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ABSTRACT

A series of computer programs have been developed
which establishes a set of a-parameters for a binary sys-
tem by analyzing phase diagram and solution thermodynamic
data. The a-parameter for the v phase is defined as
aiz = QnYlv/(xz)z, where Y; is the Raocultian activity co-
efficient for component 1 in the Vv phase, and X is the
mole fraction of component 2. The o-parameter 1is assumed
to be a linear function of inverse temperature and a
polynomial function of composition. Experimental quanti-
ties, such as integral heat of mixing, activity data and
phase diagram tie lines, are used to determine the coeffi-
cients of the a-parameters. Two linear programming tech-
niques, simplex and least squares, are compared for use
in this coefficient determination. It 1is found that the
least squares technique has several distinct advantages.
The synthesis aspect of the programs is capable of using
the a-parameters to calculate a phase diagram or to calcu-
late the solution thermodynamics of a binary system at any
temperature and composition. The development of this ap-
proach is examined in detail and its use on the isomorphous
antimony-bismuth system and the eutectic lead-tin system

are shown as examples.



INTRODUCTION

The gathering, analyzing, storing and retrieving
of all types of solution thermodynamic data and phase
diagrams is a monumental task. There have been many ap-
proaches and attempts to accomplish this feat. Most of
these attempts have only had limited success. This thesis
deals with the development of a set of computer programs
which should aid in the analysis, storage and retrieval
aspect of this task.

The computer programs, which have been developed,
use many of the relationships which exist between solu-
tion thermodynamics and phase diagrams. These relation-
ships have been exploited so that the programs can analyze
all the available experimental data in such a manner that
a simple parameter can be obtained. The retrieval, or
synthesis, of thermodynamic quantities and the calculation
of a phase diagram is made via a computer program. One of
three different methods may be used for the phase diagram
calculation. Synthesis of thermodynamic quantities at
temperatures and compositions not yet experimentally de-
termined can also be made. This type of retrieval system

is enhanced by the simple parameteric formalism which is



used. The simple formalism also makes storage either with-
in the computer or in tabulated form easy.

The thesis is divided into eight sections. Seven
of these sections show thermodynamic relationships and
the development of this method. The eighth section illus-
trates the use of this approach on an actual binary system.
Each of the first seven sections deals with one of the im-
portant aspects of the overall problem. These seven sec-
~tions are:

Section 1l: Experimental Data and Compilations--a
review of available types of experimental data, both solu-
tion and phase diagram, and also an examination of present
storage systems.

Section 2: Equations and Relationships--the deriva-
tion of basic eguations and their use in the relationship
between phase diagrams and solution thermodynamics.

Section 3: Formalisms--a review of formalisms used
to model solutions, a justification for the simple formal-
ism which was adopted, and the general equations needed to
relate the solution thermodynamic properties of a binary
system to this a-parameter.

. Section 4: Synthesis of Phase Diagrams--a review
of other investigators' work on the use of thermodynamics
to calculate phase diagrams.

Section 5: Analysis of Phase Diagrams--a review of
other investigators' work on the use of phase diagrams to

3



calculate the thermodynamics of either the binary system
or one of the components.

Section 6: Analysis and Synthesis Using the c-para-
meter--the combination of analysis, synthesis and the
simple formalism into a consistent unified package. The
experimental data are analyzed to determine the coeffi-
cients of the simple formalism; the model is then used to
synthesize phase diagrams and to synthesize solution ther-
modynamic guantities.

Section 7: Linear Programming Techniques--an exami-
nation of some of the techniques which are used to analyze
the experimental data in order to obtain the coefficients
of the a-parameter. The two basic techniques, simplex and
least squares, are compared using the heat of mixing data
for the lead-tin system at 1050°K and the entire antimony-
bismuth system as examples.

The final section in this thesis shows an example
of these methods for a binary system. The eutectic lead-

tin system is examined in detail.



SECTION l: EXPERIMENTAL DATA AND COMPILATIONS

Data

For pure components and binary systems there are only
a limited number of thermodynamic quantities which can be
obtained directly from experiment. For pure materials the
experimentally determined quantities are transformation
temperatures, heats of transformation, and heat capacity
data. TFor mixtures there are basically two types of ther-
modynamic data which are commonly obtained from experiment.
These are activity data for either component in a solution
and the integral heat of mixing for the pure components
going into solution. These data are measured by various
techniques, each with its own advantages and disadvantages.
From the activity data and the integral heat of mixing
data, other solution thermodynamic quantities can be ob-
tained. The partial molar Gibbs free energy is directly
related to the activity. A combination of activity data
at different temperatures together with the integral heat
of mixing data can yield partial molar enthalpy and par-
tial molar entropy guantities. If the partial molar quan-
tity is known for only one component, as a function of
composition, then the Gibbs-Duhem equation can be used to
obtain the partial molar quantity for the other component.

5



So, from these experimentally determined cuantities a com-
plete set of solution thermodynamic data may be obtained.
Phase diagrams can be shown to be intimately re-
lated to the solution thermodynamics of a binary system.
These diagrams show which phase or phases are stable under
a given set of conditions. For metallurgists the most
common type of phase diagram is the temperature versus
composition diagram for a binary system at constant pres-
sure. The pressure is usually chosen to be one atmosphere.
The phase diagrams for binary systems are usually derived
by experimental technigues. These experimentally deter-
mined diagrams can also be considered as experimental

data for the system.

Assessment and Storage

Once all this experimental data has been obtained
there are two problems which arise. One is the critical
assessment of the data. The other is storage.

Since relationships exist between different thermo-
dynamic quantities, the experimental data can be checked
for consistency. Rand and Kubaschewskil have recently
described methods that can be used to obtain a consistent

=3 has tried to intro-

set of thermodynamic data. Kornilov2
duce the use of statistics into the assessment of experi-
mental data. The overall goal of any assessment process

is a consistent and reliable set of data.



Storage problems are enormous. The most common
method used to store these data has been books. The data
for pure elements4_5, and the phase diagrams and solution
thermodynamic data for binary systems6“9 have been com-
piled into many volumes. There has also been critical
assessmentslo made on these sources of data. Problems
exist with this method of storage. If an inconsistent or
incorrect set of data is published, it cannot be corrected
until the next edition of the volume appears. New experi-
mental data must also await the new edition. The storage
of all these data requires very large books because of the
immense amount.

It is because of these problems of consistency, new
data, and storage, that the idea of a computer storage and
retrieval system has been generated. There has been some
work done along these lines alreadyll_lz, for the storage
and retrieval of data for pure materials.

The comput%r programs used in this investigation
were created to aid in the assessment and retrieval of
solution thermodynamic and phase diagram data for binary
svstems. One program analyzes all the available "good" ex-
perimental data, both solution thermodynamic and phase
diagram, to obtain the coefficients of the simple formal-
ism. The coefficients are consistent with all these data.
From this formalism the experimental data can be calculated

as well as the interpolation or the extrapolation of values
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for thermodynamic quantities at other conditions which have
not yet been experimentally determined.

It is upon experimentally determined data that the
whole computer assessment and retrieval system is based.
The program utilizes basic relationships which exist be-
tween these experimentally determined quantities as well
as some mathematical techniques to arrive at the coeffi-
cients of the formalism. 211 the experimental data as
well as data at other conditions are stored in and can be

easily obtained from this simple formalism.



SECTION 2: EQUATIONS AND RELATIONSHIPS

Basic Relations

There are four equations which are basic thermody-
namic relationships that will be needed throughout this
thesis. These basic equations are:

1. The definition of Gibbs free energy,

G =H - TS (1)
where G is the Gibbs free energy,
H is the enthalpy,
T is absolute temperature, and
S is the entropy.
2. The relation between the partial molar Gibbs

free energy of a component and the activity of that com-

ponent.

- = _O - A d

Gl C1 + R+T-n ay (2)
where él is the partial molar Gibbs free energy of

component 1,

Gl is the Gibbs free energy of pure 1 in its
standard state,

R is the gas constant, and
a; is the activity of component 1.

3. The equality of partial molar Gibbs free energy

of a component in two different phases which are in equi-

librium.



G,  =8&;" (3)
where the superscript indicates the phase and the subscript
indicates the component. In this case the phases are n and
v and the component is 1.

4. The Gibbs-Duhem equation for partial molar Gibbs
free enerqgy.

x; dGy " + x, dG =0 (4)

where Xy and X, are the mole fractions of components 1 and
2, respectively.

Eguation (4) relates the partial molar Gibbs free
energy of one component to the partial molar Gibbs free
energy of the other component in a single phase region of
a binary system.

Another useful equation for the activity of a com-

ponent is
1 V1 (5)

where Y1 is the Raoultian activity coefficient of component

1. Hence, Eg. (2) can be rewritten as

E—}\)=GVO

1 1 + RT+ (&n X

1 * 4n Yl) (6)

If the system were ideal then the activity of each compo-

nent is equal to the mole fraction. 1In equation form
a; = X (7)
for an ideal system. This would cause Yy to equal unity

10



by Eg. (5). Equation (6) is a slightlv more meaningful
equation than Eg. (2), since it shows hoth the ideal solu-
tion situation and the deviation from this ideal case.
This deviation from ideality is what makes solutions both

interesting and difficult to model.

Excess Quantities

Since the composition of an alloy is usually known
then the mole fraction is easily obtainable. For this
reason it is usually more convenient to work with excess
quantities. These excess qguantities are equal to the value
for the given solution with the value for the ideal solu-
tion subtracted from it. The excess partial molar Gibbs

free energy of component 1 is equal to

= XS _ = _ = ID

Gl = Gl Gl (8)
where élID is the partial molar Gibbs free energy of com-
ponent 1 for an ideal solution. Using Egs. (7) and (2)

= ID _ .o

Gy = Gy + RT-&n x; (9)

Substituting Egs. (9) and (6) into Eg. (8) yields

XS (o)

o frad . -—O—
Gl = Gl + RT» (2n X, + 2n Yl) Gl RTon Xq (10)
which simplifies to
= XS _
Gl = RT-2n Yy (11)

11



If the excess partial molar Gibbs free energy were ox-

pressed in terms of enthalpy and entropvy then

= XS _ = XS _ ..z
G,"7 = H T-S,

XS

which is analogous to Eq. (1).

In an ideal solution, the partial molar enthalpy

of a component is equal to zero. Therefore
= XS _ = _ = 1ID
Hy = Hy Hy (13)
= XS _ =
Hl = Hl (14)

The partial molar entropy of a component in an ideal solu-
tion is

= ID _ _
Sl = R 2n X4 (15)

So the entropy term in Eg. (12) is slightly more compli-
cated than the enthalpy term. Rewriting Eq. (12) consider-

ing Eq. (14) vields

= XS _ =% _ n.=
Gl = Hl T Sl (16)

Equation (16) shows that the excess partial molar Gibbs
free energy can be expressed as the sum of the partial
molar enthalpy minus the excess partial molar entropy
times temperature. If both the partial molar enthalpy and
excess partial molar entropy were independent of tempera-
ture, then the excess partial molar Gibbs free energy

would be linearly dependent on temperature. Using Egs.
12



(11) and {(16) one obtains
R*T*n vy, = Hy - T-S

or
- XS -
H
—_— - l l . .%—
Iny, =-w *+ 5 [] (18)

So if ngS and ﬁl are constants, which is true in many

cases, with respect to temperature then n Yq has an in-
verse temperature dependence as shown by Eg. (18). Any
formalism which is used to model a solution should have
this inverse temperature dependence incorporated within

it.

Mixing Quantities

An important quantity which is essential in the
determination of which phase is stable under a given set

of conditions, is the Gibbs free energy of mixing.

Mix,v _ = Vv _ o = Vv _ o
AG TS X, [Gl .Gl ] + X, [Gz G, ] (19)
Mix,v . . A
where AG1_2 i1s the Gibbs free energy of mixing for the
Vv phase in the 1-2 binary system. In a binary system
Xy = 1 - X, (20)

Substituting Egs. (2) and (20) into Eg. (19) vields

v + X,*R*T<%n a v

= (l—x2)-R-T-2n aq 5 7

(21)

13



Remembering E¢. (5), one obtains

AGMiX’v (l-%.)*R+Tesln (l-x%.) + X.*R*T*?2n (x
1-2 2 ‘ 2 2 e

v
- eReTe «ReT 9 ,
+ (1 x2) ReT+2n Yy F %yl T«0n Y (22)

2

The first two terms in Eg. (22) make up the ideal Gibbs

free energy of mixing

Ar,1‘»’T.iX,ID,\)

Jl_z = (l—X

2)-R-T-2n (1—x2) + x2-R-T-2n (x2) (23)

The last two terms in Eqg. (22) can be grouped together and

it is called the excess Gibbs free energy of mixing.

Mix,XS,v v v
e 4 4 — L] L] . L] * .
Gi5 (1 x2) ReT+2n Yq + X, ReT+£i&n Y, (24)
Equation (24) is nothing but
Mix, XS,V _ ,q_ . = XS,V . = XS,V
Gy 5 = (1 x2) Gy + X, G, (25)
So Eg. (22) can be summarized by
Mix,v _ Mix,ID,v Mix,XS,v
AGl_Z = AGl_Z + G5 (26)
Mi 13 :
where AG‘lX’ID’v and GPlX’XS’v are given by Egs. (23) and

1-2 1-2
(24) , respectively.

