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Abstract: 

This thesis discusses the development of a software 

graphics package for the Hewlett-Packard 1000 computer 

system.  The graphics software was written to form a 

foundation for further development work in two pertinent 

areas of computer graphics.  The first area of development 

was in data plotting capability.  The subroutines created 

allow a user to graphically represent two-dimensional data 

in a convenient analytically form.  The second area of de- 

velopment was in the emulation of a "conceptual camera 

programming system," first conceived and developed by Joel 

E. Katzen, at the University of Pennsylvania.  The system 

as developed in this thesis closely parallels its prede- 

cessor with a number of its own unique features.  The 

system allows a user to design three-dimensional animated 

motion pictures of straight line bodies with ease and ver- 

satility on a computer.  The software was written entirely 

in Hewlett-Packard's RTE Fortran IV. 

The plotting subroutines aforementioned plot any two 

one-dimensional data arrays.  The plot that is generated is 

graphed on a two-dimensional user-defined grided plane. 

The plot may either be a point by point or a line represen- 

tation of the data. 

The "conceptual camera programming system" is a sys- 

tem simulation of an actual animated motion picture camera. 

As 



previously mentioned this system can only handle straight 

line bodies or straight line approximations to curved 

surfaces at the present time.  The problems addressed in 

this area deal with system definition, initialization, 

data bases, system updating, actual body movements (trans- 

lation and rotation), coordinate system transforms, clip- 

ping algorithms, and perspective projections.  No actual 

camera movements are dealt with here although they may 

be easily integrated into the system.  It is the hope 

that this phase of the system will be developed in the 

near future. 

Therefore, it is the objective of this thesis to pro- 

vide versatile capabilities in two pertinent areas of 

computer graphics on the Hewlett-Packard 1000 computer 

system and to make the systems as easy and convenient 

as possible to use. 



I.   INTRODUCTION 

This section contains a short discussion of the three 

areas of computer graphics that have been developed on the 

Hewlett-Packard 1000 Computer System. 

A.  The "Conceptual Camera Programming System" 

As the title implies this system allows the user to 

imagine the computer as a real and functioning camera. 

This "camera" can be programmed to perform various pre- 

determined functions. Since it is not a real camera but 

a camera simulated visually by the computer and imagined 

or conceived in the user's mind it can be labeled a 

"conceptual camera". This "conceptual camera" lends it- 

self to the design and filming of three-dimensional objects 

much more readily than its real counterpart, since it is 

really a software system simulation. 

The idea for this particular system was derived from 

a thesis by Joel E. Katzen entitled "A Conceptual Three 

Dimensional Camera for Computer Animation"^ The system in 

this thesis was designed to nearly emulate Katzen's system 

on a different computer. The computer used was a Hewlett- 

Packard 1000 Computer System which is a 16-bit machine 

with 32,000 bytes of memory, a hard disc and tape unit for 

additional storage. The computer can support five languages 

Fortran IV, Fortran, Basic, Algol, and its own assembly 



language.  The four higher level languages are all Hewlett- 

Packard versions. 

The main considerations given to this system simu- 

lation are:  the ease and versatility of implementation by 

the user, the ease of visualizing the animated three-dimen- 

sional objects and their movements, and the ease of inter- 

action between user and system.  For this last considera- 

tion the system actively interacts with the user on a con- 

versational basis for initialization of data bases and 

other information. 

The conceptual camera programming system, referred 

from here on as the CCPS, is just the start of a simula- 

tion that in addition to handling complex camera actions, 

could handle the complicated problems of hidden line elimi- 

nation, shading, curved surfaces and highlighting. 

Thus, the content of this section will only by con- 

cerned with the problems of initialization, data base 

structure, system updating, body system movements, coordi- 

nate system transformations, perspective projections, and 

two-dimensional clipping algorithms. 

B.   The Plott package 

This section deals with a set of subroutines allowing 

a user to graph two-dimensional data on a plotting plane. 

The plane is a gridiron surface whose parameters are de- 

fined by the user.  The subroutines also scale the plotting 

surface 

4 



and can title the axes if the user desires. The sub- 

routine calls are written in Hewlett-Packard's Fortran IV. 

The objectives in creating these software subroutines 

were to give an user, an easy to use package with some basic 

abilities in plotting data, ease in interpreting the data 

from the plot, and the ability to draw analytic judgements 

or conclusions from the data graphed.  The routines were 

written to be easily implemented by the user with a minimum 

number of parameter definitions. These subroutines are only 

the beginning of a package which could include semi-log, 

log - log, three - dimensional, and multi - data plotting 

routines. 

C.  The Three-Dimensional Vector-Matrix Package 

This subroutine package was developed primarily to 

support the vector and matrix manipulations in the CCPS. 

The subroutines do the basic mathematics common in vector 

and matrix algebra. Although developed primarily for the 

CCPS, all routines can be implemented quite easily by a 

user in other applications.  Thus, this package can allow 

a user to manipulate three-dimensional quantities found in 

dynamics and statics, electro-magnetic waves and fields, 

partial differential equations, etc. 

Again all the routines are written exclusively in 

Hewlett-Packard's Fortran IV. 



II. Mathematical Considerations Concerning the CCPS 

A. Introduction 

This section is concerned with the mathematical 

considerations necessary to implement the CCPS. Consid- 

eration will be given to the following areas: 

(1) Coordinate System Definition 

(2) Coordinate System Transformation 

(3) Perspective Projection in Three-Dimensions 

B. Coordinate System Definition 

To define three-dimensional bodies, and to have these 

bodies rotate and translate in a three-dimensional space, 

three coordinate systems must first be defined and initiated 

These coordinate systems are, 

(1) The Body System 

(2) The Reference System 

(3) The Camera System 

The reference coordinate system is the reference by 

which all other coordinate systems are defined and oriented. 

Thus its origin is always defined as (0,0,0) for X, Y and Z 

respectively and it has no angular displacements. The body 

coordinate system is the initial orientation of each body 

with respect to the reference system. This can be seen 
f- 

as in Figure II-l, for two bodies. The individual body in 

each body system is then defined with respect to its co- 

ordinate system. Up to four bodies may be defined in this 

manner in the CCPS.      L 



FIGURE m-i   (H) 
WB\ 

1*R 
REFERENCE 
COORDINATE 
SYSTEM 

COAO) 

4^82 

BOOT 
SYSTEM 

I 

BODY 
SYSTEM 

2 

XB2 

*BI 



The camera coordinate system is the coordinate sys- 

tem defined for the conceptual camera with respect to the 

reference coordinate system.  It has been established or 

standardized in most computerized camera systems that the 

camera's eye is pointed along the -Z axis of its coordi- 

nate system.  This has been done so that the film plane 

upon which all bodies are projected (see Figure II-8) is 

always in the X - Y plane at the camera system and so that 

the film plane and the camera coordinate system are main- 

tained as right-handed coordinate systems.  (Thus, the 

reference and body coordinate systems must also be ini- 

tialized as right-handed coordinate systems.)  To visu- 

alize the camera's coordinate system with respect to the 

body and reference systems refer to Figure II-2. 

To transform the coordinate points of a particular 

body from the body to the reference to the camera coordi- 

nate system, a three-dimensional coordinate transform must 

be realized. 

C.   Coordinate System Transforms 

To perform a complete transform from one coordinate 

system to another, six independent variables must be taken 

into account.  Of these variables, three make up the ro- 

tational transformation and three may up the translational 

transformation. 

a 
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First, the rotational transform will be considered. 

If we are originally in the reference coordinate system 

and wish to transform a body's coordinates to the body 

system, and need only for the moment apply a rotational 

transformation, we must first define three Euler angles of 

rotation.  These angles are 0, 0,   and >* and are shown in 

Figure II-3.  Looking first at y rotation, we can visua- 

lize this rotation more clearly by looking straight down 

the Z axis as in Figure II-4.  The ^ rotation is defined 

as a counter-clockwise rotation around the Z axis.  To 

transform a point in the (X, Y, Z) to the (X', Y', Z') co- 

ordinate system (or reference to body system), with a )* 

rotational displacement we must derive the three-dimen- 

sional matrix transform which performs this operation.  To 

do this we can represent some point P in the X - Y plane by 

a vector OP as in Figure II-5. 

We may represent the vector OP in terms of the 

(X, Y, Z) system as a linear combination of i, j, and k 

basis vectors and hence we may write, 

OP = xi + yj + zk 

We may also represent OP in terms of the (X', Y', Z') sys- 

tem with basis vectors e^, e2, and 63. 

OP = x'e^, + y'e2, + 2*63 

The unit basis vectors e^, e2» and 63 in terms of i, j, k 

are found by using the rotational angle >£. Thus, it can be 

seen by inspection that, 

10 
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- cost   i + sin Y j 

- cos   (  f +   /7/2)i + sin  ( V + TT/2) j 

« - sin Y i    + cos Y j 

« k 

Therefore, 

and since, 

xMcosYi + sinYj)  + y' (-sin Y i + cosYj)  ♦ 
z'k 
(x'cos t - y'sinY)i +   (x'sinY  +    y'cosYH  + 
z'k 

xi + yj + sk =   (x'cos t - y'sinY)i +   (x'sinY* y'cosY)j + 
z'k 

The equations for the rotation of the axes are found by 

the equality of vectors, 

x = x'cosf  - y'sinY 

y = x'sinY  + y'cosY 

Z = B' 

In matrix form, the above becomes 
—   - 

X X' 

y =    0 X y' 

z «' 

e, 

cos)^ -sin>      0 

[T]     - sin/' cost      0 

0 0 l 

It is interesting and useful to note that, 

det  [T]  « cos2* +  sin2 >  - 1 

14 



and thus, 

jrl      ■  [TJ transpose 

Therefore to transform a point in theCX Y £) to theCX'Y'B') 

system the following matrix multiplication is applied. 

cost 

sinY 

0 

or, 

rxt 

Y' 

B' 

-sint 0 X' X 

cost 0 • Y* B Y 

0 1 8' 8 

cos Y  sin t  0 

■sinY  cost  0 

0    0     1 

X 

Y 

8 

but, if we follow the angle convention in Figure I1-3 for 

we must replace the i*   in the proof above with - f 

Thus, 

X' cos t -sin 0 X 

Y' ss sint cos 0 • Y 

*' 0 0 1 8 

This is the f  rotational transform matrix. 

