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ABSTRACT 

A series of computer programs have been developed 

which establishes a set of a-parameters for a binary sys- 

tem by analyzing phase diagram and solution thermodynamic 

data.  The a-pararaeter for the v phase is defined as 

a, ~ = £nYi /(xj , where Y-,    is the Raoultian activity co- 

efficient for component 1 in the v phase, and x~ is the 

mole fraction of component 2.  The a-parameter is assumed 

to be a linear function of inverse temperature and a 

polynomial function of composition.  Experimental quanti- 

ties, such as integral heat of mixing, activity data and 

phase diagram tie lines, are used to determine the coeffi- 

cients of the a-parameters.  Two linear programming tech- 

niques, simplex and least squares, are compared for use 

in this coefficient determination.  It is found that the 

least squares technique has several distinct advantages. 

The synthesis aspect of the programs is capable of using 

the a-parameters to calculate a phase diagram or to calcu- 

late the solution thermodynamics of a binary system at any 

temperature and composition.  The development of this ap- 

proach is examined in detail and its use on the isomorphous 

antimony-bismuth system and the eutectic lead-tin system 

are shown as examples. 



INTRODUCTION 

The gathering, analyzing, storing and retrieving 

of all types of solution thermodynamic data and phase 

diagrams is a monumental task.  There have been many ap- 

proaches and attempts to accomplish this feat.  Most of 

these attempts have only had limited success.  This thesis 

deals with the development of a set of computer programs 

which should aid in the analysis, storage and retrieval 

aspect of this task. 

The computer programs, which have been developed, 

use many of the relationships which exist between solu- 

tion thermodynamics and phase diagrams.  These relation- 

ships have been exploited so that the programs can analyze 

all the available experimental data in such a manner that 

a simple parameter can be obtained.  The retrieval, or 

synthesis, of thermodynamic quantities and the calculation 

of a phase diagram is made via a computer program.  One of 

three different methods may be used for the phase diagram 

calculation.  Synthesis of thermodynamic quantities at 

temperatures and compositions not yet experimentally de- 

termined can also be made.  This type of retrieval system 

is enhanced by the simple parameteric formalism which is 



used.  The simple formalism also makes storage either with- 

in the computer or in tabulated form easy. 

The thesis is divided into eight sections.  Seven 

of these sections show thermodynamic relationships and 

the development of this method.  The eighth section illus- 

trates the use of this approach on an actual binary system. 

Each of the first seven sections deals with one of the im- 

portant aspects of the overall problem.  These seven sec- 

tions are: 

Section 1: Experimental Data and Compilations—a 

review of available types of experimental data, both solu- 

tion and phase diagram, and also an examination of present 

storage systems. 

Section 2: Equations and Relationships--the deriva- 

tion of basic equations and their use in the relationship 

between phase diagrams and solution thermodynamics. 

Section 3: Formalisms—a review of formalisms used 

to model solutions, a justification for the simple formal- 

ism which was adopted, and the general equations needed to 

relate the solution thermodynamic properties of a binary 

system to this a-parameter. 

Section 4: Synthesis of Phase Diagrams—a review 

of other investigators' work on the use of thermodynamics 

to calculate phase diagrams. 

Section 5: Analysis of Phase Diagrams--a review of 

other investigators' work on the use of phase diagrams to 

3 



calculate the thermodynamics of either the binary system 

or one of the components. 

Section 6 : Analysis and Synthesis Using the ^.-para- 

meter—the combination of analysis, synthesis and the 

simple formalism into a consistent unified package.  The 

experimental data are analyzed to determine the coeffi- 

cients of the simple formalism; the model is then used to 

synthesize phase diagrams and to synthesize solution ther- 

modynamic quantities. 

Section 7: Linear Programming Techniques—an exami- 

nation of some of the techniques which are used to analyze 

the experimental data in order to obtain the coefficients 

of the a-parameter. The two basic techniques, simplex and 

least squares, are compared using the heat of mixing data 

for the lead-tin system at 1050°K and the entire antimony- 

bismuth system as examples. 

The final section in this thesis shows an example 

of these methods for a binary system.  The eutectic lead- 

tin system is examined in detail. 



SECTION 1: EXPERIMENTAL DATA AND COMPILATIONS 

Data 

For pure components and binary systems there are only 

a limited number of thermodynamic quantities which can be 

obtained directly from experiment.  For pure materials the 

experimentally determined quantities are transformation 

temperatures, heats of transformation, and heat capacity 

data.  For mixtures there are basically two types of ther- 

modynamic data which are commonly obtained from experiment. 

These are activity data for either component in a solution 

and the integral heat of mixing for the pure components 

going into solution.  These data are measured by various 

techniques, each with its own advantages and disadvantages. 

From the activity data and the integral heat of mixing 

data, other solution thermodynamic quantities can be ob- 

tained.  The partial molar Gibbs free energy is directly 

related to the activity.  A combination of activity data 

at different temperatures together with the integral heat 

of mixing data can yield partial molar enthalpy and par- 

tial molar entropy quantities.  If the partial molar quan- 

tity is known for only one component, as a function of 

composition, then the Gibbs-Duhem equation can be used to 

obtain the partial molar quantity for the other component. 

5 



So, from these experimentally determined quantities a com- 

plete set of solution thermodynamic data may be obtained. 

Phase diagrams can be shown to be intimately re- 

lated to the solution thermodynamics of a binary system. 

These diagrams show which phase or phases are stable under 

a given set of conditions.  For metallurgists the most 

common type of phase diagram is the temperature versus 

composition diagram for a binary system at constant pres- 

sure.  The pressure is usually chosen to be one atmosphere. 

The phase diagrams for binary systems are usually derived 

by experimental techniques.  These experimentally deter- 

mined diagrams can also be considered as experimental 

data for the system. 

Assessment and Storage 

Once all this experimental data has been obtained 

there are two problems which arise. One is the critical 

assessment of the data.  The other is storage. 

Since relationships exist between different thermo- 

dynamic quantities, the experimental data can be checked 

for consistency.  Rand and Kubaschewski  have recently 

described methods that can be used to obtain a consistent 

2-3 set of thermodynamic data.  Kormlov    has tried to intro- 

duce the use of statistics into the assessment of experi- 

mental data.  The overall goal of any assessment process 

is a consistent and reliable set of data. 



Storage problems are enormous.  The most common 

method used to store these data has been books.  The data 

4-5 for pure elements   , and the phase diagrams and solution 

6-9 
thermodynamic data for binary systems    have been com- 

piled into many volumes.  There has also been critical 

assessments   made on these sources of data.  Problems 

exist with this method of storage.  If an inconsistent or 

incorrect set of data is published, it cannot be corrected 

until the next edition of the volume appears.  New experi- 

mental data must also await the new edition.  The storage 

of all these data requires very large books because of the 

immense amount. 

It is because of these problems of consistency, new 

data, and storage, that the idea of a computer storage and 

retrieval system has been generated.  There has been some 

11-12 
work done along these lines already     , for the storage 

and retrieval of data for pure materials. 

The computeir programs used in this investigation 

were created to aid^ in the assessment and retrieval of 

solution thermodynamic and phase diagram data for binary 

systems.  One program analyzes all the available "good" ex- 

perimental data, both solution thermodynamic and phase 

diagram, to obtain the coefficients of the simple formal- 

ism.  The coefficients are consistent with all these data. 

From this formalism the experimental data can be calculated 

as well as the interpolation or the extrapolation of values 

7 



for thermodynamic quantities at other conditions which have 

not yet been experimentally determined. 

It is upon experimentally determined data that the 

whole computer assessment and retrieval system is based. 

The program utilizes basic relationships which exist be- 

tween these experimentally determined quantities as well 

as some mathematical techniques to arrive at the coeffi- 

cients of the formalism.  All the experimental data as 

well as data at other conditions are stored in and can be 

easily obtained from this simple formalism. 



SECTION 2: EQUATIONS AND RELATIONSHIPS 

Basic Relations 

There are four equations which are basic thermody- 

namic relationships that will be needed throughout this 

thesis.  These basic equations are: 

1. The definition of Gibbs free energy, 

G = H - T-S (1) 

where     G is the Gibbs free energy, 

H is the enthalpy, 

T is absolute temperature, and 

S is the entropy. 

2. The relation between the partial molar Gibbs 

free energy of a component and the activity of that com- 

ponent . 

G1 = G° + R-T-£n a (2) 

where     G, is the partial molar Gibbs free energy of 
component 1, 

G, is the Gibbs free energy of pure 1 in its 
standard state, 

R is the gas constant, and 

a, is the activity of component 1. 

3. The equality of partial molar Gibbs free energy 

of a component in two different phases which are in equi- 

librium. 

9 



Gx
n = G]_V (3) 

where the superscript indicates the phase and the subscript 

indicates the component. In this case the phases are r, and 

v and the component is 1. 

4. The Gibbs-Duhem equation for partial molar Gibbs 

free energy. 

x1 dG 
V + x2 dG2

V =0 (4) 

where x, and x„ are the mole fractions of components 1 and 

2, respectively. 

Equation (4) relates the partial molar Gibbs free 

energy of one component to the partial molar Gibbs free 

energy of the other component in a single phase region of 

a binary system. 

Another useful equation for the activity of a com- 

ponent is 

al = Xl Yl (5) 

where Y-t is the Raoultian activity coefficient of component 

1.  Hence, Eq. (2) can be rewritten as 

G1
V = G1

VO + RT- (in   x±   +   in   y   ) (6) 

If the system were ideal then the activity of each compo- 

nent is equal to the mole fraction.  In equation form 

ax = x1 (7) 

for an ideal system.  This would cause y, to equal unity 

10 



by Eq. (5).  Equation (6) is a slightly more meaningful 

equation than Eq. (2), since it shows both the ideal solu- 

tion situation and the deviation from this ideal case. 

This deviation from ideality is what makes solutions both 

interesting and difficult to model. 

Excess Quantities 

Since the composition of an alloy is usually known 

then the mole fraction is easily obtainable.  For this 

reason it is usually more convenient to work with excess 

quantities.  These excess quantities are equal to the value 

for the given solution with the value for the ideal solu- 

tion subtracted from it.  The excess partial molar Gibbs 

free energy of component 1 is equal to 

51XS = 51 " 51ID (8) 

where G,   is the partial molar Gibbs free energy of com- 

ponent 1 for an ideal solution.  Using Eqs. (7) and (2) 

G1
ID = G° + RT«£n x± (9) 

Substituting Eqs. (9) and (6) into Eq. (8) yields 

GX
XS = G° + RT* (In  x1 + £n y±)    -   G° - RTJ>n x1 (10) 

which simplifies to 

G1
XS = RT-£n y (11) 

11 



If the excess partial molar Gibbs free energy were ex- 

pressed in terms of enthalpy and entropy then 

GX
XS = H XS - T-S1

XS (12) 

which is analogous to Eq. (1). 

In an ideal solution, the partial molar enthalpy 

of a component is equal to zero.  Therefore 

_ ye    —      — TF) 
Hl    = Hl ~ Hl (13) 

H1
XS = H (14) 

The partial molar entropy of a component in an ideal solu- 

tion is 

S1
ID = - R in  x (15) 

So the entropy term in Eq. (12) is slightly more compli- 

cated than the enthalpy term.  Rewriting Eq. (12) consider- 

ing Eq. (14) yields 

G1
XS = H1 - T-S1

XS (16) 

Equation (16) shows that the excess partial molar Gibbs 

free energy can be expressed as the sum of the partial 

molar enthalpy minus the excess partial molar entropy 

times temperature.  If both the partial molar enthalpy and 

excess partial molar entropy were independent of tempera- 

ture, then the excess partial molar Gibbs free energy 

would be linearly dependent on temperature.  Using Eqs. 

12 



(11) and (16) one obtains 

—     — x^ 
R'T"2n y  - H  - T'si (17 

or 

s xs H 

R 

T;   XS 

(18) 

So if S,   and H, are constants, which is true in many 

cases, with respect to temperature then In  y.   has an in- 

verse temperature dependence as shown by Eq. (18).  Any 

formalism which is used to model a solution should have 

this inverse temperature dependence incorporated within 

it. 

Mixing Quantities 

An important quantity which is essential in the 

-■rj 

determination of which phase is stable under a given set 

of conditions, is the Gibbs free energy of mixing. 

. Mix,v _ 
AGl-2   " Xl 

r  v  -  r  ° Gl   Gl + x. 52V - =2° 
(19) 

Mix v where AG,  '  is the Gibbs free energy of mixing for the 

v phase in the 1-2 binary system.  In a binary system 

xl   -1   x2 (20) 

Substituting Eqs. (2) and (20) into Eq. (19) yields 

AG Mix,v= (l-x2) -R«T-£n a^   +   x2«R«T-£n a. v (21) 

13 



Remembering Eq. (5), one obtains 

AG1^2,V = (1_x2)•R'T'en (1-x2
) + x2-R-T-?n (x9) 

+ (l-x2)-R-T-£n YX
V
 + x2«R-T«£n Y2

V       (22) 

The first two terms in Eq. (22) make up the ideal Gibbs 

free energy of mixing 

AG_Mix,ID,v =   (l-x2) -R-T-£n (l-x2) + x2«R-T-£n (x2)   (23) 

The last two terms in Eq. (22) can be grouped together and 

it is called the excess Gibbs free energy of mixing. 

GMix,XS,v = (1_x ) .R.T.£n Yl
V + x2'R-T-£n y£ (24) 

Equation (24) is nothing but 

QMix,XS,V = (1_x2)   .  ^XS,V   + ^  .  ~2XS,V    (25) 

So Eq. (22) can be summarized by 

. Mix,v _   Mix,ID,v    Mix,XS,v AG1_2   - AG1_2      + G1-2 (26) 

,       *lix,ID,v   , _Mix,XS,V       .    ,        /00>    , where AG,  '     and G1  '     are given by Eqs. (23) and 

(24), respectively. 

Phase Diagrams and Gibbs Free Energy of Mixing 

Equation (26) can be used to calculate which phases 

have the minimum free energy of mixing and are therefore 

stable at a given temperature.  A method that can be used, 

to determine phase stability, is to plot AG,^~ as a 

14 



function of composition for each and every possible phase. 

Mix The phase which has the minimum A G" „ curve will be the 

stable one.  In Figure 1 it is seen that at the constant 

^" ix 
temperature, T, , the v phase has a lower AG", ~ , than the 

n phase, over the entire composition range.  At this tem- 

perature v is the stable phase. 

Complications begin to arise when at a given tem- 

perature two different phases are stable.  Figure 2 shows 

Mix the AG,_„ curves for both the v and n phases at temperature 

T~.  This figure indicates that at T„ , n has the lower 

Mix Mix 
AGy__ between 0<x„<x' and v has the lower AC,"   between 

x'<x„<l.  It might be thought that the n phase would be 

stable for 0<x_<x' and the v phase would be stable for 

x'<x„<l, but this is incorrect.  For the two phases to 

be in equilibrium and in contact with each other, they 

must obey Eq. (3).  To obtain the values for the partial 

molar Gibbs free energy of a component in solution the 

13 
following equation   may be used. 