Phase Diagrams and Gibbs Free Energy of Mixing

Equation (26) can be used to calculate which phases
have the minimum free energy of mixing and are therefore

stable at a given temperature. A method that can be used,

Mix

1-2 as a

to determine phase stability, is to plot AG

14



function of composition for each and every possible phase.

Mix
1-2

stable one. 1In Figure 1 it is seen that at the constant

The phase which has the minimum 1G curve will be the

M3
temperature, Tl’ the V phase has a lower AGiig,

N phase, over the entire composition range. At thls tem-

than the

perature v 1is the stable phase.
Complications begin to arise when at a given tem-

perature two different phases are stable. Figure 2 shows

the AGTiz curves for both the Vv and n phases at temperature

TZ. This figure indicates that at T n has the lower

Mix . Mix
AG, ), between O<x,<x, and v has the lower 4G,

x£<x2<l. It might be thought that the n phase would be

stable for O<x2<xé and the v phase would be stable for
[]

2<x2<l, but this is incorrect. For the two phases to

between

X
be in equilibrium and in contact with each other, they
must obey Eg. (3). To obtain the values for the partial
molar Gibbs free energy of a component in solution the

following equation13 may be used.

dAGMix
AG, = AGME 4 (1-x.) —2Z2  (for i=1,2) (27)
i 1-2 i dx !
where, A0G., = G, - G2 = R+T-0n a. (28)
' i i i ' i

The values for the A@i‘s can be obtained very easily from
a curve of AGTig by a simple graphical method. A tangent

Mi . . .
to the AGlié curve 1s drawn and where this tangent inter-

sects* tlie axis for the pure component, the value of the

15



partial molar Gibbs free energy for that component is ob-
tained. For example, at the composition Xo = §2 in Figure

1, the tangent line is drawn and the values for Aézv and

Aalv, in a solution of this composition, are obtained.
This graphical method is simply the use of Eg. (27).

When two phases are stable at a givén temperature

Mix
1-2

curves for each phase must intersect the pure component

Ea. (3) and Eg. (27) imply that the tangents to the AG

axes at the same point. In order for this to be true the
tangent line for each phase must be the same line. This
line is called the common tangent. The points of tangency
yvield the compositions of the phases which are in equili-
brium with each other at the particular temperature. The

common tangent drawn in Figure 2 shows that the n phase

of composition x2n is in equilibrium with the v phase of

composition xzv, at temperature T If this method 1is

5
carried out at a large number of temperatures then a phase
diagram can be constructed. The common tangent method for
the free energy curves yields the compositions at the end
¢f the tie-lines on a phase diagram. As seen in Figure 3,
the tie line at temperature T2 for the two phase, n + v,

field fixes the compositions of the two phases at x2n and
xzv. These compositions were the same as those obtained

from the common tangent method in Figure 2. So the stabili-

ty of the n phase at T, is for O<x.,<x n

"2 -2 72

stable for x2V<x2il. The region x2n<x <x.” is where the

2 72

and the v phase is

16



two phases are both stable and are in equilibrium with

each other. In this two-phase region the n phase has com-

n

5 and the v phase has composition x v

2

In order to calculate a phase diagram it would be

position x

necessary to know the value of the compositions for the

two phases which are in equilibrium. To do this calcula-
tion on a computer the basic equation, Eg. (3), must be
used. First some manipulations of Eg. (2) mugt[be per-—

formed. Using the form of Eg. (2) found in Eg. (6) the

following four equations can be obtained.

élv = leo + Re«T- (4n Xq + 4n ylv) (29)
6" =6,"? + ReTo(an x; + 2n oy (30)
ézv = G2\)o + Re«T- (2n X, + 4n yzv) (31)
ézn = G2no + R-T-(%n X + 2n an) (32)

If Egs. (29) and (30) are combined into the form of Eg. (3)

then the compositions are no longer variable but are of

fixed values. These values, at a particular temperature,
are the compositions at the end of the tie—lines——xzv and
xzn. So
leo + R-T-(Rn(l—x2v) + 2n ylv) =
G, + ReT- (n(1-x,") + 2n v, (33)

17



Similarly for component 2.

VO V v
G2 + R<T-«(n X, + n Y5 )
_ no L. n n
= G2 + R+T-(2n X, + o¢n Y, ) (34)
Rearranging Eqgs. (33) and (34) one obtains
Vo no LM v n
Gl Gl + R+T+{4n Yq &n Yq )
1—x2n
= 4n (35)
1-x."
2
and
Vo no e v n
G2 G2 + R-T- (%n Y, n Yo )
n
= 2n iz_.- (36)
%V
2
The first two terms in Eqg. (35) can be written as
vo _ no _ o {Mm->v)
6, 6,"° = ac, /5/” (37)

The term AGf(n+v)is called the lattice stability para-
meter.14 It gives the free energy change that would re-
sult from the pure component going from one phase to an-
other at a constant temperature. AGlO(n+v) is the lattice

stability parameter for component 1 going from the n phase

to the v phase. Similarly for component 2

Vo _ no _ o {n->v)
G2 G2 = AG2 (38)
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Substituting the lattice stability parameters into Fas.

(35) and (36) results in

o (n->v) v n (l_x2ﬂ
AG + R+T-+(fn ¥y - n v, ') = In (39)
1 1 1 Vv
1-x
2
and
n
2.0 (V) Rere(an v.Y - gn v.™) = gn T2 (40)
2 Yo Yy v
2

Equations (39) and (40) yield two eguations with two un-
knowns. The two unknowns are xzn and xzv. If these two
simultaneous equations are solved then the values for the
compositions of the two phases would be known and a tie-
line could be drawn on the phase diagram for the tempera-
ture at which these compositions were determined. If Egs.
(39) and (40) are solved for a range of temperatures then
the different tie-lines can be pieced together to form a
portion of a phase diagram. If this procedure is also done
for other two phase fields, then the entire binary phase
diagram could be determined.

There are three problems that occur in trying to
solve Egs. (39) and (40). The first is what type of re-
presentation should be used for the n Yy terms. The
value for these terms must be known for a temperature and
composition range. Even phases which are not stable in
the range must be given a value for the n Y terms in

order to solve the two equations. The representation which
19



is used should also conform to FEq. (18). The tvpe of re-

presentation which was chosen for this thesis is discussed

in the next section. The second problem encountered in
using Egs. (39) and (40) is what value to use for the lat-
tice stability parameters. To calculate the true value

for the parameter it would be necessary for the pure com-
ponent to exist as both phases. For solid materials dif-
ferent crystal structures are different phases. Most
often a pure solid material only exists in one type of
crystal structure; but to truly calculate the lattice
stability parameter it would be necessary for the pure
component to exist in both crystal structures. For ex-
ample, pure copper does not exist in a body-centered
cubic phase. TIf the iron-copper system were to be stud-
ied it would be necessary to have a value for AGCO(fCC+bCCX
Since this transition of pure copper from fcc to bcc does
not exist, the value which is used for the lattice stabili-
ty parameter must be assumed. Theoretically this value
could be calculated from Quantum Mechanics or Pseudo-
potential techniques but unfortunately these fields have
not yet progressed far enough to allow actual numerical
values to be obtained. Further discussion of the lattice
stability parameter is found in Sections 4 and 5. The

third problem in solving Egs. (39) and (40) is one of

mathematics. Because of the natural logarithm functions,

vV

these equations are non-linear in the two variables, X
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!
and xzn. Solving non-linear equations is a very difficult
problem and the computer methods used to overcome this
problem are discussed in Section 7.

The basic relationship between phase diagrams and
solution thermodynamics can be summed up by Fags. (39) and
(40). Analysis uses these relationships to extract use-
ful information from experimental phase diagrams while

synthesis uses these relationships to calculate phase

diagrams.
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SECTION 3: FORMALISMS

Simple Models

Over the years there have been many types of em-
pirical formalisms proposed to represent thermodynamic
data in a solution. The formalism which is chosen to
model a system must be selected with great care. The
desired criteria for the formalism is two-fold:

1. The formalism should be as simple as possible.

2. The formalism should truly model the system.

The second criterion usually requires a more complicated
type of formalism. The balance between these two con-
flicting criterion yield the best results.

The simplest of all formalisms is, of course, the
ideal solution.15 This is where the activity of a com-
ponent is equal to its mole fraction. In a binary system,
ideal behavior implies that both components obey Raoult's
Law over the entire composition range. For an ideal binary

solution the integral heat of mixing is equal to zero, i.e.

a5 TP < g (41)

Also the entropy of mixing for an ideal binary solution is

ASMlX’ID = =Re(x, 4n x., + %x. 24n X

1-2 1 2 2) (42)
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Unfortunately this simplistic approach is not very repre-
sentative of the true behavior of solutions. There are
very few binary systems which are even close to being
ideal. In spite of this, the ideal solution is a good
starting point. The excess functions were devised to show
the deviation of the solution from ideality. Most of the
other proposed formalisms try to represent the non-ideal
behavior of the solution.

The next type of model which has had some degree
of success is the regular solution.16 For a binary solu-

tion to be considered regular

_ 2
ReT+on vy = Cy_, (x,) (43)
and by use of the Gibbs-Duhem Equation, Eq. (4),
R+T+2n = C ( )2 (44)
Y2 1-2 %1

[See Appendix A for the derivation of Eqg. (44).]

Cio is the regular solution interactionparameter, and it

is a constant for a particular system. From Egs. (43) and
(44)
G?ig’xs = xl-R-T-Qn Yyt x2-R-T-£n Yo (45)
=%y Cy_, x;-+ X5 Cy_5 X12 (46)
= Xy X, Cy_, (% + x,) (47)
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Mix,XS _
G127 T *1 ¥p G119 (48)

The regular solution model also assumes that the excess
entropy of mixing is equal to zero. Thus the excess free

energy of mixing in terms of enthalpy and entropy 1is

GMlx,XS - AHMJ.X _ T-ASMlX’ID

1-2 1-2 1-2 (49)

Mix,ID
1-2

model implies that the integral heat of mixing is parabol-

where AS is given by Eg. (42). The regular solution
ic with respect to composition. The largest absolute
value for the integral heat of mixing will be found at

the composition Xy = X, = 0.5. 1In real solutions this
parabolic integral heat of mixing is very seldom found.
This model is also somewhat oversimplified.

17 is used to derive the

The quasi-chemical model
regular solution interaction parameter from first prin-
ciples. It utilizes the bond strength between atoms and,
also, the average number of bonds each atom has between
like and unl}ke nearest neighbors. The final result re-
duces to the regular solution model. The only difference
is that the interaction parameter, Cl—2’ is given in terms

of other more fundamental parameters.

After the regular solution model the next most com-

plex one is the subregqular model. In this model
Mix ,XS _ 2 2
Gl—2 = Cll_z(xl) Xy + C2l_2(x2) Xy (50)
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where C1l and C2 are constants. This model was 1ntro-

1-2 1-2
duced by Hardy.l8 As can be seen in Fa. (50), there are
two constants which must be evaluated. This model depicts

real solutions better than either the ideal or regular
solution models. In order for a solution to be modeled

by Egq. (50), the integral heat of mixing need not be para-
bolic as it must for the regular solution formalism. The
maximum absolute value of the integral heat of mixing can
be displaced towards one component or the other and still

the solution can be represented by the subregular model.

Simple Power Series Models

Margules19 was the first to assume that the natural
logarithm of the Raoultian activity coefficients for each
component in a binary system could be expressed as a power

series expansion in terms of the composition of the other

component. That is

noy, = A x, + RO (x,)° + TAL(x,)7 + W, )t + 5D
and

n oy, = By oxg + 3By (x) 2 4 $Bo(x) 0 + B, (x)* +...(52)
where\khe Ai's and Bi's are constants. Since any function

can be represented by a polynomial, this type of formalism
is quite natural. In order for Egs. (51) and (52) to hold

over the entire composition range, it is required that
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Al = Bl = 0. If the cubic and higher order terms are

neglected then A, = B2. A2 will be a parameter which 1is
inversely proportional to temperature and this Margules
expansion 1is simply reduced to the regular solution formal-
ism with Cl—2 = A2/T. There is a definite relationship
between the Ai's and the Bi's in these two equations.

This relationship comes from the Gibbs-Duhem Equation.

The exact relationship is dependent on where in the expan-
sion the series is terminated. Esdaile20 has shown what
these relationships are for a two to a six term Margules
expansion. He also shows that for each additional term
used in the Margules expansion, there is only one addition-
al parameter Which must be specified. For example, a one
term Margules expansion needs to have only one specified
parameter, A2, and this formalism is directly related to
the regular solution model. A two term Margules expansion
needs to have only two parameters specified (e.qg., A2 and
A3), the other two parameters (e.g., B, and B3) can be ob-
tained from the Gibbs-Duhem Equation. This two term ex-
pansion can be shown to reduce to the subregular solution
model.

Because of the simple mathematical nature of poly-
nomials all power series representations for the excess
partial molar Gibbs free enerqgy of mixing or for the natural
logarithm of the Raoultian activity coefficient of either

component can be directly related to a Margules series
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expansion. This is dependent on the fact that the formal-
ism obeys the Gibbs-Duhem Equation. If the model does not
obey the Gibbs-Duhem Equaticon then it really should not
even be considered for use as a representation, because
the Gibbs-Duhem Equation can be derived from fundamental
laws of thermodynamics and must be obeyed. The power

series or Margules—-type formalism is found throughout the

literature in many different forms. The formalism used
by Wriedt21 is

¢n y. = q (l—x.)2 (53)

i i 1
where
_ 1

a; = Ay 4 A, (5 + xl) (54)

o, = Al + AZ (1 - x2) (55)
with A, and A, being constants. This is nothing but a

1 2

two term Margules expansion and is directly equivalent to
the subregular solution model where the constants, Ai's,
are inversely proportional to temperature.

