be somewhat higher (about 10 per- 

cent) than those given by Method 2. 
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The indicated amount .of crack closure was observed to de- 

crease about 5 percent with each successive crack closure 

test at a given crack length.  This apparent decrease in 

crack closure may be attributed to slight oxidation of the 

crack surfaces by the residual impurities (less than 1 ppm 

of H2O and/or O2) during the long period of unloading and 

reloading process (100 sec. per closure test).  Since this 

apparent decrease in crack closure would result in succes- 

sively lower crack opening loads from each of the off-set 

methods, only results from the first closure test at each 

crack length were used.  The other closure tests were merely 

used for verification. 

'■II. 6.b.  Fatigue Crack Growth Data.  Fatigue crack growth 

rate data were obtained directly from the electrical poten- 

tial (crack length) versus time (elapsed cycle) records, 

using the experimental calibration results, Fig. 3.  Crack 

lengths (hence, K and AK) were determined from the potential 

values, and the corresponding growth rates were obtained by 

graphical differentiation of the potential-time records. 

Because of crack closure, corrections had to be made for some 

of the data at the lower R values and at high K.  The cause 

and the correction procedures are described and discussed. 

As a result of crack closure, an oscillating electrical 

potential signal (corresponding to the alternate opening and 

closing of the fatigue crack near its tip) is produced.  The 

recorder response in the electrical potential (crack monitor- 
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ing) system was such that the rms (root mean square) values 

of this oscillating signal were recorded.  At long crack 

lengths (that is, at high K levels) the differences between 

the rms values and the potential values corresponding to a 

fully opened crack were sufficiently large to require correc- 

tions, particularly for tests at the lower R values.  (The 

need for this correction, however, can be eliminated by sam- 

pling only the peak values with appropriate instrumentation.) 

The true potential can be obtained by periodically stopping 

the testing machine and keeping it at the maximum value of 

the cyclic load.  The difference between the true potential 

and the recorded potential, therefore, can be obtained dur- 

ing these interruptions.  The potential values at the inter- 

mediate points, then, can be corrected by interpolation. 

After correcting the recorded electrical potential, the cor- 

rect crack length and crack growth rate can be obtained in 

the usual manner.  This correction procedure was used for 

data obtained at R of 0.05 and 0.3 at Kmax above about 12.0 

— 3/2 ksi/in. (13.2 MN-m '   ).  In all other cases, the differences 

were negligibly small and required no correction. 

III.  EXPERIMENTAL RESULTS 

Experimental work was directed principally at studies of 

crack closure and of fatigue crack growth under constant- 

amplitude cyclic load in a 2219-^851 aluminum alloy plate, 

tested in dehumidified argon at room temperature.  Crack 
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closure and fatigue crack growth were examined as a function 

of K|nax, stress ratio (R), and specimen thickness (see Test 

Matrix given in Table II).  The crack closure results and 

fatigue crack growth data are described separately. 

III.l.  Crack Closure 

Experimental results show that the onset of crack open- 

ing is a function of all of the variables studied, namely, 

Kmax, stress ratio, and specimen thickness.  The results are 

summarized and discussed in terms of the "effective stress 

range U", U = (Pmax-Pop*/(pmax-pmin>' and the "effective 

stress intentisy range", AKeff = Kmax-K0p, as defined by 

Elber [20].  It is to be emphasized that U and AKeff are 

being used here solely for the sake of convenience in compar- 

ing experimental results with data reported by other investi- 

gators, and that no physical significance for these para- 

meters is assumed or implied.  These results are summarized 

in Figs. 8 to 15.  For brevity, only those results obtained 

from crack opening loads determined on the basis of an aver- 

age crack closure of 0.005 in. (or 0.013 cm) from the maxi- 

mum apparent crack length of the loading curves are shown 

(see Section II.6.a.). 

The effect of Kmax on U (or crack closure) at several 

stress ratios (0.05, 0.3, 0.5, and 0.7) are shown in Fig. 8 

and Fig. 9 for 0.5 and 0.1 in. (1.27 and 0.254 cm) thick 

specimens respectively.  The data show that U decreases with 

increasing Kmax 
and increases with increasing R.  These trends 
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are consistent with previously reported results on a mill 

annealed Ti-6A1-4V alloy plate (35).  Those results, however, 

arc not in complete agreement with the published results on 

2219-T851 aluminum alloy that suggested U to be independent 

of ^ax at 0 < R < 0. 32 and to be equal to 1 (that is, no 

crack closure) for R 2: 0.32 (40].  The effect of specimen 

thickness on U is shown in.Figs. 10 and 11 for two values of 

stress ratio (0.05 and 0.3 respectively).  The results show 

that over the range of R and Kmax studied, U tends to decrease 

with increasing specimen thickness.  The effect of specimen 

thickness on crack closure tends to disappear for thick- 

nesses larger than 0.5.  This trend is not consistent with 

previous results of 2024-T3 aluminum alloy that showed some- 

what less crack closure in the thicker specimens [38,39]. 