The next rotational angle is O which is a counter 

clockwise rotation about the X axis as indicated in 

Figures II-3 and II-6. 

A similar proof can be established for the trans- 

formation of a point in the (XYE) system to the (X'Y'B') 

15 
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system, with a e rotational displacement.  This trans- 

formation becomes, 

1 0 0 X X' 

0 cose -sine • Y - Y' 

0 sine cose 2 B' 

Likewise for the final rotational angle 0, in Figure II-3 

and II-7, 

COS0 0 sin0 X X' 

0 1 0 • Y ■i Y' 

-sin0 0 COS0 2 &• 

The complete rotational transform from the 0CY8)  to 

the (X'Y'E') system  (or reference to body system) taking 

into consideration the rotational displacement of 9, 0, 

and V altogether can be gleaned from a simple definition 

proved in Vector Calculus.  The definition is, 

M • M (M • (x>) - (N • N ■ [Ti]) •<x) 

A proof of the above is not included here but may be found 

in bibliography reference (1). 

Thus a complete transform (X,Y,8) to(X',Y,B') is, 

cos t   -sin t   0 

sint      coat   0 

0 0 1 

10 0 

0      cose      -sine 

0       sine        cose 

17 

cos0       0       sin0 

0 10 

-8in0    0      cos0 

r" 
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From now on the three rotational matrices above will be 

labeled as the matrix, [TR2B], meaning the transform from 

the reference to body system.  Thus, 

[TR2B] X X' 

Y ■s Y' 

Z Z' 

It may be quite apparent now that what will be required 

in the CCPS is the rotational transform from the body to 

the reference system. 

Thus, 

X 

Y 

Z 

[TR2B) 
-1 

X' 

Y' 

Z' 

but this is the same as, 

X 

Y 

Z 

[jR2Bj 
transpose 

X' 

Y' 

Z' 

And thus we can define, 

[TB2R]   -     &R2B| transpose 

To make the transformation complete, the translational 

transform must be applied.  If Xj»2B» Y , , and Z--- are 

given the definition, as the translational displacement of 

a particular body from the reference to the body system. 

18 



and, if (X, Y, Z) and (X', Y', Z') are relabeled 

(XR, YR, ZR) and (XB, YQ, Zg) respectively, the entire 

transform can be written as one equation: 

[TB2R) . 

"XB XR2B V 
*B + YR2B 

a YR 

-ZB .ZR2B. _ZR 

(1.) 

Any translational displacement of the body in 

(XD, YQ/ ZB) results in an identical (XR. YR, ZR) transla- 

tion in the reference system given the initial displace- 

ment between both systems, thus, the above equation. 

Next, it is appropriate to consider the transforma- 

tion from the reference to the camera system, since our ob- 

jective is to transform points of a body in its system to 

a pre-defined camera system.  The rotational transform 

from reference system to camera system is developed in the 

identical manner as the  pnteBJ  and thus, it will just be 

stated simply as, 

10     0 

0 cosOc sin9c 

cos)^  -sinrcO 

sin/1. coatt. 0 

0   1 0-sin6c cos8c 

cos#c  0  sinFc 

-sinPL 

1  0 

0 coo0c 

where yc, 6C, and jBfc are the rotational angles of orien- 

tation for the camera system. 

The entire transform from the reference coordinate 

system to the camera coordinate system including the trans- 

lational 

19 



transform is developed as before and can be stated as, 

[TR2C]  . 

V - 
XR2C 

*R 
- XR2C 

>_ ZR2C 

(2.) 

where again (XR2C» 
YR2C' ZR2C^ *s tne translat*onal dis- 

placement of the camera coordinate system with reference 

to the reference system. 

Thus, if a body is defined in its body coordinate 

system it can be transformed point by point into the pre- 

defined camera coordinate system by the application of the 

above equations.  These equations may be combined into one 

equation which entirely describes the transformation from 

(Xfi, YQ, ZB) to (Xc, Yc, Zc) and it may be written as, 

= [TR2C] [TB2R| . 

V 
\ 

XR2B XR2C 

YB 
\ + YR2B - YR2C 

ZB 
/ 

ZR2B ZR2C 

(3.) 

D.   The Theory of Perspective Projection 

Once the coordinates of a particular body are known 

in the camera coordinate system, they must then be pro- 

jected into a two-dimensional film plane or screen.  There 

are several methods of accomplishing this;  one method may 

be developed 

20 



by looking at Figure II-8.  In Figure II-8, it is desired 

to project point P onto the X - Y plane and thus into 

point P'.  The camera "eue" is located at Zc«o. and 

points along the -Zc axis.  The Xp - Y_ plane is the film 

plane or screen. (Xc, Yc, Zc) is one point of a particular 

body which has been transformed to the camera coordinate 

system.  0pov is tne fi-eld of view of the camera.  In the 

CCPS, Xp(max) will equal Yp(max)# the X and Y field of view 

angles will be equal (this is more for a matter of con- 

venience than any other reason). 

Note that the orientation of the film plane is a 

righthanded coordinate system.  Thus, after the perspective 

projection, no coordinates need further transformation or 

scaling on the film plane. 

The perspective image of the lines of a body can be 

generated easily by transforming only their end points and 

drawing a line between the transformed end points in the 

proper order. 

To visualize the perspective projection of the end 

points see Figure I1-9.  This figure is the same as Figure 

II-8, only looking down the YQ axis.  Xc, Yc, and Zc are 

known for point P, 0pov is known, and so is b, the film 

plane size.  To find to X and Y , the law of similar 

triangles can be applied. 

Thus, the ratio of line segments in triangles OQP and 

OQ'P' are, 

21 
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or, 

OQ  .  OQ' 
QP     OP' 

Zc a       a  
Xc     -Xp 

2^£ =  aXc    (Xc and -Zc are known) 
-Zc 

but,  tan (0pov)  = b  (0pov and b are known) 

tan(0FOV) 

thus, 

Xp =  bXc  
-Zctan(Opov)        (1.) 

By an identical argument it can be shown that, 

yP =  byc        (2.) 
-Zctan(0FQV) 

It may be noted that due to the way the camera coor- 

dinate system and the film plane are oriented, a couple of 

projection limitations are present.  One limitation is 

that the projection of a point is not possible if Zc £ 0. 

This limitation is rather apparent;  the camera cannot see 

an 

24 



object which lies behind it.  The second limitation is that 

yp and xp must be  /b/.  In other words, the projected 

point must lie on the film plane.  This leads to the con- 

siceration of a clipping routine to protect against screen 

(film), plane overrun.  This clipping algorithm is easiest 

accomplished in two-dimensions on the film plane itself. 

This algorithm is discussed in detail later. 

25 



III.  The Internal Structure of the Conceptual 

Camera Programming System 

A.    Introduction 

This section will deal exclusively with the internal 

workings of the CCPS.  It will describe the program flow, 

data base, and subroutines necessary to implement this 

system. 

The principle subroutines that will be outlined in 

this section are: 

(1.)   START -  the CCPS initialization subroutine 

(2.)   UPDTE -  the CCPS data base bookkeeper sub- 

routine 

(3.)  TRANS - the CCPS coordinate system transform 

subroutine 

(4.)   IMAGE -  the actual film image producing 

subroutine 

(5.)   CLIP1 -  the three dimensional clipping 

algorithm 

(6.)   SEQ   -  the body connection scheme storage 

subroutine 

(7.)   Body motion subroutines - 

XTRAN     YTRAN    ZTRAN 

XTR       YTR      ZTR 

RTX2Z     RTY2X    RTY2Z 

X2Z       Y2X      Y2Z 
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The CCPS procedural file will also be explained along with 

CCPS segmented programming technique. 

B.    The CCPS Program Flow 

The program flow format can be realized by viewing 

Figure III-l. 

The numbers referenced below refer to the numbers 

next to each box in Figure III-l. 

1. CALL START - This subroutine is only called 

once in the CCPS.  It initializes all the important 

system parameters.  These parameters are the number 

of bodies, in the initial body and camera orienta- 

tions, the body center definitions, the field of view 

angle, the number of lines in each body, and the 

frame size.  It also initializes the data base and 

sets the frame counter to one. 

2. In this step, the point connection scheme is 

defined totally by the user in the array MSEQ.  This 

array is then stored in the data base via the sub- 

routine SEQ. 

3. At this point, all the body motions which are 

to be performed in this animation are now defined. 

Only one body motion of the six types may be defined 

for each body.  This facet of the CCPS is explained 

fully later. 
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CALL START 
Initialize the COBS 

Define & store 
MSEQ(4,15,15) 
in the internal 
data structure 

Define all 
body motions 

Define all bodies 

CALL IMAGE 

Preform all 
body motions 

CALL IMAGE 
Transform the body 

to the camera 
system 

1) 

2) 

5) 

6) 

FIGURS UX&l 
COPS Program Plow 

CALL UPDTE 

Update CCPB 8) 

CALL IMAGE 

Project endpoints 
on film plane 

7) 
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4. At this point,each body is now defined in its 

own body system.  This is accomplished by defining all 

its end points. 

5. CALL IMAGE - At this point, all body motions 

are now performed upon the bodies that have been 

previously defined. 

6. In this step, all body coordinates are trans- 

formed to camera coordinates within the camera co- 

ordinate system. 

7. In this step, the resulting camera coordinates 

are now projected onto the film plane and clipped. 

8. CALL UPDTE - The frame counter is incremented 

by one and all flags are checked and/or set. 

9. In this step,the loop is checked for completion. 

This is a simple user defined DO loop in Fortran IV 

(ie DO 1 I = 1, N, where N is the number of frames). 

This step defines the number of frames in the animation 

process, and controls the looping format of the CCPS. 

3. Data Base Structure 

This section details the data foundation for the CCPS. 

I nternal data'structure processes will be described so as 

to form a foundation for the explanation of other CCPS rou- 

tines involving the data base. 

