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AN ABSTRACT
! of
DUALITY EETWEEN MEASURE AND BAIRE CATEGORY
a -
Francis J, Vasko

Let X be a second countable Baire mstric sp;co; and /¢ the
coapletion of a regular non-atomic Borel leisura with support X,
I prove a duality theorem showing that statements about sets of
first categoxry are equivalent to the dual statelgnts about:sets
of measure zero (generalizing the result of Seirpinski for the
realsf. This duality theorsa is then used to prove some measure
theoretic results from the dual results of Baire category, I
show that i BoTe general duality ﬁrinciple between measurable
sets and sets with the property of Baire is not valid,

I consider category measure spaces (1.e, where “measure
gero” coincides with "first category”), obtaining some general r

results about them, and exhibiting some exaamples,
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INTRODUCT ION

I will consider in ry thesis the duality between measure and
Baire category. _

Several fundameatal definitions I wxill use include:t a Borel
measure is a measurs on the Borel sets of a topological space, A

measure /( on a topological space is called a regular measure if

for every measurable sst A _
(L) = snpfﬂr) / FCA and F is a closed se}-
inf[/,((c)/ G DA and G is an open set} .
Ve ﬁll also assume the continuum hypothesis, i.,e, there does not
exist any cardinal number between the cardinal number of the
natural numbers and the cardinal numder of ths reals,

Unless otherwise stated X is a second countable Balrs metric
space and /(in the co;iiietion of a regular measure on the Borel
sets such that points have measure zero and _{G)=>0 for all
open sets G in X, '

I will now look more closely at the ﬁrpothesis on X« The
cordition (((G)>0 for all open sets G besides eliminating any
isolated points in X [éinco points have measure um:y and as-
sunlng that A (X) is nontrivial, also easures that the topology
of X is not detached from the measure «{ ,

Suppose X is any second category topological space, Let.éq,c}
be the collection of all open sets of first category and let

G = U0« Thea by the Banach Category Theorem G is of first

-2-



category, Now i = (X-C) L/G, therefore X is the disjoint union

of an open set of first category and a nontrivial Baire space.
Hence wo do not sacrifice any generality by aa§u11n5 thit a second
ca@egory space is a Baire space. |

It is easy to prove (56’6 Dzﬂ) that the cardinality of any
second countable T, spice is at most c¢(i.e, the cardinality of
the real numbers), Therefore X has cardinality at most c., But
since the measure on X is strictly greQZEr than zero it 1is clear
' that the cardinality .of X ;s Ce
| The main results of this thesis are:

1) a duality theorem for I between the sets of measurs sero
and the sets of first category generalizing a result by Seirpinski
L1e] ,

2) I generalirze a result by Szpilrajn [ /¢ | , provimg
that there exists no duality theorem for X between the measurable
sets and the sets having the property of Baire,

3) mny construction of category measure épaces via a deasity
topology on X is a generalization of material in [:’0 :7 and

[: 6 ;]. also I derive category measure spaces §1a Boolean measure
spaces, and stonian spaces with a finite normal measure whose sup~
port is the entire space, |

' 4) the set-theoretic equality of Boolean measure spaces to \
stonian spaces with a finite norsal measure with support the en-
tire space, .
5) the coanstruction of stoni#n spaces with & finite normal
-3=



measure with support the entire space by applylng‘ the Gelfand-
Naimark representation theorem to the EO spaces of arbdbitrary
finite measure spaces,

Much of the material of (1) and (2) done for the real line
s found in Oxtoby's book /. /O ] .
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A_DVATITY TumoIv

. The rajn Tirmose 0F +*hie section is Lo estahlish a Auzlisr
princirle tetwean se*ts of first catecorvy and nullsets, Tn 1034
Sierpinski[j /ér:]yrﬂvei tha followings *heorer, Assnring the

h J
continumm himothesis, there exisis 2 one-to-one napving f of the

.

¥

ok

line, i.e, the real nunbers, onto itself such that £(2) is 2

nullset if and only if T is of first cz*egory. It is not known

whether Sierpinski's Theoren can be proved without the continuum
hvrothesis, 3Sierpinski asked whether 2 stronzer version of his

i . 3 s . : s
theorem was +true, in nariioular, deoes there exist 2 rmapning £ that

mans each of the +wo 2l2sces onto the otker sinutzreously? This
3 . S 4 PLivmgt jve hHv TR L/' 3 clL?
question was answered in *the affir-ative bv Trins jin 1cd,

Namely Ix3Hs nroved the followinr, Assvmine the corntinvum hypoth-

esis, there exisis a one-to-one mavpping f of the lire onto itself

such that

is a nullset 3if and only if 2 is of Tirst rcztecory (Tt follow
. o . - D} 10WS

from these pronerties that f/7) ig of irst catecnry if 2.4 only

)
—

1f.2 is 2 rmllses,) His rroof reqnired a relatively small refine-

nent of Sierrinski's -roof, 7T~ this chanter T will prove that

Bri%s's +heoren holds in 2 ~are gensral settine, $,e, for rertain
* .
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measures 01 1 rarticular class of ~etrie snaces (see Theoren 1,17
below)e T will rrave this hy 5akinv nse of several set--thepratin
- - = 4
thenrems faynd ir:[-/£9 :]. Theae spt--thepretin resnlts were
proved and used by Brd¥s for the srecifis classas of nullsets and

sets of Tirst nategory, Unless otherwise st2ted X will be o

+
3]
}..k
o]

second countable Palre net srace, and 4 will be *+he cormrletion
"of a recnlar ~easure on the Rorel sets of X such that roints have
measure zero 2nd

. jb(C) — QO
for all nonempty open sets G in X.

T now state two trivial dual results which we will uce later

in the proof of the dualdty theoren,

e

Nefinition 1,1t A class of sets C is 2 g  --ideal if every

countable urnion of sets from C is in C, and every subset of a
set in C is in C,

lema 1,2: 1) 1In 2ny tonolosical space the class of sets

of first catercory is a g --ide=l), 1i3i) In any complete measure
space the class of sets of measure zero is a d— --ide2l,

Proof 1) clear by the definition of first catecory,
1) clear by the countable additivity of the neasure and by the
definition of a cecmplete ~easure, |

Romarlk 1,35 I2m-2 i.2 holds for X,

Te-ma 1,4: 1) Tn any torelo

caterory is contained in an if’ of first ratecorv, 1i) 1In any
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~at - --t

warchoava AAawmoan er" Llhma A mmiiva ALD Ao s I Ye
GRI i*) thia =arnld £27%4002 2a0dly fye= +hg dafi-

rom1lar meagurTe,

Tyemrlas 1 2y T

IR

hel -v-n cnd o
Torel ceote,
v«h-,.,'}gn-wn
wtolre dvp

trion of a

A~

7=

a2 non~re=ilar ~easure, {omsider the reals, y Witk the eu-

” ﬁéliééan topolozy nn it and let LU be the corpletion of a measure
defined for all the Rorel se*s bty 4 I) =0 if T is of first cat-
eopTy, 2nd Y[R} = o01f T is of secord cztesory. Clearly 4o
is 2 non-remilar ~easure, Yow 2 /23) = C where Q ic the set of
rational nunders, btut there dees not exist a ,-5- corntainine 4 of
zZero measure [si:*.ce a2 dense .’_‘-és' is residuzl 2nd X is Raire .

Remark 1,5: Ie-=a 1,k holds for ¥, The folleowing Tarmas
and corallary are zarewalizaiions of resulis found in[: /0 j .
le~=a 1,71 Y can be Zecco-posed into iwo comrlenmentary se*s
A 2nd B such that A is of first catecory and B is of measure zero,
Proof Since X iz second counizlle it is separabdle, Let
{ai} be any countatle Zerse set of X, let Oij be zan oren set
cortaining ag and /,(,(04_3-)4'—77-3' [this is rossible be-
canse »oints have r~easure zero =zrd L is rerjxlarl} « let
G =,°f'>0*. for i=1, 2, 2, +ss 2nd B=73G..
J J=t 2 NE] J
Now for any €>0 we can choose $ so t he €.
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Yanne ® 45 a nullset (i,e, 2 srt of —ersura rarp), On *he
othar harnd, . is A danse arer surset of X, sirce 1% is +he union

of open subse:s conta2ininc a “en<e set, Therefrra fts complerent

/
G
-~

: o
is nowhere dense, and 4 =2 =/ 7, is of first caterorv.

Coroll rr 1,2: Tvery subset of Y n2n T represented ns the

union of a ntllset and a set of first catesorv,

Permaxr’ 1,0: We wWill now consicer +wo exarnles +c show that
:lihe‘ ronclusion of Temma 1,7 does not hold witheut our assumptiorns
on X, First of 2ll observe *that this result does not hold for

Fxa~ple 1,5 since /R is of senond cztesory in itself,

=

Syarrtle 1,10: Consi.derga,b} with the discrete torolory
on it and the resular measure UL on ga,‘t} such that
w(§2§) = by -t
Then %ﬁa,é}' cannot be decomposed into two disjoint sets, one of
first catecsory and the other of measure zero é?ginne only the

enpty set has reasure zero zrnd X is not of first categoryN .

Examnle 1,111 Now assume -
X = //?3: EO}, and d(x,y) =d_(x;0) + 2 (y,0}
for all x,r€X whrere d_  is the euclidean distance function for
the plane, Then it follows easily that X is 2 nonseparable,
torologicilly cemplete (‘hronce a Paire srace) metric syace[?( ie
tepolorirally complete becanse it is a Ge in //,?),. de) whirh is

a r~nmrlete retric srpace Zf . ¥Wor any measurable subset © nf a



Yine v m mx we Aafire YL/F) +n he e72) £n Jebestue reasnTe on
the YTine, 1F ® fe gry Borel sukaed ~Ff Y, +han 4 (T =mcots 7
interamnrts nneAaFarly rory Jines v = tx, T T is a Rorel subset
[ ' .

of X whinrh Intercects only contably -anv lines v = mx, then

W LEY = +he sum of 1ts "sectional™ measure on each line, Tt is
easy to check t.hatvﬂ, is a recular measure on the Rorel sets of

X, Llet ZL b4 *he completion of 4¢, *hen X canrot be deconposed

into two disjinint sets, one of L -reasure zero and the othker of

~

H

first category // a set is of first catecorv in X If and only if

pede
+
[y
3
‘—'-
[v]
p
®
o]
+
n
D
AY)
O
[}
J.
:"\

mx) in a set of first category,
Hence the comnlerent of a set of first catezory has infinite
measv,:re]] .
»
Jem=2 1,12: Any uncountable r‘.é-. subset of X contains 2 no-
where dense closed set C of measure zero tha*t c¢z2n be napped onto

[O,g y 1ePe Ontn 2 set of cardinality e,

o0
£ Je+t T = n noaomer, 2nd T is an wncountable G
Proof L ! 2] Tm ' e
set, let ¥ denote the set of =211 condensation roints of £ that

belong £n F, *hat is, 'all -oints x in E such that everv nre gh‘bor-.
hood of x cont=ins vv-co*mtably many poin+e of © : N
otherwise, 1'P§ . is 2 base for X Mf" 3 { S ic 2 suk-
eclass n“g £ snach :-%n+ 5:3 cnn*ains only cmmtably many points

of B, ther this subclass would cover E and © would be countable,

J
Ao

t

Similar rea=anincs shows that F has no isolated roints, Let

F (0) 2nd F (1)

R :
be two disjoint olnsed sets nf measure at rost 1‘/‘3 whose interiors

-9-
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~nat T and whose urfon i con*ained in Gqe Trocceding indre-

tively, 1f 2Matcintes ~losad sets FIAy, waie ) (= 0 or 1)

vhose interiors all =aet in ¥ 2nd whrse yninrn §s cnrtajred in 0

m
have taen dqefined, 1ot

F‘({i, sscey :',n,,_i}' /_: 1=Ohr 1)

F has no isolated roin*s znd that ECs . It is clear that such
: o
sets exist, Thus a family of sets F(fy, .,., 1 ) having the

bl

Then § is a close? nawrare Fderce gubsed of T, £ has reasure zero

4

for the same reason a2s *he Caninr set &r or 2 discussion n?¥ the

Cantor seot see page L of‘[yatjé;. Yow Tor each x€7 there is a

uninuve se’?uence{ }ir‘ =0 or 1, such that

n
x€ =3 3

41 seesy S

for every n, 2nd every sush sejuence corresronds to so~e roint of
Ce le*t /%) be the real nu-ber havirz hinary ‘develormert,

Than £ or3prs 0 orﬁﬂ[j“,i] ¢« Yence £ hrs cari-

.'I t-l;:ai‘f &_"‘00000

L S K Y
Sraxmtiey o,

To~-- 1,12: Tha agrple-ent oF a-v ~1lset of X cortains 2
~11set of raxdinality ¢, The an-rlevent of any first category

cet in Y eontalinsg a first nAatecary set 0fF cavdinalitvy ¢,

Proof Clearly sincey is rer~ilar *hre ecomplement of a nuvll-

set ~ontains an wncountabhle ~2losed set, v Theorem 1,1,2 1n[73£]

-10-



+Wis AlAsad aab {3 a 29. Varra b To==a 1,12 1+ pontrins a
Alnsed nullant of fardinallisty o, The an-nle=ent of a set of first
rat ooy C;),“#a{n_c’ o \:annuhf!}}\‘_ﬂ CJ\ ‘ce&ﬂ)“"’ :p'-\‘h-_g_ 1."1 qnd S%"‘,"n

Y is 2 Palre apaﬁejq o« Ty Tamma 1,172 +his ceb rontalns 2 nowhera

dense s~ Af ~ardj-qlider o,

Pamsxl 1 1y The eaterory nart of the 2bnve thenrem does

not hold < ¥ is nnt a Raire srace, For exarple, 1€ T = the

- [

Q
5
‘-f-
o]
8]
n
(¢}
ot
+
b2
D
3

is a second courn*able netric space of cavdinality c. Yow C is =2

t of

'y

S

V]

irst category, in fact it is a nowhere dense set in X, btut

does not contain a first catezory set of cardinality c,
AN B

The follovwinz two *heore~s are foun?d on pase 74 531['/0_7 .