AGi = AG'^2 + (l-xi)  dx
1    (for i=l,2) (27) 
i 

where, AG . = G . - G° = R «T • Jin a . (28) 
ill l 

The values for the AG.'s can be obtained very easily from 

Mix 
a curve of AGT_2 

bY a simple graphical method.  A tangent 

Mix 
to the AG, „ curve is drawn and where this tangent inter- 

sects* Lue axis for the pure component, the value of the 

15 



partial molar Gibbs free energy for that component is ob- 

tained.  For example, at the composition x~ = x0 in Figure 
— \) 

1, the tangent line is drawn and the values for AG„  and 

AG. , in a solution of this composition, are obtained. 

This graphical method is simply the use of Eq. (27). 

When two phases are stable at a given temperature 

Mj_x Eq. (3) and Eq. (27) imply that the tangents to the AG", „ 

curves for each phase must intersect the pure component 

axes at the same point.  In order for this to be true the 

tangent line for each phase must be the same line.  This 

line is called the common tangent.  The points of tangency 

yield the compositions of the phases which are in equili- 

brium with each other at the particular temperature.  The 

common tangent drawn in Figure 2 shows that the n phase 

of composition x~  i-s i-n equilibrium with the v phase of 

composition x„ , at temperature T„.  If this method is 

carried out at a large number of temperatures then a phase 

diagram can be constructed.  The common tangent method for 

the free energy curves yields the compositions at the end 

&£   the tie-lines on a phase diagram.  As seen in Figure 3, 

the tie line at temperature T_ for the two phase, n + v, 

field fixes the compositions of the two phases at x„^ and 

x„ .  These compositions were the same as those obtained 

from the common tangent method in Figure 2.  So the stabili- 

ty of the n phase at T„ is for CKx^x n and the v phase is 

stable for x„ <x„<l.  The region x2
ri<x„<x v is where the 

16 



two phases are both stable and are in equilibrium with 

each other.  In this two-phase region the n phase has com- 

position x~  and the v phase has composition x„ . 

In order to calculate a phase diagram it would be 

necessary to know the value of the compositions for the 

two phases which are in equilibrium. To do this calcula- 

tion on a computer the basic equation, Eq. (3), must be 

used. First some manipulations of Eq. (2) must' be per- 

formed. Using the form of Eq. (2) found in Eq. (6) the 

following four equations can be obtained. 

G]_V = G1
V0 + R-T- (£n x1 + £n y ^) (29) 

G1
n = G^0 + R-T-Un x± + In y   r]) (30) 

G2
V = G2

V0 + R-T- (Jin x2 + £n y2
V) (31) 

G2
n = G2

n° + R-T-Un x2 + In y ^) (32) 

If Eqs. (29) and (30) are combined into the form of Eq. (3) 

then the compositions are no longer variable but are of 

fixed values.  These values, at a particular temperature, 

are the compositions at the end of the tie-lines--x;?  and 

x2
n.  So 

GX
V0 + R-T- (£n(l-x2

V) + in  y±
V)   = 

G1
n° + R-T- Un(l-x2

n) + In  y^) (33) 
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Similarly for component 2 

G2
V° + P.-T-(£n x2

V + In   y^   ) 

=   G2
n° + R-T- (Jin x^ +   in  y^) (34) 

Rearranging Eqs. (33) and (34) one obtains 

Gl
V0 - Gl

n0 + R-T-Un Yl
V - In   y^) 

n 
= In 

1-x. 

1-x, 
(35) 

and 

G2
V0 - G^0 + R.T-(£n y2

V - ^n Y2
n) 

In 
x, n 

x. V 
(36) 

The first two terms in Eq. (35) can be written as 

G/° - G/0 = AG.0^v) 

-L       i. 1 / 
(37) 

The term AG?'r|~*"v'is called the lattice stability para- 

14 meter.    It gives the free energy change that would re- 

sult from the pure component going from one phase to an- 

other at a constant temperature.  AG,  ^   is the lattice 

stability parameter for component 1 going from the n phase 

to the v phase.  Similarly for component 2 

G2
V0 - G^0 = AG2

0(ri"v) (38) 



Substituting the lattice stability parameters into Eos. 

(35) and (36) results in 

fl-x "] 
AG1

0(n*u> + R-T-Un Yl
V - >.n  Y^) = fn    2 

1-x. 
(39 

and 

AG2
0(T1"V) + R-T-Un y2

V - £n y^) = An 

r            \ 

x   n X2 
V 

X2 

(40) 

knowns.  The two unknowns are x,  and x„ 

Equations (39) and (40) yield two equations with two un- 

it these two 

simultaneous equations are solved then the values for the 

compositions of the two phases would be known and a tie- 

line could be drawn on the phase diagram for the tempera- 

ture at which these compositions were determined.  If Eqs. 

(39) and (40) are solved for a range of temperatures then 

the different tie-lines can be pieced together to form a 

portion of a phase diagram.  If this procedure is also done 

for other two phase fields, then the entire binary phase 

diagram could be determined. 

There are three problems that occur in trying to 

solve Eqs. (39) and (40).  The first is what type of re- 

presentation should be used for the £n y. terms.  The 

value for these terms must be known for a temperature and 

composition range.  Even phases which are not stable in 

the range must be given a value for the In  y. terms in 

order to solve the two equations.  The representation which 
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is used should also conform to Eq. (18).  The type of re- 

presentation which was chosen for this thesis is discussed 

in the next section.  The second problem encountered in 

using Eqs. (39) and (40) is what value to use for the lat- 

tice stability parameters.  To calculate the true value 

for the parameter it would be necessary for the pure com- 

ponent to exist as both phases.  For solid materials dif- 

ferent crystal structures are different phases.  Most 

often a pure solid material only exists in one type of 

crystal structure; but to truly calculate the lattice 

stability parameter it would be necessary for the pure 

component to exist in both crystal structures.  For ex- 

ample, pure copper does not exist in a body-centered 

cubic phase.  If the iron-copper system were to be stud- 

• J    ■ ±. T J i_ T-        -i        ^   A^ o(fcc-^bcc) led it would be necessary to have a value for AG_ J Cu 

Since this transition of pure copper from fee to bec does 

not exist, the value which is used for the lattice stabili- 

ty parameter must be assumed.  Theoretically this value 

could be calculated from Quantum Mechanics or Pseudo- 

potential techniques but unfortunately these fields have 

not yet progressed far enough to allow actual numerical 

values to be obtained.  Further discussion of the lattice 

stability parameter is found in Sections 4 and 5.  The 

third problem in solving Eqs. (39) and (40) is one of 

mathematics.  Because of the natural logarithm functions, 

these equations are non-linear in the two variables, x9
V 
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n 
and x ' .  Solving non-linear equations is a very difficult 

problem and the computer methods used to overcome this 

problem are discussed in Section 7. 

The basic relationship between phase diagrams and 

solution thermodynamics can be summed up by Eqs. (39) and 

(40).  Analysis uses these relationships to extract use- 

ful information from experimental phase diagrams while 

synthesis uses these relationships to calculate phase 

diagrams. 
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SECTION 3: FORMALISMS 

Simple Models 

Over the years there have been many types of em- 

pirical formalisms proposed to represent thermodynamic 

data in a solution.  The formalism which is chosen to 

model a system must be selected with great care.  The 

desired criteria for the formalism is two-fold: 

1. The formalism should be as simple as possible. 

2. The formalism should truly model the system. 

The second criterion usually requires a more complicated 

type of formalism.  The balance between these two con- 

flicting criterion yield the best results. 

The simplest of all formalisms is, of course, the 

ideal solution.    This is where the activity of a com- 

ponent is equal to its mole fraction.  In a binary system, 

ideal behavior implies that both components obey Raoult's 

Law over the entire composition range.  For an ideal binary 

solution the integral heat of mixing is equal to zero, i.e., 

AH^'ID = 0 (41) 

Also the entropy of mixing for an ideal binary solution is 

ASMix,ID = _R.(x^ £n    + x^ £n   ) (42) 
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Unfortunately this simplistic approach is not very repre- 

sentative of the true behavior of solutions.  There are 

very few binary systems which are even close to being 

ideal.  In spite of this, the ideal solution is a good 

starting point.  The excess functions were devised to show 

the deviation of the solution from ideality.  Most of the 

other proposed formalisms try to represent the non-ideal 

behavior of the solution. 

The next type of model which has had some degree 
1 c 

of success is the regular solution.    For a binary solu- 

tion to be considered regular 

R«T-£n y      =   C±_2    (x2)
2 (43) 

and by use of the Gibbs-Duhem Equation, Eq. (4), 

R-T'ln   Y2 
= c!_2 (xx>2 (44) 

[See Appendix A for the derivation of Eq. (44).] 

C, ~ is the regular solution interaction parameter, and it 

is a constant for a particular system.  From Eqs. (43) and 

(44) 

Mi y  Y*-! Gl_2    = x1
,R*T*iin y1   +   x2-R«T-£n Y2        (45) 

= *i C!-2 
x
2
2+ X2 Cl-2 Xl2 (46) 

= x±  x2 C1_2 (x1   +  x2) (47) 

23 



G1-2'XS " xl x2 Cl-2 <48) 

The regular solution model also assumes that the excess 

entropy of mixing is equal to zero.  Thus the excess free 

energy of mixing in terms of enthalpy and entropy is 

GMixfXS = AHMix _ T.ASMix,ID (49) 

Mix ID where AS,  '   is given by Eq. (42).  The regular solution 

model implies that the integral heat of mixing is parabol- 

ic with respect to composition.  The largest absolute 

value for the integral heat of mixing will be found at 

the composition x, = x„ = 0.5.  In real solutions this 

parabolic integral heat of mixing is very seldom found. 

This model is also somewhat oversimplified. 

17 The quasi-chemical model   is used to derive the 

regular solution interaction parameter from first prin- 

ciples.  It utilizes the bond strength between atoms and, 

also, the average number of bonds each atom has between 

like and unlike nearest neighbors.  The final result re- 

duces to the regular solution model.  The only difference 

is that the interaction parameter, C,_„, is given in terms 

of other more fundamental parameters. 

After the regular solution model the next most com- 

plex one is the subregular model.  In this model 

G^'XS = C^^ (xx)
2 x2 + C2l_2(x2)

2 xx (50) 

2^ 



where Cl, ~, and C2, „ are constants.  This model was mtro- 

1 8 
duced by Hardy.    As can be seen in Eq . (50), there are 

tv/o constants which must be evaluated.  This model depicts 

real solutions better than either the ideal or regular 

solution models.  In order for a solution to be modeled 

by Eq. (50), the integral heat of mixing need not be para- 

bolic as it must for the regular solution formalism.  The 

maximum absolute value of the integral heat of mixing can 

be displaced towards one component or the other and still 

the solution can be represented by the subregular model. 

Simple Power Series Models 

19 Margules   was the first to assume that the natural 

logarithm of the Raoultian activity coefficients for each 

component in a binary system could be expressed as a power 

series expansion in terms of the composition of the other 

component.  That is 

1      2   1      3   1      4 
in   Y1  = A1  x2 + jA2 (x2)  + jA3(x2)  + -gA^(x2)      +...(51) 

and 

£n Y2 = B1 x1 + i-B2(x1)
2 + i-B^x^3 + ^(x^4 +...(52) 

where the A.'s and B.'s are constants. Since any function 

can be represented by a polynomial, this type of formalism 

is quite natural. In order for Eqs. (51) and (52) to hold 

over the entire composition range, it is required that 
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A, = B. = 0.  If the cubic and higher order terns are 

neglected then A„ = B„.  A  will be a parameter which is 

inversely proportional to temperature and this Margules 

expansion is simply reduced to the regular solution formal- 

ism with C, ,> = Ap/T.  There is a definite relationship 

between the A.'s and the B.'s in these two equations. 

This relationship comes from the Gibbs-Duhem Equation. 

The exact relationship is dependent on where in the expan- 

20 sxon the series is terminated.  Esdaile   has shown what 

these relationships are for a two to a six term Margules 

expansion.  He also shows that for each additional term 

used in the Margules expansion, there is only one addition- 

al parameter which must be specified.  For example, a one 

term Margules expansion needs to have only one specified 

parameter, A„ , and this formalism is directly related to 

the regular solution model.  A two term Margules expansion 

needs to have only two parameters specified (e.g., A„ and 

A.,), the other two parameters (e.g., B„ and B.,) can be ob- 

tained from the Gibbs-Duhem Equation.  This two term ex- 

pansion can be shown to reduce to the subregular solution 

model. 

Because of the simple mathematical nature of poly- 

nomials all power series representations for the excess 

partial molar Gibbs free energy of mixing or for the natural 

logarithm of the Raoultian activity coefficient of either 

component can be directly related to a Margules series 
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expansion.  This is dependent on the fact that the formal- 

ism obeys the Gibbs-Duhem Equation.  If the model does not 

obey the Gibbs-Duhem Equation then it really should not 

even be considered for use as a representation, because 

the Gibbs-Duhem Equation can be derived from fundamental 

laws of thermodynamics and must be obeyed.  The power 

series or Margules-type formalism is found throughout the 

literature in many different forms.  The formalism used 

21 by Wriedt   is 

£n y- = a. (1-x.)2 (53) 
'111 

where 

al = Al + A2 (5* + xl) (54) 

a2 = A1   +  A2 (1 - x2) (55) 

with A1 and A„ being constants.  This is nothing but a 

two term Margules expansion and is directly equivalent to 

the subregular solution model where the constants, A.'s, 

are inversely proportional to temperature. 

22 The model used by van der Toon and Tiedma   for the 

excess Gibbs free energy of mixing is 

GMix,XS = ^ (1_Xi) F (Xi) (56) 

where 

F (Xl) = A±   + A2 x1 + A3 (xx)
2 (57) 
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with the A.'s being constants.  This model is directly 

equivalent to a three term Margules expansion, if the 

Margules parameters are assumed to be inversely propor- 

tional to temperature.  In both models there will be only 

three arbitrary parameters which must be determined for 

the system under consideration. 

23 Sharkey, Pool and Hoch   have used a formalism for 

the integral heat of mixing which is parallel to a three 

term Margules expansion.  Their model has 

AH'^2 = Ax (xx)
2 x2 

+ A2 Xl (x2)2 + A3 (xl)2 (x2)2  (58) 

where the A.'s are constants. 
1 

24 Cho   has also proposed a formalism which is nothing 

but a simple power series and is directly related to a 

Margules expansion with the .temperature dependence being 

specified.  Cho's model is 

G^X'XS = Xl x2 W(T) (59) 

where 

W(T) = R-T-(A x2 + B x ) (60) 

and 

A = In  y1   /    (x2)
2 (61) 

A is represented by the simple power series 
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3-1 (62) A  =   I     C.    (x 
1 = 1  J 

where the c.'s are constants.  The value for B can be ob- 

tained from the Gibbs-Duhem Equation. 

