
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1976

A survey of error-correcting codes for computer
applications.
Dhriti Kapur

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Kapur, Dhriti, "A survey of error-correcting codes for computer applications." (1976). Theses and Dissertations. Paper 2023.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228650015?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2023&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2023&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2023&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=preserve.lehigh.edu%2Fetd%2F2023&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2023?utm_source=preserve.lehigh.edu%2Fetd%2F2023&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

A SURVEY OF ERROR-CORRECTING CODES

FOR

COMPUTER APPLICATIONS

by

Dhriti Kapur

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Computer Science

Lehigh University

1976

vt

ProQuest Number: EP76296

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest

ProQuest EP76296

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

This thesis is accepted and approved in partial fulfillment

of the requirements for the degree of Master of Science.

~~7?{^ Jr, /77^

ofessor in Charge

Chairman of the Department

-11-

ACKNOWLEDGEMENT

The author wishes to express his gratitude to his advisor,

Prof. Kenneth Kai-Ming Tzeng, for his most valuable suggestions

and advice during the preparation of this thesis.

Appreciation is also expressed to Lehigh University and

Prof. A. K. Susskind, Head of the Department of Electrical

Engineering, for providing financial support and encouragement

to pursue graduate study at Lehigh University.

-in.

TABLE OF CONTENTS

Chapter Page

Abstract 1

1 INTRODUCTION 3

2 ERROR-CORRECTING CODES FOR COMPUTER MEMORY SYSTEMS 7

2.1 Error Correction by Parity Checking 7

2.2 Single-error-correcting, Double-error-
detecting Code for Single Bit per Card Memory
Configuration 9

2.3 Double-error-correcting, Triple-error-
detecting Code for Single Bit per Card Memory
Configuration 15

2.4 Error-correcting Codes for Multiple Bit per
Card Memory Configuration 18

2.5 General Class of Maximal Codes 24

2.6 Majority Logic Decodable Codes 31

2. 7 Summary 36

3 ERROR-CORRECTING CODES FOR COMPUTER PERIPHERAL
SYSTEM , 38

3.1 Single-track Correction of Magnetic Tape Unit
with Cyclic Redundancy Codes 38

3.2 Double-track Correction of Magnetic Tape
Unit with Cyclic Redundancy Codes 45

3.3 Single and Double Track Correction Using
Optimal Rectangular Codes . 49

3.4 Error-correcting Codes for Single Channel
Disc Systems 57

3.5 Error-correcting Schemes.for Multi-Channel
Disc Systems 60

• -iv-

Chapter Page

3.6 Error-correction in Photo Digital Storage
Systems 65

3.7 Summary 68

4 ERROR-CORRECTING CODES FOR COMPUTER ARITHMETIC
PROCESSORS 69

4.1 Nature of Errors in Arithmetic Processor ,
Environment 69

4.2 Checking Arithmetic Operations Using Residue
Codes 71

4.3 Single Error-correction with AN Codes ... 74

4.4 Multiple-error-detection and Correction
with Mandelbaum Barrow Codes 74

4.5 Biresidue Codes for Single Error-Correction 75

4.6 Multiresidue Codes 79

4.7 Summary 84

5 CONCLUSIONS .' 85

References 86

Vita 88

-v-

ABSTRACT

The thesis presents an investigative survey of Error-Correct-

ing Codes suitable for application in computer environment. Error-

correcting codes have been successfully utilized to improve re-

liability in transmitting information in communication systems. In

recent years the phenomenol increase in information handled by

digital computers has enhanced the need for computer system relia-

bility. In the survey with respect to error-correction the overall

computer system has been broadly classified into three sections, •

namely the computer memory system, the computer peripheral system

and the central processing unit. Each section is discussed under

a separate heading.

Error-correcting codes used in computer memory systems depend

upon the configuration of memory. For those memories which are

packaged on single bit per card basis, single error-correcting,

double error-detecting Hamming type codes, double error-correcting,

triple error-detecting BCH codes, and one step majority decodable

codes play a useful role in increasing the reliability of memory.

Byte error-correcting codes form the basis of correcting errors

in memories configured as multiple bit per card. A general class

of maximal codes was developed by Hong and Patel whose structure

is not restricted to any homogeneous bit per card arrangement and

is capable of correcting single random byte errors.

Cyclic codes formed the basis of the error-correcting scheme

-1-

in magnetic tape and disc drives which are part of the computer

peripheral system. Cyclic Redundancy Code CCRC) and the Orthogonal

Rectangular Code (ORC) were found applicable to magnetic tape units.

In magnetic disc systems Fire codes with high speed decoding could

be used for single channel. Recently Malhotra and Fisher have come

up with a practical error-correcting scheme for multichannel disc

systems. Reed-Solomon codes were best suited for photodigital

mass storage systems. The decoding scheme employed a hybrid hard-

ware-software technique to simplify the complexity of decoding the

multiple character correcting code. v

In the processing unit of the computer the error-correcting

codes used are arithmetic codes. The best known among these which

are suitable for computer arithmetic as well as easily implementable

are the residue codes. The Biresidue code proposed by Rao involved

circuit redundancy of the magnitude of 30-35 percent of the main

processor which is definitely more economical than duplicating

redundant schemes like Triple Modular Redundancy.

A desirable feature of the error-correcting codes used in

computer systems is the fast and simple encoding and decoding pro-

cedure. To ensure efficient operation the speed of implementation

of the code must be comparable to the speed of operation of the

computer system. Most of the codes surveyed in this thesis have

been found suitable in computer environment with existing trade-off

between"redundancy and decoding time.

-2-

CHAPTER 1. INTRODUCTION

Error-correcting codes are mathematical codes designed to en-

code information in such a manner that it can be decoded correct-

ly at the receiving end in the presence of disturbance in the trans-

mitting medium. Typical examples of transmission mediums are tele-

phone lines, high frequency radio links, space communication links

and magnetic tape units including writing and reading heads for

storage systems. The codes are constructed in binary digits com-

patible with information handled in digital computers. Error-

correcting codes have been used successfully in communication sys-

tems to improve reliability. The idea has been carried over to

computer environment where the need for reliability in storing and

processing information has assumed wide importance with increasing

demand for more computer power.

The idea of increasing system reliability through hardware

was first initiated by Von Neumann. In his scheme the original

network was duplicated an odd number of times. If three identical

copies of an original circuit are made and the output of each cir-

cuit is taken to a majority voter assumed to be perfect, then this

scheme can tolerate error in one of the circuits. The introduction

of extra copies required to improve reliability is called redundancy.

In particular, the above scheme is known as Triple Modular Redun-

dancy. This is equivalent to triplicating a binary digit (also

called encoding) before transmission in a binary symmetric channel

-3-

and ensuring safety of the information in the presence of single

error due to disturbance in the transmitting medium or transmitting

the same digit three times over certain intervals of time. The fact

that some form of redundancy either in hardware, binary digits or

time was needed is fundamental in the concept of system reliability.

In the field of error-correcting code the rules for encoding

and decoding information can be specified a parity check matrix.

For instance, if we desired to transmit 4 information binary digits

x..x_x„x. we would transmit instead a binary code sequence y■ y_y_y.yvy

y-y-y.-. This introduction of redundancy to the information digits

4 7 is known as encoding. Only 2 out of the 2 possible encoded se-

quences would be acceptable. If two encoded output sequences differ

in at least 3 positions, a single error will always be corrected.

This is achieved by the following encoding rules,

y. = x. i = 1,2,3,4

y5 = x2©x3©x4

y6 = x1©x3©x4

y? = x2 © x2 © x4

where © indicates mod 2 addition. The equations can be written

in terms of y.

0y1 © ly2 © ly3 + ly4 © ly$ © 066 © 0y? = 0

ly1 © 0y2 © ly3 © ly4 © 0y5 © ly © 0y? = 0 ,

ly1 © ly2 © 0y3 © ly © 0y5 © 0y6 © ly? = 0 „

which can be compactly written as

0 11110 0

10 110 10

110 10 0 1

It is easy to verify that each of the 16 possible encoded sequences

is a solution to the above equations. The matrix of 0 and 1 is

termed the parity check matrix and is usually denoted by the symbol

i
H. It is the choice of this matrix which is important in designing

Algebraic codes.

For decoding the output sequence is taken and the syndrome

s..s9s_ is calculated

"o 1 1 1 1 0 0

10 110 10

110 10 0 1

If the output sequence differs from a codeword in only one position

T
then the vector [s-s^s,] £ 0 and will be equal to one of the

columns of the parity check matrix. Since all columns of the parity

check matrix are distinct we will be able to identify the position

T
.of the error by observing the vector [s.s^s,] . If an output

-5-

sequence 1001011 is received the syndrome vector is calculated as

T
[111] which indicates that the error was in the 4th position and

thus we should decode to the codeword 1000011.

In general a code is represented as (n,k), where k is the

number of information digits and n is the length of the code se-

quence. In the above example we used a (7,4) code. For a more

detailed exposure to Coding Theory, the reader is referred to

Peterson [1], Shu Lin [2].

Since a digital computer operates at ultra high speeds, the

encoding and decoding process built in the computer system must be

fast and simple.. The code constructed should have minimum redun-

dancy, maximum efficiency, and low cost to be a viable alternative

in computer system reliability.

The survey deals with a large number of such codes which have

been developed to meet specifically the requirements of reliability

for computer memory systems, peripheral systems and Arithmetic

processors. Each system is discussed under a separate heading.

-6-

CHAPTER 2. ERROR-CORRECTING CODES FOR COMPUTER MEMORY SYSTEMS

Capacity, access time, data transfer rate and cost/bit are

basic performance considerations of mass storage devices. The demand

for more storage capacity with high speed access appears as insa-

tiable as the demand for more computer power. Improvement in

capacity and access time cannot be at the expense of reliability

because most users are placing their vital records under computer

control.

In recent years basic technology has shifted from core memory

towards monolithic memory and LSI technology decreasing random

access cycle time from ys to ns range. However, batch fabricated

or integrated memory elements are not as reliable as cores giving

rise to permanent stuck type memory faults.

2.1 Error Correction by Parity Checking

By successive read/write operation according to flow chart

(fig. 2.1) odd number of errors are corrected by simple parity code.

In most events economic considerations will dominate any decision

to use the parity code versus reworking of components to obtain a

perfect memory. On the other hand, temporary faults caused by the

malfunction of the driver, sense amplifier circuits or random

electromagnetic noise interference, where the errors are not re-

producible, successive read operation with parity check can correct

odd errors (fig 2.2). Even number of errors still remain unde-

tected. It is here that random-error-correcting codes play an

-7-

Data out

Data out

Data out Fig. 2.2

-8-

Fig. 2.1

important part in system reliability as compared with other tech-

niques.

2.2 Single-error-correcting, Double-error-detecting Code for

Single Bit Per Card Memory Configuration

The most widely used error-correcting codes in the computer

memory environment are the single-error-correcting, double-error-

detecting (SEC-DED) Hamming code [7] and double-error-correcting,

triple-error-detecting BCH codes (DED-TED) [8]. These codes are'

suitable for single bit per card configuration proposed by Allen

[5]. The memory is organized such that every bit of a code word

appears in a single card. Errors in the card will therefore appear

as single errors in the codeword.

SEC-DED Hamming codes have been used in IBM 7030 and IBM

System/360 model 85, having 72 bits per word, 64 data bits and 8
/

check bits. These codes are slightly modified from the convention-

al single-error-correcting, double-error-detecting codes of dis-

tance 4 used in communication channels. The row of all l's in

the parity check matrix of the conventional code is not used. In-

stead the parity check matrix is constructed such that every column

is of odd weight and distinct. Since any linear combination of

three odd weight distinct columns of the parity check matrix is

independent, i.e. they do not add to all zero, the minimum dis-

tance of the code becomes >4, satisfying the condition for si-

multaneous detection of two errors and correction of single errors.