Trenrem 1 ,18: Tet ¥ hHe 2 set of cardirality ¢

a class of subsets of I with the “ollowing rrovperties:
(2) ¥ is 2 (g -ide=1,
(b) %he union of X is X,

(¢) ¥ hzs a snbelass 6 of cardinality == c with the
e 3

s contained in

(d) +the compnle~ert of each rme-ber of ¥ contains a set
of cardin=lity ¢ *+hat belornss to X,

(9]

Then X can be decorrosed Intan o disinint sets X ., each of

nower ¢, such tha*t 2 subset T o Y beloncs +o X if and only if

PS

E is contained in 2 courtanle un*on nf cets XJI'

=11-



Prnant  Ta+r B =goC:({g—OC {2} ra tha cat of ordinals of

first ox mennrd alaca, +ha+r iz, 21) arlinzls less than she first
oriiml,.[l, trat has qnasartahly '-.-""*;' rredecessors, Then A has
ceriinality ¢, and *kere exists a marpinzeCPC of A onto G, For
each<{L €A definn
Hemtde st et () Mo
Put 3 =§o('é L ‘VoC is vnnount a'b‘..fi} Properties (2), (e)
and (d), imply tha* 2 kas no nrrer baund in A, Therefore there

existes 2 nne=tpo-nne orierenraservinc T‘:?“%\O’" A onto B, For each

H {°C) ﬁz%Hw ‘

By constmiction and prorevir (a), the seis ¥ - 2re disjoint and
belonz to ¥, Since ?&D}’,F%C)’} each of the sets Y _r has cardina2lity
ce For any A€ 4, we haveﬂé gzgfcc\ “ar seredl€)r, and therefore

. é"oc
Yence, by (c), each rerber of ¥ is ~ontained in 2 countable union

e[€A )
Thus {.Y;{ te( €t 1s a decompnsition of ¥ with the rejuired pre-

1At .Tet X e a set of cardin2lity ¢, Iet ¥ 2nd

T be twn rlngses nf anbents of Y earh of s-‘n""‘ has rrorerties
(a\ to {4) of Thenrer 1,15, Su-rose further that Y is the nnion

of two cornlementary sets ™ and N, Wwith ¥€X and N€1, Then

-12-



trhorn avieds g pne=ta-pone manpin- fpf Y o antp t4gelf

-
-

f = f and snrh that FITY € 1 1€ and anlv 1F TV,

< + A E L £
Tronf Ter Y o (0sL<f)) Yo a dacomrnosition o

\ -

poniing to ¥, as constructed in the rroof of "reorem

may acan=e that ¥ helorss to the genera*inc elass 4,

sneh that

X ~orres-
115, We

and that

n

%0

ts taken emal to ¥, Then ¥ =M, berause ¥ cannaot ha countable,

0

Similarly, let YV~ (D€L <=_()) b a2 decomposition of X corres-

pondingz to L, with Yo = Yo
Then

= v an N
o2sl<f] "ol ard =;££C¢QQ

M

X o

The sets X, and Y, for 0<e=lg), =onstitute a decomposition of X

into sets of cardinality e, For each 0<el</), 1=t f.c be a on

e-

to-one mapping of X ronto Y- . TNefine f equal to {i-on Xg » and

-1
equal to L7 on Yo, for 0z, Then f is c

-1

Q

mappinz of X onto itself, f is etual to f , and T(X)

Q
3
+
o
0
J
b
(o]
3
[}
3
fdo
D
n
o}
]
g"\‘
W
3
‘L
\
n
*
W
o
@D
o
[
3
-3
T
3]
O
]
(11}
e
=
-

*
-t
3
-3
"y
4]
~
IJD
wn
+

onto itself snch that £ = ¢ and such +hat f(Z) is

rd

§f an1 only if T is of first ecatecory (Tt follows tha

-135'_.

ne-=

1

D]

fo

R<

s 2 one=tn-ore manning f of X

a nullset

t £(%) is

r

of



rrtzmory 1€ 2nd onllvy T i 2 nalleet ),

Dranf This ‘hearem follaus ir~adistelr €wam Theorem 1,14,
Tet K b the ~lass 5f sets of first nzxterory, ard let I he the
rl=ss of mmllsets, X is generated by the class of %f‘ sets of
first cotesnry, 2ard L by the class of 7? rmlleets, Tz2ch of these
cenerating classes has cardinality cé?-since Y is second count-
ableiﬁ e Tondition fe) of Thenren 1,15 ig therefore satisfied,
Condition (3) is i-nlied by le-~ma 1,12 ard condition (2) is from

lemra 1.2, While 2ondition (b)) holéds since poinis have measure
zero arnd X has no isolated roints, TFor the sets ¥ ard ¥ we may
talke the sats A 2nd 2 of lem~a 1,7,
(4]

The interest of this theorem is that it establishes a sitrong
farm of du=lity, which ~a2y o2 stated as follows,

Thesre= 1,171 /Dualite Trineiwle), Taet T he 2-v mraro-
aftinn inv2lrf- o =2nls the motions of reacure ~ero, first caterery,

and notiaors 2f ~uve set

-+ R on 3 v ~3 ~
from P by interchz-zings

caterory" wherever trey
and P* immlioz +te other

+harvne
nenrs,

Tet P* he the Trorosiition otrtained

"rnullset and “set of first
Tren each of the prorositions P
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Proofs also ap;ezr’in[:/ﬂ:], We will

111 nyove 2 mu~kor of results

to ret

The firs

«t
1
Q
H

using techninues in[ycij.

This first thecrerm is a generalization of a2 theorenm proved
by Iusin for the re2l nurbers in 1014 [)87],

Theowem 2,1:  Add set T of second category in X has a subset

¥ of power c

catesory,
Droof le

th

clacs

rordine to

D

Theorem 1,15, 1let ¥

catesory, N

countable =rbeet of

sets ch « Hemrce no

T\nf“qﬂ#ion 2,71

* quz-{<:{E}be the decomreosition of

aach non-ermnty set of the

s unenunitable and therefore of rovwer c,

uncountahle

subset of N is of second

X corres-~
¥ of first catesory sets in the =roof of

2 2 set cht=2ined by selecting

~

form ENYc e Since E is of second
No un-

-

v can be covered by courntably rmany of the

subset of N i=s of first category,

An inconintaRle set with +re rrererty *hat

-15=-

Jus* one point

e



Arrase qasanndable gehset fe of canand fatacnry fs pnlled a
Train cnt,

Tﬁé Anal of Thaoren 2,1 was rvaved for the real Tine her
Sterpinert tn 1004 [18 ],

Theapvar 2,2 (Dhal af Thomran 2,1):  Anv subset @ of X of

nositive outer reasure (defined in terrs cof tre reasure ) has a

subset N of power ¢ such that ‘every uncountable su}set]of N
rositive outer neasure,
Rermark 2,4t The outer measure of any subset & of X is

:
defined as

k(A = infé;uf?) 2cT and T is oPe{}'.

Theorem 2,5: There exists a one-to-one mapring £ of ¥ onto

'S

a subset of itself such that f/E) is of second ca‘egory whenever
E is uncountable,
Prnof let £ e any one-to-one mapping of X onto a Lusin set,

Theore~ 2,A /M2l of Thearen 2,5): There exists a one-to-one

mapping £ of X onto a subset of itself such +that f(R) has rositive

™

outer measure whenever ¥ is urconuntadle,

Thenran 2,7

Any subset E of X of second catesory contains

v

¢ disjoint subsets of sersond caterorr,

Trnnf Tet f be a one-to=nne ranning of X on*0 a Lusin set’

=

contaired in ¥, Now 1a*é{ﬁ<-:qCCJé§te the deceomnnsition of X
correspondire to $ke class ¥ nf first ratesorr sets {or to the

class of rullsets either will do), Then from Theorem 1,15 we know

thet each X i uncountable, therefore, £(X) is a second

-16=



ratarary sunmet of = for aachoC< /) ., ™Fe wasult follows since

4he rardinality af the enllect fan

532C xQCAf_[ig'?s o

Theoren 2,57 01a1 Af "tapram 2,7):  Anw subset B

f X of

o)

3
=

ositive omter maagnre rontaine ¢ dicinint cets of rositive ovter .

relsnre,

fornlla~r 2,0 3) Y can be decomvosed into ¢ dis

s

noint sub-

N Jde

sets each of second caterorv., 1ii) X can be decorposed into ¢

o)

disjnint sunsets eash of nnsitive outer measure,

Proo® 1) arnd 31)  Fellow

L

irertlyv freom Theorem 2,7 2nA4

Theorem 2,8 since X is of second cztecorv 2n? has rositive cuter

measure.

18¥dered so far 4o not

involve reasure and catesory simultanenvsly, HYowever lernmz 1,7
in fChapter 1 says thai ¥ can be decomrnsed into two complerentary
sets, one of firsi ecaterosry, the other of reasure zero, This nro-
rosition is self-dn=1, Another result is that a subset of ¥ is
countable, The dual is ¢ A subset of X is of first catecorv if
its intersection with
resnlts 2re corollavies of len~a 1,7, (Ohserve that the con-
finunum hyfothesis is not neefed for Ts#~;'1.7\.

The fnllowirs is a ~ereraliza“ion of one of Sierpinski's

prorositions [3\5j .

o



Tronve- 2,10 Tar anv alasg W o€ trvertihle -]lcet rye-

.

servire trorefar-ations 07 (, with ~-1 2150 n'1lleat prpcp-:-viiq:v
and eardinality of ¥ enmal +a ¢, there exists a subset ¥ of X
ahla set, for e2ach 7 in ¥,
Proof Tndey *+re ele-antas nf ¥ 2and X so thot
¥ =z( T;Csocé_/l} amd X = { P’ °C“~_Q},

Tet A be a nullset su~h that X - 4 Ss of First catecomy)/ Dby
Lemmra 1.?1U . For CZol</) , 1ot T, be the group generated
ty tre trarsforrmations 7 wifB/dej. Tren G, ,.consists of all
proiucts of the form

OIS S whereﬁiécc 274 X

4 A

and s any ~ositive intecer, Henre T _, is couniatle, ard each

v
D
"

]

]

m ig ntllcet—rresevving, Tor ezch T in 7 the gse+ TA is

in 3

a nullset, “ence

= Ty 7 [

Aec U{ ey

3 - A i S ~d 3

is 2 nullset, Iet x, = p e+ Assuning that the ndints ﬁg.i“ X

have teen dafined for =211 g o, mit = s

have reas:re zequ]. Iet ¥ Te *re firgt elevert $n +he ynll

orderin~z of Y =unh that we ts mabos- Tt

LY

‘:‘&:: "'\;C . 'Te"oc} , ~nd A fan - Z‘({/‘-‘Q‘-’I“{'

-

ThRot Tedn anvntaRla and T fg nnnancdaRle, VWaregver, T ic 2

suheat of X - 4, UHersa 2 1s of firct eate~ary, Tor Mv(ﬁébc‘/b

-]13-



RN SR YAeaAn

PRV
AT, G

Thia ehawg that TTAT fe apnctaRlal Far park T in ¥V

mhapro- 9.1_')./—“:-,'1 e e ’;.11\: Tor 2nv nlags ¥ af
- ol —— -l ’ - ——— . - : - -

{invertihla AatarArrenrocaririne trormefinm—at Sang of Y’ withy T
inver:ihla A3t ersnrT -7 Y " >3 ) rrens b 1 i

21nn ratecorverrecervine zrnd fardinality nf VY equzl +o ¢, there

..... ~ e el

exists a subset T of X 0f rmeasure zero 273 cardinalitv ¢ such

vr
14 -
P SN

rh

o> each ™

) de

TDAT S + o) +
that TZ AT is 2 conniable set,
“he followinz two thesre-s 2re yacuously *rie for X since
ever: ronemrty gnen get of X ia of secon? category [.:ince X is

a Baire s;ace:ﬂ, and has rositive rmeasume, Therefore for the next

theorem we will 2ssume that X is an arhitrary torolegical srace,

,Tﬁépre* 2,12 /=om2ah Patazows Treoren):  In zny topologicz?
sace X, the union of any farily of open seits of First category
is of first e=zfecory,

Pronf Tet 5 be the union of =2 favilyAglof non-em~ty oren
sets of first catezory, Tet
F - § Uc feen §
be a maximal farily of dis’oin* non-e~~*r orer sets with the

rrorerty tha* eash is cont2ined in sove woarheor o’,&'. Then

tre closed sot & - Ugis noWhare dehce.[n*,herwi‘se 3 would

not be naxiral.:}) Tarh se* an be rerresented 'as a countadble

-19-



. o0
ininn 0Ff nnvhere de-sa cete, gntt [Jd: = U YoM Dalhd
‘ - x=| /

\.'m =Q:L€4 ‘:&/ m .

