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ABSTRACT 

An experimental program was conducted on the strength and 

toughness of A737 Grade B carbon-manganese-columbium pressure 

vessel steel in two conditions of heat treatment and at two 

levels of sulfur content. The steel was tested in the normal- 

ized and in the quenched and tempered condition and was made to 

a normal (.023%) sulfur level and a low (.006%) sulfur level. 

The Charpy impact and tensile properties were measured between 

-96° and +23°C (-141° and +73°F). Static and dynamic fracture 

toughness using compact and bend specimens was measured over 

the same temperature range. Static JC_ was determined from 

J_ at fracture, the JL. at maximum load and from J vs «a curves. 

Dynamic JC , was determined from the energy to fracture in an 

instrumented drop weight test. 

The results of the tests show that both static and'dynamic 

fracture toughness is improved by decreasing the sulfur content 

of the steel and by quenching and tempering rather than nor- 

malizing. Both the temperature of transition in toughness from 

low to high values and the absolute toughness level are improved. 

Static JC. values ranged between 200 MPa and 280 MPa (about 180 

Ksi to 250 Ksi) in the ambient temperature range and decreased 

to between 110 and 220 MPa/in (about 100 to 200 Ksi) at -96fc 

Dynamic fracture toughness, about equivalent to the static in the 

ambient range, decreases sharply at -40°C (-40°F) and below. 



INTRODUCTION 

When a new material is being developed for pressure ves- 

sel service, it is usually necessary to undertake a careful 

evaluation of the characteristics of the material before it is 

possible to establish the limits of its application and the 

specific benefits that it will provide. Such an evaluation 

will include determinations of strength, ductility  and tough- 

ness over a range of temperature, fatigue behavior, response to 

heat treatment, weldability testing, and the effect of operat- 

ing environment on these properties. While the material sup- 

plier or a potential user will often develop such data, it is 

also useful for an independent evaluation to be undertaken by 

a research organization that can bring to bear a wide range of 

experience on the evaluation. It was with this intent that 

the Pressure Vessel Research Comitittee of the Welding Research 

Council, through the Pressure Vessel Steels Subcommittee of 

the Materials Division, undertook in 1974 to begin the exami- 

nation of a series of new steels for pressure vessel service. 

During the initial course of this investigation, portions of 

1 2 
which were published as P.V.R.C. project reports, ' relatively 

high strength steels were studied. In the more recent work, 

reported here, the properties of "microalloyed" carbon-manga- 

nese A 7 3 7  steels of moderate strength but much higher 

toughness are included in the program. 

Evaluation of any new material involves not only measure- 



ment of the normal material properties but also, in some cases, 

the development of new test procedures to provide the kind of 

information required.  In the research reported here, both as- 

pects of the problem were given attention.  For the materials 

included in this investigation, the property of greatest impor- 

tance is toughness, and thus adequate measures of toughness had 

to be considered and utilized.  On the other hand, the measure- 

ment of toughness is still only a means to an end, as the Ul- 

timate usefulness of the material rests on the properties 

measured:  thus, the overall intent of this work was to de- 

velop the anticipated properties of one of the newer A737 micro- 

alloyed  steels and to do so with a fracture toughness test 

technique compatible with its inherent high toughness. 

Fracture toughness testing to control the brittle fracture 

resistance of materials received its early development during 

and after the World War II period when the Charpy V-notch im- 

pact test was first utilized to establish the toughness of 

ship plate. Although empirical in nature, this test procedure 

has served for many years to provide a satisfactory fracture 

control parameter for ships, pressure vessel, and more recently 

bridges and some buildings. Current evaluations of fracture 

toughness for pressure vessel service still utilize this test; 

however, the pressure vessel industry as a whole has begun to 

use the principles of linear elastic fracture mechanics as an 

alternate method to establish the toughness required in these 



structures. Fracture mechanics has been widely employed to 

interpret the fracture behavior of high strength steels (yield 

strength > 200 Ksi) for which plane strain behavior can be ob- 

tained at room temperature in relatively thin section sizes. 

As fracture mechanics analyses are extended to tougher, low 

strength steels, increased plasticity causes difficulties in 

the application of the linear elastic model to these materials. 

The steel examined in this study, of which more will be 

said later, is an example of precisely the type of material for 

which analyses by linear elastic fracture mechanics is diffi- 

cult. The relatively high ambient toughness and low yield 

strength of the steel makes measurement of fracture toughness 

by the linear elastic criteria and methods of ASTM standard 

E399 virtually impossible. This standard specifies that the 

thickness (and other dimensions) of the specimen to be used to 

measure the plane strain fracture toughness, JC. , must fulfill 

the inequality: 
Km 2 

B * 2.5 (-±£) Eqn. 1 
y 

where B is the specimen thickness and a    the yield point. 

Since the K_ is high relative to the yield point, not infre- 

quently twice the yield point, the value of B is consequently 

very large, often on the order of 200-400mm (~8-16 in). Such 

a specimen size is not only impractical for testing, but often 

exceeds the thickness of the plate, to be tested. Although the 



steel selected for study in this investigation has a high level 

of toughness, it is by no means unique, because many pressure 

vessel steels have a ratio of 1L too, which exceeds one  in xc y 
the service temperature range.    In each of these cases  the 

specimen thickness requirement becomes unrealistic, especially 

so when plate thicknesses are on the order of  25-75 mm (1-3  in). 

