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AN ABSTRACT 

" of 

DUALITY BSTVEES KEASUBE AND BAIRE CATEGORY 

M 

Francis J. Vasko 

Let X to a second countable Baire metric space, and^^, the 

completion of a regular non-atomic Borel measure with support X* 

I prove a duality theorem shoving that statements about sets of 

first category are equivalent to the dual statements about,sets 

of measure sero (generalizing the result of Sairpinski for the 

reals)* This duality theorem is then used to prove some measure 

theoretic results from the dual results of Baire category* I 

show that a more general duality principle between measurable 

sets and sets with the property of Baire is not valid* 

I consider category measure spaces (i.e. where "measure 

sero" coincides with "first category"), obtaining some general r 

results about tfhem, and exhibiting some examples* 
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INTRODUCTION 

I will consider in my thesis the duality between measure and 

Baire category* 

Several fundamental definitions I Kill use includet a Borel 

measure is a measure on the Borel sets of a topologlcal space* A 

measure yC^i on a topologies! space is called a regular measure if 

for every measurable set A 

sU(k)  - sup/^F) / FCA and P is a closed setj - 

inf r^C({G) /  G ^A and G is an open set £ • 

We will alBo assume the continuum hypothesis* i*e« there does not 

exist any cardinal number between the cardinal number of the 

natural numbers and the cardinal number of the reals* 

Unless otherwise stated X is a second countable Baire metric 

space and^i^i* the completion of a regular measure on the Borel 

sets such that points have measure sex© and ^//l(G)"X> for all 

open sets G in X* 

I will now look more closely at the hypothesis on X* The 

condition^ (G)^0 for all open seta G besides eliminating any 1 

isolated points in X II since points have measure ztToJj  and as- 

aupLng thaXyOt{l)  is nontrivial* also ensures that the topology 

of X is not detached from the measure^Ll  « 

Suppose X is any second category topologlcal space* Let.^ Q^V 

be the collection of all open sets of ftflst category and let 

C " ^0^. Then by the Banach Category Theorem G is of first 
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category* How X - (X-C) <-^G, therefore X is the diBJoint union 

of an open set of first category and a nontrivial Balre space. 

Hence we do not sacrifice any generality by assuming that a second 

category space is a fiaire space* 

It is easy to prove I setL D'U J  that the cardinality of any 

second countable Ti    space is at most c(i*e* the cardinality of 

the real numbers). Therefore X has cardinality at most c* But 

since the measure on X is strictly greater than rero it is clear 

that the cardinality of X is c* 

The main results of this thesis arei 

1) a duality theorem for X between the sets of measure sero 

and the sets of first category generalising a result by Seirpinski 

1"> 3 
2) I generalise a result by Szpilraja £~ i$ J      • proving 

that there exists no duality theorem for X between the measurable 

sets and the sets having the property of Balre* 

3) my construction of category measure spaces via a density 

topology on X is a generalisation of material in L *°  —/   *ad 

Z__ & _J, also I derive category measure spaces via Boolean measure 

spaces* and stonlan spaces with a finite normal measure whose sup- 

port is the entire space* 

k) the set-theoretic equality of Boolean measure spaces to 

Etonian spaces with a finite normal measure with support the en- 

tire space* 

5) the construction of stonlan spaces with a finite normal 
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measure with support the entire apace by applying the Gelfand- 

Naift&rk representation theorem to the LT spaces of arbitrary 

finite measure spaces* 

Much of the material of (1) and (2) done for the real line 

Is found in Oxtoby's book   L * ° 0 . 



T-f." 

The   «ajn   T,)TOt?<?   Of  * hi?   SecMon   is   to  e^t?hlish   a   du?l,'t" 

rvrincirle between sets of first category and nullsets.  Tn 193^ 

Sieroin.ski [_   I(?    /^r^ved the follow! r.r thsorer..  Assuring the 

continuum hypothesis, there exists a one-to-one mapuin? f of the 

line, i.e. the real numbers, onto itself such that f(S) is a 

nullset if and only if E is of first caterory.  It is not known 

whether Sierpir.ski's Theorem, can be proved without the continuum, 

hyoothesis.  3ierr>inski asked whether ~ stronger version of his 

W J  i W  *—f ^-  '—' ,' -        ~  W** " - J      _~   —*   ^   f —. I  1 - * -~_    ^ »>'. *  rfL *--* »-ta   # -J-  "^ *^* W 1^  •  I *-S ^.   t.*        **"     S±      *L-     W'   */        >W l-~V  ^   .*   ,^  .  .  » .4. X*  .  .  _—  mj 

mans each of the two clashes onto the other sir.utareously? This 

question was answered in + he affirmative by Erdo'sL- ' _/ in lp^-j*. 

Namely Erdb's proved the following.  Assvrcinp* the continuum hv-ooth- 

esis, there exists a one-to-one mapping f of the li'-e onto itself 

such that 

f = f"1    and such that  f(3) 

is a nullset if and only if E is of f*rst c=t°rory,  (it -follows 

from t^ese rro*^ert!e? that f'"^ is of ^.rst cate^orv 1-P a.^d onlv 

if v is a rMtiino*-.,^ u*s ^roo** ^oiijiro'' o r«ia+ ivelv sm:?~'"' r°'f*',no- 

ment of Sierrinski*s proo^.  T-« this chafer T will rrove tha+ 

Erdos's t^eore-1 holds in ? —ore p-°r,°T*al set*'''■"'',• i.e. for certain 



jr.rti<;i]T-o^ on a ^articular class of "-"trio s-^a~«s (see ^h^o^p"! 1.1? 

below).  T w* 11 i^ov? thi^- bv makin^* use of sev°rp.l ?pt-—theoretic 
j 

+;Vippro^5;    f^jnd    1 D  /     /^       /.       TbeS"    Qfj-p —_+V>pf)7*c?+, 1 O    results    WP1^ 

proved and used by Erdb's for the specific classes o^ r.ullsets and 

sets of first ca^efrory.  Unless otherwise stated X will be a 

second countable Baire metric s-^ace, and>C will be the completion 

of a refpilar -easure on the Borel sets of X such that points have 

measure zero and 

for all nonempty open sets G in X. 

I now state two trivial dual results which we will use later 

in the proof of the duaMty theorem. 

Definition 1.1:  A class of sets G is a   (f^ —ideal if every 

countable union of sets from C is in G, and every subset of a 

set in G is in C. 
r 

Lern^a 1.2:  i)  In any topological space the class of sets 

of first category is a   0   "—ideal,  ii)  In any complete measure 

space the class of sets of measure zero is a   0  '—ideal. 

Proof i)  clear by the definition of first cate5ory. 

ii)  clear by the countable additivity of the measure and by the 

definition of a complete -easure, 

??~ar> 1.3:  L?m-a 1.2 holds for X. 

TP-V-..-3 l.itj  i^ T>I any torclo~ic?.l smace every set of first 

category is contained in an F,  of first category,  ii)  In any 
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t^^ol ^ ~i cal  ??.T?C w'~5 oh h.?.s  a re^-vl^s —<?,I;~"T
O
  on   its  Borel r^tr'• 

nnv    •-njTTtn4-     * s    OO*": *■ 11 "*. °d    * J\    a    *7- /"»        r."'1 Is c!i. « 

■^-^^^.P ^^ ^^1?      * *^     ■*■•*•••<->     «-;^»-r«o     +V-^,     ^l ^r- • ; ~n     <■»•<*     "      v* ^ •.•V, a » r*     J-\».-r. 

.~ *i A.       J  —      — ^•.»V^(o>*ri     -^ ^.* T- .-»      a r»-*     ■*■ ^ .".      ^\ ^  « "•'•**/?»      o ^*     r-"- -. -»— -     •- ~ *•      flp^t«*r <-*     4-Vp 

-»»<-> —i]^ a^-    T^aSure. 

^v--rTo i t c j  T vill show that this result need not h~?.d for 

3. no"~r°^i^ ar ""°asure»  Consider the reals . If\   . "'fiih. the eu— 

clidean to^olo^ or. it and let Z£/ be the co^rleiion of a reasure 

defined for all the Borel sets "by j/JX)  - 0 if E is of first cat- 

egory, and  >i£^E; — c>° if F! is of second category.  Clearly^^^" 

is a nor.—re cellar reasure. Now ^c^'Q,^ — 0 where Q is the set of 

rationa? numbers, hut there dees not exist a 0/* containing Q, of 

3ero measure // since a dense C-<~ is residual and X is Baire//  . 

Rp'^v i ,^j  Le~r.a 1 ,k holds for X. The following Ler.nas 

and corallarv =.re generalizations of results found in] 10      \   , 

T.e—a It7:  X can "be decomposed into two complementsry sets 

A and 3 such that A is of f^rst category and 3 is of measure ?,ero, 

Pmof Since X is second countahle it is seT>ar?-bl*». Let \— -     * 

-k a.f be any countahle dense set of X. Let 0. .  "be an open set 

I IT   X~ 
containing a^   and   //^{Q*_\) ^  ~)^f f    —-s  -s ross^-e 1°e~ 

c?.use rioints have measure zero and /JL*   is remular //  •     Let 

G*    - .°U 0, . for  j * 1,   2,  3,   ...   and    3«=/)G.. 

Now for any £>0    vre can choose  j so that~^j^-^. 
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o2. 25-    /       -JL-^ £r 

/-/       - <=T7 ^        •        ,J/ -1- 

'Jpir^^o   T<    ■< c;    ^    n'l!ls°t    '  i • P •    P    S"t    Of   '""e">PUre    7«vp ) Qr^    the 

pf fio>< kjf/j    c, •  is  a de^s^  oren   subset   of  X,   since   it   is the  union 
*^ 

of OT"?TI  subsets  cont?ininr  a ''er.0';  set.     Therefore' Its  oorrnlerent 

G ■;  is  nowhere  Her.pp,   gnd     4   = ^  =«(_/ '~ ■     i^  of "^irst  rate^orv. 
J = t      ~ 

Corolln'>~y 1 «q: Sverv subset of X can "he represented as the 

union of a nullset and a r-e1 cf first category, 

Pe"?r^ ltQ! We will now consider two examples to show that 

the conclusion of Lemma 1,7 does not hold without our assumptions 

on X, First of all observe that this result does not hold for 

Example 1,5 since ff^  is of second category in itself". 

gxamrle 1.10;  Consider pa, bs with the discrete topology 

on it and the regular measure JLL  on 7 a,bs such that 

Then A 2-i^V cannot be decomposed into two disjoint, sets, one  of 

first category and the other of measure zero II  since only the 

empty set has measure zero and X is not of first category// . 

F/xa^-ple 1.111 Now assume       -   .      ' ',- ' 

X - fR^- £oJ, and d(x,y) = de(x,0) + de(y,QV 

for .all x.^e X where d  is the euclidean distance function for 1. e 

the plane. Then it follows easily that X is a nonseparable, 

topolopically complete (hence a Paire sraoe) metric s-^aee J   X ic 

tcpolo^ically complete because it is a Go in ( }J\  , d ) wh,ioh 1s 

a onnplete metric space Jj  .  For any measurable subset 5 of a 



■J4^F>  v ■» ix we /^of*f.T»° JUL* P'  + n bo  *?""*'°1   to  !.ifi'bpc;'ii!o p-p?.r'!r'?  on 

the  Tlip,     i-r v  <o  arv For*>l  fuv"p*   o-f*  X,   + hen ,/t/P)   Boo!f P 

^*l+ (a ■»»<; p^+f;    i;nr>n']+ ^^}v    rarv    l^nop    v    ■»   •'"Xt        T^*   P    1?    a    ^O?**1!    FUbSet 
k .' * " * 

of X which II^PT'^^S or.lv oountablv -any lin°s v = nx, "then 

,/£,(P) = the sum o^ Its "sectional"' measure on each line,  Tt is 

easy to check that JJ^,  is a regular meas'.:re on the 'Bore! sets of 

X.  Let_/6 "be the completion of^. , then X canr.ot "be decomposed 

into two disjoint sets, one of jiL -measure zero and the other of 

first category //a set is of first category in X if and only if 

it intersects each line (y = mx) in a set of first category* 

Hence the coin.Tle^er.t of a set of first category has infinite 

measure^// , 

Lem~a l,t?:  Any uncountable Of subset of X contains a no- 

where dense closed set C of measure zero that can be napped onto 

/0,ll , i.e. onto a set of cardinality c« 
oo 

Proof let P = /0"-~J r,r
rn°^

er-» ar(^ ^ ~s an '-'-^countable Or 

set. Let P denote the set of all condensation points of E that 

belong to Pf +h=t is, all ~oints x in P such that ever
1'' neighbor- 

hood of x contains uncountably many ■joints of 5,  P is nonempty; 

otherwise, *f )B.T.  ^-
S
 
a tas« for X andy BVfC 7? . *T :;r a r-ub- 

clas^ of!} T?.V such + uat 7 "^i\ nn^^ains onlv countablv ^anv Tinip+s 

of»E, then this subclass would cover S and P would be countable. 

Similar r^^or^ng shows that P has no isolated -"oints.  Let 

P (0)  and F (1) 

be two disjoint closed sets of measure at "-ost 1/3 whose interiors 
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-Mi   y 5P-(  wv.0eo ,.r<fii,   ir,  con* ained   *n  1* •     Proceed^n£ :ndvc- 

tWely,   if  ?md<s;oi-.t   -Insed  sets   F'^»   ••••   ^     ^ K" " ° or 1'" 

vhrc1  i"|p,»,,if,i*<i   all   -«^t   5n   *" 3r»d  w^nse  iji-irn   is  c^tai ned   ^*>  <"• 
m 

have   be*4*1    defined,    ?. 6t 

■•   »    1 »     • • • • I     7fl-M - - -«11 + i 

be d'sjoint closed s^s c*~ "?°ss'!rp at r.cs4- o^*-/ contained in 

c  ,/S W*>  ...  * ^ v^cfse interiors reet 7.     Fror. the fact that 

F  has no isolated ^o-'n+s and that 7.CZ     .   it is clear that s'leh 

ssts ex^st, ^hus a fa-ilv o^ pets ?(**.   .... i_0 havin<? the 

stated T>roty2rties can be defined.  let 

C 

TKen C is a closed nowhere -°r?° subset of  E«  C has measure zero 

for the sane reason as the Cantor set jj^   for a discussion of the 

Cantor set see page k of L    JJj •    %,"ow ~°"~ each x^C there is a 

imione s°^'pnc° y i V-n = ^ or *i such that 
*- *        '-■ '■   ' C'fiJ 

xe ?(*.«., ...., im" 

for every n,   ?nd every such sequence corresponds to so^e point  of 

C»     Let  f ^x'  be the real n'i~ber havi"~~* binarv ■develorTT,ont • 

?"--"'-• * y   c . 

To—-- ^ , 1 "^ ? mhe ">oT"T|ln~en* cf ^^i* ""llset of X oc't^^ns ?. 