Hiskes and Tiller25"27 also use a formalism which 

reduces to a form of a power series.  They use a Taylor 

series expansion about both a particular temperature and 
i  " 

a particular composition.  They define the partial molar 

Gibbs free energy of a component as 

II   M 
G. = G.° + R-T-An (x.) + I        I      Bmn (T-Tc) 

n=l m=l 

n~1    (-1)^ '-^ 
u        n-q q=o    ^ 

n x q c 
n-q   n x.  ^ - 1 

l 
(63) 

where the 3  's are constants and the points of the expan- 

sion are x  and T .  In spite of the complicated form of 

Eq. (63), if both T  and x  are chosen as zero, then the 

formalism reduces to a simple power series.  Caution must 

be exercised when using this model, since it is derived 

from a Taylor-series expansion.  The only region where the 

model is truly valid will be in a neighborhood of the 

points about which the expansion is made.  Using this form- 

alism at points away from the expansion may necessitate 

the use of many terms in the series.  If the termination 
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of the higher order terms is done incorrectly, then the 

evaluation of the function away from the expansion points 

is almost meaningless. 

Othogonal Representations 

Several investigators have explored the use of modi- 

fied forms of the simple power series representation.  The 

aim of many of these investigators is to obtain a series 

with uncorrelated coefficients.  When a series is expanded 

to a higher order the coefficients of the lower order terms 

will remain constant if the series possesses uncorrelated 

coefficients.  A method to accomplish this goal would be 

to use orthogonal functions for the representation over 

the interval of interest.  Any function can be represented 

by a series of othogonal functions with uncorrelated co- 

efficients.  A Fourier series would be a prime candidate 

for this job except that there seems to be no justifica- 

tion for the use of transcendental functions in the repre- 

2 8 sentation of solution thermodynamic data.  Williams   has 

developed a modified form of the Fourier series representa- 

tion for the interval 0  to 1.  He calls this series the 

Z-series and it possesses several advantages over the simple 

power series.  The Z-series is just a set of polynomials 

that avoids the use of transcendental functions.  These 

polynomials are almost orthogonal over the interval of in- 

terest.  The Z-series is also consistent with Darken's 
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29 quadractic formalism. 

30-31 
Bale and Pelton      have developed a modified form 

of the Legendre polynomials for the interval 0  to 1.  These 

modified Legendre polynomials are orthogonal over the in- 

terval.  They allow for a much better representation of 

the solution thermodynamic properties of binary systems. 

32 
Williams   has compared his Z-series to the modified 

Legendre polynomial representation.  His conclusions seem 

to indicate that the Z-series has more advantages than the 

modified Legendre polynomial representation.  Bale and 

33 Pelton   disagree with these conclusions. 

34 
For low order representations it has been shown 

that there is a simple relationship between the modified 

Legendre polynomial 'representation and the simple power 

series representation.  The conversion from the simple 

power series to the more desirable modified Legendre poly- 

34 nomial series is easily accomplished by the equation 

m       n   B, 
Cn = <2n + 1) I        A    ■    I     j-^- (64) 

j=n      k=o   J 

4- Vi 

where  C  is the n  modified Legendre polynomial coeffi- 

cient , 

A- is the j   simple power series coefficient, 
J 

B, is the k   coefficient in the n   order modified 

Legendre polynomial, and 

m is the order of the power series representation. 
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Table 1 shows the coefficients of the modified Legendre 

polynomial representation for the integral heat of mixing 

at 1050°K for the lead-tin system.  These coefficients 

were calculated using Eq. (64) from the coefficients shown 

in Table 4.  This set of data is analyzed in more detail 

in Section 7.  What should be noted in Table 1 is that the 

modified Legendre polynomial coefficients, C-, C., and C, 

are almost constant no matter what order representation is 

chosen. 

Although the modified Legendre polynomial represen- 

tation is to be preferred, a simple power series represen- 

tation is used throughout this thesis.  The reasons for 

this are Eq. (64) makes the conversion to the modified 

Legendre polynomial representation quite simple and the 

simple power series has been used to a greater extent thus 

making a more standard form for this type of representation 

Other Models 

There are other types of formalisms which are not 

directly related to a Margules expansion and these can 

usually be classified as either of two types.  The first 

type uses a non-power series representation for its compo- 

sitional dependent terms.  The second type attempts only 

to model the solution in a limited composition range. 

An example of the first type of non-Margules repre- 

sentation is the one proposed by Brebrick     .  It has 
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the rather exotic form of 

R-T-f.n Y-L = W-(x2)
2-|l - sinh (C«(x2 - j) ) 

- C- (1 - x2) -cosh (C- (x2 - j))} 

- V-T-(x2)
2-{ 1 + sinh (D*(x2 - j) ) 

- D- (1 - x2)-cosh (D-(x2 - j) )\ (65) 

whore W, V, C and D are constants.  The unfortunate feature 

of this model is that it uses the transcendental functions - 

hyperbolic cosine and hyperbolic sine.  No theoretical 

justification for their use in solution thermodynamic 

representation exists.  The only reason to use such a 

model would be if it does a good job of empirically repre- 

senting the binary system.  Certain systems might be well 

modeled by this formalism but overall the Margules expan- 

sion would be a simpler representation for many more types 

of systems. 

There are several formalisms proposed which only 

29 model the solution in a limited composition range. Darken 

has suggested a quadratic formalism where 

2 
log Y-L = «12 (x2) (66) 

and 

log Y2 
= lo<3 ^2  + a12 ^xi^ -1^   ^67^ 
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o . where a, ,, is a constant and y~.  is the P.aoultian activity 

coefficient of component 2 at infinite dilution.  This 

representation is only valid for the terminal region 

where component 1 is the solvent.  There is no a priori 

knowledge of where this terminal region ends for any given 

system.  Similar types of equations can be used for compo- 

nent 2 as the solvent, but there is no guarantee, and it 

is usually false to assume, that a,„ = a„,. 

37 Wagner   has also developed a formalism for solu- 

tion behavior in the terminal regions.  Wagner considers 

interaction parameters and defines them as 

c.(i» 
1 

8 £n y . 

3  x. 
l 

(68) 
x, ->1 

£ .    is the interaction parameter which shows the first 

order effect of component i on the natural logarithm of 

y., in a solution where component 1 is the solvent. 

The basic advantage of this type representation is 

that it can be easily carried over to multicomponent sys- 

tems .  Wagner shows that 

o    r    (k) 
In   Y„ = In  y-  +  £  e2     k + ^■^-9her   order (69) 

k=2 terms 

where m is the number of components in the solution.    This 

model is only good in a solution where component 1 is the 

solvent.  He suggests that the higher order terms be 
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dropped, since they involve powers of mole fractions which 

make the value of these terms very snail in comparison to 

the first two terms in Eq. (69) . 

Lupis and Elliott      have also used this 'Wagner- 

type formalism but have extended it to the second order 

42 terms.  Lupis and Elliott   have also developed a theory 

as to why this type of formalism is correct in a terminal 

composition region and they have called it the "Central 

Atoms" theory.  The main disadvantage of this type of model 

is that the second order interaction parameters, p.   , are 

extremely difficult to determine and the complexity fur- 

ther increases when multicomponent systems are used be- 

cause of cross product interaction parameters, which must 

also be evaluated.  They also justify their model by use of 

a Taylor series expansion about x, = 1.  It must be remem- 

bered that the Taylor series expansion is only valid in a 

neighborhood about the point of expansion.  So this model 

should only be assumed to be valid in regions where x, is 

close to one. 

A similar type of model has been developed by Hicter, 

43 Mathieu, Durand, and Bonnier.    Their model is named the 

"Surrounded Atom" model.  It is almost identical to the 

"Central Atoms" model of Lupis and Elliott. 

Model Utilized 

The formalism which is used in this thesis is a re- 

44-49 fmement of the models used by Rao and Tiller.       This 

model incorporates the temperature dependence form of 
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Eq. (18) and the composition dependence of a Margules-type, 

pov/er series expansion.  The advantages to this model are 

that it has a temperature dependence built into it and it 

is directly related to many of the proposed formalisms for 

solutions.  The model is called the a-parameter representa- 

tion. 

44-46 Originally Rao and Tiller      defined 

a12 = £n Yl / (1 " Xl)2 (70) 

where 

a12 = (A1 + A2 / 
T) + (A3 / T) x2      (71) 

47-49 with the A-'s being constants.  In later work they 

Expanded the a-parameter further so that 

a12 = (A1 + A2 / 
T) + (A3 + A^ / T) x2 (72) 

This equation is assumed to be valid over the entire com- 

position range and not just one of the terminal regions. 

If this formalism were extended further, like that 

of a Margules expansion, then 

2 
In  Y-, = a,2 (x2^ (73) 

with 

a12 = BQ + B]_ X2 + B2 (x2)
2 + 

... + Bn(x2)
n (74) 
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where 

Bi = A(2i+1) 
+ A(2i+2) / T (75) 

and n is the order of the a-pararaeter.  Eqs. (73) to (75) 

show the general form of the model which is used in this 

thesis.  Each term which is used in Eq. (74) necessitates 

the evaluation of two constants as given by Eq. (75).  The 

highest order a-parameter utilized was a fourth order one. 

This requires ten coefficients to represent a system. 

Since this formalism is valid for the entire com- 

position range then the Gibbs-Duhem Equation can be applied 

to obtain the value of £n y~ once the constants of Eq. (75) 

are known.  If the a-parameter is terminated after the 

first term, then there are two constants which must be 

determined -- A, and A„ .  This zero order a-parameter cor- 

responds closely to the regular solution model with 

B0 = Cl-2 / R"T (76) 

or 

R-(Ax-T + A2) = C1_2 (77) 

The difference between this model and the regular solution 

model is that this formalism does not assume an ideal en- 

tropy of mixing.  So, in Eq. (77), the temperature depend- 

ent term of A, «R-T appears.  This term is associated with 

the excess entropy of mixing.  A Gibbs-Duhem Equation 
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applied to a zero order ^-parameter results in 

£n y     = B0  
(1 " x2^ (78 

For the Gibbs-Duhem Equation applied to higher order ■->.- 

parameters see Appendix B. 

Another advantage to this type of formalism is that 

various thermodynamic properties are very easily obtained. 

The integral excess Gibbs free energy of mixing for an 

th 4. n   order a-parameter is 

G Mix,XS 1-2 

n 
R'T«x2' (l-x„) I 

i=o TT+TT 
Bi I (x2)D 

[3=o 
(79) 

See Appendix C for the derivation. 

Because the temperature dependence is built into 
<i 
Mix       Mix XS the formalism then AH" „ and  SV"_ '   are easily obtain- 

able.  Using the Gibbs-Helmholtz Equation 

AH Mix 1-2 

GMix,XS/T 
1-2 
3(1/T) 

(80) 

results in 

n 
AHtf^ = R-x9- (l-x„) • I 

i=o 

1 
(i+1)  (2i+2) I (x9) 

[j=o 
(81) 

Also by means of the relation 

~Mix,XS 
Sl-2 

. _Mix,XS 
6   Gl-2 

8T (82) 
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one obtains 

S1-2'XS = - R'X2-(l-x2). j  If^yA       ,j (X2)^M  (S3 
1=0 I U=°    )) 

Partial molar quantities are also easily obtained fro"1, 

this representation.  See Appendix D for derivation and 

equations. 

To summarize, the formalism that is described by 

Eqs. (73) to (75) is the representation which is used in 

this thesis to model a binary system.  There are three 

basic advantages to this formalism: 

1. It possesses the temperature dependence rela- 

tionship shewn in Eq. (18) , 

2. It is a Margules-type expansion in composition, 

and 

3. Thermodynamic quantities are easily obtained 

from this formalism by Eqs. (79), (81), (83), 

and those in Appendix D. 
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SECTION 4: SYNTHESIS OF PHASE DIAGRAMS 

This section will review the present state of the 

art for the calculation of phase diagrams from solution 

thermodynamic quantities.  This involves the solving of 

Eqs. (39) and (40) for the phase boundary compositions 

over a range of temperatures and for all the two phase 

fields that occur in the system. 

For many years investigators have attempted to pre- 

dict phase diagrams from first principles.  Most of the 

approaches so far can be considered physical, where the 

physical aspects of the components are used in predicting 

intermetallic phases.  Usually this process was used a_ 

posteriori—that is, the intermetallic phases were justi- 

fied after they had been discovered.  A fairly recent ap- 

proach to this problem of phase diagram prediction and 

justification has been through the use of thermodynamics. 

In order to use this approach many repetitive calculations 

are necessary.  Because of high speed computations made 

possible with modern computers, this method is beginning 

to be exploited. 

There are many advantages to this method of calcu- 

lating phase diagrams.  Using thermodynamics and a computer 

retrieval system, the storage and use of phase diagrams can 
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be qreatly enhanced.  Other advantages are that new phase 

diagrams can be calculated whether or not any experimental 

work has been performed on the system.  Also by using 

50 these methods equilibrium diagrams   can be calculated. 

These diagrams are predicted solely from the measured 

thermodynamics of the system.  These equilibrium diagrams 

sometimes show true phase stability in regions where the 

reaction kinetics are too slow to allow experimental deter- 

mination . 

The underlying assumption, used in the thermodynam- 

ic approach to phase diagrams, is the concept of minimum 

free energy.  The stable phase is the one whose free ener- 

gy is a minimum (See Figures 1 to 3).  The derivation of 

phase boundaries from Gibbs free energy was first indicated 

in the papers of van Laar around 1908,   but it is only 

recently that this type of approach has been used to any 

great extent.  The best review of all the fairly recent 

literature on this subject is in the first part of one of 

51 
Kaufman's papers.    He schematically shows how different 

aspects of the calculation of phase diagrams from thermo- 

dynamics fit together.  He has 118, pre-1973 references, 

most of them of recent vintage.  These references deal not 

only with the calculation of phase diagrams, but also 

representation of thermodynamic data, computer methods for 

handling data, and prediction of thermodynamic properties 

from phase diagrams.  This latter approach is best treated 

41 



52 
by Rudman   who has done extensive work on isor.orphous 

systems. 

Kaufman has used these methods extensively.  At 

first he assumed ideal solution behavior for the refrac- 

53 tory metal, binary systems.    This assumption makes the 

excess free energy terms in Eqs. (39) and (40) equal to 

o (^-*■v) 
zero.  As for the lattice stability parameters (Z:G.     ' ), 

he divides it into two terms 

AGio(n-v) = A o(n-v) _ T.As.o(n-v)        (84) 
ii i 

^■L. i JC   ATT o (n->-v)   -, . _, o(n->v) where the values of AH.       and AS.       are given as 

constants for each set of elements in one column of the 

periodic table.  Kaufman gives values for these parameters 

for the transformations between the bcc, fee, hep, and 

liquid phases. 