TS an nran gat+ U..,n,-‘fg \:,\. than 2+ moptg ar-e “.OCM ard thare

-

exists a non-e-nty onen sat

Vcidndy -

Yance VCL/ - 223 sa Y_ i1s nodhere dence, Therefore

m [~ d
<z o Y- T-URv M

is nf first catecnry,

of)/n'

)

‘-\

In this next theore~ we will zssu=2 tha+t ¥ is sercond countable,

Theoren 2,14 © Vor 2anv second courntadle tn-nlocical srace

the union of any family of npen sets of reasure zero is of neasure

zero (provided the reasure is defined Tor all orpen sets),

Proof iat %/ ={’:£:OC € i} te zny family of oren sets each
of rezasure zaro 27 let =3 ™ 2 hase for Y and g be the
(7 m=i )

measure, Now since Y iz Tindelo® for each 0 i"ﬁ, there exists

a co’lec’rio"j Cﬁ"""‘. +hat

N
s
3
O
[t
o
”
S
o]
3
0
3
b
D
1
v
4
v
n
/
1
\]
ot
b2
1
+
D
w
[$)
‘3
Jo
N
(3]
Q
3
N
W
e
3
D
o7
1do
3
%O
-

o
&
D
Q
g"'
iV
s
D
bR
”
3
AO
-
3
'
[ )
e
D
n
o+
¥
[
o+

{Back/ , 2, ....ote.ﬂ}

is conntable,. Therefore

Yo W= U 8y 'u@\\éfu =0,

Hence UQ-C 4~ a3 nullscet,

-<0-



Tanrnd Anntanlis s punnnt ha A-ittad Fram
Tar 3£ Y 2 tre nlone

Roanwb 2 42,

the hrrnatrastis A€ fka abhove +-enre-
with +ha Aigavnie *arnlasy nn 1% ("-'mmo nnt eprnrAd rf'vw*,ab’e_\ and
ebesque —aenanra OhAQ, tren for each Qcr<l,
But

s

/L(/\:“Y) = 0'

an open set of
T s *he gpen unit interval iﬂA?»”ﬂd we have
is not a resular

-
!
¥ oan

tha nrodnnt ~easnre of

= Tx7 T
) # 0s (Coserve also that

_
-
KTY. 3

0<Ae)
A(TXI) =1 =4 U

measure, )
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s:ﬁ\:_\_v:;;":) AT o F?‘rg

In +h

pdo

5 chanter wa will Aisenss ron-measualrle sets in X,
(Where 7 3= 2s in Chanter 1, 1,e,, 7 is 2 second cnuntable Poire
~a the co=nletion of 2 reeilar reasure

metris spane, a4 L wiN1

on the RBorzl se*s of ¥ suck that roirts have measure zero and

)
0
1
pY
ol
|
3
o]
3
‘D
C)
4
(c’-
‘<
o]
O,j
D
3
m
o
4
n
W
pede
3
»
-
e
B |
-
0]
+h
Yo
s }
[}
o)
(—’-
0y
3]
7
4
o]
h
*
o
s
n

'
Q
|
3
o)
s
3

™
~
N

(o

-

g
jry
(@)
Y]
ot
0n
bty
Y
0
D
x
j e
o+
b2
o
(¢]
Q
5
o+
V]
L)l
)
]
oy
i)
]
de
‘n
¥
)
wn
¢
V)
'’
3
v
-
4
+
<
o]
L ]

Troo? Iet ¥ dennte 3 torolorizzl smpzse with a countable base,
o0
say {Z4é§ , 2and let lee an omen set of K, Denote oy N{{{ ) the
=1
set of natural numbers -~ for which({f:i/. It is evident fronm

the deTinitidn of 2 basis *hkas

= Un,
MER)
Hence every oren set {(J & ¥ 3= uniquely deter—ired hy a set
of natural numhers i.e., » N(Y ); conseitently +the class of all

oren sets of ¥ has cardinality &= ¢, T"he thaore- is thus proved

for open sets ard; sine=s a3 ~lnsed sat ic the nnmnlerent of 2an



n=rn zat s tho elass nf 317 Alernd sebn bas ke same rardinal

’

ru=YAr aes +hat of qll nTen sentg, R

mha fh1lowine lamna is mroved fror *he resls in [ /O],

Tamma R ,2¢ Tha class nf unecountable clnsed set= of Y hao

v o

cardinality e,

Dran€: Tot ¥,y X such that x £ v, Then there extsis aren

=d /| sine
cets Oy, 2ni 0, such +not xeo,, yel, 2nd 0,N0, = [ =ince
nsdoret]] . Yow since X is a Baire srace ¢, 274 0. are of
; V4
seconi Cateaory’ hen~e 0 and OV are jyncountatle, Thus Ox

(the comrlarent of 0,)

O;ZDOV:”. Now points in X 2re clcsed since X is Vausdorff anad
rehy?

there are an uncountatle nu-her of noints in (C,) = 0,. So

{fZ L/O/z O

is a collection of unecountable clesed subsers of X, Clearly

this colleciion has caridinality e, Therefore it follows fronm

cardinality o with tre Aisoreta tor~lp~r on it thes Y e

- - - - ~ . .
< -~

+ .

Taiva mafwia ~oann phiak de net second counta¥le, TH 25 casy to

”~
cnn that dhs aAYagg of nerrinteRo Aloreld codta e af arvlien1i4 O

.
~
% mfenn tha Al e AT ATannd anto g of Aav?iealiie DY L3 b

rlaca of cointatle elr-ed ~ete 35 0fF crxdinalidy c;ZJ

Tha next +hree thanre~s are cenerali-ations *o X of *reorems

fornd 1r‘.£ /0 4:’%? the real nimhersz, These thanre~s 2re 4Ane %o



:‘. Fovrrotain ./1.00-‘7\[7‘7.

Theavar 3 UL: Thara ayists 2 ganrastr R o Y anch that hoth

R and T“/ meat every vnnouint2hle olnzed snbeat Af Y,

Pron€  FEy thae well orierine nrineinle and Te-ma 2,2, the
c‘!a.‘!s'? af nneontable clased suhwets of X can be indexed by
the nrdiral nunmhers less +har (’UC here UJC‘,S the firet ordinal
- havinr ¢ ~redenessors, say

bl 4
(Since we are assuring the continuu~ hg’potbesis,u{v =/].) We

may assurme that X, and *hrerefore each member of:fr y 1 each

that each merber of ?ha; nower c. let p ~and g

members of ¥ « Let p, and 19 b2 the first two members of ] dif-
ferent from y, and q . IF < ol £ L2land if ~, and g, hzve i

elerents of T~ '}écfpﬂj ?’,é’} + This set is non-errty (it has

cardinality ¢) for sach<C , and so o 278 G are defined for all

/
BN 2l gp BN B For eachoC £ 24,

n
[N
o |
Q
[t]
T
A
N
K

o+

he set B has the rroperty *hat toth it and its complerent meet

every uncountahle cln<ed set,

Nefinitinn 2,83 Any set ¥ in a torolozical srare ¥ havine

the »rorerty that hoth 3%t and j+s corplement meet every uncountable

clozed set is ralled a Fernstein geb

-

-2L=-



"Nafiaiitan A Sy 4 guhegt T nf 2ny tomnlnriagl srone Vois

o -

c21d +n have tho —masmawi Af Talys (£ 7 = 74 wheren 1 fc Anen

2nA YV e a fired ocato-ory ser of (,

Theava~ 7,71 Aavw Tevnsiedn set T 4n X fs nmon-rezasnyahle and

lacks *+he =rop-evir o
- - -

D
Ve
<+
3
(D
H
td
O
'
1 e
A

3
ol

et A e anv —easuratle survse* of R, Anv clesed sub-

set ¥ in A ~usti e conntacleéréi:ce avery uncountarle cloced se{

/
meets R jU y herce y /7> =0 E;ifce Toirts have reasure zerqjy.‘

if A s a2

~ - . 'Y
sur<et of R havirz the —rorertiy of RVaire, then 4 =2 (T,
wrers T is 2 %f ard 2 ig of first cater-orv, The sey T rst

havin~- the countin~ —---ve on its Zorel sets, Then vanishes

only on the enriy set ard is rot reg:lzr, :rnd i1Y is easy to see

hat Ler=a 2,1, Te-ra 2,2, 213 Thacre- 3,4 (yhich are 211 purely

(aa

4+orolo-feal results) kold Tor X, Hnawever, every reasurahle sub-
set of 2ny Fermstein sedt 2 read rnnit te a -~nllset AF::V non-arcty

measyrahle suhcet of —easvre qnd there 2re

.

8 ¢]
b
W
n
3
‘h
'Jo
ot
t e
<
}]



=racurahla cnhepte fow onie Saynetaln get af X Z;.V Pt dhice
cantradiate rart A Thenrer 3,7,

Thanve= Y, 0; Ary auheet AF Y with nactitive Aydew mascurae kae

2 ron-—eacsurahle subtset, Any subset of X of secornd catersorv has

2 subzet trat larlks the wro-erty of Pzire

Ca

Proaf Tf A hog =nsit+tive onter rmeasure 2nd R 45 3 Rernstein

set, Thaaram 2,7 =hows that the &

[
5
.
[

hset AN and AN 27 rannot bath

be rmezsurable, Tf A is of second ecategory, these two subsets can-

¥e will row weaken sore cf the conditiors on X for tre
following theoren,

Theore~ 2,10: Tet ¥ be a senzratrle tornlosicael smace such

that the class of 2orel seits of X is no:t equz2l to the pover set
of X, And let 1 b a rezular rmeasure defined on the Rorel sets

of X such that

for all x € X, Then there exists subsets A, 3 of X such that A

has the prorer.y of 2ai-

4
)
+

o
n

03

o
3
]

3

4]

W

n

‘s:

3

ry

ol

11

-

%)

3

[o N

td

XJo

41}

3

]

Y]

0

&

-
t

able but lacks the rroverty of Raire, Thus in X neither of these

Proof Observe thai the vroof of le-ra 1,7 uses only the pro-

'3

erties that the sn

<

ce is senavatle, its poinis have measure zero,
and *he reasure is resular, Therefore we can annly +his result
*0 ¥ o desnrnose it into two cornlereniary sets, one of measure

- - | - N -

7ern and the other of first eca*ernry, Alsn we clearly have anv

-26-
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anbset Af X Pains +he Aisinint n-tar nf +wn sets, Ane of meaanre
7avn 2nd rha othe» of first caternre, Te+ VC'f., itV rot oa
Barel set, 1,2, \/ 1 nnt reasurable with res-aect ta *he Rare)

sats, Then

where 412 = @ and A is of first catecory ard 4 (2) = 0, So

4 is non-rmeasnratrle, but has the prorerty of BaireZY—A = ﬁzﬁ_A

so A has the property of Baire; iIf A were measurable, then V woniq
be reasurable :U « While 3 is measurable, btut lac¥s the proverty

of Baire ﬂ analocous reasoh:y .