""iif;o* of cardinalitv c, T^13 co—nle^ent of anv firs+ ca^e^orv 

P«»+ <ri x contains a firs* catec-orv set of cardinalitv c. 

Proof Clearly since^tC is re~:"\ar AV,e fo~r,le*T,en+' of a null- 

set contains an uncountable closed se4-. ?y Theorem 1,1,2 in/.'^-/ 

-10- 



+ V^ =;    o1o-oJ     ^P4-     is    a 'Zn •        y.a"~.n<i    b"    T?""~a    1 t 1 ?    i t    CO".t .P i ~.S    3. 

«]i«n'j   riOi<!pi   of card *nali^v  c.     ^he  co""''' e~ent   of a set   of firs'-, 

o ^ ■*• p^o^^v  co*1*?.* r°i   ^ *^  i^r*^^Mi»-i+QV»To  ^^    F e-*- // V"1''  ^Le"~" a  1 • ^  ond   S ^ "^ ^f* 

y?    ^ c; p T5-» ^ -»~r* ^Ti5pa /l       "-v T o—.--a  1  1 O ■*-V> ^ r:  co-1-  ^p^*-o^ r^c  p  p f^U^-**^ 

Ca-i-ii-v t,l^;  "'"is ca-1- e^-orv Tart of* "the above the ore!", ^OPS 

not bold if X is r->t a ?aire F75.ce.  For example, if 0 = the 

cantor set, then 

X - Ct/ (l,2)/iq) vhere 3 is the rationals, 

is a second cour.4: a Die netric ST>ace of cardinality c. Vow C is a 
V 

set of first category, in fact it is a novhere dense set in X, but 

X - c = (l,?>q 

does not contain a first category set of cardinality c. 

The following two theore~s are found on rage 7^ -*"1-[_/#_/ • 

Theorem ^ .t^;  Te^ X "be a set of cardinalitv c. and let Y  he 

a class of subsets of X with the following rro"nerties: 

(a) K is a {f-iceal, 

(b) the union of X is X, 

(c) Y. has a sub-class 0 of cardinality ^ o with the 
■nrcoerty that each rer.ber of K is contained in 
sor.° "er.ber of G, 

(d) the coTile-er.t of each re^.ber of Y.  contains a set 
of cardinality c that belongs to K. 

Then X can be deco-posed !nto c disjoint sets X^c f each of 

power c, such that a subset 5 o^ X belongs to K if and only if 

5 is contained in a countable union of se-s X^. 

-11- 



= VcOc(^-0 *" -/2    ) ^    +V,n    Pe^    of   O^din^ls    Of 

f^rst. 07* s«co--4 ol"r", "*"v,^"u 1^, nl* ord.ip. = ls less than the ^irst 

ord^^1 ' / 1 that h~s 'lTiT^'ir.^3hiv ~^»".' f^fi^cpsor?• Then A has 

caf-dinality c, an-^ xh^re exists a rap pi n-^oC-^G o^ A onto 0, For 

each°C*A defir.° 

Put 3 = y<£€ A:    >"j- is '"icov.taM? v .     Properties   (a),   (o) 

and   (d\  i'nply that  "3 has  no 'i^reT bound in  A.    Therefore there 

exists   a  one—to—one  order—"nreserv^p. sr nar1 (PO
-
^ A  onto Bt     '■'or each 

<=>C *n- A 1  define 

Bv co^sx***"\2<"'* io°  ?.nd  "Dr,or>^',~4'''r   (O.   +,ue  se^s  v — &T^5 dis^o^t,  *inH 

belong to K.     Since  XT-^ -' Vj£r\ 1 Dp" h  of the sets  Xr   has  cardinality 

ct     For ap.y^^A,  we have^€ OP(«C)  """or sc~e<=C€A,   and therefore 

Hence,  "by  (c)>   each "erber o^ Y.  is  contained in  a countable union 

of the sets  X  .    "si-^  ("o),   i+   follows that 

Thus y  Xj-  iad^i.r   is  a decomposition  of X with the retired "Dro- 

T>eT*ties. 

T^er?"  I.I'M   ..let  X be a set  of cardinality c.    Let K and 

L be two classes  o^ ^ub^^ts of X each of which has  rroTerties 

(a)  to  (d)  of Theorem  I.I5.     Suppose further that  X is the union 

of two complementary sets M and N',  with v €■ y and N€l.    Then 

-12- 



-t-'^ri-v-n    OYK-*I;    a_    one — ■*" O — One    •>■ ?>-"i-p * *i ~    f 'of    X    Onto    ^.tfiol'f*    PMCh    that 

f ■=  f"       an^   sM^b  +>at   ^(^ ^i.  I'  .->-d   n"iv  if  E6rv. 

T>oof     Te4-   X r-   (Of-cC^Vl)   Vo  a  ^ecor-nosition   of  X  "r>rrps- 

pond^ng to K,  a? constructed  in  the  proof o^ r"'beo••~o,''  1.15•    We 

rn^v   P. ^SU'-'P   that    Y.   belongs   tO   th1?    c-gno-pa-1- 3 p r-   <"»]aSS   C.       apd    that    I,-. 

*s taV^n enual to Y, Then Xn = M, because V cannot be countable. 

Similarly, let Y^ (^^""C"^./!) ^ ' decomposition of X corres- 

ponding to L, with YQ = N. 

Then 

M - U' „ Y r- and   N «= £/ * \r • 

The sets X^ and Yr , for 0*£-<=C^/l,  constitute a decomposition of X 

into sets of ca.rdina.lity c.  For each O^^^Jl,   let f^ be a one- 

to-one capping of X^ onto Yr- • Define f equal to f r on X^ , and 

e<ru*l to  £c~"  on Xc , for 0^<=Ou<2. Then f is a one-to-one 

rnappin- of X onto i+self, f is c.ual to f~ » a^ct f(*£ ) = Xcf~°r 

all 0^<<i/2.  Since 

X =U       Yrand YP ={7    X- , 

we have also f(XQ) - YQ. Thus 

ffX^) = Y^ for an o^aC^M.    . 

From the properties of X^ and Y^ stated in Theorem 1,1.5 -t 

follows that f(E)fL if and only if E^K. 

The following is the main theorem of this discussion, 

Tv-rap-^p-n 1,17; TV^OT-O exists p.  cne-to-o^e rarrinp" f of X 

onto itself such that ** =» f"  and such that f(»?) is a nullset 

if a"d on3y if S is of first c?te~ory (it follows that f(c:) is of 

-13- ■ 
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-r i rst    O ~ t ^ "'"C^v   1^   r> *^ ~>t    O
v,*l,,-r   ^ **   "^    in    ^    ".MT"^ ^G"1" 

Pr-nnf       Tl-j p    •* V j->01~om    follows    ^ *"""" e d i 3 * P "I '•'    f^^n   '~h0Or£?Tl    \ , 1. £ , 

T et, K "bo the class of ~etc of first "'/.eTirv, and let. ,1. be the 

class of, nnllsets, K is srenerated by the class of F_- sets of 

fiT-t c^te~orv, ar~ L bv the class of Tu r.ullsets. Each of these 

exonerating classes has cardinality c// since X is second count- 

able Jj  .• Condition (c) of Theore- l.lf is therefore satisfied. 

Condition (d) is i-nlied by le-Tia 1.1? and condition (a) is fro?. 

Lenrra 1.2, While condition (b) holds since points have r.easure 

zero and X has no isolated points.  For the sets y  ?.nd N we may 

taT<e the sets A and B of Ler.-a 1,7. 
o 

The interest of this theore- is that it establishes a strong 

form of duality, which ray be stated as follows, 

^Vp^-^i^ 1,1 *^j  _ 1'5^ i1"" Princ^ ~^"*^. T **+■. "^ "he 5_~T T\-*~^~Q— 

and notions of p".re set theory.  Let ?* bo the Proposition obtained 

fro*"1. P b" ir-tercha"""in?" the terr.s "nullset" and "set of first 

category" wherever Ahey armear. Then each of the propositions F 

and *^* T n^T_^ a^ t*~e other. 
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Tn  this  seotf c"1   "^" v^"'!   "H^ove  3. ^u^b^"^ 0"** "^esults   in  ^a^"*^ 

n£ + c*rry^Y   theorv a^d "*"hen. a^^lv t^"*** T"**^ *"Ci"*"*"^ e O"^* duali"tV W^1^ C^ 

vg established in the first ch^^ter in order to r"et "the ccrres— 

"condin^ dual 27*2suits in ■'•easure theorv. The first four dual 

theorems we^e ""roved for the real numbers by Sierr^inski ir.L^Q_} • 

Proofs also ars^ear0 i^L^^_/» Ve will generalize these results 

usir.r techniques ini_'^_J. 

This first theorem is a generalisation of a theorem proved 

"bv Lus? n for the real numbe"1-^ in 1^1^- L/-OI. 

Theo^m 2.1; ArH" set 5 of second category in X has a subset 

N of "power c such that every uncountable subset of N is of second 

category. 

Proof Let 7 X^-s ^^_^).rbe the decomposition of X corres- 

ponding to the class K of first category sets in the proof of 

Theorem l.ljr. Let N be a set obtained by selecting just one point 

from each non-empty set of the for" ?/1X^ „  Since E is of second 

category, V is uncountable and therefore of power c. No un- 

countable nvb^et of V can be covered by countably many of the 

sets X^ •  Hence no uncountable subset of N is of first category. 

""f^n^io" ?»-?t  A^ uncountable set with t^e rrcrertv •'■hat 



r»i•.->-»" 'i^^i-Mjn'.T^ln S"bse* 1? of <? <? r; o »■; ^ ^s/rro^,' * p Oil"'''"? a. 

I'; P1," " <»t # 

■phe dual of ph^o-^p^ ?,| v.s T^ovcd for ths real "Hpe h" 

M«rpinski in 1??^ £t&J . 

Thoo-^'" °.^ (Dual nf ""h^re-! ?«1):  Any subnet ?! of X of 

positive outer measure (defined in terms of the measure  ) has a 

subset N of power c such that ever}' uncountable subset-'of N /has 

positive outer neasure. 

Penark 9.^i The outer measure of any subset A of X is 
t 

defined as 

jM.y)l  4cE and E is openV . ^l/*(x)  = in^ 

Theorem ?.5t There exists a one-to-one mapping f of X onto 

a subset of itself such that f (E) is of second category whenever 

E is uncountable. 

Proof Let f be any one-to-one capping of X onto a Lusin set. 

Theorem P.^'^-al. of Theorem 2.5); There exists a one-to-one 

mapping f of X onto a subset of itself such that f(E) has positive 

outer measure whenever E is uncountable. 

Theorem 2.^: Any subset E of X of second category contains 

c disjoint subsets of second category. 

Proof Let f be a one-to-one ra-nping of X onto a Lusin set 

contained in E,  Vow le4- \ X,- :<;•£/}/be the decomposition of X 

co-responding to the class Y  of first category/' sets (or to the 

class of "ul]sets either will do). Then from Theorem 1.15 w° know 

th^t each X^ is uncountable, +horef ore,  ^(^or) I
S
 
a second 
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ra+.e^ry sublet, of ? for eachc£^,/3. . ",v~« r^s'ilt follows since 

* he oard 1 r?^ ^4"v of +b° (>^Tior>+ i^i 

CXoC ,c^^_/2j-i?. <,. 

T,v1o0re~i  ?." ("*"^1   o^ ""-on-^^-"   ?,°^:     A?-' subset   ? of X  of 

^osit^vs  out°r *"eas''r*?  contai n**  c dis ^^^T.*   sets  of ro^tive o,,+"er 

"nro1!'-"'  9.Q;     i)     X can  be decc~r>osed  into c disjoint  sub- 

sets  each of second  caterory,     ii)     X c?.r. be decomposed  into c 

disjoint   subsets  each  of "positive  outer "^asure, 

Proo-4*    i )     and  ii^     follow directlv frcT. Theore*". 2t"? and 

Theorem 2.8 s^nce  X  is  of  second  caterory ?*\ri has rositive  outer 

nea.su.re. 

pp"n^T»V  ^,! o •     ""he dual theorems  considered  so far do not 

involve reasure and caterer1/- si7VJltar.eo"slY.     However Ler^na 1.7 

in Chapter 1   says that  X can be decc^osed into two corrlerentary 

sets,  one ox   first caterer,  the other of reasure zero.    This -pro- 

position  is  self-dv^l.     Another result  is that  a subset  of X  is 

a nullset  if its  intersection with  eve"*~v set  of first  category is 

countable.    The dual  is   :     A subset   of X is  of first  cat65017/- if 

its  intersection  with ever;.' nullset  is countable,     ?oth of these 

results  are corollaries  of Len^a  l.7.     fObserve that the con- 

tinuum hypothesis  is  not  needed  for I.e^ra. l."?^. 

The following is  a generalization of one  of Sierpinski's 

propos51 ions [_3*5~ . 



serving tTa^for-atl o-:p   o*"  X,   with """'   also r.ullset.  Tirp^prvii- 

^nd   car<? i n a! ^ * v  o° "   e^'J^l -to c    *^e^e  exists   -i subset  ^ of  X 

(-)■** -ri ■)-<;+   cate^or""'  ?r. d  **?rd inalit v c.  su^h f^t  ""**'/% -1  i?   ^ <*c";nt"" 

= hle  r-p1.,   for eacv 7   in  "'. 

Proof     Tn^ex 4"v~e  ele"*,o',t P   of K  a^.d  X  so th^t 

T et  A  be a nullset  such  that   X  -  A   ^s  of first  categc-y//    by 

Ienna  1»?//  •     —r C^oC^Q. ,   let  C^   be the group generated 

by the transformations 7-     withA^eC»    7hen G^- consists of all 

■products  of the form 

a,/r,    -,&   ..,-**    where Ri^<- ?.~i K.   - + 1   (i   - lf2,...,n) 

a^ri "i  2?  5«v positive  i "tffrsri     Henos '"•-/-  is  countable,  a**'! each 

^   Tn   G <- is   "iO 1 jo-4-_-ivp<3<i;e>-»-v-i r^;r,      ^H--   <»sch  ~1   in   C t^e   s»+   T A   Is *N.        ------ -     _■      -      - _ •--        '«C 

a nullset,     Hence 

is  a nullset.     Let   xn  = m>   •     Assuming that  the roints  x.   in  X 

have  been defined  for a"!.] PZ-*Ci   rut = 

Then  3#~ is   a  countable  set  and A-L/ ?,- is   a nullset// since roints 

V)T>ve  measure  zero// »     L°t   x    be ■'■^e  ^*irst  ele~e—t   ^ ^  *Vio vTl 

VL" ["^   --Vj. —•"   ^^k- 
oC  ~ ' '       -•--■■■ • -• -.      J . - . f       -_. 

c-!V"o*   of X - A.     ^e-ce ? is  of ffrs*   pa*);-^,     v0» ?»«.«3^-'°^-'^J)_ 
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""heore-. ?. l?^*:"11 •">*" "-o-re" ?.tl^:  ^or ar.v el's? '< of 

-1 
^ MV*^ ^ bl° r*aio^nT,'"'^TV,!::rtT,''^rir * ra~ S ^0""~~at * CnS Of   X, W^*h "^ 

al^o f,R.tefO'r'/-i"'ro<;'5rvir.r ann" c?'*~c'i*,alitv of y enual "to c. ther** 

exists a subset 3 of X of measure zero an. 3 cardinality c such 

that T^/ii is a countable set, for each "* in ?'. 

