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ABSTRACT 

The thesis presents an investigative survey of Error-Correct- 

ing Codes suitable for application in computer environment. Error- 

correcting codes have been successfully utilized to improve re- 

liability in transmitting information in communication systems.  In 

recent years the phenomenol increase in information handled by 

digital computers has enhanced the need for computer system relia- 

bility.  In the survey with respect to error-correction the overall 

computer system has been broadly classified into three sections, • 

namely the computer memory system, the computer peripheral system 

and the central processing unit.  Each section is discussed under 

a separate heading. 

Error-correcting codes used in computer memory systems depend 

upon the configuration of memory. For those memories which are 

packaged on single bit per card basis, single error-correcting, 

double error-detecting Hamming type codes, double error-correcting, 

triple error-detecting BCH codes, and one step majority decodable 

codes play a useful role in increasing the reliability of memory. 

Byte error-correcting codes form the basis of correcting errors 

in memories configured as multiple bit per card. A general class 

of maximal codes was developed by Hong and Patel whose structure 

is not restricted to any homogeneous bit per card arrangement and 

is capable of correcting single random byte errors. 

Cyclic codes formed the basis of the error-correcting scheme 
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in magnetic tape and disc drives which are part of the computer 

peripheral system.  Cyclic Redundancy Code CCRC) and the Orthogonal 

Rectangular Code (ORC) were found applicable to magnetic tape units. 

In magnetic disc systems Fire codes with high speed decoding could 

be used for single channel. Recently Malhotra and Fisher have come 

up with a practical error-correcting scheme for multichannel disc 

systems.  Reed-Solomon codes were best suited for photodigital 

mass storage systems.  The decoding scheme employed a hybrid hard- 

ware-software technique to simplify the complexity of decoding the 

multiple character correcting code. v 

In the processing unit of the computer the error-correcting 

codes used are arithmetic codes. The best known among these which 

are suitable for computer arithmetic as well as easily implementable 

are the residue codes. The Biresidue code proposed by Rao involved 

circuit redundancy of the magnitude of 30-35 percent of the main 

processor which is definitely more economical than duplicating 

redundant schemes like Triple Modular Redundancy. 

A desirable feature of the error-correcting codes used in 

computer systems is the fast and simple encoding and decoding pro- 

cedure. To ensure efficient operation the speed of implementation 

of the code must be comparable to the speed of operation of the 

computer system. Most of the codes surveyed in this thesis have 

been found suitable in computer environment with existing trade-off 

between"redundancy and decoding time. 
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CHAPTER 1.  INTRODUCTION 

Error-correcting codes are mathematical codes designed to en- 

code information in such a manner that it can be decoded correct- 

ly at the receiving end in the presence of disturbance in the trans- 

mitting medium. Typical examples of transmission mediums are tele- 

phone lines, high frequency radio links, space communication links 

and magnetic tape units including writing and reading heads for 

storage systems. The codes are constructed in binary digits com- 

patible with information handled in digital computers. Error- 

correcting codes have been used successfully in communication sys- 

tems to improve reliability. The idea has been carried over to 

computer environment where the need for reliability in storing and 

processing information has assumed wide importance with increasing 

demand for more computer power. 

The idea of increasing system reliability through hardware 

was first initiated by Von Neumann.  In his scheme the original 

network was duplicated an odd number of times. If three identical 

copies of an original circuit are made and the output of each cir- 

cuit is taken to a majority voter assumed to be perfect, then this 

scheme can tolerate error in one of the circuits. The introduction 

of extra copies required to improve reliability is called redundancy. 

In particular, the above scheme is known as Triple Modular Redun- 

dancy. This is equivalent to triplicating a binary digit (also 

called encoding) before transmission in a binary symmetric channel 
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and ensuring safety of the information in the presence of single 

error due to disturbance in the transmitting medium or transmitting 

the same digit three times over certain intervals of time.  The fact 

that some form of redundancy either in hardware, binary digits or 

time was needed is fundamental in the concept of system reliability. 

In the field of error-correcting code the rules for encoding 

and decoding information can be specified a parity check matrix. 

For instance, if we desired to transmit 4 information binary digits 

x..x_x„x. we would transmit instead a binary code sequence y■ y_y_y.yvy 

y-y-y.-.  This introduction of redundancy to the information digits 

4 7 is known as encoding. Only 2 out of the 2 possible encoded se- 

quences would be acceptable.  If two encoded output sequences differ 

in at least 3 positions, a single error will always be corrected. 

This is achieved by the following encoding rules, 

y.  = x.   i = 1,2,3,4 

y5 = x2©x3©x4 

y6 = x1©x3©x4 

y? = x2 © x2 © x4 

where © indicates mod 2 addition. The equations can be written 

in terms of y. 