The need to develop crack toughness measurement techniques 

which utilize smaller specimens became apparent more than fif- 

teen years ago, and  it was about ten years ago that serious 

work was done to provide an acceptable technique for perform- 

ing and analyzing such tests.    At the present time most  of the 

efforts have used the same basic formulation as developed for 

linear elastic cases,  i.e. a K-    is obtained experimentally 

and allowable stresses and/or flaw sizes determined from the 

experimental K-   .    The difference lies  in the fact that. K_ 

is not measured directly but  rather  is estimated  from an 

elastic-plastic crack toughness parameter measured on a small 

specimen.    In this investigation,  the K_    was estimated from 

the J-integral at the initiation  of ductile tearing in a static 

compact specimen.    Although other characterizations could have 

been used, the J-integral appears to give comparable results 

and has gained wide acceptance in the pressure vessel industry. 

As  is-traditional for highly strain rate sensitive mater- 

ial, both static and dynamic toughness characterizations were 

desired and for this reason the K_, was also determined. 



Since the data obtained in these tests were not of the same type 

as the static tests, the K_. was estimated from the energy to 

fracture absorbed by bend specimens impacted with a falling 

weight. Both the static and dynamic test specimens were so de- 

signed that they could be analyzed by linear elastic fracture 

mechanics procedures in the low temperature regime. Some tests 

were performed at low enough temperatures that valid K~. data 

were obtained. 

As indicated above, the material tested in this program is 

of importance in and of itself. It is one of a class of low- 

alloy high-strength steels that utilizes relatively low carbon 

content and finely dispersed carbides to provide a strength 

and toughness level that is suitable for low temperature ser- . 

vice. This type of steel has been used for piping and struc- 

tural applications under several different specifications but 

has only recently been incorporated into ASTM pressure vessel 

specifications such as A734, A735 and A737. The grade tested 

meets the ASTM A737 Grade B specification. The specified alloy 

element for strength is columbium. The plates were 100 mm 

(24 in) thick. 

Because the aim of this study was to fully characterize 

this type of steel, several variations on the basic chemical 

composition and heat treatment were employed. First, the steel 

was provided in both the mill normalized and mill quenched and 

tempered condition. Second, the steel was provided in several 



heats,   two made to a  normal sulfur  level, about  0.025%, and one 

to a low sulfur level,  less than 0.010%.    The intent of these 

variations was to produce  steel with a range of fracture tough- 

ness at  low temperatures,  some conditions being quite high  in 

toughness and  others being more normal for a low carbon, high 

manganese steel.    Previous experience with carbon-manganese 

steels has shownthat both quenching and  tempering and control 

of sulfur contents to low levels   a re beneficial to Charpy im- 

pact toughness,  the former  lowering transition temperature and 

the latter raising upper shelf toughness.    In this study, the 

aim was to determine the effect of these variables on typical 

fracture-mechanics parameters  other  than Charpy impact tough- 

ness.    Thus the fracture toughness of all four conditions was 

determined  over a range of temperatures,  the final result being 

a comparison between the materials over the potential tempera- 

ture range of service. 



TEST MATERIALS 

The materials under investigation were microalloyed C-Mn 

ASTM A737 Grade B steel having the chemical composition and 

mechanical properties listed in Table 1. Since the primary 

aim of this investigation was the toughness of the steel, mech- 

anical properties were determined in the worst or transverse 

(T-L) orientation. The steel was studied in four variations 

including two normal sulfur heats, 0.023%, (Table 1) and one low 

sulfur heat, 0.006%, (Table 2). Both types were studied in the 

mill quenched and tempered and the mill normalized conditions. 

The plates were nominally 100 mm (4 in) thick. The steel was 

produced by the electric arc process using a cold scrap charge. 

The low sulfur heat was calcium treated. Rolling was by con- 

ventional practice. The plates were austenitized at 900°C 

(1650°F) and either cooled,in still air for normalizing or 

water sprayed and tempered at 595°C (1100°F) for quenching and 

tempering. 

8 



TESTING PROCEDURES 

Tension and Charpy Impact Tests 

Standard 6.35 mm (0.250 in) diameter button head speci- 

mens in the transverse (T-L) and  longitudinal (L-T) orienta- 

tions were tested at room and  low temperatures according to 

ASTM specification A370.    A 44.4 KN (10,000 lb) Instron testing 

machine with a constant crosshead speed of 5'mm/min( 0.2 in/min) 

was used.    Low temperature tests were performed  in a bath of 

2-methylbutane cooled with liquid nitrogen.    Charpy V-notch  im- 

pact tests were performed on T-L quarter and center 

thickness  specimens of plates from all four test conditions 

over a range of temperatures.    A 325J (240 ft-lb) Satec model 

SI-1 testing machine was used and testing was done to the ASTM 

Specification E23.    Specimens  for the low temperature tests 

were cooled  in a bath of 2-methylbutane and  liquid nitrogen. 

Fracture Toughness Tests 

Compact specimens  in 50 mm (2 in) thickness were prepared 

in the T-L orientation, precracked and tested statically accord- 

ing to the provisions of ASTM specification E399.    The speci- 

men used is seen in Figure 1.    The specimens were tested over 

a range of temperatures between 23°C and  -96°C (73°F and  -14l°F). 

Because of the relatively high toughness  of the steel in the 

ambient range,  many of the tests were invalid.    The invalid 

test specimens were evaluated using the J-integral approach. 

The Jj value for these specimens was estimated using the approx- 
.    _.      3 imation: 

9 



2*A 

Here J is the J integral, A is the area under the load-load 

point deflection curve to the deflection of  interest, B is  the 

specimen thickness, b is the remaining uncracked  ligament, and 

X  is a correction factor to allow for the tensile forces  on 

the crack  (primarily a function of       /W)   . 