The success of this method is somewhat limited. 

The synthesized phase diagrams are the general shape of 

the observed phase diagrams.  The major drawback is that 

intermetallic phases and miscibility gaps cannot be syn- 

thesized . 

Kaufman then extends this approach by assuming that 

14 54 the refractory systems are regular solutions.  '    This 

allows miscibility gaps to be calculated.  Also the inclu- 

sion of intermetallic compounds is added.  These compounds 

can exist only as line compounds in the synthesized dia- 

grams.  The regular solution assumption entails evaluation 
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of the regular solution interaction parameters, the C,  's. 

These are needed to evaluate the excess partial molar 

Gibbs free energy for each component in each phase, which 

are necessary for the phase diagram calculation.  Some 

theoretical justifications for the values of these para- 

14 meters are given by Kaufman. 

The method was then further extended by Kaufman and 

co-workers so that isothermal sections of ternary metallic 

51 55-59 phase diagrams could be predicted.  '       Also if more 

information is available for the solution thermodynamics, 

then the regular solution model can be modified. 

The regular solution assumption along with the as- 

sumed values for the lattice stability parameters, which 

depend only on temperature and the column in the periodic 

table, were then tested on the iron, chromium, nickel and 

cobalt systems.    Both binary and ternary phase diagrams 

were synthesized and compared to observed diagrams.  Just 

recently Kaufman and Nesor      have extended this approach 

to include other super-alloy systems.  They have had a fair 

amount of success. 

Most of Kaufman's work has dealt with elements in 
•s. 6 5 

group numbers 4 to 8.  The work of Michaels e_t al_.   has 

made available more lattice stability parameters for the 

elements in group numbers 1 to 3.  These are again given 

as linear functions of temperature with the constants only 

dependent on the column in the periodic table.  With these 
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parameters and if some knowledge of the excess Gibbs free 

energy of the components is known, then this approach of 

phase diagram calculation can be extended to many more 

binary and ternary systems. 

The benefits which can be derived from this type 

of approach are not those of predicting phases, but of 

giving some justification to the parameters used and il- 

lustrating trends in systems.  The exact phase diagram 

will not be synthesized but the general type will; thus 

some knowledge of the system will be gained. 

This type of approach was used in conjunction with 

experimental work by Kirchner,, Nishizawa, and Uhrenius. 

They were able to calculate, using certain thermodynamic 

parameters, the experimentally determined y-loop behavior 

in the iron-chromium system.  They then concluded that the 

parameters which they used in the calculation were true. 

m, , .   , .    ,    ^   . _  o(a-*Y)   J   A^  o(bcc+fcc)   , That is, the values for AG_     '  and AG. and ' Fe Cr 
ct 

the regular solution interaction parameters (Cn  „  and 
^ ^ Fe-Cr 

C^  „ ) were taken to be correct.  Knowing these values and Fe-Cr ^ 

with some slight modifications, they were able to obtain 

values for iron-manganese alloys.  They then synthesized 

an iron-maganese phase diagram which was consistent with 

67 fi 6 
experiment.  Chipman   disagreed with Kirchner's   values 

for the parameters.  Chipman analyzed the data in a slight- 

ly different way and obtained completely different values 

for these parameters.  His values calculated partial molar 

4 4 



free energy quantities much better than Kirchner's. Kauf- 

man "" showed that Chipman' s approach results in a seeming- 

ly impossible value for the transition temperature for 

69 
bcc to fee in pure chromium and Chipman   agreed.  But 

since this transformation does not really occur, Chipman's 

70 
values could be correct.  Kirchner and Uhrenius   showed 

that Chipman had analyzed the data in a slightly dubious 

manner.  Also the iron-chromium phase diagram that was 

synthesized from Chipman's parameters does not match the 

experimentally determined diagram as well as the one syn- 

thesized from the parameters of Kirchner et al.    Chip- 

71 man   agreed for the most part but maintained that his 

parameters are still more useful in calculating the partial 

molar free energies in the two phases (AG_ a, AcL  , 
^ ^ Fe     Fe 

AGr   , and AG~ ').  This debate does illustrate the point 

that although the theory behind the synthesis of phase 

diagrams is well founded and can be fairly easily imple- 

mented by using a computer to do the numerous calculations, 

it is still necessary to have values for the lattice stab- 

ility parameters and the solution interaction parameters. 

The values of these parameters, determined either with some 

theoretical deductions or from some experimental data anal- 

ysis, are still subject to controversy.  The above debate 

showed that two completely different sets of parameters 

calculate reasonable phase diagrams and reasonable sets 

of partial molar free energy values for the two phases. 
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One set of values was slightly better for the phase diagram 

and one was slightly better for partial molar free energy 

data.  The question of which parameters to use, and when, 

is still not definitely settled. 

72-73 
Kirchner and co-workers      have also used this 

computational method in conjunction with experimental 

measurements for other iron based systems, utilizing the 

74 
regular solution assumption.  Baskes   has also recently 

examined iron based alloys.  He uses a slightly more gener- 

al polynomial-type representation in place of the regular 

solution model.  The phase diagrams synthesized by the 

Kirchner group seem to be better than those of Baskes, 

since they lie closer to the experimentally measured points. 

Although the phase diagrams synthesized from the Kirchner 

parameters might be better, the parameters used by Baskes 

would probably yield better values for the thermodynamic 

quantities. 

Udovsky and Ivanov have extended this approach to 

75 uranium alloys with only a limited amount of success. 

Problems of the calculations of these phase diagrams 

via a computer has been investigated by Gaye and Lupis. 

Their work is mostly with the computation aspects of the 

problem.  Their computer programs allow a wide latitude 

in the type of representation for the partial molar excess 

free energy functions and the lattice stability parameters. 

Unfortunately, their method has instability features at 
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certain points which makes precise calculations difficult 

at times. 

Counsell and Spencer      have devised a computa- 

tional scheme which will allow phase diagrams of multicompo- 

nent systems to be synthesized.  They have showed its use 

for the iron-chromium-vanadium ternary only.  Their method 

also includes a means for the intermetallic compounds to 

have variable composition.  Unfortunately, this requires 

that some thermodynamic properties of the intermediate 

phase be known and then the intermediate phase is treated 

just like the other more common phases.  As with the Kauf- 

man approach, knowledge that the intermetallic phase exists 

is needed a_ priori. 

Overall, these methods that use thermodynamics to 

"predict" phase diagrams do not truly make predictions. 

These methods are mainly used to synthesize diagrams from 

all available data.  This synthesis is not to be confused 

with prediction.  For the synthesis to be good, it is 

necessary to know the thermodynamic parameters for all 

phases which are present in the system.  So the synthesized 

diagram, instead of predicting new phases, will yield in- 

formation about the compositional range over which the 

known phases are stable.  Although there are many critical 

assumptions made, these methods have a major benefit in 

showing the consistency of phase diagrams with experiment- 

ally measured thermodynamic data and vice versa.  Another 
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advantage of this approach is that once a consistent model 

has been obtained for the system, of interest then the 

phase diagram storage problem is greatly reduced.  The 

simple model can be used in conjunction with Eqs . (39) and 

(40) and a computer program to synthesize a phase diagram. 

So instead of a book with all the phase diagrams printed 

in it, storage could be accomplished with just a listing 

of the coefficients of the model and retrieval can be made 

via a computer program. 
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SECTION 5: ANALYSIS OF PHASE DIAGRAMS 

The relationship between phase diagrams and thermo- 

dynamics has been extensively covered in other sections 

of this thesis.  This section will review some of the work 

which has been done in .regard to using experimentally de- 

termined phase diagrams to obtain some knowledge of the 

thermodynamics of the system. 

Analyzing phase diagrams to obtain thermodynamic 

properties has not been used as extensively as synthesis 

of phase diagrams from thermodynamic quantities.  The 

method for analysis, which has been most generally used, 

employs the following four steps: 

1. A formalism is chosen for the system, 

2. Phase diagram tie lines are used to set up 

equations in terms of the specified formalism, 

3. The equations are used to evaluate the con- 

stants within the formalism, and 

4. The formalism is then used to calculate thermo- 

dynamic quantities for the system under vari- 

ous conditions. 

g o 
Wagner   has shown that the excess integral free 

energy can be obtained from the phase diagram of an iso- 

83 morphous system.  Wagner   also used phase diagrams to 
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calculate the free energy of formation for an internetallic 

21 compound in the system.  VJriedt   has devised a method for 

calculating activities in a binary system which exhibits 

a miscibility gap.  He uses a tv/o constant power series 

84 
formalism which restricts his results somewhat.  Sundquist 

has extended Wriedt's work on systems with miscibility 

gaps.  He calculates other thermodynamic quantities as 

well as activity and explores the use of several different 

22 
formalisms.  Van der Toorn and Tiedma   use a six constant 

formalism to show the thermodynamic properties of the gold- 

platinum system which is an isomorphous system with a 

miscibility gap.  Three of the six constants yield the 

temperature dependence of the formalism.  They are essen- 

tially using a three term Margules model with a fixed 
o r 

temperature dependence. DeFontaine and Hilliard have 

shown that van der Toorn and Tiedma's work is not quite 

correct and leads to some physically impossible results. 

Van der Toorn and Tiedma's formalism was also tested on 

84 
other systems by Sundquist   who found it to be highly un- 

reliable . 

52 
Rudman   has written a fairly extensive article 

on how to relate phase diagrams and thermodynamics. Most 

of his examples are for isomorphous systems. He also in- 

cludes in the article the Fortran computer programs which 

are used in the analysis of these example systems. 
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The reason that so many investigators have used or. ly 

isomorphous systems, when the analysis is performed, is 

because of the lattice stability parameter problem.  In 

Section 2, it was shown that values of the lattice stabi- 

lity parameter are essential in relating phase diagrams 

to the excess partial molar Gibbs free energy (See Ecs. 

(39) and (40)).  For the analysis to be performed the lat- 

tice stability parameter must be known.  For isomorphous 

systems the problem of obtaining values for this parameter 

is not very complicated.  Since the only stable phases 

which the system exhibits are identical to the stable 

phases of the pure components, there is no need to worry 

about the stability of structures which are only hypothe- 

tically possible.  When the binary system exhibits a phase 

which one of the pure components does not possess, then 

obtaining values for the lattice stability parameter be- 

comes a problem. 

27 
Hiskes and Tiller   have attempted to utilize the 

phase diagram itself to obtain values for the lattice 

stability parameters of the two components.  First they 

assumed that the lattice stability parameter has a func- 

tional form of 

AGo(n+v) = c     + c     T   ln   (T) (85) 

where C, and C~ are constants and T is absolute tempera- 

ture.  They then use tie lines from the phase diagram to 
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obtain values for both the constants of their formalism 

and the constants for the lattice stability parameter. 

From their formalism and with the value of the lattice 

stability parameter, they are able to calculate activi- 

ties, partial molar Gibbs free energies, partial molar 

entropies, and partial molar enthalpies for the system. 

All these quantities are obtained from the analysis of 

the experimental phase diagram. 

7 6 
Gaye   has disputed the form of the lattice stabi- 

lity function used by Hiskes and Tiller.  He instead sug- 

gests the form 

AGo(n+v) = Ci + c2.T in   (T) + c ,T (86) 

* 

which is more in keeping with the form of the standard 

state change in Gibbs free energy when a pure component 

exhibits a phase transformation. 

Ca'ution must be exercised when analysis of phase 

diagrams is performed.  There are several pitfalls which 

should be avoided.  The accuracy of experimental phase 

diagrams must be taken into consideration.  In order to 

compensate for experimental errors, an <jverspecified set 

of equations should be used to determine the values for 

the constants in the formalism.  If the number of equa- 

tions obtained -from the phase diagram is exactly the same 

as the number of constants to be determined in the formal- 

ism, then an easily solved set of linear equations is 
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usually formed.  If any one or more data ooints is not 

exactly correct, the entire set of results will be in- 

fluenced by these errors.  The thermodynamic values cal- 

culated from a formalism derived from such a set of data 

may be very erroneous.  This is essentially the problem 

22 with the work of van der Toorn and Tiedma.    Their for- 

malism is not incorrect but they did not use enough data 

points from the phase diagram to correctly evaluate the 

constants in their formalism.  Hence, it should not be 

unexpected that the method would be unreliable as shown by 

DeFontaine and Hilliard   and Sundquist. 

In order for phase diagram analysis to be effective, 

a judicious choice of a formalism must be made.  As stated 

in Section 3, the basic criteria for a model should be 

simplicity and accuracy.  For the phase diagram  analy- 

sis performed in this thesis the a-parameter representa- 

tion, Eqs. (73)-(75), has been chosen.  It is a simple 

power series expansion and can be terminated at any point, 

so that the system can be accurately characterized. 
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SECTION 6: ANALYSIS AND SYNTHESIS 
USING THE g-PARAMETER 

This section will show how experimental data can 

be analyzed to determine the coefficients of the a-para- 

meter.  Also, how this representation can be used to syn- 

thesize thermodynamic properties and phase diagrams will 

be described. 

Analysis 

First and foremost, it is desirable to calculate 

an a-parameter which is consistent with all the known ex- 

perimental data.  Since there are basically three types of 

experimental data available for a binary system, it is 

these three types of data which are analyzed to obtain an 

a-parameter.  The relationship between these three types 

of experimental data and the a-parameter is shown below. 

For phase diagram data, the compositions at the 

ends of a tie-line (i.e. x   and x„ ) are utilized in 

generating an a-parameter for both phases.  At equilibrium 

Eq. (3), which equates the partial molar free energy of a 

component in the two phases, can be used.  Substituting 

Eq. (6) for the partial molar Gibbs free energy, and Eq. 

(73) for the a-parameter into Eq. (3) yields 
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n c 
G,1'      +   R-T- (fn   x +    (a 

x, 
-x (x   )   ) )    = 12   lJV    !     n 

G   V0   +   P.-T- (£n   x. 
x. 

v   +    (a12    (X2]    } (87 

or  by   rearrangement, 

a12    (X2] 

x. 

v ,      ,2 
a12    (x2) 

Aro(n^v) 

x, 
R-T 

+   Jin 
(1-x/) 

<l-x2*) 
(88) 

Substituting Eq. (74) for a-,-  and a, ~  yields 

n . , „   n . , „ 
n'« ^1 + 2 - I      B.V(x2

V)1 + 2 
i=o i=o       • 
Z  ^ (x2 ) 

AG. o (n^v) 

R-T + £n 
(l-x2

v) 

l-x2") 
(89) 

where the B.'s are given by Eq. (75).  Similarly for com- 

ponent 2 an equation of the form 

o 
r \ 

in  y - Jin Y o 
x, n 

AG. 

x. V 
R-T + in 

x. 

x. 
(90) 

can be easily generated.  By use of Eqs. (73), (74), and 

the Gibbs-Duhem Equation (see Appendix B) the following is 

obtained. 
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n 

J0
Bin-<*2n>i + 2    -(''V)2-1]    + 

n 

I 
i=o 

1      B,n   (0)i + l  + _l_Bin 
(i+1)      i      '2 

n . , „ 
V   n   v    ,      v.1+2 J   B.       (x2   ) 

i=o 

,      v. 2        , 
(x-j^   )      -   1 

n 

I 
i=o 

AG, 

TT+TT Bi (x2 }   + TT+TT Bi 
V 

o (n-*v) 

R«T +  £n 
x. 