The followin?  two the ere "".s ?.re v^cuousl-'.* ■'■rue for X since 

QVO^" ro,!S'",,*v c^en set of X is of seco*""^ catee"crv // since X is 

a Baire srace II , and has positive "eas':-"*?. Therefore for the next 

theorer we will assure tha.t X is an arbitrary torolc.^ical srace. 

Also the duality theorem of Chapter 1 does not a-pt>ly since open 

set is not a set tuecre+ic concert. The "^ollowinT theorem is 

found in L '®_] . 

. The ore~ r?.!*3 ^"a"_5"n '-■a-'-. o~o->~v _,v-D0r«-il ■  T<-[ snv tor'Olop'ica"' 

s^ace X, the union of any farily of oren sets of first category/' 

is of first cate^orv. 

Proof let r,  be the union of a familyx/ of non-e-^ty o^en 

sets of first cate^orv.  T-et 

r - { MLc k^ J 
"be a maximal farily of disjoint   •n.c\-e~^*:y open sets  with the 

prorertv that  each  is cont°^ned in so"*° «"0"->V»T~ of^c?"      ?v-on 

the closed  set    6r   - C/<5L : s  -ov^re den^e,^ otherwise jfwould 

not  be naxiral.//   Each set  t6^an  be represented'as  a countable 
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'i"Ion   o"*" novh°re ■''e'.se  re',?,   s^" Lj^  «■ \J    y'r-  ~> •       "^i* 

T-** -ip  o-^en  se* {V -"><-■*.« v   ,   ^^en   * •*•   *o(!4s  po"o Vac vj,   ar-^  th^re 

uence\/c£/ — y* i ^"^ ?° x'„ ^s r.ovhere ip"5". ""here-^cre 

is of first category. 

In this next theorem we will SSST; that X is second countable. 

Theorem 2.1^-:  For 3.n.v second countable tcoloe'ical srace^ 

the union of any family of open sets of "easure zero is of measure 

zero (provided the measure is defined for all open sets). 

Proof l°.tj£^ =r Q^: °£ &  *.r "be any family of open sets each 

of measure "ero and letyt, ~jfj X   be a base for X and jJ,   be the 
( "jM*, : 

Treasure«     Now sinc°  X  is   Linnelo"^ for each  Or in s~f,  there exists 

a collection iB   vC^1*"^ *v,=i 

?ince Q^ is  or>en we may assume tha-1   each CL, ^s  contained  in  Or , 

*%'     "  '   "   '      <■ -  

Now ^IncG  X  i?   second  <?our.*?i,b!,5 

^Bccx/y = 1-» 2» ...**«*}■ 
is  countable,-   therefore 

Hence C/Qr- *~   a null^et. 
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w^^h  +1^0  4is',v*°i'!1  to^olopv  or   ^ t,   ''"'""'o  r.ot   cp^n^i^   r"i'i"faliip 1  and 

the ■nT-od1'^*', •«'as'iT° of" T^V^SIUP.  -ospiwo  on//\ 1  t^ep   foT each  O^x^l 

T?__ *» ^ f v vV   0^'^1- V ^   an  OT>en  fe+   of  X and ^tAj?-   ^   = 0.     Put • x 

C/^    c ^^T wh"^~e I is + he or>en unit  interval in/A '"^ we ha.ve 

^t(Txl)  = 1  =M P^x) ^ 0.     (Observe  also that       is not  a re/rular 

meas\ire,,l 
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'"•JJTTO  T 

,V0,'-,''"lC"oi'3'r ?"rrrS 

Tn "this char-'*?ST we will discuss ^on-■"!easu'"*aVie «°+s in X( 

fWhere X is 55 in Chapter 1. i,e», X is a second countable ?°1re 

metric sr>ace, a^d z^.wi 11 be the oo"*",?letion of a regular r*. ensure 

on the "Bor^l sets of X su^h that roints have measure zero ?.nd 

for all nonempty open sets 1 in X.) The final theorem of this 

chapter is an important result due to Ula*" fl^^O). 

To start we will rrove two lenr.as. The following lenr.a is 

found in [WJ, 

Ie""?a ?. 1: The class of all closed (or-en^ sets in a tcoolo- 

tical sracp with a countable basis has cardinalitv •s»=c. 

"Proof let K denote a torolorical sr-ace with a countable "base, 

say iWfk    1   3""i le-1"- w ^ an o^en set of K.  Denote by n( {J }  the 

set of natural numbers r for which l/^ £/.  It is evident fro*", 

the definition of a basis that 

Hence every oren se+ (J C.  V is unicuelv determined bv a set 

of natural numbers i.e., by N'(C/); consequently the class of all 

open sets of Y.  has cardinality » c. "^e theorem is thus rroved 

fo^* orien sets and, sine-3 a closed set ip the co",'nleT,ent of an 
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C)-!-.^    ~«l   fV-rv f>l^.s of al ""  r"'rr""^ Snt" w ? s x h° S3*!5 P ,">. rd 1 0 -71 

""h0 followiif lemma is '-roved for iU:p re^ls in ]_IO_}, 

T <-.-~~v3 ''.'s The class of" uncountable closed s^s of X has 

p o r d i n ? 111 y c • . , . 

t^ponf;  Let x,v X such tha4; x  ** v,  Then there exists ove° 

set- 0X, an
J 0V <->ch th=t x«0x, yeOy ?.nd 0x<O0y = tf £%ince 

X is Kausdor^fJ/ .  Now since X 5s a raire srao° Cx ">'"'•- 0„ are of 

second category, hence 0 *■"--  ^v ?'re uncountable.  Thus Ox 

(the complement of 0X) is an uncountable closed set// since 

0X30V //.  Now points in X are closed since X is Hausdorff and 

I   V 
there are an uncountable number of points in (ty)     = 0 .  So 

is a collection of uncountable do? ;sed subsets of X. Clearly 

this collection has cardinality c. Therefore it follows from 

Lemma 3»1 that the class of uncountable closed sets has cardinality 

c. 

Pg-ar-v ?»?*  In the above theorem we car.not dron the assump- 

tion of second countablity,  vor instance if X is ?..ny set of 

cardi n al'.trr  c with ■L,~e discrete to""'' o~" on it -t-v-ir--. Y -o ^ 

ooq    H-i'     *"~ ->    c"*aSS    O47"   U - '"""■••- • - ■J'UT r>    fOn<-o-     <-o*c     * <^     /-i-**    nrVirrlH,"    "> - 

/T r 
If    - * - -. -v    - *- ->    .-"I     -■•-;     -,**    r. "> r\ - r> ^    '"'"'ttj    ^ S    O''*    0"' "*"'' * "* n "* * * "    2'      a - •*    *■ ""- r> 

o?.""-^ of countable c"'ced ~e*s is of cardinn.^ ^i v c» // 

""he ""X"*" three theorems are menerali'^a.tfons to X o** *hPore™s 

fo"nd i n/_ /O   „Jrr,r the real nu-^^ers. These theorems are due to 
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i     ' i r 

P^OO^       «v   "*" *■"><=>    VfO 3    O^Sr1'nrr   T>">™T n^i nip    pn^    T**~i-*^    "^ ■ ?.    t ^P 

class <>    of  UTO'I'I' able, clo^d suV?ls o-~ X can "be indexed "by 

the ordinal numbers less than C€^> Hp>^ ££/. < ^ the first ordinal 

h^vin^ C predecessors, sav 

(Since we are assuming the continuum hypothesis,^* =_i7.,) We 

may assume that X, and A>erefo^ each member of jr , i.e. each 

of the uncountable closed subsets, has been veil ordered.  Note- 

that each member of J has pove:" c.  Let r>    and c  be the first two 

members of F. .  Let p^ and q~ be the first two members of ?~   dif- 

ferent from p, and q  .  Tf \^~ °C ^ 62.^ and if - and q^ have 

been defined for all Z?-^ <£_ f let Tj-and Cj~be the first two 

elements of F^. - (J  \P0j'frpt)  • Th~~ set is ".on-empty (it has 

cardinality c) for each °C , ar.d so tv- and q-j-are defined for all 

<*f^ OL/C . ?ut 

Since "^C^^^Zc *"A f<.e^'n Y<£. for eachoCz^, 

the set B has the property that both it and its complement meet 

every uncountable closed set. 

Definition ?.g; Any  set ? in a torological smace K having 

the promerty that both 5t and i+s complement meet every uncountable 

closed set is called a Perr,st°'n sc4-., 
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^nri,ui„.   ^.^t      K   s*:v"et   Z   nf   -pv t o-n] o~^ ~al   sn 7i r»£    *      ^ Q 

'               - * - 

"^ V,pi^v»o -*    O    O • An","    ^ ^ -m** o -^ o 5 p(     ?*^t    3    \ n     X    is    r*0n™Tr'o'3-^r>*:3^12ft    rl^^ 

1 ar'/t^    *'»^p    -^"^O^ert""    O'0   "" a* re »        Indeed       ev»5rV    *~ °? S* l***^ blft    c^'^'^n'*-    ryP 

either 3 or 3   is 5. nullset. a"d 2.Tyv' subset of 3 or 3  that has 

"the rr°"nertv of 3aire 5 s of first cate^orv, 

"^roof Let A be ar.v ".easurabl e subset of B«  Ar.v closed sub— 

set F in A ~ust "be countable II since ever;' uncountable closed set 

neets 3 JJ     ,   hence^(?} = 0 J/si'-.ce -oi-ts have reasure zero//. 

^hereforejj.^A^ = 0 since,££- is re~ilar»  3i~ilarlv, if A is 2 

sublet of "^ havi*~~ t'^e "^ro'nertv of "^aire th*^n A = ^ C^ ^ 

w'rere 3! is a Gp a*~d "-* is of first cate~or"'.''« rnhe set 3! ""ust 
o 

"be countable, since everv uncount2.Die "Zc    set contains ?.n un- 

countable closed set // bv Le*-~a 1,1? )/  a^d tbe",~efr,'*~e "~eets 3 "losed set // bv Le*-~a 1,1? ]/  a^d t! 

Tve first "!>art. of the t.b.Qore_ follows frc*1 Ler.r.a l.7, 

P/vp_*"-7iTp *■*.3 • "ov consider the follovin" exa:—le. Let 

\  = +^0 rea"1 number? v*x^ the eucl5"--" t^~^ir/ Q^ <■•- --^ 

h"wi"3 the counti^^i  ~°      °^  -"^s Borel sets. Then  vanishes 

only en the enrty set =nd is not re?7jl?-r, .And it is e^.sy to see 

th^t I.e"""*a ^#1, le^^a "^»2, "\^c '^,r,ecre"* ^«^* v'°^ch are all "^urelv 

tOTolo~^c?.l results^ ho^d for X» "^wever. ever*' ""easurahTo sub- 

set of ?nv remstein set 3 "eed not be a "ullset // ?r.v "pn-B""-tv 

measurable sublet of ? has positive "■°asvre and there Te 
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«"]' — n n' "^T^lp    c *} V p| r    •** r"r*    ;> ^ •»    ^ r»>~n c * n * n    j^o4     O"**    Y     //   •        ^i • t    t *" ^ 

" V* rk n"**c»-^    "3    O •        A •* v    "s*; hs o-f     f>-f*    Y   with    ▼>/>*: ■*■*■ ^vp    ^M-*- o-**   rpacnvp    V* ra ^s 

a r.o.n —~easurable Fur?1?* (  An'-* subse4; of* X of second oatp<~orv ha.s 

•a subset that lacks the Trover4-v of Baire. 

^roof Tf A h~s nosi-1" ive outer measure and B is 9. Be^^st-eln 

set, Theorem 3«° ~uovs that the subset A/7? *r.d A/)T>/ cannot "both 

he r.easurabl e.  Tf A is of second category, these two subsets c?.n- 

not "both have the r>ror-erty of Baire. 

Ve will now voi'<pn sore of the conditions or. X for the 

following theorem, 

^ he ore"" ^,10: Let X "be a separable torolo^cal s-na.ce sucb 

that the class of Borel sets of X is not equal to the -rower set 

of X. And letytc be a regular measure defined on the Borel sets 

of X such that 

for all x <£- X, Then there exists subsets A, 3 of X such that A 

has the property of Baire but is r.on-r.easurable, and B is measur- 

able but lacks the property of Baire. Thus in X neither of these 

two 0  -algebras includes the other. 

Proof Observe that the proof of Lenra 1,7 uses only the pro- 

perties that the space is separable, its points have measure zero, 

and the Treasure is re^rilar. "^herefc***3. we can a^flv this result 

to X to decorr»ose it into two corrlorentary PP+S. one o** '""■•asure 

7pro and the other of first caterory.  Also we clear]v h?ve anv 
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c-,11)•>•?p¥_   nf  X V'iiP'"' thrt dis^^nt  u^i^r   <~*f *wo  s^^s,   ^ne  O^ '••■«.'»«*,']■**<* 

-7(r>-»T)    ~".d    *"h?    0th0>*   Of   f^rSt    r>otp-d~-,       T ^+    ycv       b'? +     \/ not    ^ 

Borel  set.   1.*?.   V   I?   r^+   T"°asur;3h1e with respect  to •'-he ^or*3! 

sets.     Then 

V= k'u B, 

where A /)B = Cf and  A is of first category ar.d _/*.(?) = 0.  So 

A is non-measurable, but h?.s the property of Baire // A = 0 /\ A 

so A has the proper+.y o"^ Baire; if A were measurable, then V would 

be measurable JJ .     While 3 is measurable, but lac>s the property 

of Baire // analogous reason (j , 

In the -preceding discussion we assumed that the now^r set 

of X was not equal to the Borel sets of X.  In general if X is 

any set of cardinality c and JA is any finite r.easure defined for 

all the subsets of X with jx  ( ^xT ) = 0 for all xeX, *hen the 

following theoren due to Ul5"1" (ip^O), and found in {_ I*f'_}    shows 

that^(X) = 0, i.e. that^^cis identically sero or.  X. 

•vhfznvn-'  "5wii ^Vla1"^:  A finite "easure/y defined for all 

subsets of a set X of card.inali + v c vanishes iden+icallv if it 

is eoual to ■jero for ever;.' one — element subset. 