The static tests ware run on a  553 KN (120,000 lb) Bald- 

win universal testing machine.    The  load-load  line displace- 

ments were measured  using a strain gage bridge mounted  on a 

load cell  in the loading train and  on a clip-in displacement 

gage mounted  on the specimen crack mouth.    These data were re- 

corded on a Hewlett-Packard X-Y recorder.    The crack mouth 

displacements were subsequently converted to load-line dis- 

placements by assuming the crack faces rotate during testing 

around a point 0.45b from the crack tip into the ligament, b. 

The temperature of the specimen was measured and recorded us- 

ing a copper-constantin thermocouple on the specimen surface 

and a Sargent strip chart recorder.    Low temperature was 

achieved by spraying liquid nitrogen on the specimen surface 

with the specimen and grips in an insulated chamber.    Test 

temperature was held  10-15 minutes prior to testing. 

Four or five specimens were tested at each of the higher 

test temperatures with testing of each specimen discontinued 

after a predetermined  (estimated) amount of crack growth was 

10 



achieved. After the specimen was loaded to the predetermined 

load or displacement, the specimen was unloaded and the crack 

position heat tinted by placing it in a furnace (in air) at 

427°C (800°F) for two hours. The specimen was subsequently 

tested to failure and crack growth in the central portion of 

the specimen measured at three points and averaged to give the 

"crack growth", Aa, for the specimen. Both Jvs Aa and maximum 

load J-integral data were measured. In order to increase the 

maximum load information, specimens tested at lower temperature 

and heat tinted were pulled to failure at higher temperature, 

thus providing crack growth information and maximun load data 

(at two different temperatures) with one specimen. Inherent 

in this procedure is the assumption that heat tinting did not 

materially affect the maximum load achieved in the specimen. 

Determination of the fracture toughness, JC, , was done 

using the JvaAa curves constructed from the test data (Figures 

12-18). In each case the JT for the initiation of ductile 

tearing was determined by fitting a line through the J vs Aa 

points and constructing a "blunting" line from the expression : 

J = 2Aao, Eqn. 3 

Here J is the J-integral, Aa is the displacement and of is the 

flow stress of the material. The value of o* is approximated 

as being midway between the yield stress and ultimate tensile 

strength of the steel. The blunting line represents specimen 

displacement associated with plastic flow, not tearing. When 

H 



the data deviate from this line, displacement associated with 

true fracture occurs. Thus the intersection of the blunting 

line (Egn. 3) and the curve through the remaining data defines 

the Aa at fracture initiation and thus the true J_ . The K_ 

is calculated from JT by the expression 

KIc 4 -^r- Eqn. 4 

Here E is Young's modulus and v is Poissons ratio. 

Dynamic fracture toughness tests were performed,  using T-L 

orientation,   50 mm (2 in) thick,   fatigue cracked bend test 

specimens prepared according to the geometry requirement of 

ASTM specification E399 and tested  in an instrumented drop 

weight tester.    The specimens were cooled in a methanol or 2- 

methylbutane and  liquid nitrogen bath and tested within 10 se- 

conds after removal from it.    The specimen was held at tempera- 

ture for at  least 10 minutes prior to testing.    Half round 

25 mm (1 in) diameter drill rod pads were placed  on the speci- 

men at the impact point to decrease the load rise time and re- 

duce inertial effects.    A smooth  load-line trace without evi- 

dence of ringing was generally obtained, as shown in Figure 2. 

The data was recorded using a solid state transient recorder 

with the stored load-time pulse subsequently replayed on an 

X-Y recorder. 

The impacting tup was machined from a high toughness steel 

heat treated to a hardness  level of R 50.    The testing fixture c 

12 



provides two point support on a 400 mm ( 16 in) span. A 182Xg 

(400 lb) free falling weight supported by an electromagnetic 

release mechanism provided the impact load. 

The dynamic fracture toughness was calculated using the 

concept that the nonlinear critical strain energy release rate 

(J .) is proportional to the area under the force-displacement 

curve up to the point of fracture initiation. The critical 

dynamic stress intensity, K*t, is then calculated from J. us- 

ing equations 2 and 4, i.e. 

Kdt ^ 
dE _ ' i 2 Wm E 
2 ~ il 2 E^n'   5 i'l-v    I) bB 1-v 

The work to maximum load, W , may be approximated by : 

m 

J^xm Jtm -tm 
Pdx =   / PVdt = Vo   / Pdt Eqn-.  6 

O "^O *SQ 

In this it is assumed that the work to maximum load, Pmax,  may 

be approximated from the load-time trace using the velocity at 

impact, Vo, and the time to failure, tm.    The Vo at impact  is 

calculated from: 

Vo = 2gh Eqn.   7 

where h is the height  the weight is released from and g, the 

acceleration due to gravity. At the lowest temperatures tested, 

-96°C (-14J°F), most of the specimens had flat fracture sur- 

faces and the values obtained are believed to be valid in the 

13 



sense used in ASTM E399. 

Metallographic Examination 

The four material variations in the study were examined 

metallographically at center line thickness in a longitudinal 

orientation plane. Standard polishing and etching procedures 

were employed with 2% nital used for the final etch. Photomicro- 

graphy was done using a Zeiss Axiomat metallograpn and Polaroid 

PN55 film. 