1)   COORDS 

The first element in the CCPS data base is an 

array called COORDS. As can probably be gleaned from 
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the name, this array contains all the information 

pertaining the coordinates of the camera system 

and of the various body systems.  To better under- 

stand what this data base array contains refer 

to Figure III-2. 

In Figure III-2, COORDS is a five by thirteen 

dimensional array.  The rows of the array reference 

the camera and each of the bodies.  The columns of 

the array reference data concerning the camera and 

each of the bodies.  The data referred to by the 

first five columns are, 

1.)   Flag - an indicator that is set or reset telling 

the CCPS whether the camera or any body is in 

motion or not.  (0-no motion, 1-motion in 

progress.) 

2.)   x   - the initial X displacement of the camera 

of the bodies. 

3.)   AX - the incremental X displacement of the 

camera or the bodies. 

4.)   ST  - the starting frame of the incremental X 

displacement. 

5.)   ED  - the ending frame of the incremental X 

displacement. 

Displacements are referrenced to the reference coordinate 

System. The above definitions are identical for the other 
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eight columns.  As can be seen, storage has been alloted 

for four bodies and a camera. 

If there are zeros in the Flag, D, ST, and ED 

columns for X, Y, or Z then no changes are specified for 

that parameter at the present time.  If these parameters 

are non-zero, then a change is indicated for that speci- 

fied coordinate at some time in the animation process. 

2)     ANGLE 

The second element in the CCPS data base is 

an array called ANGLE.  This array is identical in 

size to the array COORDS, but instead contains in- 

formation concerning the angular displacements of 

the various bodies and the camera.  To see how ANGLE 

is constructed, look at Figure III-3. 

The rows of the array ANGLE reference the 

four bodies and the camera.  The columns of the array 

reference information concerning the four bodies and 

the camera.  The information referenced by the first 

five columns is: 

1.)   FLAG - an indicator, that is set or reset, 

telling the CCPS whether the camera or any 

body is in motion or not (0-no motion, 1- 

motion in progress). 

2.)   9 - the initial 6 angular displacement of 

the camera or any of the bodies. 
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3.)   A 6 - the incremental O angular dis- 

placement of the camera or any of the 

bodies of each frame. 

4.)   ST - the starting frame of the 0 angular 

displacement. 

5.)   ED - the ending frame of the 0 angular 

displacement. 

Again, all displacements are referenced to the reference 

coordinate system, and the above definitions also hold true 

for remaining columns.  If there are any zeros in i, 3, 4, 

or 5 above, there is at present no motion indicated.  If 

there are any non-zero quantities in 1, 3, 4, or 5 then 

motion is indicated at some time. 

As an example of what occurs in the above two arrays 

assume the following data exists in the both arrays: 

COORDS (2, 6)  =  10.    COORDS (2, 7)  »  1. 

COORDS (2,   8)  =   2.    COORDS (2, 9)  = 11. 

COORDS (2, 1)  =  1. 

ANGLE (2,   2)        =  30.    ANGLE  (2, 3)  -  5. 

ANGLE (2, 4)   =   2.    ANGLE  (2, 5)  -  4. 

ANGLE (2,   1)  ■  1. 

First, looking at the COORDS data we see COORDS (2,1) 

= 1. This indicates that some motion is presently in pro- 

gress for body 1. COORDS (2,6) - 10., indicates that body 

1 is displaced initially in the Y direction by ten units. 

Looking 
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one column over, COORDS (2, 7) » 1., means that body 1 is 

to be displaced by one unit per frame starting at frame, 

COORDS (2, 8) = 2., and ending at frame COORDS (2, 9) - 

11..  Thus the total Y displacement from frames two to 

eleven is ten units.  The units are user defined in sub- 

routine START to be discussed later. 

The ANGLE data can be analyzed in the following 

manner.  ANGLE (2, 1) = 1., tells us that again body 1 is 

presently in some angular motion.  ANGLE (2,   2) ■ 30., in- 

dicates that initially 0 is equal to thirty degrees. 

ANGLE (2, 3) tells us that 6 is rotated five degrees per 

frame starting at thirty degrees.  The rotation is to 

start at frame ANGLE (2, 4) = 2. and end at frame ANGLE 

(2, 5) =4..  Thus a total 6 rotation of fifteen degrees 

occurs in three frames. 

3)    TRIG 

In order to reduce the number of computations 

performed in the CCPS an array named TRIG was cre- 

ated.  This array simply contains the sine and co- 

sine values, for the camera and the four bodies, of 

e, A9, 0,   A0,   Y*, and Ay .  The array is drawn in 

Figure III-4. 

Thus, TRIG (6, 3) is the storage location 

for the cosine of the initial O rotational angle for 

body 2.  Likewise, TRIG (9, 6) is the sine of the 

incremental y rotation of body 4.  If any 

35 



CAMERA 

BODY I 

BODY 2 

BODY 3 

BODY 4 

9 A0 0 A0 P up 
SIN 

COS 

SIN 

COS 

SIN 

COS 

SIN 

COS 

SIN 

COS 

FIGURE m-4 
36 



displacement is rotationally zero the sine values 

are, of course, one and the cosine values are 

zero. 

The reason for the existence of the TRIG 

array is to perform all trigonometric calculations 

only once, thus, increasing the CCPS speed and 

efficiency. 

4) TB2R 

The TB2R array is a three dimensional 

array containing the matrix for transforming a 

particular body from its body system to the 

reference system.  This transform is discussed 

in section II-C, Coordinate System Transforms. 

TB2R is configured as in Figure III-5. 

As seen the variable ,I, defines which 

body each array transforms.  Each array is a three 

by three matrix since it is a three dimensional 

transformation.  The values for TB2R are obtained 

from the array TRIG. 

5) TR2C 

Array TR2C as illustrated in Figure III-6, 

is the transform from the reference system to the 

camera system as discussed in Section II-C, Co- 

ordinate System Transforms. There exists only one 
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camera in this system and thus only one three by 

three matrix traitsform.  Again the values for TR2C 

are taken from the array TRIG. 

D)     Subroutine START 

This subroutine is the initializing and data 

entry routine for the CCPS.  Figure III-7 shows the 

program flow for the START subroutine.  The programmer 

call for the subroutine is: 

CALL START 

No parameters need be passed to the subroutine. 

All data entered via START is stored in a common data 

block called CCPS which is discussed in full later. 

The following numbered explanations correspond 

to the numbered blocks in the START program flow in 

Figure III-7. 

1.)   This step initializes the COORDS, ANGLE, and 

TRIG arrays by setting the values of COORDS 

and ANGLE to all zeros.  Since all angles in 

the system are initially zero, the odd rows 

(sines) of TRIG will be set to zero and the 

even rows (cosines) will be set to one. 

2.)   In this step, the LSEQ array is initialized 

by setting all of its values to zero.  The 

LSEQ array is explained in full later. 
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3.)   At this point, the initial displacements of 

the camera coordinate system are interactively 

inputed and stored in COORDS and ANGLE. These 

parameters are the X , Y , Z , 8 , 0 , and 4> 
C C    w    w    C C 

displacements as discussed in Section II-C. As 

discussed in Section II-C the values for X . Y . c  c 

Z , 9 , 0 , and Z'  will normally be set to c  c  c       c 

(0,0,0) and (0,90,0) respectively.  This gives 

the camera no translational displacement, thus 

placing the camera at the origin, but rotates 

X axis into the B axis ninety degrees, setting 

a right handed coordinate system, and thus, the 

proper orientation for the projection of the 

bodies onto the film plane. 

4.)   In this step the initial displacements of all 

body coordinate systems are interactively in- 

puted and stored in COORDS and ANGLE. 

Again the parameters inputed for each body are 

Xg, YB, Zfi, eB, 0B, and /*fi. These parameters 

are displacements referenced to the reference 
/ , 

coordinate system. 

5.)   At this level, the body center or the point of 

rotation for each body is entered. This point 

is the physical center of each body in its own 

body coordinate system or a point at which the 
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user desires the body to be rotated about 

(discussed later), again defined in its own 

body system. 

6.)   The camera's field of view is entered here. 

If, for example, a field of view of 30° is 

desired then ©fov in Figure II-8 is 30°. 

The TANFOV value in the projection equation 

in Section II-D then becomes,  TANFOV ■ 

tan(30°) = 0.577. 

7.)    In this step, the number of lines for each 

body must be defined. 

8.)   At this point the frame size is defined by 

the user.  Normally the size of the film 

plane is set to two and thus b in 

Figure III-8 is one.  This is mostly a 

matter of convenience.  (Note that the film 

plane is always square.) 

9.)   At this time, the new values for the TRIG 

array are calculated from the new data entered 

into the ANGLE array in steps 3 and 4. 

10.)   Now the transformational matrices TB2R and 

TR2C are found and thus initialized from the 

data found in the TRIG array as discussed 

in Section II-C. 
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11.)   Finally, the frame counter, FRMCT, is set 

equal to one in preparation for the drawing 

of the first frame. 

E)     Subroutine UPDTE 

This subroutine is the "bookkeeper" for the 

CCPS. Figure III-9 depicts the program flow for the 

routine.  The programmer call for the subroutine is: 

CALL UPDTE 

The following numbered explanations correspond 

to the numbered boxes in Figure III-9. 

1.)  The subroutine first checks the data structure 

to see if any motion is ending in the present 

frame.  This is accomplished by checking the 

END column for each body in the COORDS and 

ANGLE data arrays. 

2.)   If a motion is ending, the appropriate flag 

is set from a one to a zero in the FLAG 

column in the COORDS and ANGLE data arrays. 

3.)  In this step, the frame counter is incremented 

by 1. .  Since CALL UPDTE is at the bottom of 

the loop procedure, all processing for the 

present frame is completed with the completion 

of Step 2. Thus, the present frame incremented 

by one in preparation is for the next frame. 
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4.)   In this step, the subroutine checks to see 

if any motion is starting in the upcoming 

frame. As before, this is accomplished by 

checking the ST column in the COORDS and 

ANGLE data arrays. 