(91) 

Each |_ie line from an experimentally determined phase 
i 

diagram can be used to generate two equations in terms 

of B. 's and B. 's which are directly related to the 

a-parameter constants (A.  s and A. 's) by Eq. (75) . 

The expression for the heat of mixing data is much 

simpler.  Since the data are for a single phases-alloy, 

the equations for each experimental data point involves 

only one a-parameter expression.  Eq. (31) gives 

AH ?!ix 1-2 

n 
R-x  (l-x9)• I 

i=o 
-A ( I    (x9)

j). (i:fl)~(2i + 2)  v^ *"2' 
j-o 

(31) 

This equatipn shows "that each experimentally determined 

value for the heat of mixing can be expressed in terms of 

56 



the ■parameter   constants —the 
(2i+2) "' 

The third type of experimental data, the activity 

of either component, can also be expressed in terms of the 

a-parameter constants.  Beginning with Eq. (5) and taking 

the natural logarithm of both sides yields 

£n y-i = &n a, - in   x. (92) 

Substituting Eqs. (73) and (74) into Eq. (92) results in 

n 
i+2 

7  B. (x„)    = £n a, - in    (l-x„) L _  l   2 1 2 
(93: 

i=o 

This equation is valid for the activity of component 1. 

For the activity of component 2 a Gibbs-Duhem Equation 

must be used (see Appendix B).  Substituting into Eq. (92) 

for component 2, the form of £n Y? in terms of the ct- 

parameter coefficients results in 

j  B± (>:2) 
i=o 

i+2 
(x]_) - 1 

n 

I 
i=o (i+1) 

Bi (x
2)
1+1 +TTTBi 

£n a? - in  x- (94) 

where the Bi's in Eqs. (93) and (94) are given in Eq. (75) 

Equations (89), (91), (81), (93), and (94) can be used to 

obtain a set of equations from the available experiment 

data in terms of the a-parameter coefficients. 
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In order to express each equation in a consistent 

set of units, there were sone slight adjustments made to 

the form of these equations.  Rearranging Eq. (89) results 

in 

R •T.   j B/l (X2V 
+

 
2
 -  I      B.V (^) v , A   v . i + 2 

1=0 1=0 

iG,01^1 + R.T.£n 
(l-x2

v) 

d-x2") 
(95) 

Rearrangement   of   Eq.    (91)    leads   to 

R* T* 
n n /      n. i + 2 
I      B^x.,", 

1=0 

(x^)2   -   1 + 

n 
I 

i=o 

1      B.n(x0
n)i+1 +      1      r, n 

(i+l)     i   v  2 (i+l)      i 

n v,      vvi+2 
I      B^Vl 

1 = 0 

.      v. 2        , (x1   )      -   1 + 

n 
I 1 3,V(x0V

+1   +   -rr±rr  B   V 

.L      (i+l)      i   v   2 
1=0; ^ 

(i+l)      1 

x. V 

AG2
0(T1"V)   +   R-T.Jln     -i 

x. n 
(96) 

Reversing E^. (81) yields 

1 
n 

R-(l-x2)-x2- I 
i=o 

c 1 

(I+l) A(.2i + 2) I (x2)
D Mi v 

= AHX_2  (9 7) 



Multiplying both sides of Eq. (93) by R-T results in 

R-T 
n 
I      B.  (x2) 

i + 2 

1=0 
= R-T-(in   a1   -   in    (l-x2)) (98) 

Also multiplying both sides of Eq. (94) by R-T yields 

R-T 
n 

I 
i=o 
I B.(x2) 

i + 2 
((xx) -1) + 

n 

I 
i=o 

i      ,  ,i+1 ,   1 
  B,  (x0)     + TTTIT B. (i + 1)  1 ^2 

R'T* {In   a„ - in  x~) (99) 

Equations (95) to (99) along with Eq. (75) are the equations 

used for the analysis of experimentally determined data to 

obtain the a-parameter constants.  These equations are all 

expressed in the common units of energy per mole. 

It should be noted that Eqs. (95) and (96) must be 

used in a two phase region.  These two equations relate 

the experimentally determined value of composition at the 

end of a tie line to the a-parameter coefficients.  Equa- 

tions-* (97) to (99) are for single phase alloys.  These 

equations may be used for either of the two phases (n or v) 

which are used for the phase diagram data.  Equation (97) 

relates the heat of mixing in a single phase alloy to the 

a-parameter coefficients.  Equation (98) relates the ac- 

tivity of component 1 to the a-parameter coefficients and 
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n 
n ,  n, i + 2 

I   Bi -<x2
ri) 

i=0 
(xx

n)2 - 1 + 

J 

n 

i=0 
'__i B 

n-(x n)i+1  + 1      P ^ 
(i+1)  i  lx2 ;    + (i+1) Bi 

n 

.L Bi  (X2 > 
,  v, 2   , 
(x-j^ )  - 1 

n 

Jo [(i+1) 

o (n+v) 

_ V  .   V.1+1 ^    1    _ V 
l    2 (l+l)  l 

x. V 

RT 
- in 

x. 
=  E2  =  0 (ioi: 

If the exact values of x0  and x„  are found then the values 

o f E, and E? in Eqs. (100) and (101) would be exactly zero 

If the two values are not known exactly then E, and E 

would possess some non-zero value.  The method that has 

been utilized to determine these compositional values is 

an optimization technique.  The method attempts to find 

the values of x~  and x„  which minimize the value of E 

where 

2     2 
ET " El  + E2 

(102) 

Of course the exact minimum of E  would be zero, but when 

numerical techniques are employed small errors enter into 

the program and may cause the value of E  to be slightly 

positive at its minimum value. 
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Eq. (99) relates the activity of component 2 to the .-(-para- 

meter coefficients. 

Synthesis 

Once the coefficients of the a-parameter have been 

determined then any solution thermodynamic quantity at 

any temperature can be calculated.  Equacions (79), (81), 

and (83) can be used to calculate the excess integral 

mixing quantities and the partial molar quantities may be 

calculated from the equations given in Appendix D. 

If the a-parameters for two phases are known then 

a calculation of the two phase field boundaries can be 

made.  This can be accomplished in one of several ways. 

The desired quantities are the values of the tie-line com- 

positions at a particular temperature.  Equations (89) and 

(91) can be used to solve for x~  and x« .  Unfortunately 

these equations are non-linear and solving them is fairly 

complex.  The method used for the numerical solution to 

these two equations is to rearrange the equations as follows: 

. _ o (n->-v) 

. LBi ' (X2 >     - . I   Bi • (X2 > RT  i=U i=0 

d-x V) 
- £n    = En =0 (100) 

(l-x^)      X 

and 
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E, and E_ can be considered error terms in Eqs. 

(100) and (101).  These terns indicate how much deviation 

from zero exists in the equations for a particular choice 

of x v and x„n.  These error terns are then squared, to 

insure that they are positive, and added to yield a total 

error for the particular choice of compositional values. 

An optimization technique   stored at the Lehigh University 

Computer Center has been used to find the values of x~ 

and x^1"1 which minimize E . 

This routine uses an iterative method which even- 

tually converges to the optimum values of x?  and x~  f°
r 

minimum E .  Using this technique to determine the two 

phase field boundaries must be done with care.  The method 

is very sensitive to instabilities in the equations and 

can very easily lead to absurd answers.  Also the technique 

may converge to a false minimum, which will also generate 

erroneous answers.  At times this technique will yield 

compositional values which may be fairly reasonable and 

yet be untrue.  This occurs, for example, in a eutectic 

system when the temperature is below the eutectic tempera- 

ture; the method will generate values for the liquidus and 

solidus lines which are in a sense extrapolations into the 

solid-solid two phase region.  These values appear to be 

true tie-line compositions but in reality there is no solu- 

tion at all.  This method must be used with caution and it 

should be periodically checked by using one of the other 
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methods to insure that the generated, corpositional values 

are true. 

The other two techniques, which have been used to 

determine a phase diagram from a set of a-parameters, are 

simpler.  The method of common tangents is easily imple- 

mented to solve this problem.  The Gibbs free energy of 

mixing curves as a function of composition (Eq. (79) with 

the idea Gibbs free energy of mixing added) are drawn for 

both phases at a particular temperature.  The common tan- 

gent is drawn and the values of x~  and x~  are easily 

found (see Figures (2) and (3)).  This is the graphical 

solution to Eqs. (89) and (91). 

When a miscibility gap occurs in a system or a 

single a-parameter is used to determine the solvus points 

bounding a solid-solid two phase field, then the graphical 

method is preferred.  Because there is only one Gibbs free 

energy of mixing curve, a numerical calculation of the 

compositions is fraught with problems. 

The prime disadvantage to the graphical approach is 

that at each temperature a free energy versus composition 

curve must be drawn and the common tangent constructed. 

This involves much more manual labor than the numerical 

technique.  On the other hand, it does not have the in- 

stability problems associated with the numerical method. 

This technique can be very useful at temperatures where 

there is more than one two-phase field present.  If the 
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a-parameters are known for each of the stable phases and 

the lattice stability parameters are also known then a set 

of Gibbs free energy of mixing versus composition curves 

can be drawn on a single graph.  Common tangents can then 

be constructed to find the compositions at the ends of 

the tie lines for all the two phase fields present in the 

system at the particular temperature. 

The third technique used is again a numerical and 

not a graphical one.  This method reduces the two equa- 

tions, Eqs. (89) and (91), in two unknowns to one equation 

in one unknown.  This approach assumes that one of the 

phase boundaries is known to a fairly high degree of ac- 

curacy.  Then either Eq. (89) or Eq. (91) is used to solve 

for the composition of the other boundary.  A simple 

Newton-Raphson technique can be implemented to determine 

the single unknown.  This method can be very useful in 

certain cases.  For example, in an isomorphous system it 

is usually the case that the liquidus line is known to a 

higher degree of accuracy than the solidus line.  Then at 

a particular temperature the composition of the liquidus 

line can be used in conjunction with either Eq. (89) or 

(91) to determine the composition of the solidus line. 

Advantage is taken of the more precisely known data to 

determine the lesser known parts of the phase diagram. 

Example phase diagrams generated by this technique for 

isomorphous systems are given by Boyle, Van Tyne, and 
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SECTION 7: LINEAR PROGRAMMING TECHNIQUES 

General Problem 

The previous section showed how to form an equation 

for each of the three types of available experimental data 

in terms of the a-parameter constants.  This section will 

illustrate the techniques used to determine these constants 

from the equations.  This set of equations can be expressed 

in matrix form by the following 

B x A = R (103) 

B is an m by p matrix with m equal to the number of data 

points and p equals 2n + 2 where n is the order of the a- 

parameter representation.  This is the computational matrix 

for the set of equations.  A is a p by 1 matrix and its 

components are the coefficients of the a-parameter which 

are to be determined.  R is an m by 1 matrix with each of 

its components determined from the experimental data points 

and expressed in consistent units.  The components of R 

are set equal to the right hand side of Eqs. (95) to (99) , 

depending on which type of data is used.  The problem is 

to determine the best A for the system of interest. 
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Exact Solution 

The approach to this problem may take one of several 

forms.  The simplest method is to have the number of equa- 

tions equal to the number of unknowns (i.e., a-parameter 

coefficients).  This will then yield a linear system of 

p-equations with p-unknowns which can be easily solved in 

most cases.  As stated in Section 5, the use of this method 

to obtain the a-parameter coefficients can be fraught with 

errors.  If one data point is not truly correct, then the 

calculated a-parameter will reflect this incorrectness. 

The a-parameter will back calculate exactly the points 

that were used to determine its coefficients.  The incor- 

rect data point will be back calculated as it is, without 

any refinement.  The interpolation and extrapolation per- 

formed with an a-parameter obtained by this method will 

probably be subject to a large amount of error.  The cal- 

culated values for solution thermodynamic quantities at 

non-experimental temperatures and compositions will, more 

often then not, be invalid because of the inclusion of the 

incorrect data point. 

Overspecified Cases 

The problem then becomes one of either eliminating 

all incorrect data or minimizing their effect on the value 

of the a-parameter coefficients.  The complete elimination 

of all incorrect points is almost an impossibility.  This 
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is because of experimental error.  There is no way to com- 

pletely eliminate this error.  For the exact solution method 

one must assume that the data reported in the literature 

are "exactly" correct.  This assumption is obviously in- 

correct and can lead to undesirable and unusual results in 

most cases. 

Another approach is to use an overspecified number 

of data points in the determination of the a-parameter co- 

efficients.  This will lead to m-equations with p-unknowns, 

where m is greater than p.  The method will tend to aver- 

age out the experimental errors.  Also the few points which 

may be extremely inconsistent with the rest of the data 

can be easily identified.  This will allow them to be ex- 

amined in greater detail and attempts can be made to deter- 

mine why they are not consistent. 

In the overspecified case a problem arises in de- 

termining what is the "best" set of a-parameter coefficients. 

The definition of what is best will then lead to the type 

of technique which should be used to evaluate these coeffi- 

cients.  There are two basic techniques which have been 

examined that solve the overspecified set of equations to 

determine the a-parameter coefficients.  The first is the 

8 8 
simplex technique developed by Danzig.    This is quite 

often used in business problems to either maximize the ef- 

ficiency of material flow or minimize costs of an opera- 

tion.  This technique has been used on binary systems by 
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47 Rao, Hiskes, and Tiller.    In their case simplex minimizes 

on an error tern1, which is defined as the sun of the abso- 

lute difference between the experimental data points and 

the points that the a-parameter would calculate.  In equa- 

tion form 

m 
Simplex Error =  £ |E - | = a minimum        (104) 

j = l 

where m equals the number of data points (or equations) and 

the residual 

E, = Y.   .  - Y .  , (105) J j,calc    j,obs 

where 

Y ,  is the value calculated by the j,calc , J J        a-parameter, 

Y.  ,  is the experimental value, j,obs c 

Simplex will fit exactly p of the experimental data points 

where p is the number of coefficients in the a-parameter. 