14 



RESULTS AND DISCUSSION 

Tension and Impact Tests 

The r3sults of the tension tests on the four plates of 

A737 Grade B are listed in Table 3 and may be compared to the 

data of Tables 1 and 2. The same data are also plotted in 

Figures 3-5. As is evident from Table 3, all of the plates 

meet the minimum longitudinal (L-T) yield and tensile strength 

specifications for the grade. The quenched and tempered plates 

have higher yield and tensile strengths than their normalized 

counterparts, the most noticeable difference being in yield 

strength. The low sulfur plates appear higher in strength than 

the normal sulfur ones. This effect is probably due to the 

somewhat higher manganese and residual element content of this 

low sulfur heat rather than its sulfur content. Figures 3, 4, 

and 5 show that the yield and tensile strengths of the plates 

gradually increase with decreasing temperature. Between 23°C 

and -96°C (73°F and -141°F) the yield strength increases about 

35% for the normalized material and about 30% for the quenched 

and tempered material. Tensile strengths increased about 25% 

over the same temperature range, the increase for the normal- 

ized steel again being somewhat greater. Tensile ductility 

shows a modest increase over the temperature range tested, ex- 

cept for the low sulfur heat where a slight loss is noted 

at -96°C (-141°F). 

The impact test results are shown in Figures 6-9. 

15 



Although all four of the plates show good impact toughness at 

temperatures down to at least -50°C (about -60°F), the low 

sulfur plates are clearly superior in transition temperature 

and have a substantially higher upper shelf toughness. The im- 

proved shelf toughness is one of the chief benefits of low 

sulfur steels, and this is graphically illustrated in these 

cases. For each sulfur level, the quenched and tempered steel 

is lower in transition temperature and higher in shelf energy, 

although this effect is not as marked as the effect of de- 

creased sulfur. When reviewing these figures, it should be em- 

phasized that transverse (T-L) specimen data are being shown. 

Longitudinal specimen data would probably give somewhat higher 

toughness values. Center and quarter thickness specimen data 

are shown on Figures 6-9. The difference in toughness between 

specimens taken from these two locations is slight.  In only one 

case does the quarter thickness location give higher tough- 

ness 

Metallography 

The microstructure of the four plates seen in Figures 10 

and 11 appears to be generally consistant with the results of 

the tensile and Charpy impact tests. The quenched and tempered 

plates have much   finer ferrite-carbide aggregates than the 

normalized ones, but are otherwise similar in structure. As 

might be expected, the hardenability of the steel is insuffici- 

ent to form lower temperature transformation products; however 

16 



a substantial structural refinement  occurs and  is relatively 

uniform across the central two-thirds  of the plate.    The im- 

provement  in yield and  tensile  strength with quenching and 

tempering is  undoubtedly a result.    As  indicated before, a de- 

crease in transition temperature and an increase in shelf 

toughness  results  from this  refinement. 

From the standpoint of overall    structure    and uniformity, 

the low sulfur heat  is, as expected,  cleaner,  i.e. has  fewer 

inclusions.    The inclusions that are present tend to be more 

rounded.    However,  it is also observable that  the  low sulfur 

heat has  more pronounced  ferrite-pearlite banding.    The band- 

ing appears  more pronounced   in normalized than in the quenched 

and tempered condition.    It  is  possible that the relatively 

high manganese content of this heat may have contributed to 

the banding tendency.    Because of the nature of this experi- 

ment  it  is  impossible to determine what effect,   if any,  the 

banding has on mechanical properties. 

Static Fracture Toughness 

The static fracture toughness data for the A737 Grade B 

steel are found in Tables 4 and 5. The J_ data obtained for Ic 

each condition are of three types. At low temperatures, gener- 

ally -96° to -100°c (-141° to -148°F), the values listed as 

Jy are based on a distinct fracture load. Because of the 

thickness of the specimen, they are not valid by the specifi- 

cations of ASTM E399. The JT was therefore determined for Ic 

17 



these cases  from the area of the P-L curve to fracture.    At 

higher temperatures,  no distinct  fracture was  observed.    In 

these cases,  the J vs Aa curve was constructed.    These curves 

are found  in Figures  12-18 .      A   JT~ was determined   from the 3 Ic 

blunting  line-data curve  intersection.    In addition,  the 

single curve from the J vs La data set which had a deflection 

that extended to maximum load was selected and a J_    was cal- Ic 

culated at maximum load for this sample.  The summary column 

of JC. is calculated from the J_ using Eqn. 4 with the nature 

of the data indicated by a subscript, i.e. based on fracture, 

maximum load deflection or the J vs Aa curve. 

The J vs ia curves, Figures 12-18, proved to be relative- 

ly smooth with most of the data lying close to a straight line. 

In several cases, the data could have just as well fitted some 

other function. Data in the literature are occasionally 

plotted nonlinearly, but since there was no clear precedent 

for this, a straight line mechanical fit of the data was 

chosen here. The resulting J_ values determined from the in- J    Ic 

tersection points   were generally self consistent.    For example, 

the K_    values for the  low sulfur heat determined by this 

method were 234 MPa/m (213 Ksi/in) and 241 MPa/m (219 Ksi-/in 

at  -46Pand 23°C (-51° and 73°F),  respectively,  for the nor- 

malized condition.    The quenched and tempered condition data 

were 275 MPa/m (251 Ksi/in) and 279 MPa/m (254 Ksi/in) at the 

same two temperatures.    The relatively small effect of temper- 
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ature is consistant with the fact that the material is on the 

upper shelf of toughness over this temperature range in static 

tests. By way of comparison, the normal sulfur heats, which 

had a lower shelf toughness in the Charpy tests, had a L of 

198 MPa/m (181 Ksi/in and 237 MPa/m (215 Ksi/in at 23°C (73°F) 

for the normalized and the quenched and tempered condition, 

respectively. At low temperatures, -96°C (-141°F) the mater- 

ials rank in the same order, although the JT is determined 

in this case from a definite fracture criterion in the test. 