Proof Since we are assu.rrin:T the continuu'". hv^othesis c is 

enual to the first uncountable ordinal.  By hypothecs, there 

exists a w**ll ordering o^ X such that for each y in X the set 

{* / * ^ y} 
is ^ountaVe.     Let  f(x,y)  be  a one-to-on° ^ar^ing of this  s*>t 

onto a subset  of the positive  integers.    Then f is  an  inte^er- 

l 
-27- 
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V^IM^H   ^'!ncA ^or.  <i*?"f^ n.r*'i   "To**"  fl 11   T?iT * x. •      o-^  taTo^pn+c, ■*"     - v"»»      ■      **■ 

wM oh  x<£y.     7t   h">s  iWe  ^v-o-^^r*4".}' 

■   ^ -  - -.-■»., -   .    J.   . 

\ 

F^   = -fy   / T^V,   f(x,y)   -"nl 

We  rcav ■picture these  sets  a?   arranc-ed in  an  arrav 

of X  for 

(/ 

w1 ^^" 'Zy^~ 

F*    ^    F1     . 

I'W ^    v™ 
X,      Xz     Xj 

vr 

with a courtt?.ble rur.ber of row? and c eoliutns.    This array ha.s 

the follow!r~ ■propertiesj 

(?)    The sets  in any row are mutually disjoint 

^?)    mhe union  of the sets in ?.nv coliirji is enual to 
X ^inus  a countable  set. 

To verify   (?)t   suppose y 6 Fx /^   F^     ,   for sone n and  sore y,  x, 

and  x'    with  xi^x'.     Then  x^y,   x^k y,   ard  f(x,y)  - f(x/,y)  =rfl, 

Hence x *= x by  (1).    Therefore,  for any fixedff\t  the sets 

^   rye x^ 

are disjoint, ; 

To verify (?)» observe *hat *f x*£-yt  then v b°"!or>r-s to one 
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^■f    *Ur\     or,*.- ? ^T_aT,r   ■(•'--*  ^"O  ■'*«•*• •„•'-■< »»V,  ,. a    ^fX    ">l,    "Jo~r»o 

■»-y-o ,.n5ri« o-** +b« ?clp rY  fn «* 1,?,,,. N> ^! ''"prs fro-* X bv the 

Bv (?.} i   in ""' TOW the--0 can be n+ ~ost countablv ~anv 

th^r*^ C3.n "bp o.+, nocA, ^o1^*.^^!v *"2.r.v ?iich spXs- ir. *h^ whol° ~*y*>*^ v, 

for every n. The union of the sets of this column has measure 

zero, and the complementary countable set also has measure zero. 

Therefore yii (X) = 0, and sc^tis identically zero. 

HemarV' ^il?t This ■'ihec-rem imT-lies that Lebesrue measure 

cannot b° extended to all subsets of the real numbers // s?noe 

Lebes°"ue measure is ^/""—finite and since every measure is countablv 

additive _J . 
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CHAPTER k 

EXTENDED DUALITY 

In Chapter 1 and 2 we have looked at the duality between 

sets of first category and sets of measure zero. Now we will 

try to extend this duality by comparing measurable sets to sets 

that have the property of Baire. Throughout this chapter we will 

take X to be a second countable Baire metric space, and  will be 

the completion of a regular measure on the Borel sets of X such 

that points have measure zero and ^6(G) >r 0 for all nonempty open 

sets G in X. Vhere the results are more generally applicable we 

will note this. 

The material of 4.1 to kA  is from L l& -J. 

Definition 4.1i A subset A of any topological space is said 

to have the property of Baire if it can be represented in the 

form A ■ G A P, where G is open and P is of first category. 

Lemma 4.2i A set A has the property of Baire if and only if 

it can be represented in the form A - F^J Q, where F is closed and 

Q is of first category. 

Proof If A - G A P, G open and P of first category, then 

N - £ - G 

is a nowhere dense closed set, and Q - N ^ P is of first category. 

Let F - G. Then 

A - G-4 P - (G-0N)23P- GA  (H4P)-F4Q, 
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Conversely, if A - F A Q, where F is closed and Q is of first cat- 

egory, let G be the interior of F. Then N - F - G is nowhere dense 

P - N A Q is of first category, and 

A - ?A  Q - (G A N) A  Q - G A (N A Q) - G A P. 

Lemma 4.3t If A has the property of Baire, then so does its 

complement• 

Proof For any two sets A and B we have (A/lB)  ■ A Zi B. 

Hence if 

A - G ^P, then A^ - G^ P, 

and the conclusion follows from Lemma. 4.2. 

Theorem 4.4i    The class of sets having the property of Baire 

is a ^-algebra. It is the ^algebra generated by the open sets 

together with the sets of first category. 

Proof Let A;« ■ G'-A  P-  (i • 1,2,...) be any sequence of 

sets having the property of Baire. Put C -fG» , P - L/P^ , 

and A - Ukj    • Then G is open, P is of first category, and 

G - PC A <=G t/ P» 

Hence G Z> A <= P is of first category, and A - G A (Q *> A) has the 

property of Baire. This result together with Lemma ^p, shows 

that the class in question is a ^algebra. It is evidently the 

smallest (/"-algebra that includes all open sets and all sets of 

first category. 

Theorem 4.5 (dual to Theorem 4.4) i The measureyU.for X 

(which is defined to be the completion of a Borel measure on X) 
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is defined on th© </~-algebra generated "by the open sets and the 

nullset8. 

Proof This result follows trivially from the preliminary 

lemma in Chapter 1. 

Theorem 4.61 A set has the property of Baire if and only if 

it can be represented as a G/-» set plus a set of first category 

(or as an E- set minus a set of first category). 

Proof Since the closure of any nowhere dense set is nowhere 

dense, any set of first category is contained in an R- set of 

first category. If G is open and P is of first category, let Q 

be an F-- set of first category that contains P. Then the set 

E > G - Q is a G^ , and we have 

GilP- [{G  - Q) A  (G/7 Q)} Z* (P^l Q) - S/^GZ) p) /)    Q^ 

The set (G £\ P)/"* Q is of first category and disjoint to E. Hence 

any set having the property of Baire can be represented as the 

disjoint union of a Zf   set and a set of first category* Conver- 

sely, any set that can be so represented belongs to the cT-algebra 

generated by the open sets and the sets of first categoryi it there- 

fore has the property of Baire, The parenthetical statement fol- 

lows by complementation, with the aid of Lemma 4,3o 

Remark 4.7i Notice that Theorems 4.4 and 4.6 hold for 

arbitrary topological spaces. 

Theorem 4.8 (Dual of Theorem 4.6)t A subset B of X is 

measurable if and only if it can be represented as an fy- set 

plus a nullset (or as a Gj>   set minus a nullset), 
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Proof If A is Measurable, then sincere i* regular MO have 

for each rj)   a closed set F^ and an open art G,^ such that 

yma:   icG^  and.^G^-F^ )*£. 

Put A "UF      and H - E - A. 

Then A is an F^- set* N is a nullset, since 

* c G/y>   " Trt    t AC (G^ - F^ ) ^ sr\ 

for every n, and^^ is complete. S is the disjoint union of A 

and K. It follows by complementation that E can also be repre- 

sented as a Gr> set minus & nullset* Conversely* any set that 

can be so represented is measurable, since every nullset is mea- 

surable and since the measurable sets form a ^"-algebra. 

Definition fr.ftt A real-valued function -f on any topological 

space is said to have the property of Baire if -f  ( Xl) has the 

property of Baire for every open set CT" in the reals. 

Theorem fr.lOt There exists a subset of X which lacks the 

property of Baire, and a real-valued function on X which lacks the 

property of Baixe. 

Proof Since X is of second category and by Theorem 3*9 in 

Chapter 3 we have that X contains a set, say A which lacks the 

property of Baire. Let KA  be the characteristic function of 

A i.e. 0CA
m  1 for all x £ A,  %- 0 for a11 x ¥ A» Clearly H A 

^ lacks the property of Baire. 

Theorem fr-.ll (Dual to Theorem ^.10) i There exists a subset 

of X which is nonmeasurable, and a real-valued function on X 

which is nonmeasurable* 
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Proof Since X has positire Measure and by Theorem 3«9 in < 

Chapter 3 *e have that X contains a set, say A which is non- 

measurable. If A,, is the characteristic function of A, then 

clearly /^is a nonmeasurable function. 

The following theorem and its dual are proved for X » 

the real numbers in L I & _J  • 

Theorem *».12i A real-valued function f on X has the property 

of Baire if and only if there exists a set P of first category 

such that the restriction of f to X - P is continuous. 

Proof Let Zflt L^, • . • be a countable base for the topology 

of/7?(the reals), for example, the open intervals with rational 

endpoints. If f has the property of Baire, thetf^( ~U})  - G/2) P, , 

where G; is open and P/ is of first category. Put 

p-   HO; • 
Then P is of first category. The restriction g of f to X - P Is 

continuous, since 

q\ Tj>  ) - f -' ( Tl;) -P - (c/A P/ ) -P - c j -P 

is open relative to X - P for each /' , and therefore so is a\ XJ) 

for every open set T_J • 

Conversely, if the restriction g of f to the complement of 

some set P of first category is continuous, then for any open set 

L^; cf\ XJ)  - G - P for some open set G. Since 

g'%  U") c rX XJ  ) c tf\ U )C/P, 
we hare 

C-PC f "' (XI) <o GU?, 



Therefore       t"   ( "Cj ) - G ^ Q for some set Q<£ P. 

Thus f has the property of Baire. 

Reaark 4»13t Observe that in this theorea we didn't use 

any specific topological properties of X, i.e. this theorea holds 

for any topological space. 

Theorea fr.l**(Dual of Theorea *»tl2)i A real-valued function 

f on X is Measurable if and only if for «ach£ "> 0 there exists a 

set E with XL (E)-^ £ such that the restriction of f to X - E is 

continuous* 

Proof ,*Let L^» "L£» • • • be a countable base for the topology 

of/7? • If f is aeasurable, then for each /' there exists a closed 

set F» an open set G» such that 

F/Cf"'(tl;)cc; andA(G; -?()^jp 

II Since jx. is a regular aeasurej/ • 

Put E - C£^(G; - F; )• Thence (E)^^. If g denotes the 

restriction of f to X - E, then 

tf'( TJ;)  - f"'( XJf)  - E - G; - E. 

Hence cf\ Xj/)  is open relative to X - E, and therefore Cj is 

continuous. 

Conversely, if f has the stated property there is a sequence 

of sets | E/r with ^(E; )*-~J~  such that the restriction ff 

of f to X-Er is continuous. For any open set Xj there are open 

sets G(' such that 

t{X     (TJ  ) -G; -E- (i -1,2 ). 
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Putting B mf] £ •, we have 

f-'c't/) -« - £? (f' (L7 ) -E;) -.Off (XJ ), 
Consequently, 

f' ("CD -[t-'iXDrtEJufyfrf   -F,~)j!, 
All of these sets are measurable, slnce^(E) - 0, and therefore 

f is a Measurable function // E fl f " ( HJ)  is Measurable since 

X is a coaplete Measure space Jj  • 

Remark 4,15« The above theoreM holds if X is an arbitrary 

topological space with a coaplete regular Measure JJU such that 

JU~  is defined for all the open sets of X, 

Theorem *».!6t In X every set of second category is the union 

of c disjoint sets each which lacks the property of Baire. 

Proof If E is a set of second category, then by Theorem 2.7 

in Chapter 2 we see that E ■ C/^ where each E^ is ©f second 

category and the cardinality of A is c• Now each E^ contains a 

set which lacks the property of Baire jj by Theorem 3.9 in Chapter 

3 // • Hence E contains a family of disjoint subsets of cardinality 

c such that each member lacks the property of Baire, 

Define in the obvious way a partial ordering on all such 

families. Then it is easy to see that we can apply Zorn's Lemma 

to this collection to get a maximal element, i.e. a Maximal family 

of disjoint subsets of E of cardinality c each of which lacks the 

property of Baire. The complement of the union of this maximal 

family (with respect to E) is a set of first category jT otherwise 

the maximallty of the family would be contradicted 71 • 
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Since every first category set has the property of Baire/jA - k&$ 

for each A a first category setj/  and since the sets with the 

property of Baire form a  ^algebra we have that the disjoint 

union of any first category set with a set which lacks the property 

of Bairs will also lack the property of Baire. Hence E is the 

disjoint union of a family of sets each lacking the property of 

Baire and the cardinality of the family being c j/take an element 

from the maximal faaily of sets lacking the property of Baire and 

adjoin to it the complement of the union of this maximal faaily JJ      . 

Theorea U.l? as stated below is a generalization of a dis- 

cussion in l_ 10     I       . 

Theorem *»»17 (Dual of Theorem *».16)I In X every set of posi- 

tive outer measure is the union of c disjoint non-measurable sets. 

Proof In Theorem 3»10 of Chapter 3 w© showed that any set 

with positive outer measure contains a non-measurable set. And 

in Chapter 2, Theorem 2.8 we saw that any set of positive outer 

measure was the disjoint union of c sets each of positive outer 

measure. Therefore if E is a set of positive outer measure E "l/E^ 

where each E^ has positive outer measure and card A » C. Also 

each E^^ Aj- where A^- is non-measurable. Hence E contains c 

disjoint non-measurable subsets. By Zorn's lemma, this family is 

contained in a maximal disjoint class of non-measurable subsets 

of E. The complement of the union of such a family must have 

measure zero. By adjoining it to one of the members of the 

faaily we obtain a decomposition of E into c disjoint non-measurable 
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subsets. 

Corollary 4.18t X can ba decoaposed into c disjoint subsets 

each lacking the property of Balre, 

Proof follows directly froa Theorea 4,16. 

Corollary 4.l9i X can be decomposed into c disjoint non- 

aeasurable subsets. 

Proof follows directly froa Theorem 4.17. 

Definition 4.20 as well as Leaaa 4.21 and Leama 4.22 are 

found in £ 1 3 

Definition 4.201 Let X be any topological space and E <^ X, 

then E is said to be of the first category at a point p<£ X, 

if there exists a neighborhood G of p such that the set E /) G is 

of the first category. The set of points where B is not of the 

first category (the points where E is of the second category) will 

be denoted by D(E). 

Leaaa 4.21i If B and E are subsets of a topological space, 

thent 

i) 0(E - D(E)) - ft 

2) [~D(B) - (T) ^ pD(XWB)  - D(E) - D(E-B)7 

Proof The proofs are eleaentary. They can be found in 

r J pages 84-85. 