5.)   If any motion is starting in the preceding 

step the appropriate flag is set from a zero 

to a one in the FLAG column of the COORDS and 

ANGLE data arrays. 

When in the i  iteration of the loop in 

Figure III-l, subroutine UPDTE is called after the 

i  frame is completed.  The system is then completely 

updated and set for the drawing of the next frame. 

Program control is then returned to the loop and the 

drawing of i  +1 frame then precedes. 

F)    Subroutine TRANS 

This subroutine determines the transformational 

matrices TB2R and TR2C, as described in Section II-C, 

and Sections III-C-4 and III-C-5.  This subroutine is 

invisible to the general CCPS user.  It is called in 

subroutines START, to initialize both matrices, and 

in IMAGE to determine each matrix after a body 

rotation or translation.  The subroutine call is: 

CALL TRANS (IBODY) 
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where IBODY is the body for which TB2R is being 

determined, i.e. TB2R (IBODY, 3, 3).  IBODY equal 

to zero determines the matrix TR2C, i.e. TR2C (3,3). 

G)    Subroutine IMAGE 

The discussion in this section deals with 

boxes 5, 6, and 7 in Figure III-l which draw the 

three-dimensional bodies on the film screen. The 

program flow for the IMAGE subroutine is outlined 

in Figure 111-10.  The programmer's subroutine call 

for drawing the bodies is: 

CALL IMAGE (X, Y, Z, NCOOR, IBODY) 

where X, Y, and Z are the coordinates for the 

particular body to be drawn, NCOOR is number of 

coordinates defining that body, and IBODY is the 

body system's designated number. 

The numbered discussions that follow refer 

to the numbers beside the boxes in Figure 111-10. 

1.)   In this first step, the subroutine decides 

whether any body motion has been specified 

to occur. This is accomplished by checking 

the flags in COORDS and ANGLE.  If no motion 

is specified for the body in this frame, the 

subroutine returns program control to the 

loop process.  If motion is to occur the program 

continues onto Step 2. 
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2.)   Since motion is indicated for the particular 

body under consideration,  the subroutine 

determines what motion is desired, rotational 

or translational, and in what direction. The 

body is then rotated or translated in its own 

body system by a program call to XTR, YTR, 

ZTR, X2Z, Y2X, and/or Y2Z depending on the 

motion desired. These subroutines will be 

discussed in detail later in Sections III-J-7 

thru III-J-12. 

3.)   When the body has been rotated,and the new 

coordinates determined, TB2R and TR2C must then 

be recalculated to determine the transform 

from the body to camera coordinate system. 

4.)   TB2R is then employed to transform the co- 

ordinates from the body coordinate system to 

the reference coordinate system as done by 

Equation (1.), Section II-C. 

5.)   The coordinates are then transformed from 

the reference to the camera coordinate system 

via the use of TR2C as in Equation (2.), 

Section II-C. The total transform being 

Equation (3.) of the same section. 

6.)   In this step, once the coordinates lie in the 

camera's coordinate system they may be projected 
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onto the film plane via the projection 

equations (1.) and (2.) of Section II-D. 

7.)   In this step, the subroutine CLIP1 is called. 

This subroutine clips the projected two- 

dimensional body coordinates to the film plane 

boundaries, so that no screen wrap around 

occurs.  If the body lies totally on the screen, 

no action is taken on the body's coordinates. 

CLIP1 will be discussed in greater detail 

later in Section III-G. Once the coordinate 

points have been projected and clipped to the 

film plane size, the body lines are drawn 

connecting the end point coordinates in proper 

sequential order. This order is determined 

by the array, MSEQ(4, 15, 15). Again, the 

drawing routine and the MSEQ array will be 

discussed in detail later in Sections III-I 

and IV-A. Once all of the above has been 

accomplished, the body is completely drawn 

on the film plane and the subroutine IMAGE 

returns control to the process loop. 

H)    Subroutine CLIP1 

This subroutine retards any of the bodies 

projected onto the film screen from exceeding the 

boundaries of the film plane.  If any line of a 
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projected body where allowed to exceed the film 

plane boundaries it would wrap around to the 

opposite side of the screen and be drawn there, 

giving a distorted representation of the body, 

see Figure III-ll. 

In Figure III-ll, line AB has exceeded one 

of the film plane boundaries.  The line segment B'B 

is the segment of line AB which has exceeded one 

boundary.  This line segment has wrapped around to 

the opposite side of the screen and produced line 

segment CD on the screen. 

To eliminate such distortions,each line that 

overruns a film plane boundary must be clipped so 

that it does not exceed that boundary value.  Thus, 

in Figure III-ll line AB, must be clipped to line 

AB so that line CD does not appear on the screen. 

In other words, the clipping subroutine must determine 

that line AB exceeds the screen size, calculate point 

B', and replace point B with point B'. 

There are four such screen overrun cases that 

the clipping algorithm must handle.  These four 

cases are illustrated in Figure 111-12. 

The following discussion refers to the each 

case in Figure 111-12 and what action must result in 

the clipping algorithm. 
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FIGURE HI-12 
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.rd 

MSEQ (1, 3, 4)  -  5 

This means that for body system 1, the 3' 

line to be drawn connects points 4 and 5. Thus for 

the cube and the pyramid in Figure 111-13, MSEQ 

would be defined, (for the cube), 

MSEQ(1,1,1)   " 2 MSEQ(1,5,3)      - 4 

MSEQ(1,2,1)   - 4 MSEQ(1,6,3)     - 7 

MSEQ(1,3,1)   - 5 MSEQ(1,7,6)      - 5 

MSEQ(1,4,3)   » 2 MSEQ(1,8,6)      - 7 

MSEQ(1,9,6)   - 2 MSEQ(1,11,8)   - 7 

MSEQ(1,10,8)» 5 MSEQ(1,12,8)   - 4 

Y 

(for the pyramid), 

MSEQ(2,1,1) « 2 

MSEQ(2,2/1) » 4 

MSEQ(2,3,3) - 4 

MSEQ(2,4,3) o 2 

MSEQ(2,5,5) - 1 

MSEQ(2,6,5) = 2 

MSEQ(2,7,5) = 3 

MSEQ(2,8/5) « 4 

(The rest of MSEQ is set equal to zero by the 

subroutine START.) 

This array must be defined immediately after 

subroutine START by the programmer as in Figure III-l, 

Immediately after defining MSEQ for all the bodies 
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the programmer must store the array in the data 

structure. This is accomplished by the subroutine 

call: 

CALL SEQ(MSEQ) 

which stores MSEQ in the internal data base.  Note 

that MSEQ must be dimensioned by the user as a 

four by fifteen by fifteen, three dimensional array. 

Thus, the programmer may only define four bodies with 

a maximum of fifteen lines per body. 

J)    Body Motion Subroutines 

The discussion in this section deals with the 

box numbered 3 in Figure III-l. 

There are six possible subroutine calls for 

defining rotation and translation of a body in the 

CCPS. Of these six motions, three are rotational 

and three are translational. The six subroutines 

are: 

XTRAN RT X2Z 

YTRAN RT Y2X 

ZTRAN RT Y2Z 

Any of the above motions are performed within 

a particular body system before the body is trans- 

formed to another coordinate system. All of the 

above subroutines set up their respective motions 

but they do not actually perform the motion. The 
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subroutines that perform the actual rotations and 

translations are: 

XTR X2Z 

YTR Y2X 

ZTR Y2Z 

Thus, the programmer uses the first set of sub- 

routines to store information about how a certain 

body is to move in each picture frame.  The second 

set of subroutines move the body as specified by 

the first set. 

The second set of subroutines are invisible 

to the user and are called only by the subroutine 

IMAGE. 

The discussion that follows will analyze 

each of the subroutines mentioned above. 

1.)    Subroutine XTRAN (IBODY, START, END, FEET) 

When a user calls this subroutine a translation 

is set up in the X direction of the IBODY** 

body system.  The translation will begin at 

frame START and end at frame END.  FEET is the 

distance of the translation. FEET maybe negativ 

or positive. START, END, and FEET are assigned 

the same meanings in the following translational 

and rotational subroutines. 

2.)    Subroutine YTRAN (IBODY, START, END, FEET) 

When this subroutine is employed a translation 
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is set up in the Y direction of the IBODY** 

body system. 

3.)    Subroutine ZTRAN (IBODY, START, END, PEET) 

When this subroutine is referenced, it will set 

up a translation in the Z direction of the 

IBODY** body system. 

The definitions of the body rotation sub- 

routines match those defined rotations in 

Section II-C. 

4.)    Subroutine RT X2Z (IBODY, START, END, DEGS) 

When this subroutine is called, it will set 

up a 0 rotation of DEGS degree of the entire 

IBODY1* body system. 

5.)    Subroutine RT Y2X  (IBODY, START, END, DEGS) 

When this subroutine is referenced, it will 

set up a 6 rotation of DEGS degrees of the 

entire IBODY  body system. 

6.)    Subroutine RT Y2Z (IBODY, START, END, DEGS) 

When this subroutine is called, it will set up 

a   rotation of DEGS degrees of the entire 

IBODY** body system. 

Note that in the above three rotational sub- 

routines that DEGS may either be a positive or 

negative number, or respectively, a positive or 

a negative rotation. 
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7.)    Subroutine XTR (X, Y, Z, NCOOR, IBODY) 

When this subroutine is employed, it will 

translate the IBODY  body coordinate system 

in the X direction as specified by the sub- 

routine XTRAN.  X, Y, and Z are the actual 

coordinates in the IBODY  body system. 

NCOOR is the number of coordinates in the 

IBODY  body system. All input parameters 

are supplied by the subroutine IMAGE. X, Y, 

Z, and NCOOR assume the same definitions in 

the following subroutines as above. 

8.)    Subroutine YTR (X, Y, Z NCOOR, IBODY) 

When this subroutine is called, it will trans- 

late the IBODYth body system's body in the Y 

direction as specified by subroutine YTRAN. 

9.)    Subroutine ZTR (X, Y, Z, NCOOR, IBODY) 

When this subroutine is called, it will trans- 

late the IBODYth body system's body in the Z 

direction as specified by subroutine ZTRAN. 