The low sulfur steel once again had higher values of )C. in 

both conditions than the corresponding normal sulfur heat. 

For each sulfur level, the quenched and tempered value was 

greater than the normalized one. A summary of the K-. values 

on Tables 4 and 5 is shown in Figure 19. 

Of some practical interest from the standpoint of test- 

ing is a comparison of the K_ calculated from J_ at.maximum 

load and that calculated from the J, intersection point on 

the J vs Aa curves. From Tables 4 and 5 it can be seen that 

the maximum load JC. is consistently larger than that from 

the J vs La  curves, the intersection point K_ being between 

5% and 20% smaller. This implies that ductile tearing in this 

steel always preceeds the maximum load point in the test and 

suggests that a simplified test technique could be used. The 

maximum load JT could be determined for the material using 

one or several specimens and a 1C- calculated. This value 

could then be reduced by 20% to give the approximate K_ at 
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the initiation of tearing. 

Dynamic Fracture Toughness 

The dynamic fracture toughness data are  found in Tables 

6 and 7 where K, based  on maximum load and K,.   from Eqn.   5 d dt 

are both  listed.    K,    values are p-lotted on Figure 20.    It  is 

apparent that at ambient    temperatures      for the normal sulfur 

level steel, the dynamic fracture toughness  level is about equal 

to that of the static.    At  lower temperatures, however,  start- 

ing at 0°c (32°F) for the normalized material and at  -45°C 

(-48°F) for  the quenched and tempered,  the fracture toughness 

decreases sharply.    For temperatures at  -45°C (-48°F) and be- 

low,valid Kj    data are obtained  using the maximum load  in the 

test.    At higher temperature the K,max values are not meaning- 

ful.    This result  is somewhat surprising as the Charpy impact 

data indicate a relatively high toughness in the same tempera- 

ture range; however,   it is not inconsistant with the relation- 

ship between static and dynamic fracture toughness test data 

found in the literature.    The temperature shift, T  , between 

static and dynamic 1C.    data has been shown to be a function of 

the material yield point, ay, as follows  : 

TS(°F) = 215  - l.Say  (Ksi) Eqn.  7 

For the normal sulfur material studied here, the yield 

point is between 345 and 415 MPa (50 and 60 Ksi) and thus the 

shift should be between 70° and 80°C (125° and 145°F). This 
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is, in fact, in agreement with the data from Figures 19 and 20 

in that a KT for the normalized steel of about 150 MPa/m 

(136 Ksi/in) occurs at about -70°C (-94°F) while the Kjd of 

the same value is at about 10°C (S0°F\ a shift of 80°C. The 

corresponding shift for the quenched and tempered steel is 

also about 80°C. These shifts can readily be seen on the sum- 

mary curves, Figures 21 and 22. The difference between the 

Charpy impact results and the 50 mm (2 in) thick specimen data 

would then have to be attributed to a specimen size effect. 

41- 

Fracture Toughness Summary 

The fracture toughness data obtained in this investiga- 

tion are summarized in Figures 21 and 22 for the normal and 

low sulfur A737B steel. The curves are plotted from the 

J vs &a intersection data and fracture)C data on Tables 4 and 

5, as well as the dynamic K,. data on Tables 6 and 7. An al- 

ternate approach to summarizing the fracture data obtained in 

this program could be to present the results on the basis of 
g 

"crack toughness" rather than the fracture toughness alone . 

The crack toughness parameter of greatest usefulness is the 

ratio of K_ to o . This ratio is a fundamental measure of the 

plastic zone size at a crack tip during fracture and also, 

therefore, a measure of the plate thickness necessary for plane 

strain conditions at fracture. It appears in Eqn. 1 in this 

respect, and since it is a squared term, it exerts a signifi- 

cant influence. The data from Figures 21 and 22 are replotted 
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in Figures 23 and 24 utilizing this approach. For this analysis 

the dynamic yield point was estimated by adding 175 KPa (25 Ksi) 

to the static yield point at temperature. This is based on the 

elevation of the yield point by 3 5 MPa for each order of magni- 

tude increase in strain rate between the two conditions. 

On this basis, for example, plane strain conditions do not 

prevail for any material at any temperature examined in this 

program for plates up to 125 mm (5 in) thick in the static mode 

of loading. In the ambient range, static plane strain plate 

thicknesses exceed 765 mm (30 in). Dynamic plane strain plate 

thicknesses in the ambient range are on the order of 330 mm 

(13 in). In temperature range of -50°C (-68°F) dynamic plane 

strain plate thicknesses are much smaller because the K-.. is 

generally smaller than the K_ and the effective yield strength 

is elevated by strain rate. In spite of this effect, at tem- 

peratures above -40°C (-40°F) dynamic plane strain plate thick- 

nesses are over 46 mm (1.0 in) with the exception of the nor- 

malized, normal sulfur heat. At very low temperatures, dynamic 

plane strain thicknesses decrease to 2-8 mm (.08 to .32 in). 
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CONCLUSIONS 

From this investigation of the static and dynamic tough- 

ness of A737 Grade B steel in two conditions of heat treatment 

and at two levels of sulfur content, the following was con- 

cluded: 

1. In terms of both Charpy impact transition temperature and 

Charpy impact upper shelf toughness, the low sulfur (.006%) 

heat of A737 B held a decided advantage over the normal 

sulfur (0.023%) heats. The transition temperature of the 

low sulfur heat was at least 30°C (54°F) lower than that 

of the normal sulfur heats and the shelf toughness about 

100% higher. The quenched tempered condition plates were 

between 10° and 20°C (18° and 36°F) lower in transition 

temperature than their normalized counterparts. Shelf 

toughnesses were nearly equivalent for the two conditions. 