-9-

The syndrome

S = eHT (Eq.2.10)

is implemented using an Ex-OR network [7], The number of inputs

to each gate and the number of logic levels required are dependent

on the number of l's in each row of the parity check matrix. The

code is therefore constructed such that the number of l's in the

parity check matrix is a minimum. It is for this reason that the

overall parity check in the conventional Hamming code is avoided

in the construction of SEC-DED via odd-weight-column parity check

matrix, thus improving the speed of encoding and decoding. If r

parity check bits are used to match the k data bits, the parity

check matrix is constructed using the formula

<r

I (?) Ik + r (Eq.2.11)
i=l V1/
odd

where each term stands for the possible combinations of r columns

of wt i. This code has minimum redundancy as the unshortened code

requires the same number of check bits as the conventional Hamming

code.
<r

I (l) =|2r=2r"1 (Eq.2.12)

odd #

The syndrome corresponding to single error matches the particular

column of the parity check matrix identifying its location. An

-10-

C
h
e
c
k

64

65

66

67

68

69

70

71

10
00
00
00

01
00
00
00

00
10
00
00

00
01
00
00

00
00

10
00

00
00
01
00

00
00
00
10

00
00

00
01

8

56

57

58

59

60

61

62

63

TTITTIIT

OTTOOIOO

I00T00T0

0000T00I

OOOOTOOO

TTOOTOOO

00IIT000

OOOOOTTT

7

48

49

50

51

52

53

54

55

OOOOOTTT

TTTTTTTT

OTTOOTOO

TOOTOOTO

OOOOTOOT

OOOOTOOO

TTOOTOOO

OOTTTOOO

6

40

41

42

43

44

45

46

47

OOTITOOO

OOOOOTTT

TTTTTTTT

OTTOOTOO

TOOTOOTO

OOOOIOOI

OOOOIOOO

TTOOTOOO

5

32

33

34

35

36

37

38

39

TTOOTOOO

OOTITOOO

OOOOOTTT

TTTTTTTT

OTTOOTOO

TOOTOOTO

OOOOTOOT

OOOOIOOO

4

24

25

26

27

28

29

30

31

OOOOIOOO

TTOOIOOO

OOTTTOOO

OOOOOTTT

TTTTTTTT

OTTOOIOO

TOOTOOTO

OOOOIOOI

3

16

17

18

19

20

21

22

23

01
00
10
01

00
10
01
10

11
11
11
11

11
10

00
00

00
01

11
00

00
01

00
11

00
01

00
00

10
01
00
00

2

8
9

10

11

12

13

14

15

00
10

01
10

11
11
11
11

11
10

00
00

00
01

11
00

00
01

00
11

00
01
00
00

10
01
00
00

01
00

10
01

to r-^

rH CM VO

rH LO

o *3-

OTTOOIOO

TOOTOOTO

OOOOIOOI

OOOOIOOO

TTOOTOOO

OOTITOOO

OOOOOTTT

TTTTTTTT

By
te

Bi
t

rHCMtO^LOvOr^OO
COCOC/DCOCOCOC/DCO

to *
CM

bi
•H u.

-11-

Ch
ec
k

64

65

66

67

68

69

70

71

10
00
00
00

01
00
00
00

00
10

00
00

00
01
00
00

00
00
10
00

00
00
01
00

00
00
00
10

00
00
00
01

8

56

57

58

59

60

61

62

63

IIIIIIII

IIIIOOOO

00110000

IIOOIIII

01101000

01100100

00000010

00000001

7

48

49

50

51

52

53

54

55

10
00
10
00

01
00

01
00

00
10
00
10

00
01
00
01

00
00
00
00

00
00

11
11

11
11

11
11

11
11

00
00

6

40

41

42

43

44

45

46

47

OOOOIIII

00000000

IIIIIIII

IIIIOOOO

lOOOIOOO

OIOOOIOO

OOIOOOIO

OOOIOOOI

5

32

33

34

35

36

37

38

39

01
10
10
00

01
10
01
00

OO
OO
OO
IO

OO
OO

OO
OI

11
11

11
11

11
11
00
00

11
00

11
11

00
11
00
00

4

24

25

26

27

28

29

30

31

00
00

11
00

11
11
00
11

00
00

11
11

11
11
11
11

10
00
00
00

OI
OO
OO
OO

00
10

01
10

00
01
01
10

3

16

17

18

19

20

21

22

23

lOOOIOOO

OIOOOIOO

OOIOOOIO

OOOIOOOI

OOOOIIII

IIIIIIII

00000000

IIIIOOOO

2

8
9

10

11

12

13

14

15

r lOOOIOOO

OIOOOIOO

OOIOOOIO

OOOIOOOI

00000000

OOOOIIII

IIIIIIIT

IIIIOOOO

to r--

i-H CM VO

i—1 LO

O ■* 11
11
11
11

11
10

00
00

00
01
11
00

00
01

00
11

00
01
00
00

10
01

00
00

01
00

10
01

0
0
1
0
0
1
1
0

By
te

Bi
t

t-i CM to.^fr LO vo r^ oo
COC/3C/DWCOC/3COCO

CM

bo
•H
VU

-12-

even number of l's in the syndrome would suggest the existence of

multiple even error including detection of double errors. Multiple

odd error would be correctely detected if the syndrome pattern lies

outside the codes parity check matrix. Otherwise a miscorrection

would result. Since the probability of having one bit in error

is low (of the order of 10) the probability of having a large

number of multiple error is even smaller.

Illustrative Example

The (72,64) code used in IBM 7030 and IBM 360 system Model 85

is the shortened version of (128,120) full length code. The 72

columns of the parity check matrix are constructed using Eq. 2.11.

•0 "• I;I • (!) • »(t <*,....»
The stroke in Eq. 2.13 suggests that 8 columns of wt 5 of the

Q

possible (,.) combinations are used. The total number of l's in

the H matrix is equal to 8+ 3x56+ 8x5=216. The average

number of l's in each row is equal to 216/8 = 27. This implies

that if a 3-way ExOR gate is used, the number of logic levels

required to generate S. is equal to 3. Two versions of the parity

check matrix of the (72,64) SEC-DED codes are shown in Fig. 2.3 [7]

and Fig. 2.4 [7]. A simple layout of the encoder and decoder is

shown in Fig. 2.5.

The memory is assumed to be a binary symmetric channel and

errors are statistically independent. The logic circuit is simple,

-13-

tz :>C.P.U.

N

.1-
_2-

S3

71

3-
Way
Ex-
OR
Yee

Cl/Sl
C2/S2
C3/S3
C4/S4
C5/S5
C6/S6
C7/S7
C8/S8

OR

A *- — A

72 "and" error
locators

nr^
N

f
;@

72 2 in-
put

ExOR

Output

Cl/Sl

C2/S2
C3/S3
C4/S4
C5/S5

C6/S6
C7/S7
C8/S8

> Error
Detected

* A ~^ Double
Error

-° Single
Error

- 0

;£>c.p.u.

Fig. 2.5

-14-

fast and the code has minimum redundancy suitable for computer

application.

2.3 Double-error-correcting, Triple-error-detecting Code for

Single Bit Per Card Memory Configuration

With a slight increase in the decoding complexity double error

correction can be done, improving the reliability of the memory.

The code used is a DEC-TED BCH code. The generator polynomial

is of the form g(x) = (l+x)g.. (x)

g;l(x) = LCMCm1(x),m3Cx)) (Eq. 2.14)

where m.(x) are the minimum polynomial of a , a being a primitive

element of the Galois field GF(2). The degree of g, (x) is at most

2m. The minimum distance d ^5. The (1+x) factor in g(x) increases

the distance of the code by one. This ensures that every column

of the parity check matrix generated by X mod g(x) is of odd

weight. Odd weight syndromes then correspond to odd number of

errors and an even weight syndrome tells that the error polynomial

is of even weight. Also every code word is of even weight.

Example

Using the (79,64) DEC-TED BCH code for illustration, the code

has 64 data bits and 15 check bits and is a shortened cyclic code

of the full length code (127,112). The polynomial g,(x) has root

in GF(27)

3 7
m. (x) = 1 + x + x

-15-

rp, «.*/■•» 2 4 8 16 32 64 The roots of m (x) are a,a,a,a,a , a ,a

r •> i 2 3 7 m„(xj = l + x + x+x+x

™ - , . 3 6 12 24 48 96 65 The roots of m„(xj are a,a,a ,a , a ,a , a

g.(x) = (1 + x +x)(l + x + x +x +x)

f1 ^ 2 4 5 6 8 9' 14 = (l + x + x +x +x +x +x +x +x

Since g(x) = (l+x)g1(x)

ri .ri 2 4 5 6 8 9 14. = (1+x)(1+x+x +x +x +x +x +x +x)

3 4 7 8 10 14 15
= l + x+x+x+x+x +x +x

T
Each row of H can be generated by a feedback register characterized

by g(x) (Fig. 2.6) with initial state 100000000000000. The other

states are as follows:

00 100000000000000 17 11001100 11 010 0 0

01 010000000000000 18 01100110 0 110100

02 001000000000000 19 001100110011010

03 000100000000000 20 000110011001101

04 000010000000000 21 100101010110111

05 000001000 0 00000 22 110100110001010

06 000000100000000 23 011010011000101

07 000000010000000 24 101011010110011

08 000000001000000 25 110011110001000

09 000000000100000 26 011001111000100

10 000000000010000 27 001100111100010

11 0000000000010 00 28 000110011110001

12 0000 00000000100 29 100101010101001

13 000000000000010 30 110100110000101

14 000000000000001 3111 11100000010011

15 100110011010001 32 111000011011000

16 110101010111001 33 011100001101100

-16-

34 0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 65 1 1 0 0 0 0 10 1 0 10 10 1

35 0 0 0 1 1 1 0 0 0 0 1 1 0 1 1 66 1 1 1110 0 0 1 1 1 1 Oil

36 1 0 0 1 0 1 1 1 1 0 1 1 1 0 0 67 1 1 10 0 10 11 10 1 10 0

37 0 1 0 0 1 0 1 1 1 1 0 1 1 1 0 68 0 1 1 1 0*0 1 0 1 1 1 0 110

38 0 0 1 0 0 1 0 1 1 1 1 0 1 1 1 69 0 0 1110 0 10 111 Oil

39 1 0 0 0 1 0 1 1 0 1 0 1 0 1 0 70 1 0 0 0 0 10 10 0 0 1 10 0

40 0 1 0 0 0 1 0 1 1 0 1 0 1 0 1 71 0 1 0 0 0 0 10 1 0 0 0 110

41 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 72 0 0 10 0 0 0 10 10 0 Oil

42 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 73 1 0 0 0 10 0 10 0 0 0 0 0 0

43 0 1 1 0 0 0 1 0 0 0 0 0 1 1 0 74 0 1 0 0 0 10 0 1 0 0 0 0 0 0

44 0 0 1 1 0 0 0 1 0 0 0 0 0 1 1 75 0 0 10 0 0 10 0 10 0 0 0 0

45 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 76 0 0 0 10 0 0 10 0 10 0 0 0

46 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 77 0 0 0 0 10 0 0 1 0 0 1 0 0 0

47 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 78 0 0 0 0 0 10 0 0 10 0 10 0

48 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0

49 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1

50 1 0 0 1 1 1 0 1 1 0 1 0 1 0 1

51 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1

52 1 1 1 1 0 0 1 0 0 0 0 1 1 0 0

53 0 1 1 1 1 0 0 1 0 0 0 0 1 1 0

54 0 0 1 1 1 1 0 0 1 0 0 0 0 1 1

55 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0

56 0 1 0 0 0 0 1 1 1 1 1 1 0 0 0

57 0 0 1 0 0 0 0 1 1 1 1 1 1 0 0

58 0 0 0 1 0 0 0 0 1 1 1 1 1 1 0

59 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1

60 1 0 0 1 1 1 0 1 1 0 0 1 1 1 0

61 0 1 0 0 1 1 1 0 1 1 0 0 1 1 1

62 1 0 1 1 1 1 1 0 1 1 0 0 0 1 0

63 0 1 0 1 1 1 1 1 0 1 1 0 0 0 1

64 1 0 1 1 0 1 1 0 0 0 0 1 0 0 1

-17-

The syndrome bits are computed by Ex-OR tree. If S = 0 the

data bits are sent to the CPU. When parity of S is odd it implies

single or multiple odd errors. Single errors are corrected by the

logic circuit similar to Fig. 2.5. Double error correction is done

when parity of syndrome bits is even. The syndrome is loaded into

the serial linear feedback register (Fig. 2.6) and the codeword in

an n-bit register. Both registers are shifted simultaneously

till the first error bit has shifted into the rightmost bit posi-

tion. This is detected when the syndrome pattern matches any of

possible 78 double error patterns stored in a ROM.

78 +77 =000000110011011

78 +76 = 0000010101011 01

78 +00 =100000010001001

The leading bit in the n-bit register is inverted. The remaining

error can be corrected by the single error correcting scheme.

2.4 Error-correcting Codes for Multiple Bit Per Card Memory

Configuration

The error-correcting codes we have seen so far are suitable

for single bit per card memory configuration. Increasing speed

and system efficiency demands have pushed the idea of single bit per

card to a cluster of bits per card type memory organization. A

single fault in these systems would affect many bits within a byte.