0y1 © ly2 © ly3 + ly4 © ly$ © 066 © 0y? = 0 

ly1 © 0y2 © ly3 © ly4 © 0y5 © ly © 0y? = 0 , 

ly1 © ly2 © 0y3 © ly © 0y5 © 0y6 © ly? = 0 „ 



which can be compactly written as 

0 11110 0 

10 110 10 

110 10 0 1 

It is easy to verify that each of the 16 possible encoded sequences 

is a solution to the above equations. The matrix of 0 and 1 is 

termed the parity check matrix and is usually denoted by the symbol 

i 
H.  It is the choice of this matrix which is important in designing 

Algebraic codes. 

For decoding the output sequence is taken and the syndrome 

s..s9s_ is calculated 

"o 1 1 1 1 0 0 

10 110 10 

110 10 0 1 

If the output sequence differs from a codeword in only one position 

T 
then the vector [s-s^s,] £  0 and will be equal to one of the 

columns of the parity check matrix. Since all columns of the parity 

check matrix are distinct we will be able to identify the position 

T 
.of the error by observing the vector [s.s^s,] .  If an output 
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sequence 1001011 is received the syndrome vector is calculated as 

T 
[111] which indicates that the error was in the 4th position and 

thus we should decode to the codeword 1000011. 

In general a code is represented as (n,k), where k is the 

number of information digits and n is the length of the code se- 

quence.  In the above example we used a (7,4) code. For a more 

detailed exposure to Coding Theory, the reader is referred to 

Peterson [1], Shu Lin [2]. 

Since a digital computer operates at ultra high speeds, the 

encoding and decoding process built in the computer system must be 

fast and simple.. The code constructed should have minimum redun- 

dancy, maximum efficiency, and low cost to be a viable alternative 

in computer system reliability. 

The survey deals with a large number of such codes which have 

been developed to meet specifically the requirements of reliability 

for computer memory systems, peripheral systems and Arithmetic 

processors. Each system is discussed under a separate heading. 
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CHAPTER 2.  ERROR-CORRECTING CODES FOR COMPUTER MEMORY SYSTEMS 

Capacity, access time, data transfer rate and cost/bit are 

basic performance considerations of mass storage devices. The demand 

for more storage capacity with high speed access appears as insa- 

tiable as the demand for more computer power.  Improvement in 

capacity and access time cannot be at the expense of reliability 

because most users are placing their vital records under computer 

control. 

In recent years basic technology has shifted from core memory 

towards monolithic memory and LSI technology decreasing random 

access cycle time from ys to ns range. However, batch fabricated 

or integrated memory elements are not as reliable as cores giving 

rise to permanent stuck type memory faults. 

2.1 Error Correction by Parity Checking 

By successive read/write operation according to flow chart 

(fig. 2.1) odd number of errors are corrected by simple parity code. 

In most events economic considerations will dominate any decision 

to use the parity code versus reworking of components to obtain a 

perfect memory. On the other hand, temporary faults caused by the 

malfunction of the driver, sense amplifier circuits or random 

electromagnetic noise interference, where the errors are not re- 

producible, successive read operation with parity check can correct 

odd errors (fig 2.2). Even number of errors still remain unde- 

tected.  It is here that random-error-correcting codes play an 
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important part in system reliability as compared with other tech- 

niques. 

2.2 Single-error-correcting, Double-error-detecting Code for 

Single Bit Per Card Memory Configuration 

The most widely used error-correcting codes in the computer 

memory environment are the single-error-correcting, double-error- 

detecting (SEC-DED) Hamming code [7] and double-error-correcting, 

triple-error-detecting BCH codes (DED-TED) [8]. These codes are' 

suitable for single bit per card configuration proposed by Allen 

[5]. The memory is organized such that every bit of a code word 

appears in a single card. Errors in the card will therefore appear 

as single errors in the codeword. 

SEC-DED Hamming codes have been used in IBM 7030 and IBM 

System/360 model 85, having 72 bits per word, 64 data bits and 8 
/ 

check bits. These codes are slightly modified from the convention- 

al single-error-correcting, double-error-detecting codes of dis- 

tance 4 used in communication channels. The row of all l's in 

the parity check matrix of the conventional code is not used.  In- 

stead the parity check matrix is constructed such that every column 

is of odd weight and distinct. Since any linear combination of 

three odd weight distinct columns of the parity check matrix is 

independent, i.e. they do not add to all zero, the minimum dis- 

tance of the code becomes >4, satisfying the condition for si- 

multaneous detection of two errors and correction of single errors. 
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The syndrome 