Leaaa 4.22i If X is any topological space and EC X, then 

E-  E/)/(E-D(E))/ U  /~B-(E-D(E))/ • 

jfl- Int(D(E))J U   TE/) Int(D(E))j 

is a deeoaposition of E into two disjoint parts such that the first 
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la of the first category and the second one is not of the first 

category at any of it* points. Also the second somber (in each 

equation) of the union is open relative to E* 

Proof Clearly this i» a disjoint decomposition of E such 

that the second part of the union is open relative to E II Since 

the interior of any set is open Jj  • Now by formula (i), the set 

E - D(E) is of the first categoryj hence by (2), 

D(E /l  DCs)) - D(E) 

and 

E n D(E) C D(E) - D(E f\ D(E))y 

which shows that the set E/") D(S) ia not of the first category at 

any of its points* 

On the other hand, the set S n (E-D(E)) is of the first cat- 

egory* as a union of two sets 

E/) D(E)/7 E-D(E) 

and 

[B-D(E)]/) jj^B^J 
'J 

the first one being nowhere dense as a subset of a nowhere dense 

set D(E)zO (X-D(K)) 

and the second one being of the first category aa a subset of the 

set E - D(S)« 

Since the set E/i E-D(E) is of the first category. It follows 

from (2) that 

D(E-(E-D(E)) - D(E) 

and we have   E-(E-D(E)) C  E-(E-D(E)) - E/7D(E)o D(E) - D[E-(E-D(E^] 
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which proves that the set E-(K-D(S)) is not of the first category 

at any of its points. 

The following theorem is a generalisation of a theorem 

found on page 112 in L I &~   _J     • 

Theoren fr.23i Every subset Q of I which is of second category 

contains a subset which is not the intersection of Q with a set 

having the property of Baire. 

Proof Suppose noti that is, suppose every subset of Q is 

the intersection of Q with a set having the property of Baire. 

How by Theorem 2.? in Chapter 2 we can decompose Q into c disjoint 

subsets, i.e. Q"^^c with each Q^ of second category. Now 

by the above lemma and since each Q^c *s °f second category, there 

exists for each oC e A, an 0^ open in X such that 0</) Q^cjt 0 

and O^/JQ^- is of second category at each of its points. Clearly 

we can pick these C^c 's to be basic open sets from a countable base 

for X f[_ since X is second countable// • Now since the Q^o 's are 

disjoint and uncountable, but the CUc'8 are countable there 

exists °Ci>^ A such that 0^/1 Q^ and O^/O Q^ are sets having 

the above property and % ffi  • Since Qy is a subset of Q, 

Q v =» Q/1 E where E has the property of Baire, How 0^ -E is 

of first category [/_ since Qu is of second category everywhere in 

Also   Q^-I/IQ, Q^ c Q and Q^/l Q^ - # all imply 

B/lQfl - $ and 
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But than 0^-   -K ^ 0^,0 0^ which is of second category.    Hence we 

have a contradiction I 

Therefor© there exists BCQ such that B /Q/iE for all B<=X 

haring the property of Baire. 

Recall that for any A £= X, the outer measure of A, denoted 

by M*(k) - in* [MS)! A c G and G is openj-. 

Ve will need the following lemmas in the proof of Theorem ^.26. 

Lemma 1+.24 is found in L ^ J • 

Lemma k,2bx    Let A be any set, and Et   ,.,., E^ a finite 

sequence of disjoint measurable sets*   Then 

>^*(A/7^E0   ) -jS^*(A/) E/  ), 
Proof   We prore the leaaa by induction on n.    It is clear for 

n - 1, and we assume it is true if we have n-i sets Ef    .    Since 

the E,'    are disjoint sets, we have 

kniQ^Pjn E^ -A/} Em 

and k/\[$ B J n  <-   l/ljjl'*^ 
Hence since E^   is measurable 

At-   / "—' 

^.♦(A •) E,„ ) + ^_ ><*(A /) E/ ) 

by our assumption. 

Lemma fr.25i Let r E{' y be a sequence of disjoint measurable 

sets and A any set. Then 

M.*(A/I['UEJJ)  -J2>~^*(A/> E; )„ 

Proof The set function * is subadditive on P(X), i.e. 

for every sequence of sets )A;4 JJ*  (,pA; )^*^M*(k't  ), 



Therefore 

Let n be any integer, then by the above lemma 

M*(k/)[,CJEjj)  - JJ>(A/) E,)^> *•(*/>*/ ), 
Since n is arbitrary we have 

M*(*/)[.U &[]   )  mJ?M*(k/)    E;). 

The following theorems are generalization of a theorem found oa 

page 110 in £~ I ^ 0 • 

Theorem 4.26 (Dual of Theorem 4.23)\    Every subset Q of X 

of positive outer measure contains a subset which is not measurable 

relative to Q, i.e. which is not the intersection of Q and a 

measurable set. 

Proof Suppose not, i.e. suppose every subset of Q is the 

intersection of a measurable set with Q. Kowya*( r x y ) "0 

for each x £ Q since ^vanishes at points and all points are 

measurable in X, Also M.*^c^QT Q*00 E o Q. Let  r'E^vbe any 

sequence of subsets of Q, then by assumption E\    m Q n K^   where 

A^ is measurable for all n. 

-2^*(Q /) A^ )  ^~by the above lemma"]] 

therefore^.* meets the hypothesis of Theorem 3»H in Chapter 3 

implying jj£3 • 0 which is a contradiction! Therefore there exists 

B0 Cl Q, such that E^, j Q /) A for all measurable sets A in X. 

Theorem 4.27> For any second category subset Q of X, there 

exist8 a real valued function defined on it which does not admit 
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an extension to a real-valued function on X having the property 

of Baire. 

Proof By Theorea 4.23, there exists MCQ such that H /Q/OA 

where A is any subset of X having the property of Baire. Define 

<P on Q by f{x)  - 1 for all x 6 K and <f(x)  -0 for all x^Q - M, 

Suppose <^can be extended to X such that the extension has the 

property of Baire. Let the extension of <^be denoted by f, then 

f ""' -f (0,o°)r -Jx/f(x)> Or  Is a set having the property 

of Baire. But 

f~' £(0too )} iO  Q - M 

which is a contradiction. Hence there exists a real-valued func- 

tion defined on Q which does not admit an extension to a real- 

valued function on X having the property of Baire. 

Theorem 4.23(Dual of Theorea 4.27)t    For any subset Q of X 

of positive outer aeasure, there exists a real-valued function 

defined on it and admitting no extension to a measurable function 

on X. 

Proof By Theorea 4.26 there exists N c- Q such that N /Q/)A 

for every »easurable subset of X. Let ^ be a real-valued function 

defined on Q by <fr (x) - 1 for all x e N and ^<x) - 0 for all 

x e Q - N. Suppose ip  can be extended to X such that the exten- 

sion is aeasurable. Let the extension of (P  be denoted by g, 

then 

g'7f(0,oO )^- £x/g(x):>o} 

is a neasurable subset of X. But g~' ) (0,0° ) V /O Q - N which is 
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Let N be a set of positive measure,  i.e.      JJL (N) "£>0t and let 

-i 

I-I 

E - f " (N). Then E has the property of Baire. Let x , x, , ••• 

be a countable dense subset of E, II  exists since X is second 

countable and any second countable space is hereditarily separable 

and let 0/ be an open set containing x« such that M-(t(0{ )/)k')^~^—/ 

Put G -   ,Cy C}. Then G is an open set and E c. G. Hence 

E <Z-    RG n   E) U (G - G)7 

Therefore 

K - f(E) d    f(G/) E) L/ f(G -G) ^,p/f(0;)/l NJ L/ f(G - G), 

Since G - G is nowhere dense, f(G -G) is a nullset, and so 

1-1 
But 6 T^(N) ^ ^£  is a contradiction. Hence no such function 

can exist* 

In the following theorem let X be as before but now assume 

that the measure on X is (^""-finite. 

Theorem 4.311 Let E."  be a double sequence of measurable 
J 

set8 such that E/r O    E<< t for all positive integers i and 

j, and such that /I' E/,'   is a nullset for each i. Then there 

exists a sequence of mappings /y^i) of the set of positive integers 

into itself such that   ^^fEj*/n />) lB * nullset. Let 

E^V   be a sequence of measurable sets each of finite mea- 

sure such that E^+p E for all K  and   ^Eft" * // P©8*iDle 

•ince^ is (T"-flnite/)  . For each i and k there is a positive 

/ 
integer n^Ci) such that^ (E/^,,.•) /n E^  )^/Q7~ • Hence 

{• 
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a contradiction. Hence there exists a real-valued function defined 

on Q and admitting no extension to a measurable function on X* 

Theorem 4.29»  i) If every subset of a set E CX is measur- 

able, then E is a nullset.  ii) If every subset of E has the 

property of Baire, then E is of first category. 

Proof follows directly from Theorem 3*9. 

In this section we have shown eight examples where the 

property of Baire has played a role analogous to measurability. 

In Chapter 1 we proved a duality theorem between the sets of first 

category and the nullsets of X. After seeing the dual results 

stated in this section between the property of Baire and measurability 

it is natural to aski can the principle of duality be extended 

to include measurability and the property of Baire as dual notions? 

That is, is there a one-to-one mapping f of X onto itself such 

that f(E) is measurable if and only if E has the property of Baire, 

and such that f(E) is a nullset if and only if E is of first 

category? (This 6econd property is a consequence of the first, 

and by Theorem 4.29 and its converse.) It was shown by Szpibrajn 

£ /£>~J     that such a sapping is impossible for IK  • A proof 

appears in (__ 10J  • We extend Oxtoby's argument to provei 

Theorem 4.301 There does not exist a one-to-one mapping f 

of X onto itself such that f(E) is measurable if and only if E has 

the property of Baire. 

Proof Suppose f is a one-to-one mapping of X onto itself such 

that f(E) is measurable if and only if E has the property of Baire. 
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Pot E - /)KU/ *,'/yi (f\ • No* let A "bo any 

closed subset of S such that M(A>) ^- °° • Then there exists K such 

that ACE^ for all n^H. Then 

(E/M) C Ui *!*/*K(0   ^      B* • 

Hence^(E/0A) ^ J^- for all sufficiently large k. Thus E/}A is 

a nullset for every A a closed subset of E with finite measure. 

Therefore, by the regularity of M- we have^(E) - 0. 

Theorem 4.32i It is not in general true thati If Ef"    is 

a double sequence of sets having the property of Baire such that 

E;, ' 3    E; «   for all positive integers i and j, and 6uch that 

i/"), Rf:     is of first category for each i, then there exists a 

sequence of mappings n^(i) of the set of positive integers into 

itself such that /l^UfRf •/ft/i)    is of first category. That i6, 

the dual of Theorem ^,31 i* false. 

Proof Let r,' be an enumeration of all rational numbers, 

and let       E/J - (r; - '/j  , r/ + Vj  ). 

This double sequence satisfies the hypothesis of the proposition 

in question* For any mapping n(i) of the positive integers into 

positive integers, the set C/'E;,n(i) is a dense open set. For 

any sequence of such mappings n^(i), the set  /I^Uf ^fi/tf^/f) 

is residual, i.e. its complement is of first category. But this 

is contrary to the stated conclusion. 

Remark b,y$%    Although we have shown that the extended prin- 

ciple of duality is not valid as a general principle, it has a c 
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certain heuristic value. For exaaple, many properties of aeaaure 

depend only on properties of the class of measurable sets that are 

shared by the class of sets having the property of Baire. In 

such cases the principle xaay suggest (even though it does not prove) 

a valid dual* One then seeks an abstract theorem that includes 

both concepts* 
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tJpp»v<"r-i    <?-> > ' 

Tn tv,^e, cha,,~'>' er we vi"' "J oya"*i°e *.o so"*o p^+ gn4, what d'^l^tv 

exists b^t'-'een nat°"'or^' a^d *~o3svre in T^rod^^t ^r^.oo? rr>o r-t?"r*^ 

wi^h we sball "eed several results frc"'. Real Analvsis• ^he fol- 

lowing* three 1 e-," *■" s , s.? well as a development o^ "">rodi?ct reasure 

snaces,   are found   in   Charter Twelve  of  I     J\j       /. 

Te~"~:~.  5»^ *     L^t  - ^ any set.    I-St/£, he  ?- "easure on an 

?.lp"sbr5 C^T^f  subsets  of* X.   A/   ~^e  outer ~eaci!re  'induced "bv>££ 

?."d  3 ar.y set.    Then  for6>0,   there   is  a  set     A 6 (%.* 'those  sets 

which  are  countable vr.io.is  of sets   of QU)  with.  ~.CK ar.d^^A  =M £*"&. 

There is  ?lso a setc>£671-       ^o-^c  which are countable intersections 

of sets   ii ^^ )  wit;-  ?C3     and   x^E =^3. 

Proof    See £_ / 0/ /, 

D?fi^iti"i c«2;  let X be a topolor;ical space.  A collection 

of nonerrty OT>er. sets is called a rseudobase for X if every non- 

empty oren set includes a ~er.ber of &- , 

Fov  the rest of this chafer X and Y will "be torolop-ical 

spaces with countable r-seudobas»s and co^flete reasures z<_ and \J 

j>Atr-^<if>+ iyo]v on a^bitrarv ^-air "bras  ,  on X and Y respectively. 

Also (XxvfJ£? /\. ) w*ll be the co-plete product Treasure space of 

{?,<ZjM>   and ;Y,^y) as defined in /_   / 3     "7. 
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and 

in'-'rH"^-   c # T .     ~hr?  ^o1 ^ rt?t ! T"   of  ^"H   r^s   Ax^  such  tb^t 

* <5    ^n-o^e^    b" uf    a »"^    o5^W    ?»,.<"     of   thic    x*'",'*""~    _ c    C?l"!ed    T.   ""^^Surabl 6 

rect ° ^ ^ n • 

i5<r.mr>>'V   ^.k-j     I4-   ^ s   shown   in (,'   Ji,'""1'fl -^   '•  P°—.ia!! cebra 

which,   renerates  the (/**a 1 ?ebr^ 2n in.  *h°   rrodv^t  —easure  Pi?ace 

I.e—*■■*.  Sft     Let E be  a set  in (ftp? with ^'r?)^ <*=> .    -hen the 

function £7 defined  by <?(x)   = VfVj    1?   a -easurahle  function  of x 

Pr^of    See f"       /3 J. 

Now we will rirove four dual results "between -easure and Baire 

category on product spaces. 

The following theore- is taken fro- /  ' C?     / • 

T'"eo--e" 5.-:  let ^ he a subset of X x Y such that 

Then V^ 3x) = ^ excert on a set of measure zeTo» 

"Proof ?y Len-.a 5*1 t>ere is ?. set F in vX^n such that 

?. C ? and A(?) = °- 

Tt follows fro- Te--a f»5 that  ^(^x) = 0 except on a set of 

measure ^e^o,  5u+ rY. C ? g.nd so y(Z^\   =  0 except or. a set of 

measure 'zevo  since / is co—rlete. 

The  fol"*pwin<f theore-  vis  -proved by Kuratowski  and Ulan 

ir^   1?3? [   f    7' 

-49- 



' ' ' ■■ • 

Xrv    wM C^    1s    0^    ^irs*    C't«f"'r>rv,    *-WO^    Ey       <_C;    ?    ?»'    o-'*   flrsh    pn*rrprv 

J n v "f,/"*",~ "11 x exce-nt a ?*>*■ c" ■f>i'**?i-. o'j+c,~orv In X,  Tf ? 1e a 

row'-erp dense subset of XxY, + her rv i^ ?- '""'••r^e're denc;n SMbset of 

v fnv1 r>il x except a. set of firs* caxe~orv In X. 