Consequently a byte-error-correcting ability is demanded of the

codes. There are a number of known classes of error-correcting

-18-

in

X +

X +

X +
oo

X +
"x
+

t
X +

tn
X +

X

bO

I

I

I

I
I

I

r-t

I—I
x

CM
i—l

X

o
r-l

X

X

00
X

X

X

m

X

x

<N

CN

bO
•H

X

-4>

■19-

codes that have this property. Best among these, suitable for high

speed implementation, are the redundant residue polynomial code [9],

It is well known that the parity check matrix of the single-

error- correcting Hamming code can be constructed with each element

being a symbol from a finite field GF(2). Then any single error

corresponds to a block of b bits in error.

2
As a simple example, if we consider GF(2)[x] mod. x + x + 1,

the residue classes are {0},{l},{x},{x+l}. They can be represented

2
by powers of symbol a where a + a + 1 = 0. In vector form each

symbol appears as a binary 2 tuple

Symbol Vector Form

0

1

a

a

0 0

0 1

1 0

1 1

The companion matrix T of the irreducible polynomial p(x) of degree

b is a bxb nonsingular matrix described by

T =
2 3

a a a . a

where a is the root of the irreducible polynomial in GF(2). Other

symbols in GF(2) can be represented by the matrix

T = i+1 i+2 i+b
a a ... a

•20-

The zero and one symbols in GF(2) are the bxb zero matrix T

and the bxb identity matrix T. respectively. In our example

T = o PJ: T
i = 1 0

0 1
T = 1 1

0 1
; T« = 1 o

l I

The H matrix for single card correction code with 2-bit per card

memory consisting of 64 data bits and 8 check bits is shown

(Fig. 2.7). Each element is a bxb binary matrix.

An interesting subclass of these Hamming type codes is 2-re-

dundant codes [9] having two check symbols and capable of single

symbol correction in GF (2). They always have the parity check

matrix of the form

H = 0
a a a 2b-2 a

1 0

0 1

If a is the root of the primitive polynomial in GF(2) then all

columns are distinct and the maximum number of information symbol

is 2 -1.

Example
g

An (80,64) code over GF (2) packaged as 8 bit per card memory

with 64 data bits and two check cards (16 bits) has the following

parity check matrix

1111111110
i 2 3 4 5 6 7 _ , lactaaaaaOl H

Each symbol is replaced by its corresponding T matrix to obtain

the binary H matrix for purposes of implementation.

-21-

I O O O rH
1 H E- H E-

O O rH O
H E- E- E-
O i-H o o

E- H H E-
rH O O O
H E- E- E-
rH O O rH
H H E- E-

O O rH
H E- E- E-

O O rH
E- E- E- E-
O rH rH O

E- H E- E-
O rH O

E- H H E-H
O rH - O

E- E- E- E-
O rH O i—I

E- E- E- E-
O O rH

E-H E- H E-
O - O rH

E- E- E- H
O O rH rH

E- E- H E-<
O O rH
H E- E- H o o
H H E- E-
O rH rH rH

E- H E- E-
rH O rH rH

E— E— E— E—
rH i—I rH O

E- H H H
rH i—I O rH

E- H H E-
t-H rH O
H E-H E- E-
rH rH O
H E- E- E-H
rH O rH

E- H H H
rH O - rH

E- E- H E-
O rH rH
H H E- E-
O - rH rH
H E-H E-H E-H

rH rH O
E- E-H E-H E-
- rH i—I O
E-H E-H H H
rH rH
H E- E-H £-
rH rH -
H E-H H E-H
rH O r-H O
H H E-H E-H

O rH O
E- E-< E- H

O rH O
E- H E-H E-
rH t-H O O

E-H E-H E- E-
rH O O

E- E-H H E-
rH - O O

E- E-H E- H

CM

bo
•H

-22-

The syndrome for H matrix is computed by the usual Ex-OR tree.

Since the error pattern now corresponds to some symbol e. e GF(2)

in block i of data bits the syndrome corresponding to this error

has the value

e.a
1

where S1 and S0 are binary column vectors of length b. If the

error occurs in the check symbol, the syndrome is either

s1 e. s. 0 " 1 l 1
So

— 0 or
S-,

=

e. 2 L J 2 X

This case can be easily detected by And gates checking either S1

= all zeros or S_ = all zeros.

When error is in the information symbols, S1 j£ 0, S_ ^ 0 and

S = a S. or S + a S =0 where + stands for bit by bit Ex-OR.

To test the above condition a set of Ex-OR circuits can be set

up for all possible values of a , i = 1,2,...2 -1. This gives the

location of the block in error. The error magnitude e. = S, can

be added mod 2 to block i for error correction.

For K information symbols, the decoding circuit requires on

an average K+2 And gates of b inputs and Kb Ex-OR gates with an

average of b/2+1 inputs each.

The 2-redundant codes thus provide a simple means for correct-

ing single bit error or b-adjacent bit error by treating it as a

symbol in GF(2). The check bit are integral multiples-of b.

-23-

The redundant bits r = kb where k is an integer.

2.5 General Class of Maximal Codes

Hong and Patel [10] proposed a new class of codes whose

structure does not depend on GF(2). The byte is equated to a

suitable cluster of bits and the check bits r = kb+c where 0<C<b.

These codes are either perfect or maximal. Hence they are called

the general class of maximal codes (GMC).

In general, the identity portion of H matrix looks like

I;

b+c

(k-l)b L matrices

1 I, matrix
b+c

(Eq.2.15)

or I

1

^ kb I, matrices
b

J
1 I matrix

c

(Eq.2.16)

For the discussion on the code, the form appearing in Eq. 2.15

will be used. The non-identity portion of the parity check matrix

-24-

can be formed by successive iteration of the matrix H , con-
r,b

structed as follows:

0 1 b-1 a a a

1 I I

12 b a a - - - a
I I I

i i+1 i+b-1 a a . .a • 2r-b-2 b-2 a a

r-b where a is a primitive element from GF(2). This can be con-

veniently represented as

T° $
r-b r-b,b

T $
r-b r-b,b

T $
r-b r-b,b

r-b

r-b r-b,b

where T , is the companion matrix of the primitive polynomial in

r-b GF(2) and $, , is a r-bxb matrix of the form v J r-b,b

-25-

:b

°r-2b,b
which chops off the rightmost 4-2b columns of the T

matrix. I, is a bxb identity matrix and 0 _, , is
b T-Zbto

a r-2bxb zero matrix.

For r >_ 2b the parity check matrix formed as

H = [Hr^|lr] (Eq.2.17)

is capable of correcting single byte errors.

The single byte correcting ability of this code can be proved

by showing that a distinct syndrome exists for every single error

pattern.

T T
S = vH = [s1 s2 ... sk]

S. represents the syndrome byte corresponding to check byte C.

The codeword consisting of information and check bytes is

v = B_ B1 ... B , C, C„ ... C, (C, : special check byte of length

b+c). If an error pattern E ^ 0 occurs in the i information

byte than S. = E / 0

[S. S, ... SJT = [T1 , $, ,]E ^ 0 L 2 3 kJ L r-b r-b,bJ

If an error pattern E ? 0 occurs in the j check byte

then S. = E

and Sx = 0 U j

All the errors yield distinct syndrome and therefore correctable.

In case of the parity check matrix given in Eq. 2.17 both the

-26-

syndromes S- and [S_...S,] £ 0 for errors in the information

section of the codeword.

For r > 3b the GMC code is described by the matrix

H = H r,b
°b>bC2

r-2b-l)
H
(r-b),b

In general for r ^ kb

H =
H
r,b

0,
bx

H (r-b),b

0. bx

0 bx

H (r-2b),b

(2b+c),b

(Eq.
2.18)

k-1

Each partition P. appears to be a single byte correcting code for

information symbols in that particular section of the codeword as

they all yield syndromes distinct from other partitions. A single

error E / 0 in the i byte of partition P. yields the syndrome

•27-

Sj = s2 = ... = S^j = 0

S. = E £ 0

[Sj + r..Sk] = [T^^-j
$(r_jb)jbl E £ 0

Since H_, is the smallest possible partition capable of

correcting single byte error, there is a limit on the possible

number of partitions which suggest the maximality of the code.

The total number of distinct error patterns of this code is given

by according to Eq. 2.18

Z = {f (2b-Wk~j)b+C-l)} + Ck-l)(2
b-l) + (2b+C-l) + 1

3 = 1

= 2b-l(I1 2ib+C} + 2b+C
i=l

= 2b-1 2C { I 2ib} + 2b+C
i=l

+c„b „ 2(k-^b-l = 2" "(2-1)
2b-l

+ 2
b+c

= 2J

This suggests that the code is perfect.

Example

Given r=5xl + 0=£>B = l,c = 0

10 0 0 0

0 10 0 0

I = r 0 0 10 0

0 0 0 10

0 0 0 0 1

According to Eq. 2.15

•28-

The parity check matrix is structured according to Eq. 2.18

H =

111111111111111

100010011010111

010011010111100

001001101011110

000100110101111

0 0 0 0 0 0 0

1111111

10 0 10 11

0 10 1110

0 0 10 111

0 0 0 0

0 0 0 0

1 1 1 0

10 1 1

Oil 1

10 0 0 0

0 10 0 0

0 0 10 0

0 0 0 10

0 0 0 0 1

(Eq.2.19)

P1 is constructed using primitive polynomial x + x + 1 in GF(2)

3 3
P~ is constructed using primitive polynomial x + x + 1 in GF(2)

2 2 P, is constructed using primitive polynomial x + x + 1 in GF(2)

P. is constructed using primitive polynomial x + 1 in GF(2)

We see that the code length is increased in an iterative

fashion and is maximal. Also this (31,26) GMC Code provides an

alternate method for constructing single error correcting Hamming

code and is perfect. A shortened version of the code could be

r-b constructed using a non-primitive irreducible polynomial in GF(2)

In decoders using shift registers this saves decoding time due to

the smaller exponent of the generating polynomial.

In the encoding and decoding circuitry each partition is pro-

cessed in parallel. Shift register implementation for P.. in our

example is shown in Fig. 2.8. The check bits of the information

4
is available after 2 -1 cyclic shifts of the primitive polynomial

4 g.(x) = x + x + 1 of the largest partition. During decoding the

syndrome is obtained by adding the check bits of the information

-29-

bobr-bi4
Incoming bytes

-©-

I, register

-O-

0-

-C contribution to S.

Contribution to

S2S3S4S5

Fig. 2.8

L.F.S.R. for G (x) = x +x+l

■30-

mod 2 to the computed check bits, the I, portion of the shift

register contributes to the syndrome S, which gives the error

pattern. The linear feedback shift register contributes to the

syndrome [S„ S_ S. S,.] which provides the location of the error.

Let v be a codeword given by

v = 100000000000001000000000000000000001

The 5 most significant bits are the check bits of the codeword.

Suppose a single error bn = 1 occurs corresponding to the position

P. of the codeword. The received codeword becomes

v = 0000000000000100000000000000001.

Bits bf)brb1 are processed by the circuit (Fig. 2.8). The computed

check bits CL = 1, [CL C C C] = 1001. This is added mod 2 to

the check bits of the codeword to give S = 1,[S2 S S. S-] = 1000.

The error pattern E = 1. The syndrome [S^ S S4 S-] matches the

first column of the parity check matrix (Eq. 2.19) giving the

location.

The GMC code thus provides us the flexibility of constructing

a code to suit any byte arrangement of memory. Moreover, the code

processing can be done in parallel, saving precious decoding time.

2.6 Majority Logic Decodable Code

At a time when integrated circuits are being developed rapidly

and becoming cheaper, a class of codes which are one-step majority-

logic decodable are becoming likely candidates in competition with

other codes for computer applications. Although bit is redundancy

-31-

is higher compared to other codes the design of the decoder is

simple and fast. A class of such codes derived from orthogonal

Latin squares has been proposed by Bossen, Hsiao, Chien [11]. The

orthogonal property provides a unique feature of adding redundancy

systematically such that the decoder can be built in modules.

A code of distance d is said to be one step majority decodable

if it is possible to construct 1-1 check sums orthogonal on every

digit.. This implies that there must be at least 2t l's in each

column of the parity check matrix for t-error correction. The

parity check matrix constructed using Latin squares has exactly

2t l's in each column corresponding to error in the data bits. The

2t parity check equations formed with any error in the data bit is

orthogonal on that particular bit.

Definition: A Latin square of order m is an m x m square array of

digits 0,1,...m-1 with each row and column a permutation of the

digit 0,1,..m-1. Two Latin squares are orthogonal if when one Latin

square is superimposed upon the other every ordered pair of elements

appears only once.

