
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1978

A developmental graphics programming package
for the Hewlett- Packard 1000 computer system.
James William Chamberlain

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Chamberlain, James William, "A developmental graphics programming package for the Hewlett- Packard 1000 computer system."
(1978). Theses and Dissertations. Paper 2063.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2063&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2063&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2063&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F2063&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2063?utm_source=preserve.lehigh.edu%2Fetd%2F2063&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

A Developmental Graphics

Programming Package for the Hewlett-

Packard 1000 Computer System

by

James William Chamberlain

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Electrical Engineering

Lehigh University

1978

ProQuest Number: EP76336

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest

ProQuest EP76336

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

CERTIFICATE OF APPROVAL

This thesis is accepted and approved in

partial fulfillment of the requirement for the degree

of Master of Science.

7}A/>P) /.? /Q79
(date)

Profc^^bjb in Charge

Chairman of Department

-ii-

ACKNOWLEDGEMENTS

I wish to thank Professor Peggy Ota for her help

in the creation of this thesis project. I would also like to

give credit for the creation of the "conceptual camera program-

ming system" to Joel Katzen whose system I modified with my

own ideas.

•iii-

TABLE OF CONTENTS

List of Figures
Abstract
I.)

II.)

III.)

Introduction
A.) The "Conceptual Camera Programming

System"
B.) The PLOTT Package
C.) The Three-Dimensional Vector-Matrix

Package
Mathematical Considerations Concerning
the CCPS

Page

vi
1

3
4

A.) Introduction
B.) Coordinate System Definition
C.) Coordinate System Transforms
D.) The Theory of Perspective Projection 20
The Internal Structure of the Conceptual
Camera Programming System
A.) Introduction
B.) The CCPS Program Flow
C.) Data Base Structure

1.) COORDS
2.) ANGLE
3.) TRIG
4.) TB2R
5.) TR2C

D.) Subroutine START
E.) Subroutine UPDTE
F.) Subroutine TRANS
G.) Subroutine IMAGE
H.) Subroutine CLIP1
I.) Array MSEQ ($, 15, 15)
J.) Body Motion Subroutines

1.) Subroutine XTRAN
2.) Subroutine YTRAN
3.) Subroutine ZTRAN
4.) Subroutine RTX2Z
5.) Subroutine RTY2X
6.) Subroutine RTY2Z
7.) Subroutine XTR
8.) Subroutine YTR
9.) Subroutine ZTR

10.) Subroutine X2Z
11.) Subroutine Y2X
12.) Subroutine Y2Z

K.) CCPS Programming Techniques
A.) Setmented Programs

1.) The Main Program
2.) Segment One
3.) Segment Two

26
26
27
29
29
32
35
37
37
40
45
47
48
51
55
57
58
58
59
59
59
59
60
60
60
60
60
60
62
62
63
67
72

IV

Page

IV.)
L.) The CCPS Procedural File
The PLOTT Package
A.)
B.)

C.)
D.)

Introduction
The PLOTT Subroutines
1.) Subroutine GRID
2.) Subroutine SCALE
3.) Subroutine TITE
Block Data k
The PLOTT Procedural File

IV-A.) The DRAW Subroutine
V.) The Three-Dimensional Vector-Matrix

Package
A.) Introduction
B.) The TDPKG Subroutines

1.) Subroutine VABS
2.) Subroutine VSUM
3.) Subroutine VDIFF
4.) Subroutine VSAME
5.) Subroutine VDOT
6.) Subroutine VPROJ
7.) Subroutine VSMUL
8.) Subroutine VCROSS
9.) Subroutine VXCOR

10.) Subroutine VYCOR
11.) Subroutine VZCOR
12.) Subroutine MINV
13.) Subroutine MMULT
14.) Subroutine MSUM
15.) Subroutine MDIF
16.) Subroutine MSMUL
17.) Subroutine VSMUL

C.) The TDPKG Procedural File
VI.) Summary and Conclusions

Bibliography
Appendix A
Appendix B
Appendix C
Vita

77
78
78
79
79
85
87
90
90
92

95
95
96
96
97
97
97
97
97
98
98
98
98
99
99
99

100
100
100
100
102
103
108
109
112
113
114

Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

List of Figures
Page

II-l Reference Coordinate System 7
II-2 Camera Coordinate System 9
II-3 Psi, Theta and Phi Rotational

Angles 11
II-4 Psi Rotational Angle 12
II-5 Psi Rotational Transform 13
II-6 Theta Rotational Angle 16
II-7 Phi Rotational Angle 17-a
II-8 The Two-Dimensional Film Plane 22
II-9 Two-Dimensional Projection 23
III-1 CCPS Program Flow 28
III-2 COORDS (5, 13) 31
III-3 ANGLE (5, 13) 33
III-4 TRIG (10, 6) 36
III-5 TB2R (4, 3, 3) 38
III-6 TR2C (3, 3) 39
III-7 Subroutine START 41
III-8 The Film Plane Size 44
III-9 Subroutine UPDTE 46
111-10 Subroutine IMAGE 48
III-ll Film Plane Overrun 53
111-12 Film Plane Overrun Cases 54
111-13 Two Body System Endpoint

Definitions 56-a
111-14 CCPS Superstructure 64
111-15 The MAIN Program 65
111-16 Segment One 68
111-17 Segment Two 73
IV-1 Subroutine GRID 82
IV-2 Example GRID Plot 86
IV-3 Subroutine TITLE 88
IV-A-1 Subroutine DRAW Example 93
IV-A-2 Round off Error in the DRAW

subroutine 94

VI

Abstract:

This thesis discusses the development of a software

graphics package for the Hewlett-Packard 1000 computer

system. The graphics software was written to form a

foundation for further development work in two pertinent

areas of computer graphics. The first area of development

was in data plotting capability. The subroutines created

allow a user to graphically represent two-dimensional data

in a convenient analytically form. The second area of de-

velopment was in the emulation of a "conceptual camera

programming system," first conceived and developed by Joel

E. Katzen, at the University of Pennsylvania. The system

as developed in this thesis closely parallels its prede-

cessor with a number of its own unique features. The

system allows a user to design three-dimensional animated

motion pictures of straight line bodies with ease and ver-

satility on a computer. The software was written entirely

in Hewlett-Packard's RTE Fortran IV.

The plotting subroutines aforementioned plot any two

one-dimensional data arrays. The plot that is generated is

graphed on a two-dimensional user-defined grided plane.

The plot may either be a point by point or a line represen-

tation of the data.

The "conceptual camera programming system" is a sys-

tem simulation of an actual animated motion picture camera.

As

previously mentioned this system can only handle straight

line bodies or straight line approximations to curved

surfaces at the present time. The problems addressed in

this area deal with system definition, initialization,

data bases, system updating, actual body movements (trans-

lation and rotation), coordinate system transforms, clip-

ping algorithms, and perspective projections. No actual

camera movements are dealt with here although they may

be easily integrated into the system. It is the hope

that this phase of the system will be developed in the

near future.

Therefore, it is the objective of this thesis to pro-

vide versatile capabilities in two pertinent areas of

computer graphics on the Hewlett-Packard 1000 computer

system and to make the systems as easy and convenient

as possible to use.

I. INTRODUCTION

This section contains a short discussion of the three

areas of computer graphics that have been developed on the

Hewlett-Packard 1000 Computer System.

A. The "Conceptual Camera Programming System"

As the title implies this system allows the user to

imagine the computer as a real and functioning camera.

This "camera" can be programmed to perform various pre-

determined functions. Since it is not a real camera but

a camera simulated visually by the computer and imagined

or conceived in the user's mind it can be labeled a

"conceptual camera". This "conceptual camera" lends it-

self to the design and filming of three-dimensional objects

much more readily than its real counterpart, since it is

really a software system simulation.

The idea for this particular system was derived from

a thesis by Joel E. Katzen entitled "A Conceptual Three

Dimensional Camera for Computer Animation"^ The system in

this thesis was designed to nearly emulate Katzen's system

on a different computer. The computer used was a Hewlett-

Packard 1000 Computer System which is a 16-bit machine

with 32,000 bytes of memory, a hard disc and tape unit for

additional storage. The computer can support five languages

Fortran IV, Fortran, Basic, Algol, and its own assembly

language. The four higher level languages are all Hewlett-

Packard versions.

The main considerations given to this system simu-

lation are: the ease and versatility of implementation by

the user, the ease of visualizing the animated three-dimen-

sional objects and their movements, and the ease of inter-

action between user and system. For this last considera-

tion the system actively interacts with the user on a con-

versational basis for initialization of data bases and

other information.

The conceptual camera programming system, referred

from here on as the CCPS, is just the start of a simula-

tion that in addition to handling complex camera actions,

could handle the complicated problems of hidden line elimi-

nation, shading, curved surfaces and highlighting.

Thus, the content of this section will only by con-

cerned with the problems of initialization, data base

structure, system updating, body system movements, coordi-

nate system transformations, perspective projections, and

two-dimensional clipping algorithms.

B. The Plott package

This section deals with a set of subroutines allowing

a user to graph two-dimensional data on a plotting plane.

The plane is a gridiron surface whose parameters are de-

fined by the user. The subroutines also scale the plotting

surface

4

and can title the axes if the user desires. The sub-

routine calls are written in Hewlett-Packard's Fortran IV.

The objectives in creating these software subroutines

were to give an user, an easy to use package with some basic

abilities in plotting data, ease in interpreting the data

from the plot, and the ability to draw analytic judgements

or conclusions from the data graphed. The routines were

written to be easily implemented by the user with a minimum

number of parameter definitions. These subroutines are only

the beginning of a package which could include semi-log,

log - log, three - dimensional, and multi - data plotting

routines.

C. The Three-Dimensional Vector-Matrix Package

This subroutine package was developed primarily to

support the vector and matrix manipulations in the CCPS.

The subroutines do the basic mathematics common in vector

and matrix algebra. Although developed primarily for the

CCPS, all routines can be implemented quite easily by a

user in other applications. Thus, this package can allow

a user to manipulate three-dimensional quantities found in

dynamics and statics, electro-magnetic waves and fields,

partial differential equations, etc.

Again all the routines are written exclusively in

Hewlett-Packard's Fortran IV.

II. Mathematical Considerations Concerning the CCPS

A. Introduction

This section is concerned with the mathematical

considerations necessary to implement the CCPS. Consid-

eration will be given to the following areas:

(1) Coordinate System Definition

(2) Coordinate System Transformation

(3) Perspective Projection in Three-Dimensions

B. Coordinate System Definition

To define three-dimensional bodies, and to have these

bodies rotate and translate in a three-dimensional space,

three coordinate systems must first be defined and initiated

These coordinate systems are,

(1) The Body System

(2) The Reference System

(3) The Camera System

The reference coordinate system is the reference by

which all other coordinate systems are defined and oriented.