10.)    Subroutine X2Z (X, Y, Z, NCOOR, IBODY) 

When this subroutine is referenced, it will 

rotate the entire IBODY  body system as 

specified by RTX2Z. 

11.)   Subroutine Y2X (X, Y, Z, NCOOR, IBODY) 

When this subroutine is called, it will rotate 
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the entire IBODY  body system as specified 

by subroutine RT Y2X. 

12.)   Subroutine Y2Z (X, Y, Z, NCOOR, IBODY) 

When this subroutine is called, it will rotate 

the entire IBODY  body system as specified 

by subroutine RT Z2Y. 

When any one of the first six subroutines are 

called by the user data is stored immediately in the 

internal data structure. Therefore, it becomes 

apparent that only one of each of the six subroutines 

may be called for a particular body during Step 3 in 

Figure III-l. Thus, there can only be six body motion 

subroutine calls per body system during Step 3. 

Finally, it should be mentioned that when the 

user employs these translational subroutines he must 

be very aware of where the bodies are moving in respect 

to the reference coordinate system and where the bodies 

are initially oriented. This is vital since these two 

parameters determined where in the camera coordinate 

system the body will be transformed and thus where, if 

at all, the body will be projected onto the film plane. 

To make the system easier to use,  the now user 

should define all initial body orientations with zero 

displacement and zero angular rotation, thus placing 

his initial programming attempts in the middle of the 

film plane. 
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K)    CCPS Programming Techniques 

Due to the limited size of the H. P. 1000*8 

core memory specialized programming techniques, 

restricted to R.T.E. software, must be utilized. 

Since the CCPS is such a large program, all of it 

cannot reside in the H. P. 1000's core memory at one 

time without memory overflow errors occuring. 

To alleviate this problem, the CCPS'8 main 

structure is broken up into two substructures or 

programming pieces. These pieces are called seg- 

mented programs. 

A.)   Segmented Programs 

This section will deal with what programming 

considerations are necessary to run an animated motion 

picture process with the CCPS, via segmented programs. 

Segmented programs are discussed in some detail 

in Hewlett-Packard's "RTE: A Guide for New Users" 

manual pp. 3-13-3-17 and the "RTE/II Software System 

Programming and Operating Manual" pp. 3-24-3-25 and 

4-33-4-34. 

Program segmentation allows the user to load 

the CCPS from disc to core memory, a segment at a 

time and simultaneously execute the CCPS. An attempt 

to load the execute the entire CCPS from disc would 
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result in a loader memory overflow error due to the 

CCPS's length and the H. P. 1000'a limited core 

storage capacity. 

The CCPS is broken up into a main program and 

two segments. The main program's sole function is to 

allow the system to jump to its first segment, where 

upon it jumps to the second segment after it has fin- 

ished execution.  The second segment executes and ends 

the animation process.  Thus, the super structure of 

the CCPS maybe pictured as in Figure 111*14. 

The user must therefore begin by writing a 

main program. 

1.)   The Main Program 

The purpose of this program is to set up the 

segmentation of the CCPS and to start the 

system off by jumping to the first segment. 

The program flow for the main program is 

illustrated in Figure 111-15.  The numbered 

discussions refer to the numbered boxed in 

Figure 111-15.  The numbered discussions refer 

to the numbered boxes in Figure 111-15. 

a.)  In this step, the user must name the main 

program and designate as a type 3.program.  The 

following is an example of a typical program 

card meeting the above requirements: 
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PROGRAM MAIN, 3 

b.)  In this step the.user must name his 

first segmented program so that the main 

program knows where to jump to.  To ac- 

complish this requirement requires the 

user to employ an INTEGER and a DATA 

statement to dimension and store the 

segment's name under another variable name. 

An example of the two statements required 

are: 

INTEGER NAME (3) 

DATA NAME/2HSG, 2HMT, 2HO/ 

Thus, the segment's program name, SGMTO 

is stored in a three dimensional array called 

NAME.  This format must be followed to ensure 

proper program execution. 

c.)  In this step, the main program calls its 

first segment.  The statement required is an 

executive call for a segment load.  This state- 

ment is discussed in detail in the second 

reference given in this section above. The 

program then gives program control to its first 

segment and the segment begins execution. 

It must be noted that once program control is 
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given to any segment, control cannot be 

returned to the calling program whether it 

be a main or a segmented program. Thus, the 

main program cannot be reentered once its 

first segment is called. This is because 

only one segment can reside in core at one 

time. The program segment load executive 

call required in the main program MAIN 

would read: 

CALL EXEC(8, NAME) 

The number eight indicates that this is 

an executive segment load, and NAME is the 

variable containing the first segment's 

program name. 

An example of a main program for CCPS 

segmentation is given in Appendix A, with 

the program name, MAIN. The user may store 

his main program under any file name he 

desires. 

2.)   Segment One 

In this first program segment the user must 

define a fixed number of parameters. A flow 

diagram is given in Figure 111-16 to help 

illustrate what parameters are required. The 
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letters beside the boxes refer to the let- 

tered discussions below. 

a.)  In this step, the user must define the 

program's name and specify it as a type 5 

program, which is an indicator, for a 

segmented program.  In the previous example, 

the first segment was named SGMTO and thus 

the program card required here is: 

PROGRAM SGMTO, 5 

b.)  In this step, the user must dimension 

the array MSEQ (4, 15, 15) for reasons stated 

in Section III-I.  The statement must appear 

exactly as: 

DIMENSION MSEQ (4, 15, 15) 

c.)  In this step, the user must set up the 

name of the second segment as he had done 

previously in the main program for the first 

segment.  Following the same procedure, if 

the second segment is to be called SGMTT, 

then the two statements required are: 

INTEGER NAME (3) 

DATA NAME/2HSG, 2HMT, 2H0/ 

d.)  In this step, the user must call the 

subroutine START.  The subroutine call state- 

ment is simply: 

CALL START 
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Then he will be asked to enter specific 

data as described in Section III-D. 

e.)  At this step, the programmer must define 

his point connection scheme for each body. 

What statements are required have been dis- 

cussed in detail in Section III-I. 

f.)  At this step, the programmer must define 

all body motions.  There can be only six types 

of motions specified for each body. These 

motions are described by the subroutines 

XTRAN,  YTRAN, ZTRAN, RTX2Z, RTY2X, and RTY2Z. 

An example of the motions that may be de- 

scribed for two bodies would be: 

XTRAN (1,2., 10., 10.) 

RTX2Z U,9., 15., 30.) 

ZTRAN (2, 2., 10., 15.) 

RTY2X (2, 5., 15., 45.) 

RTZ2Y (2, 10., 12., 90.) 

Each of the six body motions are described 

in detail in Section III-J. 

g.)  In this step, the programmer must make 

an executive segment load call in the same 

exact manner as he did in the main program, 

for the second segment. Again the segment 

call is: 
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CALL EXEC (8, NAME) 

The parameters are identical to the 

parameters in the executive call in the 

program MAIN, except this time the seg- 

mented program SGMTT is loaded. At this 

point in the CCPS program flow, program 

control is turned over to the segment 

SGMTT. 

Thus, program SGMTO has accomplished 

its three important facets of the CCPS. 

It has (completed steps 1, 2, and 3 in 

Figure III-l). 

1.)Enter all initializing data via the sub- 

routine START and has stored this data 

in the internal data structure. 

2.)Define all line connection schemes, and 

has stored this data in the internal 

data structure. 

3.)Set up all the body motions, translations 

or rotations, and has stored this data 

away internally. 

Since SGMTO is essentially a mass data 

storage routine, and once this data has 

been stored, SGMTO is actually no longer 

necessary, and the second segment may be 
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loaded into core memory in its place. 

This then allows the CCPS additional 

core storage. As the first segment can 

be thought of as a mass data storage 

algorithm, the second segment may be 

thought of as the actually filming routine 

for the CCPS. 

3.)   Segment Two 

In this segment the actual  transformations, 

translations, rotations, projections, clip- 

ping, and drawing of all the bodies takes 

place. A program flow diagram is supplied 

in Figure 111-17. The numbers appearing next 

to the boxes reference the discussions below, 

a.)  Again in this step, this program must be 

designated as a segment.  Since in the first 

segment this program was named SGMTT, the 

program card for this program segment must 

read: 

PROGRAM SGMTT, 5 

b.) At this point, the programmer must define 

the X, Y, and Z coordinates of all of the 

bodies, he wishes to film, with respect to 

their own body coordinate systems. The 
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X, Y, and Z coordinates must be defined in 

DATA statements and therefore must be di- 

mensioned . 

As an example of how the bodies may be 

defined refer to Figure 111-13.  In body 

coordinate system one is configured a cube. 

Point 1 of the cube could assume the co- 

ordinate value, (0, 0, 0), for X, Y, and Z 

respectively. Point 2 could be defined 

(0, 0, -5), Point 3, (5, 0, -5), etc. All 

of the points in body system one may be 

thusly defined with DATA statements as: 

DIMENSION X(8), Y(8), Z(8) 

DATA X/0.,0.,5.,5.,0.,0.,5.,5./ 

DATA Y/0.,0.,0.,0.,5.,5.,5.,5./ 

DATA Z/0.,-5.,-5.,0.,0.,-5.,-5.,0./ 

where X(l), Y(l), z(l) defines point 1, X(2), 

Y(2), z(2) defines point 2, etc. All bodies 

must be defined this way in the CCPS. For 

the pyramid in Figure 111-13, the statements 

defining its coordinates could read: 

DIMENSION XX(5), YY(5), ZZ(5) 

DATA XX/0.,5.,5.,0.,2,5/ 

DATA YY/0.,0.,0.,0.,5./ 

DATA ZZ/0.,0.,-5.,-5.,-2.5/ 
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Therefore, the arrays X(8), Y(8), and 2(8) 

define the body in body system one and the 

arrays XX(5), YY(5), and ZZ<5) define the 

body in body system two. 

Up to four bodies and body systems may 

be defined in the CCPS in a likewise manner, 

c.)  In this step, the programmer must set 

up the filming loop. Each pass through this 

loop is one picture frame taken by the camera. 