2. In terms of static plane strain fracture toughness, the 

low sulfur heat was again higher in toughness than the 

normal sulfur heats over the range of temperatures tested, 

the difference between the two being about 20%. The 

quenched and tempered plates were also superior to the 

normalized ones for each sulfur level by about 20%. X- 

values ranged between 200 MPa to 280 MPa (about 180Ksi to 

250 Ksi) at ambient temperatures for the four conditions 

and between 110 and 220 MPa/m (about 100 and 200 Ksi) at 

-96°C (-14l°F). Fracture toughness determined from the 
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J- at maximum load were higher than those determined 

from J vs Aa curves, the difference varying between 5 and 

25%. 

3. The dynamic fracture toughness for the plates tested was 

lower than the static values except in the ambient range. 

The same basic trends with regard to sulfur level and the 

effect of heat treatment on toughness seen in the static 

tests were followed in the dynamic ones, although the,per- 

centage differences were more variable. Plane strain 

fracture toughness values in 50 mm (2 in) specimens were 

obtained below -40°C (-40°F) for the normalized plates 

and at -96°C (-14]°F) for the quenched and tempered ones. 

The shift of the toughness vs temperature curve as a result 

of the strain rate increase between the static and dynamic 

tests was about 80°C (145°F). 

4. An analysis of the A737 Grade B steel in terms of. the JC- 

to a    ratio shows that, in the ambient range, plane strain 

plate thicknesses are greater than 330 mm (13 in) for any 

condition tested. Plan strain plate thicknesses for static 

loading conditions remain above this level down -96°C 

(-141°F). Plane strain plate thicknesses under dynamic 

loading decrease sharply at -40°C (-40°F) and below, with 

values at -40°C (-40°F) ranging from about 25 to 75 mm 

(1 to 3 in) and at -96°C (-14a°F), from about 2 to 8 mm 

(.1 to .3 in). 

24 



TABLE 1 

Chemistry and Mechanical Property Data  for A737B   Steel - Soraal Sulfur* 

A.    Chemical Composition 

Plate C Mn P S Si Ni Cr Mo        Cu Al        Cb 

Normalized .16 1.27 .007 .023   .22 .14 .15 .04       .26 .036       .033 

Quenched & 
Tempered .16 1.16 .012 .022   .19 .13 .14 .OS       .25 .030       .025 

B.    Tension Test P rooer ties   (Transverse) 

Plate Yie 
KPa 

Id St renyth 
(Xsi) 

Tens! 
MPa 

.!< i Strength 
(Xsi) 

Elonc. 
.m 

R.A. 
urn 

Xorxalized 312 (45.4) 504 (73.1) 32.4 71.S 

Quenched S 
Tempered 38B (55.3) SIB (75.0) 34.0 74.9 

C.    Charpv Imoact Test Properties (Transverse) 

Upper Sh 
J 

122 

SO ft-lb 
°C 

i  (67.SJ) Trans lition 
(°F) 

Tenp. elf Eneryy 
(ft-lb) 

Normalized -29 (• ■20) • (90) 

Quenched & 
Tempered -55 (■ -70) 143 (105) 

*Data provided by Lukens  Steel Coap«ny 

25 



TABLE 2 

Chemistry and  tochanicai Property Dae* for A737B Sceel-Low Sulfur" 

A.    Chemical Composition 

Place £toPSSi.lUCrHo£u£lCS_ 

Normalized & 
Quenched & 
Tempered .14    1.44     .009   .006   .19       .28       .22       .09       .2?       .030       .025 

E.  Tension Tesr Properties   (Transverse 

Place                    Yield Screngxh          Tensile Scrervrth 
  XPa (Ksi) :-ga (Ksi> 

Norrnalized 3B9 (56.4) 546 (79.3) 

Quenched & 
Teapered      436    (53.3)    S77      (83.7) 

C. Charpy lapact Test Properties (Transverse^ 

Energy ac Temperature - Joules (ft-lb) 
(-50°F)        (-90°P)        (-100°F> 

Normalized    147  (109)      144 (107)      123  (91) 

Quenched & 
Tempered 1S4    (114) - 

•Data provided by Lukens Steel Company 

Elcno. 
X 

R.A. 
X 

29 58.1 

27.5 67.5 
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TABLE 3 

Tension Te»c Data for A737B St««l 

PUu, Orientation 
«nd Heac Treatment 

Temperature 
°C   CT) 

Yield Sen. 
MPa  (Ksl) 

Tenatle Sen. 
Mra   (HUt) 

Elongation 
X 

Korcul Sulfur, 
Longitudinal, 
Normalized 

Normal Sulfur, 
Transverse, 
Normalized 

22   (72) 
-46  (-50) 
-96  (-140) 

22   (72) 
-46   (-50) 
-96  (-140) 

351  (51.0) 
395  (57.3) 
482 (69.9) 

354 (51.4) 
373  (54.2) 
463 (67.2) 

305  (73.3) 
375  (83.4) 
643  (93.3) 

500  (72.5) 
576  (83.6) 
639  (92.8) 

38.1 
36.3 
38.1 

34.2 
38.8 
37.1 

Normal Sulfur, 
Longitudinal, 
Quenched & 
Tempered 

Normal Sulfur, 
Transverse, 
Quenched & 
Tempered 

22   (72) 
-46  (-50) 

-96 (-140) 

22   (72) 
-46   (-50) 

-96  (-140) 

407 (59.1) 
465  (67.5) 

522 (75.8) 

400 (58.1) 
391 (56.7) 

523 (75.9) 

492   (71.4) 
591  (85.8) 

641  (93.1) 