Thus its origin is always defined as (0,0,0) for X, Y and Z

respectively and it has no angular displacements. The body

coordinate system is the initial orientation of each body

with respect to the reference system. This can be seen
f-

as in Figure II-l, for two bodies. The individual body in

each body system is then defined with respect to its co-

ordinate system. Up to four bodies may be defined in this

manner in the CCPS. L

FIGURE m-i (H)
WB\

1*R
REFERENCE
COORDINATE
SYSTEM

COAO)

4^82

BOOT
SYSTEM

I

BODY
SYSTEM

2

XB2

*BI

The camera coordinate system is the coordinate sys-

tem defined for the conceptual camera with respect to the

reference coordinate system. It has been established or

standardized in most computerized camera systems that the

camera's eye is pointed along the -Z axis of its coordi-

nate system. This has been done so that the film plane

upon which all bodies are projected (see Figure II-8) is

always in the X - Y plane at the camera system and so that

the film plane and the camera coordinate system are main-

tained as right-handed coordinate systems. (Thus, the

reference and body coordinate systems must also be ini-

tialized as right-handed coordinate systems.) To visu-

alize the camera's coordinate system with respect to the

body and reference systems refer to Figure II-2.

To transform the coordinate points of a particular

body from the body to the reference to the camera coordi-

nate system, a three-dimensional coordinate transform must

be realized.

C. Coordinate System Transforms

To perform a complete transform from one coordinate

system to another, six independent variables must be taken

into account. Of these variables, three make up the ro-

tational transformation and three may up the translational

transformation.

a

*Y,
FIGURE IE-2 (t)

**R

B
BODY

SYSTEM

REFERENCE
COORDINATE
SYSTEM

XR
c0,0,0,) coWd0)

AYC

CAMERA
SYSTEM

*B

 3C
C0,0,0> C0P,90P,0°)

First, the rotational transform will be considered.

If we are originally in the reference coordinate system

and wish to transform a body's coordinates to the body

system, and need only for the moment apply a rotational

transformation, we must first define three Euler angles of

rotation. These angles are 0, 0, and >* and are shown in

Figure II-3. Looking first at y rotation, we can visua-

lize this rotation more clearly by looking straight down

the Z axis as in Figure II-4. The ^ rotation is defined

as a counter-clockwise rotation around the Z axis. To

transform a point in the (X, Y, Z) to the (X', Y', Z') co-

ordinate system (or reference to body system), with a)*

rotational displacement we must derive the three-dimen-

sional matrix transform which performs this operation. To

do this we can represent some point P in the X - Y plane by

a vector OP as in Figure II-5.

We may represent the vector OP in terms of the

(X, Y, Z) system as a linear combination of i, j, and k

basis vectors and hence we may write,

OP = xi + yj + zk

We may also represent OP in terms of the (X', Y', Z') sys-

tem with basis vectors e^, e2, and 63.

OP = x'e^, + y'e2, + 2*63

The unit basis vectors e^, e2» and 63 in terms of i, j, k

are found by using the rotational angle >£. Thus, it can be

seen by inspection that,

10

FIGURE H-3

n

\
\
\

*Y

\
\

■4-

\

ZCup)
Z'(up3

^

 \

FIGURE IT-4

V

12

ZIup)
c^Cup)

FIGURE IE-5

13

- cost i + sin Y j

- cos (f + /7/2)i + sin (V + TT/2) j

« - sin Y i + cos Y j

« k

Therefore,

and since,

xMcosYi + sinYj) + y' (-sin Y i + cosYj) ♦
z'k
(x'cos t - y'sinY)i + (x'sinY + y'cosYH +
z'k

xi + yj + sk = (x'cos t - y'sinY)i + (x'sinY* y'cosY)j +
z'k

The equations for the rotation of the axes are found by

the equality of vectors,

x = x'cosf - y'sinY

y = x'sinY + y'cosY

Z = B'

In matrix form, the above becomes
— -

X X'

y = 0 X y'

z «'

e,

cos)^ -sin> 0

[T] - sin/' cost 0

0 0 l

It is interesting and useful to note that,

det [T] « cos2* + sin2 > - 1

14

and thus,

jrl ■ [TJ transpose

Therefore to transform a point in theCX Y £) to theCX'Y'B')

system the following matrix multiplication is applied.

cost

sinY

0

or,

rxt

Y'

B'

-sint 0 X' X

cost 0 • Y* B Y

0 1 8' 8

cos Y sin t 0

■sinY cost 0

0 0 1

X

Y

8

but, if we follow the angle convention in Figure I1-3 for

we must replace the i* in the proof above with - f

Thus,

X' cos t -sin 0 X

Y' ss sint cos 0 • Y

*' 0 0 1 8

This is the f rotational transform matrix.

The next rotational angle is O which is a counter

clockwise rotation about the X axis as indicated in

Figures II-3 and II-6.

A similar proof can be established for the trans-

formation of a point in the (XYE) system to the (X'Y'B')

15

\
\
\

AY

\

\
\

\
\
&

"^e
XCUP)
X'CUPD

t

FIGURE IE-6

16

system, with a e rotational displacement. This trans-

formation becomes,

1 0 0 X X'

0 cose -sine • Y - Y'

0 sine cose 2 B'

Likewise for the final rotational angle 0, in Figure II-3

and II-7,

COS0 0 sin0 X X'

0 1 0 • Y ■i Y'

-sin0 0 COS0 2 &•

The complete rotational transform from the 0CY8) to

the (X'Y'E') system (or reference to body system) taking

into consideration the rotational displacement of 9, 0,

and V altogether can be gleaned from a simple definition

proved in Vector Calculus. The definition is,

M • M (M • (x>) - (N • N ■ [Ti]) •<x)

A proof of the above is not included here but may be found

in bibliography reference (1).

Thus a complete transform (X,Y,8) to(X',Y,B') is,

cos t -sin t 0

sint coat 0

0 0 1

10 0

0 cose -sine

0 sine cose

17

cos0 0 sin0

0 10

-8in0 0 cos0

r"

\
\
\

AX'

\

\
\
\
\

h- VL
YCUPD
Y'CUP)

z

*

FIGURE IT—7

17a

From now on the three rotational matrices above will be

labeled as the matrix, [TR2B], meaning the transform from

the reference to body system. Thus,

[TR2B] X X'

Y ■s Y'

Z Z'

It may be quite apparent now that what will be required

in the CCPS is the rotational transform from the body to

the reference system.

Thus,

X

Y

Z

[TR2B)
-1

X'

Y'

Z'

but this is the same as,

X

Y

Z

[jR2Bj
transpose

X'

Y'

Z'

And thus we can define,

[TB2R] - &R2B| transpose

To make the transformation complete, the translational

transform must be applied. If Xj»2B» Y , , and Z--- are

given the definition, as the translational displacement of

a particular body from the reference to the body system.

18

and, if (X, Y, Z) and (X', Y', Z') are relabeled

(XR, YR, ZR) and (XB, YQ, Zg) respectively, the entire

transform can be written as one equation:

[TB2R) .

"XB XR2B V
*B + YR2B

a YR

-ZB .ZR2B. _ZR

(1.)

Any translational displacement of the body in

(XD, YQ/ ZB) results in an identical (XR. YR, ZR) transla-

tion in the reference system given the initial displace-

ment between both systems, thus, the above equation.

Next, it is appropriate to consider the transforma-

tion from the reference to the camera system, since our ob-

jective is to transform points of a body in its system to

a pre-defined camera system. The rotational transform

from reference system to camera system is developed in the

identical manner as the pnteBJ and thus, it will just be

stated simply as,

10 0

0 cosOc sin9c

cos)^ -sinrcO

sin/1. coatt. 0

0 1 0-sin6c cos8c

cos#c 0 sinFc

-sinPL

1 0

0 coo0c

where yc, 6C, and jBfc are the rotational angles of orien-

tation for the camera system.

The entire transform from the reference coordinate

system to the camera coordinate system including the trans-

lational

19

transform is developed as before and can be stated as,

[TR2C] .

V -
XR2C

*R
- XR2C

>_ ZR2C

(2.)

where again (XR2C»
YR2C' ZR2C^ *s tne translat*onal dis-

placement of the camera coordinate system with reference

to the reference system.

Thus, if a body is defined in its body coordinate

system it can be transformed point by point into the pre-

defined camera coordinate system by the application of the

above equations. These equations may be combined into one

equation which entirely describes the transformation from

(Xfi, YQ, ZB) to (Xc, Yc, Zc) and it may be written as,

= [TR2C] [TB2R| .

V
\

XR2B XR2C

YB
\ + YR2B - YR2C

ZB
/

ZR2B ZR2C

(3.)

D. The Theory of Perspective Projection

Once the coordinates of a particular body are known

in the camera coordinate system, they must then be pro-

jected into a two-dimensional film plane or screen. There

are several methods of accomplishing this; one method may

be developed

20

by looking at Figure II-8. In Figure II-8, it is desired

to project point P onto the X - Y plane and thus into

point P'. The camera "eue" is located at Zc«o. and

points along the -Zc axis. The Xp - Y_ plane is the film

plane or screen. (Xc, Yc, Zc) is one point of a particular

body which has been transformed to the camera coordinate

system. 0pov is tne fi-eld of view of the camera. In the

CCPS, Xp(max) will equal Yp(max)# the X and Y field of view

angles will be equal (this is more for a matter of con-

venience than any other reason).

Note that the orientation of the film plane is a

righthanded coordinate system. Thus, after the perspective

projection, no coordinates need further transformation or

scaling on the film plane.

The perspective image of the lines of a body can be

generated easily by transforming only their end points and

drawing a line between the transformed end points in the

proper order.

To visualize the perspective projection of the end

points see Figure I1-9. This figure is the same as Figure

II-8, only looking down the YQ axis. Xc, Yc, and Zc are

known for point P, 0pov is known, and so is b, the film

plane size. To find to X and Y , the law of similar

triangles can be applied.

Thus, the ratio of line segments in triangles OQP and

OQ'P' are,

21

oo
I

LU

LL.

22

(Zc=0)

FILM PLANE

FIGURE H-9 (<;.)

KXtffc,Z(0

23

or,

OQ . OQ'
QP OP'

Zc a a
Xc -Xp

2^£ = aXc (Xc and -Zc are known)
-Zc

but, tan (0pov) = b (0pov and b are known)

tan(0FOV)

thus,

Xp = bXc
-Zctan(Opov) (1.)

By an identical argument it can be shown that,

yP = byc (2.)
-Zctan(0FQV)

It may be noted that due to the way the camera coor-

dinate system and the film plane are oriented, a couple of

projection limitations are present. One limitation is

that the projection of a point is not possible if Zc £ 0.

This limitation is rather apparent; the camera cannot see

an

24

object which lies behind it. The second limitation is that

yp and xp must be /b/. In other words, the projected

point must lie on the film plane. This leads to the con-

siceration of a clipping routine to protect against screen

(film), plane overrun. This clipping algorithm is easiest

accomplished in two-dimensions on the film plane itself.

This algorithm is discussed in detail later.