In the rreceding d

WY

s

)

1

n

sion we assured trat the nower set
of X was not equal to the Rorel sets of X, 1In general if X is

any set of cardinality c =and is any finite rmeasure defired for

X

21l tha snbsets of X with »( gX Y =0 for 211 x €Y, *hen the
[
\

followinzg theoren due +o Ula-

Q

that 4 (X) = 0, i,e, tha* 4 is Sdenticzlly zero on Y,

Thanra= 2 11 ("11amYs A Pinite mozenre gy Aefired for 2ll

subsets of a set X of eczrdinzli+y o vanishes iderntiecally 3if 4t

is ea2u=2l to zero for every one - elerent subset, .
Procf Since we are assuming the continmumm hy-othesis ¢ is
equal to the first uncorntable ordinal, 3By hyrothecis, there

exists a well orderinc o

is eountable, Let f(x,v) te a one-*to-one manning of this set

on*to a subset of the positive fntersevrs, Then f is an interer-

4 X
27—



valued fingtion dafined for 211 rairc {x,r) of ele~ants of X for
which x&Ly, 7+ hos *ha rrarerty

YC )'14- .r ‘lel_ah f‘/v'v\ 4 f(yjl‘f\

P han
—~—
A

¥or each x §n X sni/oach rozftive intecarm, define

v ={." [ <, 2lx,y) = }

We pay picture trese sats as arranced in an array

p1 o1 1 ol
7 A T N A B
&i?i?%...?j‘...
. . . v o s e o« o o
. . . o o o o« ¢

- IS
. . . s o e o . .
. . . e e e « o .
. . . v e o e « v s

with a countable nurber of rows and ¢ columns, This array hes

the followirz -~ro-erties:

e~
N
~

The sets in any row are rutually disjoint

() m™he urion of the sets in 2ny column is ennal to
X ~inus a connt=ahle set,

. / m '

To verify (2), surrose ¥ € T /] Fyr , for seme n and sore ¥, X,
s / / s

with x%=x7, Then xLy, xZ v, zrd f(x,v) = £f(x7,v) =m.

Yence x = x'by (1), Therefore, for ary fixedm, *+he sets

are disfoint, ;

To verify (2), observe +hat ¢ vy, then v helnrps +o one

-28=~



SN

AT thn cnta rY' ramaler tv-d Ane Cam GRlal o= p/x ,.\. Vanmn

- .~y

m
tha unian A the sate T (n = 1
A [ -

rantahle sat {/ v & Y} .

By (2), 40 2ry vow itheve can he 2t ~nst countatly -any

1 2yeeel A1 %0rs frov Y hy the

B ,
+ 3 /= 3~ \ ¥ :

sete for whinkh /27N> 0 fai-re , /Y $e £inite), Therefore
there car he at ot amintaRly ~anv svuch cedg in +he whole zwwav,
Since there ame pnantatably ravy aalu=-e . $2 £l 0us fhot ttases

evyigt~ 2n alp~ant x In ¥ guch that

for every n, The union o

zero, 2and the conrlementiary countable set zlso has rezsure zero,

3t}

Rermark 3,12: This *hesrem imnlies that lebessue measure

cannot e extended to 211 subseis of the real nunbers érsiﬁce
Iebesoue measure is § =finite znd sirce every me=2sure is conntably

additive | .
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CHAPTER &4

EXTENDED DUALITY

In Chapter 1 and 2 we have looked at the duality between
sets of first ca.tegory and sets of measure zero., Now we will
try to extend this duality by comparing measurable sets to sets
that have the property of Baire, Throughout this chapter we will
take X to be a second countable Balre metric space, and will be
the completion of a regular measure on the Borel sets of X such
that points have measure gero and _¢((G) > 0 for all nonempty open
sets G in X. Where the results are more generally applicable we
will note this,

The material of 4.1 to 4.4 is from [/0 :7,

Definition 4.1: A subset A of any topological space is said

- to have the property of Baire if it can be represented in the
form A = G 4 P, where G is open and P is of first category.

lemma 4,21 A set A has the property of Baire if and only if
it can be represented in the form A = P4 Q, where F is closed and
Q is of first category.

Proof If A =GA P, G open and P of first category, then

N=GC-C |
18 a nowhere dense closed set, and Q = N 4 P is of first category.
‘Let F =G, Then
A=GCAP=(GAN)AP=GA(NAP)=FARQ,
-30-



Conversely, if A = FA Q, where F is closed and Q is of first cai-
egory, let G be the interior of F, Then N = F - G is nowhere dense
P=NJ4Q is of first category, and
A=FAQ=(CAN)L Q=GCA(NLQ) =CAP,

Lemma 4,31+ If A has the property of Baire, then so does its
conmplement.,

Proof For any two sets A and B we have (A 4 B)/ - A2 B,
Hence if

A=GAP, then A7 = ¢ p,

and the conclusion follows from lemma 4.2,

Theorem 4,41 The class of sets having the property of Baire

is a (¢ -algebra., It 18 the ¢ -algebtra generated by the open sets
together with the sets of first category.

Proof Let A; = (;’,A B (1= 1,2,0¢¢) be any sequence of
sets having the property of Baire, Put G =UG; , P = UE .
and A = UA; . Then G is open, P is ‘of first category, and

G-PCACGVP,
Hence G & A < P is of first category, and A = G & (G2 A) has the
property of Baire. This result together with Lemma 43, shows
that the class in question is a (¢ -algebra. It is evidently the
smallest d’éalgem that includes all open sets and all sets of
first category.

Theorem 4,5 (dual to Theorea 4,4)1 The measure . for X

(which 1s defined to be the completion of a Borel measure on X)

.'31-



is definéd on the ¢ -algebra generated by the open sets and the
nullsets,

Proof This result follows trivially from the preliminary
lemma in Chapter 1,

Theorem 4,61 A set has the property of Baire if and only if

it can be represented as a GJ" set plus a set of first category
(or as an F_ set minus & set of first category). |

Proof Since the closure of any nowhere dense set is nowhere
dense, any set of first category is contained in an Ef' set of
first category. If G is open and P is of first category, let Q
be an Qr. set of first category that contains P, Then the set

E=G-Q1is aGe , and we have

cor= [G-8(@NQ & (r2Q) =E2[coP) N T

The set (G A P)AQ is of first category and disjoint to E., Heace
any set having the property of Baire can be represented as the

disjoint union of a Gy set and a set of first category. Conver-

sely, any set that can be so represented belongs to the g -algetra

generated by the open sets and the sets of first category; it there-

fore has the property of Baire, The parenthetical statement fol-
lows by complexentation, with the aid of Lemma 4,3,

Remark 4,731 Notice that Theorems 4,4 and 4.6 hold for
arbitrary topological spaces,

Theorem 4,8 (Dual of Theorem 4,6)s A subset B of X is

measuradle if and only if it can be represented as an Fr set
plus a nullset (or as a Gy set minus a nullset),

-32-
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Proof 1If A is measurable, then since .. 1s regular we have
for each ) a closed set F, and an open set G, such that
F,,& B< G, and «(C,-F, )4,,-%.
Put A=UF and N =E - A,
Then A is an Qr- set, N is a nullset, since
NcG, -F, + «(G, -i;,,)/-;’ﬁ
for every n, and .¢ is complete, E 18 the disjoint union of A
and N, It follows by coaplementation that E can also be repre-
sented as a GJ‘ set minus a nullset, Converseiy, any set that
can be so represented is measurable, since every nullset is mea-

surable and since the measurable sets form a 7 -algebra.

Definition 4.9:1 A real-valued function + on any topological

-
space is sald to have the property of Baire if { (T/) has the
property of Baire for every open set {/ in the reals,

Theorem 4,103 There exists a subset of X which lacks the

property of Baire, and a real-valued function on X which lacks the
property of Baire,

Proof Since X is of second category and by Theorem 3,9 in
Chapter 3 we have that X contains a set, say A which lacks the
property of Baire, Let X, be the characteristic function of
A i.e, /XA. 1 for all xe€ A, 7(4- 0 for all x # A, Clearly

Xﬁlackg the property of Baire,

Theoren 4,11 (Dual to Theorem 4,10): There exists a subset
of X which is nonmeasurable, and a real-valued function on X

which 18 nonmeasurabdle,
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Proof Since X has positive measure and by Theorem 3,9 in «
Chapter 3 we have that X contains a set, say A which is non-
measurable, If Qqus the characteristic function of A, then
clearly 7, is a nonmeasurabls function.

The following theorem and its dual are proved for X =
the real nuabders in [/0 J .

Theorem 4,12: A real-valued function £ on X has the property

of Baire if and only if there exists a set P of first category
such that the restriction of £ to X - P is continuous,

Proof Let CE."LE. ¢« « o be a countable base for the topology
of /R (the reals), for example, the open intervals with rational
endpoints, If f has the property of Baire, thep 10'(' Ur) =GB,
where G; 1is open and P 1is of first category. Put

p= UlP .
Then P is of first category. The restriction gof fto X - P is
continuous, since .
gg)=t7' (L) -P=(G;a P ) -P=G;~P
is open relative to X - P for each / , and therefore so is 5"('(])
for every open set u.

Conversely, if the restriction g of £ to the c;lplenent of
some set P of first category is continuoﬁ;, then for any cpen set:
I;z. ﬁa’K TU7) =G - P for some open set G, Since

gl S FLTUT) € g(U )y,
we have '
c-rc ¢t (L)< cgUp,
-3



Therefore f"('('/T) =G A Q for some set Q< P,
Thus f has the property of Baire,

Remark 4.13: Observe that in this theorem we didn't use

any specific topological properties of X, i.,e, this theorem holds
for any topologlcal space,

Theorem &,14:(Dual of Theorem 4,12)1 A real-valued function

f on X is measurable if and only if for each€ > 0 there exists a
set E with 4 (E)< € such that the restriction of f to X - E is
continuous, -

Proof .letTJ, UL, « « « be a countable base for the topology
of/R + If f is measurable, then for each |/ there exists a closed
set F‘v an open set G; such that

F, © S TL)c G andu (G -F; )4%
[Since,u is a regular neasurej] .

Put E= (/2(C; - F ). Thenu (E)4€. If g denctes the

restriction of f to X - E, then

g L) = £ (L) -E =g - E.
Hence 5"( ;) is open relative to X - E, and therefore g is
continuous,

Conversely, if f has the stated property there is a sequence
of sets {E;} with 4(E; )47" such that the restriction f;
of £ to X—E; is continuous. For any open set Uthere are open

sets G 4 such that

f;" (U ) - Gl' - E" (i - 1.2.0.00)0
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Fe @) — .
Putting E =/) £, ¥e have
i3 P

e U) = e (W) ) =T (W),

1<l

Consequently, ‘

£ () = [t (U0 g u[(j, @ % ),
All of these sets are measurabls, sinceﬂi(E) = 0, and therefore
f is a measurable function ZIE N £~ (TT) 1s measurable since
X is a complete measure Sp&cel} .

Remark 4,151 The above thecrem holds if X is an arbitrary

topological space with a complete regular measure 4 such that
AL 1s defined for all the open sets of X.

Theorem 4,161 In X every set of second category is the union

of ¢ disjoint sets each which lacks the property of Baire.

Proof 1If E is a set of second category, then by Theorem 2,7
. in Chapter 2 we see that E -GC% E. where each E_.is of second
category and the cardinality of A is ¢, Now each K contains a
. set which la.c-ks the property of Baire [ by Theorem 3.9 in Chapter
3] o Hence E contains a family of disjoint subsets of cardinality
¢ such that each member lacks the property of Baire,

Define in the obvious way a partial ordering on all such
families, Then it 1s easy to see that we can apply Zorn's Lemma
to this collection to get a maximal element, i.,e, a maximal family
of disjoint subs?ts of E of cardinality c each of which lacks the
property of Baire, The complement of the union of this maximal
family (with respect to E) is a set of first categongothenise

the maximality of the family would be contradicted]] .
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Since every first category set has the property of Baire/A = AA{
for each A a first category setjU and since the sets with the
property of Baire form a ¢ -algebra we have that the dis joint
union of any first category set with a set which lacks the property
of Bairs will also lack the pioperty of Baire, Hence E is the
dis joint union of a family of sets each lacking the property of
Baire and the cardinality of the family being ¢ ériake an element
from the maximal family of sets lacking the property of Baire and
adjoin to it the complement of the union of this maximal fanily:ﬂ
Theorem 4,17 as stated below is a generalization of a dis- |

cussion in [/0 j .