The residuals associated with these points are zero.  When 

p, the number of coefficients in the a-parameter, equals m, 

the number of equations (or data points), then all the 

points will be fitted exactly, and hence the simplex method 

reduces to the exact solution technique. 

The other method which may be used to determine the 

coefficients is the least squares technique.  This method 
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is familiar to most scientists and engineers.  Its greatest 

use is in the determination of a straight line through a 

set of data points.  The least mean square line usually 

designates the "best" fit of the data.  To obtain more than 

two coefficients by the least squares technique, a multi- 

89 dimensional method is used.  Hamilton   gives a good ex- 

planation about the theory behind this method and Carlile 

90 and Gillett   give some examples as well as a simple For- 

tran program to perform this technique.  Like simplex, the 

least squares method is a linear programming technique 

which minimizes an error term.  The difference between 

these methods is in the definition of the error term.  The 

least squares error is the sum of the squared residuals. 

In equation form 

m     2 
Least Squares Error =  £ (E.)  = a minimum   (106) 

j = l  ^ 

Again, when the number of coefficients in the a-parameter 

equals the number of data points, then this method will 

also reduce to the exact solution technique. 

Comparison of Simplex and Least Squares 

There are several advantages of the least squares 

method which seem to indicate that it should, in most 

cases, be preferred over the simplex technique.  One of 

the advantages is that negative a-parameter coefficients 

can be calculated directly when least squares is used. 
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Because simplex can generate only positive numbers, so- 

47 called range values   must be included.  These range values 

do not affect the values calculated for the a-parameter 

coefficients but they do lead to programming difficulties. 

These range values just offset the problem so that all the 

coefficients which are calculated are positive.  Then by 

subtracting the range values from the calculated coeffi- 

cients, the true values become known (this allows negative 

values for the a-parameter coefficients to be generated). 

In the least squares technique range  values need not be 

considered.  The absolute value function used in error 

minimization within simplex also creates difficulties. 

This causes the residual associated with each data point 

to be always positive.  In order to take into considera- 

tion either a positive or a negative residual, two dummy 

4 7 variables   must oe assigned to each equation.  One is to 

account for the positive residual and the other is to ac- 

count for the negative term.  For each equation which is 

not fitted exactly, one of these two dummy variables will 

obtain a value during the use of simplex.  The other one 

will have no value.  These dummy variables must be assigned 

to each and every equation which is written for the experi- 

mental data.  This use of dummy variables increases the 

size of the computational matrix (B in Eq. (103)) which 

must be used.  The least squares technique works with the 

square of the error associated with each data point.  All 
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these squared errors are positive so there is no need for 

dummy variables in this technique.  The simplex method 
Q O 

also requires a slack variable   for each equation.  These 

are needed in the computational matrix because of the nu- 

merous manipulations which occur during the internal opera- 

tion of this method.  They do not affect the coefficients 

generated. 

The overall size of the actual computational matrix 

is much smaller for the least squares technique than it is 

for the simplex method.  Using a smaller matrix permits the 

use of many more equations with least squares than with 

simplex.  These extra equations allow more data points to 

be entered into the program, for the same amount of core 

space v/ithin the computer. 

From a probability and statistics viewpoint the 

method of least squares has many advantages over simplex. 

The use of squared terms instead of absolute value terms 

in the minimization equation leads to a much simpler method 

of statistical analysis.  For example, when an analysis 

of variance is performed on the a-parameter coefficients 

generated by simplex and compared with the analysis of 

variance on the coefficients generated by least squares, 

the least squares technique is shown to be slightly su- 

perior.  This occurs because of the assumptions made in 

an analysis of variance.  It assumes that the errors are 

of a Gaussian distribution (i.e., bell-shaped) which 
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results in squared error terms being the basis for the 

analysis.  Because of this assumption, the analysis of 

variance will naturally give the advantage to the least 

squares technique. 

Examples Using Simplex and Least Squares 

In order to compare these two techniques, the in- 

tegral heat of mixing for the lead-tin system at 1050°K 

was analyzed by both methods.  The representation used for 

the integral heat of mixing is given by Eq. (97) and the 

two linear programming techniques were used to obtain the 

A,-.,„.'s—the representation coefficients.  The data for 
(2i+2) ^ 

91 this analysis were taken from Hultgren et al.   and appear 

in Table 2.  The zero through fourth order coefficients 

were found using both simplex and least squares.  The cal- 

culated coefficients appear in Tables 3 and 4.  As can be 

easily seen by comparing these two tables the values for 

the^coefficients generated by both techniques are very 

similar.  To determine which method generates the better 

sets of coefficients, the original integral heat of mixing 

data were back calculated from the representation.  The 

results of this calculation appear in Tables 5 and 6.  The 

residuals for each data point for each representation used 

Mix 
to model AH_,, „  at 1050 °K are shown in Tables 7 and 8.  A 

Pb-Sn 

comparison is made between the residuals of the models 

generated by these two techniques in Table 9.  It shows 
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the sum of the absolute value of the residuals and also 

the sun of the residuals squared for each representation. 

Mix 
The back calculated values for AH" ' at 1050°K are very Pb-Sn 

close to the original data no matter which method is used. 

In spite of this fact, Table 9 does illustrate some of the 

differences which do exist between simplex and least 

squares.  For each order of the representation the simplex 

technique had the smallest sum of the absolute values of 

the residuals.  On the other hand the least squares tech- 

nique yield the smaller value for the sum of the residuals 

squared.  This is not surprising since simplex minimizes 

on the sum of the absolute values of the residuals where- 

as least squares minimizes on the sum of the residuals 

squared.  Also for both techniques as the order of the 

representation increases the criterion upon which each 

method is based improves.  The overall impression, which 

should be obtained from Tables 3 to 9, is the similarity 

of the results from these two methods.  The coefficients 

generated by both techniques are very similar, at least 

through the third order representation.  The back-calcu- 

Mix 
lated values for A Hi., _  at 1050°K are all close to the Pb-Sn 

original values no matter which technique or order is 

used.  The comparison made in Table 9 will yield informa- 

tion as to which technique is better, but the criterion 

for this judgement must be specified.  These tables do 

show that no matter which criterion is used both methods 
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yield "good" representations.  co other tilings, like co:n- 

puter memory and computer time,must be taken into considera- 

tion when a technique is finally chosen. 

To illustrate the amount of computer memory and com- 

puter time needed for each of these two techniques the 

isomorphous antimony-bismuth system was analyzed.  This 

analysis was carried to a limited extent with the objective 

being to show the differences between these two linear pro- 

gramming techniques.  The pure component data were taken 
4 

from Kubaschewski, Evans and Alcock.  The solution and phase 

92 diagram data were obtained from Kultgren et al.    All 

these data appear in Table 10.  The compositions of the tie 

lines were read every 50°K between 550 and 850°K.  Seven 

pairs of phase boundary compositions and temperatures were 

used to make 14 equations in the form of Eqs. (95) and 

(96).  The pure component data were used to calculate the 

lattice stability parameters at each temperature.  At 1200°K 

the liquid integral heat of mixing data were used for every 

tenth of a mole fraction.  Hence, there were 9 equations 

in the form of Eq. (97) for the liquid phase.  The solid 

integral heat of mixing data were given for only three com- 

positions, which resulted in only 3 equations for the solid 

phase in the form of Eq. (97).  The activity of each com- 

ponent was given for the liquid solution at 1200°K.  These 

data points were also every tenth of a mole fraction.  So 

there were 9 equations in the form of Eq. (98) and 9 
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equations in the form of Eq. (99).  Since the system is 

isomorphous, only a solid a-parameter and a liquid a- 

parameter were calculated.  Each a-parameter needs 2-(n+1) 

coefficients where n is the desired order of the represen- 

tation.  The problem becomes how to solve the 44 equations 

(14 phase boundary, 12 integral heat of mixing, and 18 ac- 

tivities) for the best set of a-parameter coefficients. 

Since the purpose of this example was to show the differ- 

ences between the two linear programming techniques, a low 

order representation was chosen.  A set of first order ex- 

parameters illustrates vividly the differences in these 

two techniques.  For this order representation the total 

number of coefficients is 8--four coefficients for anl „. 
Sb-Bi 

j c csz-    •  x. c Liquid and four coefficients for a_, „. Sb-Bi 

For the simplex technique the computational matrix 

is 44 by 140.  Where 44 is the number of equations and 140 

is the number of variables that simplex needs in order to 

solve this set of equations.  This large number comes from 

the formula 

3-m + 2 (n+1) (107) 

where m is the number of equations and n is the order of 

the representation.  Each equation requires two dummy vari- 

ables and a slack variable (i.e.;3 m variables) in order 

to solve this type of problem.  Along with these 3 m vari- 

ables there is also the 2* (n+1) unknown coefficients which 
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must be made variables.  Thus simplex requires this very 

large matrix.  In contrast, the size of the computational 

matrix for least squares is only 44 by 8.  The only vari- 

ables needed in this system are the unknown coefficients. 

Also the simplex technique requires that the problem be 

offset so the unknowns would only appear as positive num- 

47 bers.  This involves using range values   and calculating 

a pseudo-matrix for the right hand side of Eq. (103). 

After the method is finished the results must be readjusted 

back to the original setting so that the true values for 

the a-parameter coefficients are obtained.  The least 

squares method does not require any dummy variables, slack 

variables, or range values like simplex does. 

The data in Table 10 analyzed by simplex took sub- 

stantially more computer time to arrive at an answer than 

did the least squares technique.  In both cases the com- 

puter program set up the equations, used the linear pro- 

gramming technique to obtain the a-parameter coefficients, 

back calculated the original integral heat of mixing data 

and activity data, synthesized solution thermodynamic data 

at four different temperatures, and then plotted up a phase 

diagram using just the a-parameters.  On Lehigh University's 

CDC-6400 computer, the program using the simplex technique 

took 24.2 system seconds and 44.973 CP seconds to complete 

the entire job.  In contrast the program using least suqares 

took only 14.8 system seconds and 25.919 CP seconds to 
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accomplish the same task. 

The a-parameters generated by these two techniques 

follow.  For simplex 

aciqold = 1-151 " 2288./T Sb-Bi 

+ (-3.729 + 4274./T) x„. (108) 

CW1^  = " -9057 + 631.0/T Sb-Bi 

+ (2.655 - 841.4/T) xD. (109) 
BX 

For the least squares technique, 

a^fq^ld = -1.295 - 175.2/T L: 
'Sb-Bi 

+ (-.2853 + 1340./T) xn. (110) 
Bi 

cw"4d  = -.9322 + 835.1/T 
oJD —BX 

+ (2.818 - 1322./T) x_. (Ill) Bl 

As can be seen the solid a-parameters in both cases are 

approximately the same.  There does occur a major differ- 

ence in the coefficients of the liquid a-parameter.  The 

reason for this discrepancy could be due to the low order 

of the representation.  Unfortunately, going to a higher 

order is not justified in this case because of the limited 

amount of data.  The synthesized activities at 1200°K from 

the liquid a-parameter generated by both techniques appear 
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in Figures 4 and 5.  As is seen neither does an exception- 

al job of representing the data, although the least squares 

a-pararaeter appears to be slightly better.  Also the phase 

diagrams synthesized by both techniques appear in Figures 6 

and 7, along with the analyzed data points.  The method 

used for this synthesis is the first numerical one described 

in Section 6.  Neither phase diagram is exact, but both are 

adequate when it is realized that they are synthesized from 

only a first order representation.  Although the analysis 

and synthesis of this system was performed primarily to 

illustrate the computer time and storage differences be- 

tween the two techniques, the results indicate one of two 

possibilities. 

1) If it is assumed that the data are correct, the^r^ 
) 

the first order representation only does an ade- 

quate job of representing the system. 

2) If it is assumed that this simplified represen- 

tation is correct then it might be argued that 

some of the analyzed data is incorrect. 

The first possibility is most likely true in this 

case, because a low order representation is very seldom an 

adequate model even on the simplest of real systems.  Rao 

46 
and Tiller   have argued for the second possibility with 

regard to the solidus line in the indium-gallium system. 

In their case and in the antimony-bismuth system presented 

here, it is most probable that the inconsistency of the 



synthesized data with the analyzed data is not due to in- 

correct experimental data but an inadequate representation 

A higher order model might be used to avoid this problem 

but to do this much more data for the analysis is needed. 

Because of the need to analyze as much data as possible, 

the least squares method should be preferred over the sim- 

plex method. 
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SECTION 8: EXAMPLE—THE LEAD-TIN SYSTEM 

The methods of analysis and synthesis described in 

this thesis have been performed on several isomorphous 

93 systems.    This type of system is the easiest to analyze 

since there are only two phases, solid and liquid, to be 

dealt with.  For a eutectic system, there are three dis- 

tinct phases.  The pure crystalline structures of each 

component and the liquid phase must be considered in the 

analysis.  If a is the crystalline phase of component 1 

and S is the crystalline phase of component 2, then the 

lattice stability parameters, AG,       and AG~      , 

must be known in order to truly analyze the system.  If 

the a and 3 phases are the same (e.g., face-centered cubic) 

then these lattice stability parameters would be zero. 

When a and 3 are two different phases then the problem of 

what values to assign to these lattice stability parameters 

exists. 

For the eutectic lead-tin system it was assumed 

that 

AG^a-3) = AG^"^ =   0 (112) 

where a is the crystalline structure of pure lead, and 
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97 
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the system. 
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These were the tie-line data points that were analyze.'' 

they appear in Table 14. 

In total there were 36 integral heat of mixir. .- 

points (Table 11), 27 activity data points (Table 12) 

36 tie line data points (Table 14).  Each of the act: 
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and heat of mixing points yielded one equation and each 

tie line data point yielded two equations.  The computation- 

al matrix size for the least squares technique was 135 by 

(4n+4) where n is the order of the a-parameter.  The 4n+4 

appears because each order requires two coefficients for 

each of the two phases; also the zero order must be con- 

sidered.  If the simplex method were used this matrix would 

be 135 by 405 + (4n+4) from Eq. (107).  Because of the 

smaller matrix and shorter computer time needed, the least 

squares method was the obvious one to use in this case. 

93 
It has been shown   in detail how the optimum order 

for the a-parameter is chosen.  Basically the lowest order 

which synthesizes the original data reasonably well is 

picked.  For the lead-tin system, it was found that second 

order a-parameters were needed to accomplish this task. 

The a-parameters which were obtained are: 

a^iq^ld  = 2.39 3 + 388.0/T Pb-Sn 

+ (-4.727 + 593.6/T) x„ ' Sn 

+ (2.338 - 254.5/T)(xQ )2 (112) 

and 

aPb-Sn   = 2*988 + 1323-5/T 

+ (-15.85 + 422.2/T) x„ 
Sn 

+ (13.04 + 221.4/T)(xc )2 (113) 
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It has been determined that each coefficient needs four 

significant figures so that round-off errors do not occur. 