The loop is defined by the user as a simple 

DO loop of the form: 

DO n, 1=1, nf 

where n is the terminal statement of the film- 

ing loop, always a CALL UPDTE statement, and 

nf is the number of frames the programmer 

wishes to process. 

d.)  In this step, a CALL IMAGE statement is 

required for each body coordinate system.  If 

the bodies defined in step 2 are used as an 

example, the two CALL IMAGE statements in the 

filming loop must be written: 

CALL IMAGE (X, Y, Z, 8, 1) 

CALL IMAGE (XX, YY, ZZ, 5, 2) 

where X, Y, and Z define the body residing in 

body system one, the number 8 states the 
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number of coordinates defining the body, 

and the number 1 states which body coordinate 

system the body belongs to. The parameters 

for preceding CALL IMAGE statement may be 

defined in exactly the same manner. The 

IMAGE subroutine performs all of the 

rotations, translationals, transformations, 

projections, clipping, and drawing of the 

previously defined bodies, a frame at a 

time, as defined in the body motion sub- 

routines in segment one.  For a detailed 

description of IMAGE, refer to Section III-G. 

e.)  At this step, the user must make a call 

to the subroutine UPDTE which updates the 

CCPS as defined in Section III-E.  This sub- 

routine call is the final statement in the 

filming loop. This statement is numbered 

with the terminal line , X, number specified 

by the filming loop's DO loop statement. An 

example of this statement would be: 

10 CALL UPDTE 

At this juncture, the CCPS has been updated. 

If the loop process is not finished filming 

it returns to its beginning. If the loop is 

76 



finished, the animated filming process is 

complete and the CCPS program ends. 

Note that in this example of the filming 

loop, as each body is drawn on the film plane, 

it remains there throughout the filming pro- 

cess.  If this is undesirable the user may 

insert a CALL ERASE statement within the loop 

to erase each successive frame.  Also note, 

that the bodies are drawn in the order of their 

CALL IMAGE statements.  Thus, in the previous 

example, body 1 is drawn before body 2. 

An example of a segmented program illus- 

trating the above discussion may be found in 

Appendix A,  named SGMTT. 

L)    The CCPS Procedural File 

To load all of the programs, subroutines, and seg- 

mented programs of the CCPS from the H. P. 1000'8 disc to 

core memory, a procedural filed name CCPS has been written. 

To run this program the user must modify the program 

by first entering the names of his main and two segmented 

programs in the proper location in the program.  To accom- 

plish this, the user may enter the EDITR program and re- 

quest source file, CCPS.  Once this is done he replaces 
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lines 19, 25, and 34 with his main and two segmented pro- 

grams object files. He then saves the file again under 

the file name CCPS, and types, when in the FMGR system 

program: 

CCPS 

The CCPS is then loaded into core memory and ready to 

run. The user may then run the animated film process as he 

would a normal program by typing RU main program , while 

in the RTE system program.  The program will then run as 

discussed in all the previous sections.  (It is assumed 

here that the user has a good general working knowledge of 

the RTE, FMGR, and EDITR commands and of creating Transfer 

Files.) 

This concludes all discussion concerning the CCPS. 

The next section will deal with the data plotting sub- 

routines developed for the H. P. 1000. 

IV.  The PLOTT Package 

This section of the thesis will address itself to a 

discussion of internal structure and the user implementa- 

tion of the data plotting routines developed as part of 

the overall graphics package for the H. P. 1000. 

A)   Introduction 

The routines discussed here will draw a user speci- 

fied gridiron plotting surface with high lighted divisions. 

The axes will be automatically scaled to the user's data, 

with the maximum and minimum values 
78 



of each of the one-dimensional data arrays displayed on 

the graph.  The graph may then be titled as the user 

choses. 

The routines to be discussed are: 

1.)  GRID 

2.)  SCALE 

3.)  TITLE 

There will also be a discussion on the PLOTT proce- 

dural file and PLOTT programming technique. 

B)    The PLOTT Subroutines 

1.)   Subroutine GRID (JNX, JVX, MODE, IVX, IVY, 

NPT, IAN, X, Y) 

This subroutine draws the actual gridiron 

surface along with its highlighting.  The 

input parameters can be defined as follows: 

a.)  JNX -  the number of major graph divi- 

sions along the X-axis.  This number must 

divide into 200 evenly, 

b.)  JNY -  the number of major graph 

divisions along the Y-axis.  This number 

must divide into 200 evenly, 

c.)  MODE -  the parameter sets the H. P.'s 

video field.  A zero indicates that the graph 
< 

and its lettering will be white on a 
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black background. A one indicates the 

reverse. 

d.)  IVX - is the number of X highlighted 

divisions. This number must divide evenly 

into JNX. 

e.)  IVY - is the number of Y highlighted 

divisions. This number must divide evenly 

into JNY. 

f.)  NPT - is the number of data points in 

the programmer's data arrays, 

g.)  IAN - determines whether the plot will 

be a point plot (IAN ■ 0) or a line plot 

(IAN - 1). 

h.)  X- the X axis data array, 

i.)  Y- the Y axis data array. 

JNX and JNY must be even divisors of 200 

because 200 point spacings have allowed for 

all graphs created by the subroutine GRID. 

The H. P.'s video display is defined by a 

256 x 256 point matrix, allowing an even 

spacing of 28 points around the graph for 

displaying the titles and the scaling. 

Therefore, it is apparent that the 

maximum value that NPT may be assigned is 
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200 and the maximum number of X and Y values 

is 200. 

IVX and/or IVY may be set equal to zero, 

which indicates that no highlighting is 

desired along the X and/or Y axis. 

The program flow diagram is illustrated in 

Figure IV-1 for the subroutine GRID. The 

numbered discussions below refer to the 

numbers beside the boxes in the figure. 

1.)  In this first step, the subroutine checks 

to see that JNX or JNX do not equal zero. 

This check is made to ensure that no 

quantity is divided by zero.  If JNX or 

JNX is zero a warning is printed on the 

system console of the form: 

JNX OR JNX CANNOT EQUAL ZERO!11 

and the subroutine stops execution. Other- 

wise/ the subroutine proceeds on to step 2. 

2.)  In this step, the H. P.'s video display 

screen is initialized. This is accom- 

plished by two subroutine calls which 

inform the computer what device it is to 

write to and in what mode (white on black 

or black on white). These two subroutine 

calls are, (from the H. P.'s video library} 
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CALL VIDLU (9, MODE) 

CALL ERASE 

The number nine indicates that the 

computer is to write to device #9, the 

television monitor, and MODE is one of 

the previously defined parameters. The 

subroutine call CALL ERASE clears the 

screen of any previous displays. 

3.)  In this step, all the required internal 

variables are calculated for the sub- 

routine GRID via the passed parameters 

JNX, JNY, IVX, and IVY.  These passed 

parameters calculate the point spacings 

necessary between each division of either 

axis and determine the length of each 

divisional line. 

4.)  In this step, if it is necessary to 

determine the internally variables to 

draw the highlighting on the grid, these 

variables are then found via the parameter 

IVX and IVY. The grid's highlighting is 

always performed on the second pass thro 

the program loop in Figure IV-1, The 

loop pass draws the main grid itself. 

5.)  In this step, the Y-axis divisions are 

either drawn for the grid or the grid's 
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highlighting thru the use of the 

previously defined variables and 

parameters. The subroutines used to 

draw the Y-axis divisions are, VECTR 

and VEND, two of the H. P.'s video sub- 

routines found in the H. P.'s video 

library. 

6.)  At this step, the X-axis divisions are 

drawn in the identical manner as above. 

7.)  At this juncture, if highlighting is to 

occur,the subroutine returns to step 4, 

to determine the highlighting parameters. 

If the highlighting has occured or isn't 

to occur (IVX and IVY equal zero) the 

routine proceeds to step 8. 

8.)  In this step, the routine GRID makes a 

subroutine call to SCALE. The subroutine 

SCALE takes the parameters passed to it 

and scales the displayed grid and plots 

the user's X-Y data on the grid as either 

a line plot or a point plot. 

The subroutine SCALE will be discussed 

in Section IV-B-2. 

Once the subroutine SCALE has executed, 

program control is returned to the calling 

program. 
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As an example of how the subroutine 

GRID functions, suppose the following 

call were made in a user's program with 

the following statements: 

DO 10  I =  1, 6 

X(I)   =  I 

10  Y(I)   ■  1**2 

CALL GRID (10,5,0,2,0,5,1,X,Y) 

It is obvious from the program that 

the X-Y data will take on the values in 

Figure IV-2.  The resulting gridiron 

plotting surface is a line plot (IAN ■ 1) 

of the equation, Y = X , where X varies 

between one and six.  The X-axis is 

broken up into ten divisions (JNX » 10) 

with a highlighted division line, every 

second division (IVX = 2).  The Y-axis is 

broken up into 5 divisions (JNY «• 5) with 

no highlighted lines (IVY = 0) .  The num- 

ber of points is six (NPT » 6). 

2.)   The Subroutine SCALE 

This subroutine scales the X and Y axes of the plot- 

ting grid created in the GRID subroutine and plots the 

user's X-Y data either as a point plot or a line plot. 

The subroutine is only called by the subroutine GRID and is 

never used by the general programmer.  The subroutine call 
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CALL SCALE (X, Y, NPT, IAN) 

where X, Y, NPT, and IAN assume the same specifications 

they did in subroutine GRID. 

3.)   Subroutine TITLE 

This subroutine titles the grid created in the two 

previous subroutines.  It will title the X and/or the Y 

axis at the user's discretion.  The user must call this 

subroutine right after he has called GRID.  The subroutine 

call for the program is: 

CALL TITLE 

There are no parameters to be passed to the sub- 

routine. 

When the subroutine is called, it will reply with 

two requests for input on the system console. The first 

request is: 

**TYPE THE X-AXIS TITLE (10 CHARACTERS MAXIMUM)** 

The user then types in the X-axis title he desires 

and presses return.  The second request appears on the 

system console as: 

**TYPE THE Y-AXIS TITLE (10 CHARACTERS MAXIMUM)** 

The user replies in the obvious manner, and presses 

return. 