25

III. The Internal Structure of the Conceptual

Camera Programming System

A. Introduction

This section will deal exclusively with the internal

workings of the CCPS. It will describe the program flow,

data base, and subroutines necessary to implement this

system.

The principle subroutines that will be outlined in

this section are:

(1.) START - the CCPS initialization subroutine

(2.) UPDTE - the CCPS data base bookkeeper sub-

routine

(3.) TRANS - the CCPS coordinate system transform

subroutine

(4.) IMAGE - the actual film image producing

subroutine

(5.) CLIP1 - the three dimensional clipping

algorithm

(6.) SEQ - the body connection scheme storage

subroutine

(7.) Body motion subroutines -

XTRAN YTRAN ZTRAN

XTR YTR ZTR

RTX2Z RTY2X RTY2Z

X2Z Y2X Y2Z

26

The CCPS procedural file will also be explained along with

CCPS segmented programming technique.

B. The CCPS Program Flow

The program flow format can be realized by viewing

Figure III-l.

The numbers referenced below refer to the numbers

next to each box in Figure III-l.

1. CALL START - This subroutine is only called

once in the CCPS. It initializes all the important

system parameters. These parameters are the number

of bodies, in the initial body and camera orienta-

tions, the body center definitions, the field of view

angle, the number of lines in each body, and the

frame size. It also initializes the data base and

sets the frame counter to one.

2. In this step, the point connection scheme is

defined totally by the user in the array MSEQ. This

array is then stored in the data base via the sub-

routine SEQ.

3. At this point, all the body motions which are

to be performed in this animation are now defined.

Only one body motion of the six types may be defined

for each body. This facet of the CCPS is explained

fully later.

27

CALL START
Initialize the COBS

Define & store
MSEQ(4,15,15)
in the internal
data structure

Define all
body motions

Define all bodies

CALL IMAGE

Preform all
body motions

CALL IMAGE
Transform the body

to the camera
system

1)

2)

5)

6)

FIGURS UX&l
COPS Program Plow

CALL UPDTE

Update CCPB 8)

CALL IMAGE

Project endpoints
on film plane

7)

28

4. At this point,each body is now defined in its

own body system. This is accomplished by defining all

its end points.

5. CALL IMAGE - At this point, all body motions

are now performed upon the bodies that have been

previously defined.

6. In this step, all body coordinates are trans-

formed to camera coordinates within the camera co-

ordinate system.

7. In this step, the resulting camera coordinates

are now projected onto the film plane and clipped.

8. CALL UPDTE - The frame counter is incremented

by one and all flags are checked and/or set.

9. In this step,the loop is checked for completion.

This is a simple user defined DO loop in Fortran IV

(ie DO 1 I = 1, N, where N is the number of frames).

This step defines the number of frames in the animation

process, and controls the looping format of the CCPS.

3. Data Base Structure

This section details the data foundation for the CCPS.

I nternal data'structure processes will be described so as

to form a foundation for the explanation of other CCPS rou-

tines involving the data base.

1) COORDS

The first element in the CCPS data base is an

array called COORDS. As can probably be gleaned from

29

the name, this array contains all the information

pertaining the coordinates of the camera system

and of the various body systems. To better under-

stand what this data base array contains refer

to Figure III-2.

In Figure III-2, COORDS is a five by thirteen

dimensional array. The rows of the array reference

the camera and each of the bodies. The columns of

the array reference data concerning the camera and

each of the bodies. The data referred to by the

first five columns are,

1.) Flag - an indicator that is set or reset telling

the CCPS whether the camera or any body is in

motion or not. (0-no motion, 1-motion in

progress.)

2.) x - the initial X displacement of the camera

of the bodies.

3.) AX - the incremental X displacement of the

camera or the bodies.

4.) ST - the starting frame of the incremental X

displacement.

5.) ED - the ending frame of the incremental X

displacement.

Displacements are referrenced to the reference coordinate

System. The above definitions are identical for the other

30

Q
UJ

<3

ra

Q
UJ

1-
CO

>-
<

>-

s

fc

<

X

<\J

UJ
a:

LL.

< a:

o

>-
Q
O
CD

§
O
CQ

>- a
o
CO

31

eight columns. As can be seen, storage has been alloted

for four bodies and a camera.

If there are zeros in the Flag, D, ST, and ED

columns for X, Y, or Z then no changes are specified for

that parameter at the present time. If these parameters

are non-zero, then a change is indicated for that speci-

fied coordinate at some time in the animation process.

2) ANGLE

The second element in the CCPS data base is

an array called ANGLE. This array is identical in

size to the array COORDS, but instead contains in-

formation concerning the angular displacements of

the various bodies and the camera. To see how ANGLE

is constructed, look at Figure III-3.

The rows of the array ANGLE reference the

four bodies and the camera. The columns of the array

reference information concerning the four bodies and

the camera. The information referenced by the first

five columns is:

1.) FLAG - an indicator, that is set or reset,

telling the CCPS whether the camera or any

body is in motion or not (0-no motion, 1-

motion in progress).

2.) 9 - the initial 6 angular displacement of

the camera or any of the bodies.

32

<

^

o
UJ

>5 <

>s*

O
UJ

CD
<

CD

<
-J u.

l

UJ
a:
£2
u.

<
a:
UJ 5 5

S 8

ro
>- a o
£0

33

3.) A 6 - the incremental O angular dis-

placement of the camera or any of the

bodies of each frame.

4.) ST - the starting frame of the 0 angular

displacement.

5.) ED - the ending frame of the 0 angular

displacement.

Again, all displacements are referenced to the reference

coordinate system, and the above definitions also hold true

for remaining columns. If there are any zeros in i, 3, 4,

or 5 above, there is at present no motion indicated. If

there are any non-zero quantities in 1, 3, 4, or 5 then

motion is indicated at some time.

As an example of what occurs in the above two arrays

assume the following data exists in the both arrays:

COORDS (2, 6) = 10. COORDS (2, 7) » 1.

COORDS (2, 8) = 2. COORDS (2, 9) = 11.

COORDS (2, 1) = 1.

ANGLE (2, 2) = 30. ANGLE (2, 3) - 5.

ANGLE (2, 4) = 2. ANGLE (2, 5) - 4.

ANGLE (2, 1) ■ 1.

First, looking at the COORDS data we see COORDS (2,1)

= 1. This indicates that some motion is presently in pro-

gress for body 1. COORDS (2,6) - 10., indicates that body

1 is displaced initially in the Y direction by ten units.

Looking

34

one column over, COORDS (2, 7) » 1., means that body 1 is

to be displaced by one unit per frame starting at frame,

COORDS (2, 8) = 2., and ending at frame COORDS (2, 9) -

11.. Thus the total Y displacement from frames two to

eleven is ten units. The units are user defined in sub-

routine START to be discussed later.

The ANGLE data can be analyzed in the following

manner. ANGLE (2, 1) = 1., tells us that again body 1 is

presently in some angular motion. ANGLE (2, 2) ■ 30., in-

dicates that initially 0 is equal to thirty degrees.

ANGLE (2, 3) tells us that 6 is rotated five degrees per

frame starting at thirty degrees. The rotation is to

start at frame ANGLE (2, 4) = 2. and end at frame ANGLE

(2, 5) =4.. Thus a total 6 rotation of fifteen degrees

occurs in three frames.

3) TRIG

In order to reduce the number of computations

performed in the CCPS an array named TRIG was cre-

ated. This array simply contains the sine and co-

sine values, for the camera and the four bodies, of

e, A9, 0, A0, Y*, and Ay . The array is drawn in

Figure III-4.

Thus, TRIG (6, 3) is the storage location

for the cosine of the initial O rotational angle for

body 2. Likewise, TRIG (9, 6) is the sine of the

incremental y rotation of body 4. If any

35

CAMERA

BODY I

BODY 2

BODY 3

BODY 4

9 A0 0 A0 P up
SIN

COS

SIN

COS

SIN

COS

SIN

COS

SIN

COS

FIGURE m-4
36

displacement is rotationally zero the sine values

are, of course, one and the cosine values are

zero.

The reason for the existence of the TRIG

array is to perform all trigonometric calculations

only once, thus, increasing the CCPS speed and

efficiency.

4) TB2R

The TB2R array is a three dimensional

array containing the matrix for transforming a

particular body from its body system to the

reference system. This transform is discussed

in section II-C, Coordinate System Transforms.

TB2R is configured as in Figure III-5.

As seen the variable ,I, defines which

body each array transforms. Each array is a three

by three matrix since it is a three dimensional

transformation. The values for TB2R are obtained

from the array TRIG.

5) TR2C

Array TR2C as illustrated in Figure III-6,

is the transform from the reference system to the

camera system as discussed in Section II-C, Co-

ordinate System Transforms. There exists only one

37

L-4-
(BODY 4)

(BODY 3)

1-2
(BODT 2)

1-1
(BODT 1) XB2R

TB2R

TB2R

TB2B
(I.lf2)

TB2B
(I»2,2)

TB2B
(1.3,2)

TB2H
(I»lt3)

TB2R
(If2,3)

TB2E
(1,3.3)

PIGUBE III-5

38

TR2C
Cl,l)

TR2C
Cl,2)

TR2C
Cl,3)

: TR2C
C2,l)

TR2C
C2£)

TR2C
C22)

TR2C
C3J3

TR2C
C3,2D

TR2C
C3,3)

FIGURE HI-6

39

camera in this system and thus only one three by

three matrix traitsform. Again the values for TR2C

are taken from the array TRIG.

D) Subroutine START

This subroutine is the initializing and data

entry routine for the CCPS. Figure III-7 shows the

program flow for the START subroutine. The programmer

call for the subroutine is:

CALL START

No parameters need be passed to the subroutine.

All data entered via START is stored in a common data

block called CCPS which is discussed in full later.

The following numbered explanations correspond

to the numbered blocks in the START program flow in

Figure III-7.

1.) This step initializes the COORDS, ANGLE, and

TRIG arrays by setting the values of COORDS

and ANGLE to all zeros. Since all angles in

the system are initially zero, the odd rows

(sines) of TRIG will be set to zero and the

even rows (cosines) will be set to one.

2.) In this step, the LSEQ array is initialized

by setting all of its values to zero. The

LSEQ array is explained in full later.

40

Initialize COORDS,
ANGLE,and TRIG arrays

.&.

Initialize LSEQ array

\f

Enter initial dis-
placement of the
camera system

Enter initial dis-
placements of all

bodies

Enter body centers of
all bodies

Enter initial field of
view angle

1)

2)

3)

4)

5)

6)

41

FIGURE III-7
Subroutine 8TABT

a.
Enter number of lines

per bodies

Enter film frame size

J±

Recalculate the TRIG
array from the newly

entered data

Calculate the TB2R &
TR2G arrays from the

entered data

±.

Set PRMCT-1.