S = eHT (Eq.2.10) 

is implemented using an Ex-OR network [7], The number of inputs 

to each gate and the number of logic levels required are dependent 

on the number of l's in each row of the parity check matrix. The 

code is therefore constructed such that the number of l's in the 

parity check matrix is a minimum.  It is for this reason that the 

overall parity check in the conventional Hamming code is avoided 

in the construction of SEC-DED via odd-weight-column parity check 

matrix, thus improving the speed of encoding and decoding.  If r 

parity check bits are used to match the k data bits, the parity 

check matrix is constructed using the formula 

<r 

I (?) Ik + r (Eq.2.11) 
i=l V1/ 
odd 

where each term stands for the possible combinations of r columns 

of wt i. This code has minimum redundancy as the unshortened code 

requires the same number of check bits as the conventional Hamming 

code. 
<r 

I    (l)    =|2r=2r"1 (Eq.2.12) 

odd # 

The syndrome corresponding to single error matches the particular 

column of the parity check matrix identifying its location. An 
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even number of l's in the syndrome would suggest the existence of 

multiple even error including detection of double errors. Multiple 

odd error would be correctely detected if the syndrome pattern lies 

outside the codes parity check matrix. Otherwise a miscorrection 

would result.  Since the probability of having one bit in error 

is low (of the order of 10 ) the probability of having a large 

number of multiple error is even smaller. 

Illustrative Example 

The (72,64) code used in IBM 7030 and IBM 360 system Model 85 

is the shortened version of (128,120) full length code. The 72 

columns of the parity check matrix are constructed using Eq. 2.11. 

•0 "• I;I • (!) • »(t <*,....» 
The stroke in Eq. 2.13 suggests that 8 columns of wt 5 of the 

Q 

possible (,.) combinations are used. The total number of l's in 

the H matrix is equal to 8+ 3x56+ 8x5=216. The average 

number of l's in each row is equal to 216/8 = 27. This implies 

that if a 3-way ExOR gate is used, the number of logic levels 

required to generate S. is equal to 3. Two versions of the parity 

check matrix of the (72,64) SEC-DED codes are shown in Fig. 2.3 [7] 

and Fig. 2.4 [7]. A simple layout of the encoder and decoder is 

shown in Fig. 2.5. 

The memory is assumed to be a binary symmetric channel and 

errors are statistically independent. The logic circuit is simple, 
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fast and the code has minimum redundancy suitable for computer 

application. 

2.3 Double-error-correcting, Triple-error-detecting Code for 

Single Bit Per Card Memory Configuration 

With a slight increase in the decoding complexity double error 

correction can be done, improving the reliability of the memory. 

The code used is a DEC-TED BCH code. The generator polynomial 

is of the form g(x) = (l+x)g.. (x) 

g;l(x) = LCMCm1(x),m3Cx)) (Eq. 2.14) 

where m.(x) are the minimum polynomial of a , a being a primitive 

element of the Galois field GF(2 ).  The degree of g, (x) is at most 

2m. The minimum distance d ^5. The (1+x) factor in g(x) increases 

the distance of the code by one.  This ensures that every column 

of the parity check matrix generated by X mod g(x) is of odd 

weight.  Odd weight syndromes then correspond to odd number of 

errors and an even weight syndrome tells that the error polynomial 

is of even weight. Also every code word is of even weight. 

Example 

Using the (79,64) DEC-TED BCH code for illustration, the code 

has 64 data bits and 15 check bits and is a shortened cyclic code 

of the full length code (127,112). The polynomial g,(x) has root 

in GF(27) 

3   7 
m. (x) = 1 + x + x 

-15- 



rp, «.*/■•» 2      4      8       16      32    64 The roots of m  (x)   are a,a,a,a,a     ,  a     ,a 

r •>       i 2 3 7 m„(xj  =  l + x + x+x+x 

™        -  , .     3  6  12  24  48  96  65 The roots of m„(xj are a,a,a ,a  , a ,a , a 

g.(x)  =  (1 + x    +x)(l + x + x    +x    +x) 

f1 ^    2 4 5        6 8 9'        14 =  (l + x + x    +x    +x    +x    +x    +x    +x 

Since g(x)  =   (l+x)g1(x) 

ri     .ri 2    4    5    6    8    9    14. =  (1+x)(1+x+x +x +x +x +x +x +x    ) 

3        4        7        8        10        14        15 
= l + x+x+x+x+x      +x     +x 

T 
Each row of H can be generated by a feedback register characterized 

by g(x) (Fig. 2.6) with initial state 100000000000000. The other 

states are as follows: 

00 100000000000000 17 11001100 11 010 0 0 

01 010000000000000 18 01100110 0 110100 

02 001000000000000 19 001100110011010 

03 000100000000000 20 000110011001101 

04 000010000000000 21 100101010110111 

05 000001000 0 00000 22 110100110001010 

06 000000100000000 23 011010011000101 

07 000000010000000 24 101011010110011 

08 000000001000000 25 110011110001000 

09 000000000100000 26 011001111000100 

10 000000000010000 27 001100111100010 

11 0000000000010 00 28 000110011110001 

12 0000 00000000100 29 100101010101001 

13 000000000000010 30 110100110000101 

14 000000000000001 3111 11100000010011 

15 100110011010001 32 111000011011000 

16 110101010111001 33 011100001101100 
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43 0 1 1 0 0 0 1 0 0 0 0 0 1 1 0 74 0 1 0 0 0 10 0  1 0 0 0 0 0 0 