The experimental data may be presented also in terms of 

the effective stress intensity range (AKeff) versus AK, Figs. 

12 to 15.  The trend lines shown were constructed from those 

in the U versus Kmax plots, Figs. 8 to 11.  These data simply 

reflect changes in U with Kmax or AK, and show that AKeff 

does not necessarily increase with increasing AK.  For ex- 

ample, at stress ratio R = 0.05, the AKeff increasing with 

AK at low K level and then tend to decrease with increasing 

AK for the 0.1-in. (0.254-cm)-thick specimen.  On the other 

hand, at this stress ratio, AKe£f decreases monotonically 

with increasing AK for the 1.0-in. (2.54-cm)-thick specimen. 

The implications of these results are considered further in 

the discussion section. 
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111.2.  Fatigue Crack Growth 

Fatigue crack growth data wore obtained in conjunction 

with the crack closure studies and are shown in Figs. 16 to 

19.  The achievable reproducibility of crack growth data can 

be readily seen from the results from duplicated tests of 

0.5-in. (1.27 op)-thick specimens at R =0.5, Fig. 18.  Data 

scatter was estimated to be equal to about *20 percent.  Figs 

16 and 17 show that stress ratio has a significant effect on 

fatigue crack growth over the range of stress ratio (R) from 

0.05 to 0.7.  The R effects are consistent with previous re- 

sults on Ti-6Al-4V alloy [35] .  They are not in agreement, 

however, with those of Katcher and Kaplan [40], that showed 

an absence of stress ratio effect for 2219-T851 aluminum 

alloy (tested in air) at R - 0.32. 

Figs. 18 and 19 also show that specimen thickness does 

not have a significant effect on fatigue crack growth at the 

lower growth rates (that is, below about 5 x 10  in./cycle 

or 1.3 x 10  cm/cycle), where the condition approximating 

"plane strain" prevails over the range of specimen thickness 

(0.1 to 1.0 in.) and K levels used in this study.  At the 

higher growth rates (that is, above about 5 x 10  in./cycle 

— 5 (1.3 x 10   cm/cycle)), crack growth rates tend to be higher 

for the thicker specimens, which is consistent with the lower 

values of fracture toughness for the thicker specimens [50, 

51] . 
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IV.  DISCUSSIONS 

The present study has provided a comprehensive set of 

experimental data on crack closure and on fatigue crack 

growth for an aluminum alloy over a range of specimen thick- 

ness, stress ratio, and K    (or AK).  The trend of these max 

data are consistent with those obtained previously on a Ti- 

6A1-4V alloy as functions of stress ratio and K    (or AK) J max 

[35].  Taken i_n to to, these two sets of results provide a 

useful basis for assessing (a) the crack closure and fatigue 

crack growth response to changes in K   , stress ratio and 

specimen thickness, and (b) the crack closure (or effective 

stress intensity range) concept and the viability of this 

concept for correlating and understanding fatigue crack 

growth.  The crack closure and fatigue crack growth results 

are considered separately first, and are then taken together 

in a critical assessment of the viability of the crack clos- 

ure concept. 

IV. 1.  Crack Closure 

IV.1.a.  Crack Closure Measurement.  Before discussing and 

comparing the results of this study with other investigations, 

a clearer understanding of the processes that give rise to 

the load versus electrical potential curves or crack closure 

is needed. 

For an idealized crack in an elastic medium, the crack 

surfaces are expected to be completely separated (open) under 
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an externally applied tensile? load, and to be in complete 

contact (fully closed) in compression.  Load vs. change in 

electrical potential curves for this idealized case are ex- 

pected to follow the behavior indicated by Fig. 20a.  In re- 

ality, crack closure is expected to proceed from the crack 

tip and extend gradually back towards the initial notch, as 

indicated in Fig. 20b.  The initial deviation from V(a) can 

be identified with the onset of crack closure, which is asso-, 

ciated with the crack closure stress or load.  If the unload- 

ing and reloading curves follow the same path, this point 

can then be associated with the crack opening stress, S  , 

defined by Elber [20]. 