This was accomplished by starting with the,seven digit 

computer calculated coefficients, then decreasing the num- 

ber of digits by one and synthesizing the original data. 

This process was carried out until only two digit coeffi- 

cients were used.  It was found that the four digit coeffi- 

cients gave results almost exactly the same as the seven 

digit coefficients.  When three digit coefficients were 

used then the round off errors became significant.  So it 

was concluded that in order to insure accuracy the a-para- 

meter coefficients should have four significant figures. 

A first order a-parameter was also calculated for 

47 the lead-tin system by Rao, Hiskes and Tiller   using the 

simplex technique.  This limited the amount of data which 

they could realistically analyze.  They used only 8 tie- 

line data points, 9 partial molar heat of mixing data for 

the liquid, and 5 solid lead activities.  This was a much 

smaller set of data than was used in this thesis.  They ob- 

tained the following parameters: 

Liquid  = 0>318 + 744i0/T 
Pb-Sn 

+ (-0.186 - 136.0/T) xc (114) 

and 
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a^1^ = 1.336 + 322.1/T Pb-Sn 

+ (-4.61 + 2292.0/T) xQ (115)* 

A direct comparison between the two different a-parameters 

cannot be made since they are of different orders.  In 

spite of this a comparison can be made between the modified 

Legendre polynomial coefficients for these two different 

representations.  This is accomplished by using Eq. (64) 

to convert the simple power series coefficients into modi- 

fied Legendre polynomial coefficients.  Both sets of co- 

efficients for each of the two representations appear in 

Table 15.  As can be seen some of the modified Legendre 

polynomial coefficients are similar for both investigations 

but there does appear to be some discrepancies, especially 

for the liquid phase coefficients.  Overall, the a-para- 

meters generated by this thesis should be better for two 

reasons : 

1) More data points were used to calculate the 

coefficients, and 

2) The order of the representation is higher. 

It is the extra analyzed data which cause the discrepancies 

in the modified Legendre polynomial coefficients. 

*The third coefficient for the solid cc-parameter was actual- 
ly reported as -46.1 but this was found to be a typographi- 
cal error and the correct value is given in Eq. (115). 
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A comparison can also be made between the synthe- 

sized data obtained from these two different sets of lead- 

tin a-parameters.  The phase diagrams generated by these 

two sets are shown in Figures 9 and 10.  Both these phases 

diagrams were calculated by the direct numerical technique 

for temperatures above the eutectic temperature.  For the 

solvus lines the graphical technique was used.  It should 

be noted that in both cases no data below 450°K were used 

in the analysis; so these solvus lines are, in a sense, an 

extrapolation.  An example of this graphical method for 

obtaining the solvus lines is given in Figure 11.  This 

shows the solid Gibbs free energy of mixing calculated at 

430°K from Eq. (113) and Eq. (79) with the ideal free 

energy of mixing added. 

The common tangent is used to obtain the composi- 

tions.  The accepted experimentally determined diagram pub- 

91 lished by Hultgren e_t al.   is given in Figure 12.  As can 

be easily seen in a comparison of Figures 9 and 12, the 

phase diagram synthesized from Eqs. (114) and (115) is 

fairly good for the lead-rich portion of the diagram.  The 

tin-rich side and the synthesized eutectic temperature and 

composition are in fairly large disagreement with the ac- 

cepted phase diagram.  The diagram synthesized from Eqs. 

(112) and (113) is in much better agreement with the ex- 

perimental phase diagram as seen by comparing Figures 10 

and 12. 
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A comparison is also made between the experimental 

data for the integral heat of nixing at 72 3°X obtained by 

94 Kleppa,   and the synthesized integral heat of mixing fro:: 

the two liquid a-parameters.  Equation (81) is used to 

synthesize the curves in Figure 15 using P.ao e_t a_l_. 's 

Liquid   -,,-,•      -i ,-   ■ *.< •     i i   Licuid   ., , . 0i_, ^_   and Figure 16 using tnis work s a_, -   .  ^otn Pb-Sn        J ^ Po-Sn 

representations do an adequate job of representing the ex- 

perimental data. 

Overall, as was expected, the a-parameters calcu- 

47 
lated by Rao, Hiskes and Tiller   are not as good as the 

a-parameters generated in this work for representing the 

lead-tin system.  Using Eqs. (112) and (113) solution 

thermodynamic quantities at any temperature can be synthe- 

sized for the lead-tin system.  For example, Figure 17 

shows the liquid activities at 650°K, S50°K, and 1050°K. 

As would be expected, the activities tend toward Paoult's 

Law as the temperature increases.  Although no solid 
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solution activity data were used in the analysis, these 

activities are synthesized in Figure 13.  There is good 

agreement with the data points reported by Kendall and 

9 6 Hultgren,   although their assumption of the entropy of 

mixing being ideal was not made in the present analysis. 

A complete set of solution thermodynamic data can be cal- 

culated from these a-parameters for the lead-tin system. 

Such a data set for 1050°K is given in Tables 16, 17, and 

18.  These data can be favorably compared with the data 

91 
listed in Hultgren et al. 

Thus the entire solution thermodynamics and the 

phase diagram for the lead-tin system can be condensed to 

the two second order a-parameters in Eqs. (112) and (113) 

This is a more concise method for storing these data than 

the numerous tables and graphs which would be otherwise 

needed. 
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SUMMARY 

A thorough search of the literature has been .made 

to ascertain what other investigators have been doing in 

the fields of solution thermodynamic representations and 

phase diagram calculations.  A simple parametric formal- 

ism, the a-parameter defined in Eqs. (73) to (75), was 

chosen for this thesis.  This representation had the favor- 

able characteristics of being linearly dependent on inverse 

temperature and a simple power series in the compositional 

variable.  A procedure was developed which would analyze a 

set of experimental data to yield the coefficients of an 

a-parameter for a binary system.  The relationship between 

this formalism and the experimental quantities as well as 

other solution thermodynamic quantities have been derived. 

Two linear programming techniques for determination 

of the a-parameter coefficients were examined in detail, 

with the conclusion that the least squares technique is 

superior to the simplex method for this procedure.  For 

phase diagram calculations three techniques were explored; 

a direct numerical method, a graphical method, and a nu- 

merical method which is dependent on already known experi- 

mental data.  The procedure used will depend on the nature 

and type of system being analyzed. 
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■«J 

The experimental data for the binary lead-tin system 

has been analyzed and the coefficients of the a-parameters 

for this system have been determined.  Two second order 

a-parameters were chosen to represent this system and they 

were compared to the first order parameters given by Rao, 

47 Hiskes and Tiller.    The a-parameters generated in this 

work proved to be a better representation for this system 

than those of Rao et al. 
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Recommendations for Future Work 

There is still much to be accomplished in these 

fields of representation, storage, and retrieval of solu- 

tion thermodynamic data and phase diagrams.  There are 

three possible avenues which future work might take. 

1. Compilation 

The methods illustrated in this thesis can be im- 

plemented so that a vast number of binary systems are 

analyzed and reduced to simple a-parameters.  This would 

lead to a useful and concise compendium of information. 

This would also allow for the comparison of a-parameters 

for different binaries to see if any general systematic 

trends can be found.  The use of the modified Legendre 

polynomial representation would be particularly useful in 

this comparison aspect. 

2. Refinement 

There are several procedures which should be explored 

to refine the methods presented in this thesis. 

a. A weighting matrix should be added to the least 

squares technique so that individual experimental error for 

each data point can be taken into consideration.  Presently 

all experimental data are treated equally. 
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b. A better and more general numerical method for 

phase diagram calculation should be developed. 

c. The present computer programs should be made more 

efficient and an interactive program for data retrieval 

should also be developed. 

d. Statistical methods for choosing the proper 

order of the a-parameter should be investigated. 

e. Other solution models night be explored to see 

if an encompassing representation can be found which is 

directly related to first principles and vice versa. 

f. Use of the ongoing research in the areas of 

quantum mechanics and pseudopotentials may be helpful in 

generating better values for the lattice stability para- 

meters and a more fundamental solution model. 

3. Expansion 

The methods employed in this thesis should be ex- 

panded so that ternary and multicomponent systems can be 

analyzed and represented in such a simple fashion. Once 

this is accomplished, then these methods can be used to 

characterize real, multicomponent, industrially useful 

alloys. This is the ultimate goal of this type of basic 

research. 

Hopefully, it will be upon these paths that the 

methods of analysis and storage of solution thermodynamic 

information presented here will proceed in the coming years. 
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Order of Representation 

Modified Legendre 
Polynomial 
Coefficients: 

0 1 2 3 4 

'C2 
668.5 701.2 755.3 758. 1 752.3 

C4 
- 65.3 -191.6 -198.9 -183.2 

C6 
126.3 134.7 113.6 

C8 
-  6.73 12.1 

cio - 13.5 

Table 1 

Mix o 
Modified Legendre  Polynomial Coefficients For AH      at 1050 K. 

Pb-Sn 
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Mole Fraction Tin 

XSn 

AHMlX     at 1050°K 
Pb-Sn 

J/mole  (cal/mole) 

0.1 543.92 (130) 

0.2 933.03 (223) 

0.3 1192.4 (285) 

0.4 1334.7 (319) 

0.5 1368.2 (327) 

0.6 1309.6 (313) 

0.7 1146.4 (274) 

0.8 882.82 (211) 

0.9 502.08 (120) 

Data for AH 

Table 2 

Mix o  91 
at 1050 K. 

Pb-Sn 
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at .• 

K'l 

10 

Table 3 

Simplex Generated Coefficients for the Reprcsentarion 
1050°K. 



Order of Representation 

Least Squares 
Generated 
Coefficients 

A2 
668.5 766.5 1073.3 1098.5 1023.6 

A4 
-130.6 -1141.2 -1287.0 - 663.6 

A6 
757.9 1010.1 - 893.1 

A8 
- 134.5 2126.7 

Aio - 942.2 

Table 4 

Least Squares Generated Coefficients For the Representation of AH 

at 1050°K. 

Mix 

Pb-Sn 
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Liquid Alloys 

Mole Fraction Lead 

Xpt 

Mix 
^HPb-Sn   at   723°   K 

J/mole      [cal/mole] 

.9562 257.9 [   61.64] 

.9521 281.6 [   67.30] 

.9383 353.3 [   84.44] 

.9173 464.9 [111.11] 

.9046 519.5 [124.16] 

.9014 531.8 [127.10] 

.8923 590.8 [141.20] 

.8822 625.3 [149.45] 

.8353 806.7 [192.81] 

.8179 848.5 [202.80] 

.7743 1005 [240.20] 

.6983 1217 [290.87] 

.6832 1197 [286.09] 

.6466 1290 [308.32] 

.4844 1350 [322.66] 

.4258 1354 [323.61] 

.3421 1228 [293.50] 

.2765 1080 [258.13] 

.2552 1053 [251.67] 

.1468 693.2 [165.68] 

.1170 575.8 [137.62] 

.0812 414.2 [   99.00] 

.0623 328.4 [   79.49] 

.0394 211.3 [   50.50] 

Table 11 

Mix 94 95 96 
Experimental AH , „  For Liquid   and Solid   '     Pb-Sn Alloys 

Pb-Sn 
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Tin-rich Side 

Liquidus 

Temp (°K) Sn 
Ref. 

464. .8029 99 
475. .8747 99 
484. .9402 99 
471. .8029 100 
489. .9402 100 
461.5 .7745 101 
459.8 .7650 101 
458.6 .7579 101 
458.0 .7539 101 
456.85 .7446 101 
457.4 .7405 102 
464.2 .8044 102 
490.3 .9419 102 
502. .9854 102 
504.3 .9935 102 
504.5 .9964 102 

Solidus 

Temp (°K) 
Sn 

Ref. 

470. .9884 99 
491. .9942 99 
485. .9942 100 
481. .9942 103 
485. .9942 103 
467. .9914 103 
471. .9914 103 
466. .9914 103 
471. .9914 103 
457. .9884 103 
459. .9884 103 
458. .9884 103 
459. .9884 103 
456. .9884 103 
457. .9884 103 * 
485. .9942 103 
471. .9914 103 
476. .9914 103 
475. .9914 103 
467.4 .9884  , 104 
489.4 .9942 104 

Table 13 

Experimental Phase Diagram Data for the Pb-Sn System. 
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Lead-rich Side 

Liguidus 

Temp (° K) 
Sn 

Ref. 

587. .0841 99 
574. .1624 99 
550. .3038 99 
526. .4280 99 
5U7. .5378 99 
488. .6358 99 
583. 5 .1161 100 
575. 5 .1625 100 
566. .2213 100 
554, .3038 100 
588. .0841 105 
577. .1625 105 
562. .2355 105 
553. .2905 105 
545. .3739 105 
586. 5 .0845 102 
561. 2 .2359 102 
551. 3 .2956 102 
529. 0 .4306 102 
477. .6817 102 

Solidus 

Temp. (°K) 
Sn 

Ref 

563. .1161 100 
541. .1625 100 
507. .2213 100 
481. .2495 100 
455.2 .2770 100 
455.2 .2905 100 
583. .0678 106 
578. .0678 106 
567. .1161 106 
561. .1161 106 
554. .1472 106 
541. .1624 106 
537. .1775 106 
521. .2069 106 
515. .2069 106 
503. .2355 106 
494. .2495 106 
487. .2495 106 
469. .2770 106 
459. .2905 105 
579. .0841 105 
551. .1625 105 
502. .2355 105 
458. .2905 105 

Table 13 (continued) 

Experimental Phase Diagram Data for the Pb-Sn System. 
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Liquid Coefficients Solid Coefficients 

A 

A 

A 

A 

Simple Power Series Representation 

This Work Rao et al. This Work Rao et al. 

1 
2.393 0.318 2.988 1.336 

? 
388.0 744.0 1323.5 322.1 

3 
-4.727 -.186 -15.85 -4.61 

4 
593.6 -136.0 422.2 2292. 

5 
2.338 13.04 

6 
-254.5 221.4 

Modifi ed Legendre Polynominal Representation 

This Work Rao et al. This Work Rao et al. 

1 
0.8090 0.225 -0.5927 -0.969 

? 
600.0 676.0 1608.4 1468.1 

3 
-1.194 -0.093 -1.408 -2.305 

4 
169.6 -68.0 321.8 1146.0 

0.3896 2.173 

6 
-42.41 36.90 

Table 15 

Comparison Between.the a-parameter Coefficients Generated by This Work 
and by Rao, et al.     for the Pb-Sn System. 
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Temperature = T| 

AG?!X 

Figure   1 

Free Energy of Mixing for the n and v Phases in the 1-2 
Binary at T.. . 
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Figure   2 

Free Energy of Mixing for the n and v Phases in the 1-2 
Binary at T_. 
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Figure 4 

Synthesized Activities for Sb-Bi System at 1200°K Using 
Simplex Generated a-parameter. 
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Figure 5 

Synthesized Activities for Sb-Bi System at 1200°K Using 
Least Squares Generated a-parameter. 
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Appendix A 

The Gibbs-Duhem Equation Applied to a Binary Regular 
Solution 

The regular solution model for a single phase is 

given by 

R-T- HnY;L  = C±_2    (x2)
2 (Al) 

where R is the gas constant, 

T is absolute temperature, 

Y, is the Raoultian activity coefficient of 

component 1, 

C-|_~ is; the regular solution interaction 

parameter, and 

X„ is the mole fraction of component 2. 