44 0 0 1 1 0 0 0 1 0 0 0 0 0 1 1 75 0 0 10 0 0  10 0 10 0 0 0 0 

45 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 76 0 0 0  10 0 0 10 0  10 0 0 0 

46 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 77 0 0 0 0  10 0 0 1 0 0  1 0 0 0 

47 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 78 0 0 0 0 0 10 0 0 10 0 10 0 

48 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 

49 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 

50 1 0 0 1 1 1 0 1 1 0 1 0 1 0 1 

51 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1 

52 1 1 1 1 0 0 1 0 0 0 0 1 1 0 0 

53 0 1 1 1 1 0 0 1 0 0 0 0 1 1 0 

54 0 0 1 1 1 1 0 0 1 0 0 0 0 1 1 

55 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 

56 0 1 0 0 0 0 1 1 1 1 1 1 0 0 0 

57 0 0 1 0 0 0 0 1 1 1 1 1 1 0 0 

58 0 0 0 1 0 0 0 0 1 1 1 1 1 1 0 

59 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 

60 1 0 0 1 1 1 0 1 1 0 0 1 1 1 0 

61 0 1 0 0 1 1 1 0 1 1 0 0 1 1 1 

62 1 0 1 1 1 1 1 0 1 1 0 0 0 1 0 

63 0 1 0 1 1 1 1 1 0 1 1 0 0 0 1 

64 1 0 1 1 0 1 1 0 0 0 0 1 0 0 1 
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The syndrome bits are computed by Ex-OR tree.  If S = 0 the 

data bits are sent to the CPU.  When parity of S is odd it implies 

single or multiple odd errors.  Single errors are corrected by the 

logic circuit similar to Fig. 2.5. Double error correction is done 

when parity of syndrome bits is even.  The syndrome is loaded into 

the serial linear feedback register (Fig. 2.6) and the codeword in 

an n-bit register.  Both registers are shifted simultaneously 

till the first error bit has shifted into the rightmost bit posi- 

tion.  This is detected when the syndrome pattern matches any of 

possible 78 double error patterns stored in a ROM. 

78 +77 =000000110011011 

78 +76 = 0000010101011 01 

78 +00 =100000010001001 

The leading bit in the n-bit register is inverted. The remaining 

error can be corrected by the single error correcting scheme. 

2.4 Error-correcting Codes for Multiple Bit Per Card Memory 

Configuration 

The error-correcting codes we have seen so far are suitable 

for single bit per card memory configuration.  Increasing speed 

and system efficiency demands have pushed the idea of single bit per 

card to a cluster of bits per card type memory organization. A 

single fault in these systems would affect many bits within a byte. 

Consequently a byte-error-correcting ability is demanded of the 

codes.  There are a number of known classes of error-correcting 
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codes that have this property.  Best among these, suitable for high 

speed implementation, are the redundant residue polynomial code [9], 

It is well known that the parity check matrix of the single- 

error- correcting Hamming code can be constructed with each element 

being a symbol from a finite field GF(2 ). Then any single error 

corresponds to a block of b bits in error. 

2 
As a simple example, if we consider GF(2)[x] mod. x + x + 1, 

the residue classes are {0},{l},{x},{x+l}. They can be represented 

2 
by powers of symbol a where a + a + 1 = 0.  In vector form each 

symbol appears as a binary 2 tuple 

Symbol Vector Form 

0 

1 

a 

a 

0 0 

0 1 

1 0 

1 1 

The companion matrix T of the irreducible polynomial p(x) of degree 

b is a bxb nonsingular matrix described by 

T = 
2  3 

a  a  a . a 

where a is the root of the irreducible polynomial in GF(2 ). Other 

symbols in GF(2 ) can be represented by the matrix 

T = i+1  i+2     i+b 
a    a   ... a 
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The zero and one symbols in GF(2 ) are the bxb zero matrix T 

and the bxb identity matrix T. respectively.  In our example 

T = o PJ: T
i = 1 0 

0 1 
T = 1 1 

0 1 
; T« = 1 o 

l I 

The H matrix for single card correction code with 2-bit per card 

memory consisting of 64 data bits and 8 check bits is shown 

(Fig. 2.7).  Each element is a bxb binary matrix. 

An interesting subclass of these Hamming type codes is 2-re- 

dundant codes [9] having two check symbols and capable of single 

symbol correction in GF (2 ).  They always have the parity check 

matrix of the form 

H = 0 
a  a a 2b-2 a 

1  0 

0  1 

If a is the root of the primitive polynomial in GF(2 ) then all 

columns are distinct and the maximum number of information symbol 

is 2 -1. 