The model used by van der Toon and Tiedma22 for the

excess Gibbs free energy of mixing is

Mix,¥%S _ _
Gl—2 = X4 (1 xl) F (xl) (56)
where
_ 2
F (xl) = Ay + A, X; + Ay (xl) (57)



with the Ai's being constants. This model is directly
equivalent to a three term Margules expansion, 1f the
Margules parameters are assumed to be inversely propor-
tional to temperature. In both models there will be only
three arbitrary parameters which must be determined for
the system under consideration.

Sharkey, Pool and Hoch23 have used a formalism for

the integral heat of mixing which is parallel to a three

term Margules expansion. Their model has
Mix _ 2 2 2 2
AH 5 = By (xl) Xy + Ay Xy (x2) + A, (xl) (x,) (58)
where the Ai's are constants.
Cho24 has also proposed a formalism which is nothing

but a simple power series and is directly related to a

Margules expansion with the .temperature dependence being

specified. Cho's model is
GYIEXS = w x, w(m) (59)
where
W(T) = R-T- (2 X, + B xl) (60)
and
A= 2n v, / (x )2 (61)
1 2

A is represented by the simple power series
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(62)

where the C.'s are constants. The value for B can be ob-
tained from the Gibbs-Duhem Eguation.

25-27 150 use a formalism which

Hiskes and Tiller
reduces to a form of a power series. They use a Taylor
series expansion about both a particular temperature and

g &FF

a particular composition. They define the partial molar

Gibbs free energy of a component as

N M

- O _ m
G, = G; + ReTen (x;) + nzl mzl By (T-T.)
n-1 .. g .
] L2 [I‘J x 1 [xin q - 1} (63)

where the an's are constants and the points of the expan-
sion are X and Tc. In spite of the complicated form of
Eq. (63), if both Tc and X, are chosen as zero, then the
formalism reduces to a simple power series. Caution must
be exercised when using this model, since it is derived
from a Taylor-series expansion. The only region where the
model is truly valid will be in a neighborhood of the
points about which the expansion is made. Using this form-
alism at points away from the expansion may necessitate

the use of many terms in the series. If the termination
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of the higher order terms is done incorrectly, then the
evaluation of the function away from the expansion points

is almost meaningless.

Othogonal Representations

Several investigators have explored the use of modi-
fied forms of the simple power series representation. The
aim of many of these investigators is to obtain a series
with uncorrelated coefficients. When a series is expanded
to a higher order the coefficients of the lower order terms
will remain constant if the series possesses uncorrelated
coefficients. A method to accomplish this goal would be
to use orthogonal functions for the representation over
the interval of interest. Any function can be represented
by a series of othogonal functions with uncorrelated co-
efficients. A Fourier series would be a prime candidate
for this job except that there seems to be no justifica-
tion for the use of transcendental functions in the repre-
sentation of solution thermodynamic data. WilliamsZ8 has
developed a modified form of the Fourier series representa-
tion for the interval 0 to 1. He calls this series the
Z-series and it possesses several advantages over the simple
power series. The Z-series is just a set of polynomials
that avoids the use of transcendental functions. These
polynomials are almost orthogonal over the interval of in-

terest. The Z-series is also consistent with Darken's
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quadractic formalism.29

RBale and PeltonBO—31 have developed a modified form
of the Legendre polynomials for the interval 0 to 1. These
modified Legendre polynomials are orthogonal over the in-
terval. They allow for a much better representation of
the solution thermodynamic properties of binary systems.
Williams32 has compared his Z-series to the modified
Legendre polynomial representation. His conclusions seem
to indicate that the Z-series has more advantages than the
modified Legendre polynomial representation. Bale and
Pelton33 disagree with these conclusions.

For low order representations it has been shown34
that there i1s a simple relationship between the modified
Legendre polynomial 'representation and the simple power
series representation. The conversion from the simple
power series to the more desirable modified Legendre poly-
nomial series is easily accomplished by the equation34

m n B
Cn=(2n+l)z A.-E—* (64)

where Cn is the nth modified Legendre polynomial coeffi-

cient,

Aj is the jth
. th . . th .
Bk is the k coefficient in the n order modified

simple power series coefficient,
Legendre polynomial, and
m is the order of the power series representation.

\
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Table 1 shows the coefficients of the modified Legendre
polynomial representation for the integral heat of mixing
at 1050°K for the lead-tin system. These coefficients
were calculated using Eq. (64) from the coefficients shown
in Table 4. This set of data is analyzed in more detail
in Section 7. What should be noted in Table 1 is that the
modified Legendre polynomial coefficients, C2, C4, and C6
are almost constant no matter what order representation is
chosen.

Although the modified Legendre polynomial represen-

tation is to be preferred, a simple power series represen-

tation is used throughout this thesis. The reasons for
this are Eqg. (64) makes the conversion to the modified
Legendre polynomial representation quite simple and the
simple power series has been used to a greater extent thus

making a more standard form for this type of representation.

Other Models

There are other types of formalisms which are not
directly related to a Margules expansion and these can
usually be classified as either of two types. The first
type uses a non-power series representation for its compo-
sitional dependent terms. The second type attempts only
to model the solution in a limited composition range.

An example of the first type of non-Margules repre-

sentation is the one proposed by Brebrick35_36. It has
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the rather exotic form of

= \7. 2. — y L] -—!:-
R*T-fn Y, = W (x2) {l sinh (C (x2 2))
~ C-(1 - x,)-cosh (C-(x, - i))}
2 2 2
—V-T-(x)z'{l+ inh (D (x, - %))
2 sin 2 7 3
- D+ (1 = x,) -cosh (D (x, - $))} (65)
2 2 2
where W, V, C and D are constants. The unfortunate feature

of this model is that it uses the transcendental functions -
hyperbolic cosine and hyperbolic sine., No theoretical
justification for their use in solution thermodynamic
representation exists. The only reason to use such a
model would be if it does a good job of empirically repre-
senting the binary system. Certain systems might be well
modeled hy this formalism but overall the Margules expan-
sion would be a simpler representation for many more types
of systems.

There are several formalisms proposed which only
29

model the solution in a limited composition range. Darken

has suggested a quadratic formalism where

_ 2
log v, = ay, (x,) (66)

and

log v, = log v,® + a;, ((x))°-1)  (67)

12
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where &12 is a constant and Yzo is the Paoultian activity
coefficient of component 2 at infinite dilution. This
representation 1s only valid for the terminal region
where component 1 is the solvent. There is no a priori
knowledge of where this terminal region ends for any given
system. Similar types of equations can be used for compo-
nent z as the solvent, but there is no guarantee, and it
is usually false to assume, that Oy = Onqe

Wagner37 has also developed a formalism for solu-

tion behavior in the terminal regions. Wagner considers

interaction parameters and defines them as

. 3 n Y.
e.(l) = —_— (68)
J 9 Xi X.->1
1
e.(l) is the interaction parameter which shows the first

]

order effect of component i on the natural logarithm of
Yj’ in a solution where comvonent 1 is the solvent.
The basic advantage of this type representation is

that it can be easily carried over to multicomponent sys-

tems. Wagner shows that
o) e (k)
n vy, = n vy + Z £ X, + higher order (69)
2 2 2 k
k=2 terms
where m is the number of components in the solution. This

model is only good in a solution where component 1 is the

solvent. He suggests that the higher order terms be
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dropped, since they involve vowers of mole fractions whlch
make the value of these terms very srall 1in comparison to
the first two terms in Lao. (69).

Lupis and L‘lliott38_4l have also used this Vacner-
type formalism but have extended it to the second order
terms. Lupis and Elliott42 have alsc ceveloped a theory
as to why this type of formalism is correct in a terminal
corposition region and they have called it the "Central
Atomsa theory. The main disadvantage of this type of model
1s that the second order interaction parameters, pj(k), are
extremely difficult to determine and the complexity fur-
ther increases when ﬁulticomponent systems are usaed be-
cause of cross product interaction parameters, which must
also be evaluated. They also justify their model by use of
a Taylor series expansion about Xy = 1. It must be remem-
bered that the Taylor series expansion is only valid in a
neighborhood about the point of expansion. So this model
should only be assumed to be valid in regions where %y is
close to one.

A similar type of model has been developed by Hicter,
Mathieu, Durand, and Bonnier.43 Their model is named the
"Surrounded Atom" model. It is almost identical to the

"Central Atoms" model of Lupis and Elliott.

Model Utilized

The formalism which is used in this thesis is a re-

finement of the models used by Rao and Tiller.44_49 This

model incorporates the temperature dependence form of
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Ea. (18) and the composition dependence of a Margules-type,
power series expansion. The advantages to this model are
that it has a temperature dependence built into it and it

is directly related to many of the proposed formalisms for

solutions. The model is called the o-parameter representa-
tion.
. . 44-46 .
Originally Rao and Tiller defined
0, = n vy, / (L - x)2 (70)
12 1 1
where
Gy, = (Al + B, / T) + (A3 / T) X, (71)
. ' . 47-49
with the A;'s being constants. In later work they
expanded the a-parameter further so that
- [
Gy, = (Al + A2 / T) + (A3 + A4 / T) Xo (72)

This equation 1is assumed to be valid over the entire com-
position range and not just one of the terminal regions.
If this formalism were extended further, like that

of a Margules expansion, then

In vy = oq, (x,) (73)
with
= B. + B, x. + B (x )2 +
12 0 1 %2 2 2
n
.. + Bn(XZ) (74)



where

B + A (75)

i A(2i+1) (21+2) /T

and n is the order of the a-parameter. Las. (73) to (75)
show the general form of the model which is used in this
thesis. Each term which is used in Eg. (74) necessitates
the evaluation of two constants as given by Eg. (75). The
highest order a-parameter utilized was a fourth order one.
This requires ten coefficients to represent a system.

Since this formalism is valid for the entire com-
position range then the Gibbs-Duhem Equation can be applied
to obtain the value of 2n Y, once the constants of Eg. (75)
are known. If the a-parameter is terminated after the
first term, then there are two constants which must be
determined -- A, and A2. This zero order wu-parameter cor-

1

responds closely to the regular solution model with
B, = C / ReT (76)

or

(77)

The difference between this model and the regular solution
model is that this formalism does not assume an ideal en-
tropy of mixing. So, in Eg. (77), the temperature depend-
ent term of Al-R-T appears. This term is associated with

the excess entropy of mixing. A Gibbs-Duhem Equation
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applied to a zero order ~-parameter results in

2n = B (1 - x (78)

Y2 = By 2)
For the Gibbs-Duhem Equation applied to higher order ~-
parameters see Appendix B.

Another advantage to this type of formalism is that

various thermodynamic properties are very easily obtained.

The integral excess Gibbs free energy of mixing for an
th

n order o-parameter is
. n i
Mix,XS _ L .m;. . _ . 1 . J
G5 = ReTrx,e (1-x,) izo T Bi j£o<x2) (79)

See Appendix C for the derivation.

Because the temperature dependence is built into
“
. 3 M-
the formalism then AH?i? and Sliglxs

able. Using the Gibbs-Helmholtz Equation

are easily obtain-

5 anx,XS/T]

Mix _ Y1-2 (80)
Ay 5 = 3(1/T)
b
results in
Mix ° 1 L j
bH TS = R-xz-(l—xz)-.g J6ESR) A(2i+2)'.2 (x,) (81)
1=0 Jj=o0
Also by means of the relation
Mix, XS
SMix, XS _ _ 9 G612 (82)
1-2 aT



one obtains

(83)

I3 e
—_
b

Mix, XS _ ).E [ N [
1-2 - 2 2’7 L f(‘"(i_u) ‘(zi+1)!k

[ ——
P —

]
Partial molar cguantities are also easily obtained from
this representation. See Appendix D for derivation and
equations.
To summarize, the formalism that is described by
Egs. (73) to (75) is the representation which is used 1in
this thesis to model a binary system. There are three
basic advantages to this formalism:
1. It possesses the temperature dependence rela-
tionship shcwn in Eg. (18),
2. It is a Margules-type expansion in composition,
and
3. Thermodynamic quantities are easily obtained
from this formalism by Egs. (79), (81), (83),

and those in Appendix D.
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SECTION 4: SYNTHESIS OF PHASE DIAGRAMS

This section will review the present state of the
art for the calculation.of phase diagrams from solution
thermodynamic quantities. This involves the solving of
Egs. (39) and (40) for the phase boundary compositions
over a range of temperatures and for all the two phase
fields that occur in the system.

For many years investigators have attempted to pre-
dict phase diagrams from first principles. Most of the
approaches so far can be considered physical, where the
physical aspects of the components are used in predicting
intermetallic phases. Usually this process was used a

posteriori--that is, the intermetallic phases were justi-

fied after they had been discovered. A fairly recent ap-
proach to this problem of phase diagram prediction and
justification has been through the use of thermodynamics.
In order to use this approach many repetitive calculations
are necessary. Because of high speed computations made
possible with modern computers, this method is beginning
to be exploited.

There are many advantages to this method of calcu-
lating phase diagrams. Using thermodynamics and a computer
retrieval system, the storage and use of phase diagrams can
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be areatly enhanced. Other advantages are that rew nhase
diagrams can be calculated whether or not any experinental
work has been performed on the svstem. Also by using

these methods eguilibrium diaqrams50 can be calculated.
These diagrams are predicted solely from the measured
thermodynamics of the system. These equilibrium diagrams
sometimes show true phase stability in regions where the
reaction kinetics are too slow to allcw experimental deter-
mination.