As shown in Figs. 5 and 6, however, there was an initial 

increase of electrical potential upon unloading from the max- 

imum load.  This "bulge" was also observed by other investi- 

gators [29].  The most plausible cause for this bulge is 

believed to result from an apparent change in crack length 

associated with a change in the shape of the crack with 

loading and unloading.  This process may be rationalized if 

one assumes the length of the crack perimeter to remain es- 

sentially constant.  At the maximum load, the crack is ap- 

proximately parabolic (or ellipical for center cracked 

specimens) in shape.  With unloading, the parabola (or el- 

lipse) is collapsed.  The resulting change in shape produces 

an apparent increase in crack length, thus causing the re- 

sistance and the electrical potential to increase.  An 
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order of  magnitude estimate of this effect showed that this 

process could account for the observed changes in potential 

and provided justification for the use of the indicated ap- 

parent maximum crack lengths as reference points for data 

analysis (see section II.6.a). 

The records (see Figs. 5 and 6) also showed that during 

the reloading process, the electrical potential remained es- 

sentially constant initially and was less than that at the 

corresponding load during unloading.  This difference can be 

attributed to the refracturing of regions of the crack sur- 

faces that had become "cold welded" during unloading, and 

lends further support for the occurrence of crack closure. 

As the reloading process is continued, the potential eventu- 

ally crossed over the unloading curve and attained a value at 

the maximum load that was higher than the potential before 

unloading, Fig. 5.  The difference in potential indicated an 

apparent crack growth that was much larger than the growth 

associated with one loading cycle.  This difference is be- 

lieved to be artifactual (probably related to recorder "back- 

lash") and would introduce only minor errors into the opening 

load measurements. 

It is to be emphasized that the electrical potential 

method provides closure (or opening) load measurements di- 

rectly related to physical contact of the crack surfaces. 

Because of the aforementioned uncertainties, the crack open- 

ing loads, and the associated values of U and AKeff do not 
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represent the "true" values for this 2219-T851 aluminum alloy. 

They do, however, represent best estimates of these parameters 

and portray the correct trends in behavior.  Comparisons with 

other investigations are to be considered in light of these 

comments. 

IV.l.b.  Phenomenology of Crack Closure.  There is now agree- 

ment that crack closure does occur during fatigue, and that 

the crack opening load would depend on the inter-relation- 

ship between the crack opening displacement produced by the 

externally applied load (for the elastic-plastic case) and 

the effective thickness of the layer of residual tensile de- 

formation* left in the wake of the fatigue crack tip [20,35], 

This inter-relationship would, in turn, determine the varia- 

tion of U (the effective stress intensity range ratio) with 

K   and with specimen thickness.  In an earlier study on max * J 

crack closure in a Ti-6A1-4V alloy, Shih and Wei [35] sug- 

gested that the surface shear lip associated with fatigue 

crack growth played a dominant role in crack closure.  The 

shear lip contributions should be incorporated into the con- 

siderations of the present results on 2219-T851 aluminum al- 

loy. 

♦Residual tensile deformation is viewed here, in a broad 
sense, to include the contributions from the crack-tip 
plastic zone (including the surface,shear lip) and the 
localized deformation associated with fatigue fracture on 
a microstructural scale. 
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At the very low K   levels, the increment of crack J max 
'      -5    ■ growth per cycle is very small (of the order 10  times the 

crack-tip plastic zone size) and represents an average of 

crack advance at localized positions along the crack front. 

The fracture process tends to be on an microstructural scale 

and involves very localized deformation {52],  As such, the 

effective thickness of the residual tensile deformation layer 

(including the shear lip contribution) is expected to be 

smaller than the crack opening displacement at K . .  Conse- r   ^   ^ mm 

quently, U is expected to be equal to 1.0 in this region (see 

Fig. 21) .  (Alternatively, one can consider that the crack 

behaves essentially as an elastic crack and arrive at the 

same conclusion that U would be equal to 1.0 in the very low 

K   range.) As K   is increased, the crack growth increment max   ^       max ^ 

becomes a larger fraction of the plastic zone size (of the 

-3 . order of 10  times) and represents a more uniform increment 

of advance along the entire crack front.  The size of the ac- 

companying surface shear lip and the effective thickness of 

the residual tensile deformation layer are also expected to 

increase.  The increase must be such as to cause crack 

closure and the subsequent crack opening to occur at a K level 

above K-.  and to cause a decrease in U with increasing K min max 

With further increases in K   , the size of the surface shear max 

lip is expected to become stabilized, whereby U is expected to 

reach a minimum value and than begin to increase (Fig. 21). 
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V 