Example 
g 

An  (80,64)  code over GF (2 )  packaged as 8 bit per card memory 

with 64 data bits and two check cards  (16 bits) has the following 

parity check matrix 

1111111110 
i 2       3      4      5      6      7    _       , lactaaaaaOl H 

Each symbol is replaced by its corresponding T matrix to obtain 

the binary H matrix for purposes of implementation. 
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The syndrome for H matrix is computed by the usual Ex-OR tree. 

Since the error pattern now corresponds to some symbol e. e GF(2 ) 

in block i of data bits the syndrome corresponding to this error 

has the value 

e.a 
1 

where S1 and S0 are binary column vectors of length b.  If the 

error occurs in the check symbol, the syndrome is either 

s1 e. s. 0 " 1 l 1 
So 

— 0 or 
S-, 

= 

e. 2 L    J 2 X 

This case can be easily detected by And gates checking either S1 

= all zeros or S_ = all zeros. 

When error is in the information symbols, S1 j£ 0, S_ ^ 0 and 

S = a S. or S + a S =0 where + stands for bit by bit Ex-OR. 

To test the above condition a set of Ex-OR circuits can be set 

up for all possible values of a , i = 1,2,...2 -1.  This gives the 

location of the block in error. The error magnitude e. = S, can 

be added mod 2 to block i for error correction. 

For K information symbols, the decoding circuit requires on 

an average K+2 And gates of b inputs and Kb Ex-OR gates with an 

average of b/2+1 inputs each. 

The 2-redundant codes thus provide a simple means for correct- 

ing single bit error or b-adjacent bit error by treating it as a 

symbol in GF(2 ). The check bit are integral multiples-of b. 
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The redundant bits r = kb where k is an integer. 

2.5 General Class of Maximal Codes 

Hong and Patel [10] proposed a new class of codes whose 

structure does not depend on GF(2 ). The byte is equated to a 

suitable cluster of bits and the check bits r = kb+c where 0<C<b. 

These codes are either perfect or maximal. Hence they are called 

the general class of maximal codes (GMC). 

In general, the identity portion of H matrix looks like 

I; 

b+c 

(k-l)b L matrices 

1  I,  matrix 
b+c 

(Eq.2.15) 

or I 

1 

^ kb I, matrices 
b 

J 
1 I matrix 

c 

(Eq.2.16) 

For the discussion on the code, the form appearing in Eq. 2.15 

will be used.  The non-identity portion of the parity check matrix 
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can be formed by successive iteration of the matrix H , con- 
r,b 

structed as follows: 

0 1    b-1 a a a 

1 I     I 

12    b a a - - - a 
I I    I 

i i+1  i+b-1 a a  . .a • 2r-b-2 b-2 a  ... .a 

r-b where a is a primitive element from GF(2  ). This can be con- 

veniently represented as 

T°  $ 
r-b r-b,b 

T   $ 
r-b r-b,b 

T   $ 
r-b r-b,b 

r-b 

r-b r-b,b 

where T , is the companion matrix of the primitive polynomial in 

r-b GF(2  ) and $ , , is a r-bxb matrix of the form v   J r-b,b 
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:b 

°r-2b,b 
which chops off the rightmost 4-2b columns of the T 

matrix.  I, is a bxb identity matrix and 0 _, , is 
b T-Zbto 

a r-2bxb zero matrix. 

For r >_ 2b the parity check matrix formed as 

H = [Hr^|lr] (Eq.2.17) 

is capable of correcting single byte errors. 

The single byte correcting ability of this code can be proved 

by showing that a distinct syndrome exists for every single error 

pattern. 

T T 
S = vH =  [s1 s2 ... sk] 

S. represents the syndrome byte corresponding to check byte C. 

The codeword consisting of information and check bytes is 

v = B_ B1 ... B  , C, C„ ... C, (C, : special check byte of length 

b+c).  If an error pattern E ^ 0 occurs in the i  information 

byte than   S. = E / 0 

[S. S, ... SJT = [T1 , $ , , ]E ^ 0 L 2 3     kJ    L r-b r-b,bJ 

If an error pattern E ?  0 occurs in the j  check byte 

then S. = E 

and Sx = 0    U j 

All the errors yield distinct syndrome and therefore correctable. 

In case of the parity check matrix given in Eq. 2.17 both the 
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syndromes S- and [S_...S,] £  0 for errors in the information 

section of the codeword. 