The underlying assumption, used in the thermodynam-
ic approach to phase diagrams, is the concept of minimum
free energy. The stable phase is the one whose free ener-
gy 1s a minimum (See Figures 1 to 3). The derivation of
phase boundaries from Gibbs free energy was first indicated
in the papers of van Laar around 1908,50 but it is only
recently that this type of approach has been used to any
great extent. The best review of all the fairly recent
literature on this subject is in the first part of one of
Kaufman's papers.51 He schematically shows how different
aspects of the calculation of phase diagrams from thermo-
dynamics fit together. He has 118, pre-1973 references,
most of them of recent vintage. These references deal not
only with the calculation of phase diagrams, but also
representation of thermodynamic data, computer methods for

handling data, and prediction of thermodynamic properties

from phase diagrams. This latter approach is best treated
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by Pudman52 who has done extensive work on 1scrior:hous
systems.

Kaufman has used these methods extensivelv. At
first he assumed ideal solution behavior for the refrac-
tory metal, binary systems.53 This assumption makes the
excess free energy terms in FEgs. (39) and (40) equal to

zero. NMAs for the lattice stability parameters (iGiO(n+\)

)

he divides it 1nto two terms

o (n>v) AH_O(n+v)

- o (n=v)
i i i

AG - T-ASl (84)

o (n=v) o (n-»v)

where the values of AHi and ASi are given as
constants for each set of elements in one column of the
periodic table. Kaufman gives values for these parameters
for the transformations between the bcc, fcc, hcp, and
ligquid phases.

The success of this method is somewhat limited.
The synthesized phase diagrams are the general shape of
the observed phase diagrams. The major drawback is that
intermetallic phases and miscibility gaps cannot be syn-
thesized.

Kaufman then extends this approach by assuming that

the refractory systems are regular solutions.l4’54

This
allows miscibility gaps to be calculated. Also the inclu-
sion of intermetallic compounds is added. These compounds

can exist only as line compounds in the synthesized dia-

grams. The regular solution assumption entails evaluation
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1-2 S.

of the regular solution interaction parameters, the C
These are needed to evaluate the excess partial molar
Gibbs free energy for each component in each phase, which
are necessary for the phase diagram calculation. Some
theoretical justifications for the values of these para-
meters are given by Kaufman.l4
The method was then further extended ky Kaufman and
co-workers so that isothermal sections of ternary metallic

51,55-59 7146 if more

phase diagrams could be predicted.
information is availabkle for the solution thermodynamics,
then the regular solution model can he modified.

The regular solution assumption along with the as-
sumed values for the lattice stability parameters, which
depend only on temperature and the column in the periodic
table, were then tested on the iron, chromium, nickel and
cobalt systems.6O Both binary and ternary phase diagrams
were synthesized and compared to observed diagrams. Just
recently Kaufman and NesorGl—64 have extended this approach
to include other super-alloy systems. They have had a fair
amount of success.

Most of Kaufman's work has dealt with elements in
group numbers 4 to 8. The work of Michaels et 55.65 has
made available more lattice stability parameters for the
elements in group numbers 1 to 3. These are again given
as linear functions of temperature with the constants only

dependent on the column in the periodic table. With these
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parameters and if some knowledge of the excess Gibbs free
energy of the components is known, then this approach of
phase diagram calculation can ke extended to many more
binary and ternary systems.

The benefits which can be derived from this type
of approach are not those of predicting phases, but of
giving some justification to the parameters used and 1l-
lustrating trends in systems. The exact phase diagram
will not be synthesized but the general type will; thus
some knowledge of the system will be gained.

This type of approach was used in conjunction with
experimental work by Kirchner, Nishizawa, and Uhrenius.66
They were able to calculate, using certain thermodynamic
parameters, the experimentally determined y-loop behavior

in the iron-chromium svstem. They then concluded that the

parameters which they used in the calculation were true.

That is, the values for AGFeO(a+Y) and AGCrO(bCC+fCC) and
the regular solution interaction parameters (Cge_Cr and
ct ) were taken to be correct. Knowing these values and

Fe-Cr

with some slight modifications, they were able to obtain
values for iron-manganese alloys. They then synthesized
an iron-maganese phase diagram which was consistent with
experiment. Chipman67 disagreed with Kirchner's66 values
for the parameters. Chipman analyzed the data in a slight-
ly different way and obtained completely different values

for these parameters. His values calculated partial molar

]
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free energy quantities much better than Kirchner's. Kauf-
man6“ showed that Chipman's approach results in a seeming-
ly impossible value for the transition temperature for

bcc to fcc in pure chromium and Chipman69 agreed. But
since this transformation does not really occur, Chipman's
values could be correct. Kirchner and Uhrenius70 showed
that Chipman had analyzed the data in a slightly dubious
manner. Also the iron-chromium phase diagram that was
synthesized from Chipman's parameters does not match the
experimentally determined diagram as well as the one syn-
thesized from the parameters of Kirchner et 53.66 Chip-
man71 agreed for the most part but maintained that his

parameters are still more useful in calculating the partial

a
Fe

, and AéCrY)' This debate does illustrate the point

molar free energies in the two phases (AG , AéFeY’

A.(‘—;CrOL
that although the theory behind the synthesis of phase
diagrams is well founded and can be fairly easily imple-
mented by using a computer to do the numerous calculations,
it is still necessary to have values for the lattice stab-
i1lity parameters and the solution interaction parameters.
The values of these parameters, determined either with some
theoretical deductions or from some experimental data anal-
ysis, are still subject to controversy. The above debate
showed that two completely different sets of parameters
calculate reasonable phase diagrams and reasonable sets

of partial molar free energy values for the two phases.
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One set of values was slightly better for the vhase diaaran
and one was slightly better for partial molar free enercy
data. The question of which parameters to use, and when,
1s still not definitely settled.

Kirchner and co~-workers72—73 have also used this
computational method in conjunction with experimental
measurements for other iron based systems, utilizina the
regular solution assumption. Baskes74 has also recently
examined iron based alloys. He uses a slightly more gener-
al polynomial-type representation in place of the regular
solution model. The phase diagrams synthesized by the
Kirchner group seem to be better than those of Baskes,
since they lie closer to the experimentally measured points.
Although the phase diagrams synthesized from the Kirchner
parameters might be better, the parameters used by Baskes
would probably yield better values for the thermodynamic
quantities.

Udovsky and Ivanov have extended this approach to
uranium alloys with only a limited amount of success.75

Problems of the calculations of these phase diagrams
via a computer has been investigated by Gave and Lupis.76—79
Their work is mostly with the computation aspects of the
problem. Their computer programs allow a wide latitude
in the type of representation for the partial molar excess

free energy functions and the lattice stability parameters.

Unfortunately, their method has instability features at
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certain points which makes precise calculations difficult
at times.

Counsell and SpencerSO_?1 have devised a computa-
tional scheme which will allow phase diagrams of multicompo-
nent systems to be synthesized. They have showed 1ts use
for the iron-chromium-vanadium ternary only. Their method
also includes a means for the intermetallic compounds to
have variable composition. Unfortunately, this requires
that some thermodynamic properties of the intermediate
phase be known and then the intermediate phase is treated
just like the other more common phases. As with the Kauf-
man approach, knowledge that the intermetallic phase exists
is needed a priori.

Overall, these methods that use thermodynamics to
"predict" phase diagrams do not truly make predictioﬂs.
These methods are mainly used to synthesize diagrams from
all available data. This synthesis is not to be confused
with prediction. For the synthesis to be good, it is
necessary to know the thermodynamic parameters for all
phases which are present in the system. So the synthesized
diagram, instead of predicting new phases, will yield in-
formation about the compositional range over which the
known phases are stakle. Although there are many critical
assumptions made, these methods have a major benefit in
showing the consistency of phase diagrams with experiment-

ally measured thermodynamic data and vice versa. Another
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advantage of this approach is that once a consistent model
has heen obtained for the system of interest then the
phase diagram storage problem is greatly reduced. The
simple model can be used in conjunction with Rgs. (39) and
(40) and a computer program to synthesize a phase diagram.
So instead of a book with all the phase diagrams printed
in it, storage could be accomplished with just a listing
of the coefficients of the model and retrieval can be made

via a computer program.
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SECTION 5: ANALYSIS OF PHASE DIAGRAMS

The relationship between phase diagrams and thermo-
dynamics has been extensively covered in other sections
of this thesis. This section will review some of the work
which has been done in regard to using experimentally de-
termined phase diagrams to obtain some knowledge of the
thermodynamics of the system.

Analyzing phase diagrams to obtain thermodynamic
properties has not been used as extensively as synthesis
of phase diagrams from thermodynamic quantities. The
method for analysis, which has been most generally used,
employs the following four steps:

1. A formalism is chosen for the system,

2. Phase diagram tie lines are used to set up

equations in terms of the specified formalism,

3. The equations are used to evaluate the con-

stants within the formalism, and

4. The formalism is then used to calculate thermo-

dynamic quantities for the system under vari-
ous conditions.

Wagner82 has shown that the excess integral free
energy can be obtained from the phase diagram of an iso-

morphous system. Wagner83 also used phase diagrams to
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calculate the free eneray of formation for an intermetallic
compound in the system. Wriedt2l has devised a method for
calculating activities in a binary system which exhibits
a miscibility gap. He uses a two constant power series
formalism which restricts his results somewhat. Sundquis§4
has extended Wriedt's work on systems with miscibility
gaps. He calculates other thermodynamic quantities as
well as ac£ivity and explores the use of several different
formalisms. Van der Toorn and Tiedma22 use a six constant
formalism to show the thermodynamic properties of the gold-
platinum system which is an isomorphous system with a
miscibility gap. Three of the six constants yield the
temperature dependence of the formalism. They are essen-
tially using a three term Margules model with a fixed
temperature dependence. DeFontaine and Hilliard85 have
shown that van der Toorn and Tiedma's work is not quite
correct and leads to some physically impossible results.
Van der Toorn and Tiedma's formalism was also tested on
other systems by Sundquist84 who found it to be highly un-
reliable.

Rudman52 has written a fairly extensive article
on how to relate phase diagrams and thermodynamics. Most
of his examples are for isomorphous systems. He also in-
cludes in the article the Fortran computer programs which

are used in the analysis of these example systems.
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The reason that so many investigators have use?d orly
isomorphous systems, when the analysis is performed, 1s
because of the lattice stability parameter problem. In
Section 2, it was shown that values of the lattice stabi-
lity parameter are essential in relating phase diagrams
to the excess partial molar Gibbs free energy (See Fgs.
(39) and (40)). For the analysis to be performed the lat-
tice stability parameter must be known. For isomorphous
systems the problem of obtaining values for this parameter
is not very complicated. Since the only stable phases
which the system exhibits are identical to the stable
phases of the pure components, there is no need to worry
about the stability of structures which are only hypothe-
tically possible. When the binary system exhibits a phase
which one of the pure components does not possess, then
obtaining values for the lattice stability parameter be-
comes a problem.

Hiskes and Tiller27 have attempted to utilize the
phase diagram itself to obtain values for the lattice
stability parameters of the two components. First they
assumed that the lattice stability parameter has a func-

tional form of

°on>V) _ -« L . 7 an (T) (85)

AG 1 5

where Cl and C2 are constants and T is absolute tempera-

ture., They then use tie lines from the phase diagram to
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obtain values for both the constants of their formalism
and the constants for the lattice stability parameter.
From their formalism and with the value of the lattice
stability parameter, they are able to calculate activi-
ties, partial molar Gibbs free energies, partial molar
entropies, and partial molar enthalpies for the system.
All these guantities are obtained from the analysis of
the experimental phase diagram.

Gaye76 has disputed the form of the lattice stabi-
lity function used by Hiskes and Tiller. He instead syg-

gests the form

agl (n>v) C, + CyT In (T) + C o7 (86)

s
which is more in keeping with the form of éhe standard
state change in Gibbs free energy when a pure component
exhibits a phase transformation.

Cd#ution must be exercised when analysis of phase
diagrams is performed. There are several pitfalls which
should be avoided. The accuracy of experimental phase
diagrams mdst be taken‘into‘consideration. In order to
compensate for experimental errors, an @Qverspecified set
of équations should be used to determine the values for
the constants in the formalism. If the number of equa-
tions obtained from the phase diagram is exactly the same
as the number of constants to beldetermined in the formal-

}
ism, then an easily solved set of linear equations is

/
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usually formed. If any one or more data polnts 1s not
exactly correct, the entire set of results will be in-
fluenced by these errors. The thermodynamic values cal-
culated from a formalism derived from such a set of data
may be very erroneous. This is essentially the problem
with the work of van der Toorn and Tiedma.22 Their for-
malism is not incorrect but they did not use enough data
points from the phase diagram to correctly evaluate the
constants in their formalism. Hence, it should not be
unexpected that the method would be unreliable as shown by
DeFontaine and Hilliard85 and Sundquist.84

In order for phase diagram analysis to be effective,
a judicious choice of a formalism must be made. As stated
inVSection 3, the basic criteria for a model should be
simplicity and accuracy. For the phase diagram analy-
sis performed in this thesis the o-parameter representa-
tion, Egs. (73)-(75), has been chosen. It is a simple
power series expansion and can be terminated at any point,

so that the system can be accurately characterized.
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SECTION 6: ANALYSIS AND SYNTHESIS
USING THE o-PARAMETER

This section will show how experimental data can
be analyzed to determine the coefficients of the a-para-
meter. Also, how this representation can be used to syn-
thesize thermodynamic properties and phase diagrams will

be described.