Theorem: The maximum error correcting ability of the code con-

structed from Latin square t _< —=— . Also these classes of codes

2
have m data bits and 2tm check bits.

Instead of the proof the construction of the parity check

matrix is given with an illustrative example.

Given k = 25 m = 5

the orthogonal Latin squares for m = 5 are

-32-

0 1 2 3 4

1 2 3 4 0

Ll =
2 3 4 0 1

3 4 0 12

4 0 12 3

0 1 2 3 4

3 4 0 12

L3 = 1 2 3 4 0

4 0 12 3

2 3 4 0 1

0 1 2 3 4

2 3 4 0 1

L2 = 4 0 12 3

1 2 3 4 0

3 4 0 12

0 1 2 3 4

4 0 12 3

L4 =
3 4 0 12

2 3 4 0 1

1 2 3 4 0

The parity check matrix is described as

M,

H =

M„

M 2t

"2tm

I_ is the identity matrix of order 2tm.

2
matrices of size m x m .

M, , M

Ml =

2' .M„ are sub-

1111100000000000000000000

0000011111000000000000 000

0000000000111110000000000

0000000000000001111100000

0000000000000000000011111
5 x 25

■33-

M,

10 0 0 0

0 10 0 0

0 0 10 0

0 0 0 10

0 0 0 0 1

1 0 0 0 Oil 0 0 0 Oil 0 0 0 0,1 0 0 0 0

0 1 0 0 010 1 0 0 010 1 0 0 01 0 1 0 0 0
I I '

0 0 1 0 0|0 0 1 0 0,0 0 1 0 0,0 0 1 0 0

0 0 0 1 o'o 0 0 1 o'o 0 0 1 O1 0 0 0 1 0
I I I

0 0 0 0 1"0 0 0 0 1'0 0 0 0 liO 0 0 0 1
5 x 25

5+1 Since the maximum error correcting ability of this code t = —*— = 3,

M , M., M , Mfi are derived from the existing L1, L?, L , L. Latin

squares, respectively. The submatrix M. derived from L. is given

by

V,

M. . =

m

i = 3,4,5,6

j = 1,2,3,4

2.
where V, k = 1,2...m is a row vector of length m derived from L.

irrP vv vv y y y ■%
vk = [qir--qlmq2r--c»i2mq3i---<i3m V-^J

If we pick any element y from the Latin square 0 < y < m-1

then

qV. =
1

0

y = %. .

y ^ A. .

i = 1,2...m

j = 1,2...m

.. are the elements of the Latin square.

The submatrices M M., M5, M, are shown in Fig. 2.9 [11]

marked L. , L_, L„, L. respectively. The single error correcting

(35,25) code is constructed with submatrices M and M (Fig. 2.9a)

The Decoder for data bit d„ is shown. The output of the majority

-34-

d, ■ ■ • d< ■
I I I I I i

Section I

4—I Majorit>
voter

(a)

*, ... d4 d, rfl4.

i i i i i
i i i i i

'l»--'" '» Cl

I I I

I

I I I I I
, j I I I I Section I

I I
I I

I

I I
t I

I

III

I I I
I I I

I I I I
I I I

I I I
I II

II III
III II

-J- Section II

(b)

d. "14 ■ "l» '«*«■
I I I I I

I I I I I
I I I I I

I I I I I
, , , , J I I I I Scctiohl

I I I I I
I I I I I

I I I I I
I.I I I I

I I I I I
II III
III II

I I I I
I I I I I

I II II
I III I

t, J II I
II III
III II

^ Section II /j,

I I I
I II I

I I I
I I I
II II

I I I
I I I

I I II
I II I
II I I

I

I I
I I

I If
I I

f- Section III

(C)

Fig. 2.9

-35-

voter is 1 if d is correct and 0 of d is in error. The majority-

voters for other data bits can be constructed similarly. Referring

to Fig. 2.9 the error correcting ability is increased to two by

adding section II which includes submatrices M„ and M . Although

the number of check bits doubles, the construction is very simple.

The circuitry necessary for correcting the additional error is

similar to the first and can be added in modular fashion without

interfering its mechanization which makes this code a suitable

candidate for implementation with I.C. Fig. 29c corresponds to

the (55,25) triple error correcting code constructed by adding

matrices M- and Mfi. Since there are no more Latin squares, this

is the maximum error correcting capability of the code.

2.7 Summary

In conclusion of this chapter, we have seen some of the error-

correcting codes used in computer memory environment. For those

memory configurations which are packaged on single bit per card

basis, SEC-DED, DEC-TED and one step majority decodable codes were

helpful in increasing the reliability of memory. Byte-error-

correcting codes formed the basis of correcting errors in memories

with multiple bit per card arrangement. Two-redundant codes and

Reed-Solomon codes provided character-error-correcting ability.

1 Reed-Solomon codes were not discussed in this chapter because its

slow and complicated decoding scheme was a serious handicap. In

the next chapter we shall see that this class of codes is not

-36-

best suited for photo digital mass memory. Also, we saw the flexi-

bility of the general class of maximal codes whose construction

did not depend upon any homogeneous bit arrangement of memory.

Emphasis was based throughout on a simple and fast implementation

scheme.

-37-

CHAPTER 3. ERROR-CORRECTING CODES FOR COMPUTER

PERIPHERAL SYSTEM

The storage medium in peripheral devices is generally a magnetic

tape unit, drum or disc file or an optical unit. They form the

bulk of the extended mass memory in computer environment. As more

and more information is being placed in mass storage devices, the

corresponding improvement in reliability cannot be ignored. Coding

techniques are playing a vital role in achieving higher reliability

and saving considerable time consuming corrective action in con-

ventional read-write schemes.

3.1 Single-track Correction of Magnetic Tape Unit with Cyclic

Redundancy Codes

The IBM/360 system 2400 series uses a standard 1/2" 9 track

magnetic tape. Bits are recorded on this tape with a density of

800 bits/inch along the track. Spacing between bits in adjacent

tracks is about 40 times larger than those between bits in the same

track. This suggests that a single bit in error along any track

is likely to affect other bits in the same track rather than those

of adjacent tracks. Since bits are so closely packed within a

track the probability of burst error patterns occurring simul-

taneously in one or more tracks is predominant. The errors are

generally caused by foreign dust particles, imperfection in the

surface coating of the tape and mechanical damage due to handling.

Information is recorded on the tape as characters of 9 bits

-38-

•7

across the tracks. The 9th bit is a parity on the other 8 bits

and is written on the 8th track of the tape, also called the

vertical parity track. The other 8 bits of the character are

written from track 0-7. The position of the character along the

tape is identified by associating it with a unique power of x. The

highest power is attached to the first character in the record,

and the lowest power of x is attached to a special character gene-

rated from all the previous characters in the track. It functions

as a check on the previous characters written in the record. It

is also called the cyclic redundancy check or the CRC character.

The track positions are also associated with powers of x. In the

0 8
9 track tape the powers of x range from x -x . A record of n

character on the tape looks like an array of 9 x n+1 bits. Each

bit in the record can therefore be associated with a power of x

given by the sum of the track and character power of x to which

the bit belongs.

n n-1 n-2 -characters x 1 0

0

Tracks x

n+8 VH7
x

"Vertical"
Parity Track

"x

u

c£.

C_>

n+6 7
-39-

The record is a sequence of n data characters, each 9 bits long

consisting of 8 data bits and 1 parity bit. We can also represent

the record as a polynomial

p(x) = C xn + C .xn_1 + ... C,x ^v J n n-1 1

where the coefficient C. is a 9 bit character, polynomial
I

i 2 . i 3 i 8
C.(x) = an + a,x + a„x + a,x ...a0x I

v ' 0 1 2 3 8

and a, is the bit associated with the i character and k track.

The maximum degree of the polynomial p(x) is n+8. If we now

consider a generator polynomial of degree nine, the remainder re-

sulting from the division of p(x) by g(x) would be a polynomial of

degree 8 or less which is equivalent to a 9-bit data character

that can be added at the end of the information data characters

to represent the CRC. The addition of the CRC to the data charac-

ters forms a polynomial codeword which is divisible by the gene-

rator polynomial g(x). Any burst error along the track will be

detected if the code polynomial is not divisible by g(x) after the

entire record has been read. If the burst error pattern is con-

fined to a single track it can be corrected with the aid of the

parity bits in the vertical parity track also called vertical re-

dundancy check (VRC). Sometimes an undetectable error pattern

divisible by g(x) may result. To account for this an additional

check character called longitudinal redundancy check (LRC) is

written on the record at the end of CRC character. Every bit in

the LRC character is an even parity check of all the data bits

in the corresponding track. The American National Standard

-40-

Institute has specified g(x) = (l+x)Gj (x) where G (x) =

i 24678 , , . ,34569 _ . , . . 1+x+x +x +x +x +x and g(x) = 1+x +x +x +x +x . This g(x) is a

symmetric polynomial with (1+x) as a factor. The symmetric pro-

perty facilitates the read backward mode of operation while the

(1+x) factor predetermines the parity of the CRC character and

makes error in the CRC character correctable. Also in systems

where LRC is used the CRC can be altered by adding an odd wt

character to it. This ensures that LRC has odd vertical parity,

a desirable trait for identifying the start of the record in the

read backward mode of operation. Asymmetric generator polynomials

have also been specified. These have larger cycle length than

symmetric polynomials and when used along with the symmetric

generator polynomial on the data record helps to increase the range

of checking ability, especially when bits are recorded at a higher

density.

Working example

,'..34569 g(x) = 1+x +x +x +x +x

The CRC character can be generated by the feedback shift register

characterized by g(x) CRCSR (Fig. 31.a).

We will consider here a record of 3 characters written on

the tape as shown, using even vertical parity for the data.

-41-

r 1
o

X
4

* 1
1—1

X
i 4 ""'

A

», -M» „
CM

X

h -►-■£)—^ r+y 3 r<L^
to

X

^

X

K -fc—©—4 G>-

■<!

5 ^ * ■^

A

to
X

u6 r i^- -^ vt>—

A

X
41 i

N M» /
X

4 1
be -+-Q*

oo
X

I
C

X

I r

i—1
X

ir

CM
X

 ^ A
V V.

V

to
X

* rfS
T
V

•«*
X

wS r
S t>
i r

LO
<

> <*

1 f

> <

i r

> <

^ r

oo
>
1

<

3>-*«-VRC
Error

(a) CRCSR
Fig. 3.1

-42-
(b) EPSR

0

Write direction

11 10 9
XXX

, . 2 3 5 8 9 10 p(x) = X +x +x +x +x +x

The CRC polynomial C (x) is given by the remainder of [p(x)|g(x)]

x+1

9 6 5 4 3, x +x +x +x +x +1 10 9 8 5 3 2
X +x +x +x +x +x
10 7 6 5 4

x +x +x +x +x +x
9 8 7 6 4 3 2 x +x +x +x +x +x +x +x
9 6 5 4 3,

x +x +x +x +x +1
8 7 5 2

X +x +X +X +X+1

In binary CQ = 111001011

This is written after the last data character on the record. The \

tape now looks like Fig.(3.2a) below.

-43-

x° LRC

forward
read
direction

Fig.
3.2a

1 1 0 0 0

1 0 0 0

0 1 0 0

0 1 0 0

1 1 0 1

1 0 1 1

0 1 1 1

0 0 1 0
;

0 1 1 0 0
Fig.
3.2b

As (l+x) is a factor of g(x) there are even number of l's in the

record. Since the data has even vertical parity, the parity of

C_ must be even. If an LRC character is written at the end of the

record Cn(x) is modified by adding mod 2 G.. (x) which is an odd wt

vector. C» = 111001011 + 111010111 = 000011100. This ensures

that the vertical parity of LRC character is odd (Fig. 3.2b) above.

We shall now assume that all bits in track 3 are read as l's. This

6 4 3
corresponds to an error polynomial E(x) = x +x +x and the code

3 7 9 10
polynomial v(x) = 1+x+x +x +x +x . The received polynomial

r(x) = r(x) + e(x) = 1+x+x +x +x +x +x . The division of v(x)

by gOO is performed by the feedback shift register of Fig. 3.1a.

The content of the shift register after division is given by

x+1

9 6 5 4 3,
x +x +x +x +x +1

10 9 7 6 4 ,
X +X +X +X +X +X+1
10 7 6 5 4

X +X +X +X +X +x
9 5 .

X +x +1
9 6 5 4 3. X +x +x +x +x +1

6 4 3 X +x +x = 0001101000

-44-

As the characters are being read they are checked for even parity.

If an odd parity results a 1 is entered in the first bit position

of an error pattern feedback shift register (EPSR) characterized

by g(x) (Fig. 3.1b) and shifted in synchronism with CRCSR. In

our case after 4 shifts the content of ERSR is equal to 110100000.