Theoren 4,17 (Dual of Theorem 4,16):1 1In X every set of posi-

tive outer measure is the union of ¢ disjoint non-measurabdle sets,
Proof In Theorem 3.10 of Chapter 3 we showed that any set
with positive outer measure contains a non-measurable set, And
in Chapter 2, Theorem 2,8 we saw that any set of positive outer
neésure was the disjoint unlon of ¢ sets each of positive outer
neasure, Therefore if E 1s a set of positive outer measure E :éQEJ:
where each E.. has positive oﬁter measure and card A = C, Also
each E. O A, where A, 1s non-measuradle. Hence E contains c
dis joint non—neasura$le subsets, By Zorn‘s lemma, this family is
contained 1n a maximal dis joint class of non-measurable subsets
of E« The complement of the wunion of such a family must have
reasure zero., By adjoining it to one of the members of the

family we obtain a decomposition of E into ¢ disjoint non-measurable
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subsets,

Corollary 4.18: X can bs decomposed into ¢ disjoint subsets

each lacking the property of Baire,
Proof follows directly from Theorem 4,16,

Corollary 4,191 X can be decomposed into ¢ disjoint non-

measurable subsets,
Proof follows directly from Theorea 4,17,
Definition 4,20 as well as lemma 4,21 and lLemma 4,22 are

found in [j g :] .

Definition 4,20: lLet X be any topological space and E < X,

then E is said to be of the first category at a point pe X,
if there exists a neighborhood G of p such that the set E NG is
of the first category. The set of points where E is not of the
first category (the points where E is of the second category) will
be denoted by D(E).
lemma 4,21: If B and B are subsets of a topological space,
then:
1) D(E - D(E)) = ¢
2) [o(s) = ¢] > [n(sun) = D(E) = D(E-Bﬂ
Proof The proofs are elementary. They can be found in
[ _] pages 84-85,
lemma 4,22: If X is any topological space and EC X, then
E - sn[(mﬂ U [ -(E&S’(Ez‘)ﬂ -
[E- 1mt(o(e)) ] v [x/) Int(n(s)ﬂ

is a decomposition of E into two disjoint parts such that the first
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is of the first category and the second one is not of the first
category at any of its points, Also the second member (in each
equation) of the unioa is open relative to B,

Proof Clearly this is a disjoint decomposition of B such
that the second part of the union is open relative to E[Since |
the interior of any set is open:D o Now by formula (1), the set
E - D(E) 4s of the first categorys hence by (2),

D(E /) D(E)) = D(E)
an§>

E nD(E) C D(E) = D(EN D(E)),
which shows that the set E) D(E) is not of the first category at
any of its points,

On the other hand, the set B /) (E-D(E)) is of the first cat-
egory, as a union of two sets

£/ D(E)/) E-D(E)

[ 1 [5G,

the first one being nowhere dense as a subset of a nowhere dense

and

set D(E) N (X-D(E)),
and the second one being of the first category as a subset of the
set E - D(E),
Since the set E,1 E-D(E) is of the first category, it follows
from (2) that '
D(E-(E-D(E)) = D(E)
and we have E-(m—)) C E-(E-D(E)) = END(B)c D(E) = v@:-(i:':ﬁ_n'ﬂ
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which proves that the set E-(Eﬁ) 18 not of the first category
at any of its points,

The following theorem ia a generalization of a theorem
found on page 112 in [/5' j .

Theoren 4,231 Every snbset Q of X which 18 of second category

contains a subse\t which is not the intersection of Q with a set
having the property of Baire,

Proof Suppose not; that is, suppose every subeset of Q is
the intersection of Q with a set having the property of Baire,
Now by Theorem 2,7 in Chapter 2 we can decompose Q into c disjoint
subsets, i.es Q -Q(é.//‘} Qc with each Q. of second category. Now
by the above lemma and since each Q.c 1is of second utem, there
exists for each ol € A, an O open in X such that 0. Q ¥ ¢
and 0 /) Q. is of second category at each of its points, Clearly
we can pick these Q- ‘s to be basic open sets from a countable base
for I[since X 1s second counta.ble_:zz o« Now since the Q.c 's are
dis joint and uncountable, but the Q.. 's ars countadle there
exists oc;éA such that 0. /) Qyand 0/ Qp are sets having
the above property and § ¥4 .- Since Qy 1is a subset of Q,
Qg == Q) E where E has the property of Balre, Now 0. -B is.
of first category |/ since Q Y is of second category everywhere in
o]

Also Qy =ENQ, YA a.nde»/‘)ng-ﬁtllixle
EN Qﬂ - ¢ and a
O, ~B 20 -E)NQy = (8-1Ry)=(ERy) =0 /) Qe
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But then O{C -BE OOC,QD Qﬂ which is of second category. Hence we
have a contradiction!

Therefore there exists B C Q‘auch that B " QN E for all EcX
having the property of Baire,

Recall that for any A C X, the outer measure of A, denoted
by _u*(A) = inf {A(c)/ A< G and G is open},
¥We will need the following lemmas in the proof of Theorem 4,26,
Lemma 4.24 1s found in [ /3 ). |

lemna 4,24: lat A be any set, and E; ,eee, E, a finite
sequence of disjoint measurable sets, Then

”
war[Je])=Zurang ),

Proof We prove the lemma by induction on ne It is clear for

n =1, and we assume it is true if we have n-1 sets Ef . Since

the E; are disjoint sets, we have

N
sl N5, =anes
N4 -1
wa  ha[dw] 0 Em ]
Hence since E, 1s measurable
eyl s
(M [D 5]) =axan sz an [T 5] ) =
m=1
U (ANEy) + S ux(ANE;)
1=/

by our assumption.

’
[

Lemma 4,25: Let gﬂg. be & sequence of disjoint measurable

sets and A any set., Then

oG] - artan 1,
1 =4

Proof The set function * is subadditive on P(X), i.e,
- L =4
for every sequence of sets {A,} u* (.,;7 A; )-‘-;ZlA*(A,‘ ).
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Therefore ,‘,U*(A/)E?E]) w(};{(A/)E,-))ﬁ_z;c'(AnE,- ),
let n be any integer, then by the above leu.a

[ o] = Zieans 145 ka5 ),

11
Since n is arbitrary we have

>0
,a*(A/)[UED ) = ?A‘(Aﬂ E:)e
The following theorems are generalization of a theorem found oa

page 110 in [,_ /8 j.
Theorem 4,26 (Dual of Theorem 4,23)s Every subset Q of X

of positive outer measure contains a subset which is not measurable
relative to Q, 1.8, which is not the intersection of Q and a
measurable set, |

Proof Suppose not, i.e. suppose every subset of Q 1is the
intersection of a measurable set with Q, Now u*( {x} ) =0
for each x € Q since 4( vanishes at points and all points are
measurable in X, Also y*>,for each E C Q. Let {E,n be any
sequence of subsets of Q, then by assumption E,=Q~ A, where

A

m is measurable for all n.

m(u wB)) = (T [ana, ]y s @ALTA,])
"ZA!(Q NA,) [by the above lem.]]

-Z’L(‘E

therefore _M* meets the hypothesis of Theorem 3,11 in Chapter 3

»

implying ,(*Q = 0 which is a contradictioal Therefore there exists

B, < Q such that E, ¥ Q /7 A for all measurable sets A in X,

Theorem 4,27t For any second category subset Q of X, there

exists a real valued function defined on it which does not admit
-lj2=



 an extension to a real-wvalued function on X having the property
of Baire. |
Proof By Theorem 4,23, there exists MCQ such that M ¥ Q N A

where A 18 any subset of X having the property of Baire, Define |

¢on‘Q bysl)(x) = 1 for all x € X and Sﬁ(x) = 0 for all xeQ - M,
Suppose ¢can be extended to X such that the extension has the
property of Baire, Iet the extension of ?be _denoted by f, then
¢ ! {(o,oog‘ -{x/f(x)> (8’ is a set having the property
of Baire, But ' -

g1 {(o.oo 8 7l Qe=X

which is a contradiction, Hence there exists a z'eal-fralued func-
fiion defined on Q which does not admit an extension to a real-
ﬁlged function on X having the property of Bailre,

Theorem 4.,28(Dual of Theorem 4,27): For any subset Qof X

of positive outer measure, there exists a real-valued function

defined on it and admitting no extension to a measurable function

- %, | -
Proof By Theorem 4,26 there exists N € Q such that N ¥ Q1 A

for every measurable subset.of X. Let 99 be a mﬂ-vﬂued function

defined on Q by ¢ (x) = 1 for all x € N and %(x) = 0 for all

x € Q - N, Suppose |/ can be extended to X such that the exten-

sion is measurable, let the extension of 90 be denoted by g,

| s"{(0.°0 )}- {x/s(x)ﬂg

is a measurable subset of X, But g"’{(o,ﬁ‘o )?)'/7 Q = N which is

then
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Let N be a set of positive measure, 1.6, ¢ (N) =€>0, and let
E=f ' (N). Then E has the property of Baire, Let x, , X3 0 eve
be a countable dense subset of E, [exists since X 1s second

countable and any second countable space is hereditarily sepa.rabl;ﬂ
and let Of be an open set coﬁtaining x; euch that «(£(0s IYN)&L= _2”/

Put G = uq Then G 48 an open sset and E € Go Hence

E C [(Gn E) u(c-ci]
Therefore )

K=f(E) & £f(ChB) V(G -G) C,@[}(Ov)n g]u £(G - G),
Since G - G 1s nowhere dense, f(é -G) is a nullset, and so

,u.(N)f-Z 2

i=1
But € =y(N) = %4 1s a contradiction. Hence no such function

can exist,
In the following theorem let X be as befors but 'now assugme

that the measure on X is (J ~finite,

Theorem 4,31: Let E;f be a double sequence of measurable

sets such that EU 2 E'.ﬂ' for all positive integers i and
J, and such that /2) B/ is a nullset for each i, Then there

exists a sequence of mappings ,7) (1) of the set of positive integers
into 1tsolf such that /)KU'-E;,,,,k /) is a nullset, Let
{ o be a sequence of measurable sets each of finite mea-
=/
e

sure such that E O Skfor all K and KL;{EK- ) ¢ ﬁ-—possible
since /( is d"—finitej) o For each i and k thers is a positive

‘ /
integer nK(i) such that ¢/ (E//'/1A,/,') 27 )Z/‘r‘zf‘ « Hence

. 2 !
et \TJE’/”H")A 8. )< )L .
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a contradiction. Hence there exists a real-valued function defined
on Q and admitting no extension to a measurable function on X,

Theorem 4.291 1) 1If every subset of a set E € X is measur-

able, then E is a nullset, 1i) If every subset of E has the
property of Baire, then E 18 of first category.

Proof follows directly from Theorem 3,9,

In this section we have shown eight examples where the
property of Baire has played a role analogous to measurability.
In Chapter 1 we proved a duality theorem between the sets of first
category and the'nullsets of X, After seeing the dual results
stated in this section between the property of Baire and measurability
it is natural to #sks can the principle of duality be extended
to include measurability and the property of Baire as dual notions?
That is, 1s there a one-to-one mapping f of X onto itself such -
that £(E) is measurable if and only if E has the property of Baire,
and such that f(E) is a nullset if and only if E is of firstr
category? (This second property is a consequence of the first,
and by Theorem 4,29 and 1ts converse.,) It was shown by Szpitrajn

Zf-lé?:] that such a mepping is impossible for /@ . A yroof

appears in [?/0:]. We extend Oxtoby's argument to prove:

Theorem 4,303 There does not exist a one-to-one népping f

of X onto itself such that f(E) is measurable if and only if E has
the property of Baire,
Proof Suppose f is a one-to-one mapping of X onto itself such

that f(E) is measurable if and only if E has the property of Baire,
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Put E= U E,: My 7) o Now let A be any
closed subset of E such that ((A) < °°, Thea there exists N such
that AC E,, for all n=2H, Then
G C U By N B

Hence ,(ENA) £ )4 for all sufficiently large k. Thus E/A is
a nullset for every A a closed subset of E with finite measure,
Therefore, by the regularity of _«( we have 4 (E) = 0,

Theorem 8,321 It is not in general true that: If E/- is

)
& double sequence of sets having the property of Baire such that

E,'J' o B for all positive integers i and j, and such that

[+
;/‘L, El'd' is of first category for each i, then there exists a
sequence of mappings n (1) of the set of positive integers into
jtself such that /)ku;E H 'm"‘,//) is of first category, That is,
the dual of Theorem 4,31 is false,

Proof Let r/ be an enumeration of all rational numbers,

[] / 1/,

and let E,'J -.(r;-/Jl ,r/-l- 4).
This doudle sequence satisfies the hypothesis of the proposition
in question, For any mapping n(i) of the positive integers into
positive integers, the set (/;E;,n(i) is a dense open set, For
any sequence of such mappings nx{i), the set L/ E v (7))
is residual, 1,8, its coaplement is of first category. 3But this
is contrary to the stated conclusien,