542  (78.6) 
560  (81.3) 

662  (96.1) 

36.3 
36.6 

34.1 
36.5 

34.0 

Low Sulfur, 
Longitudinal, 
Normalized 

Low Sulfur, 
Transverie, 
Normalized 

22   (72) 
-46  (-50) 
-96  (-140) 

22   (72) 
-46  (-50) 
-96 (-140) 

368  (53.4) 
451  (65.5) 
520  (75.2) 

366  (53.1) 
432  (62.7) 
506  (73.4) 

531  (77.0) 
630  (91.4) 
688  (99.8) 

513  (74.5) 
606  (88.0) 
693 (100.6) 

36.9 
38.6. 
39.1 

36.5 
40.0 
40.8 

Low Sulfur, 
Long1cudlaal, 
Quenched & 
Tempered 

Low Sulfur, 
Transverse, 
Quenched & 
Tempered 

22    (72)  I 444  (64.5) 
-46  (-50)  ( 506  (73.5) 

•96  (-140)  i 586  (85.0) 

22   (72)  > 469  (68.0) 
-46  (-50)   545 (79.1) 

-96  (-140)   613 (89.0) 

368  (82.5) 
652  (94.6) 

722  (104.8) 

576  (83.6) 
681  (98.9) 

731 (106.1) 

31.1 
32.9 

32.6 

29.2 
32.1 

32.3 

i 
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TABLE  4 

Static Fracture Toughness Results for A737 GradtB 
Nor aval Sulfur Heats  - Transverse 

Specimen 
No. 

Temperature 
°C      (°F) 

Aa 

ton (mils) KJ/m2(in-li>/in2) 
, Jlc - *Ic 

KJ/'n'dn-lb/tn') MPa/-»(JCsi/in) 

Normalized 
MC-1 
ND-1 
NB-1 
NB-3 
NA-2 
NB-2 

Graph 

N-l 
NC-3 

KA-3 
NC-2 

23 (73 ) 
23 ( 73 ) 
23 ( 73 ) 
23 ( 73 ) 
23 ( 73 ) 
23 ( 73 ) 

23 ( 73 ) 

-SO (-58 ) 
-SO (-58 ) 

-96 (-140) 
-1C0(-148) 

Quenched and Tempered 

4-2-CI 
4-2-02 
QT 1 
4-2-B2 
4-2-S 
4-2-6 

Graph 

4-2-C3 
4-2-B1 
4-2-01 
QT 2 
4-2-8 
4-2-9 

Graph 

4-2-A3 
4-2-C2 

23 ( 73 ) 
23 ( 73 ) 
23 ( 73 ) 
23 ( 73 ) 
23 ( 73 ) 
23 ( 73 ) 

23   (  73 ) 

-41  (-42 ) 
-41  (-42 ) 
-41  (-42 ) 
-41  (-42 ) 
-41  (-42 ) 
-41  (-42 ) 

-41  (-42 ) 

-96   (-140) 
-100(-148) 

0.015( 0.6) 
0.05 ( 2 ) 
0.27 (11 ) 
0.83 (33 ) 
20       (80     ) 

0.08  (   3.3) 
0.38  (IS     ) 
0.49  (19     ) | 
1.55  (52     ) ! 
2.2S  (90     ) ' 

0.01 ( 0, 
0.08 ( 3 
0.46 (18 
1.88 (75 
1.42S(57 
1.25  (50 

4) 
) 
) 
) 
) 
) 

102 ( 584) 
134 ( 768) 
141 ( 804) 
187 (1063) 
274 (1562) 
394  (2250) 

109 ( 626) 
240 (1369) 

43  (  248) 
S7  (   327) 

93 ( 534) 
211 (1202) 
270 (1531) 
287 (1635) 
395 (22SS) 
512  (2922) 

127 ( 725) 
242 (1379) 
360 (20S4) 
456 (2620) 
383 (2183) 
381 (2171) 

118  ( 676) 
73  (  420) 

197  (1063)* 208  (189)* 

170  (  975)*" 

109  (  626)J 
240  (1363)* 

43  (   248)* 
S7  (   327)' 

198  (181)* 

160 (14S)! 
236  (214)* 

100  (  91)' 
116  (10S)* 

287  (1635)* 259  (235)* 

240 (1375)*    I   237  (215)* 

350 (20S4)*    !   288 (263)* 
I 

227  (1300)* 

118 ( 676)i 
73  (  4?0)f 

230 (209)* 

165 (  lSl)! 
131 (   119)' 

Hex Load Value 
Intersection Point on Figures 
Max Load Value - Fracture 28 



TABLE 5 

Static Fracture Toughness Data  for A737 crada 3 
Low Sulfur Heat  - Transverse 

Specimen 

No. 

Temperature 

°C      (°F) in 

L 

Tills) 

J 

KJ/-B2(ln-Lb/In2) 2 Jlc           2 
XJ/-9 (In-lb/In*) 

*lc 
MPa/-«(Mi/tn) 

Normalised 

0.21 ( 8) 230 (1425) SB-A3 23 ( 73   ) 
5B-A1 23   (   73   ) 0.45 (18) 239 (16 50) 
5B-A2 23   (   73   ) 0.75 (30) 410 (2339) 410 (2239)* 301 (274)* 
SB-01 23   (   73   ) 0.77 (31) 432 (2464) 

Graph 23  (   73   ) 250 (1425)* 241 (219)*" 

SB-03* -16   (-S1  ) 232 (1508) 282 (1608)* 2S6  (232)* 
SB-33 -46   (-51  ) 0.162(65) 227 (129S) 
SB-02 -45   (-S1  ) 0.42 (17) 317 (19C8) 
5B-B2 -46   (-51   ) 0.65 (26) 414 (2360) 