For r > 3b the GMC code is described by the matrix 

H = H r,b 
°b>bC2

r-2b-l) 
H 
(r-b),b 

In general for r ^ kb 

H    = 
H 
r,b 

0, 
bx 

H (r-b),b 

0. bx 

0 bx 

H (r-2b),b 

(2b+c),b 

(Eq. 
2.18) 

k-1 

Each partition P. appears to be a single byte correcting code for 

information symbols in that particular section of the codeword as 

they all yield syndromes distinct from other partitions. A single 

error E / 0 in the i  byte of partition P. yields the syndrome 
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Sj = s2 = ... = S^j = 0 

S. = E £  0 

[Sj + r..Sk]  = [T^^-j 
$(r_jb)jbl E £  0 

Since H_,   is the smallest possible partition capable of 

correcting single byte error, there is a limit on the possible 

number of partitions which suggest the maximality of the code. 

The total number of distinct error patterns of this code is given 

by according to Eq. 2.18 

Z = {f (2b-Wk~j)b+C-l)} + Ck-l)(2
b-l) + (2b+C-l) + 1 

3 = 1 

= 2b-l(I1 2ib+C} + 2b+C 
i=l 

= 2b-1 2C { I    2ib} + 2b+C 
i=l 

+c„b „ 2(k-^b-l = 2"  "(2-1) 
2b-l 

+ 2 
b+c 

= 2J 

This suggests that the code is perfect. 

Example 

Given r=5xl + 0=£>B = l,c = 0 

10 0 0 0 

0 10 0 0 

I   = r 0 0 10 0 

0 0 0 10 

0 0 0 0 1 

According to Eq.   2.15 
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The parity check matrix is structured according to Eq. 2.18 

H = 

111111111111111 

100010011010111 

010011010111100 

001001101011110 

000100110101111 

0 0 0 0 0 0 0 

1111111 

10 0 10 11 

0 10 1110 

0 0 10 111 

0 0 0 0 

0 0  0 0 

1 1 1 0 

10  1 1 

Oil 1 

10 0 0 0 

0 10 0 0 

0 0 10 0 

0 0 0 10 

0 0 0 0 1 

(Eq.2.19) 

P1 is constructed using primitive polynomial x + x + 1 in GF(2 ) 

3 3 
P~ is constructed using primitive polynomial x + x + 1 in GF(2 ) 

2 2 P, is constructed using primitive polynomial x + x + 1 in GF(2 ) 

P. is constructed using primitive polynomial x + 1 in GF(2) 

We see that the code length is increased in an iterative 

fashion and is maximal. Also this (31,26) GMC Code provides an 

alternate method for constructing single error correcting Hamming 

code and is perfect.  A shortened version of the code could be 

r-b constructed using a non-primitive irreducible polynomial in GF(2  ) 

In decoders using shift registers this saves decoding time due to 

the smaller exponent of the generating polynomial. 

In the encoding and decoding circuitry each partition is pro- 

cessed in parallel.  Shift register implementation for P.. in our 

example is shown in Fig. 2.8. The check bits of the information 

4 
is available after 2 -1 cyclic shifts of the primitive polynomial 

4 g.(x) = x + x + 1 of the largest partition.  During decoding the 

syndrome is obtained by adding the check bits of the information 
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bobr-bi4 
Incoming bytes 

-©- 

I, register 

-O- 

0- 

-C contribution to S. 

Contribution to 

S2S3S4S5 

Fig. 2.8 

L.F.S.R. for G (x) = x +x+l 
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mod 2 to the computed check bits,  the I, portion of the shift 

register contributes to the syndrome S, which gives the error 

pattern. The linear feedback shift register contributes to the 

syndrome [S„ S_ S. S,.] which provides the location of the error. 

Let v be a codeword given by 

v = 100000000000001000000000000000000001 

The 5 most significant bits are the check bits of the codeword. 

Suppose a single error bn = 1 occurs corresponding to the position 

P. of the codeword.  The received codeword becomes 

v = 0000000000000100000000000000001. 

Bits bf)brb1  are processed by the circuit (Fig. 2.8). The computed 

check bits CL = 1, [CL C C C ] = 1001.  This is added mod 2 to 

the check bits of the codeword to give S = 1,[S2 S S. S-] = 1000. 

The error pattern E = 1. The syndrome [S^ S S4 S-] matches the 

first column of the parity check matrix (Eq. 2.19) giving the 

location. 

The GMC code thus provides us the flexibility of constructing 

a code to suit any byte arrangement of memory. Moreover, the code 

processing can be done in parallel, saving precious decoding time. 

2.6 Majority Logic Decodable Code 

At a time when integrated circuits are being developed rapidly 

and becoming cheaper, a class of codes which are one-step majority- 

logic decodable are becoming likely candidates in competition with 

other codes for computer applications. Although bit is redundancy 
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is higher compared to other codes the design of the decoder is 

simple and fast. A class of such codes derived from orthogonal 

Latin squares has been proposed by Bossen, Hsiao, Chien [11]. The 

orthogonal property provides a unique feature of adding redundancy 

systematically such that the decoder can be built in modules. 