7)

8)

9)

10)

11)

3.) At this point, the initial displacements of

the camera coordinate system are interactively

inputed and stored in COORDS and ANGLE. These

parameters are the X , Y , Z , 8 , 0 , and 4>
C C w w C C

displacements as discussed in Section II-C. As

discussed in Section II-C the values for X . Y . c c

Z , 9 , 0 , and Z' will normally be set to c c c c

(0,0,0) and (0,90,0) respectively. This gives

the camera no translational displacement, thus

placing the camera at the origin, but rotates

X axis into the B axis ninety degrees, setting

a right handed coordinate system, and thus, the

proper orientation for the projection of the

bodies onto the film plane.

4.) In this step the initial displacements of all

body coordinate systems are interactively in-

puted and stored in COORDS and ANGLE.

Again the parameters inputed for each body are

Xg, YB, Zfi, eB, 0B, and /*fi. These parameters

are displacements referenced to the reference
/ ,

coordinate system.

5.) At this level, the body center or the point of

rotation for each body is entered. This point

is the physical center of each body in its own

body coordinate system or a point at which the

42

user desires the body to be rotated about

(discussed later), again defined in its own

body system.

6.) The camera's field of view is entered here.

If, for example, a field of view of 30° is

desired then ©fov in Figure II-8 is 30°.

The TANFOV value in the projection equation

in Section II-D then becomes, TANFOV ■

tan(30°) = 0.577.

7.) In this step, the number of lines for each

body must be defined.

8.) At this point the frame size is defined by

the user. Normally the size of the film

plane is set to two and thus b in

Figure III-8 is one. This is mostly a

matter of convenience. (Note that the film

plane is always square.)

9.) At this time, the new values for the TRIG

array are calculated from the new data entered

into the ANGLE array in steps 3 and 4.

10.) Now the transformational matrices TB2R and

TR2C are found and thus initialized from the

data found in the TRIG array as discussed

in Section II-C.

43

FRAME SIZE

FIGURE HT -8

44

11.) Finally, the frame counter, FRMCT, is set

equal to one in preparation for the drawing

of the first frame.

E) Subroutine UPDTE

This subroutine is the "bookkeeper" for the

CCPS. Figure III-9 depicts the program flow for the

routine. The programmer call for the subroutine is:

CALL UPDTE

The following numbered explanations correspond

to the numbered boxes in Figure III-9.

1.) The subroutine first checks the data structure

to see if any motion is ending in the present

frame. This is accomplished by checking the

END column for each body in the COORDS and

ANGLE data arrays.

2.) If a motion is ending, the appropriate flag

is set from a one to a zero in the FLAG

column in the COORDS and ANGLE data arrays.

3.) In this step, the frame counter is incremented

by 1. . Since CALL UPDTE is at the bottom of

the loop procedure, all processing for the

present frame is completed with the completion

of Step 2. Thus, the present frame incremented

by one in preparation is for the next frame.

45

MGUHE IU-9
Subroutine UPDTE

Check to see if any
motions are ending

If any motion is
ending set the
apprpriate flag in
the data structure

1)

2)

Increment PRMOT by 1, 3)

Check to see if any
motions are starting 4)

If any motions are
starting set the
appropriate flag in
the data structure

5)

46

4.) In this step, the subroutine checks to see

if any motion is starting in the upcoming

frame. As before, this is accomplished by

checking the ST column in the COORDS and

ANGLE data arrays.

5.) If any motion is starting in the preceding

step the appropriate flag is set from a zero

to a one in the FLAG column of the COORDS and

ANGLE data arrays.

When in the i iteration of the loop in

Figure III-l, subroutine UPDTE is called after the

i frame is completed. The system is then completely

updated and set for the drawing of the next frame.

Program control is then returned to the loop and the

drawing of i +1 frame then precedes.

F) Subroutine TRANS

This subroutine determines the transformational

matrices TB2R and TR2C, as described in Section II-C,

and Sections III-C-4 and III-C-5. This subroutine is

invisible to the general CCPS user. It is called in

subroutines START, to initialize both matrices, and

in IMAGE to determine each matrix after a body

rotation or translation. The subroutine call is:

CALL TRANS (IBODY)

47

where IBODY is the body for which TB2R is being

determined, i.e. TB2R (IBODY, 3, 3). IBODY equal

to zero determines the matrix TR2C, i.e. TR2C (3,3).

G) Subroutine IMAGE

The discussion in this section deals with

boxes 5, 6, and 7 in Figure III-l which draw the

three-dimensional bodies on the film screen. The

program flow for the IMAGE subroutine is outlined

in Figure 111-10. The programmer's subroutine call

for drawing the bodies is:

CALL IMAGE (X, Y, Z, NCOOR, IBODY)

where X, Y, and Z are the coordinates for the

particular body to be drawn, NCOOR is number of

coordinates defining that body, and IBODY is the

body system's designated number.

The numbered discussions that follow refer

to the numbers beside the boxes in Figure 111-10.

1.) In this first step, the subroutine decides

whether any body motion has been specified

to occur. This is accomplished by checking

the flags in COORDS and ANGLE. If no motion

is specified for the body in this frame, the

subroutine returns program control to the

loop process. If motion is to occur the program

continues onto Step 2.

48

FIGUBB IU-10
Subroutine IMAGE

Ereform rotation or
translation of the
proper body 2)

Determine TB2H & TR20 3)

Use TB2H to transform
any body from its
system to the refer-
ence coordinate
system

4)

Use TB2G to transform
each body from the
reference to the
camera coordinate
system

5)

1

GALL CLIP1

 _

7)

Erojeot each body
from the camera system
onto the 2-D film
plane

6)

49

2.) Since motion is indicated for the particular

body under consideration, the subroutine

determines what motion is desired, rotational

or translational, and in what direction. The

body is then rotated or translated in its own

body system by a program call to XTR, YTR,

ZTR, X2Z, Y2X, and/or Y2Z depending on the

motion desired. These subroutines will be

discussed in detail later in Sections III-J-7

thru III-J-12.

3.) When the body has been rotated,and the new

coordinates determined, TB2R and TR2C must then

be recalculated to determine the transform

from the body to camera coordinate system.

4.) TB2R is then employed to transform the co-

ordinates from the body coordinate system to

the reference coordinate system as done by

Equation (1.), Section II-C.

5.) The coordinates are then transformed from

the reference to the camera coordinate system

via the use of TR2C as in Equation (2.),

Section II-C. The total transform being

Equation (3.) of the same section.

6.) In this step, once the coordinates lie in the

camera's coordinate system they may be projected

50

onto the film plane via the projection

equations (1.) and (2.) of Section II-D.

7.) In this step, the subroutine CLIP1 is called.

This subroutine clips the projected two-

dimensional body coordinates to the film plane

boundaries, so that no screen wrap around

occurs. If the body lies totally on the screen,

no action is taken on the body's coordinates.

CLIP1 will be discussed in greater detail

later in Section III-G. Once the coordinate

points have been projected and clipped to the

film plane size, the body lines are drawn

connecting the end point coordinates in proper

sequential order. This order is determined

by the array, MSEQ(4, 15, 15). Again, the

drawing routine and the MSEQ array will be

discussed in detail later in Sections III-I

and IV-A. Once all of the above has been

accomplished, the body is completely drawn

on the film plane and the subroutine IMAGE

returns control to the process loop.

H) Subroutine CLIP1

This subroutine retards any of the bodies

projected onto the film screen from exceeding the

boundaries of the film plane. If any line of a

51

projected body where allowed to exceed the film

plane boundaries it would wrap around to the

opposite side of the screen and be drawn there,

giving a distorted representation of the body,

see Figure III-ll.

In Figure III-ll, line AB has exceeded one

of the film plane boundaries. The line segment B'B

is the segment of line AB which has exceeded one

boundary. This line segment has wrapped around to

the opposite side of the screen and produced line

segment CD on the screen.

To eliminate such distortions,each line that

overruns a film plane boundary must be clipped so

that it does not exceed that boundary value. Thus,

in Figure III-ll line AB, must be clipped to line

AB so that line CD does not appear on the screen.

In other words, the clipping subroutine must determine

that line AB exceeds the screen size, calculate point

B', and replace point B with point B'.

There are four such screen overrun cases that

the clipping algorithm must handle. These four

cases are illustrated in Figure 111-12.

The following discussion refers to the each

case in Figure 111-12 and what action must result in

the clipping algorithm.

52

FIGURE HI-11

53

FIGURE HI-12

54

.rd

MSEQ (1, 3, 4) - 5

This means that for body system 1, the 3'

line to be drawn connects points 4 and 5. Thus for

the cube and the pyramid in Figure 111-13, MSEQ

would be defined, (for the cube),

MSEQ(1,1,1) " 2 MSEQ(1,5,3) - 4

MSEQ(1,2,1) - 4 MSEQ(1,6,3) - 7

MSEQ(1,3,1) - 5 MSEQ(1,7,6) - 5

MSEQ(1,4,3) » 2 MSEQ(1,8,6) - 7

MSEQ(1,9,6) - 2 MSEQ(1,11,8) - 7

MSEQ(1,10,8)» 5 MSEQ(1,12,8) - 4

Y

(for the pyramid),

MSEQ(2,1,1) « 2

MSEQ(2,2/1) » 4

MSEQ(2,3,3) - 4

MSEQ(2,4,3) o 2

MSEQ(2,5,5) - 1

MSEQ(2,6,5) = 2

MSEQ(2,7,5) = 3

MSEQ(2,8/5) « 4

(The rest of MSEQ is set equal to zero by the

subroutine START.)

This array must be defined immediately after

subroutine START by the programmer as in Figure III-l,

Immediately after defining MSEQ for all the bodies

55

BOOT SYSTEM I

FIGURE HE-13

56

the programmer must store the array in the data

structure. This is accomplished by the subroutine

call:

CALL SEQ(MSEQ)

which stores MSEQ in the internal data base. Note

that MSEQ must be dimensioned by the user as a

four by fifteen by fifteen, three dimensional array.

Thus, the programmer may only define four bodies with

a maximum of fifteen lines per body.

J) Body Motion Subroutines

The discussion in this section deals with the

box numbered 3 in Figure III-l.

There are six possible subroutine calls for

defining rotation and translation of a body in the

CCPS. Of these six motions, three are rotational

and three are translational. The six subroutines

are:

XTRAN RT X2Z

YTRAN RT Y2X

ZTRAN RT Y2Z

Any of the above motions are performed within

a particular body system before the body is trans-

formed to another coordinate system. All of the

above subroutines set up their respective motions

but they do not actually perform the motion. The

57

subroutines that perform the actual rotations and

translations are:

XTR X2Z

YTR Y2X

ZTR Y2Z

Thus, the programmer uses the first set of sub-

routines to store information about how a certain

body is to move in each picture frame. The second

set of subroutines move the body as specified by

the first set.

The second set of subroutines are invisible

to the user and are called only by the subroutine

IMAGE.

The discussion that follows will analyze

each of the subroutines mentioned above.

1.) Subroutine XTRAN (IBODY, START, END, FEET)

When a user calls this subroutine a translation

is set up in the X direction of the IBODY**

body system. The translation will begin at

frame START and end at frame END. FEET is the

distance of the translation. FEET maybe negativ

or positive. START, END, and FEET are assigned

the same meanings in the following translational

and rotational subroutines.