In the limit, U is expected to tend toward 1.0 as K   be- r max 

corncs sufficiently large to cause large scale yielding ahead 

of the crack tip.  The observed variation of U with K r max 

(Figs. 8 and 11) lends support to the foregoing simple physi- 

cal view of the crack closure phenomenon. 

Because K .  increases with R and because the effective mm 

thickness of the residual tensile deformation layer is not ex- 

pected to depend strongly on R, the value of K   at which U 

departs from 1.0 is expected to increase with K   .  Similar- r ■ ■     ■ max 

ly, U is expected to increase with R at a given K   .  These 

trends are consistent with the experimental observations 

(Figs. 8 and 9). 

If the surface shear lip plays a significant role in 

crack closure, one could expect (at a given K  ) U to de- max 

crease with specimen thickness and then remain essentially 

constant with further increases in specimen thickness.  This 

expectation is based on the facts that (a) the shear lip size 

tends to remain constant at a given K   , and (b) the crack 3     max' 

opening displacement tends to decrease with increasing speci- 

men thickness as the crack-tip constraint changes from one 

of essentially plane-stress to that approximating plane- 

strain.  Such a change in U with specimen thickness is con- 

sistent with the experimental data (see Figs. 10 and 11). 

It is seen that U is a complex function of K   and of max 

specimen thickness.  The observed variations in U are consist- 
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ent with a simplified physical view of the closure phenomenon 

that involve considerations of the role of surface shear lip 

associated with crack growth.  As such, crack closure must 

be viewed as a 3-dimensional phenomenon [35] and must be 

treated as such in any rational analysis. 

IV.I.e.  Comparisons with Other Investigations.  The fore- 

going discussions (Sections IV.1.a and IV.l.b) have shown that 

the observed variations in U (the effective stress intensity 

range ratio) with K   , R and with specimen thickness for the * max ^ 

2219-T851 aluminum alloy represent the best estimates of the 

values of U and of the data trend, and are consistent with 

physical reasoning.  These results may now be used for compar- 

ison with the results and for assessment of the conclusions 

from other investigations. 

Comparison of the results from this investigation with 

that of a previous study on Ti-6A1-4V alloy [35] indicates 

that the overall trends of the data are similar, although the 

specific dependence on stress ratio differs.  The similarity 

between these two sets of results suggests that the general 
V 

-trend for the variation of U with K   and R depicted by the max 

data would hold for all materials.  Differences in detail can 

be expected as a result of differences in material properties. 

These results confirm that the variation of U with K _ is . max 

complex and is a function of stress ratio and specimen thick- 

ness (or state of stress).  U can decrease, remain sensibly 
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constant or increase with increasing K    (at a given stress J max      J 

ratio and specimen thickness) depending on the range of K   . ma x 

Direct comparisons with other investigations, therefore, must 

be made with care and within the same range of K   .  Further- *     max 

more, these data show (see Figs. 8 to 11) that the value of 

U and any empirical representation of U as a function of R 

(such as that given by Elber [20]) would depend on the level 

of K   , and that broad generalizations based on limited max ■ 
data would not be warranted. 

Direct comparison between the present results and limit- 

ed results on crack closure on another 2219-T851 aluminum 

alloy, obtained by Katcher and Kaplan [40], can be made.  The 

results of Katcher and Kaplan covered a range of K   values ^ max 

from about 7 to 17 ksi/in. (or 7.7 to 18.7 MN-m~3'2) at R of 

0.08, 0.3, 0.5, and 0.7.  For those cases where the maximum 

load was maintained fixed, the U values reported by these 

authors are in reasonable agreement with those of this in- 

vestigation*.  Unfortunately, however, because of the very 

limited amount of closure data and of an unwarranted assump- 

tion that U is independent of K   , the authors erroneously max 

concluded the crack closure is limited to R values below 

about 0.32 and that U can be represented by an empirical re- 

lation, U = 0.68 + 0.91R, for all K   levels. max 

*U values for R of 0.5 and 0.7 are taken to be equal to 1.0 
in accordance with the definition for U. 
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One can infer from the present results that Elber's clo- 