Graph -46   (-51   ) 236 (1350)* 234 (213)" 

S3-C2 -96   (-1*1) 

0.37 (IS) 

76 

369 

(  435)* 

(21C6) 

76 

369 

(  43S)' 

(2105)* 

147  (134)* 

292  (266)* 

Quenched and Te-ioered 

5A-31 23  (  73   ) 
SA-D2 23  (  73   ) 0.40 (16) 320 (1824) 
SA-D3 23   (  73   ) 0.50 (20) 403 (2297) 
SA-01 23  (  73   ) 1.20 (48) 566 (3237) 

Graph 23   (   73   ) 336 (1925)" 279 (254)* 

5A-C2 -46  (-S1  ) 0.32 (13) 36 S (2031) 
SA-B2 -45   (-51.) O.SO (20) 443 (2524) - 
SA-C1 -46  (-51. ) 0.S2 (25) S19 (2961) 519 (2961)* 346  (31S)* 
SA-B3 -46   (-51   ) 0.37 (35) 613 (3494) 

Graph -46   (-51.) 328 (1»75'>* 275 (2SD* 

SA-A1 -96   (-140) 226 (1291) 226 (1291)* 229 (203)* 
SA-C3 -96  (-140) 2S0 (1426) 2S0 (1425)* 240 (219}* 

* Max Load Value 

♦ Intersection Point Cn Fig/ures 

# Max Load Value - Fracture 
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TABLE 6 

Dynamic Fracture Tousnntss Data Fcr A737 Grade 3 
Normal Sulfur Heats - Transverse 

Steel 

Specimen 

No. 

Teaperamrei   Fract-rel X_(TVIX)E399                W                        K._ 

°C    (°F)    1        Mode    h-™v"-n ^i/inv Jcu:oi(Ft.Lbs.) H?s.'-aCv-sV''.m 

Noriwlired !                          1 
N-8 
4-1 
4-1-5 

Avg. 

4-1-1 
4-1-6 

23  (     73) 
23  (     73) 
23   (     73) 
23   (     73) 

0  (     32) 
0  (     321 

I 
j_ 

1 
1 

1 

100  (     91)                                    ! 
163  (   148)   !     3318  (2447)   j  211 (192) 
147   (   134)    j     2957  (2191)   |  200  (182) 
135   (   124)   j     3138  (2314)   i  20S  (197) 

135   (   124)   1       193  (   146)   i     54  (  49) 
131   (   12? 1    1       717   (   5291       101   (   921 

1  Avg. o (   32) ,       i      i  i:; ( 125) .          i Hi)      :: { v^1 

N-3 
N-5 
4-1-10 

-10   (     14) J            1 
-45  (   -48)              2 
-4S   (   -48^ '           2 

111   (   1C0) 
68*  (    62) 
53*   (     491 

493   (  354)   ;     3J   (  75)      | 
164  (   121)    .     47   (   4J)      , 

1                             I 
1  Avg. -45  (   -49) ■          2        i   5L»  (     i5k.   .       L5A >   L20         i?  (  43"! 

N-2 
N-1 
4-1-12 

-70  (   -94) '           2         1    3S*  (     32)   !       102  (     75)   i     32  (  29)      | 
-96  (-141) |          2             32*  (     29)   1         35  (     26)   '     37  (  34) 
-96   (-141)             2         i    43*  (     it)   i                                1 

1  Avg.         i  -fS  C-I-il) .          J        :   ±-l» (    ic,   i        ib (    2h,   ,     J;  (  J^ 

Quenched  S Te^ioered 
3 
1 
1 

109 (     99) 
177   (   151) 
127   f   115) 

3570  (2633) 
2231  (1545) 

219 (200) 
190  (1731 

Q-T-1 
4-2-11 
4-2-12 

23  (     73) 
23  (     73) 
23   (     731 

1   Avc. 23 (   75) ,             .  IJI < 12Vi ■   "?3c (2ii?\    ::: r."='i 

4-2-3 
4-2-5 

0  C     32) I           1 
0   (     321 1            1 

156  (   171) 
15?  (   i-e> 

2251 (1550)   |   175  (159) 
2SS1  f1932)   1   196   (15?i 

1   Avc.                   0  (     32 ^ i                      1     155   (   1731   '     24C1   (i:,15   :   133   (1S4>| 

QT-S            -10   (14)              1 
QT-8            -45   (   -48) I           1 
42-10     !   -45   (   -43) ! 

129  (   117)   1 
98   (     39)   1       823  (  507) 

139  C     99)   !       533   (   SC*1 
105  (   ?6) 

97 ( ae) 
|   Avg.           •   -45   (   -46) !                      i    IC3   (     ?4)            7 52   (   s5s)   •   1-1  (   »i' * 

QT-2 
QT-7 
4-2-9 

-70  (   -94) '           2 
-96   (-141)              2 
-96   (-1411 1           2 

38*  (     34) 
26*  (     24) 
41*  (     371 

57   (     42) 
35  (     26) 

28  (   25) 
22  (   20) 

1   Avg. -56  (-141),                   |   33« (    JO)   |        55 I    25)  i     Zl (  21) 

1 Ductile Fracture 

2 Brittle Fracture 

3 Crack Did Not Propagate 

•      Valid K-j 3y Specimen Size Criterion 
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Fig. I    2-inch Thickness Compact Specimen 
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Figure 10 Microstructure of the Normal Sulfur A737-B Steel 
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Figure 11    Microstructure of  the Low Sulfur A737-B Steel 
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