2.) Subroutine YTRAN (IBODY, START, END, FEET)

When this subroutine is employed a translation
58

is set up in the Y direction of the IBODY**

body system.

3.) Subroutine ZTRAN (IBODY, START, END, PEET)

When this subroutine is referenced, it will set

up a translation in the Z direction of the

IBODY** body system.

The definitions of the body rotation sub-

routines match those defined rotations in

Section II-C.

4.) Subroutine RT X2Z (IBODY, START, END, DEGS)

When this subroutine is called, it will set

up a 0 rotation of DEGS degree of the entire

IBODY1* body system.

5.) Subroutine RT Y2X (IBODY, START, END, DEGS)

When this subroutine is referenced, it will

set up a 6 rotation of DEGS degrees of the

entire IBODY body system.

6.) Subroutine RT Y2Z (IBODY, START, END, DEGS)

When this subroutine is called, it will set up

a rotation of DEGS degrees of the entire

IBODY** body system.

Note that in the above three rotational sub-

routines that DEGS may either be a positive or

negative number, or respectively, a positive or

a negative rotation.

59

7.) Subroutine XTR (X, Y, Z, NCOOR, IBODY)

When this subroutine is employed, it will

translate the IBODY body coordinate system

in the X direction as specified by the sub-

routine XTRAN. X, Y, and Z are the actual

coordinates in the IBODY body system.

NCOOR is the number of coordinates in the

IBODY body system. All input parameters

are supplied by the subroutine IMAGE. X, Y,

Z, and NCOOR assume the same definitions in

the following subroutines as above.

8.) Subroutine YTR (X, Y, Z NCOOR, IBODY)

When this subroutine is called, it will trans-

late the IBODYth body system's body in the Y

direction as specified by subroutine YTRAN.

9.) Subroutine ZTR (X, Y, Z, NCOOR, IBODY)

When this subroutine is called, it will trans-

late the IBODYth body system's body in the Z

direction as specified by subroutine ZTRAN.

10.) Subroutine X2Z (X, Y, Z, NCOOR, IBODY)

When this subroutine is referenced, it will

rotate the entire IBODY body system as

specified by RTX2Z.

11.) Subroutine Y2X (X, Y, Z, NCOOR, IBODY)

When this subroutine is called, it will rotate

60

the entire IBODY body system as specified

by subroutine RT Y2X.

12.) Subroutine Y2Z (X, Y, Z, NCOOR, IBODY)

When this subroutine is called, it will rotate

the entire IBODY body system as specified

by subroutine RT Z2Y.

When any one of the first six subroutines are

called by the user data is stored immediately in the

internal data structure. Therefore, it becomes

apparent that only one of each of the six subroutines

may be called for a particular body during Step 3 in

Figure III-l. Thus, there can only be six body motion

subroutine calls per body system during Step 3.

Finally, it should be mentioned that when the

user employs these translational subroutines he must

be very aware of where the bodies are moving in respect

to the reference coordinate system and where the bodies

are initially oriented. This is vital since these two

parameters determined where in the camera coordinate

system the body will be transformed and thus where, if

at all, the body will be projected onto the film plane.

To make the system easier to use, the now user

should define all initial body orientations with zero

displacement and zero angular rotation, thus placing

his initial programming attempts in the middle of the

film plane.

61

K) CCPS Programming Techniques

Due to the limited size of the H. P. 1000*8

core memory specialized programming techniques,

restricted to R.T.E. software, must be utilized.

Since the CCPS is such a large program, all of it

cannot reside in the H. P. 1000's core memory at one

time without memory overflow errors occuring.

To alleviate this problem, the CCPS'8 main

structure is broken up into two substructures or

programming pieces. These pieces are called seg-

mented programs.

A.) Segmented Programs

This section will deal with what programming

considerations are necessary to run an animated motion

picture process with the CCPS, via segmented programs.

Segmented programs are discussed in some detail

in Hewlett-Packard's "RTE: A Guide for New Users"

manual pp. 3-13-3-17 and the "RTE/II Software System

Programming and Operating Manual" pp. 3-24-3-25 and

4-33-4-34.

Program segmentation allows the user to load

the CCPS from disc to core memory, a segment at a

time and simultaneously execute the CCPS. An attempt

to load the execute the entire CCPS from disc would

62

result in a loader memory overflow error due to the

CCPS's length and the H. P. 1000'a limited core

storage capacity.

The CCPS is broken up into a main program and

two segments. The main program's sole function is to

allow the system to jump to its first segment, where

upon it jumps to the second segment after it has fin-

ished execution. The second segment executes and ends

the animation process. Thus, the super structure of

the CCPS maybe pictured as in Figure 111*14.

The user must therefore begin by writing a

main program.

1.) The Main Program

The purpose of this program is to set up the

segmentation of the CCPS and to start the

system off by jumping to the first segment.

The program flow for the main program is

illustrated in Figure 111-15. The numbered

discussions refer to the numbered boxed in

Figure 111-15. The numbered discussions refer

to the numbered boxes in Figure 111-15.

a.) In this step, the user must name the main

program and designate as a type 3.program. The

following is an example of a typical program

card meeting the above requirements:

63

MAIN

Segment One

Segment Two

(EHD)

COPB Superstructure

1)

2)

3)

PIGDHE 111-14

64

The HUH Program

Designate the MAIN
program as a type 3

program 1)

Setup the first
program segment's

name 2)

Call the first
segment

3)

FIGDBE IH-15

65

PROGRAM MAIN, 3

b.) In this step the.user must name his

first segmented program so that the main

program knows where to jump to. To ac-

complish this requirement requires the

user to employ an INTEGER and a DATA

statement to dimension and store the

segment's name under another variable name.

An example of the two statements required

are:

INTEGER NAME (3)

DATA NAME/2HSG, 2HMT, 2HO/

Thus, the segment's program name, SGMTO

is stored in a three dimensional array called

NAME. This format must be followed to ensure

proper program execution.

c.) In this step, the main program calls its

first segment. The statement required is an

executive call for a segment load. This state-

ment is discussed in detail in the second

reference given in this section above. The

program then gives program control to its first

segment and the segment begins execution.

It must be noted that once program control is

66

given to any segment, control cannot be

returned to the calling program whether it

be a main or a segmented program. Thus, the

main program cannot be reentered once its

first segment is called. This is because

only one segment can reside in core at one

time. The program segment load executive

call required in the main program MAIN

would read:

CALL EXEC(8, NAME)

The number eight indicates that this is

an executive segment load, and NAME is the

variable containing the first segment's

program name.

An example of a main program for CCPS

segmentation is given in Appendix A, with

the program name, MAIN. The user may store

his main program under any file name he

desires.

2.) Segment One

In this first program segment the user must

define a fixed number of parameters. A flow

diagram is given in Figure 111-16 to help

illustrate what parameters are required. The

67

^DESIGNATE THIS PROGRAM
: AS A TYPE 5 SEGMENTED

PROGRAM a

V FIGURE IE-16

. SET UP THE NAME OF

THE SECOND SEGMENT
b

FIRST PROGRAM SEGNE

v

DIMENSION MSEQC4,I5,I5:>

c

\/

CALL START

d

V V'

. DEFINE MSEQC4,I5,I5)

e

CALL SECOND SEGMENT

V NL

DEFINE ALL DODY MOTIONS
f

(END J

68

letters beside the boxes refer to the let-

tered discussions below.

a.) In this step, the user must define the

program's name and specify it as a type 5

program, which is an indicator, for a

segmented program. In the previous example,

the first segment was named SGMTO and thus

the program card required here is:

PROGRAM SGMTO, 5

b.) In this step, the user must dimension

the array MSEQ (4, 15, 15) for reasons stated

in Section III-I. The statement must appear

exactly as:

DIMENSION MSEQ (4, 15, 15)

c.) In this step, the user must set up the

name of the second segment as he had done

previously in the main program for the first

segment. Following the same procedure, if

the second segment is to be called SGMTT,

then the two statements required are:

INTEGER NAME (3)

DATA NAME/2HSG, 2HMT, 2H0/

d.) In this step, the user must call the

subroutine START. The subroutine call state-

ment is simply:

CALL START

69

Then he will be asked to enter specific

data as described in Section III-D.

e.) At this step, the programmer must define

his point connection scheme for each body.

What statements are required have been dis-

cussed in detail in Section III-I.

f.) At this step, the programmer must define

all body motions. There can be only six types

of motions specified for each body. These

motions are described by the subroutines

XTRAN, YTRAN, ZTRAN, RTX2Z, RTY2X, and RTY2Z.

An example of the motions that may be de-

scribed for two bodies would be:

XTRAN (1,2., 10., 10.)

RTX2Z U,9., 15., 30.)

ZTRAN (2, 2., 10., 15.)

RTY2X (2, 5., 15., 45.)

RTZ2Y (2, 10., 12., 90.)

Each of the six body motions are described

in detail in Section III-J.

g.) In this step, the programmer must make

an executive segment load call in the same

exact manner as he did in the main program,

for the second segment. Again the segment

call is:

70

CALL EXEC (8, NAME)

The parameters are identical to the

parameters in the executive call in the

program MAIN, except this time the seg-

mented program SGMTT is loaded. At this

point in the CCPS program flow, program

control is turned over to the segment

SGMTT.

Thus, program SGMTO has accomplished

its three important facets of the CCPS.

It has (completed steps 1, 2, and 3 in

Figure III-l).

1.)Enter all initializing data via the sub-

routine START and has stored this data

in the internal data structure.

2.)Define all line connection schemes, and

has stored this data in the internal

data structure.

3.)Set up all the body motions, translations

or rotations, and has stored this data

away internally.

Since SGMTO is essentially a mass data

storage routine, and once this data has

been stored, SGMTO is actually no longer

necessary, and the second segment may be

71

loaded into core memory in its place.

This then allows the CCPS additional

core storage. As the first segment can

be thought of as a mass data storage

algorithm, the second segment may be

thought of as the actually filming routine

for the CCPS.

3.) Segment Two

In this segment the actual transformations,

translations, rotations, projections, clip-

ping, and drawing of all the bodies takes

place. A program flow diagram is supplied

in Figure 111-17. The numbers appearing next

to the boxes reference the discussions below,

a.) Again in this step, this program must be

designated as a segment. Since in the first

segment this program was named SGMTT, the

program card for this program segment must

read:

PROGRAM SGMTT, 5

b.) At this point, the programmer must define

the X, Y, and Z coordinates of all of the

bodies, he wishes to film, with respect to

their own body coordinate systems. The

72

DESIGNATE THIS PROGRAM

AS A TYPE 5 SEGMENTED
PROGRAM

FIGURE m-17
SECOND PROGRAM SEGMENT

DIMENSION &DEEINE ALL
DODIES b

\/

SET UP FILMING LOOP c

c_.,_.
\>

d

e

NO

CALL IMAGE

\/

CALL UPDTE

<""LOOP FINISHED ?J>

QtS. 73

X, Y, and Z coordinates must be defined in

DATA statements and therefore must be di-

mensioned .