sure data on 2024-T3 aluminum alloy [20] must have been 

obtained over a region of K   in which U is sensibly inde- 

pendent of Kmax.  The empirical relation U -= 0.5 + 0.4R can 

be valid, at best, over the Kmax range used in his investi- 

gation, and its use must be restricted to that particular 

alloy and for the thickness of material used in his closure 

experiments.  Elber's conclusion, that U is independent of 

Kmax f2°l' which was based on limited data, can no longer be 

accepted as being valid over a broad range of Km^„ values. j      max 

IV.2.  Fatigue Crack Growth 

Data on fatigue crack growth kinetics developed during 

this investigation show a definite effect of stress ratio on 

fatigue crack growth, in terms of K   or AK (see Figs. 16 to 3        3 max 

19).  The observed dependence of crack growth rates on R is 

consistent with that reported previously on a Ti-6Al-4V alloy 

[11].  No apparent effect of specimen thickness was observed 

at the lower K   levels, where crack growth was under es- max 

sentially plane strain conditions.  At the higher K   levels, max 

some thickness effect was observed; this effect is related 

to changes in fracture toughness with specimen thickness. 

Comparison of the data from this investigation with 

those reported by Katcher and Kaplan [40] on another 2219-T851 

aluminum alloy shows that the rates reported by Katcher and 

Kaplan are consistently higher at a given Kand R.  This 
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differcnco can be attributed to the ef feet of atmospheric 

moisture on fatigue crack growth [541, since the experiments 

reported by Katcher and Kaplan were carried out in low hu- 

roidity air while the present experiments were performed in 

dehumidified argon.  There is substantial disagreement, how- 

ever, between the present results and the conclusion of 

Katcher and Kaplan with respect to the effect of stress ratio 

on fatigue crack growth.  Based on their data, Katcher and 

Kaplan concluded that there was no effect of R on fatigue 

crack growth above R of about 0.32 [40].  Careful examination 

of their experimental data shows, however, that there were 

only four data points at (nearly equal) low K values for R = 

0.7, and that the data scatter was such thati the effect of R 

could not have been discerned from the logarithmic represen- 

tation of experimental data.  It appears that their conclu- 

sion had been influenced by their interpretation of the very 

limited amount of crack closure measurements (see Section 

IV.l.c), and is not fully justified.  Similarly, their con- 

clusion with respect to the crack closure model [40] in ac- 

counting for stress ratio effect on fatigue crack growth must 

be questioned. 

IV.3.  Assessment of the Crack Closure Concept 

A review of the published literature shows that the crack 

closure concept, as it applies to fatigue crack growth, has 
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acquired a substantial following (21-28, 38, 55-58] since its 

introduction by Elber in 1970 [20].  Critical examinations 

of many of these publications, however, show that in spite 

of the apparent popularity, the underlying support for this 

concept is relatively weak.  Much of the early interest and 

purported support are based on the "success" of the crack 

closure concept (or the use of the effective stress intensi- 

ty range, AK ff) to account for the influence of stress 

ratio on constant-load-amplitude fatigue crack growth.  It 

is now quite clear that the "success" was based on a rather 

tenuous assumption regarding the independence of U (the ef- 

fective stress intensity range ratio) on K   , and on a less J J max 

than critical assessment of the data (see Sections IV.l.c 

and IV.2).  In many cases, correlations between crack growth 

rates with AK ,-,. were claimed on the basis of ad hoc as- 
ef f   

sumptions of the validity of the closure concept and of the 

form of the relation for U (U = A + BR)*, without any inde- 

pendent crack closure measurements [21, 22, 55, 56].  As 

such, these reported results do not constitute valid support 

for the closure concept.  In addition, there has been no 

direct verification of the closure concept.  The only "direct" 

*0ne can always obtain a relation of the form U = A + BR  ~ 
(where A and B are constants) to correlate fatigue crack 
growth data as a function of R over a limited range of grow- 
th rates.  Such a correlation neither depends on the exist- 
ence of crack closure nor supports the validity of the 
closure concept. 
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experiment that has been advanced in support of this concept 

(22) (in which it was claimed that the removal of the residual 

tensile deformation layer in the wake of the crack tip in- 

creased the rate of crack growth) is in itself suspect.  In 

this experiment, major portions of the fatigue cradk surfaces 

were removed by mechanical means (saw cut).  The most impor- 

tant portion (near the crack tip) for crack closure, however, 

was not removed.  Taken in conjunction with the fact that 

the mechanical process of surface removal can disturb the 

remaining crack surfaces and material near the crack tip, 

the claim of this experiment becomes highly questionable. 