Since the content of CRCSR is not all zero we have detected an

error. The error pattern of burst length 9 is indicated in EPSR.

The track in which the error occurred can be obtained by simply

counting the shifts necessary for the content of EPSR to match

that of CRCSR. For our example, after 3 shifts the contents of

CRCSR and EPSR are identical, indicating error in the 3rd track.

3
Error correction can now be performed by inverting the bit a,

for k = 1,3,4.

3.2 Double-track Correction of Magnetic Tape Unit with Cyclic

Redundancy Codes

We have seen how the CRC polynomial code can correct random

and burst error in single tracks. The idea has now extended to

double track correction by Malhotra and Fisher [18] to increase

reliability. Double channel correction is accomplished if a suit-

able hardware exists which identifies the two tracks in error.

The format of the data recorded on the tape is slightly modified.

The length of data characters in a record is limited to 7, and the
o

characters 8 bits long are synbols from GF(2). The 8th track

is the parity track. In this case the check character is computed

-45-

g
from data characters using an irreducible polynomial in GF(2).

When the record is read the parity track consisting of 8 bits and

the check character of 8 bit length are treated as syndromes S1

and S„ of the record. Obviously, if E. and E. are the error pat-

terns in tracks i and j respectively, then S. = E. + E. and is

computed as the mod 2 sum of the parity track written and read.

The other syndrome S is computed by dividing the code polynomial

by the generator polynomial using a feedback shift register similar

to CRCSR. S? = [x E. + xJE.] mod g(x) where g(x) is the generator

polynomial. From S, and S~ the unknowns E. and E. can be calculated. r J 12 l j

Ei = tASl + BS2^ mod g(-x^
E. = E. + S,
3 i 1

(Eq.3.1)

(Eq.3.2)

x3 1
where A = -r—r- mod g(x) (Eq. 3.3); B = -z—r- mod g(x) (Eq.3.4)

X +XJ X +XJ

All possible solutions for A and B can be stored in a ROM.

Illustrative example.

, . ,3458 g(xj = 1+x +x +x +x Vertical parity odd.

7 6 5 4 3 2
X X X X X X X

1* 13N12 lr 10 9
X X X X X X

-46-

Write direction

A * i • V f ^ 2 3 4 5 6 7 9 10 13 data polynomial pCx) = x+x +x +x +x +x +x +x +x +x . The

check character is given by Remainder of p(x) divided by g(x)

implemented a feedback shift register characterized by g(x).

x +1
8 5 4 3 .

X +x +x +x +1
13 10 9765432

X +x +x +x +x +x +x +x +x +x
13 10 9 8 5

X +x +x +x +x
8 7 6 4 3 2

x +x +x +x +x +x +x
8 5 4 3,

x +x +x +x +1
7 6 5 2 X +x +x +x +x +1

The check character C_ = 11100111 is now written at the

end of the data characters to form a complete record.

7 6 5 x x

^ K K K K IN i
Error track

76543210 xxxxxxxx

Forward
read
direction

Error track

T> 13 lMf 1(>9X 8
X X X X X X x

Assuming that error was detected in tracks 2 and 4 as a result

of the bits marked with asterisk being inverted (i=2,j=4), the

computed parity track during read is equal to 11100000, S, =

11000011 +- 11100000 = 00100011. The received code polynomial

2 3 4 9 10 13 r(x) = 1+x +x +x +x +x +x . The syndrome S« is computed as

follows:

-47-

V&&N

8 5 4 3 n x +x +x +x +1

x +1
13 10 9 4 3 2 .

x +x +x +x +x +x +1
13 10 9 8 5

x +x +x +x +x
8 5 4 3 2 .

X +x +x +x +x +1
8 5 4 3,

x +x +x +x +1

The coefficient A and B in Eq. 3.1 is computed using the formula

in equations 3.3 and 3.4. In binary A = 01011001 and B = 00010110.

During implementation these are the 8 bit addresses given by the

ROM supplied with track pointers. Error pattern E_ is given by

Eq. 3.1. The partial products and sums modulo g(x) is implemented

by shift registers. The result Ex-ored with S.. gives the error

pattern E .

Sj = 00100011

S = 00000100

A = 01011001

B = 00010110

g(x) = 100111001

00100011

x 01011001

00100011

00100011000

001000110000

+ 00100011000000

00101111001011

00010110

x 00000100

01011000 BS,

AS,

00101111001011

+ 01011000

00101110010011

AS

BS,

AS + BS

where x and + stands for shift and addition mod 2.

-48-

 1010
100111001 I 101110010011

100111001

100101101

100111001

101001 = E2

E. = 00100011 + 00101001 = 00001010
4

When E_ and E. are added to the tracks 2 and 4 of the record
2 4

the correct information is restored. If errors occurred in more

than 2 tracks, this scheme is unable to correct the errors. The

capability to detect uncorrectable error can be extended by adding

additional check characters generated by 9th degree polynomials

similar to the generation of the CRC check character at the end

of the record.

3.3 Single and Double Track Correction Using Optimal Rectangular

Codes

Another code capable of correcting single track error and

double track errors with track pointers is the Optimal Rectangular

code developed by Hong and Patel [17]. They are being used com-

mercially in models 4, 6, 8 of the IBM 3420 series tape unit. The

recording density on these standard y inch 9 track tapes is 6250

bits per inch. The code has a rectangular format of 9 rows and

8 columns. Information is recorded as 8-bit bytes along columns.

There are 7 information bytes in the code word and a check byte

generated from the information byte using an irreducible polynomial

-49-

Q

in GF(2). This is written on the first column of the rectangular

array. Bits in track 0-7 in the array are treated as track bytes.

The 8th track is the vertical parity track. Each bit in this

track is a vertical parity of the upper 8 bits in the column.

Track
Bytes

co Cl C2 S C4 C5 C6 C7
0 \

1 2 3 4 5 6 7

1 1
\

3 4 5 6 7 8

2 2 3
\

5 6 7 8 9

3
3 4 5 N 7 8 9 10

4/ •4
5 6 7 \ 9 10 11

5 5 6 7 8 9 H 11 12
6 6 7 8 9 10 11 H 13
7

7 8 9 10 11 12 13
\
\

Fig. 3.3

Line of symmetry

.th th th
If Z.(j) is the j bit in track i and C. (j) the j bit in i

character for 0 _< i <_ 7 and 0<^j £7, C (j) 0 £ j <_ 7 represents

the check character and C. (j) 0 _< j _< 7, 1 < i < 7, the information

characters. If we associate Z. (j) with the number x = i+j we

observe that the array is symmetrical with respect to x (Fig- 3.3).

This orthogonal symmetry is used to construct the parity check

matrix of the code.

If we recall from the previous chapter Hong and Patel had

developed a general class of maximal codes using matrix H , for

code construction. The ORC code can be represented by an H matrix

(Fig. 3.4) which uses H , for code construction. This belongs

to the shortened version of the maximal code as a is the root of

-50-

VD

LO

"*
M

to

CM

M

O

OOOOOOOrH
OOOOOOrHO
OOOOOrHOO
OOOOr-iOOO
OOOrHOOOO
OOrHOOOOO
OrHOOOOOO
rHOOOOOOO

OOOOOOOrH
O' O Q O O O rH O
OOOOOrHOO
OOOOrHOOO
OOOrHOOOO
OOrHOOOOO
OrHOOOOOO
rHOOOOOOO

rH
8

• t^
• E- *

8
OOOOOOOrH
OOOOOOr-lO
OOOOOrHOO
OOOOrHOOO
OOOrHOOOO
OOrHOOOOO
OrHOOOOOO
rHOOOOOOO

to
rH

8
• VD
• H

vO
8

OOOOOOOrH
OOOOOOrHO
OOOOOrHOO
OOOOrHOOO
OOOrHOOOO
OOi—IOOOOO
OrHOOOOOO
t-HOOOOOOO

CM
rH

8
• LO
• E-

LO
a

OOOOOOOrH
OOOOOOrHO
OOOOOrHOO
OOOOrHOOO
OOOrHOOOO
OOrHOOOOO
OrHOOOOOO
rHOOOOOOO

7-t

a
• H

8
OOOOOOOrH
OOOOOOrHO
OOOOOrHOO
OOOOrHOOO
OOOrHOOOO
OOrHOOOOO
O rH O O O 0>0 O
rHOOOOOOO

o
rH

8
• to
• E-

to *
8

OOOOOOO.rH
OOOOOOrHO
OOOOOi—IOO
OOOOrHOOO
OOOrHOOOO
OOrHOOOOO
Or-IOOOOOO
rHOOOOOOO

8
• CM
• H

CM
8

OOOOOOOrH
OOOOOOrHO
OOOOOrHOO
OOOOrHOOO
OOOrHOOOO
OOrHOOOOO
OrHOOOOOO
rHOOOOOOO

00
8

• E-

rH
8

OOOOOOOrH
OOOOOOrHO
OOOOOrHOO
OOOOrHOOO
OOOrHOOOO
OOrHOOOOO
OrHOOOOOO
rHOOOOOOO

8 • o
• H

rH
8 o
8

to

•H

II

-51-

g
an irreducible non-primitive polynomial in GF(2). The code word

using this H matrix is the concatenation of track bytes and parity

byte [ZXZ?Z Z Z ZXP], Such a code we have seen has single

byte error correcting ability. Hence any error in any single

track can be correctly decoded. Moreover, if we know the location

of the errors we can correct double errors. Due to the orthogonal

symmetry of the code the parity check matrix of Fig. 3.4 can be

modified to represent the codeword in terms of the information

bytes [CnC1C0C„C/1C[.C.C_Pl. From Fig. 3.3 we find that bit Z. (j) = 01234567 l

C.(i) and that the powers of a in H matrix (Fig- 2.4) are associated

with integer x. In the modified parity check matrix H' (Fig. 3.5)

the column that goes with the bit C.(j) will have the lower half

identical to the column of H (Fig. 2.4) associated with bit Z.(i) and

a 1 in the i row as 0 _< j <_ 7 for some i. The parity checking

T
equation becomes H1 [CflC C.C.CXXCJ] =$. The check bytes can

now be computed from the information bytes according to the

equations

7
C = I TXC (Eq.3.5)
P i=l 1

7
P(i) = I C (j) (Eq.3.6)

Eq. 3.5 in polynomial form can be written as

7
C (be) = I xXC (x) mod g(x) (Eq.3.7)
P i=i x

-52-

a,

o

10

c_>

to

CM
C_3

C_>

OOOOOOOrH
OOOOOOi-HO
OOOOOrHOO
OOOOrHOOO
OOOrHOOOO
OOr-lOOOOO
Ot-lOOOOOO
i-IOOOOOOO

OOOOOOOrH
OOOOOOOt-l
OOOOOOOrH
OOOOOOOrH
OOOOOOOrH
OOOOOOOrH
ooooooOrH
OOOOOOORH

r-i

H

a
OOOOOOrHO
OOOOOOrHO
OOOOOOrHO
OOOOOOr-HO
OOOOOOf-HO
OOOOOOrHO
OOOOOOrHO
OOO. OOOt-lO

to
rH

8. VD

vD
a

OOOOOrHOO
OOOOOrHOO
OOOOOt-lOO
OOOOOrHOO
OOOOOrHOO
OOOOOrHOO
OOOOOrHOO
OOOOOrHOO

CM
rH

8. to
• E-

10
a

OOOOrHOOO
OOOOrHOOO
OOOOrHOOO
OOOOrHOOO
OOOOrHOOO
OOOOrHOOO
OOOOt-HOOO
OOOOrHOOO

rH
rH

8. ^
E-

a
OOOrHOOOO
OOOrHOOOO
OOOrHOOOO
OOOrHOOOO
OOOrHOOOO
OOOrHOOOO
OOOrHOOOO
OOOrHOOOO

o
rH

8 to
E- •

to
a

OOrHOOOOO
OOrHOOOOO
OOrHOOOOO
OOrHOOOOO
OOrHOOOOO
OOrHOOOOO
OOrHOOOOO
OOrHOOOOO

8. <*
H

CM •

a
OrHOOOOOO
OrHOOOOOO
OrHOOOOOO
OrHOOOOOO
OrHOOOOOO
OrHOOOOOO
OrHOOOOOO
OrHOOOOOO

00

8. rH
i-

rH

a
rHOOOOOOO
t-lOOOOOOO
rHOOOOOOO
rHOOOOOOO
rHOOOOOOO
rHOOOOOOO
rHOOOOOOO
rHOOOOOOO

 , __ _

8. o
E-<

o
a

to

to

•H

II

-53-

Eq. 3.7 can be implemented by a linear feedback shift register

characterized by g(x) similar to Fig. 3.1a whereas Eq. 3.6 can be

implemented through the usual Ex-Or tree. We are now ready to

see the working of ORC with an illustrative example. The generator

polynomial selected is g(x) = 1+x +x +x +x . This is an 8th
o

degree irreducible self reciprocal polynomial in GF(2) with the

lowest exponent. This property we shall see saves valuable

correction time.
0 12 3 4 5 6 xxxxxxx _

C0 Cl C2/S/
C4/

C5/
C6^C7 8

Read
direction

12 Error track

Fig. 3.6

In Fig. 3.6 the information bytes are the characters C. 1 < i < 7, •

T , • , ^ ^ r s i i i 2 i 3 i 4 i 5 In polynomial form C. (x) = a + a x + ax + ax + ax + ax +

i 6 i 7 i ..,,.„. ^, . th , . , , th
6?" " " "

atx + atx , where a^is the bit in the i character and k track

Using Eq. 3.7 to compute Cn(x) for the information bytes in Fig. 3.6

r> r ^ r ,, 2 3 6 7. 2,n 3 4. 3f 3 4^ 6^ 7. ^ c
n00 = [x(l+x +X +X +X) + X (1+x+x +x) + x (x+x +x +x +x) +