As an example of how the bodies may be

defined refer to Figure 111-13. In body

coordinate system one is configured a cube.

Point 1 of the cube could assume the co-

ordinate value, (0, 0, 0), for X, Y, and Z

respectively. Point 2 could be defined

(0, 0, -5), Point 3, (5, 0, -5), etc. All

of the points in body system one may be

thusly defined with DATA statements as:

DIMENSION X(8), Y(8), Z(8)

DATA X/0.,0.,5.,5.,0.,0.,5.,5./

DATA Y/0.,0.,0.,0.,5.,5.,5.,5./

DATA Z/0.,-5.,-5.,0.,0.,-5.,-5.,0./

where X(l), Y(l), z(l) defines point 1, X(2),

Y(2), z(2) defines point 2, etc. All bodies

must be defined this way in the CCPS. For

the pyramid in Figure 111-13, the statements

defining its coordinates could read:

DIMENSION XX(5), YY(5), ZZ(5)

DATA XX/0.,5.,5.,0.,2,5/

DATA YY/0.,0.,0.,0.,5./

DATA ZZ/0.,0.,-5.,-5.,-2.5/

74

Therefore, the arrays X(8), Y(8), and 2(8)

define the body in body system one and the

arrays XX(5), YY(5), and ZZ<5) define the

body in body system two.

Up to four bodies and body systems may

be defined in the CCPS in a likewise manner,

c.) In this step, the programmer must set

up the filming loop. Each pass through this

loop is one picture frame taken by the camera.

The loop is defined by the user as a simple

DO loop of the form:

DO n, 1=1, nf

where n is the terminal statement of the film-

ing loop, always a CALL UPDTE statement, and

nf is the number of frames the programmer

wishes to process.

d.) In this step, a CALL IMAGE statement is

required for each body coordinate system. If

the bodies defined in step 2 are used as an

example, the two CALL IMAGE statements in the

filming loop must be written:

CALL IMAGE (X, Y, Z, 8, 1)

CALL IMAGE (XX, YY, ZZ, 5, 2)

where X, Y, and Z define the body residing in

body system one, the number 8 states the

75

number of coordinates defining the body,

and the number 1 states which body coordinate

system the body belongs to. The parameters

for preceding CALL IMAGE statement may be

defined in exactly the same manner. The

IMAGE subroutine performs all of the

rotations, translationals, transformations,

projections, clipping, and drawing of the

previously defined bodies, a frame at a

time, as defined in the body motion sub-

routines in segment one. For a detailed

description of IMAGE, refer to Section III-G.

e.) At this step, the user must make a call

to the subroutine UPDTE which updates the

CCPS as defined in Section III-E. This sub-

routine call is the final statement in the

filming loop. This statement is numbered

with the terminal line , X, number specified

by the filming loop's DO loop statement. An

example of this statement would be:

10 CALL UPDTE

At this juncture, the CCPS has been updated.

If the loop process is not finished filming

it returns to its beginning. If the loop is

76

finished, the animated filming process is

complete and the CCPS program ends.

Note that in this example of the filming

loop, as each body is drawn on the film plane,

it remains there throughout the filming pro-

cess. If this is undesirable the user may

insert a CALL ERASE statement within the loop

to erase each successive frame. Also note,

that the bodies are drawn in the order of their

CALL IMAGE statements. Thus, in the previous

example, body 1 is drawn before body 2.

An example of a segmented program illus-

trating the above discussion may be found in

Appendix A, named SGMTT.

L) The CCPS Procedural File

To load all of the programs, subroutines, and seg-

mented programs of the CCPS from the H. P. 1000'8 disc to

core memory, a procedural filed name CCPS has been written.

To run this program the user must modify the program

by first entering the names of his main and two segmented

programs in the proper location in the program. To accom-

plish this, the user may enter the EDITR program and re-

quest source file, CCPS. Once this is done he replaces

77

lines 19, 25, and 34 with his main and two segmented pro-

grams object files. He then saves the file again under

the file name CCPS, and types, when in the FMGR system

program:

CCPS

The CCPS is then loaded into core memory and ready to

run. The user may then run the animated film process as he

would a normal program by typing RU main program , while

in the RTE system program. The program will then run as

discussed in all the previous sections. (It is assumed

here that the user has a good general working knowledge of

the RTE, FMGR, and EDITR commands and of creating Transfer

Files.)

This concludes all discussion concerning the CCPS.

The next section will deal with the data plotting sub-

routines developed for the H. P. 1000.

IV. The PLOTT Package

This section of the thesis will address itself to a

discussion of internal structure and the user implementa-

tion of the data plotting routines developed as part of

the overall graphics package for the H. P. 1000.

A) Introduction

The routines discussed here will draw a user speci-

fied gridiron plotting surface with high lighted divisions.

The axes will be automatically scaled to the user's data,

with the maximum and minimum values
78

of each of the one-dimensional data arrays displayed on

the graph. The graph may then be titled as the user

choses.

The routines to be discussed are:

1.) GRID

2.) SCALE

3.) TITLE

There will also be a discussion on the PLOTT proce-

dural file and PLOTT programming technique.

B) The PLOTT Subroutines

1.) Subroutine GRID (JNX, JVX, MODE, IVX, IVY,

NPT, IAN, X, Y)

This subroutine draws the actual gridiron

surface along with its highlighting. The

input parameters can be defined as follows:

a.) JNX - the number of major graph divi-

sions along the X-axis. This number must

divide into 200 evenly,

b.) JNY - the number of major graph

divisions along the Y-axis. This number

must divide into 200 evenly,

c.) MODE - the parameter sets the H. P.'s

video field. A zero indicates that the graph
<

and its lettering will be white on a

79

black background. A one indicates the

reverse.

d.) IVX - is the number of X highlighted

divisions. This number must divide evenly

into JNX.

e.) IVY - is the number of Y highlighted

divisions. This number must divide evenly

into JNY.

f.) NPT - is the number of data points in

the programmer's data arrays,

g.) IAN - determines whether the plot will

be a point plot (IAN ■ 0) or a line plot

(IAN - 1).

h.) X- the X axis data array,

i.) Y- the Y axis data array.

JNX and JNY must be even divisors of 200

because 200 point spacings have allowed for

all graphs created by the subroutine GRID.

The H. P.'s video display is defined by a

256 x 256 point matrix, allowing an even

spacing of 28 points around the graph for

displaying the titles and the scaling.

Therefore, it is apparent that the

maximum value that NPT may be assigned is

80

200 and the maximum number of X and Y values

is 200.

IVX and/or IVY may be set equal to zero,

which indicates that no highlighting is

desired along the X and/or Y axis.

The program flow diagram is illustrated in

Figure IV-1 for the subroutine GRID. The

numbered discussions below refer to the

numbers beside the boxes in the figure.

1.) In this first step, the subroutine checks

to see that JNX or JNX do not equal zero.

This check is made to ensure that no

quantity is divided by zero. If JNX or

JNX is zero a warning is printed on the

system console of the form:

JNX OR JNX CANNOT EQUAL ZERO!11

and the subroutine stops execution. Other-

wise/ the subroutine proceeds on to step 2.

2.) In this step, the H. P.'s video display

screen is initialized. This is accom-

plished by two subroutine calls which

inform the computer what device it is to

write to and in what mode (white on black

or black on white). These two subroutine

calls are, (from the H. P.'s video library}

81

JF JNX OR JNY=0,SEND A

WARNING AND RETURN I)

.INITIALIZE SCREEN 2D

DETERMINE ALL INTERNAL
_ GRID PARAMETERS 3D

CALCULATE HIGHLIGHTING
. PARAMETERS IF TIME TO

DO SO

DRAW Y-AXIS DIVISIONS

FIGURE W- I
SUDROUTINE GRID

CALL VIDLU (9, MODE)

CALL ERASE

The number nine indicates that the

computer is to write to device #9, the

television monitor, and MODE is one of

the previously defined parameters. The

subroutine call CALL ERASE clears the

screen of any previous displays.

3.) In this step, all the required internal

variables are calculated for the sub-

routine GRID via the passed parameters

JNX, JNY, IVX, and IVY. These passed

parameters calculate the point spacings

necessary between each division of either

axis and determine the length of each

divisional line.

4.) In this step, if it is necessary to

determine the internally variables to

draw the highlighting on the grid, these

variables are then found via the parameter

IVX and IVY. The grid's highlighting is

always performed on the second pass thro

the program loop in Figure IV-1, The

loop pass draws the main grid itself.

5.) In this step, the Y-axis divisions are

either drawn for the grid or the grid's
83

highlighting thru the use of the

previously defined variables and

parameters. The subroutines used to

draw the Y-axis divisions are, VECTR

and VEND, two of the H. P.'s video sub-

routines found in the H. P.'s video

library.

6.) At this step, the X-axis divisions are

drawn in the identical manner as above.

7.) At this juncture, if highlighting is to

occur,the subroutine returns to step 4,

to determine the highlighting parameters.

If the highlighting has occured or isn't

to occur (IVX and IVY equal zero) the

routine proceeds to step 8.

8.) In this step, the routine GRID makes a

subroutine call to SCALE. The subroutine

SCALE takes the parameters passed to it

and scales the displayed grid and plots

the user's X-Y data on the grid as either

a line plot or a point plot.

The subroutine SCALE will be discussed

in Section IV-B-2.

Once the subroutine SCALE has executed,

program control is returned to the calling

program.
84

As an example of how the subroutine

GRID functions, suppose the following

call were made in a user's program with

the following statements:

DO 10 I = 1, 6

X(I) = I

10 Y(I) ■ 1**2

CALL GRID (10,5,0,2,0,5,1,X,Y)

It is obvious from the program that

the X-Y data will take on the values in

Figure IV-2. The resulting gridiron

plotting surface is a line plot (IAN ■ 1)

of the equation, Y = X , where X varies

between one and six. The X-axis is

broken up into ten divisions (JNX » 10)

with a highlighted division line, every

second division (IVX = 2). The Y-axis is

broken up into 5 divisions (JNY «• 5) with

no highlighted lines (IVY = 0) . The num-

ber of points is six (NPT » 6).

2.) The Subroutine SCALE

This subroutine scales the X and Y axes of the plot-

ting grid created in the GRID subroutine and plots the

user's X-Y data either as a point plot or a line plot.

The subroutine is only called by the subroutine GRID and is

never used by the general programmer. The subroutine call

SCALE is: 85

o +
UJ
O
O

ro

/
/

/

/

/

/

8
4-
Ul
O o
Q

ipoo E+0< D 6XX> OE-K

X 1 2 3 4 5 6

Y 1 4 9 16 25 36

FIGURE T2"-2

86

CALL SCALE (X, Y, NPT, IAN)

where X, Y, NPT, and IAN assume the same specifications

they did in subroutine GRID.