The crack closure results and the companion fatigue 

crack growth data from this investigation raise additional 

questions with regard to the crack closure concept.  Figs. 
r 

12 to 15 show that AK cc  can in fact decrease with increas- etr 

ing AK in certain cases, which in turn is no longer compati- 

ble with the observed increases in fatigue crack growth 

rates.  These results show further that AK ff can depend on 

specimen thickness.  This thickness dependence for AK ff 

is inconsistent with the essential independence of crack 

growth rates on thickness over the lower range of K   and 3 ■ . max 

with the higher growth rate exhibited by the thicker spec- 

imens at higher K   levels (see Figs. 18 and 19).  Taken max 

in toto,these data tend to suggest that AK ff, as it is 

currently defined, does not represent a proper characteri- 
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zation of the mechanical driving force for fatigue crack 

growth. 

The absence of substantive support and the failure of 
i 

the closure concept to account for various aspects of con- 

stant-load-amplitude fatigue crack growth raise serious 

questions regarding the validity of the crack closure con- 

cept; at least in the simplified form proposed by Elber and 

used by Elber and by others.  The extension of this concept 

to the more complex problems of fatigue crack growth and life 

prediction under variable amplitude loading, therefore, does 

not appear to be warranted. 

V.  CONCLUSIONS 

On the basis of experimental results obtained during 

this investigation on 2219-T851 aluminum alloy, the following 

conclusions can be made: 

(1) Crack closure does occur during fatigue.  For the 

2219-T851 aluminum alloy, closure was observed at stress 

ratios between 0.05 and 0.7, and for specimen thicknesses 

ranging from 0.1 to 1.0 in. (0.254 to 2.54 cm). 

(2) The stress intensity factor at the onset of full 

crack opening (or the onset of closure) and the associated 

stress intensity range ratio (U) depend on the maximum stress 

intensity factor (K   ), stress ratio (R), and specimen J max 

thickness (or state, of stress).  U can decrease, remain 
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sensibly constant or increase with increasing Kmax» and tends 

to increase with increasing R and decrease with increasing 

specimen thickness (or with increasing tendency towards plane 
i 

strain).  The observed thickness dependence provides further 

support for the fact that crack closure is a 3-dimensional 

phenomenon and is not likely to be amenable to 2-dimensional 

treatment. 

(3) Data on fatigue crack growth kinetics indicate a 

systematic effect of stress ratio and a minor effect of speci- 

men thickness-  At the lower growth rate region, specimen 

thickness does not have a significant effect on fatigue crack 

growth in this alloy.  In the higher growth rate region, 

higher growth rates were observed for the thicker specimens. 

(4) No sensible correlation could be made between the 

fatigue crack growth kinetics and AKeff obtained from the 

crack closure studies.  Hence, the effective stress inten- 

sity concept, based on crack closure, it not able to account 

for the various aspects of fatigue crack growth under con- 

stant amplitude loading.  Its extension, in its present 

form, to the more complex problems of fatigue crack growth 

and fatigue life prediction under varialbe amplitude load- 

ing does not appear to be warranted. 
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Table II 

Test Matrix for Studying the Influences of Kmax, 

Stress Ratio and Specimen Thickness on Crack Closure 

Specimen 
Thickness** 

(in.) 

Stress Ratio, R Range of 
K   * *max 

(ksi/in.) 0.05 0.03 0.5 0.7 

0.1 X X X X 8-30 

0.2 X X 8-30 

0.5   ; X X X X 8-30 

1.0 X X 8-30 

♦Approximate range of Kmax; actual values depend on the 
stress ratio. 1 ksi/in = 1.099 MN-m~3/2. 

**1 in. = 2.54 cm. 
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Figure   18b; Relationship between Aa/AN and AK at R =0.05 
for different thickness specimens tested in de- 
humidified argon at room temperature. 
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Figure   19b; Relationship between Aa/AN and AK at R = 0.3 
for different thickness specimens tested in de- 
humidified argon at room temperature. 
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Figure   20: Schematic illustrations of load versus change 
in electrical potential (a) for an idealized 
crack in an elastic medium, and (b) for a 
well-behaved real crack 
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