A flow diagram for the TITLE subroutine is depicted 

in Figure IV-3. Again the numbers beside the boxes refer 

to the numbered discussions below. 
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1.)   The subroutine first sets the coordinates where 

the X and Y axis titles are to be displayed. 

These coordinates are predetermined due to the 

graph's size. 

2.)   In this step, the X-axis title is read in at the 

system console.  The title is requested by the 

computer using a WRITE statement whose format is 

the first program request above. 

3.)   In this step, the X-axis title is displayed on 

the screen using one of the H. P.'s video sub- 

routines named CHAR.  This subroutine will print 

any of the legal ASCII characters for the H. P. 

1000, anywhere on the screen, in any size. 

4.)   In this step, the Y-axis title is read in using 

the second computer request above in the identi- 

cal manner. 

5.)   Again in this step, the Y-axis title is displayed 

as in step 3. 

A complete discussion of the H.P. 1000's video 

library may be found in the "HP91200A TV Interface Kit, 

Programming and Operating Manual" in particular pp. 4-1 - 

4-7 on software programming. 

A complete example program using the subroutines 

GRID, SCALE, and TITLE may be found in Appendix B with the 

program name, DEMO. 
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C) Block Data K 

This program is the common block storage routine for 

the PLOTT package.  It allows the parameters LL, MM, LENX, 

and LENY to be passed from the GRID subroutine to the 

SCALE subroutine via the COMMON statement labeled LABEL. 

D) The PLOTT Procedural File 

In the PLOTT package there exists a file named PLOTT 

which is the procedural file for the system.  This file 

will load from the disc into core memory the object files 

needed for the programmer to use the GRID and TITLE sub- 

routines.  It will also attach these object files to the 

object file of his main program.  The easiest way to show 

how the file PLOTT works is by an example.  If the pro- 

grammer's main program was named JIM, and his object file, 

%JIM, and this program called the subroutines GRID and 

TITLE, he could type the following: 

LG, 6 

MR, %JIM 

PLOTT 

at which the computer would reply: 

MR, %GRID 

MR, %SCALE 

MR, %TITLE 

MR, %K 
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MR, %LINE 

MR, %TVLIB 

RU, LOADR, 99,,,,3 

/LOADR  JIM READY 

/LOADR  $END 

This would indicate that the PLOTT package has been 

properly loaded and attached to the main program JIM.  The 

user may now run the program JIM as he normally would with 

a RUN command: 

*RU, JIM 

Thus, the PLOTT file contains the following FMGR system 

commands: 

MR, %GRID 

MR, %SCALE 

MR, %TITLE 

MR, %K 

MR, % LINE 

MR, $TVLIB 

RU, LOADR, 99,,,,3 

It is assumed the user has a general knowledge of 

the FMGR and RTE system commands necessary to run a 

program. 

This concludes discussion on the PLOTT graphing 

package. 
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IV-A)  The DRAW Subroutine 

This subroutine is being discussed here because it 

is utilized by both the CCPS and PLOTT packages.  What 

this subroutine does is to draw a line between any two 

coordinates on the H. P.'s video display. The video 

display is defined by a 256 x 256 point matrix, with the 

lower left hand corner defined as (0,0) and the upper 

right hand corner defined as (256, 256). The program- 

mer's call for the subroutine is: 

CALL DRAW (IX, IY, LX, LY) 

where (IX, IY) is the initial X-Y coordinate and (LX, LY) 

is the terminating X-Y coordinate. Thus, a line is drawn 

between (IX, IY) and (LX, LY). 

The line is drawn by lighting the discrete points 

closest to the actual line. To illustrate this refer to 

Figure IV-A-1.  In this figure a line has been drawn 

between the points (10, 25) and 245, 75) via the CALL 

DRAW statement given.  If the lower end of the line were 

enlarged, the line in Figure IV-A-2 would result. The 

subroutine is lighting the point closest in the Y direction 

for each X value along the line. 

The equation for the line in the example is, y« 0.213 X 

+ 22.872. For, X - 15, along the line, the value for Y is 

26.067. Therefore the point lit up must be (15, 26), the 

point closest to the actual line. 

92 



(0,2563 0256,256) 

cop) C256,0) 

CALL DRAWCIO.2^245,75) 

FIGURE El-A-1 
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(10,25) 

FIGURE ]2"-A-2 
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It is apparent that for slopes less than a Y value 

is determined for each X value and for slopes greater than 

one a X value is calculated for every Y value.  This is to 

make as sure as is possible that all lines appear as 

solidly drawn lines with no breaks or irregularities. 

Note that all defined coordinates must be integer 

variables to be used with the subroutine DRAW.  No program 

flow is supplied for this subroutine since the subroutine 

is used within the internal structures of the CCPS and the 

PLOTT package, and is not seen by the general user. 

The subroutine is stored under the file name, &LINE, 

and its object file name is %LINE. 

V.   The Three-Dimensional Vector-Matrix Package 

A)    Introduction 

This section discusses a package of subroutines de- 

veloped as an aid in three-dimensional vector and matrix 

problems. Although developed primarily as an aid to the 

CCPS matrix manipulations it can be employed in a wide 

spectrum of applications.  These applications could include 

static and dynamic mechanics, electromagnetic waves and 

fields, partial differential equations, etc.  The subrou- 

tines discussed in this section perform the following 

mathematics: 
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1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

|A|   -finds the absolute value of a vector 

A + B -sums two vectors 

A - B -subtracts two vectors 

A » B - equates two vectors 

A * B -dots two vectors 

PROJ.B -projects one vector on another 

C x A -multiplies a scalar by a vector 

A x B -cross multiplies two vectors 

A * i -finds the i-th component of a vector 

A * j -finds the j-th component of a vector 

A * k -finds the k-th component of a vector 

[M]~  -inverts a matrix 

[A] * [B] -multiplies two matrices 

[A] + [B] -sums two matrices 

[A] - [B] -subtracts two matrices 

C x [A] -multiplies a matrix by a scalar 

[A] x B -multiplies a matrix by a vector 

B\    The TDPKG Subroutines 

The discussions that ensue will analyze each subroutine 

as to how it is used, the input-output parameters, and 

what results or quantities it generates. 

1.)   Subroutine VABS (X, Y) 

This subroutine calculates the absolute value of 

a vector. X is a three-dimensional input vector 
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and Y is equal to |X|.  X must be dimensioned 

properly in the main program. 

2.)   Subroutine VSUM (X, Y, Z) 

This subroutine sums two vectors together. 

X and Y are two three-dimensional input 

vectors and Z is equal to X + Y.  X, Y, 

and Z must be properly dimensioned. 

3.)   Subroutine VDIFF (X, Y, Z) 

This subroutine subtracts two vectors. X and 

Y are two three-dimensional input vectors, and 

Z is equal to X - Y. X, Yf and Z must be 

dimensioned properly in the calling program. 

4.)   Subroutine VSAME (X, Y) 

This subroutine equates two vectors.  X is 

the three-dimensional input vector and Y is 

equal to X.  X and Y must be dimensioned 

properly in the main program. 

5.)   Subroutine VDOT (X, Y, A) 

This subroutine determines the dot product 

(inner product) of two vectors.  X and Y are 

two three-dimensional input vectors and A 

is equal to X * Y. X and Y must be di- 

mensioned correctly in the calling program. 

6.)   Subroutine VPROJ (X, Y, A) 

This subroutine projects one vector on to 

another vector. This is a scalar projection 
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not a vector projection. X and Y are two 

three-dimensional input vectors and A is 

equal to Proj Y. X and Y must be properly 

dimensioned in the calling program. 

7.)   Subroutine VSMUL (X, A, Y) 

This subroutine multiplies a vector by a 

scalar. X is the three-dimensional input 

vector. A is the scalar, and Y is C x X. 

X and Y must be properly dimensioned in the 

calling program. 

8.)    Subroutine VCROSS (X, Y, Z) 

This subroutine takes the cross-product (outer 

product) of two vectors. X and Y are the two 

three-dimensional input vectors, and Z is equal 

to X x Y.  X, Y, and Z must be properly 

dimensioned in the calling program. 

9.)   Subroutine VXCOR (X, A) 

This subroutine determines the i-th component of 

a vector. X is the three-dimensional input 

vector and A is equal to X * i. X must be 

properly dimensioned in the calling program. 

10.)   Subroutine VYCOR (X, A) 

This subroutine determines the j-th component 

of a vector. X is the three-dimensional input 
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vector and A is equal to X * j.  X must be 

correctly dimensioned in the main program. 

11.)  Subroutine VZCOR (X, A) 

This subroutine determines the k-th component 

of a vector.  X is the three-dimensional input 

vector and A is equal to X * k.  X must be 

correctly dimensioned in the calling program. 

12.)  Subroutine MINV (D, DI) 

This subroutine determines the inverse of a 

three-dimensional matrix.  D is the three- 

dimensional input matrix and DI is equal to 

[D]~ .  If the inverse is not found, |D| 

equals zero, a warning is displayed on the 

system console. This warning is: 

WARNING!! DETERMINENT =011  INVERSE MATRIX 

NOT  FOUND11 

D and DI must be properly dimensioned in the 

main program. 

13.)   Subroutine MMULT (A, B, C) 

This subroutine multiplies two matrices together. 

A and B are two three-dimensional matrices and 

C is equal to [A] x CB], A, B, and C must be 

properly dimensioned in the calling program. 
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14.)   Subroutine MSUM (A, B, C) 

This subroutine sums two matrices together. 

A and B are two three-dimensional matrices 

and C is equal to [A] + [B]. A, B, and C 

must be properly dimensioned in the calling 

program. 

15.)   Subroutine MDIF (A, B, C) 

This subroutine takes the difference of two 

matrices. A and B are the two three-dimensional 

input matrices and C is equal to [A] - [B]. 

A, B, and C must be correctly dimensioned in 

the calling program. 

16.)  Subroutine MSMUL (A, C, B) 

This subroutine multiplies a matrix by a scalar. 

A is the three-dimensional input matrix, C is 

the scalar, and B is equal to C x [A]. A and 

B must be properly dimensioned in the main program. 