The Gibbs-Duhem Equation in terms of Raoultian 

activity coefficient is 

x  d £n Y-i  + x« d £n  Y2  
= ° (A2) 

or 

Xl 
d £n y   =  -  —  d £n Yn (A3) l x2        l 

It is known that at x„ = 1, £n Y9 
= o. So applying 

the integration limits of x, = 1 to any composition x„, 

Eq. (A3) becomes 

142 



' .. nv _ at x. x, 

d . n y 

n-)'     at x_ = 1 

X- 

x. 

X, = 1 

d  ,n 
'1 

:A4 

Differentiating Eq. '(All 

d e n y R-T 
2-x2-C1_2-d x2 (A5) 

Substituting into Eq. (A4), 

.ny. 

iny ~   at x~ 

iny~ at x^ 

C 1-2 
R-T 

= 1 

x. 
X, 

X, 
2-x2 dx2 

x2 = 1 

(A6) 

So, 

R-T-Any C 
1-2 

x. 

|x„ - 1) -2 dx 

x2 = 1 

(A7) 

= C 1-2     (2x2 - 2)  dx2 

x2 = 1 

Cl-2 " ( (X2)  " 2 X2) 

x„ = 1 

(A8) 

(A9) 

= C±_2 ( (x2)  - 2x2 + 1) 

C]__2 (1 - x2) 

(A10) 

(All) 
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Therefore, 

R'T.       *n   y2   =   Cl_2      ■    Xl (A12) 
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Appendix B 

The Gibbs-Duhem Equation Applied to the .-parameter 
Representation. 

The Gibbs-Duhem Equation will be applied to a first 

order a-parameter.  It then will be appliep to an nth 

order a-parameter where n is any positive integer. 

For the first order a-parameter 

2 
£n Yl = (x2)   a±2 (Bl) 

where y-i is the Raoultian activity coefficient of compon- 

;    ent 1, 

\  x~ is the mole fraction of component 2, and 

a,y   is the a-parameter. 

a12 = (A-^A^T) + (A3+A4/T)x2 (B2) 

where the A.'s are constants and T is absolute tempera- 

ture. 

If 

B  = A..+A-/T (B3) 
o    1 2' 

and 

B1 = A3+A4/T (B4) 

Then 

a12 = Bo + Bl X2 (B5) 
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So 

f.n y ■ (B0+Blx2)  (x2) 
(B6 

The Gibbs-Duhem Equation for the natural logarithm 

of the -Raoultian activity coefficient can be written as 

d £n y, 
xn 

X, 
d In   y. (B7) 

If Eq. (B7) is integrated from x  = 1 to any arbitrary 

x~, then the left hand side becomes 

ffcnYp at x 

d £ny, 

Jiny  at x  = 1 

anY. 

X. 

-ny. (B8) 

x2 = 1 

but 

£n y2 

x2 = 1 

(B9) 

So Eq. (B7) can be rewritten as 

£-ny. 
x. 

Xl —   d Iny^ 
x2       

Yl 

x2 = 1 

(BIO) 

Differentiating Eq. (B6), 

d £n y±   =    (2-BQ + 3-B.^x ) x2 dx2 (Bll) 
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Substituting into Eq. (BIO), 

cny2 = (1 X2)  (2-BQ+ 3-B1-x2)-x2 dx2 
x. 

x2 = l 

(B12: 

X, 

x2 = l 

(2-BQ + 3-B1-x2 - 2-BQ-x2 - 3•B±•(x2) )dx2 (B13! 

Integrating 

£nYo = - 2.B0-x2 + |.B1.(x2)
2-B0.(x2)

2-B1(x2)
3) 

x. 

(B14) 

xrl 

So 

£ny2 = (BQ-(x2)
2 + B1-(x2)

3 - 2-BQ-x2 - |-B1-(x2)
2) 

+ (B0 + 2 Bx) (B15) 

Collecting terms 

Zny2   =    (B0+Bl.x2) (x2) (2.B0 + 2-.B1.x2) x. 

+ B0 + 2 Bl (B16) 

Substituting Eq. (B5) into Eq. (B16), one gets 

2 12        1 
£ny2 = a12 * (X2J  " 2a12" X2 + 2 Bl (x2)  + B0 + 2 Bi(B17) 
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; 
( \ 

! l \ Therefore, 

f-ny2 = a12-  ( (xx)
2 - 1) + | ■ B1- (x2)2 + BQ + | Bx 

(B18) 

or 

£ny. (BQ (x2) 
2 + B1 (x2) 

3) • ( (xx) 
2 - 1) + j B1 (x2) 

2 

+ B0 + 2 Bl 
(B19) 

The same procedure can be used for an nth order 

a-parameter.  In this case 

n 
I 

x=o 
12 =l        B.-(x2)

1 (B20) 

so 

2  n 

'nyl = ^X2^  ^   Bi" ^X2^ 
i=o 

(B21) 

where 

B. - A 
(2i+l)  + A(2i+2)/T (B22) 

Differentiating Eq. (B21) 
n 

d £n Y-L =  (I  Bi- (i + 2) • ( 
i=o 

x2)   )dx2 (B23) 

Substituting Eq.  (B23) into the Gibbs-Duhem Equation 

given by Eq. (BIO) yields 

£ny. 

X2 

x2 = l 

^~ '(I     B..(i+2).(x2)
i+1)dx: 

2   i=o 
(B24) 
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Then 

nY 

'2 n n 
i + 1 dx. 

x'=1 

(I_    Bi- (i + 2) • (x2)X   -I   Bi- (i + 2)-(x2) ^2 

(B25; 

i=o i=o 

Integrating   Eq.     (B25) 

n 
£ny2   = 

i=o 

i + 1 
n 

}L(i+I) Bi,(x2)       -J.Bi'( x. i + 2- 

i=o 

x. 

x2 = l 

(B26) 

n n 
(i+2)   „     ,__  , i+i       V    „     ,     xi+2 

= :L7i5ff v<*2>iT±-A v<v i=o i=o 

+J.frarBi i=o 
(B27) 

n 
2 

x-    •  ;        a.•ix„;      -   x 

n 

L  w1--,-,!.  S- B.-^i 
i=o i=o 

n 

+     I 
i=o 

TT+TT     Bi 

n 
Substituting in Eq. (B20) 

tn*2 " (x2»2-°12 - 2-x2-a12 + x2^  TTTT) 
i=o 

(B28) 

Bi-(x2) 

+ 
n     1 
L    7I+TT " Bi (B29) 

i=o 
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Therefore 

-, n . .    . , 
2 ,,     . '      i        „       ,      ,i+l, 1 n'2 

= ii2 • ((xi]   " 1} + X   'TT+TTV <*~^"~+ ~-^B (i+1)      i        2' (i+1)    i i=o 

(B30) 

or 

n 

^2 =   X.   (B..^)
1

*
2
.^)

2
-!)   + 7TTirBi-<x2>i + 1 

i=o 

+TTTTT -Bi' (B31) 

For example, Eq. (B20) for a third order a-parameter 

yfelds 

:nYl = (x2)
2 (B0+B1(x2)+B2(x2)

2 + B3(x2)
3) (B32) 

and Eq. (B30) yields 

lny2   =a12.((x1)
2-l) + \  Br(x2)

2 + § -B^)3 

+ | • B3.(x2)
4 + Bo+| B1+ |B2 + IB3 (B33] 
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Appendix C 
\ 

Integral Excess Gibbs Free Energy of Mixing Using the 
x-parameter Representation i 

) 

The integral excess Gibbs Free energy of mixing, 
Mix, xs ,- ., 

G-, ~     is derived using an nth order a-parameter.  The 

a-parameter representation is as follows: 

£nYl = a10 (x„)2 - (Ci; 1   "12 v 2' 

where 

n 
a 

x=o 
12 = .I   Bi- (X2}1 (C2) 

and 

Bi = (A(2i+l) 
+ A(2i+2)

/T) (C3) 

where y-i i-s the Raoultian activity coefficient of compon- 
ent 1, 

a,» is the a-parameter, 

x„ is the mole fraction of component 2, 

n is the order of the a-parameter, 

T is absolute temperature, and 

the A.'s are constants. 
3 

By the Gibbs-Duhem Equation it is known that 

£ny2 = a12.((x1)
2-l)+I (jJ^y- B . . (X   ) ^J^' B . )     <C4) 

i=o 
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. t 

(For derivation see Appendix B.)  By definition 

G  2'   = x -RT-^ny  + x^RT-fny (C5) 

Substitution of Eqs.  (Cl), (C2), and (C4) into Eq.  (C5) 

gives 

„Mix, xs _ _ m ( ,      ,2 
1-2 R-T- x r(x2)

2.j  B.-Cx^1 
1=0 

9       n 
+ x2. ((x )^ - 1). I  B • (x2)

X 

i=o 

+ vi   (TiTiyBi(x2) 
x=o 

1+1 +   1   B ) + (i+1) Bi) (C6) 

/      Upon rearrangement 

GMix,xs = R>T< (x1(x2)
2 + x2((Xl)

2 - 1) I     B^x,)1 

1=0 

+ x t ((ITTTBi<x2
)1+1+ TTTT7 B±) 2   .^      Mi+D 1=0 

(C7) 

It   can  be   shown   that 

2 2 
x1- (x2)      +   x2 •(    (x   )      -   1)      =   xi'x9   ~   x2 (C8) 

Thus 

Mix,XS   =    R>T< 

i-z 

n 
(xl"X2   ~   X2)"      £        Bi    (x2)X 

1=0 

+ jo    ^TITIT   Bi   <x2)1+2 +    TITIT   Bi x2^} (C9) 
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Mix,xs   _ 
Gl-2    *     "   R'T' j      Bi.xl(x2)1+1   -    j    "B.     (X2)

1+1 

x=o 1=0 

+  .?     TTTTT   Bi  (x2»i+2 +    j   TTTTT   B! x 
x=o x=o 

(CIO) 

,Mix,xs   _ 
'1-2 

R- 
n 
I 

1=0 
T-       J      Bi.(x1(x2) i+1   _      i+1 i -      .i+1 

X2        +    (i+1)    (X2' 

+ 
(i+1)      X2} .(en: 

,Mix,xs 
Jl-2 

n 
=   R- i+1    ,      , i + 2    ,      , i+1 ,      i      ,     si+2 (xj T-        I     B..((x2)        -(x2)        -(x2)        +TTTIy(*> 

1=0 

+ xj (i+1)      A2 (C12) 

,Mix,xs 
'1-2 

n i + 2, ,      .i + 2,      1 R'T-    JoB..(-(x2)1   ^+(x2)1^+TI^IT. (-(x2) i + 2 +x2)) 

(C13) 

Mix,xs= .     S       1      B   .   ri-   (x  } 
^1-2 -1      x2      . Z    (i + 1)      i      ,J-      lx2; 

1=0 

i+1- (C14) 

Therefore 

,Mix,xs 
3l-2 

n 
=   R.T-x   • (1-x   ) .       I 

1=0 
TTTTTVU <*2

,j (C15) 
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Appendix D 

Partial Molar Quantities Using the a-parameter Representation 

Equations for partial molar solution thermodynamic 

quantities using the a-parameter are presented. 

The a-parameter representation is as follows: 

2 
Jin Yi = «12  (x ) (Dl) 

where 
n 

a±2   =   I        Bi •  (x2)
X (D2) 

i=o 

and 

Bi = (A(2i+l) 
+ A(2i+2) 

/T) (D3) 

where y-. is the Raoultian activity coefficient of com- 
ponent 1, 

a,„ is the a-parameter, 

x„ is the mole fraction of component 2, 

n i's the order of the a-parameter, 

T is absolute temperature, and 

the A.'s are constants. 
: 

By the Gibbs-Duhem Equation, it is known that 

n 
my2   =   o12-( (x1)^-l) + I       (-Iir-.Bi-(x2)

1 ^j^;   ■    B±)     (D4) 

The partial molar excess Gibbs free  energy of compon- 

ent 1 is 
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—  xs 
G1 =   R-T-     ,n    ,x (D5. 

=   R- T- l12    *     (X2
} ;D6. 

n 
=   R T-       I B±    •     (x2) i + 1 

(D7) 
1=0 

For   component   2 

xs 
G\,""   =   R-T.        In   y. 

=   R-T-     (c12 

n 

1=0 

( ^i''-1'* <L(7i*irV<V1+i+iirSi: 
if (D8! 

By the Gibbs-Helmholtz Equation 

H. = 
1 

3, XS/1 

3    (1/T) 

(D9) 

so 
n 

H 1 = R * J.  A(2i 
1=0 

(2i+2)  '   (x2} 
i+1 

(D10) 

and 

H2 = R 
n 

_ _  ( 21 
1=0 

(2i+2)J * (    (xl)  " 1. 

n 

,L ((i+1)  A(2i + 2)  (X2) 
i+1 .   1 + 

1=0 i+1   A(2i+2; (DII; 
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By definition 

xs 
,— xs 

(D12) 

So 

c    xs Sl 

n 

- R-.I   A(2i + 1) * (V 
x=o 

i+1 (D13) 

and 

xs 

n 

■R- j   A       j .  ( U)2   - 1) 
1=0 J 

1=0 

+.^   (i+1)  A(2i+1) (X2)   + (i+1 
A 

2i + l) 
(D14) 

So the excess partial molar quantities can be directly ob- 

tained from the coefficients of an a-parameter.  The par- 

tial molar quantities are directly rei^ted to the excess 

partial molar quantities by 

Q.  =  Q.XS  +  Q.ID 
1     1       1 

:DI5) 

where Q is G, H, or S. 

So 

G.  =  G.XS  + RT- £n x. 
IX .   1 

H.  =  H.XS 
1       1 

(D16) 

(D17) 
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and 

S.  =  S.XS  -  R in     x. (D18] 
f, 

Equations (D16) to (D18) can be used to calculate the 

partial molar quantities from the excess partial molar 

quantities determined by the a-parameter. 

It should be noted, that in a single phase region, 

this approach implies that the excess partial molar 

enthalpy and the excess partial molar entropy are inde- 

pendent- of temperature.  These quantities orjly possess a 

compositional dependence.  The excess partial molar Gibbs 

free energy*'Is, of course, linearly related to temperature 

by 

G.XS  =  H.  -  T-S.XS J (D19) 
ill J 

) / 
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