Analysis

First and foremost, it is desirable to calculate
an o-parameter which is consistent with all the known ex-
perimental data. Since there are basically three types of
experimental data available for a binary system, it is
these three types of data which are analyzed to obtain an
a-parameter. The relationship between these three types
of experimental data and the a-parameter is shown below.

For phase diagram data, the compositions at the
ends of a tie-line (i.e. xzn and xzv) are utilized in
generating an ao-parameter for both phases. At equilibrium
Eq. (3), which equates the partial molar free energy of a
component in the two phases, can be used. Substituting

Eq. (6) for the partial molar Gibbs free energy, and Eq.

(73) for the a-parameter into Eq. (3) yields
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! - L] 0 q 2 | =
Gy + ReTe (tn x . + (g5 (<2))!K n)
*2 "2
VO _ v 2
Gl + P+Te (0n Xq + (Ql2 (Xz) ) v) (87)
%, X
or by rearrangement,
AGO(nW)
oy, (5,0 - oy, Y (x)? - —
12 "2 n 12 2 V) R-T .
X X :
2 2
(1-x,")
+ 4n (88)
(1-x,"™)

Substituting Eg. (74) for a..," and a,.,° yields

n . n :
~ N n,i+2 _ v vyi+2
LBy ) LBy () =
i=o i=o :
AGlo (n_;\)) (l_xz\))
———ﬁ-:—T—-——— + 2n I e——— (89) -
(l“in)
where the Bi's are given by Eqgq.- - (75). Similarly for com-

ponent 2 an equation of the form

tn vy, - n Y, = = + n 2 (90)
v

n
X2 . X2

can be easily generated. By use of Egs. (73), (74), and
the Gibbs-Duhem Equation (see Appendix B) the following is
obtained. y
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n .
n n,i+2 n, 2 )
B s (x. ) (x, ) - 17 +
izO 1 2 1 J
n . .
i n n, i+1 1 n
Lo T B )T T B }
n .
v V,1+2 v, 2
- {izoBl (x5") )T - 1] -
n . .

1 v v, 1+1 1 v
iéo{Tfrfi R R 5 e
AG2O(nw) Xz\)

= ReT + &n ———r—]- (91)
)

Each Eie line from an experimentally determined phase
diagr%m can be used to generate two equations in terms
»
of Bin's and Biv's which are directly related to the
a-parameter constants (Ajn's and Ajv's) by Eg. (75).
The expression for the heat of mixing data is much

simpler. Cince the data are for a single phase ~alloy,

the equations for each experimental data point involves

[

only one'a—parameter expression;‘ Eg. (81) gives

. . n i .

Mix o _ . _ . 1 ) J
CBHYTH = Rexy (Iexp) izo (TF1) 7 (2i+2) (jzo(xz) .| (81)

This equatipn shows ‘that each experimentally determined

value for the heat of mixing can be expressed in terms of
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the .—-parameter constants--the A . 's.
t = : (21+2)

The third type of experimental data, the activity
of either component, can alsc be expressed in terms of the
a-parameter constants. PBeginning with Eg. (5) and taking

the natural logarithm of both sides yields

n Y| = in a; - n Xy (92)

Substituting Egs. (73) and (74) into Eg. (92) results in

= ¢n a, - 4n (l-x

1 ) (93)

i (%)

n .
Z B (x i+2 ,

This equation is valid for the activity of component 1.
For the activity of component 2 a Gibbs-Duhem Equation
must be used (see Appendix B). Substituting into Eqg. (92)
for component 2, the form of n Yo in terms of the a-

parameter coefficients results in

n . N
Loy it+2 2 -
; B, () [(xl) - 1] +
i=o
n . .
i i+l 1 _
.2 ((1+1) By (XZ) toI3T BT
i=o
&n a2 - &n x2 (94)

where the Bi's in Egs. (93) and (94) are given in Eg. (75).
Eguations (89), (91), (81l), (93), and (94) can be used to
obtain a set of eguations from the available experiment

data in terms of the a-parameter coefficients.
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In order to express each eguation in a consistent

set of units, there were some slight adjustments made to

the form of these egquations. Rearranging Eqg. (89) results

in

n . n .
ReT z 5 n ( qn)1+2 _ z B_v (*’v)l+2 _
AT 2 L 1 2
1=0 1=0
(1-x.,")
AGlO(n+V) + R-Tefn |—2 (95)
(l—xzn)

Rearrangement of Eqg. (91) leads to

n .
R+T- [.z B.n(xzn)l+2
l:

'[(xln)Z - lJ +

(i+1) 1 (i+1
%
o (n-v) 2
AG, + RT+2n —— (96)
x2n
Reversing E¥y. (8l) yields
n i . .
1 J Mix
Re (1=%X5) *Xor ) |7 mavoB i oy | L (X5) = AH,CD (97)
2 2 i=O{(1+1) (?1+2) [j=o 2 1-2
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A

Multiplying both sides of Eg. (93) by R-T results in

R-T igo Bi (x2)i+2 = R*T+ (&n a; - ¢n (l—x2)) (98)
Alsc multiplying both sides of Eq. (924) by R+T yields
T [.E Bi(x2)i+2} ((x))%-1) +
i=o
igo[(lil) By () T 4 gy By
= Re*T* (2n a, - An x2) (99)

Equations (95) to (99) along with Eg. (75) are the equations
used for the analysis of experimentally determined data to
obtain the oa-parameter constants. These equations are all
expressed in the common units of energy per mole.

It should be noted that Egs. (95) and (96) must be
used in a two phase region. These two equations relate
the experimentally determined value of composition at the

end of a tie line to the o-parameter coefficients. Equa-
tions- (97) to (99) are for single phase alloys. These
equatio?s may be used for either of the two phases (n or v)
which are used for the phase diagram data. Equation (97)
relates the heat of mixing in a single phase alloy to the

a-parameter coefficients. Equation (98) relates the ac-

tivity of component 1 to the a-parameter coefficients and
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n . .
1 n n,1+1 1 n
iZO[um By orxy) taFy Bl ]
n .
v v, 1+2 v, 2
izoBl(2) (x; )7 = 1| -
E i 5 v.(x v)i+l 1 v
i20 (i+1) i 2 (i+1) i
AGzo(nw) sz
- ——=F—— -~ In - = E, = 0 (101)
%2

n
2

of El and E2 in Egs. (100) and (101) would be exactly zero.

If the two values are not known exactly then El and E2

would possess some non-zero value. The method that has

If the exact values of xov and x are found then the values

been utilized to deternine these compositional values is
an optimization technigue. The method attempts to find

the values of xzv and x2n which minimize the value of ET

where
E = E + L (102)

Of course the exact minimum of ET would be zero, but when

numerical techniques are employed small errors enter into

the program and may cause the value of E,, to be slightly

T

positive at its minimum value.



Fa. (99) relates the activity of component 2 to the x-tara-

meter coefficients.

Synthesis

Once the coefficients of the a-paramcter have bheen
determined then any solution thermodynamic quantity at
any temperature can be calculated. Lguations (79), (81),
and (83) can be used to calculate the excess integral
mixing gquantities and the partial molar quantities may be
calculated from the equations given in Appendix D.

If the a-parameters for two phases are known then
a calculation of the two phase field boundaries can be
made. This can be accomplished in one of several ways.
The desired quantities are the values of the tie-~line com-
positions at a particular temperature. Ecuations (89) and
(91) can be used to solve for XZV and xzn. Unfortunately
these equations are non-linear and solving them is fairly

complex. The method used for the numerical solution to

these two equations is to rearrange the equations as follows:

o(n->v)

E N (x n)i+2 _ ? 5. V. (x v)i+2 _ AGl
izo‘)i 2 ifo i 2 RT

(1-x,")

- in —— = E, =0 (100)
(1-x.,M) .
2
and
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El and E2 can be considered error terms in Egs.

(100) and (10l1). These terms indicate how much deviation

from zero exists in the eguations for a particular choice

V n
of x2 and x2 .

insure that they are positive, and added to yield a total

These error terms are then squared, to

error for the particular choice of compositional values.
An optimization technique86 stored at the Lehigh University

Computer Center has been used to find the values of xzv

and x2n which minimize E_.

T

This routine uses an iterative method which even-
tually converges to the optimum values of sz and x2n for
minimum ET. Using this technique to determine the two
phase field boundaries must be done with care. The method
is very sensitive to instabilities in the equations and
can very easily lead to absurd answers. Also the technique
may converge to a false minimum, which will also generate
erroneous answers. At times this technique will vyield
compositional values which may be fairly reasonable and
yet be untrue. This occurs, for example, in a eutectic
system when the temperature is below the eutectic tempera-
ture; the method will generate values for the liguidus and
solidus lines which are in a sense extrapolations into the
solid-solid two phase region. These values appear to be
true tie-line compositions but in reality there is no solu-

tion at all. This method must be used with caution and it

should be periodically checked by using one of the other
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methods to insure that the generated corpositional values
are true.
The other two techniques, which have been used to

determine a phase diagram from a set of a-parameters, are

simpler. The method of cormmon tangents is easily imple-
mented to solve this problem. The Gibbs free enerqgy of
mixing curves as a function of composition (Eg. (79) with

the idea Gibbs free energy of mixing added) are drawn for
both phases at a particular temperature. The common tan-

n v .
5 and X, are easily

gent is drawn and the values of x
found (see Figures (2) and (3)). This is the graphical
solution to Eags. (89) and (91).

When a miscibility gap occurs in a system or a
single a-parameter is used to determine the solvus points
bounding a solid-solid two phase field, then the graphical
method is preferred. Because there is only one Gibbs free
energy of mixing curve, a numerical calculation of the
compositions is fraught with problems.

The prime disadvantage to the graphical approach 1is
that at each temperature a free energy versus composition
curve must be drawn and the common tangent constructed.
This involves much more manual labor than the numerical
technique. On the other hand, it does not have the in-
stability problems associated with the numerical method.
This technique can be very useful at temperatures where
there is more than one two-phase field present. If the
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y-parameters are known for each of the stable phases and
the lattice stability parameters are also known then a sct
of Gibbs free energy of mixing versus composition curves
can be drawn on a single graph. Common tangents can then
be constructed to find the compositions at the ends of

the tie lines for all the two phase fields present in the
system at the particular temperature.

The third technique used is again a numerical and

not a graphical one. This method reduces the two equa-
tions, Egs. (89) and (91), in two unknowns to one equation
in one unknown. This approach assumes that one of the

phase boundaries is known to a fairly high degree of ac-
curacy. Then either Eqg. (89) or Eq. (91) is used to solve
for the composition of the other boundary. A simple
Newton-Raphson technique can be implemented to determine
the single unknown. This method can be very useful in
certain cases. For example, in an isomorphous system it
is usually the case that the liquidus line is known to a
higher degree of accuracy than the solidus line. Then at
a particular temperature the composition of the liguidus
line can be used in conjunction with either Eqg. (89) or
(91) to determine the composition of the solidus line.
Advantage is taken of the more precisely known data to
determine the lesser known parts of the phase diagram.
Example phase diagrams generated by this technique for
isomorphous systems are given by Boyle, Van Tyne, and

87
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SECTION 7: LINEAR PROGRAMMING TECHNIQUES

General Problem

The previous section showed how to form an equation
for each of the three types of available experimental data
in terms of the a-parameter constants. This section will
illustrate the techniques used to determine these constants
from the equations. This set of equations can be expressed

in matrix form by the following

B x A =R (103)

B is an m by p matrix with m equal to the number of data
points and p equals 2n + 2 where“n is the order of the a-
parameter representation. This is the computational matrix
for the set of equations. A is a p by 1 matrix and its
components are the coefficients of the a-parameter which
are to be determined. R is an m by 1 matrix with each of
its components determined from the experimental data points
and expressed in consistent units. The components of R

are set equal to the right hand side of Egs. (95) to (99),

depending on which type of data is used. The problem is

to determine the best A for the system of interest.

65



Exact Solution

The approach to this problem may take one of several
forms. The simplest method is to have the number of equa-
tions equal to the number of unknowns (i.e., a-parameter
coefficients). This will then vyield a linear system of
p—equations with p-unknowns which can be easily solved in
most cases. As stated in Section 5, the use of this method
to obtain the g-~parameter coefficients can be fraught with
errors. If one data point is not truly correct, then the
calculated g-parameter will reflect this incorrectness.

The g-parameter will back calculate exactly the points
that were used to determine its coefficients. The incor-
rect data point will be back calculated as it is, without
any refinement. The interpolation and extrapolation per-
formed with an g-parameter obtained by this method will
probably be subject to a large amount of error. The cal-
culated values for solution thermodynamic quantities at
non—-experimental temperatures and compositions will, more
often then not, be invalid because of the inclusion of the

incorrect data point.

Overspecified Cases

The problem then becomes one of either eliminating
all incorrect data or minimizing their effect on the value
of the o-parameter coefficients. The complete elimination

of all incorrect points is almost an impossibility. This
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Feagy

is because of experimental error. There is no way to com-
pletely eliminate this error. For the exact solution method
one must assume that the data reported in the literature
are "exactly" correct. This assumption is obviously in-
correct and can lead to undesirable and unusual results in
most cases.