■c^roo"^ ""he two staterents are esser.t i 3."'l*r p^u^ va^en4- . POT 

if? = U7i» then 

Hence the first statement follows from the second.  Tf P  is 

nowhere dense, so is i, and Ey Is nowhere ''ense whenever (• y ^-s 

of first category.  Hence the second statement follows from the 

first.  It is therefore sufficient to prove +he second statement 

for any nowhere dense closed set E. 

Let 7 X^X he a countable pseudobase for Y, and put 

G = (XxY)-?. 

Then G is a dense over,  subset of XxY, For each -positive integer 

n, let Gn be the projection of 

G/V.Xx Vm)  in X, 

that is, 

G„  - fr-f     (x,y) er, for some y <£ l^J* . 

let  x €- Gn   3rd y^-l/he  <?u^h that   (x,y) e- G.     Si^ce G  is   open,  there 

exists  open  se+s {J and /1r.  )( and Y respectively such that  x e LV, 

y«i/C   ^   ,   and    UxVc & .     It   follows  tha+ £/C ^.     -ence 

G     ^ *"   an  n^en  subset  of Y.     F°r 'iv n^p-BTitv  cnen  e°t C'j •   ^-^e  set 

G /O ^ C// tyL)   ^ ^   rn"-e"^y(   s^cp c   lo  ^PnPP  \r   XYY.     uPnre <"-„ 
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■^0***    ftT»'«    »■< ^^^c;-^^t'o^AT-r       *■ Wo    r^4" /\ n *•     * S    **►■*»    r*r*~>-^ "1 r» r-r* r> 4-     ^f*    ^j    co*- 

^a^wc    «n1n*R    0X'     Vft for   fi,,r,vV    "; .        HennP    GY    i °    p-    denS°    Or-on.    c;>;}-N<r <r>-f 

of Y and therefore F-~ = V-Gy. is nowhere ^PP00, This shows + hat 

for all x excent a set of first category, Fx is nowhere ''pp.se, 

Theorem 5»^ °-""-~ Le-.ra 5«1<? r>-— fn".nd in [_        /.J J  • 

T'ocore"1 C.Q:  let F be a measurable subset of Xxv such +>=t 

/((^) is finite, "hop. except on a set of -r.e = sure ?ero the set FY 

is a measurable subse4- o* v, 

Proof ?y Lemma 5«1 there is a set F ir. IffL^   such that 

EC? and ^(F) = /t(F) „ 

Let G = F-F, Since F aid F are measurable, so is 0, and 

Since ^(F) is finite and equal to /[(?),  we have ^(G) = 0. 

Thus by Theorem. 5,6  we have yf'Zy) = 0 excert on a set of measure 

zero. 

The following ~hree theorems on Baire category are from l_/&  I  • 

Theore~ 5»Q> ^lal r,-^  "v-o.^rp-i <t^>.  j-f XP ^s a p^^p^ 0f 

XxY v't^ the ■^'ro*"e>*t"r of -^ire  ""hen FY has the -r,rorertv of Paire 

fo"** a"'"^ x except n c-o-^ @^ -PIT*C-I-. r^+prp^ -in y 

P~onf Le~ F = G^P, v'"e'**e G '? open a">d ? is of first- 

cat e^orv, Th°n 

2x - Gx^ ?x» fo- ?1! x. 

7v<»t-v section of a** oren ~°t is o-^erii hen^e FY has the Tor»erty 
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T^.-o^'1-'   ", i r> •     4  ■n-r«r.^-;^4'   s°t   Ax**   ^ °"   ^f ~i ° °'->; re  '.fl7*o  1n   Xy,,r 

■1-f*   a.'-.H    O" 1 V    1.T*    "?4"     -I °aP+,     Hy""?    Of   ''"h0    Se+S     A,    Or   P    i?    Of*   ~eaSlir'"'    7,PTr>, 

p^>of T-P J\'\x?)  = C =/<'0 * ^''-\ *her! either 

AI/O s 0 o~ V {"%}  -  °. 

''"he converse is trivi "1, 

of first category 1". XxY if and only i4" at least one of the sets 

A or ? is of *""irst category. 

Proof If C- "s a dense or>en subset of Xf then GxY is a. 

dense o^en subset of Xxv»  Hs"ce Ax3 is nowhere dencr> ^n "^x"' 

y^onpiro-y   £    * c;    PQ-^V\Q-»~£S    ^oico    ^n    X»        Since 

(C/Ai)   x ^  =  C/(A*   x  r), 

it  follows that Ax?  is  of first  category whenever A is  of first. 

cate"*orv,     SiT"il"'v* re3si~!ni.nf an^lies  to "B» 

Conversely, i^ AxB is of first category and A is not, then 

"by Theore-i f»~ th°re exists ? -point x in A such that (Ax3)x is 

of first cat®~ory• qince 

(Ax7>-)v = B for all x in A, 

it follows tha-, ? is of first catep-orv, 

'vha follow^"1-  ]o-!"i3  is  ne^ed to T>rove rnheore"1.   ^,n, 

T«=>-i"--3   ?ti?;     Le4-   F" "^e  a reas'ira'ble  set   of f^^^te  measure  ^n 

XxY.    ^hen  +>e  *w~Mr>n r define-*  "by r(x)  ~ y( £\, )   is  a Teasura"->le 

■fu^cti.on dp^^oi  RXC
3
^   on  3,  ?<?t of* Tp^.^ur*?  7PTO and 
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Cgd< = A(f) 

^Kr>r)~o-      C Jli T-^    T     -• c;     =     r^a^ ^-iv^V,! o     ri^g'-,     Q-T     YVV a ,- ^      ^ 

"V    ^S    Of   reaSTire    'erO   ?0T   "11    X   extent    a    Set    O^*   "ossilfo    7°rO, 

Froo*"    define "■'*)   = Y (~x^   for =11  r. &T.     Then,  bv 

T gmpij     ^ . 1 ?    F"'X       IS    a    rooQii-vg'^g    -P * • n r> ^ ^ o •".    defined    6XC6T'''     0n.    a 

set  of ^eas'-re  zero a-.'! /s _      _. J,           ">/£TJ 

/^ since g(x)  = 0 except  on  a  pet   of neasvre  zero //  . 

The following' theorsn  is   a partial  converse  of Theorer.   5'^t 

Theor=m   ^.1^-   '/TV>'a!   of TheoroT?   -.l'^:     If 3 is  a s^h-set   of 

XxY that  has the ■^ror>ertv of "^aire,   and  if r]„ is  of first  cate°"orv 

for all x exoe-nx   a  set  of first  category,  then S i??  of first cat- 

,r m 

Proof    SuTTVDse the ccntrar-^,     ""hen       3D = 0 & P,   where "° is 

of first  cater'orv a^d  0  is  an  o^en   set  o-^" second category.    There 

exist   ore^  se+>=   C/ and   V snch  that     U? VC ^     and    U^V    i^ 

of second cate^orv  // this  follows  "^rc-1 "h^o'T"  ^.l"' //   •     ^v 

fv^ppr-oTTi   ^,11     ho4-h v/ ="">d \/ore  of second   c?t,,?ro'r,'!     ^or all   x  i*" 

L/ ,     "x-^   ]/- ?v«     -y "^eoron  5.°,  Px is  o^ first  cat^ory' for 

nll  x except   a  set   of first   oate^orv.    "^v,p>-o-Po-ne E     is  cf second 

f»a+.f»£rorv  fn-** all   v  i" L/ OY»OT<+   a   set   of  "^irst   category,     "^is 

ijTi^Ties that ^v  is  of second  category tv->- a^l x ip. a set   of second 

ca+e^ory,  contrary to hypothesis, 
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CHAPTER 6 

CATEGORY MEASURE SPACES 

A category measure space is a regular Hausdoiff Topological 

space with a finite measure ^6 defined on the cT^-algebra p     of 

sets having the property of Balre, and such that jX{S)  - 0 if 

and only if E is of first category. In such a space the extended 

principle of duality is not only valid, it ia a tautology (See 

Chapter h of this paper for a discussion of the extended principle 

of duality.) 

In this chapter, after some general results about category 

measure spaces I will consider three ways of generating category 

measure spaces. First I shall show how to define a topology 

(the density topology) on certain metric spaces in terms of a 

measure, to make the measure a category measure* Secondly I will 

discuss category measure spaces obtained, from Boolean measure spaces, 

that is, spaces obtained from finite measure algebras by means of 

the Stone representation theorem. The third class of category 

measures is obtained by means of the Gelfaud-Naimark represen- 

tation theorem on the structure space of /_ of a finite measure 

space. The later two provide examples of compact Hausdoiff 

spaces that admit a category measure. 
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A* General Considerations 

I vill begin by stating several needed definitions and look 

at some results stating when sets of first category are necess- 

arily nowhere dense. The following material is taken from l_l1J. 

Definition 6,1i A topological space is called category 

Measurable if it admits a category measure not identically zero. 

Definition 6.2i A topological space will be called regularly 

category measurable if it admits a regular category measure. 

Definition 6.31 A topological space is quasi-regular if for 

each non-empty open set L/ there exists a non-empty open set ~S/ 

such that "Vrc- Zs»    (Here V stands for the closure of ~X/~,) 

Theorem 6,4i Let I be a category measurable space and let /J 

be the union of all open sets of first category in X. The 

following assertions concerning I are equivalents 

1) some category measure in X is regular> 

2) every category measure in X is regulari 

3) X -^JM.8 a quasi-regular subspace of X, 

In particular, a category measurable Baixe space is regularly 

category measurable if and only If it is quasi-regular. 

Proof Suppose that^ is a regular category measure in X, 

Let T7"be any non-empty open set contained in X -/J . Then XJ" 

is of second category andyU ("C7)>-0. Let F • X - TJ'*    Then 

M-(?) ^yu£x)»    Sincey^. is regular there ^exists an open set t/i7" 

such that F<= W and>^( I/tO-^^00» Pat "^ X — "W% Then 

T^is an open set, V«=X -W*C ~L7§ 

-55- * 



and ^(V) -^.(X) -^(X47) -^(I)-^L(T^O^O. 

Hence T^is a non-empty open subset of £7" and J/~c HJ",    Thus 

1) iaplies 3). 

Suppose that    Y - X -^J7" is a quasi-regular subspace of X* 

Let j^L. be any category measure In X, and let F be any closed sub- 

set of X.    If F does not contain Y let  ^ be a maximal disjoint 

family of non-empty open sets G such that ~G <^ T - F.    The family 

^ must be countable,  say jF "     7 Of r.    The aaxiBality ofy G* r 

and the quasi-regularity of Y imply that L/C'    is dense in Y - F. 
i-i 

Hence , L/G/ differs from Y - F by a nowhere dense set, and 

^(X-F) - ^(Y-P) -;> ^(GO • 
7=/ 

For any£^=-0 there is a positive integer n such that     (G 

,2f /^(G/) > ^L(X-F) - e. 

Hence G ■ /f~) (X - G^)    is an open set containing F and, 

Z^(G) -^(X) -^{fZfGf )4-M.(j) +^(X-F) -J?MZf)Aci*) + <, 
(to the other hand, if F contains Yt then X itself is an open set 

containing F, and ^(x) "/<(F).    Thus 3) iaplies 2).    Obviously 

2) iaplies 1),' 

Theorea 6.5t    If X is a quasi-regular category aeasurable 

Baire space then every set of first category in X is nowhere dense. 

Proof   By Theorea 6.4 there exists a regular category measure 

JA. in X.    Let y K» C- be any sequence of nowhere dense sets, with 

P - C/N;'    •    Then^£(H7    ) - 0, and for any6"-^*"0 there exist* a 

sequence    $ Gf y of open sets such that N* ^ G,*    and j/(G; )^e ^ 

for each i.    Let G - UG*      .   Then G is open and^tf (G) -^(G)^6. 
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Since Pd G It fellows that ^(P*)^^ for every £-^0. Hence 

4/.(f)  - 0, jU (P ^~  ) - 0, and therefore P    is an open 

set of first category. Because X is a Baire space it follows that 

P~ "~  is empty, that is, P is nowhere dense. 

Theorem 6.61 The following assertions concerning a category 

measurable Baire space X are equivalentt 

1) every set of first category in X is nowhere densef 

2) sit(E) m^u(E  ) - M(E ~~J  for every category measure JLC 

and for every set E having the property of Bairef 

3) ^(E) mM<$)    (°TME) mM&'~')    ) for some category 

measure^/ and for every set S having the property of Baire. 

Proof Assume 1) Then any set E having the property of Baire 

is of the form GZi N, where G is open and N is nowhere dense. 

Hence    G - H cz fi /-£ Bcgc G U "N   • 

Since .X,(C -5" ) • ^(G~ u  K ) for any category measure/^ it 

follows that 1) implies 2). Obviously 2) implies 3). 

Assume 3)0 Slnce^(E) »^(E ) if and only if^E7) -^(E*'), 

either version of 3) implies that//(E) "^{E  ) "^(E^ for every 

set E having the property of Baire. In particular, if P is any 

set of first category theny/(p) »^#(P~ ) mM&I  " °» Hence 

P ~ is an open set of first category, therefore empty, and P is 

nowhere dense. Thus 3) implies 1). 

The following examples show that in a category measurable 

Baire space that la not quasi-regular it may or may not be true 

that every set of first category is nowhere dense. 
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Bxanple 6|7i Let X te u uncountable set. In the first 

example let X have the cofinite topology (i.e. the class of eloeed 

sets consists of X and Its finite subsets)* In the second ex- 

ample let X hare the cocountable topology (i.e. the class of eloeed 

sets consists of X and its countable subsets). Clearly both of 

these topologies are not quasi-regular since the only closed set 

a non-empty open set is contained in is X. Also in either case X 

is a T -space, but not Hausdoiff, and the sets of first category 

are the countable sets, the sets having the property of Baire are 

the countable sets and their complements* and every non-empty 

open set is of second category* Hence in eitherscase X is a Baire 

space* If ve definej/(E)  - 0 or one according as B or X - 8 is 

countable* Then  is a category measure in either space* but not 

regular* la the first example the nowhere dense sets constitute 

a proper subclass of the class of sets of first category* In the 

second example every set of first category is nowhere dense* 

The following discussion results in a necessary and sufficient 

condition for a metric space to be a category measurable space* 

First observe that it follows from theorem  that in any 

metricable category measurable Baire space every set of first ca- 

tegory is nowhere dense* 

Theorem 6,8i In a metric space X every set of first category 

is nowhere dense if and only if the set D of isolated points of X 

is dense in X* 

Proof Suppose the open set X - D is non-empty* For each 
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positive integer /r. let E  be a maximal subset of X - D with the 

property that the distance between any two points of E^ is at 

least equal to 77 • Then E  is closed. Since X - D contains no 

isolated points, each of the sets E^ is nowhere dense. Hence the 

set P "UE^    is of first category in X. The aaxiaality of the 

sets E^. implies that P is dense in X - D. Hence X - D is a non- 

empty open set contained in P, and P is not nowhere dense, Since 

this contradicts that each first category set is nowhere dense it 

follows that if every set of first category is nowhere dense then 

the set D of isolated points of X is dense in X» (in case D is 

empty, the sane reasoning shows that a metric space contains a 

dense set of first category if and only if the space is dense in 

itself.) 