Remark 4,33s Although we have shown that the extended prin-

ciple of duality is not valid as a general principle, it has a ¢
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certain heuristic value, For exaaple, many properties of measure
depend only on properties of the class of measurable sets that are
shared by the class of sets having the property of Baire. 1In

such cases the principle may suggest (even though it does not provo)
& valid dual, One then seeks an abstract theorem that includes

both concepts,
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1f ard o-lv {17 2+ loagsgt nre of +he cats A or R 13 of ~easure gern,

Pranf - TE A 4x3) = 0 =4f0) ¢ Y72V +hen either

a08) =0 om PIR) =0,
Tha converse is +rivial,

Mheavan £,11 Mial AF “heawve- £.10Y; 4 ~vplundl ant 1yD Se

of first zategory in ¥YxY if ard only i a2t least one of the sets

Proof Tf 7 s a dense oren subset of X, then GxV is =a

dense onen subset of YxVY, Yernce i3 ic nowhere dencse in ¥YxVY
whenevre» A iz rowhere dancse jn Y, Zince

((jg;\ v =

[}
C
o
.<
[¥é)
S~

it Tollows that AP is of first category whenever A s of first
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exist open sets (f 2md Vicuen that [fr Vet znda (YxV  is \
of second catacory [{hiq follows From Thapmenr ’?.1?]] « Ry
Theorem 5,11, hoth (Janri V=r9 of sernrd ezatecory, PFor 211 x ir

u y Eg 2 V—- Pye By Theoren 5,7, P is of firs: caterory for

211 x eveert a get of firgt cateonrv, TheveTnre Ex ig nf <erond

rateonry for 3l1) v in un.v"e-“*. a set of first natersory, Thris

imrlies that = 1s of second catezory fer 271 x in a set of second
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CHAPTER 6

CATEGORY MEASURE SPACES

A category measure space is a regular Hausdoiff Topological
space with a finite measure (( defined on the g -algebra Afy of
sets having the property of Baire, and such that «((E) = 0 if
and only if E is of first category. In such & space the extended
principle of duality is not only valid, it is a tautology (See
Chapter 4 of this paper for a discussion of the extended principle
of duality.)

In this chapter, after some general results about category
measure spaces I will consider three ways of generating category
measure spaces, First I shall shox how to define a topology

(the density topology) on certain metric spaces in terms of a

measure, to make the measure a category measure, Secondly I will
discuss category measure spaces obtained from Boolean measure spaces,
that is, spaces obtained from finite measure algsbtras by zeans of
the Stone representatica theorem, The third class of category
measures 1s obtained by means of the Gelfaud-Naimark rerresen-
tation theorem on the structure space of [:f’of a finite reasure
space. The later two provide examples of coapact Hausdoiff

spaces that admit a category measure,
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As. GCeneral Considerations

I will begin by stating several needed definitions and look
at some results stating when sets of first category are necess-
arily nowhere denss, The following material is taken from [://:].

Definition 6,11 A topological space is called category

measurable 1f it admits a category measure not identically zero,

Definition 6.21 A topological space will be called regularly

category measurable if it ad=aits a reéular category measure,

‘Definition 6,31 A topological space is quasi-regular if for

each non-eapty opea set t)rthere exists a non-empty open'set W?"

such that V< /., (Hers |/ stands for the closure of /)

Theorem 6,41 Let X be & category measurable space and let/ji
be the union of all open sets of first category in X, The
following assertions concerning X are equivalent:
1) some catesgory measure in X is regular;
2) every category measure in X is regular;
3) X -_7is a quasi-regular subspace of X,
In particular, a category measurable Baire space is regularly
category measurabdle 1if an& only if it is qQuasi-regular,
Proof Suppose that /( is a regular category measure in X,
Let U be any non-eapty open set contained in X -=,J’ o Then U
is of second category and &« (U )>0. let F =X - T, Then
L(F) =< _1{X)s Since s is regular there-exists an open set T4
such that F< W and _u( TV)=<=_((X)s Put V= X —=T1”, Then
T 1s an open set, VeX -Wec U,
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and o (1) = (X)) = u(TV) = 2dX) = et 1) =0,
Hence U/ is a non-empty open subset of (7 and T7<U. Thus
1)‘1nplies 3).

Suppose that Y = X -,f7 1s a quasi-regular subspace of X,
Let ,¢ be any category measure in X, and let F be any closed sub-
set of X, If F does not contain Y let ‘F be a maximal disjoint
family of non-empty open sets G such that G< Y - F, The family
? nust be countabdble, say ,'3: - gc;}. The maxipality of{G;}'
and the quasi<regularity of Y imply tha.ti _E?G; is dense in Y -~ F,

2
Hence ,L,/GI- differs from Y - F by a nowhere dense set, and
= o>
/((X-F) - ﬂ(Y-F) .Z, /[(G/o) o
1= -

For any € =0 there is a positive integer n such that ‘G
m
= 46> su(xF) - €,
= - _
Hence G = ,/)(x - G;) 1s an open set containing F and,
=

200) =) = (& Ty Yot (®) + s (1F) P u(G) P 4,
2
On the other hand, if F contains Y, then X itself is an open set
containing F, and 4/ (X) =4 (F). Thus 3) implies 2). Cbviously
2) implies 1),

Theoren 6,53 If X is a quasi-regular category measurable

Baire space then every set of first category in X is nowhere dense,
Proof By Theorem 6.4 there exists a regular category measure

A in X Let §R;} be any sequence of nowhere dense sets, with

P= UHl; ° Then/a,(i—, ) = 0, and for any€ =0 there exists a

8 Gs ¢ of set h that N» < and . Y= 5

equence ¢ § of open sets suc ; G and 4(G; )=

for each 1. LetG-UG; o Then G is open and ¢ (G) -/u((})é;é



Since P< G it follows that «(P)% € for every € =0, Hence
U(®B) =0, «(F7 "7 ) =0, and therefore 777 18 an open
set of first category. Because X is a Baire space it follows that
‘P—/'/ i3 empty, that is, P is8 nawhere dense,

Theoren 6,61 The following assertions concerning a category

measurable Baire space X are equivalents

1) every sst of first category in X is nowhere densej

2) w(E) = w(E) = ,(,((E/*'S for every category measure /{
and for every set E having the property of Bairej;

3) _(B) = _(E) (oru(E) =u(E
measure ¢/ and for every set E having the property of Baire,

%) ) for scme category

Proof Assume 1) Then any set E having the property of Baire
is of the form G4 X, where G is open and N is nowhere dense,
Hence G-N<cE £EcEc GUT
Since . (G -H ) = (G « N ) for any category measure,/ it
follows that 1) dimplies 2), Obviously 2) implies 3),

Assume 3). Sincey(E) = L(E ) if and omly 1£,/(E)) =4 (E”),
either version of 3) implies that y/((E) =« (E ) = ((E”) for every |
set E having the property of Baire, In particular, if P is any
set of first category then ,/(P) = y(P ) = 4 (F/'S = 0o Hence
P is an open set of first category, therefore empty, and P is
nowhere dense, Thus 3) implies ),

The following exa.aplu shov that in a category measurable
Baire apa.ce_tha.t is not quasi-regular it may or may not be true

that every set of first category is nowhere dense,
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Bxanple 6,7t let X be an uncountable set, In the first

example let X have the cofinite topology (i.e. the class of elosed
sets consists of X and itas finite subsets), In the second ex-
anple let X have the cocountable topology (i.s. the class of closed
sets cousists of X and its countable subsets), Clearly both of
these tepologiés are not qQuasi-regular since the only closed set
a non-enpty open set is contained in is X, Alsc in either case X
is a T, -space, but not Hausdoiff, and the sctﬁ of first category
are the count;ble sets, the sets having the property of Baire are
the countable sets and their complements, and every non-empty
open set is of second category., Hence in elther:case X is a Baire
space, If we define 4(E) = 0 or ome according as E or X - B is
countable, Then | is a category measure in either space, but not
regular, In the first example the nowhere dense sats constitute
& proper sﬁbclass of the class of seis of first category. In the
second example every set of first category is nowhere dense,
The following discussion results in a necessary and sufficient
condition for a metric space to be a category measurable space,
First observe that it follows froa thepsrem that 1; any
-etrizabio ctteéory reasurable Baire space every set of first ca-
tegory is nowhere dense, '

Theorem 6,81 In a mstric space X every set of first category

is nowhere dense if and caly if the set D of isolated points of X
is dense in X,

Proof Suppose the open set X -Dis non-enpty, For each
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positive integer »: let E./n be a maximal subset of X - D with the
property that the distance between any two points of E,, 1s at
leasg equal to Z%. Then Eﬁ) is closed, Since X -'3'contains no
isolated points, each of the sets E, 1s nowhere dense, Hence the
set P -Ugm i1s of first category in X. The maximality of the
sets Qq) imnplies that P is dense in X --5; Rence X = D is a non-
empty open set contained in P, and P is not nowhere dense, Since
this contradicts that each first cateégry set is nowhere dense it
follows that if every set of first category is nowhere dense then
the set D of isolated points of X is dense in X. (In case D is
expty, the saaé reasoning shows that a metric space contains a
dense set of first category if and only if the space is dense in
itself,)

Conversely assume that D is devnse in X Llst F -‘.g? N’- where
F i8 a set of first category and each N/ 1is nowhere dense. To
shox F nowhere dense is equivalent to showing that F does not
meet D, But eachlﬁ} does not meet D, therefore, each N; does
not meet D, Hence F does not meet D, Therefore F is nowhere dense,

The following theorem follows easily from Theorea 6.5 and

Theorem 6,8,

Theorer 6,91 A metrizadble space is a category measurable
Baire space if and only if the set D of isolated ﬁoints of X is
a countable dense subset of X, In this case the category measures
in X are those and only those measures that are positive for each

point of D and vanishes on X - D,
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Corollary 6,101 Lat X bs the space defined in Chapter 1,

1,60y X 18 a second countable Baire metric space, and z¢ ¥ill de
ths completion of a regular measure on the Borel sets of X such
that points have measure zero and (G) > 0 for all nonempty open
sets G in X, Then X is not a category measurable Baire space,

Be Example: Density Topology

For our discussion of a density topology we will take X to
be a second countable; Baire metric space and /& non-atomic (i.e.
points have measure zerv) completion of a regular measure oa the
Borel sets such that 4((G)>0 for each noneapty open set G in X,
. We will also impose two additional conditions on X, Let
N(x,r) -Z(y/ a(x,y) < r} and
D(x,z) ={7/ &(x,7) £ v§
where J is the distance function for X, Then we will assume:
1) for all €>0, there exists § >O.such that (D(x,{)) < ¢
for all x £ X,
11) there exists X, a positive real number, such that
(D(x,3n)) =< K L((D(x,n)) for all n, and for all x €X,

Q Definition 6,111 A measurable set E < X is said to have

density d at x if / ,(/(Z{EA D(x %)}

exists and is equal to d, We will denote the set of points of X

at which E has density 1 by #(E),

Remark 6,121 Observe that the density (if it exists) of any

measurable set at any point is a real number between rzero and one,
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Now we will prove a generalization of the Yitali covering

theoremy My proof will make use of the techniques found on page

109 of[l/ J

Theorem 6,13 (Generalized Vitali Covering Theorem): Let ACX,

and {Q%M a family of closed cells covering A in the sense of
Vitall, 1.0., for every x € A, x is contained in a D -~ of arbitrarily
O
emall measure, Then there exists a sequence { D”TS of disjoint
closed cells of {DQCS\rit.h )
(A - (./D/n ) =0,
m=)

Proof Observe that _«( is ¢/ -finite since X is Lindelof X
is second countable and by assumption (i) above, Therefore we
may assume that A and all D, are contained in a set of finite
measure, Also we may take this set of ﬁnite neasure to be a
closed cell, therefore we may assure the sup { r/ Dr (x,1) é?Q(S < ©9,
Let D, be arbitrary and assume we have picked Dl""’ D, If
AC D/ oo uD we are done. Otherwise there is a point
of A not in this union, and since {;-ls a Vitall covering of A,
there 18 a member of { Dac} which is disjoint from the union,
Define dm = S“P{/,l(n{)/ :[ is disjoint frond.;(l/DJ} .
)lo:‘choose Dys (x,n” v Iy, ) to be any D disjoint from
,{/D; and euch that
V=1

Ay (X, y0 Ty y) )2 Hy,
snd if QCO (y,8) i8 any other member of {D‘[} dis joint frondl;/lnd-
with /,((D,(o (ro8) )=4d, , then r=s. We shall shov that
4+ = UDp;) =0, 1D, =D, (x,,,), the define
v=i
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7 7’
D/n -Dm (xm' 31'/,,)-