Another approach is to use an overspecified nunber

of data points in the determination of the a-parameter co-

efficients. This will lead to m-equations with p-unknowns,
where m is greater than p. The method will tend to aver-

4
age out the experimental errors. 2Also the few points which

may be extremely inconsistent with the rest of the data

can be easily identified. This will allow them to be ex-
amined in greater detail and attempts can be made to deter-
mine why they are not consistent.

In the overspecified case a problem arises in de-
termining what is the "best" set of og-parameter coefficients.
The definition of what is best will then lead to the type
of technique which should be used to evaluate these coeffi-
cients. There are two basic techniques which have been
examined that solve the overspecified set of equations to
determine the a-parameter coefficients. The first is the
simplex technique developed by Danzig.88 This is quite
often used in business problems to either maximize the ef-
ficiency of material flow or minimize costs of an opera-

tion. This technique has been used on binary systems by
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: . 47 : . L
Pao, Hiskes, and Tiller. In their case simplex minimizes

on an error term which is defined as the sum of the abso-
lute difference between the experimental data points and
the points that the u-parameter would calculate. In equa-

tion form
= a minimum (104)

m
Simplex Error = ) |E

where m equals the number of data »noints (or equations) and

the residual

&3]
|

- Yj,calc B Yj,obs (105)

where

Y. calc is the value calculated by the
I a-parameter,
Yj obs is the experimental value.
4

Simplex will fit exactly p of the experimental data points
where p is the number of coefficients in the o-parameter.
The residuals associated with these points are zero. When

p, the number of coefficients in the g-parameter, equals m,
~

A

the number of equations (or data points), then all the
points will be fitted exactly, and hence the simplex method
reduces to the exact solution technique.

The other method which may be used to determine the

coefficients is the least sguares technigque. This method
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is familiar to most scientists and enagineers. Its ¢reatest
use 1is in the determination of a straight line through a
set of data points. The least mean square line usually
designates the "best" fit of the data. To obtain more than
two coefficients by the least squares technique, a multi-
dimensicnal method is used. Hamilton89 gives a good ex-
planation about the theory behind this method and Carlile
and Gillett90 give some examples as well as a simple For-
tran program to perform this technique. Like simplex, the
least squares method is a linear programming technique
which minimizes an error term. The difference between
these methods is in the definition of the error term. The
least squares error 1s the sum of the squared residuals.

In equation form
Least Squares Error =

(Ej) = a minimum (106)

Again, when the number of coefficients in the ag-parameter
equals the number of data points, then this method will

also reduce to the exact solution technigue.

Comparisoﬁ of Simplex and Least Squares

There are several advantages of the least squares
method which seem to indicate that it should, in most
cases, be preferred over the simplex technique. One of
the advantages is that negative g-parameter coefficients

can be calculated directly when least squares is used.
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Because simplex can generate only positive numbers, soO-
called range values47 must be included. These range values
do not affect the values calculated for the o« -parameter
coefficients but they do lead to programming difficulties.
These range values just offset the problem so that all the
coefficients which are calculated are positive. Then by
subtracting the range values from the calculated coeffi-
cients, the true values become known (this allows negative
values for the g-parameter coefficients to be generated).
In the least sguares technique range values need not be
considered. The absolute value function used in error
minimization within simplex also creates difficulties.

This causes the residual associated with each data point

to be always positive. In order to take into considera-
tion either a positive or a negative residual, two dummy
variables47 must be assigned to each eguation. One is to
account for the positive residual and the other is to ac-
count for the negative term. For each equation which is
not fitted exactly, one of these two dummy variables will
obtain a value during the use of simplex. The other one
will have no value. These dummy variables must be assigned
to each and every equation which is written for the experi-
mental data. This use of dummy variables increases the
size of the computational matrix (B in Eq. (103)) which
must be used. The least squares technique works with the
square of the error associated with each data point. All
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these squared errors are positive so there is no need for
dummy variables in this technique. The simplex method

also requires a slack variable88 for each eauation. These
are needed in the computational matrix because of the nu-
merous manipulations which occur during the internal opera-
tion of this method. They do not affect the cocefficients
generated.

The overall size of the actual computational matrix
is much smaller for the least sguares technigue than it is
for the simplex method. Using a smaller matrix permits the
use of many more equations with least squares than with
simplex. These extra equations allow more data points to
be entered into the program, for the same amolnt of core
space within the computer.

From a probability and statistics viewpoint the
method of least squares has many advantages over simplex.
The use of squared terms instead of absolute value terms
in the minimization equation leads to a much simpler method
of statistical analysis. For example, when an analysis
of variance is performed on the a-parameter coefficients
generated py simplex and compared with the analysis of
variance on the coefficients generated by least squares,
the least squares technique is shown to be slightly su-
perior. This occurs because of the assumptions made in
an analysis of variance. It assumes that the errors are

of a Gaussian distribution (i.e., bell-shaped) which
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results in squared error terms being the basis for the
analysis. Because of this assumption, the analysis of
variance will naturally give the advantage to the least

squares technique.

Cxamples Using Simplex and Least Squares

In order to compare these two techniques, the in-
tegral heat of mixing for the lead-tin system at 1050°K
was analyzed by both methods. The representation used for
the integral heat of mixing is given by Eg. (97) and the
two linear programming techniques were used to obtain the
A(21+2)'s——the representation coefficients. The data for
this analysis were taken from Hultgren et i£;9l and appear
in Table 2. The zero through fourth order coefficients
were found using both simplex and least squares. The cal-
culated coefficients appear in Tables 3 and 4. As can be
easily seen by comparing these two tables the values for
theyycoefficients generated by both techniqugs are very
similar.‘ To determine which method generates the better
sets of coefficients, the original integral heat of mixing
data were back calculated from the representation. The

results of this calculation appear in Tables 5 and 6. The

residuals for each data point for each representation used

Mix

to model AHPb—Sn

at 1050°K are shown in Tables 7 and 8. A
comparison is made between the residuals of the models

generated by these two technigues in Table 9. It shows
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the sum of the absolute value of the residuals and also
the sum of the residuals squared for each representatiocon.
The back calculated values for AHgéfSn at 1050°K are very
close to the original data no matter which method is used.
In spite of this fact, Table 9 does illustrate some of the
differences which do exist between simplex and least
squares. For each order of the representation the simplex
technique had the smallest sum of the absolute values of
the residuals. On the other hand the least sgquares tech-
nique yield the smaller value for the sum of the residuals
squared. This is not surprising since simplex minimizes
on the sum of the absolute values of the residuals where-
as least squares minimizes on the sum of the residuals
squared. Also for both technicues as the order of the
representation increases the criterion upon which each
method is based improves. The overall impression, which
should be obtained from Takles 3 to 9, is the similarity

of the results from these two methods. The coefficients

generated by both techniques are very similar, at least

through the third order representation. The back-calcu-
A
lated values for AH§;§Sn at 1050°K are all close to the

original values no matter which technique or order is
used. The comparison made in Table 9 will yield informa-
tion as to which technique is better, but the criterion
for this judgement must be specified. These tables do
show that no matter which criterion is used both methods
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an

vield "good representat&ons. o other things, like com-
puter memory and computeg time, must be taken into considera-
tion when a technigue is finally chosen.

To illustrate the amount of computer memory and com-
puter time needed for each of these two techniques the
isomorphous antimony-bismuth system was analyvzed. This
analysis was carried to a limited extent with the objective
being to show the differences between these two linear pro-

gramming techniques. The pure component data were taken

from Kubaschewski, Evans and Alcock% The solution and phase
92

diagram data were obtained from Hultgren et al. All
these data appear in Table 10. The compositions of the tie
lines were read every 50°K between 550 and 850°K. Seven

pairs of phase boundary compositions and temperatures were
used to make 14 equations in the form of Egs. (95) and
(96). The pure component data were used to calculate the
lattice stability parameters at each temperature. At 1200°X
the liquid integral heat of mixing data were used for every
tenth of a mole fraction. Hence, there were 9 equations

in the form of Eg. (97) for the liquid phase. The solid
integral heat of mixing data were given for only three comn-
positions, which resulted in only 3 equations for the solid
phase in the form of Eq. (97). The activity of each com-
ponent was given for the liquid solution at 1200°K. These
data points were alsdo every tenth of a mole fraction. So

there were 9 equations in the form of Eg. (98) and 9
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equations in the form of Eg. (99). Since the system 1s
isomorphous, only a solid a-parameter and a liquid a-
parameter were calculated. Each a-parameter needs 2-(n+l)
coefficients where n is the desired order of the represen-
tation. The problem becomes how to solve the 44 equations
(14 phase boundary, 12 integral heat of mixing, and 18 ac-
tivities) for the best set of a-parameter coefficients.
Since the purpose of this example was to show the differ-
ences between the two linear programming techniques, a low
order representation was chosen. A set of first order a-
parameters illustrates vividly the differences in these

y

two techniques. For this order representation the total

Solid

number of coefficients is 8--four coefficients for CohoBi
Sb-

Liguid
Sb-Bi

For the simplex technique the computational matrix

and four coefficients for a

is 44 by 140. Where 44 is the number of equations and 140
is the number of variables that simplex needs in order to
solve this set of equations. This large number comes from

the formula

3'm + 2 (n+l1) (107)

where m is the number of equations and n is the order of
the representation. Each equation requires two dummy vari-
ables and a slack variable (i.e.,3 m variables) in order
to solve this type of problem. Along with these 3 m vari-
ables there is also the 2-(n+l) unknown coefficients which
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must be made variables. Thus sinplex reaguires thls very
large matrix. In contrast, the size of the computational
matrix for least squares is only 44 by 8. The only vari-
ables needed in this system are the unknown coefficients.
Also the simplex technique requires that the problem be
offset so the unknowns would only appear as positive num-
bers. This involves using range values47 and calculating
a pseudo-matrix for the right hand side of Eg. (103).
After the method is finished the results must be readjusted
back to the original setting so that the true values for
the a-parameter coefficients are obtained. The least
squares method does not require any dummy variables, slack
variables, or range values like simplex does.

The data in Table 10 analyzed by simplex took sub-
stantially more computer time to arrive at an answer than
did the least squares technique. In both cases the com-
puter program set up the equations, used the linear pro-
gramming technique to obtain the o-parameter coefficients,
back calculated the original integral heat of mixing data
and activity data, synthesized solution thermodynamic data
at four different temperatures, and then plotted up a phase
diagram using just the o-parameters. On Lehigh University's
CDC~6400 computer, the program using the simplex technique
took 24.2 system seconds and 44.973 CP seconds to complete
the entire job. In contrast the program using least sugares

took only 14.8 system seconds and 25.919 CP seconds to
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accomplish the same task.

The a-parameters generated by these two techniques

follow. For simplex
Liguid _ _
Aopip: = 1.151 2288./T
+ (-3.729 + 4274./7T) Xps (108)
Solid _ _
Oopipi = .9057 + 631.0/T
+ (2.655 - 841.4/T) Xps (109)

For the least squares technique,

Liquid _ _ _
Ogp i = ~1-295 175.2/7T
+ (-.2853 + 1340./T) Xpy (110)
Solid _ _
Gopopi =~ 9322 4 835.1/7T
+ (2.818 - 1322./T7T) x (111)

Bi

As can be seen the solid a—pgzameters in both cases are
approximately the same. There does occur a major differ-
ence in the coefficients of the liquid a-parameter. The
reason for this discrepancy could be due to the low order
of the representation. Unfortunately, going to a higher
order is not justified in this case because of the limited
amount of data. The synthesized activities at 1200°K from

the liquid a-parameter generated by both techniques appear
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in Figures 4 and 5. As 1is seen neither does an exception-
al job of representing the data, although the least squares
a-parameter abpears to be slightly better. Also the phase
diagrams synthesized by both techniques appear in Figures 6
and 7, along with the analyzed data points. The method
used for this synthesis is the first numerical one described
in Section 6. Neither phase diagram is exact, but both are
adequate when it is realized that they are synthesized from
only a first order representation. Although the analysis
and synthesis of this system was performed primarily to
illustrate the computer time and storage differences be-
tween the two techniques, the results indicate one of two
possibilities.

1) If it is assumed that the data are correct, theénl)

a the first order representation only does an ade-
guate job of representing the system.

2) If it is assumed that this simplified represen-
tation is correct then it might be argued that
some of the analyzed data is incorrect.

The first possibility is most likely true in this
case, because a low order representation is very seldom an
adequate model even on the simplest of real systems. Rao
and Tiller46 have argued for the second possibility with
regard to the solidus line in the indium~gallium system.

In their case and in the antimony-bismuth system presented

here, it is most probable that the inconsistency of the
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synthesized data with the analyzed data is not due to in-
correct experimental data but an inacdequate representation.
A higher order model might be used to avoid this problem
but to do this much more data for the analysis 1s needed.
Because of the need to analyze as much data as possible,
the least squares method should be preferred over the sim-

plex method.
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SECTION 8: EXAMPLE--THE LLEAD-TIN SYSTEM

The methods of analysis and synthesis described in
this thesis have been performed on several isomorphous
systems.93 This type of system is the easiest to analyze
since there are only two phases, solid and liquid, to be
dealt with. For a eutectic system, there are three dis-
tinct phases. The pure crystalline structures of each
component and the liquid phase must be considered in the
analysis. If o is the crystalline phase of component 1

and 8 is the crystalline phase of component 2, then the

o (a>R) o(o>R)
1 2 !

must be known in order to truly analyze the system. If

lattice stability parameters, AG and AG
the a and B phases are the same (e.g., face-centered cubic)
then these lattice stability parameters would be zero.