Conversely assume that D is dense in X. Let F -,L/N« where 

F is a set of first category and each N/ is nowhere dense. To 

show F nowhere dense is equivalent to showing that F does not 

meet D. But each N; does not meet D, therefore, each N;' does 

not meet D. Hence F does not meet D. Therefore F is nowhere dense. 

The following theorem follows easily from Theorem 6.5 and 

Theorem 6.8. 

Theorem 6»9i A metritable space is a category measurable 

Baire space if and only if the set D of isolated points of X is 

a countable dense subset of X. In this case the category measures 

in X are those and only those measures that are positive for each 

point of D and vanishes on X - D. 
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Corollary 6,10t    Let X be the space defined in Chapter lf 

i.e., X is a second countable Baire metric space, and/twill be 

the completion of a regular measure on the Borel 6ets of X such 

that points have measure zero and^ (G) > 0 for all nonenpty open 

sets G in X.    Then X is not a category measurable Baire space* 

B»    Example t    Density Topology 

For our discussion of a density topology we will take X to 

be a second countable} Baire metric space and u a non-atomic (i.e. 

points have measure zero) completion of a regular measure on the 

Borel sets such that   ^(G)>0 for each nonempty open set G in X* 

¥e will also impose two additional conditions on X,    Let 

H(x,r) - fp/d(x,y)^ xj    and 

D(x,r) -£>/ d(x,y)^r3- 

where^/ is the distance function for X.    Then we will assume i 

i)    for all 6>0$ there exists />£>.such that ^(D(xff))^6 

for all x £ X, 

ii)    there exists K, a positive real number, such that 

^D(x,3n))^Kya(D(x,n))    for all n, and for all x «=X. 

q        Definition 6,111    A measurable set E ^X Is said to have 

dewltr d at i If u*fe/)l>fa'tj} 

exists and is equal to d.    He will denote the set of points of X 

at which E has density 1 by J^(E). 

Remark 6,12t    Observe that the density (if it exists) of any 

measurable set at any_point is a real number between tero and one* 
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No* we will prove a generalization of the Yitali covering 

theorem* My proof will make use of the techniques found on page 

109 of/" 21   J   . 
Theorem 6.13 (Generalized Vitali Covering Theorem)t Let ACX, 

and 5 O^T be a family of closed cells covering A in the sense of 

Vitali, i.e., for every x <= A, x is contained in a D^ of arbitrarily 

small measure* Then there exists a sequence 3D^T  of disjoint 

fD4' closed cells of i D ,-Vvith 

Proof Observe that^ is ^"-finite since X is Lindelof  X 

is second countable  and by assumption (i) above. Therefore we 

■ay assume that A and all D^ are contained in a set of finite 

measure* Also we may take this set of finite measure to be a 

closed cell* therefore we may assume the sup r    r/ D^ (x,r) ^-/D,--} J^. c*3# 

Let D/ be arbitrary and assume we have picked £).,*••• IL>  • If 

A C  D;{j   • • • L/D^ we are done. Otherwise there is a point 

Of A not in this union, and since f D^is a Vitali covering of A, 

there is a member of X^E^Vwhich is disjoint from the union. 

Define   d^ - supf M^Lc^J *V   is disjoint from ,(/D'J • 

Now choose D^ ; {x/y)y/  , r^^/ ) to be any D^ disjoint from 

, U D.' and such that 

and if Q^ (y,s) is any other member of ^JV dis joint from UTij 

with ^ui$*c  (Xts) )■£&# • then r^s. We shall ahow that 

Jl*(k - ,0 D; ) - 0. If D^ - D^'Cx^ , r^ ), then define 
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^  -<  <Vl* *&,)• 
Hence by assumption (ii) there exists a positive number L such 

that MS$M ) ^= L^(D^i )    for a11 n»    Since the D* 's are disjoint 

and contained in a set of finite measure we have ^>" ^(D')-^0^ 

hence Jg   ^(Dj)-£ <^. 

Now if     ^*(A - c£?Dj)>0, then for some integer V 

It follows that there is as x €A -   >C7 D;  , but not in      r/D' • 

Since    x <^*.L/D/    the Vitali corering property implies that there 

I^r V-   with   x^D and   D /")( «CJD/ )    - J*. 

Now suppose D were disjoint froa D; L/  .  .  . U D^ •    Then d*/3.^1*)* 

and therefore jM($/h+l )^ i>^(D)«   Thus if D were disjoint froa 

all the D„, we would have 

for all n   /J~M.i^)^^ since open sets have positive measure  // . 

and soJ^^/(Dj ) - °^   , a contradiction.    Thus D is disjoint 

from     (JJ D.   , but is not disjoint from   XJ D,' •    Let^u. be the 

first index with   D/jD^   /j/t    Of course/n^^V •    By our choice 

of D^ ,   M^   )^ H*v-/      •    *** D^V ? for*l " *• 2»   •••• 
fX\   -1, so d^.     -^^(D)J therefore the radius of D^the radius 

of D^   •    But by the definition of   fl)flT and   ^D^Vit follows that 

IL 7 D    and hence x € D..    •    Since/ti-^j/  and we had assumed that 

x&(JV;    we have a contradiction• 
'ft 

The following theorems are generalisations of theorems in L?^_J • 
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Theorem 6,Ik  (Icbesqne Density Theorem)! For any measurable 

set E a x, 

M(* A f  (E) ) - 0 

Proof It is sufficient to show that E - f  (E) is a nullset, 

since 

j*(E) -EC  E' ?(E') 

and E is measurable, Since/^ is ^"-finite ve say assume that 

^U(E)<£. °°,    Furthermore, 

Hence it is sufficient to whom that A^ is a nullset for every 

positive integer/T5# Putting A • A^ ve shall obtain a contradiction 

from the supposition that ^^*(A)r> 0. (Here jx*  stands for the 

outer measure generated by^ as defined in Chapter 2), 

If yU*(k)^ 0,  there exists an open set G of finite measure 

containing A such that^^G)^- fZlT*    *** C. deaote the class of 

all closed cells D(x,r) such that D(x,r) C  G, and 

, ^^E/)D(x,r)3 ^   (l-;£)^£D(x,r)J, 

Observe that (i) c includes closed cells of arbitrarily Bmall 

measure about each point of A, and (ii) for any disjoint sequence 

7 5|(X/M» r/n ^ V oi Bembor8 of C » *e have 

Property (li) follows from the fact that 

^ {H)2M{*4^, r/H)3-ir(Wu(o)4A»U). 
But property (ii) contradicts Theorem 6.13. 



Lot us write A-vB when ^(A^B) - 0,    This is an equivalence 

relation in the class^y   of measurable gets in X.    The following 

theorems states that the napping 0 xS~*o   "^ ^* regarded as a 

function that selects one member from each equivalence class* 

Moreover,  it does so in such a way that the selected 6ets con- 

stitute a class that includes the empty set, the whole space, and 

is closed under intersection* 

Theorem 6,15t For any measurable set A, let 0(A) denote the 

set of points of X where A has density 1* Then 0 has the follow- 

ing properties where A^B means that A^B U t nmllseti 

i)    0(A) ^ A, 

2) A^-B implies 0(A) - 0(B), 

3) 0(0) - 0 and 0(1) - X, 

k)    0(A/1B) -0(A)^ 0(B), 

5)    ACB implies 0(A)C 0(B). 

Proof   The first assertion is just Theorem 6*14*   The 

second and third are immediate consequences of the definition of 

0*   To prove 4), note that for any closed cell D we have 

D - (A/)B) - (D - A)(7(D - B), 

Hence ^a(D) ->C(D/)A^B) ^A(D) ^(D/IA) +X(D) ->«(D/1B). 

Therefore        ^^ 

"to)      ■  ^) ' - ' - ~[[7D)       ' 
Taking D - D(x,h) and letting h-> 0 it follows that 0(A)/) 0(8 K0( A/IB). 

The opposite inclusion is obvious. Property 5) is a consequence of 

*). 
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Definition 6,161    Let vl be the class of /t-nullsets In X and 

letj   be the   cr"-algebra of measurable 6etB in X, and for every 

E^J    let 0((E) be the set of points of X at vhlch E has density 1, 

then xe define. 

Theorea 6.1?t CT is a topology in X* 

Proof    Let ^denote the nullset.    Since &£/l property 3) of 

Theorea 6.15 implies that X - #{X)- # and Sm ?((9 )- &   both be- 

long to ^r«    By 4) in Theorem 6.5 we have 

/^(A,)-»]]/) ^(Aa)-HjJ * f ^A,* A^J - £, U KI| ^ 
Hence jfis closed under finite intersections.    To show that   Tis 

closed under arbitrary union, let 

be any subfaaily of ^T .    Let £> denote the least upper bound of 

the measures of finite unions of members of ^p,  and choose a se- 

quence   )c^/r)\ such that yU.(U A^  ) - 6    •    (Noteii>  may be 

equal too©),    put A - U A^ •    Then A ^J* and the definition of b 

implies that A^ - keTl for everyocef1 •    Since K^'ik^-k) C A, 

it follows from 2) and 5) of Theorem 6.15 that 

0(A^) <Z 0(A)    for every oc   . 

Putting N0    -    Ut [j^c^UiKc^ -4(Kz^)\ . *e have X* % 

and A^C^/?(A^~NoC^ UpCV)-1^] C ^A>* 
The extremes differ by a nullset,  and therefore 

for some Ne-/t  , by the completeness of^/.* 
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Definition 6.18t The topology ^ will be called the density 

topology for X. We vill now look at some of ltc properties* 

Theoren 6»19« A set N C X is nowhere dense relative to 

if and only if Nt/? • Every nowhere dense set is closed. 

Proof If N<??7 , then X-N - 0(X)-N e^t  hence each member of 

OZ  la closed. If X£^ and 0(A,) - N, c If for some kfS*  and 

N,e'ft   , then 0(A, ) £ # and so 0(A,) - 0 by 2) and 3) in Theorem 

6.15. Hence 0(A^)-N - 0, and therefore K is nowhere dense. 

Conversely, if F is closed and nowhere dense, then X-P ■ 0(A)-N 

for some k^-^  ani "fe'/f , hence F belongs to^r • Since 

ni/(F) - /7(F) -FJ*= £T, 
the nowhere denseness of F implies that 0(F) C0(F) -F. Hence 

0(F) - 0, by 1), 2), and 3) of Theorem 6.15. Therefore F -^-0, 

that is ?<s'9l • Thus, // is identical with the class of closed 

nowhere dense sets. Since every nowhere dense set is contained 

in a closed nowhere dense set, and every subset of a member of 

9Z "belongs to /I , it follows that every nowhere dense set is 

closed. 

Theorem 6.20i    A set A <?X has the property of Baire if and 

only if A <£ S*  . 

Proof    If k&J*, then A - 0(A) A (0(A) ^ A).    Since 0(A) e^T, 

and 0(A) ^ k&9l , it follows from Theorem 6.9 that A has the 

property of Baire.    Conversely,  if A has the property of Baire, 

then A -   f0 B)-N7A/^   for some B^/ , some N<£% , 

and some set M of first category*    By Theorem 6.19, M belong* to 
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/[ ,  and therefor© A £'p   • 

Definition 6,211    Regular opea Bet is a set that is equal to 

the interior of its closure.    Any set of the form A        is regular 

open where A      and A    represents the closure and coaplement of A 

respectively* 

Theorem 6.22i    A set G^Z is regular open if and only if 

G - 0(A) for some A£"/r. 

Proof    If A ^/5% then 0(A) is open, and the closure of 0(A) 

is of the form 0(A)<-^N for some N<5^, by Theorem 6.19.    Let 

0(A/)-N/   be any open subset of 0(A) U*N.    Then 

0(A,)-N,C0(A,) - 0(0(A/)  -N,)   C 0(0(A)UN)C0(A). 

Thus 0(A) is the largest open subset of 0(A)uN.    This shows that 

0(A) is equal to the interior of its closure, that is, 0(A) is 

regular open.    Conversely,  if G is regular open, then G - 0(A)-N 

for some A etf and N <?^.    Since 0(A) A r#(k)-X<ji.s contained in 

N, we have 0(A) ^[j$(k)-HJ- G,    Since G and 0(A) differ by a no- 

where dense set, and both are regular open, it follows that 

G - 0(A). 

Theorem 6.23i   J.    is a Hausdorff topology. 

Proof    Observe that J^   consists of all measurable sets A 

such that A has density 1 at each of its points.    Hence ^T includes 

all sets that are open in the ordinary topology, consequently it 

is Hausdorff. 

Theorem 6.24i    The density topology in X is regular. 
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Proof Let x be a point of a set AG j', Then A has density 

i at x« Pox each positive integer ol  • l»t F  be an ordinary- 

closed subset of D(x, /,-)  )/~) A such that 

If     f'^A\jfOi^\ , then ?(F) d F^TA. Since A 

has density 1 at x, < r- ~? 

Therefore F has density 1 at x, and so xe(((F)« Thus pf(F) 

is a jT-neighborhood of x whose J_ -closure is contained in Ff 

and therefore in A. 

Remark 6,25t HenceXA  is a category measure when restricted 

to any open cell of finite measure. Relative to this density 

topology, the extended principle is valid, and it is no longer 

possible to decompose X into a nullset and a set of first category 

There are two more aspects of density topology which I wish 

to consider. First I would like to consider the class of ap- 

proximately continuous functions on X. Secondly I will show that 

X with its density topology is not normal, hence it is not metri- 

eable ^"see Theorem *f.3.3 in Z^-°Z\      I  • 

Definition 6,26i A function f from X to a topological space 

is said to be approximately continuous at a point p if, for every 

open set G containing f(p), the set^^G) has metric density 1 at p. 

Theorem 6027t The set of real-valued functions which are 

continuous in the density topology is precisely the set of 
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approximately continuous functions on X (with respect to its 

original topology.) 

Proof Clear. 

Remark 6,28t Nishiura has shown [_ £ _J that the density 

topology for Euclidean n\ space, E^ , is the coarsest topology for 

which its approximately continuous real-valued functions are con- 

tinuous. 

This is done by showing, that the density topology for E^ 

is completely regular, and hence coincides with the weak topology 

indnced by its real-ralued continuous functions fTsse  page 115 

I do not know whether the more general density topology de- 

fined above is completely regular, nor whether Hishlura's result 

is valid here. 

I want to now show that the density topology for X is not 

normal. In order to do this we will first need to state some 

definitions and to prove several lemmas. 

Definition 6.29t Let X, T be any topological space. Then 

the family ^F(X) of Baire functions is the smallest family of 

functions ft    X->T that contains all continuous functions and 

all pointwise limits of pointwise convergent sequences of functions 

of (SF(X). A function is said to be of Baire class 1 if it is the 

limit function of a sequence of continuous functions. 