A code of distance d is said to be one step majority decodable 

if it is possible to construct 1-1 check sums orthogonal on every 

digit.. This implies that there must be at least 2t l's in each 

column of the parity check matrix for t-error correction. The 

parity check matrix constructed using Latin squares has exactly 

2t l's in each column corresponding to error in the data bits. The 

2t parity check equations formed with any error in the data bit is 

orthogonal on that particular bit. 

Definition: A Latin square of order m is an m x m square array of 

digits 0,1,...m-1 with each row and column a permutation of the 

digit 0,1,..m-1. Two Latin squares are orthogonal if when one Latin 

square is superimposed upon the other every ordered pair of elements 

appears only once. 

Theorem:  The maximum error correcting ability of the code con- 

structed from Latin square t _< —=— . Also these classes of codes 

2 
have m data bits and 2tm check bits. 

Instead of the proof the construction of the parity check 

matrix is given with an illustrative example. 

Given k = 25      m = 5 

the orthogonal Latin squares for m = 5 are 
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0 1 2 3 4 

1 2 3 4 0 

Ll = 
2 3 4 0 1 

3 4 0 12 

4 0 12 3 

0 1 2 3 4 

3 4 0 12 

L3 = 1 2 3 4 0 

4 0 12 3 

2 3 4 0  1 

0 1 2 3 4 

2 3 4 0 1 

L2 = 4 0 12  3 

1  2 3 4 0 

3 4 0 12 

0 1 2 3 4 

4 0 12 3 

L4 = 
3 4 0 12 

2 3 4 0 1 

1  2 3 4 0 

The parity check matrix is described as 

M, 

H = 

M„ 

M 2t 

"2tm 

I_  is the identity matrix of order 2tm. 

2 
matrices of size m x m . 

M, , M 

Ml = 

2' .M„ are sub- 

1111100000000000000000000 

0000011111000000000000 000 

0000000000111110000000000 

0000000000000001111100000 

0000000000000000000011111 
5 x 25 
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M, 

10 0 0 0 

0 10 0 0 

0 0 10 0 

0 0 0 10 

0 0 0 0 1 

1  0 0 0 Oil  0 0 0 Oil  0 0 0 0,1  0 0 0 0 

0 1 0 0 010  1 0 0 010 1  0 0 01 0  1 0 0 0 
I     I     ' 

0 0 1 0 0|0 0 1 0 0,0 0 1 0 0,0 0 1 0 0 

0 0 0 1 o'o 0 0 1 o'o 0 0 1 O1 0 0 0 1 0 
I       I       I 

0 0 0 0 1"0 0 0 0 1'0 0 0 0 liO 0 0 0 1 
5 x 25 

5+1 Since the maximum error correcting ability of this code t = —*— = 3, 

M , M., M , Mfi are derived from the existing L1, L?, L , L. Latin 

squares, respectively. The submatrix M. derived from L. is given 

by 

V, 

M. . = 

m 

i = 3,4,5,6 

j = 1,2,3,4 

2. 
where V, k = 1,2...m is a row vector of length m derived from L. 

irrP   vv   vv   y      y   y ■% 
vk = [qir--qlmq2r--c»i2mq3i---<i3m V-^J 

If we pick any element y from the Latin square 0 < y < m-1 

then 

qV. = 
1 

0 

y = %. . 

y ^ A. . 

i = 1,2...m 

j = 1,2...m 

.. are the elements of the Latin square. 

The submatrices M  M., M5, M, are shown in Fig. 2.9 [11] 

marked L. , L_, L„, L.  respectively. The single error correcting 

(35,25) code is constructed with submatrices M and M (Fig. 2.9a) 

The Decoder for data bit d„ is shown. The output of the majority 
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voter is 1 if d is correct and 0 of d is in error. The majority- 

voters for other data bits can be constructed similarly. Referring 

to Fig. 2.9 the error correcting ability is increased to two by 

adding section II which includes submatrices M„ and M . Although 

the number of check bits doubles, the construction is very simple. 

The circuitry necessary for correcting the additional error is 

similar to the first and can be added in modular fashion without 

interfering its mechanization which makes this code a suitable 

candidate for implementation with I.C. Fig. 29c corresponds to 

the (55,25) triple error correcting code constructed by adding 

matrices M- and Mfi.  Since there are no more Latin squares, this 

is the maximum error correcting capability of the code. 

2.7 Summary 

In conclusion of this chapter, we have seen some of the error- 

correcting codes used in computer memory environment.  For those 

memory configurations which are packaged on single bit per card 

basis, SEC-DED, DEC-TED and one step majority decodable codes were 

helpful in increasing the reliability of memory. Byte-error- 

correcting codes formed the basis of correcting errors in memories 

with multiple bit per card arrangement.  Two-redundant codes and 

Reed-Solomon codes provided character-error-correcting ability. 