When o and B are two different phases then the problem of

what values to assign to these lattice stability parameters

exists.
For the eutectic lead-tin system it was assumed
that
o(a>B) _ o(a>B) _
AGPb = AGSn =0 (112)

where o 1is the crystalline structure of pure lead, and
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and heat of mixing points yielded one equation and each

tie line data point yielded two eguations. The computation-
al matrix size for the least squares technigue was 135 by
(4n+4) where n is the order of the a-parameter. The 4n+4
appears because each order requires two coefficients for
each of the two phases; also the zero order must be con-
sidered. If the simplex method were used this matrix would
be 135 by 405 + (4n+4) from Eg. (107). Because of the
smaller matrix and shorter computer time needed, the least
squares method was the obvious one to use in this case.

It has been shown93 in detail how the optimum order
for the o-parameter is chosen. Basically the lowest order
which synthesizes the original data reasonably well is
picked. For the lead-tin system, it was found that second
order oa-parameters were needed to accomplish this task.

The oa-parameters which were obtained are:

Liguid
aprdat 2.393 + 388.0/T
+(-4.727 + 593.6/T) xg_
+ (2.338 - 254.5/T)(x5n)2 (112)
and
Solid _
asftid = 2988 + 1323.5/1
+ (-15. .
(<15.85 + 422.2/T) xg_
+ (13.04 + 221.4/T)(xSn)2 (113)
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It has been determined that each coefficient needs four
significant figures so that round-off errors do not occur.
This was accomplished by starting with the seven digit
computer calculated coefficients, then decreasing the num-
ber of digits by one and synthesizing the original data.
This process was carried out until only two digit coeffi-
cients were used. It was found that the four digit coeffi-
cients gave results almost exactly the same as the seven
digit coefficients. When three digit coefficients were
used then the round off errors became significant. So it
was concluded that in order to insure accuracy the a-para-
meter coefficients should have four significant figures.

A first order o-parameter was also calculated for
the lead-tin system by Rao, Hiskes and Tiller47 using the
simplex technique. This limited the amount of data which
they could realistically analyze. They used only 8 tie-
line data points, 9 partial molar heat of mixing data for
the liquid, and 5 solid lead activities. This was a much
smaller set of data than was used in this thesis. They ob-
tained the following parameters:

Liquid

Oppognt = 0.318 + 744.0/T

+ (-0.186 - 136.0/T) x (114)

Sn

and
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Solid

dpp-gn = 1-336 + 322.1/T

+ (-4.61 + 2292.0/T) Xaon (115) *

A direct comparison between the two different a-parameters
cannot be made since they are of different orders. 1In
spite of this a comparison can be made between the modified
Legendre polynomial coefficients for these two different
representations. This is accomplished by using Eq. (64)
to convert the simple power series coefficients into modi-
fied Legendre polynomial coefficients. Both sets of co-
efficients for each of the two representations appear in
Table 15. As can be seen some of the modified Legendre
polynomial coefficients are similar for both investigations
but there does appear to be some discrepancies, especially
for the liquid phase coefficients. Overall, the a-para-
meters generated by this thesis should be better for two
reasons:

l) More data points were used to calculate the

coefficients, and

2) The order of the representation is higher.

It is the extra analyzed data which cause the discrepancies

in the modified Legendre polynomial coefficients.

*The third coefficient for the solid a-parameter was actual-
ly reported as -46.1 but this was found to be a typographi-
cal error and the correct value is given in Eqg. (115).
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A comparison can also be made between the synthe-
sized data obtained from these two different sets of lead-
tin a-parameters. The phase diagrams generated by these
two sets are shown in Figures 9 and 10. Both these phases
diagrams were calculated by the direct numerical technique
for temperatures above the eutectic temperature. For the
solvus lines the graphical technique was used. It should
be noted that in both cases no data below 450°K were used
in the analysis; so these solvus lines are, in a sense, an
extrapolation. An example of this graphical method for
obtaining the solvus lines is given in Figure 11l. This
shows the solid Gibbs free energy of mixing calculated at
430°K from Eq. (113) and Eq. (79) with the ideal free
energy of mixing added.

The common tangent is used to obtain the composi-
tiens. The accepted experimentally determined diagram pub-
lished by Hultgren et §£;9l is given in Figure 12. As can
be easily seen in a comparison of Figures 9 and 12, the
phase diagram synthesized from Egs. (114) and (115) is
fairly good for the lead-rich portion of the diagram. The
tin-rich side and the synthesized eutectic temperature and
composition are in fairly large disagreement with the ac-
cepted phase diagram. The diagram synthesized from Egs.
(112) and (113) is in much better agreement with the ex-
perimental phase diagram as seen by comparing Figures 10

and 12.
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and Figure 16 using tnis work's sotn
representations do an adequa%é job of representing the -
perimental data.

Overall, as was expected, the .-parameters calcu-
lated by Rao, Hiskes and Tiller47 are not as good as the
a-parameters generated in this work for representina the
lead-tin system. Using Egs. (112) and (113) sclutiocon
thermodynamic quantities at any temperature can be synthe-
sized for the lead-tin system. For exarple, Figure 17
shows the liquid activities at 650°K, 850°x, and 1050°K.
As would be expected, the activities tend toward Paoult's

Law as the temperature increases. Although no solid
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solution activity data were used iﬁ the analysis, these
activities are synthesized in Figure 18. There 1s good
agreement with the data points reported by Kendall and
Hultgren,96 although their assumption of the entropy of
mixing being ideal was not made in the present analysis.
Alcomplete set of solution thermodynamic data can be cal-
culated from these ag-parameters for the lead-tin system.
Such a data set for 1050°K is given in Tables 16, 17, and
18. These data can be favorably compared with the data
listed in Hultgren et 3&.91
Thus the entire solution thermodynamics and the
phase diagram for the lead-tin system can be condensed to
the two second order a-parameters in Egs. (112) and (113).
This is a more concise method for storing these data than
the numerous tables and graphs which would be otherwise

needed.

<\

£8



SUMMARY

A thorough search of the literature has been made
to ascertain what other investigators have been doing in
the fields of solution thermodynamic representations and
nhase diagram calculations. A simple parametric formal-
ism, the g-parameter defined in Eqs. (73) to (75), was
chosen for this thesis. This representation had the favor-
able characteristics of being linearly dependent on inverse
temperature and a simple power series in the compositional
variable. A procedure was developed which would analyze a
set of experimental data to yield the coefficients of an
a~parameter for a binary system. The relationship between
this formalism and the experimental quantities as well as
other solution thermodynamic quantities have been derived.

Two linear programming techniques for determination
of the g=-parameter coefficients were examined in detail,
with the conclusion that the least squares technique is
superior to the simplex method for this procedure. For
phase diagram calculations three techniques were explored;
a direct numerical method, a graphical method, and a nu-
merical method which is dependent on already known experi-
mental data. The procedure used will depend on the nature
and type of system being analyzed.
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The experimental data for the binary lead-tin system
has been analyzed and the coefficients of the x-parameters
for this system have been determined. Two second order
aq—-parameters were chosen to represent this system and they
were compared to the first order parameters given by Rao,
Hiers and Tiller.47 The g-parameters generated in this

work proved to be a better representation for this system

than those of Rao et al.
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Recommendations for Future Work

There is still much to be accomplished in these
fields of representation, storage, and retrieval of solu-
tion thermodynamic data and phase diagrams. There are

three possible avenues which future work might take.

1. Compilation

The methods illustrated in this thesis can be im-
plemented so that a vast number of binary systems are
analyzed and reduced to simple a-parameters. This would
lead to a useful and concise compendium of information.
This would élso allow for the comparison of a-parameters
for different binaries to see if any general systematic
trends can be found. The use of the modified Legendre
polynomial representation would be particularly useful 1in

this comparison aspect.

2. Refinement

There are several procedures which should be explored
to refine the methods presented in this thesis.

a. A weighting matrix should be added to the least
squares technique so that individual experimental error for
each data point can be taken into consideration. Presently
all experimental data are treated equally.
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b. A better and more general numerical method for
phase diagram calculation should be developed.

c. The present computer programs should be made nore
efficient and an interactive program for data retrieval
should also be developed.

d. Statistical methods for choosing the proper
order of the a-parameter should be investigated.

e. Other solution models might be explored to see
if an encompassing representation can be found which is
directly related tc first principles and vice versa.

f. Use of the ongoing research in the areas of
quantum mechanics and pseudopotentials may be helpful in
generating better values for the lattice stability para-

meters and a more fundamental solution model.

3. Expansion

The methods employed in this thesis should be ex-
panded so that ternary and multicomponent systems can be
analyzed and represented in such a simple fashion. Once
this is accomplished, then these methods can be used to
characterize real, multicomponent, industrially useful
alloys. This is the ultimate goal of this type of basic
research.

Hopefully, it will be upon these paths that the
methods of analysis and storage of solution thermodynamic

information presented here will proceed in the coming years.
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Order of Representation

0 1 2 3 4
Modi £i
odified Legendre, |g.o o 701.2 755. 3 758.1 752.
Polynomial 2
Coefficients:
C4 - 65.3 -191.6 -198.9 -183.
C6 126.3 134.7 113.
C8 - 6.73 12
Clo - 13
y
J
{/
Table 1
Mix

Modified Legendre Polynomial Coefficients For AH at 1050°K.

Ph~-5n
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Mix o)
Mole Fraction Tin AH at 1050 K
Pb-Sn
XSn

J/mole (cal/mole)

0.1 543.92 (130)
0.2 933.03 (223)
0.3 1192.4 (285)
0.4 1334.7 (319)
0.5 1368.2 (327)
0.6 1309.6 (313)
0.7 1146.4 (274)
0.8 882.82 (211)
0.9 502.08 (120)
Table 2

ix 91

Data for AHM at lOSOOK.

Pb-Sn
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Least Squares

Generated

Coefficients

- . Mi
Least Squares Generated Coefficients For the Representation of AH

at 1050°K.

Order of Representation

0 1 2 3 4
A2 668.5 766.5 1073.3 1098.5 1023.6
A4 -130.6 -1141.2 -1287.0 - 663.6‘
A6 757.9 1010.1 - 893.1
A8 - 134.5 2126.7
AlO - 942.2
®
Table 4
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Liguid Alloys

Mix

Mole Fraction Lead LHﬁb-Sn at 723° K
“pb J/mole [cal/mole)
.9562 257.9 [ 61.64]
.9521 281.6 [ 67.30)
.9383 353.3 [ 84.44)
.9173 464.9  [111.11]
.9046 519.5  [124.16]
.9014 531.8  (127.10}
.8923 590.8  [141.20]
.8822 625.3  [149.45])
.8353 806.7  [192.81]
.8179 848.5  [202.80]
.7743 1005 [240.20]
.6983 1217 (290.87]
.6832 1197 (286.09]
.6466 1290 [308.32]
.4844 | 1350 [(322.66)
.4258 j 1354 [323.61]
.3421 | 1228 [293.50]
.2765 ; 1080 [258.13]
.2552 g 1053 [251.67]
.1468 ! 693.2  [165.68)
.1170 575.8  [137.62]
.0812 414.2 [ 99.00]
.0623 328.4 [ 79.49]
.0394 211.3 [ 50.50]
>

Table 11

Experimental AHﬁngn For Liquid94 and Solid 95,96
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Tin-rich Side

Ligquidus

=]

Temp (°k) XSn Ref.
464 . .8029 99
475. .8747 99
484, .9402 99
471. .8029 100
489. .9402 100
461.5 .7745 101
459.8 .7650 101
458.6 .7579 101
458.0 .7539 101
456.85 .7446 101
457 .4 .7405 102
464 .2 .8044 102
490.3 .9419 102
502. .9854 102
504.3 .9935 102
504.5 .9964 102

Solidus
[+
Temp (°K) XSn Ref.
470. .9884 99
491. .9942 99
485, .9942 100
481. .9942 103
485. .9942 103
467 . .9914 103
471. .9914 103
466, .9914 103
471. .9914 103
457. .9884 103
459, .9884 103
458. .9884 103
459, .9884 103
456. .9884 103
457. .9884 103
485, .9942 103
471. .9914 103
476. .9914 103
475. .9914 103
467 .4 .9884 104
489 .4 .9942 104

Table 13

Experimental Phase Diagram Data for the Pb-Sn System.
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Lead-rich Side

Liguidus

Temp (°K) Ref.
587. 99
574. 99
550. 99
526. 99
507. 99
488. 99
583.5 100
575.5 100
566. 100
554, 100
588. 105
577. 105
562. 105
553. 105
545. 105
586.5 102
?61.2 102
551.3 102
529.0 102
477. 102

Table 13

Solidus
(e}
Temp. (°k) XSn Ref.
563. 1161 100
541. .1625 100
507. .2213 100
481. . 2495 100
455.2 .2770 100
455.2 .2905 100
583. .0678 106
578. .0678 106
567. .1161 106
S61l. 1161 106
554, .1472 106
541. .1624 106
537. .1775 106
521. .2069 106
515. . 2069 106
503. .2355 106
494, .2495 106
487, . 2495 106
469. .2770 106
459, . 2905 105
579. .0841 105
551. .1625 105
502. .2355 105
458, . 2905 105
(continued)

Experimental Phase Diagram Data for the Pb-Sn System.
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Liguid Coefficients Solid Coefficients