The following theorem is found in Henstock's book Linear 

Analysis on page 89/ , & J\ # 
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Theorea 6,301 If (X,.5~) is a Baire space, (£., ^) la a 

pseudoraotric space, and f £ £f(Xt)t  there is a 2^ ^ of the 

first category in "j  , such that f io continuous in X, -^JiT, 

The following corollary is a special case of the above 

theorem. 

Corollary 6,31i Let X be defined as usual. Then if f is a 

real-valued function on X of Baire class 1, then f is continuous 

except at a set of points of first category. 

Definition 6.32t Let f be any real-valued function on X. 

For any open cell N(x,r) in X, the quantity 

i£/(H(x,r» -sup f(y) - inf f(y) 

is called the oscillation of f on H(x,r), For any fixed xf the 

function (N(xtr)) decreases with r and approaches a limit 

UU(x)  - /i* GL/(H(x,r))f 

called the oscillation of f at x. 

Remark 6,33i Observe that ^"(x) is an extended real-valued 

function on X such that f is continuous at x <^X if and only if 

ce/(x)  - 0. 

The following lemma is a generalisation of a result of 

Goffman and Waterman/-^ Z){ 

Lemma 6,3^t An approximately continuous function f from 

X to a metric space is of Baire class 1, 

Proof Suppose f is not of Baire class 1, Then there is a 

nonempty perfect set R such that, at every point of R, f is dis- 

continuous relative to R, B is a Baire space* For every /yY), 
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lot R      be the subset of R at which the oscillation of f is not 

less than /m  •    At least one R      contains an open cell K in R. 

Then the oscillation of f relative to K is not less than 2**-?}& 

at every point of K.    Since the closure of any open eubspace of 

K is perfect, the space K is of the second category. 

Cover f (X) by a countable set of open cells of radtus u/-j . 

The intersection of f(X) with one of these, having center tf , has 

Inverse    /( dense in a perfect subset P<TK.    Let 1^ be the set of 

pel for which ^/(f(p), tf )-:>-^^»    Then To    i8 *!*<> dense in P 

since the oscillation of f relative to P is not less than 2°cat 

every point of P and T,     is dense in P, 

I*t  7 P/y})   *>e * countable dense subset of T(     which is dense 

in P and let   I^JK be any sequence of positive numbers converging 

to eero.    Since T;     has density one at each of its points, there 

is & sequence of open cells,  j NJr , p^N^  , limjA (N^ ) - 0, 

such that the relative measure of T,   in Q,^ exceeds 1 - 6   ,    The 

set  Vf of points belonging to infinitely many Q/y, is residual re- 

lative to P.    In the sane fashion we can construct another residual 

set    \A corresponding to X, 

The set    V - Y, /n  V^ is residual relative to P,    The upper 

metric densities  (here the upper metric density of a measurable 

«t^X « a point p is ^.^^r^W'")'^) 
of T,     and T^   are equal to one at every point of V,    Thus for 

any pelf we have simultaneoualy 

d(f(p). y )^^«nd d(f(p) ff )£* */o 
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and BO V 1B empty.    This contradiction establishes our result. 

Ve now prore that X with the density topology is not normal. 

Our proof will be a generalization of the one found in /__ £    J  • 

Theoren 6.35»    I with the density topology is not a normal 

topological space. 

Proof    Let A, B be disjoint subsets of X which are dense in 

the usual topology of X, and such that ^«(A) -^(B) ■ 0 ]/X^'&<*J~Jl ^ 

Then A, B are closed in the density topology for X,    Suppose the 

density topology for X is normal.    Then there is t 6- Y0 such that 

f»    X—-5 fo,l] and f(A) - 0, f(B) - 1.    But then f is discontin- 

uous everywhere (in the usual topology for X).    But this contradicts 

that f is of Baire class 1. 

C. Example!    Boolean Keasure Spaces and Normal Measures on Stonian 

Spaces 

I now show .that a Boolean space gives rise to a category 

measure space when its dual algebra is a measure algebra.    The 

following results are found in    L   I    J     • 

Definition 6.36i    A Boolean space is a totally disconnected 

(i.e. the closed-open sets constitute a base) compact Hausdorff 

space* 

Definition 6.37i    The algebra of all closed-open sets in a 

Boolean space X is called the dual algebra of X. 

Definition 6t38»    A Boolean space is a Boolean cT~-space 

if the closure of every open Baire set is open. 
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Definition 6»39»    A Boolean measure cpace 1B a Boolean  (/^space 

X together with a normalized Be as are  (/{(X) » 1) on the  cT-«-lgebra 

of Borel sets in X, such that non-empty open sets have positive 

measure and nowhere dense Borel sets have measure zero* 

Remark 6,4<h    The completion of a Boolean measure space is a 

category measure space. 

Definition 6»Ult    A measure algebra is a Boolean (T'-algebra 

A together with a positive (i.e. the empty set is the only element 

at whichJA takes the value zero), normalized measure^ on A, 

Lemma 6,^4-21    Every measure algebra is complete (i*e* every 

subset has a supremum). 

Proof   See page 67 of  [7 J 1 

Lemma 6***3«    The dual algebra A of a Boolean space X is 

complete if and only if X is complete* 

Proof   Set- page 92 of   C   *7    ~J      • 

Lemma 6»44i    Let f be a Boolean /"-epimorphism from a   ^-al- 

gebra B to a    ^-algebra A. and let^,1'be a normalized measure on 

A*    If   y(q) - ,A(f(q.)) *w ©very q in B, then   ^is a normalized 

measure on B,    The kernel of f is included in the set of all those 

elements q of B for which   >^(q) " Oj the kernel coincides with 

that set if and only if the measure^, is positive* 

Proof   The proofs of all the assertions of the lemma are im- 

mediate from the definitions* 

Lemma 6,U5t    IfX is a positive, normalized measure on A, then 

f   maps B onto A*    If   ^(S) -^(f(J*)) for every Sin B, then   ^ 
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is a normalized measure oa B such that non-empty open seta hare 

positive measure and such that the nets of measure zero are exactly 

the sets of first category. 

Proof   The algebra A together with the measure^ is a measure 

algebra, and therefore complete by Lemma £,^ It follow* that the 

space X is complete by Lemma 6.4-3, and hence that every regular 

open set in X is both closed and open.    This proves the first sen- 

tence of the lemma*   The second sentence is an Immediate consequence 

of Lemma 6.44. 

Our main theorem is an immediate corollary of Lemma 6*45* 

Theorem 6.46t    The dual algebra A of a Boolean space X is a 

measure algebra if and only if X is a Boolean measure space* 

We will now consider another method for constructing category 

measure spaces*    Then I will show that this method and Boolean 

measure spaces are really just different views of the same con- 

cept* 

I will prove a category result whose measure-theoretic analog 

follows trivially as a corollary*    The following definitions, re- 

mark, and three theorems are found in   E -^- J     • 

Definition 6.4?t    A compact Hausdorff space X is called 

Etonian  (or extremely disconnected)  if disjoint open sets in X 

have disjoint closures. 

Remark 6.48i    X la stonian if and only if 1/open Implies XJ" 

is also open* 
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Proof    Lot X be stonian and "C7 be open.    Then the disjoint 

open setsVand (17)    hare disjoint closures.    But the equalities 

Un (T/)   - f and un (If)   -if 

implies  (XT')    " [X/J •    Hence X/is open.    Conversely assume 

that open sets have open closures.    LetX^i Tzbe open and dis- 

joint.    Since X^is open XJlf\\JI m $%    But by assumption XZis 

open, hence ZJ/^ZJf tf» 

Definition 6.^9i    A family  £f»c) of functions from £(X) 

where X is stonian is said to be bounded above if there exists 

fo ^  C(x) such that fo^—   fc    for al1'=5C •    Wa cal1 f„    an 

upper bound for the family.    If t-,^. ga   whenever g„ is an upper 

bound we call f0 the least upper bound and write fp  -   Vf.    One 

defines bounded below and greatest lower bound similarly.    The 

lattice C(X) is said to be complete if every family of functions 

which is bounded above has a least upper bovnd.    An equivalent 

definition could of course be given in terms of lower bounds. 

The following theorem is due to M.H. Stone   /_/Tl7 . 

Theorem 6.50«    Let X be a compact Hausdorff space.    Then X 

is stonian if and only if the space C(X) of all real-valued contin- 

uous functions is a complete lattice. 

Definition 6.511    A regular measure^  oa a stonian space X 

is normal if for each bounded monotone increasing net  y f^x of 

real-valued functions in C(x) we have 
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Definition 6«52i      The support of a Measure jA.   la the comple- 

ment of the largest open set of JA. -measure zero.    I vlll denote 

the support of _M by supp(^). 

Theorem 6.53»    A regular measure^  is normal if and only 

if it vanishes on all nowhere dense Borel sets. 

Proof   See   CJL'J • 

Theorem 6.5^«    The support of a normal measure is both open 

and closed. 

Proof   Let F be the support of yU_ and TJ~~ interior of F. 

Since F is closed X7d f j^a since X is stonian X7is open.    Hence 

~U c XJ , so XJ m XJ •    Now P - XJ is nowhere dense, so by 

Theorem 6.53 

>C(X -I/) -^(X - F) +^(F - I/) - 0 

Thus F "17by the definition of the support. 

Corollary 6,55*    If >^ is a normal measure and supp (ii ) " X 

then ^( A) • 0 if and only if A is nowhere dense. 

Troof   Follows directly from Theorem 6.53 and Theorem 6.5^. 

Remark 6t|56t    The completion of finite normal measure^ on 

a stonian space with supp(/<: ) « I is a category measure space. 

Theorem 60571    Let X be a stonian space.    If f is a bounded 

Borel measurable function on Z, thea there exists a unique con- 

tinuous function g Buch that 

[xx  /f(x) -gOO/xf^ 

is of first category. 

Proof   See page 10^ of    £ -2- J      • 
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The following is the measure-theoretic analog of the above 

theorem. 

Corollary 6.581    Let X be a stoaian space and <y   a normal 

measure on the Borel sets of X.    If f is a bounded Borel measurable 

function on Xf then there exists a unique continuous function g 

such that 

^c( [xi    /f(x)-g(x)>o}   )-0. 

Proof By the above theorem, there exists a unique contin- 

uous function g such that j xi / f (x) - g(x) /> of is of first 

category.    But then this set is of measure aero by Theorem 6,53* 

In Halmos's book Lectures on Boolean Algebras he discusses 

the properties of a Boolean measure space*    Whereas in V, G. Bode's 

book The Banach Space C(S*)t Bade discusses the properties of a 

stonian space with a normal measure^ on its Borel sets*    If in 

addition jiiX) " 1 and supp(^ ) • X, then both of these spaces 

yield category measure spaces if we consider their unique comple- 

tions £ £ 13 j fcp. 1*. V    , and  /" /* J     T^CREM *3]}m Ve 

will compare these two approaches (for constructing category 

measure spaces) and show that they are the same.    First of all 

observe that an extremely disconnected Hausdorff space is totally 

disconnected II */£*/*« S&.l'f.l /A?]   .    Also a Boolean measure 

space is extremely disconnected f[L CM/IA £. "f^l^^^Ci^l^ Therefore 

a Boolean measure space is topologically the same as a stonian 

8pace* 

Ve will now show that a Boolean measure space and a stoaian 
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space with a normal measure on Its Bowl nets such that eupp(/<;) - X 

and ^(X) • 1 are equivalent concepts.    Let /( be the measure in the 

definition of a Boolean measure space X, then,// is a normal measure 

llThec.terr £, $ \IJ •    The fact thaty/(C)>0 for all nonempty open 

sets G in X implies that supp(^ ) - X and by definition^/(X) - 1. 

Conversely assume X is a stonian space and ^ is a normal mea- 

sure on the Borel sets of X such that supp(//) » X and/'(X) • 1. 

Then jx (A) - 0 if and only if A is a nowhere dense Borel aet fTA*. 6. SJ. 

Cd. 6. 55jl»    Hence ^{^-)r^9 for all nonempty open sets & in X, 

Therefore the concepts of a Boolean measure space and a Etonian 

space with a normal measure^ such that^(X) • 1 and supp(// ) "X 

are really the same. 

I will nov show that Stonian spaces with normal measures 

such that the support of the measure is the whole space (i.e. a 

Boolean measure space) arise from/,   of any finite measure space* 
t 

Theorem 6.59»    Let  (Xtd,ii) be any finite measure space, 

then there exists a category measure space {-YLj 'tij ^ ) such that 

~J1 is a compact Hausdorff space and 

L^(X,^)^Q.) 

where ris t isometric *-isomorphism.    (See     L 3 ZJ      for the 

definitions concerning B*-algebraa.) 

Proof   LC*°(X;^/A) .= C(V1)    where_/Li* * compact Hausdorff 

space by the Gelfand-Naimark Theorem.    (See   J2 3  ~J       )•    We 

will first show that _/l    is stonian.    Let   v f^ybe A bounded 

monotome net in l°° (X, .4-yM ) • then   St^ has a weak* convergent 
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subnet jl   immediate corollary to Banach-Alaoglji Theorem {set-El^) 

and by Problem 211 on page 133 in Ca &J ]J •    But thia impliea 

that   J fc£
(k  Is weak* convergent j]_   clnce   j fj-\ is monotone JJ    , 

i.e.   StjJt-Ste   lT°(Xf J,/^).    However it follows easily/"aince 

jX is finite JJ that f - Vf^.    Therefore^ iB Stonian^ by Theorem 

6,50 and since L    {XtS,f ) ^C(^) ls aa order-preserving isomor- 

phism J/    ,    If f e IT* (X, «£,#)• let f'   be the image of f under 

the above isomorphism.    Then l(f') •   j feU- is a positive linear, 

functional on  C(-/!)•    Therefore there exists a unique finite 

regular measure^// on the Borel sets,^ of j\ such that I(f') "jfd^ 

for all f   ^£L/2) ^ See the Riess Representation Theorem on page 

182 of 0] •    Observe that f^f in the weak* topology of lT°(X,4*) 

implies  ft^q&/j->(fg&u   for all g^lf^I,J,y) JTby Riess Repre- 

sent at i to. Theorem in Chapter 11 of il3j//•    Kow sinceJ^L1 (X,^^') 

ire hare   / f^dz/—^(fdi/    •   Therefore J) is a normal measure JJ since 

iTd,4^ ) ^OA) J7 •    * claiB thAt 8uPP0) --.4 • /" "FPU >"-4 
if and only if for all f'fe f C/L). f ^ 0, f ^/ 0, jf'dj/.PO.    But 

If /f'd/?- 0, ioe. supp(^) /vl   t "then f - o/J , 

Therefore if we let Ulj&y) be the unique completion of 

(/l^i?) ^see Chapter 11 of p3jj/then (Ay^>) is a category 

measure space 
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