17.)   Subroutine VMULM (A, B, C) 

This subroutine multiplies a matrix by a vector. 

A is the three-dimensional input matrix, B is 

the three-dimensional input vector, and C is 

equal to [A] x B  (Note the order of the 

multiplication). 

In this case, B is considered a column 

vector, so: 
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cll  c12  c13 

c21 c22 c23 
C31  C32  C33 

All  A12  A13 

A21  A22  A23 

A31  A32  A33 

B, 

B 2 

Each of these subroutines are stored in separate source 

files and have individual object files.  A list of the sub- 

routines and their source and object file names is given 

below to aid the programmer in using each subroutine indi- 

vidually. 

Source File Name Subroutine Name 

VABS 

VSUM 

VDIFF 

VSAME 

VDOT 

VPROJ 

VSMUL 

VCROSS 

VXCOR 

VZCOR 

MINV 

MMULT 

MSUM 

MDIF 

MSMUL 

VMULM 

&ABS 

&SUM 

&DIFF 

&SAME 

&DOT 

&PROJ 

&SMUL 

&CROSS 

&XCOR 

&ZCOR 

&MINV 

&MMULT 

&MSUN 

&MOIF 

&MSMUL 

&VMULM 

101 

Object File Name 

IABS 

%SUN 

%DIFF 

%SANE 

%DOT 

%PROJ 

%SMUL 

%CROSS 

%XCOR 

%ZCOR 

%MINV 

tMMULT 

%MSUN 

IMDIF 

% MSMUL 

%VMULM 



C)   The TDPKG Procedural File 

There is a file named TDPKG which will load from 

disc and attach to the user's program in core memory all 

of the subroutines discussed above. To use this program 

the user types the following: 

TDPKG 

while in the FMGR system program.  To attach all of the 

subroutines to a main program the user would type the 

following: 

LG, 10 

MR, % main program file name 

TDPKG 

the computer will respond by listing all the programs in 

the TDPKG system and: 

/LOADR :  main program name  READY 

/LOADR :  $END 

indicating the user's program is ready to run.  The user 

may then run the program with the usual RTE RUN command. 

The user may be selective in what object files he 

desires to attach to his program.  If he desires to load 

and attach only the subroutines VCROSS, MINV, and VMULM to 

his main program in core memory he could type; 
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LG,  4 

MR,  % main program file name 

MR,  %CROSS 

MR,  %MINV 

MR,  %VMULM 

RU,  LOADR, 99,,,,3 

and then only these three routines would be attached and 

loaded. 

This discussion assumes that the user has a good 

working knowledge of the FMGR and RTE system commands. 

VI.  Summary and Conclusions 

The two principal objectives of this thesis have 

been accomplished. One, the conceptual camera system has 

been developed to simulate a real camera thru a series of 

software programs that may be easily implemented by a pro- 

grammer.  The theoretical mathematical foundation for this 

system has been clearly analyzed and defined. The internal 

data base and programming structure have been logically set 

forth and completely discussed for the CCPS.  Finally, the 

practical implementation and programming considerations 

need by the general user have been explicitly illustrated 

as an aid in program design. 

Two, the data plotting capability of the Hewlett*- 

Packard 1000 computer system has been expanded.  So that 
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the general system user now has greater flexlblity in 

plotting data in a general programming situation.  This 

increase in plotting flexibility has come with an easy 

to use plot package. This software plotting package has 

been fully discussed and structurally analyzed.  Practical 

user implementations and system programming considerations 

have been illustrated to help initiate the programmer 

with using the package. 

As an additional by-product of these two objectives 

a vector-matrix programming package has been developed. 

Originally this package was intended as an aid in the 

internal programming of the CCPS. Now this package can 

be used by a programmer in a versatile spectrum of 

applications.  The subroutines in this package have also 

been set forth in a clear usable manner to ease in their 

use. A discussion and analysis also accompanies them. 

Thus, the programming objectives of this thesis have 

developed a strong vantage point upon which more complex 

problems and analyses may be made in two pertinent areas 

of computer graphics for the Hewlett-Package 1000 computer 

system. 

To sum up, it is appropriate to state what work is 

left to be done in the immediate future for the CCPS and 

and the PLOTT package. 
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For the CCPS the following considerations should 

command immediate attention: 

1.)   The integration of complex camera movements. 

Storage for the camera's movements in COORDS* 

ANGLE, and TRIG data arrays has already been 

allocated, so this consideration only requires 

writing subroutines to implement the following 

camera actions; 

TILT        TRUCK        ZOOM 

PAN CRANE 

ROLL        DOLLY 

Then the programmers must store the camera 

movements in the internal data structure, and 

integrate the camera action subroutines into 

the film image processing subroutine, IMAGE, 

immediately before the body motion subroutines. 

A detailed description of these complex camera 

actions can be found in bibliography reference 

number (4). 

2.)   Perspective Views.  In the immediate future 

eight levels of gray scale will be available 

on the H.P. 1000's video display. This will 

allow the CCPS's perspective projection 

algorithm to incorporate a third variable to 

give the effect of depth perception.  This 
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third variable, Zc, is an indicator of each 

body's depth displacement from the film 

plane (see Section II-D).  Thus, a body which 

is further from the film plane than another 

body should appear less intense (dimmer) than 

the body which is closer.  Thus, eight depth 

thresholds could be determined to produce this 

effect ranging from full intensity to no 

intensity (zero displacement) to infinite 

displacement from the film plane). 

3.)   Hidden line elimination.  The complex problem 

of removing hidden lines is a difficult one 

to resolve.  This problem could be attacked by 

applying one of two algorithms designed to 

eliminate hidden lines.  These two algorithms, 

with trade offs in speed and memory usage, 

are: 

a.)  Robert's Solution* - very slow 

b.)  Warnock Algorithm* - faster but more 

complexity required. 

For the PLOTT package the following considera- 

tions warrant immediate attention: 

•Detailed discussion appears in reference number (6). 
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1.)  Plotting more than one dependent variable 

in the GRID subroutine. 

2.)  Histogram plotting. 

3.)  Log - log and semi-log plotting. 
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Appendix A 

Since no source program listings may be incorporated 

into a thesis, the reader is referred, for all programs 

in Appendices A, B, and C, and in the main body of the 

thesis, to the complied computer printouts of all the 

source lists of graphics programs written by this author. 

These complied listings are available in the H. P. 1000 

computer room or from the H. P. 1000 system manager. 

A sample main program for the CCPS may be found in 

the complied source lists under the program name MAIN 

and the source file name &MAIN.  This program illustrates 

what is required in a typical CCPS main program (see 

CCPS Programming Techniques - Segmented Programs).  As 

can be seen, this program jumps to the first example 

CCPS segmented program SGMTO. 

SGMTO demonstrates what steps the programmer must 

incorporate into his first CCPS segmentation. As 

illustrated, this program is a type 5 program.  It 

first defines the line connection scheme for three bodies 

via the MSEQ (4, 15, 5) array.  These bodies are a pyramid 

and two cubes. The line connection scheme is then stored 

in the internal data structure via the CALL SBQ (MSEQ) 

statement. Then the various body motions are defined for 
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each body using any one of the six body motion subroutines. 

As shown for body 1, a combination of three motions are 

described, two translational and one rotational. The 

body is to move in the Z direction, of its body co- 

ordinate system, 40 feet starting at frame 2 and ending 

at frame 6.  It must simultaneously move in the Y 

direction - 40 feet from, again, frame 2 to frame 6. 

Finally, the body must rotate from the X to the Z axis, 

a total of 45 degrees beginning at frame 2 and stopping 

at frame 3.  Like motions have been described for bodies 

2 and 3.  SGMTO then jumps to the second segment, SGMTT, 

thru the CALL EXEC statement. 

SGMTT is a program demonstration of what must be 

included in every second segmentation of the CCPS.  In 

this type 5 program, the three bodies are first defined 

thru DATA statements.  Body 1 (X, Y, Z) and body 3 

(XXX, YYY, zzz) are cubes identical in size and body 

2 (XX, YY, ZZ) is a pyramid.  Then the filming loop is 

set up to draw the bodies on the film plane. Note that 

two film loop processes are used in SGMTT, separated 

by a PAUSE statement. The first loop films the motions 

of bodies 1 and 2. The effect is that, body 1 rotates 

slightly and moves across the screen from the upper left 

hand corner to the lower right hand corner. Body 2 
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rotates and quickly moves directly back into the film 

plane almost to infinity along the Zc axis. The 

program then pauses to view the results.  The program- 

mer resumes execution via a GO statement. The screen 

is erased and the filming of loop 2 occurs.  In this 

loop, body 3 is rotated about its center with simul- 

taneous 0 and e angular displacements.  The CALL ERASE 

statement causes each successive frame to be erased 

once drawn.  Thus, the total effect is a cube rotating 

in two directions about its center. 

Ill 



Appendix B 

The reader is referred to the compiled source list- 

ings of graphics programs for the following discussion. 

To demonstrate the use of the PLOTT package an 

example program has been written called DEMO.  It is 

stored in the source file,  &DEMO. The program produces 

two plots of an inverted (sin X)/X curve, between -3 

and 3  .  The first plot is a point plot and the second 

is a line plot.  The plots are produced by the use of 

the GRID and TITLE subroutines. All parameter definitions 

for both subroutines are discussed in the main body of 

this thesis. A PAUSE statement appears between the 

first and second plots to give the user a chance to view 

the first plot before the second is drawn.  Program 

execution may be resumed via a GO statement. 
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Appendix C 

The reader is referred to the compiled source listings 

of graphics programs for the following discussion. As a 

demonstration of the vector-matrix package in the main 

body of this thesis an example program titled DBN01 has 

been written. This program incorporates some of the 

vector manipulations possible with this package.  The 

routine itself determines the distance from a plane to 

a point. The plane is defined by three points as 

illustrated and the point is also given. The routine 

displays the i-th, j-th, and k-th components of the 

normal to the plane, N, and displays the distance of the 

point to the plane, both in formatted statements. The 

mathematical solution for this problem may be found in 

bibliography reference (1.), p. 194. 
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