Hence by assumption (ii) there exists a positive nuaber L such

that /,((D/) L,u(D ) for all n. Since the Dy 's are disjoint

and contained in a set of finite measure we have _;j ,a(D /) £ 0O

s =/

J=s
hence 2 /,((DJ)A >, :
Now if ,{,(*(A - @D:)> 0, then for some integer J

Z,a(D )< u*(A - Jg D;)e

Xyl

It follows that there is an x €A - ;O p; , Wt not 1n D7

Y ¥/

y,
Since x & }(;// D ‘the Vitali covering property implies that there
= Y,
P < -
is 2 pé{Doc} with x<Dand DN( /D) =4
Now suppose D were disjoint from D, L/ + o+ « &/ D), « Then %-?-’,u(n),

and therefore _:((D,,, )= 4% (D). Thus if D were disjoint from

all the D, e would have

A0 22 . (D)>0

for all n [,(,((D) > 0 since open sets have positive neasmj .

and soz (D5 ) = , a contra.diction. Thus D is disjoint

from OD s but is not disjoint from L/D' Let m, be the

J=1 Y

first index with D D,,7 ¥d., of coursemob)/ s By our choice

of Dy ,u(n )Z 48y, o But DAD = form = 1, 2, «euy

M, =

1, so0 % I"/"(D)' therefore the radius of D < the radius

of D”"o ¢« But by the definition of ?{D-ﬂ} and ;Df;fit follows that

' 7 D and hence x € D_. o Sincemo>x/ and we had assumed that

o

x¢ UD' we have a contradiction.,

Yti
The following theorems are generalizations of theorems in [_?OJ
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Theorer 6,14 (ledesque Density Theorem)s For any measurable

set E <X,
ALE ADF(E))=0
Proof It is sufficient to show that E - § (E) 18 a nullset,
a‘inco
d(&) -5 C &~ §(&)
and E “is measurable. Since s is 0 ~finite we may assume that
A(B)£ ©©, Furthermores,

PEADLHS -

" AL
vhere Am'{x“ ol D05 %) 7)o
Hence it is sufficient to show that Am is a nullset for every

positive integerm. Putting A = Am we shall obtain a céntrad.ictim
from the supposition that _¢*(A)> 0., (Here y* stands for the
outer measure generated by s/ as defined in Chapter 2),

If _y*(A)> 0, there exists an open set G of finite measure
containing A such that ¢/ (G)< ;’f:fﬂ. Let & denote the class of
all closed cells D(x,r) such that D(x,r) € G, and

. _,(,({E/)D(x.r)} = (1-”-:—) ,(/(,ZD(x,r)},
Observe that (1) Eincludea closed cells of arbitrarily small
measure about each point of A, and (1i) for any disjoint sequence

{g‘(xm, T, )} of nembers ofE. we have

,wfa ~UDy(x,, £,) 5> 0.
Property (11) follows from the fact that

d o0 -
A
Z WDZu{Dy(x 505 = (1-Pal0)Lur (a).
But property (i1) coatredicts Theorem 6.13,
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Lot us write A~ B wvhen &« (AoB) = 0, Thies $s an equivalence
relation in tho class,f’ of measurable sets in X, The following
theorcms states that the mapping ¢ x,y-éf g2y be regarded as a
function that selects one member from each equivalence class,
Moreover, it does so in such a way that the selected sets con-
stitute a class that includes the empty sat, the whole space, and
is closed under intexrsection,

Theoren 6,15t For any measurable set A, let F(A) denote the

set of points of X whers A has density 1, Then § has the follow-
ing properties whers A~-'B means that A OB is & nullset:

1) g(a)~a,

2) A-“B ixplies #(A) = ¢(B),

3) #(§) = # and ¢(x) = x,

&) g(anB) = §(A) N 4(8), "

5) AC B implies F(A)C@(B).

Proof The first assertion is just Theorem 6.14, The
secan;i and third are immediate coasoqnenoosvot the definition of
#o To prove 4), note that for any closed cell D we have

D-(AnB) =(p-A)W/(D - B).
Heace _u((D) - _«(Dn ANB) & 4 (D) <u{DNA) +uU(D) - u(DNB),
Thevetore  w/0nA) , w[DAB) | 2 #(D1AN8B)

44 (D) A D) (D)
Taking D = D(x,h) and letting h-> 0 it follows that §#(A)/ #(8)cd(anB).

The opposite inciusion is obvicus, Property 5) is a consequence of‘.
8),
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Definition 6.161 Let 7, be the class of «(-nullsets in X and

let,{ be the o -algetra of measurable sets in X, and for every
E€,[” let §(E) de the set of points of X at which E has density 1,
then we define.

| {I- {d(A)-N/AéJ(, Né“?ZB',

Theorer 6,171 “] is a topology in X,

Proof let )denote the nullset, Since el property 3) of
Theorem 6,15 implies that X = F(X)- HPand &= F(Q)- & Vboth be-
long to iI. By 4) in Theorem 6.5 we have

ZB(A‘)-ND/) E(Al)—NJ - 9’[5,/\ A;J - Ei, v xg .
Hence ﬂ'is closed under finite intersections. To show that iis
closed under arbltrary union, let

> '?”(‘cc)"‘oc ao<e[7}, AES] NOC67Z/.
be any subfanily of J . Let b denote the least upper. bound of
the measures of finite unions of members of";:{';. and choose a se-
quence g%m} such that /(,((M(jA{m) - l) o (Notei h may be
equal to o), Put A -ML? Ac+ Then Aé;g and the definition of b
juplies that A - A€7] for everyoCe [ 1+ Since A ~(A--A)C A,
1t follows froa 2) and 5) of Theorem 6.15 that

g(A) < $(A) for every oC .
Putting N, = MQ [N‘,CMU(A{M 4(A(mﬂ. we have xoe%
o

and Amﬂcg[ﬁ(&(m)-ﬂ&ﬁjcq%@(&()-ﬂoa C #(A).

The extremes differ by a nullset, and therefore

Yp s | = gnrx

for some N<){ , by the completeness of /(e
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Definition 6,181 The topology { will be called the density

topology for X We will now look at some of itc properties,

Theorem 6,191 A set N C X is novhere dense relative to

if and only if NE Every nowhere dense set is closed,
Proof If Ne?, then X-N = §(X)-N &/ , hence each member of
Nl is closed, If Nc7 and §(A,;) - N, C N for some A/Ef and
N, €7 , then §(A,)e) and so J(A,) = § by 2) and 3) in Theorem
6.15, Hence §(A, )-N, = §, and therefore N is nmrhe're dense,
Conversely, if F is closed and nowhere dense, then X-F = g(A)-N
for some A<’ and Ne7/, hence F belongs to,ff. Since
Fodr) - [#F) -F]e T
the nowhere denseness of F implies that @(F) cg(F) ~F. Hence
g(F) = g, by 1), 2), and 3) of Theorer 6,15, Therefore F ~ ¢,
that s P</) o Thus,”/ is identical with the class of closed
novhere dense sets, Since every nowhere dense set is contained
in a closed nowhers dense set, and every subset of a member of
2 welongs to 7! , it follows that every nowhere dense set is

closed,

Theorem 6,201 A set A <X has the property of Baire if and
only if A€ S’ |

Proof If A<S’, then A = $(A) A (J(A)2A). Since g(A) € T,
and $(A) & A€ 7] , 1t follows from Theorem 6,9 that A has the
property of Baire, Conversely, if A has the property of Baire,
then A= [¢ B)-ﬂAM for some B&,§ , some N/ ,
and some set M of first category, By Theorem 6,19, M belongs to
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‘72 o and therefore A é',f?l.

Dafinition 6,211 Regular opea set is a set that is equal to

the interior of its closure. Any set of the form A is regular
open where & and A” represents the closure and complement of A
reSpevctively.

Theorem 6,221 A set G< X is regular open if and only if

G = §(A) for some AES7,
Proof If A€S7, then §(A) is open, and the closure of §(A)

is of the form §(A)UN for some N&7//, by Theorem 6,19, Let
ﬁ(A,)-!i, be any open subset of g(A) UK. Then

gA )-8, cBA,) = g(FA) N)) < F(FA)UR)c F(A).
Thus @(A) is the largest open subset of F(A)UN. This shows that
@#(A) is equal to the interior of its closure, that is, g(A) is
regular open. Conversely, if G is regular open, then G = F(A)-K
for some ;(:,_51 and X €7/, Since @g(A) A[ ¢(A)-Nj=is contained in
N, we have @(A) ’v[a(A)-Nj- Go Since G and @g(A) differ by a no-
where dense set, and both are regular open, it fellows that
G = g(A),

Theorem 6.23 ({I is a Hausdorff topology.

Proof Observe \that Z[ consists of all measurable sots’ A
such that A has density 1 at each of its points. Hence j includes
all sets that are open in the ordinary topology, consequently it
is Hausdorff,

Theorem 6,241 The density topology in X is regular.
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Proof let x be a point of a set AGEZT} Then A has density
i at Xe Por each positive integer ,) , let En be an oxdinary-
closed subset of D(x.z# )/ A such that
(8,) 2 10 AN S p0xr £ 4]
1f F=$x$ U JE, , then @(F) € F< A Since A

31 =

has density 1 at x, |
Ju{/)/)’,;f)ﬁfj > /a/{f;q;, ~—>/
S LEE T W70 AS ‘

Thersfore F has density 1 at x, and so xef(F), Thus §(F)

is a izz-neighborhood of x whose izy-cloaure is ccntained'in F,
and therefore in A, '

Remark 6,251 Hence ,; is a category measure when restricted

to any open cell of finite measure, Relative to this density

topology, the extended principle is valid, and it is no longer

possible to decompose X into a nullset and a set of first category
0Qeﬂmdzy .

There are two more aspects of density topology which I wish
to consider, First I would like to consider the class of ap-
proxiaately continuous functions on X, Secondly I will show that
X with its density topology is not normal, hence it is not metri-
gable AZ‘See Theorem 4,3,3 1n [0 ] ;7 .

" Definition 6,261 A functien f from X to a topological space

is said to be approximately continucus at a point p if, for every

. epen set G containing f(p), the setﬁﬁrfc) has metric deasity 1 at p,

Theorea 6,271 The set of real-valued functions which are

continuoue in the density topology is precisely the set of
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approximately continuous functions on X (with respect to its
original tepology.)

Proof Clear,

Remark 6,28: Nishiura has shown [jé;:] that the density
topology for Euclidean m space, E ,, 1s the coarsest topology for
which its approximately coatinuous real-valued functions are con-
tinuous,

This is done by showing, that the density topology for E ,
is completely regular, and hence coincides with the weak topology
induced by its real-valued continuous £unctionsZZFSee page 115
of [;26{7 40 . .

I do not knox whether the lére general density topology de-
fined above is completely regular, nor whether Hisbiura;sbresult
is valid here,

I want to now show that the density topology for X is not
noreal, In order.to do this we will first need to state some
definitions and to prove several lemmas,

Definition 6,291 let X, Y be any topological space. Then

the family A FP(X) of Baire functions is the smallest family of
functions f1 X-—>Y +that contains all continuous functions and
all pointwise limits of pointwise convergent sequences of functions

of BF(X)s A function is said to be of Baire class 1 if it is the

linit function of a sequence of continuous functions,
The followlng theorem is found in Henstock's book Linear
Analysis on page 89[ ¢ ],
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Theorem 6,301 If (X,ﬁg) is a Baire space, (Xifggz) is a
pseudonmetric space, and f € .f»}ff(x, )» there is a 7< X of the
first category in‘j:. such that f 1s continuous in XI-ZZ,

The following corollary is a special case of the above

theorenm,

Corollary 6,311 Let X be defined as usual, Then if f is a

real-valued function oa X of Baire class .1, then f is continuous
except at a set of points of first category.

Definition 6.32: Let f be any real-valued function on X.

For any open cell N(x,r) in X, the quantity

W/ (N(x,r)) = sup f(y) - inf £(y)

YEL (X 1) Y E Mk r)

is called the oscillation of f on N(x,r). For any fixed x, the
functiongfn(x.r)) decreases with r and approaches a limit

W(x) = him_ w(N(x,T))s

N0

called the oscillation of f at x,

Remark 6,331 Observe that (~/(x) is an exteﬁded real-valued

function on X such that f is continuous at x €X if and only if
t&(x) = 0.