3.) Subroutine TITLE

This subroutine titles the grid created in the two

previous subroutines. It will title the X and/or the Y

axis at the user's discretion. The user must call this

subroutine right after he has called GRID. The subroutine

call for the program is:

CALL TITLE

There are no parameters to be passed to the sub-

routine.

When the subroutine is called, it will reply with

two requests for input on the system console. The first

request is:

TYPE THE X-AXIS TITLE (10 CHARACTERS MAXIMUM)

The user then types in the X-axis title he desires

and presses return. The second request appears on the

system console as:

TYPE THE Y-AXIS TITLE (10 CHARACTERS MAXIMUM)

The user replies in the obvious manner, and presses

return.

A flow diagram for the TITLE subroutine is depicted

in Figure IV-3. Again the numbers beside the boxes refer

to the numbered discussions below.

87

START l FIGURE JE-3

SUBROUTINE TITLE

DETERMINE COORDINATES
FOP X AND Y AXES

TITLES
ID

READ IN X-AXIS TITLE 2)

WRITE X-AXIS TITLE
_ ON THE SCREEN 3D

.READ IN Y-AXIS TITLE 4)

-WRITE YAXJS TITLE ON
THE^CREEN

L RETURN)

5)

88

1.) The subroutine first sets the coordinates where

the X and Y axis titles are to be displayed.

These coordinates are predetermined due to the

graph's size.

2.) In this step, the X-axis title is read in at the

system console. The title is requested by the

computer using a WRITE statement whose format is

the first program request above.

3.) In this step, the X-axis title is displayed on

the screen using one of the H. P.'s video sub-

routines named CHAR. This subroutine will print

any of the legal ASCII characters for the H. P.

1000, anywhere on the screen, in any size.

4.) In this step, the Y-axis title is read in using

the second computer request above in the identi-

cal manner.

5.) Again in this step, the Y-axis title is displayed

as in step 3.

A complete discussion of the H.P. 1000's video

library may be found in the "HP91200A TV Interface Kit,

Programming and Operating Manual" in particular pp. 4-1 -

4-7 on software programming.

A complete example program using the subroutines

GRID, SCALE, and TITLE may be found in Appendix B with the

program name, DEMO.

89

C) Block Data K

This program is the common block storage routine for

the PLOTT package. It allows the parameters LL, MM, LENX,

and LENY to be passed from the GRID subroutine to the

SCALE subroutine via the COMMON statement labeled LABEL.

D) The PLOTT Procedural File

In the PLOTT package there exists a file named PLOTT

which is the procedural file for the system. This file

will load from the disc into core memory the object files

needed for the programmer to use the GRID and TITLE sub-

routines. It will also attach these object files to the

object file of his main program. The easiest way to show

how the file PLOTT works is by an example. If the pro-

grammer's main program was named JIM, and his object file,

%JIM, and this program called the subroutines GRID and

TITLE, he could type the following:

LG, 6

MR, %JIM

PLOTT

at which the computer would reply:

MR, %GRID

MR, %SCALE

MR, %TITLE

MR, %K

90

MR, %LINE

MR, %TVLIB

RU, LOADR, 99,,,,3

/LOADR JIM READY

/LOADR $END

This would indicate that the PLOTT package has been

properly loaded and attached to the main program JIM. The

user may now run the program JIM as he normally would with

a RUN command:

*RU, JIM

Thus, the PLOTT file contains the following FMGR system

commands:

MR, %GRID

MR, %SCALE

MR, %TITLE

MR, %K

MR, % LINE

MR, $TVLIB

RU, LOADR, 99,,,,3

It is assumed the user has a general knowledge of

the FMGR and RTE system commands necessary to run a

program.

This concludes discussion on the PLOTT graphing

package.

91

IV-A) The DRAW Subroutine

This subroutine is being discussed here because it

is utilized by both the CCPS and PLOTT packages. What

this subroutine does is to draw a line between any two

coordinates on the H. P.'s video display. The video

display is defined by a 256 x 256 point matrix, with the

lower left hand corner defined as (0,0) and the upper

right hand corner defined as (256, 256). The program-

mer's call for the subroutine is:

CALL DRAW (IX, IY, LX, LY)

where (IX, IY) is the initial X-Y coordinate and (LX, LY)

is the terminating X-Y coordinate. Thus, a line is drawn

between (IX, IY) and (LX, LY).

The line is drawn by lighting the discrete points

closest to the actual line. To illustrate this refer to

Figure IV-A-1. In this figure a line has been drawn

between the points (10, 25) and 245, 75) via the CALL

DRAW statement given. If the lower end of the line were

enlarged, the line in Figure IV-A-2 would result. The

subroutine is lighting the point closest in the Y direction

for each X value along the line.

The equation for the line in the example is, y« 0.213 X

+ 22.872. For, X - 15, along the line, the value for Y is

26.067. Therefore the point lit up must be (15, 26), the

point closest to the actual line.

92

(0,2563 0256,256)

cop) C256,0)

CALL DRAWCIO.2^245,75)

FIGURE El-A-1

93

(10,25)

FIGURE]2"-A-2

94

It is apparent that for slopes less than a Y value

is determined for each X value and for slopes greater than

one a X value is calculated for every Y value. This is to

make as sure as is possible that all lines appear as

solidly drawn lines with no breaks or irregularities.

Note that all defined coordinates must be integer

variables to be used with the subroutine DRAW. No program

flow is supplied for this subroutine since the subroutine

is used within the internal structures of the CCPS and the

PLOTT package, and is not seen by the general user.

The subroutine is stored under the file name, &LINE,

and its object file name is %LINE.

V. The Three-Dimensional Vector-Matrix Package

A) Introduction

This section discusses a package of subroutines de-

veloped as an aid in three-dimensional vector and matrix

problems. Although developed primarily as an aid to the

CCPS matrix manipulations it can be employed in a wide

spectrum of applications. These applications could include

static and dynamic mechanics, electromagnetic waves and

fields, partial differential equations, etc. The subrou-

tines discussed in this section perform the following

mathematics:

95

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

|A| -finds the absolute value of a vector

A + B -sums two vectors

A - B -subtracts two vectors

A » B - equates two vectors

A * B -dots two vectors

PROJ.B -projects one vector on another

C x A -multiplies a scalar by a vector

A x B -cross multiplies two vectors

A * i -finds the i-th component of a vector

A * j -finds the j-th component of a vector

A * k -finds the k-th component of a vector

[M]~ -inverts a matrix

[A] * [B] -multiplies two matrices

[A] + [B] -sums two matrices

[A] - [B] -subtracts two matrices

C x [A] -multiplies a matrix by a scalar

[A] x B -multiplies a matrix by a vector

B\ The TDPKG Subroutines

The discussions that ensue will analyze each subroutine

as to how it is used, the input-output parameters, and

what results or quantities it generates.

1.) Subroutine VABS (X, Y)

This subroutine calculates the absolute value of

a vector. X is a three-dimensional input vector

96

and Y is equal to |X|. X must be dimensioned

properly in the main program.

2.) Subroutine VSUM (X, Y, Z)

This subroutine sums two vectors together.

X and Y are two three-dimensional input

vectors and Z is equal to X + Y. X, Y,

and Z must be properly dimensioned.

3.) Subroutine VDIFF (X, Y, Z)

This subroutine subtracts two vectors. X and

Y are two three-dimensional input vectors, and

Z is equal to X - Y. X, Yf and Z must be

dimensioned properly in the calling program.

4.) Subroutine VSAME (X, Y)

This subroutine equates two vectors. X is

the three-dimensional input vector and Y is

equal to X. X and Y must be dimensioned

properly in the main program.

5.) Subroutine VDOT (X, Y, A)

This subroutine determines the dot product

(inner product) of two vectors. X and Y are

two three-dimensional input vectors and A

is equal to X * Y. X and Y must be di-

mensioned correctly in the calling program.

6.) Subroutine VPROJ (X, Y, A)

This subroutine projects one vector on to

another vector. This is a scalar projection
97

not a vector projection. X and Y are two

three-dimensional input vectors and A is

equal to Proj Y. X and Y must be properly

dimensioned in the calling program.

7.) Subroutine VSMUL (X, A, Y)

This subroutine multiplies a vector by a

scalar. X is the three-dimensional input

vector. A is the scalar, and Y is C x X.

X and Y must be properly dimensioned in the

calling program.

8.) Subroutine VCROSS (X, Y, Z)

This subroutine takes the cross-product (outer

product) of two vectors. X and Y are the two

three-dimensional input vectors, and Z is equal

to X x Y. X, Y, and Z must be properly

dimensioned in the calling program.

9.) Subroutine VXCOR (X, A)

This subroutine determines the i-th component of

a vector. X is the three-dimensional input

vector and A is equal to X * i. X must be

properly dimensioned in the calling program.

10.) Subroutine VYCOR (X, A)

This subroutine determines the j-th component

of a vector. X is the three-dimensional input

98

vector and A is equal to X * j. X must be

correctly dimensioned in the main program.

11.) Subroutine VZCOR (X, A)

This subroutine determines the k-th component

of a vector. X is the three-dimensional input

vector and A is equal to X * k. X must be

correctly dimensioned in the calling program.

12.) Subroutine MINV (D, DI)

This subroutine determines the inverse of a

three-dimensional matrix. D is the three-

dimensional input matrix and DI is equal to

[D]~ . If the inverse is not found, |D|

equals zero, a warning is displayed on the

system console. This warning is:

WARNING!! DETERMINENT =011 INVERSE MATRIX

NOT FOUND11

D and DI must be properly dimensioned in the

main program.

13.) Subroutine MMULT (A, B, C)

This subroutine multiplies two matrices together.

A and B are two three-dimensional matrices and

C is equal to [A] x CB], A, B, and C must be

properly dimensioned in the calling program.

99

14.) Subroutine MSUM (A, B, C)

This subroutine sums two matrices together.

A and B are two three-dimensional matrices

and C is equal to [A] + [B]. A, B, and C

must be properly dimensioned in the calling

program.

15.) Subroutine MDIF (A, B, C)

This subroutine takes the difference of two

matrices. A and B are the two three-dimensional

input matrices and C is equal to [A] - [B].

A, B, and C must be correctly dimensioned in

the calling program.

16.) Subroutine MSMUL (A, C, B)

This subroutine multiplies a matrix by a scalar.

A is the three-dimensional input matrix, C is

the scalar, and B is equal to C x [A]. A and

B must be properly dimensioned in the main program.

17.) Subroutine VMULM (A, B, C)

This subroutine multiplies a matrix by a vector.

A is the three-dimensional input matrix, B is

the three-dimensional input vector, and C is

equal to [A] x B (Note the order of the

multiplication).

In this case, B is considered a column

vector, so:

100

cll c12 c13

c21 c22 c23
C31 C32 C33

All A12 A13

A21 A22 A23

A31 A32 A33

B,

B 2

Each of these subroutines are stored in separate source

files and have individual object files. A list of the sub-

routines and their source and object file names is given

below to aid the programmer in using each subroutine indi-

vidually.