4, 3 6 7. 5,, 3 5 6 7. 6, 2 3^ 5 6 7. ^ X (X +X +X) + X (1 + x+x +x +x +x) + x (x +X +X +X +X J +

7ri 2 3 4., , ,3458 x (1+x +x +x JJ mod. 1+x +x +x +x

-54-

where © stands for mod 2 addition

r , . r 2689 13, , T 3 4 5 8 7
CnCx) = [x+x +x +x +x +x] mod 1+x +x +x +x = x+x

The parity track P is the even parity of the bits in each column

according to Eq. 3.6. The complete codeword is now the concate-

nation of the bytes [CnC.C„C_C .C-C^C^P]. We shall now assume

that an error occurs in track 3 and all the bits in this track

are erased. As the erroneous record is read, each character

is fed to the feedback register in Fig. 3.7a and also the charac-

ter along with its parity bit is passed through 9-way Ex-OR gate

(Fig. 3.7b) to generate the first bit of the syndrome S.. The

feedback shift register after seven shifts contains the syndrome

S„ and the syndrome S1 is stored in a buffer. Mathematically

the syndromes are calculated as follows:

error pattern E = 011111111 = S

.n„,. 2/ 2 3 4 56 7..
error polynomial E(xj = x (x+x +x +x +x +x +x)

A i • -, r •» 26789 13 code polynomial v(xj = x +x +x +x +x +x
- A i • -, r -. 2 4 5 10 13 received polynomial r(x) = x +x +x +x +x

S2 = |r(x) mod g(x)

, 2 3 4 6
= 1+x+x +x +x +x

The content of the feedback register after seven shifts is

01011111. According to the parity check rules of H1 S- = E and

S2 = T
XE or S2 = T

3^ T_1S2 = Sj Tn'h2 = Sj where n is the

exponent of g(x) and j gives the location of the track in error.

Thus if the feedback shift register with content S be shifted

k = n-j times the content matches the error pattern S-. For our

-55-

-*£ ^

~^-—►

1—► ,
Input
C7C6C5C4C3C2C1C0

-*€^1

1 ►"

ij

Output

1

h
i

l2
l

*4

1
l6
l

aJ

(b)

(a)

Fig. 3.7

-56-

example k = 14, n = 17, j = 3. The error magnitude S1 can now be

added to the erroneous track 3 to retrieve the correct information.

The error correction ability of this code can be increased

to two if the location of the tracks in error can be identified.

Parity checking rules for double error correction using the parity

check matrix H' are given by

Sl = el © e2

TV © TJ'e9 if i t j t 8
<;. =
2 i T e1 if j = 8

From the above two equations e. and e„ can be uniquely determined

if i and j are known erroneous tracks.

e = S © e2

8 [I © I0'"1]'1 (Sj © T_1S2) if i t j £
e_ =

S © T-1S2 if j = 8

i-i -1 [I © TJ] is an 8x8 matrix connected as an Ex-Or network for

j-k=l,2,3...7. The implementation scheme is identical to single

track correction. In general, the ORC can be applied to any number

of t tracks involving computation with elements from GF(2 ~).

3.4 Error-correcting Codes for Single Channel Disc Systems

The codes discussed so far were suitable for encoding infor-

mation on magnetic tapes. However, in magnetic disc systems

information between tracks are distinct and there is essentially

-57-

no coordination between them. Basically, therefore, the coding

system must serve a single track file containing long serial

records. As was the case with magnetic tapes burst errors pre-

dominate in high speed disc file. The best known cyclic codes

for single burst correction with simple decoding scheme are the

Fire codes. These codes are generated by polynomials of the form

g(x) = (x -1) p(x) where p(x) is an irreducible polynomial of

degree m and order e and e does not divide c with code length n =

LCM(e,c). The code is capable of correcting single burst of

maximum length b and detecting simultaneously single burst of

maximum length d >_ b provided m >_ b and c >_ d+b-1. The decoding

can easily be accomplished with r stage feedback shift register

characterized by g(x), r being the degree of g(x) using the error

trapping technique. Information encoded on the disc track using

generator polynomial g(x) appears at both input 1 and 2 of Fig.

3.8. After the entire record has been read the feedback shift

register contains the syndrome. If the content of the feedback

shift register is zero the record is error free. However, if the

record includes a burst error the syndrome is non-zero. Infor-

mation is shifted out bit by bit and synchronized with a cyclic

shift of the feedback register till the output of the OR gate is

zero. The rightmost b bits of shift register contain the error

pattern. Gate 2 is opened and Gate 1 is closed and the error is

added to the next b bits coming out of the buffer. If the left-

most r-b stages of the shift register never contain all zero till

-58-

Feedback
Connections

\r v

Gate 1

Input 1 ir
+4> ►

Input 2

4 stage shift register

b stages "►]

Buffer register
n-bit

Gate 2

Corrected
<±)—|Gate 3|—►

Output

Fig. 3.8

-59-

the k information bits are shifted out of the record then an

uncorrectable burst has been detected.

Although the decoder has simple hardware the delay in

shifting records of long length is considerable to make it unsuit-

able for high speed application. To overcome this handicap

Chien [20] has proposed a high speed decoding algorithm, using

the Chinese Remainder Theorem. The decoding circuit requires

additional feedback registers. For example, the Fire code for

37 19 5 2
19-bit burst correction generated by g(x) = (x +1)(x +x +x +1)

would require 19 360 ,,731 shifts for decoding. With high speed

37 9 4 10 3
decoding algorithm g(x) = (x +1) (x +x +1) (x +x +1). It will

require two additional feedback registers of length 9 and 10

9 4 10 3
characterized by x +x +1 and x +x +1. However, 100 percent of

all burst up to 9 bits and 99.6 percent of all burst from 10 to

19 bits can be corrected and the other 0.4 percent detected

within 1060 shifts.

3.5 Error-correcting Schemestor Multi-channel Disc Systems

Recently an error correcting scheme for multi-channel disc

systems having relatively fast access time has been proposed by

Malhotra [18]. The scheme is capable of correcting single errors

in any one track and single errors in two tracks if track pointers

are available. Information is written on the disc in the fol-

lowing format:

■60-

Tracks Data bits

f °
1

Data
Tracks J

2

3

4

5

Check
V6

P
Tracks 8

01

11

02

12

08

18

D
61 D62

D
68

(Check track)

(Parity track)

The 8 data bits along a track are divided to form two clusters

of 4 bits each such that each cluster represents an element in

4
GF(2). Each such element from track 0-8 are combined to form

a codeword according to the parity check matrix.

111111110

1
H =

0 1 2 3 4 5 6 n

proposed by Bossen for b-adjacent bit correction, where a is the

4
primitive element in GF(2). The codeword is constructed as

W = tD0r"D04 Dir--D14 D2r-D24 D31'--D34 D41''-D44 D5r--D54
T

D,....D.. P....P. C....C.1 such that WH =4. The check bits
61 64 1 4 1 4J r

C.....C. can be computed from the data bits using an Ex-OR network

connected according to H and the parity bit through a 7-way Ex-OR

Gate. For single track correction, the parity checking rules are

given by

i = 8 S. = e. 0 < i < 6 S, = 3.
1 l — — 1 l

s2 = V s2 = o

i = 7 Sj = 0

S2 = e.

-61-

sl =

The solution of i for all possible values of S and S„ can be

stored in a 256 word x 4 bit ROM chip such that S.. and S? form

an 8-bit address to correct the error. S1 is added to the faulty

track indicated by the output of the ROM.

For double track correction with available track indicators

i and j the parity checking rules become

ei + e^ i ft j f (Eq.3.8)

e. j=80<i<7
1 J — —

a1e. + •'e. i^ij^8

a e. + e. j=8 0<.i<.6
. X J (Eq.3.9)

„ ae. j=70<i<6
S2 = - -

e. i = 7 j = 8

In all cases e. and e. can be uniquely determined from Sn and S_. i 3 n / 12

The implementation scheme for error in single track is si-

milar to the 2-redundant Hamming type code. If S and S„ com-

puted by the Ex-OR tree as an 8-bit address is nonzero, the magni-

tude of the error is given by the first four bits and the location

of the error is provided by testing the condition S_ + S, = 0.

The basic correcting scheme is shown in Fig. 3.9.

Correction of errors in two track can be illustrated with

an example.

■62-

data bits
P. C.
1 1

Ex-OR tree

256 word 4 bit
ROM

a1S1 + S2

And

And

Check
s1=s2=o

-► Error location address

Fig. 3.9

-63-

Data elements

Track

0

1 (0010)

2

3

4 (1100)

5

6

7

8

Assuming that elements marked with asterisk are altered and the

data elements are read as 0010 and 1100 instead. The hardware

detects error in tracks 1 and 4. Using Eq. 3.8 and Eq. 3.9 for

i = 1, j = 4, we get

(Eq.3.10)

(Eq.3.11)

Sn = en © e. 1 14

S2 = a ej
4 a e,

The syndromes S1 and S? are computed through the Ex-OR tree

as S = 1001, S = 0111.

Solving for e.. and e. from Eq. 2.10 and Eq. 2.11 we get

4
e.. = S„ © a S

e4 = Sj © e±

For our example e, = 0111 © 1000 = 1111

e. = 1001 © 1111 = 0110

When e.. and e. are added mod 2 to the elements in track 1 and 4,

correction is achieved.

-64-

3.6 Error Correction in Photo Digital Storage Systems

The error-correcting scheme used in IBM Photo Digital Storage

System (PDSS) designed by Oldham, Chien, Tang [21] uses the Reed-

Solomon code. These codes can be constructed to correct random

multiple burst errors but require a complicated decoding scheme

which prevents it from being used in many systems.

The photodigital storage system is a photographic system

in which data is recorded on a photographic film chip by an elec-

tron beam. Each bit occupies an area 14p by 16M and is written

sequentially in lines. The film is developed and stored in small

boxes called cells which are stored in file modules. The data

can be read optically with a flying spot scanner. Errors in such

systems generally result from surface contamination of film chips

during recording and development or during subsequent storage

and reading. Consequently, 90 percent of the errors seem to be

isolated single errors or multiple burst errors. A search among

the different burst correcting codes conducted showed that the

Reed-Solomon code [22] over GF (2) with 11 characters of redundancy

was best suited to meet the error control requirements. The code

has a capacity to correct up to 5 character errors and detect up

to 6 in a single memory line and is generated by the following

polynomial:

r i r 58.. , 59.. , 60.. . 61.. , 62., , 0..
g(x) = (x-a)(x-a)(x-a)(x-a) (x-a)(x-a)

(x-a) (x-a) (x-a)(x-a)(x-a)

_ 11 14 10 59 9 6 8 28 7 54
- x +a x +a x +a x +a x +a

6 54 5 28 4 6 3 59 2 14 0
x +a x +a x +a x +a x +a x+a

-65-

where a is a primitive element in GF (2). Incoming data to be re-

corded are broken up into 300 bit lines to which is appended a

12 bit line number, which can be treated as 52 six bit characters

considered to be elements of GF(2). The line is now treated

as a polynomial and encoded using the feedback circuit in Fig. 3.10.

Each line and block in the figure handles six data bits. The re-

mainder in the encoder is appended to the data to form a complete

(378,300) code of length 63 characters and recorded as a line of

memory on the film chip.