Simple Power Series Representation
This Work Raoc et al. This Work Rao et al.
Al 2.393 0.318 2.988 1.336
A2 388.0 744.0 1323.5 322.1
A3 -4.727 -.186 -15.85 -4.61
A4 593.6 -136.0 422.,2 2292,
AS 2.338 13.04
A6 -254.5 221.4
Modified Legendre Polynominal Representation
This Work Rao et _al. This Work Rao et al.
Cl 0.8090 0.225 -0.5927 -0.969
C2 600.0 676.0 1608.4 l468.1
C3 -1.194 -0.093 -1.408 -2.305
C4 169.6 -68.0 321.8 1146.0
C5 0.3896 2,173
C6 -42.41 36.90
Table 15

Comparison Between4§he o-parameter Coefficients Generated by This Work
and by Rao, et al. for the Pb-Sn System.
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Temperature =T,

7 phase

Pure Pure
| Xo —= 2
Figure 1

Free Energy of Mixing for the n and v Phases in the 1-2

Binary at Tl.
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Temperature=Top

G/ n phase
v phase \\
G/ Gy’
Mix
a6y} _
AV_ATN ] — Gg )
G, =Gy | i ' common
: . ! tangent
Lo
T v 7
Pure X2 Xz X2 Pure
| )(2 —_— 2

Figure 2

Free Energy of Mixing for the n and v Phases in the 1-2

Binarv at T2.
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Figure 3

Segment of the Phase Diagram for the 1-2 Binary.
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Appendix A

The Gibbs~-Duhem Equation Applied to a Binary Regular
Solution

The regular solution model for a single phase 1is

given by
_ 2
R-T- by, = Cl—2 (X2) | (A1)
where R is the gas constant,
T is absolute temperature,
'8l is the Raoultian activity coefficient of
component 1,
Cios is the regular solution interaction
“parameter, and
X2 is the mole fraction of component 2.
The Gibbs-Duhem Equation in terms of Raoultian
activity coefficient is
Xy d n Y1 + X, d &n Yy = 0 (A2)
or
*1
d &n Yo =T o d &n Y1 (A3)
2
It is known that at X, = 1, 2n Y, = O So applying
the integration limits of Xy = 1 to any composition Xy

Eq. (A3) becomes
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; ny2 at x2 £X2
I | X
i E 2
I 5 _ | =
Lony, at x, 1 1%, 1
Differentiating Eg. '(Al)
d ¢n v, = L 2.x,-C -d x
1 R-T| 2""1-2 2
Substituting into Eg. (A4),
tny, at x X
: 2 S
anz R.T
znyz at Xy = 1
X
SO,
%2
X _ (x, - 1) -2 dx
R'T‘LHY2 = Cl—2 2 2
X, = 1
1-2 (2x2 - 2) dx2
X, = 1
X
- c ( (x,)% - 2 x,)
- F1-2 *2 2
X
= C ( (x)% - 2x, + 1)
ToT1-2 2 2
2
= Cy_5 (1 = x,)
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Therefore,

R-T- in Yo = C1—2 © X 2 (Al2)
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Appendix B

The Gibbs-Duhem Equation Applied to the (-parameter
Representation.

The Gibbs-Duhem Equation will be applied to a first
order u-parameter. It then will be applizg to an nth

order a—-parameter where n is any positive integer.

For the first order o-parameter

2

on Yy = (x.) o (B1)

2 12

where vy is the Raoultian activity coefficient of compon-

a 5 is the mole fraction of component 2, and

aqq is the a-parameter.

(B2)

a1, = (Aj+A/T) + (Aj+A,/T)x

2

where the Ai's are constants and T is absolute tempera-

ture.
If

Bo = A1+A2/T (B3)
and

Bl = A3+A4/T (B4)
Then

“12 T Byt By %y (B5)
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So

The Gibbs-Duhem Equation for the natural logarithm
of the -Raoultian activity coefficient can be written as:
*1
d &n Yo =7 ;5 d in Yy (B7)

If Egq. (B7) is integrated from x, = 1 to any arbitrary

2
Xo4 then the left hand side becomes
(Qnyz at x,
d Qnyz = znyz - Rnyz (B8)
JQny2 at X, = 1 X X, = 1
but
in v, = 0 (B9)
x2 =1
So Eg. (B7) can be rewritten as
%2
LNy = - X (B10O)
2 1 a
X_ Qnyl
2
x2 =1

Differentiating Eq. (B6),

d Zn Yy T (2-BO + 3-Bl-x2) X, dx2 (B11l)
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Substituting into Eq. (B10),

%2
) _ (1-x.) . . . .
&ny2 = 2 (2 BO+ 3 Bl x2) X, dx2 (B12)
X
} 2
x2=l
%2
_ . _ _ 2
= (2 By + 3-B;-x, 2-B, x2 3-B, (x,)7)dx, (B13)
x2=l ‘
Integrating
o X2
_ 3 2_ 2_ 3
tny, = (2-By-x, + 2-Bl-(X2) By (%) B, (x,) ) (B14)
Xz=1
2
‘/
So S
2 3 3 L2
any ., (B0 (x2) + Bl (x2) - 2 BO X, f'Bl.(Xz) )
+ (B. + = B.) (B15)
0 2 71
Collecting terms
- 2 3
2ny2 = (BO+Bl-x2) . (x2) (2 BO + 5 Bl-xz). Xy
1
+ By + 5 By (B16)
Substituting Egq. (B5) into Eg. (B1l6), one gets
- 2 _ ) L 2 1
Qny2 = oy, (x2) 2@12 X5 + 5 Bl (x2) + BO + 5 Bl(Bl7)
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Substituting Eq.

Therefore,
2 1 2 1 (B18)
Y = s . - — » . — B
ny, 12 ((xl) 1) + 3 Bl (x2) + BO + 5 B
or
_ 2 3 2 1 2
iny, = (BO(XZ) + Bl(x2) ) ((xl) 1) + 3 Bl(x2)
+ B+ LB (B19)
0 2 71
The same procedure can be used for an nth order
a-parameter. In this case
n i .
Gy, = L Bi-(x%) (B20)
i=o0
so
2 ¢ i
inyy (%) _2 B, - (x,) (B21)
i=0
‘where
Bi = Boi+n) T P2i42)/7 (B22)
Differentiating Eqg. (B21)
(I’l i+l
d oy, = izo B, - (i+2)- (x,) Jax, (B23)

(B23) .ntc the Gibbs-Duhem Eguation

given by Eqg. (B1l0) yields

2ny2 = -

dx (B24)
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Then

(% |
_ 2 7 . i R | i+1i g,
ny, = - (1 By (i+2) - (x,)7 - ) B - (i+2) - (x,) 5
1=0 1=0
x.=1
$, e (B25)
Integrating Egq. (B25)
n n %)
o (i+2) . i+l ) i+2
tny, = .@ (¥D) By (%) Z B, (x,) 7 %) (B26)
1=0 : 1=0 x.=1
2
n . . n .
_ (1i+2) . i+l i+2
= -l tEery Byt (%)) L By-(x))
=0 1=0
AN
+'Z EESD) B, (B27)
1=0
n n . .
_ 2 i . (i+2) . i
) .2 By - (x,) ) 2 (171) > Bi® (%)
1=0 1=0
s 1
L o B (B28)
1=0
Substituting in Eg. (B20)
n .
. —_ 2. - - _————l . - l
iy, = (xy) gy T 2rXprag, * Xzizo G+ Bit (%)
° 1
1 mEn o By (B23)
i=o
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@herefore

L 2 \ (1 . i+, 1
RIS PR E Ly (Lo D By () B
(B30)
or
Y E B . (x VA2 201y b R gy i
BT T *1 (1+1) "i" 2
1
iy By (B31)

For example, Eg. (B20) for a third order a-parameter

yields

iny, = (x,)% (B.+B, (x,)+B, (x,) 2 + B, (x,)°) (B32)
1 2 0 712 272 3 2~m_

and Eg. (B30) yields

Qnyz =aq 5 ((xl)z—l) + % Bl-(x2)2 + % B2(x2)3
+ % B3-(x2)4 + B +; Bl+ % B2 + % By (B33)
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‘ Appendix C
\
t
Integral Excess Gibbs Free Energy of Mixing Using the
n—parameter Representation (
)
The integral excess Gibbs Free energy of mixing,
Mix, xs .
Gl—2 is derived using an nth order a-parameter. The

a—parameter representation is as follows:

Qnyl = aq; (X2) (C1)
where
»
° i
4y, = L By (x,) (c2)
i=o
and
By = (Aoi41) B 214/ D (C3)
where 11 is the Raoultian activity coefficient of compon-
ent 1,
%95 is the a-parameter,
X, is the mole fraction of component 2,

n is the order of the oa-parameter,
T is absolute temperature, and

the Aj's are constants.

By the Gibbs-Duhem Equation it is known that

2 s ' i+1, 1
QDYZ = Ctlz' ((Xl) -l)'f‘z [—i—-B.° (X )l+ +W.Bl)

FL lEEy By (% (C4)
1=0
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(For derivation see Appendix B.) By definition

GMlx,xs _

1-2 xl°RT-Qnyl + -RT-QnY2 | (C5)

%5

Substitution of Egs. (Cl), (C2), and (C4) into Eqg. (C5)

gives
| Mix, xs 2 2 i
Gl-Z R.T [xl (x2) -'2 Bl (X2)
I*O\
2 o i
X . - .
+ X ((xq) 1) .Z B. - (x,)
1=0 +
%
o i i+1 1 -
x . ¥ 1 1
* ¥ L gy By (%)) * TgF1y By (cé)
Upon rearrangement
Mix, xs 2 2 n i
G125 = R-T- )| (%) (x,))7 + X, ((x) 7 = 1) 12 B, (x,)
1=0
o i i+1 1 -
toap b Iy B )T Iy By (€7
It can be shown that
x-(X)2+x -« )2-1) = . - (C8)
17 Y%2 2 % S T )
Thus
Mix, xs o i N
Gl-2 = R-T-. {(xl Xy = x2) .Z Bl (x2)
. 1=0
2 i i+2 1
- - . C
* izo o B %) T Y may B Xz)} (€9)
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Therefore

Mix,xs _

G2

n . n .
i+l 1+1
R-T .; Bi xl(x2)» - .z Bi (x2)
1=0 1=0
Log owit2 . 7 L gy (C10)
o (1+41) 1 2 iZo (1+1) i 72
° i+l i+1 i i+1
R-T izo B (% (x,) 5 TR (x,)
1
TS Y (€1l
n . R .
i+1 i+2 i+1 1 1+2
R-T izo Bis (%) 7 7= (%) T 0= () T Ty (%)
+ (iil) X5) (ci2)
n . .
1+2 1+2 1 1+2
R-T iEoBi-[—(xz) +(x,) I (- (x,) +x5))
(C13)
T i+l
R-T+ x5+ ) i Bic (17 (xy) ) (C14)
1=0
n 1 1
= ReTexpe (mxp)- ]| qgaqy By- (1 ()] (C15)
i1=0 j=o
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Appendix D
|

Partial Molar Quantities Usi:% the a-parameter Representation

Equations for partial molar solution thermodynamic
quantities using the a-parameter are presented.

The a-parameter representation is as follows:

_ 2
oy, = ag, (X2) (D1)
where
2 i
a1 =0 By - (xp) (D2)
i=o :
and »
e
Bi = B oiv1) T P2ie2y /D (D3)
where Yy is the Raoultian activity coefficient of com-
ponent 1,
a5 is the a-parameter,
X, is the mole fraction of component 2,
n %é the order of the a-parameter,
T is absolute temperature, and
the Aj's are constants.
By the Gibbs-Duhem Equation, it 1s known that
2 2 i ivl, 1
vy = egpt O Gg) Tl ) Byt () T ey - By) (D)

The partial molar excess Gibbs free energy of compon-

g, '
ent 1 is
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Xs

Gl = R-T n .
2
= R-T 112 (X2)
n
1+1
= R.T- ) B. (%)
i=0
For component 2
G xS 2 R.T on Yo

n
2 1
= ReT- (gt € x) -1+ | (5B
: 1=0
#
By the Gibbs-Helmholtz Equation
= XS
_ 3, /q]
H. = ) \ 1
1
5 (1/T) 5
SO
n .
= 1+1
By =R ) Ay, (x,)
1=0
and
_ n 2
Hy =R (L Aoiany) - O -
1=0
n . .
i 1+1 1
oL o i &2+ T
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By definition-

\‘a XS
§.XS - _ “l
1 GT P
So
— XS n
5177 = - R izo B2i+1)
and
- XS n
S, = °R [.Z (21+1)
1=0
) {
n .
1
Yoo Bty
1=0

(D12)
(D13)

(xl>2 - 1)
Agis1y )| (D14)

So the excess partial molar guantities can be directly ob-

tained from the coefficients of an a-parameter. The par-

tial molar quantities are directly related to the excess

partial molar quantities by

- _ = XS — ID
Ql - Ql + Ql
where Q is G, H, or S.
So
G = G.*° 4+ RT- in x
1 1
‘ﬁ — ITI.XS
i i
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and

S. = §.XS - R n X, (Dl8)

¢
Equations (Dlé6) to (D18) can be used to calculate the
partial molar quantities from the excess partial molar
guantities determinedkby the a-parameter.

It should be noted, that in a single phase region,
this approach implies that the excess partial molar
enthalpy and the excess partial molar entroRpy are inde-
pendent of temperature. These guantities only pdssess a
compositional dependence. The excess partial molar Gibbs
free energy'/is, of course, linearly related to temperature

by

G. = H. - T.S. (D19)
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