Source File Name Subroutine Name

VABS

VSUM

VDIFF

VSAME

VDOT

VPROJ

VSMUL

VCROSS

VXCOR

VZCOR

MINV

MMULT

MSUM

MDIF

MSMUL

VMULM

&ABS

&SUM

&DIFF

&SAME

&DOT

&PROJ

&SMUL

&CROSS

&XCOR

&ZCOR

&MINV

&MMULT

&MSUN

&MOIF

&MSMUL

&VMULM

101

Object File Name

IABS

%SUN

%DIFF

%SANE

%DOT

%PROJ

%SMUL

%CROSS

%XCOR

%ZCOR

%MINV

tMMULT

%MSUN

IMDIF

% MSMUL

%VMULM

C) The TDPKG Procedural File

There is a file named TDPKG which will load from

disc and attach to the user's program in core memory all

of the subroutines discussed above. To use this program

the user types the following:

TDPKG

while in the FMGR system program. To attach all of the

subroutines to a main program the user would type the

following:

LG, 10

MR, % main program file name

TDPKG

the computer will respond by listing all the programs in

the TDPKG system and:

/LOADR : main program name READY

/LOADR : $END

indicating the user's program is ready to run. The user

may then run the program with the usual RTE RUN command.

The user may be selective in what object files he

desires to attach to his program. If he desires to load

and attach only the subroutines VCROSS, MINV, and VMULM to

his main program in core memory he could type;

102

LG, 4

MR, % main program file name

MR, %CROSS

MR, %MINV

MR, %VMULM

RU, LOADR, 99,,,,3

and then only these three routines would be attached and

loaded.

This discussion assumes that the user has a good

working knowledge of the FMGR and RTE system commands.

VI. Summary and Conclusions

The two principal objectives of this thesis have

been accomplished. One, the conceptual camera system has

been developed to simulate a real camera thru a series of

software programs that may be easily implemented by a pro-

grammer. The theoretical mathematical foundation for this

system has been clearly analyzed and defined. The internal

data base and programming structure have been logically set

forth and completely discussed for the CCPS. Finally, the

practical implementation and programming considerations

need by the general user have been explicitly illustrated

as an aid in program design.

Two, the data plotting capability of the Hewlett*-

Packard 1000 computer system has been expanded. So that

103

the general system user now has greater flexlblity in

plotting data in a general programming situation. This

increase in plotting flexibility has come with an easy

to use plot package. This software plotting package has

been fully discussed and structurally analyzed. Practical

user implementations and system programming considerations

have been illustrated to help initiate the programmer

with using the package.

As an additional by-product of these two objectives

a vector-matrix programming package has been developed.

Originally this package was intended as an aid in the

internal programming of the CCPS. Now this package can

be used by a programmer in a versatile spectrum of

applications. The subroutines in this package have also

been set forth in a clear usable manner to ease in their

use. A discussion and analysis also accompanies them.

Thus, the programming objectives of this thesis have

developed a strong vantage point upon which more complex

problems and analyses may be made in two pertinent areas

of computer graphics for the Hewlett-Package 1000 computer

system.

To sum up, it is appropriate to state what work is

left to be done in the immediate future for the CCPS and

and the PLOTT package.

104

For the CCPS the following considerations should

command immediate attention:

1.) The integration of complex camera movements.

Storage for the camera's movements in COORDS*

ANGLE, and TRIG data arrays has already been

allocated, so this consideration only requires

writing subroutines to implement the following

camera actions;

TILT TRUCK ZOOM

PAN CRANE

ROLL DOLLY

Then the programmers must store the camera

movements in the internal data structure, and

integrate the camera action subroutines into

the film image processing subroutine, IMAGE,

immediately before the body motion subroutines.

A detailed description of these complex camera

actions can be found in bibliography reference

number (4).

2.) Perspective Views. In the immediate future

eight levels of gray scale will be available

on the H.P. 1000's video display. This will

allow the CCPS's perspective projection

algorithm to incorporate a third variable to

give the effect of depth perception. This

105

third variable, Zc, is an indicator of each

body's depth displacement from the film

plane (see Section II-D). Thus, a body which

is further from the film plane than another

body should appear less intense (dimmer) than

the body which is closer. Thus, eight depth

thresholds could be determined to produce this

effect ranging from full intensity to no

intensity (zero displacement) to infinite

displacement from the film plane).

3.) Hidden line elimination. The complex problem

of removing hidden lines is a difficult one

to resolve. This problem could be attacked by

applying one of two algorithms designed to

eliminate hidden lines. These two algorithms,

with trade offs in speed and memory usage,

are:

a.) Robert's Solution* - very slow

b.) Warnock Algorithm* - faster but more

complexity required.

For the PLOTT package the following considera-

tions warrant immediate attention:

•Detailed discussion appears in reference number (6).

106

1.) Plotting more than one dependent variable

in the GRID subroutine.

2.) Histogram plotting.

3.) Log - log and semi-log plotting.

107

BIBLIOGRAPHY

1.) Bedford, F. and Dwivdei, T. Vector Calculus. 1st
ed. New York: McGraw-Hill Book Co., Inc., 1970.

2.) Gottfried, B. Programming with Fortran IV. New
York: Quantum Publishers, Inc., 1972.

3.) Hewlett-Packard Co. RTE Fortran IV. A Reference
Manual Prepared by the Hewlett-PacJcard Co., 1977.

4.) Katzen, Joel E. "A Conceptual Three-Dimensional
Camera for Computer Animation," Unpublished
Master's Thesis, University of Pennsylvania, 1969.

5.) Kreyszig, E. Advanced Engineering Mathematics.
3rd ed. New York: John Wiley ana Sons, Inc.,
1972.

6.) Newman, W. and Sproull, R. Principles of Inter-
active Computer Graphics. 1st ed. New Yjork:
McGraw-Hill Book Co., Inc., 1973.

7.) Posdamer, Jeffrey L. "The Mathematics of Computer
Craphics", Byte Magazine, vol. 3, no. 9 (1978),
pp. 22-39.

8.) Stromberg - Carlson Corp. Programmers' Reference
Mantfal, S-C 4020, Computer Recorder. Document
No. 9500056, 1964.

108

Appendix A

Since no source program listings may be incorporated

into a thesis, the reader is referred, for all programs

in Appendices A, B, and C, and in the main body of the

thesis, to the complied computer printouts of all the

source lists of graphics programs written by this author.

These complied listings are available in the H. P. 1000

computer room or from the H. P. 1000 system manager.

A sample main program for the CCPS may be found in

the complied source lists under the program name MAIN

and the source file name &MAIN. This program illustrates

what is required in a typical CCPS main program (see

CCPS Programming Techniques - Segmented Programs). As

can be seen, this program jumps to the first example

CCPS segmented program SGMTO.

SGMTO demonstrates what steps the programmer must

incorporate into his first CCPS segmentation. As

illustrated, this program is a type 5 program. It

first defines the line connection scheme for three bodies

via the MSEQ (4, 15, 5) array. These bodies are a pyramid

and two cubes. The line connection scheme is then stored

in the internal data structure via the CALL SBQ (MSEQ)

statement. Then the various body motions are defined for

•109

each body using any one of the six body motion subroutines.

As shown for body 1, a combination of three motions are

described, two translational and one rotational. The

body is to move in the Z direction, of its body co-

ordinate system, 40 feet starting at frame 2 and ending

at frame 6. It must simultaneously move in the Y

direction - 40 feet from, again, frame 2 to frame 6.

Finally, the body must rotate from the X to the Z axis,

a total of 45 degrees beginning at frame 2 and stopping

at frame 3. Like motions have been described for bodies

2 and 3. SGMTO then jumps to the second segment, SGMTT,

thru the CALL EXEC statement.

SGMTT is a program demonstration of what must be

included in every second segmentation of the CCPS. In

this type 5 program, the three bodies are first defined

thru DATA statements. Body 1 (X, Y, Z) and body 3

(XXX, YYY, zzz) are cubes identical in size and body

2 (XX, YY, ZZ) is a pyramid. Then the filming loop is

set up to draw the bodies on the film plane. Note that

two film loop processes are used in SGMTT, separated

by a PAUSE statement. The first loop films the motions

of bodies 1 and 2. The effect is that, body 1 rotates

slightly and moves across the screen from the upper left

hand corner to the lower right hand corner. Body 2

110

rotates and quickly moves directly back into the film

plane almost to infinity along the Zc axis. The

program then pauses to view the results. The program-

mer resumes execution via a GO statement. The screen

is erased and the filming of loop 2 occurs. In this

loop, body 3 is rotated about its center with simul-

taneous 0 and e angular displacements. The CALL ERASE

statement causes each successive frame to be erased

once drawn. Thus, the total effect is a cube rotating

in two directions about its center.

Ill

Appendix B

The reader is referred to the compiled source list-

ings of graphics programs for the following discussion.

To demonstrate the use of the PLOTT package an

example program has been written called DEMO. It is

stored in the source file, &DEMO. The program produces

two plots of an inverted (sin X)/X curve, between -3

and 3 . The first plot is a point plot and the second

is a line plot. The plots are produced by the use of

the GRID and TITLE subroutines. All parameter definitions

for both subroutines are discussed in the main body of

this thesis. A PAUSE statement appears between the

first and second plots to give the user a chance to view

the first plot before the second is drawn. Program

execution may be resumed via a GO statement.

112

Appendix C

The reader is referred to the compiled source listings

of graphics programs for the following discussion. As a

demonstration of the vector-matrix package in the main

body of this thesis an example program titled DBN01 has

been written. This program incorporates some of the

vector manipulations possible with this package. The

routine itself determines the distance from a plane to

a point. The plane is defined by three points as

illustrated and the point is also given. The routine

displays the i-th, j-th, and k-th components of the

normal to the plane, N, and displays the distance of the

point to the plane, both in formatted statements. The

mathematical solution for this problem may be found in

bibliography reference (1.), p. 194.

113

Vita

James William Chamberlain was born on August 1,

1954 in Johnson City, New York. He is the first child

of James Leslie and Audrey Chamberlain. He attended

high school at Binghamton Central High School and

graduated in June, 1972. Later, Jim attended Broome

Community College in Binghamton, New York and graduated

with an Associate of Applied Science degree in Electrical

Technology on May 23, 1975. He then enrolled at the State

University of New York at Binghamton and graduated from

there with a Bachelor of Technology degree in Electrical

Technology on May 23, 1976. He is currently pursuing a

Master of Science degree at Lehigh University in Electrical

Engineering while working for the school as a Teaching

Assistant.

His extra-curricular activities include bicycling,

collecting antique radios, and is an active Ham Radio

operator (WA2HF0) with a General class license.

114

	Lehigh University
	Lehigh Preserve
	1-1-1978

	A developmental graphics programming package for the Hewlett- Packard 1000 computer system.
	James William Chamberlain
	Recommended Citation

	tmp.1451580486.pdf.s0m8U