The complex decoding scheme has been simplified by using a

hybrid hardware and software technique. Encoding, calculation

of power sums and error detection is done by hardware whereas

the correction is implemented by software using a control processor

on a short time shared basis which can be interrupted to handle

the error correcting routine. When a line is read it is divided

by the factors of the generator polynomial instead of g(x) and

the power sums are individually transmitted to the processor. If

all the power sums are not zero an error has been detected. A

feature of the correcting routine is to assume the number of errors

rather than solve for it. Initially it is assumed that only one

character is in error which requires only two power sums for error

correction. This computation is completed in 0.34 ms less than

the time needed to read one memory line. After trying single-

error correction and rereading several times, two error correction

is attempted. If this fails then three error correction is at-

tempted. The execution time for double and triple error correction
-66-

OP

o

tn/

£ ►"

X
R

on;

X
R

■>-

R >-

SO

-®-^-f
so

> ©

so

■> ©

SO

1
SO

en

SO

**,)—►—§

SO

■4

SO
00

■4

SO
to

t

o
rt

CD

-67-
—0—4-

is 3.5 and 16 ms. The correction of four and five errors is slow,

requiring 25 ms and 37 ms respectively, but is seldom attempted

as 99.5 percent of the time single character correction is

essential.

The scheme has been effectively demonstrated in the IBM

Photo Digital Storage System and it is found that only one in 2.14

million lines contain non-decoded errors.

3.7 Summary

In this chapter we saw the use of error correcting codes in

computer peripheral devices. The three main devices covered were

the magnetic tape drives, magnetic disc drives and photodigital

mass memory. CRC and ORC codes were found applicable to magnetic

tape units. In magnetic disc systems Fire codes with high speed

decoding could be used for single channel. Malhotra and Fisher

(Ref. 18) proposed a practical error correcting scheme for multi-

channel disc systems. Reed-Solomon codes were best suited for

photodigital mass memories and employed both hardware and software

to simplify the decoding procedure.

•68-

CHAPTER 4. ERROR-CORRECTING CODES FOR

COMPUTER ARITHMETIC PROCESSORS

The arithmetic processor is the part of the computer where

all the arithmetic operations, such as complement shift, rotate,

add, subtract, multiply, divide, etc., are done. Any error in

this area may lead to an erroneous result, causing total system

failure if no protective redundancy is provided. As in the memory

and peripheral system, all arithmetic operations are in binary

mode with the difference that the error correcting code used in

arithmetic processors may not preserve its mathematical structure

under them. In the light of this observation the codes discussed

so far are not suitable for computation in processors. The first

major contribution for the development of codes suitable for

arithmetic processors were proposed by Diamond and Brown in the

early sixties. Many of the concepts, however, have been borrowed

from algebraic codes which were developed earlier.

4.1 Nature of Errors in Arithmetic Processors

In the organization of the arithmetic processor some opera-

tions are done on single operand like complement and shift, while

others like subtract and multiply would require two operand.

For purpose of computation, the operands and the operation code

must be specified to the arithmetic processor and the result

checked.

-69-

Operation
Command

Operand B

ft
,►
1

1

w

R w
—;->-

1
Register A

w Operand A ► w

R: Result <KA,B)

The input operand B, the internal operand A and the result R

are each assumed to be in binary digits. The operation code

could be k bits long where k is sufficiently long to accommodate

all the possible operations of an arithmetic processor. If $ is

an odd operation then R may represent the sum A+B modulo m denoted

as IA+BI where m = 2 for two's complement or m=2 -1 for one's 1 'm r

complement arithmetic. Simple arithmetic logic faults may be

caused by E = ±2-*. An error is said to occur whenever the actual

outpur R' = (r' ,r' __...r') differs from the expected value

R = (r ,,r _...r_) due to the error pattern E = fe ,.e _...
^ n-1' n-2 0 r n-1' n-2

en) where e. = r.-r.' for i = 0,1...n-1. For binary output

r.' and r. can be only 0 or 1 and consequently e. can be 0,-1,1.

As the length of the registers in the processor are of finite

length R, R1 and E are considered as elements in the finite ring

of integers modulo m denoted by Z = {0,1,...m-1}. The modular

arithmetic weight of an element N Z is given by

W (N) = min(W(N),W(m-N))

where W(N) is the binary arithmetic weight of the integer N

■70-

expressed in the nonadjacent form given by

n-1
N = I a.r a. - 0,1, or -1

i=0 x x

such" that a.a. + l = 0 for i = 0,1,...n-2. The modular arithmetic

wt corresponds to the Hamming wt. Similarly the modular distance

between N, and N is given by

which plays the same role as the Hamming distance in error control.

All errors of modular wt d in Z is denoted by a set Vfm.d") and m

all errors of not less than equal to d by U(m,d). For example,

V(31,l) = U(31,l) = {1,2,4,8,16,15,23,27,29,30}

V(31,2 = {V (3,5,6,7,9,10,11,12,13,14,17,18,19,20,21,22,24,25,26,28}

U(31,2) = (V(31,l), V(31,2)}

4.2 Checking Arithmetic Operations Using Residue Codes

The class of codes found most suitable for arithmetic pro-

cessors are residue codes. Diminished binary complement arithmetic

is used for most arithmetic codes as it is easy to implement. Each

of the registers are n binary bits in length. The range of numbers

that can be represented -2n~ +1, -2n~ +2...1,0,1,2,...2 -1,

zero has two representations all n 0's and all n l's. The opera-

tions are done with end around carry.

A schematic diagram of the processor and check circuitry is

shown in Fig. 4.1 [23]. The check circuitry is derived to check

add, complement, shift and rotate operations. The processor

-71-

Master Control
and Clock

Check circuitry

 1

Contro1
Signals

Addend

V)

3
PH

Augent

A

Adder

-*- Accumulator

A

-^

+
Residue
Generator

Rotate
shift
logic

V

Residue
Manipulator

*r v

CR

A

>- SRCC

>-

► To
maintain
alarm

V)
3

+J

•p
O

Fig. 4.1

■72-

part in Fig. 4.1 is of.the order of 1000 gates and the check

circuitry is realized by less than 400 gates increasing the hard-

ware cost by 40 percent. Any increase in the size of the processor

results in a proportional increase in the checker of the order

of 30 to 35 percent.
i

The scheme of Fig. 4.1 employes residue checking. If we

consider the operation of complementation of the n-bit accumulator

an integer N in the accumulator it is operated upon under the

control of the master controller to produce (f>(N) = M-N where

M = 2-1. Before this instant of time the quantity |N| which is

the least non-negative integer congruent to N modulo r is gene-

rated by the residue generator and stored in the check register,

r is generally chosen to be 2 -1 for (k = 2,3,4...) so that

modulo r can be accomplished without actual division. Also, r

k n is chosen such that 2 -1 divides 2 -1 as this simplifies the

checking logic. Next the quantity [M-N| is determined and com-

pared with quantity |N| in the check register

|M-N|r = ||M|r - |N|r|r

= |N|r as |M|r = 0

Any disagreement in the comparison initiates an alarm and

interrupts the program.

The arrangement in which the processor operates on A and

the checker operates on |N| can provide only error detection

but no correction.

-73-

4.3 Single Error Correction with AN Code

Representing an integer N by the product AN where A is a

suitable prime integer is known to yield error detection and

correction if A is an odd prime and 2 is a primitive element in

the field of integers mod A, then correction of single errors

is realized if N is constrained to the range

0 < N < [2Ca-1)/2 + 1]/A

This class of codes is called the Brown Peterson code [3]. Each

codeword has a minimum weight 3 and is therefore single error

correcting. Every error in V(M,1) has a unique syndrome in GF(A)

and therefore perfect like the single error correcting Hamming

code.

4.4 Multiple Error-detection and Correction with Mandelbaum

Barrow Code

Mandelbaum and Barrow [3] discussed codes using large dis-

2P_1-1
tance by choosing A = for a suitable prime P. These codes

provide multiple error detection and correction. The range of

these codes is, however, too small for application to computer

arithmetic. Besides, the AN codes like the Brown Peterson code

are questionable from the practical point of view of computer

arithmetic.

•74-

4.5 Biresidue Codes for Single Error Correction

Rao [24] extended the scheme of detecting errors by residue

checking to correcting single errors in the accumulator by using

two residue checkers instead of one. The code is called the Bi-

residue code. An integer N is coded as a 3 tuple denoted by

Q*> |N|A» I
N
IR) where A and B are two relatively prime integers.

The addition of two codewords defined as (N , |N1 L, |N. L) is

equal to (|N..+N2|M, |N +N21 , |N +N? |). The three components

of the code are called the accumulator part, the checker A and

the checker B. The syndrome for a triple (X,Y,Z) with respect

to moduli A and B denoted as S(X,Y,Z) is a pair (S ,S,) where
3. D

S = IX-YL, S, = |.X-ZL. There are three sources of error. If
a ' 'A' b ' 'B

the error is in the accumulator X' = X+e and S(X'YZ) is a pair

(Sa,Sb) where S& = |X'-Y|A, Sb = |X'-Z|A is equal to (|e|A,|e|R).

The error goes undetected if |e|. = |e|R = 0. If the error is

in the checker A, the erroneous codeword is denoted by (X,Y',Z).

Y1 = Y+e and (S ,S.) = (|-e|.,0). Similarly, an error in checker

B results in the syndrome (S ,S.) = (0,|-e|R). If we consider

class of error e such that e.^0, eR^0 then the error in

any component is detected and located. For any single error in

the n-bit accumulator e = ±2J for some j = 0,1,...n-1, there is

a distinct syndrome pair provided n is no greater than the ab

a b
where A = 2 -1, B=2-l are the two residue bases.

Example: a = 23-l = 7, b = 24-l = 15, n = ab=12

-75-

C|2j|7,|2j|15) (|-2J|7,|-2J|15)

0 (1,1) (6.14)

1 (2,2) (5,13)

2 (4,4) (3,11)

3 (1,8) (6,7)

4 (2,1) (5,14)

5 (4,2) (3,13)

6 (1,4) (6,11)

7 (2,8) (5,7)

8 (4,1) (3,14)

9 (1,2) (6,13)

10 (2,4) (5,11)

11 (4,8) (3,7)

The 12-bit accumulator has 22 single errors of magnitude

|2^|j = 0,1,...11. Each of these errors is an element in the

12
error set V(2 -1,1) and is associated with a distinct syndrome

pair. Thus single errors in the accumulator can be corrected.

Since |±2-,L £ 0 and |±2^|,,- ^ 0, the range of the codeword

12
is M = 2 -1. Every operation <f in the accumulator has a corres-

ponding operation <J). and <J>R in the two residue checkers RCA,RCB

respectively. Let us consider the codeword (4051,|4051|_,

J40511) = (4051,5,1). 4051 is the number in the accumulator

and 5,1 are the numbers in the check registers CRA,CRB of RCA and

RCB respectively. The residue checkers are similar to the check

circuitry shown in Fig. 41. In our example, CRA has length 3

and the length of CRB is 4. If we define <J> as complementation

mod M, then QAAT, are complementation mod A and mod B respectively.

-76-

((((4051) = 4096-4051 = 44, ^(5) = 2, $ (1) = 14. The result

of the operation is checked by calculating the syndrome (44,2,14),

Sa - 144-21 = 0, S - |44-14|15 = 0. Thus no error is detected.

3
If we now suppose an error E = 2 occurs in the accumulator, the

syndrome (52,2,14) is given as (|52-2| ,|52-14|) = (1,8). As

both S and S, / 0 we detect an error in the accumulator. Error
a b '

correction can be achieved because the syndrome has 1-1 corres-

3
pondence with the error magnitude +2 . The syndrome decoder is

shown in Fig. 4.2. Ef),E1 ,E_,E_ are outputs denoting the type of

error

En = 1 no error (S = 0, S, = 0)
0 v a ' b '

E = 1 error checker A (S 0 0, S = 0)
1 3-D

E = 1 error checker B (S = 0, S f 0)

E_ = 1 , error in accumulator (S $ 0, S, f 0)

I is the sign indicator

1=0 if E is positive

=1 if E is negative

P. is the error position

P. = 1 if E ' = 21 for i - 0,1,...n-1

= 0 otherwise

In our example a = 1, a = 0, a = 0, b =0, b = 0, b = 0,

b„ = 1, E is positive as SRA and SRB have only 1 nonzero bit. I

is therefore zero. P. = 1 for i = 3 and P. = 0 for i £ 3. The
I l

error pattern is therefore 000000001000. This is subtracted

-77-

From Checker A From Checker;B

SRA

n
SRB

a2 *1 a0

rJ7T
b3b2blb0

k =

T X1

E = (-1)1 I P 21

i=0 X

Pi = aA £= M3] = ui4

1 r
11

p p I
1 0

Fig. 4.2

-78-

^

from the content of the accumulator to obtain the correct re-

sult using l's complement arithmetic.