The following lemma is a generaligation of a result of
Goffman and Waterman/ S _J,

Lemma 6,34t An approximately continuous function f from
X to a metric space is of Baire class 1,

Proof Suppose f is not of Baire class 1, Then there is a
nonempty perfect set R such that, at every point of R, f is dis-

continuous relative to Re R is a Baire space, For every /M,
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let R be the subset of R at which the oscillation of £ is not
less than 4 « At least one R contains an open cell K in R,
Then the oscillation of ¢ relative to K is not less tm 2 K= #
at every point of K. Since the closure of any open subspace of
K i1s perfect, the space X is of the second category,

Cover £(X) by & countable set of open cells of radtus °/3 .,
The intersection of f(X) with one of these, having center 4, has
inverse Tdense in a pgﬁect subset PCK, Llet T, be the set of
p € X for which(j(f(p). & )>%;°—C. Then T, 1is a.lso dense in P
since the oscillation of f relative to P is not less than 2«Cat
every point of P and T, 18 dense in P,

Let {P’”} be a countable dense subset of T, which is dense
in P and let {@E be any sequence of positive numbers converging
to zero. Since T, has density one at each of its points, there
is a sequence of open cells, {ng v PLEN, 'ml—i;aéu (N, ) =0,
such that the relative measure of T, in Q, exceeds 1 - é/n' The
set V of points belonging to infinitely many Qs is residual re-
lative to Po In the same fashion we can construct another residual
set -\é_ corresponding to 7; .

The set V =V, V, is residual relative to P, .The upper
metric densities (here the upper metric density ofta measurable

1p, 1)
setJ’Cx at a point p is ;’%1‘-9“‘”51\'::}3’,‘) %]u(ﬂp.ﬁ)&ﬁ)
of T, and T, are equal to one at every point of Vo Thus for
any p € Y we have simultanecusly
Atle), § )= Fana a(2(e) )&= Y3
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and so V is empty. This contradiction establishes our result,
¥e now prove that X with the density topology is not normal,
Our proof will be a generalization of the one found in [ & :7 .

Theorem 6,351 X with the density topology is not 2 normal

topological space,
| Proof let A, B be disjoint subsets of X which are dense in
~§h° usual topology of X, and such that _.(A) = (B) = Ozgjuiaxaiaﬂ'
Then A, B are closed in the density topology for X, Suppose the
density topology for X is mnormal, Then there is f & F_ such that
£1 X—> [0,1] and £(A) = 0, £(B) = 1, But them f is discontin-
uous everywhere (in the usual topology for X), But this contradicts
that f is of Baire class i,

C. Exanple: Boolean Keasure Svpaces and Norrmal Measures on Stonian

Spaces
I now show.that a Boolean space gives rise to a catﬁgory

measure space when its dual algebra is a measure algebtra, The
following results are found in L7 :7 .

Definition 6.36:1 A Boolean space is a totally disconnected
(L.es the closed-open sets constitute a base) compact Hausdorff
space,

Definition 6,371 The algebra of all closed-open sets in a

Boolean space X is called the dual algetra of X,

Definition 6,385 A Boolean space is a Boolean J -space

if the closure of every open Baire set is open,



Definiticn 6.39: A Boolean mezrure space is a Boolean /-space
X together with a normalized measure (/{(X) = 1) on the ( -algebtra
of Borel sets in X, such that non-erpty open sets have positive

msasure and novhere dense Borel sets have measures Zero,

Remark 6,401 The completion of a Boolean measurs space is a
category measure space,

Definition 6,413 A measure algebra 18 a Boolean J -algehbra

A together with a positive (i.,e. the empty set is the enly element
at uhiéhub(tgkes the value zero), normalized measure .( om A,

Lemma 6,421 Every measure algetra is coaplete (1.e. every
subset has a supromunm),

Proof Ses page 67 of Zf‘7 :7 .

Lemma 6443t The dual algebtwa A of a Boolean space X is
coaplete if and oaly if X is complete,

Proof Se.page 92of [ 7 | .

Lemma 6,41 Let £ be a Boolean ; -epimorphism from a / -al-
gebra B to a (7 -algebtra A, and let /(‘bs & normalized measure on
Ae If y(a) = «(£f(q)) for every ¢ in B, then }/is a nermalized
measure on B, The kernel of f is included in the set of all those
elements ¢ of B for which (qQ) = 0; the kernel coincides with
that set if and only if the measure ,( is positive,

Proof The proofs of all the assertions of the lemma are im-
mediste from the definiticms,

Lexma 6,454 If/q is a positive, normalized measure on A, then
f naps B onto A. 1f V(S) = 4(£(S')) for every.S in B, then
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is a normalized measure on B such that non-empty open sets have
positive measure and such that the sets of measure zero are exactly
the sets of first category.,

Proof The algeltra A together with the measure ({ is a mreasure
algebra, and therefore complete by Lemma(,4)It follows that the
space X is complete by Lemma 6,43, and hence that every regular
open 86t in X 1s both closed and open., This proves the first sen-
tence of the lemma, The second sentence is an immediate consequence
of Lemma 6,44,

Our main theorem is an immediate corollary of lemma 6,45,

Theorem 6,461 The dual algetra A of a Boolean space X is a

measure algebra if and only if X is a Boolean measure space,

¥e will now consider anocther method for cpnstructing category

measure spaces, Then I will show that this method and Boolean

.neaaure spaces are really just different views of the same con-
cept,

I will) prove a category result whose measure-theoretic analog
follows trivially as a corollary. The following définitions; re-
mark, and three theorexs are found in [:51-;] o

Definition 6,471 A compact Hausdorff space X is called

stonian (or extremely disconnected) if disjoint open sets in X
have disjoint closures,

——

Remark 6.481 X 48 stonian if and only if Ijbpen implies U

is also open,



Proof Let X be stonian and U be open. Then the disjoint
open sots'Drgnd (-ff)/ have dis joint closures, PBut the equalities
— —_— — P
UN(T) =fand UN(U) =4

‘implies (72?)/ = (fjv/. Hence Uis open, Conversely assunme

that open sets have open closures, LetT;Z.-({ébe open and dis-
Joint, SinceU is open U,'/JFTZ- g, But by assumption T]';_is
open, hancef;?}jiji' ¢,

Definition 6.491 A family gf,c} of functions from (*(X)

where X is stonian is said to be bounded above if there exists

f, € (C(X) sueh that £, < £, for all<< , We call f, an

upper bound for the family, If £,< g whenever g, is an upper

bound we call f, the least upper bound and write f, = VI, One

defines bounded below and greatest lower bound similarly, The

lattice C(X) is said to bve complete if évery faai*y of functions

which is bounded above has a least upper bound, AQ equivalent

definition could of course be given in terms of lower bounds,
The following theorem is due to H.H..Stone [:/7227 .

Theorem 6,501 Let X be a compact Hausdorff space, Then X

is stonian if and only if the space C(X) of all real-valued contin-

uous functions is a complete lattice,

Definition 6,511 A regular measure 4 oa a stonian space X
is normal if for each bounded monotome increasing met Z( 1;43 of

real-valued functions in C(X) we have

Lom £l =
dfa&( fw whees =V
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Definition 6.523 The support of a measure .( is the comple-

ment of the largest open set of /( -mcasure zero, I will denote
the support of «( by supp( ).

Theorem 6,531 A regular measure «( is normal i{f and only

if it vanishes on 21l nowhere dense Boral sets,
Proof See [ 2 ] .

Theorem 6,541 The support of a normal measurs is both open

and closed,

Proof Let F be the support of ¢ and U/ = interior of F.
Since F is closed U< P and since X is stonian U is open. Hence
TUcU , 80 U-_:[-j—. Now 1:- T is novhere dense, &0 by
Theoren 6,53

X =U) =u(X - F) + ((F-T) =0
Thus F = Uby the definition of the support.

Corollary A,55s If «( is & normal measure and supp (/u.) =X

then (((A) = 0 if and only if A is nowhere demse,
‘Proof Follows directly from Theorem 6,53 and Theorem 6,54,

Remark 6,561 The completion of finite norral measure .. on

a stonian space with supp(i< ) = X is a category measure space.

Theorems 6.57: Let X be a stonian space, If f is a bounded

Borel measurable function on X, thea there exists a unique con-
tinuous function g such that
x: [ £(x) - g(x’)/> 03’
is of first category,
Proof See page 104 of [-2-__7 .
-



The following is the measurs-theoretic analog of the above
theoren,

Corollary 6,58: Let X be a stonian space and (( & normal

neasure on the Borel sets of X, If f is a bounded Borel measurable
function on X, then there exists a unique continuous function g
such that
Cl(Fxi [ty -ex)/> 05 ) =0
Proof By the abﬁve theoremn, there exists & unique cantin-
uous funetion g such that 2Tx’ | £(x) - &(x) /;>0:§ is of first

Acategory. But then this set is of measure zero by Theorem 6,53,

In Halmos's book lectures on Boolean Algebras he discusses
the properties of a Beolean measure space, VWhereas in W, G, Bode's

book The Banach Space ((S57), Bade discusses the properties of a

stonian space with a normal msasure « on its Borel sets, If in
addition «((X) = 1 and supp(//) = X, then both of these spaces
yield category measure spaces if we consider their unique comple-
tions [[/3:7 Feep,13.9 4 and [ /7] Thecrermt3]), ve
will compare these two approaches (for constructing category
measure spaces) and show that they are the same, First of all
observe that an extremely disconnected Hausdorff space is totally
. discornected Azﬂﬁ%942«.$ku/%/ [iézy. Also a Boolean measure
space is extremely discoanected [[lcqs1y G, 72, [ ewans 6.‘/@, Therefore
& Boolean measure space is topologically the same as a stonian
space,

We will now show that a Boolean measure space and a stonian
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space with a normal measure on its Borel sets such that supp( «) = X
and «((X) = 1 are equivalent concepts. Let / be the measure in the
definition of a Boolean measure space X, then /( is a normal measure
[7/; eccern . S 3] o The fact that #(G)> 0 for all ncnempty open
sets G in X implies that aupp(/u) = X and by definition 4(X) = 1.
Conversely assume X is a stonlan space and (( 18 a normal mea-
sure on the Borel sets of X such that supp(//) = X and «(X) = 1,
Then /(/((A) = Q) if and only if A is a nowvhere dense Borel set[T/m,é,L}
Ca, €. 55]. Hence /{&)=0 for all nonempty open sets & in X.
Therefore the concepts of a Boolean measure space and a stonian
space with a normal measure ,( such that ,(X) = 1 and sapp(y ) =X
are really the sare, ’
I will now show that Stonian spaces with normal measures
such that the support of the measure is the whoie epace (1,0, 2
Boolpea.n reasure space) arise from Laoof any finite measure space,

Theoren 6,59: Let (I.J/,a) be any finite measure space,

then there exists i cb.tegory measure space (ﬂj% V) such that
/1 is a compact Hausdorff space and
17 (%, 0) S(2)

where = is a isometric *- isomorphism, (See [ 3 | for the
definitions concerning B*-algebras,)

Proof L (X3 4) = (/1) where /] is a compact Hausdorff
space by the Celfand-Naimark Theorem. (See [ 3 | ), Ve
wi1l first show that /) 1s stonian, Let { r ac}bo a bounded

monotone net in L°° (X, .4/,4(). then ff‘_c}ha.s a wsak* convergent
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sulnet ZZ_ izmediate corollary to Banach-Alaoglm Theorea (sce//3)
and by Problem 211 on page 133 in [52 Oj ]. But this implies
that {f‘f—s is weak* convergent [since {‘f(fj( is monotone Z] ’
i.e, ;fé‘(‘j(%f € I°(X,4,4)s However it follows easily [ since
U is finito] that £ = VY., Therefors /) is Stenian [‘by Theorem
6.50 and since L"’D(X,é'/,u ) g((JQ) is an order-preserving isomor-
phisul] o Iff e’x.”(x.,«}”/,u). let £7 be the image of f under
the above isomorphism, Then I(f’) = ﬁdu 18 a positive linear.
functional on (“(/)e Therefore thers exists a unique finite
regular neasn’e/ﬁ on the Borel sets,éﬁ of /) such that I(f’) = fE\;{
for a1l £ =((2) [See the Riesz Representation Theores om page
182 of [/ [[ls Obvserve that £, >f in the weaks topology of L(X, d.)
implies fccjdﬂﬁﬁsd,u .for all géfo(l/,;:,_u) [by Riesz Repre-
sentat$én Theorea in Chapter 11 of [/3jj. Now since 7¢ L'(x/,?/ @)
¥e have facdﬂ“?ﬁéd o Therefors [)is a normal measure [since
Ld(I,J/_u ) g(’(/L)Z]. I clain that supp(d) = /] . [tupp(/( )=/)
if and only if for all £ (L), £20, £74 o.ﬁ’dﬁpo. But
1fﬁ’d/1A- 0, 4ce, supp( &) ¥/ , then f = o.:B \

Therefors if we let (_/2/&; ») bs the unique completion of
(/l/@,z?) [\“‘ Chapter 11 of [—/3_7] then (/1,4)) is a category

measure space,
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