Incorrect result 52 000000110100

-8 111111110111

000000101011

1

44 000000101100 Correct result

The residue codes are also known as separate codes as the

arithmetic unit and the checkers operate independently in the

sense that faults in any one unit will not normally contaminate

the other. The range of information under error control 0<N<AM

is much larger than 0<N<M for nonseparate codes. Implementation

is further simplified by using l's complement arithmetic and

selecting the moduli checkers as 2 -1 such that x divides n.

4.6 Multiresidue Codes

The Biresidue code was capable of detecting as well as

correcting all single errors in the processor. Two residue

checkers were required for the code. Now if we increase the num-

ber of residue checkers we can correct multiple errors in the

processors through the use of the multiresidue code.

The multiresidue code [25] also falls into the class of

separate code and is represented by a (k+1) tuple as follows

X = [X, X.. , X_ , . . . X, J

where x. ■ |x| is the i check and least non-negative residue
i

of the information x mod m. for l<i<k. The m. are called the
l l

-79-

check bases and often are pairwise relatively prime. The sum of

two codewords X,Y is represented as follows

* + Y = [|x+y|m ,|x1+Xl m, -iv^U
0 1 k

The addition of each component is carried out in (k+1) independent

unit and the arithmetic is independent in the sense that no

carries are transferred from one unit to the next.

I
Checker

Decoder

t ▼
Corrected Output

The error detecting and correcting ability of the multi-

residue code is related to an AN code in*a well specified way.

If we consider an AN code that corrects all the errors E in the

set U(AM,d) where M is the least positive integer whose binary

arithmetic weight is less than d, denoted by M(A,d) and let

A = LCM On-, ,m_. . .m,) then we can form a corresponding multiresidue

-80-

codeword with processor range m_ = AM with m. being the check

bases. There exist two categories of error: 1) errors in the

processor, 2) errors in one or more of the checkers modulo m..

It is assumed that errors in the processor and checker do not occur

simultaneously. Now, if the check bases m. are selected such that

|E| £ 0 for EeU(AM,d) for at least s check bases (S<k) then
i

every error in the processor will result in a unique syndrome

having s non-zero component with 1-1 correspondence. For instance,

the codeword Z and syndrome S(Z) with an error in the processor

are given by Z = [|x+E| , x ,x_...x,] and S(Z) = [S,S2...S,]

where S. = Ix+E-x,I = |E| . An error in checker i results in l ' I'm. ' 'm.
I l

the erroneous codeword Z = Tx.xn... x.+E ,...x, 1 and SfZ) =
1 , i m.' kJ

[0.0... x.+E ...0,01. If t checkVrs are in error there will
l m.

I

be t nonzero components. Errors in (S-l) or fewer checkers are

correctable.

Illustration

We have seen that the biresidue code [N, |N|_,|N|1_] can cor-

rect single errors yp. the processor. The S(N) = (S ,S) are dis-

tinct and nonzero corresponding to all single errors ±2^ in the

processor. This Biresidue code can be shown to have direct cor-

respondence 1-1 with a single error correcting AN code.

A = LCM (7,15) = 105

105M(105,3) = 212-1

•81-

U(212-l,l) = {1,2,4,8,16,32,64,128,256,512,1024,2048,

2047,3071,3583,3838,3967,4031,4063,4079,4087,4091,4093, .

4094}.

Every EeU(AM,d) has a dinstinct syndrome |E|. given by the

syndrome set {1,2,4,8,16,32,64,23,46,92,79,53,52,26,13,59,82,

41,73,89,97,101,103,104}. And there is 1-1 correspondence between

|EJln_ and the syndrome pair [|E|7,|EL_] listed in the following

table.

Error pattern E |E|1Q5 ' |E|7,|E|15

2° 1 (1,1)

21 2 (2,2)

22 4 (4,4)

23 8 (1,8)

24 16 (2,1)

25 32 (4,2)

26 64 (1,4)

27 23 (2,8)

28 46 (4,1)

29 92 (1,2)

210 79 (2,4)

211 53 (4,8)

-2° 104 (6,14)

-21 103 (5,13)

-22 101 (3,11)

-23 97 (6,7)

-24 89 (5,14)

-25 73 (3,13)

-26 41 (6,11)

-27 ' 82 (5,7)
,8 59 (3,14)

-82-

[N, N ?, N
IS*

105N

[44,2,14] 4620

[52,2,14] 4628

[1,8] I4628ll05 - -- 8

Error pattern E lEli05 |E |7,fE

-29 13 (6,13)

-210 26 (5,11)

-211 52 (3,7)

The error control properties of the biresidue code and its

corresponding AN code is as follows:

Codeword

N = 44

E = 8

Syndrome

Any error in any one of the checkers will result in a syn-

drome [|E|_,0] of [0,|E|] having one nonzero component and is

therefore distinguishable and correctable.

Consequently, every multiresidue code capable of correcting

t errors in the processor must be associated with a t error cor-

recting AN code and vice versa. If there exists a t error cor-

recting AN code we can always construct a multiresidue code of the

same error correcting ability with suitable selection of check

bases.

Example of multi-error correcting multiresidue code

We have seen that Mandelbaum Borrow code has multi-error

2B"1-1
correcting property, A = —5 where B is a prime with 2 as a

primitive element of the field of integers mod B. A distance 6

218-1 3
MB code is given by A = —^r— = (3)(7)(73) with range m =

-83-

I Q

2 -1. The code can correct EeU(mn,2). From this we can con-

struct a triresidue code having double error correction ability

in the processor. The range of the processor is equal to m =

18
2 -1 and the check bases are suitably chosen to be m.. ■ 27x7,

2i8-l
m_ = 73x3, m_ ■ 73x3 such that aCM (m-^-jiii-) = A = -yg— and

1 o

for each EeU(2 -1,2) in the processor, the syndrome will have 3

nonzero components which is 1-1 correspondence with residue |E f..

The code can therefore correct any error EeU(mn,2) or any error

in two or fewer checkers.

4.7 Summary

In this chapter we viewed error correcting codes used in

arithmetic processors. The arithmetic codes were developed on

similar lines as algebraic codes. The non-separate AN codes like

the Brown Peterson code and the large distance Mandelbaum Barrow

had single error and multiple error correcting ability but were

undesirable from the practical point of view. However, they were

shown to have a direct correspondence with separate residue codes

which could be implemented easily. The increase in hardware cost

due to the residue checkers was of the order 30-35 percent,

proving more economical than the scheme of Triple Modular Re-

dundancy.

-84-

CHAPTER 5. CONCLUSIONS

The survey covered a variety of error-correcting codes.

Some of the codes were modifications of the existing communication

codes, while others were specifically designed to meet the computer

system requirement. The proofs of the mathematical theorems and

derivations leading to the construction of the codes were replaced

by working and illustrative examples to facilitate understanding.

A general outline of the encoding and decoding scheme for the im-

plementation of the code was presented with emphasis on simplicity,

speed and efficiency. In terms of economics the error-correcting

codes offered a viable alternative to other schemes for improving

computer system reliability. Advances in integrated circuits

or large scale integration (LSI) have accelerated the use of error

coding techniques in digital systems. The survey presents a good

reference for further work in this field.

-85-

REFERENCES

1. Peterson, W. W., and E. J. Weldon, "Error Correcting Codes,"
second edition, M.I.T. Press, Mass., 1972.

2. Lin, Shu, "An Introduction to Error Correcting Codes,"
Prentice-Hall, 1970.

3. Rao, T.R.N., "Error Correcting Codes for Arithmetic Pro-
cessors," Academic Press, 1974.

4. Sellers, Hsiao, Brown, "Error Detecting Logic for Digital
Computers," McGraw-Hill, 1968.

5. Hsiao, M.Y., and J. T. Tou, "Application of Error Correcting
Codes in Computer Reliability Studies," IEEE Transaction on
Reliability, Vol. R-18, No. 3, pp. 108-117, August 1969.

6. Wolf, J. K., M. L. Shooman and R. Boorstyn, "Algebraic Coding
and Digital Redundancy," IEEE Transaction on Reliability,
Vol. R-18, No. 3, pp. 91-107, August 1969.

7. Hsiao, M.Y., "A Class of Optimal Minimum Odd-weight-column
SEC-DED Codes," IBM Journal of Research and Development,
Vol. 14, No. 4, pp. 395-401, July 1970.

8. Hsiao, M.Y., and Bassen, "Double Error-Correcting BCH Code
in Computer Memory Environment," Proceedings of the Mervin
J. Kelly Communication Conference, University of Missouri,
Rolla, Missouri, October 5-7, 1970.

9. Bossen, D.C., "b-Adjacent Error Correction," IBM Journal of
Research and Development, Vol. 14, No. 4, pp. 402-408,
July 1970.

10. Hong, S. J., and A. M. Patel, "A General Class of Maximal
Codes for Computer Application," IEEE Transaction on Compu-
ters, Vol. C-21, No. 12, pp. 1322-1331, December 1972.

11. Hsiao, Bossen, Chein, "Orthogonal Latin Squares," IBM
Journal of Research and Development, Vol. 14, No. 4, pp. 390-
394, July 1970.

12. Brown, D.T., and F. F. Sellers, "Error Correction for IBM
800 bits per inch Magnetic Tape," IBM Journal of Research
and Development, Vol. 14, No. 4, pp. 384-389, July 1970.

13. Swanson, Robert, "Understanding Cyclic Redundancy Codes,"
Computing Designs, Tucson, Arizona, pp. 93-99, November 1975.

-86-

14. Helness, Karl M., "Implementation of a Parallel Cyclic
Redundancy Check Generator," Hewlett-Packard Company, Data
System Division,Cupertino, California, pp. 91-95, March 1975.

15. Pandeya, A., and T. Cassa, "Parallel CRC Lets Many Lines
Use One Circuit," Interdata Incorporated,Oceanport, New
Jersey, pp. 87-91, September 1975.

16. Chien, R. T., "Memory Error Control - Beyond Parity,"
IEEE Spectrum, Vol. 10, No. 7, pp. 17-23, July 1973.

17. Hong, S. J., and A. M. Patel, "Optimal Rectangular Code for
High Density Magnetic Tape," IBM Journal of Research and
Development, No. 6, pp. 579-588, November 1974.

18. Malhotra, V.K., and R. D. Fisher, "A Double Error Correcting
Scheme for Peripheral System," IEEE Transaction on Computers,
Vol. C-25, No. 2, PP. 105-115, February 1976.

19. Patel, A.M., "Shift Register Implementation of b-Adjacent
Codes," Technical Report 00-217 IBM Corporation, Poughkeepsie,
New York, 1970.

20. Chien, R.T., "Burst Error Correcting Codes with High Speed
Decoding," IEEE Transaction on Information Theory, Vol. IT-15,
No. 1, pp. 109-113, January 1969.

21. Oldham, Chien, Tang, "Error Detection and Correction in a
Photo Digital Storage System," IBM Journal of Research and
Development, Vol. 12, No. 6, pp. 422-430, November, 1968.

22. Solomon and I.S. Reed, "Polynomial codes over certain finite
fields," Journal of S.I.A.M., 8, 300 (1960).

23. Rao, R. N., "Error Checking Logic for Arithmetic Type Opera-
tion of a Processor," IEEE Transactions on Computers, Vol.
C-17, No. 9, pp. 845-849, September 1968.

24. Rao, R.N., "Biresidue Error Correcting Codes for Computer
Arithmetic," IEEE Transaction on Computers, Vol. C-19,
No. 5, pp. 398-402, May 1970.

25. Rao, R.N., and Garcia, "Cyclic and Multiresidue Codes for
Arithmetic Operations," IEEE Transaction on Information
Theory, Vol. IT-17, No. 1, pp. 85-91, January 1971.

-87-

VITA

Mr. D. Kapur was born in Calcutta, India, on August 22,

1951, the son of Mr. and Mrs. B. K. Kapur. In June 1974 he

^received his B. Tech (Hons) in Electrical Engineering from

Indian Institute of Technology, Kharagpur, India. Currently he

is working towards an M.S. degree in Computer Science at Lehigh

University in the Department of Electrical Engineering, and

serves as a Teaching Assistant in the Center for Applied

Mathematics at Lehigh University.

-88-

	Lehigh University
	Lehigh Preserve
	1-1-1976

	A survey of error-correcting codes for computer applications.
	Dhriti Kapur
	Recommended Citation

	tmp.1451580486.pdf.EBjPZ