1    Reed-Solomon codes were not discussed in this chapter because its 

slow and complicated decoding scheme was a serious handicap.  In 

the next chapter we shall see that this class of codes is not 
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best suited for photo digital mass memory. Also, we saw the flexi- 

bility of the general class of maximal codes whose construction 

did not depend upon any homogeneous bit arrangement of memory. 

Emphasis was based throughout on a simple and fast implementation 

scheme. 
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CHAPTER 3.  ERROR-CORRECTING CODES FOR COMPUTER 

PERIPHERAL SYSTEM 

The storage medium in peripheral devices is generally a magnetic 

tape unit, drum or disc file or an optical unit.  They form the 

bulk of the extended mass memory in computer environment.  As more 

and more information is being placed in mass storage devices, the 

corresponding improvement in reliability cannot be ignored. Coding 

techniques are playing a vital role in achieving higher reliability 

and saving considerable time consuming corrective action in con- 

ventional read-write schemes. 

3.1 Single-track Correction of Magnetic Tape Unit with Cyclic 

Redundancy Codes 

The IBM/360 system 2400 series uses a standard 1/2" 9 track 

magnetic tape.  Bits are recorded on this tape with a density of 

800 bits/inch along the track.  Spacing between bits in adjacent 

tracks is about 40 times larger than those between bits in the same 

track.  This suggests that a single bit in error along any track 

is likely to affect other bits in the same track rather than those 

of adjacent tracks.  Since bits are so closely packed within a 

track the probability of burst error patterns occurring simul- 

taneously in one or more tracks is predominant. The errors are 

generally caused by foreign dust particles, imperfection in the 

surface coating of the tape and mechanical damage due to handling. 

Information is recorded on the tape as characters of 9 bits 

-38- 
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across the tracks. The 9th bit is a parity on the other 8 bits 

and is written on the 8th track of the tape, also called the 

vertical parity track.  The other 8 bits of the character are 

written from track 0-7. The position of the character along the 

tape is identified by associating it with a unique power of x.  The 

highest power is attached to the first character in the record, 

and the lowest power of x is attached to a special character gene- 

rated from all the previous characters in the track.  It functions 

as a check on the previous characters written in the record.  It 

is also called the cyclic redundancy check or the CRC character. 

The track positions are also associated with powers of x.  In the 

0  8 
9 track tape the powers of x range from x -x . A record of n 

character on the tape looks like an array of 9 x n+1 bits. Each 

bit in the record can therefore be associated with a power of x 

given by the sum of the track and character power of x to which 

the bit belongs. 

n n-1 n-2 -characters x 1 0 

0 

Tracks    x 

n+8 VH7 
x 

"Vertical" 
Parity Track 

"x 

u 

c£. 

C_> 

n+6 7 
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The record is a sequence of n data characters, each 9 bits long 

consisting of 8 data bits and 1 parity bit. We can also represent 

the record as a polynomial 

p(x) = C xn + C  .xn_1 + ... C,x ^v J        n     n-1 1 

where the coefficient C. is a 9 bit character, polynomial 
I 

i 2 .  i 3   i 8 
C.(x) = an + a,x + a„x + a,x ...a0x I 

v '   0   1    2     3     8 

and a, is the bit associated with the i  character and k  track. 

The maximum degree of the polynomial p(x) is n+8.  If we now 

consider a generator polynomial of degree nine, the remainder re- 

sulting from the division of p(x) by g(x) would be a polynomial of 

degree 8 or less which is equivalent to a 9-bit data character 

that can be added at the end of the information data characters 

to represent the CRC.  The addition of the CRC to the data charac- 

ters forms a polynomial codeword which is divisible by the gene- 

rator polynomial g(x).  Any burst error along the track will be 

detected if the code polynomial is not divisible by g(x) after the 

entire record has been read.  If the burst error pattern is con- 

fined to a single track it can be corrected with the aid of the 

parity bits in the vertical parity track also called vertical re- 

dundancy check (VRC).  Sometimes an undetectable error pattern 

divisible by g(x) may result.  To account for this an additional 

check character called longitudinal redundancy check (LRC) is 

written on the record at the end of CRC character.  Every bit in 

the LRC character is an even parity check of all the data bits 

in the corresponding track. The American National Standard 
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Institute has specified g(x) = (l+x)Gj (x) where G (x) = 

i   24678   ,  , .   ,34569  _ .   , .   . 1+x+x +x +x +x +x and g(x) = 1+x +x +x +x +x . This g(x) is a 

symmetric polynomial with (1+x) as a factor. The symmetric pro- 

perty facilitates the read backward mode of operation while the 

(1+x) factor predetermines the parity of the CRC character and 

makes error in the CRC character correctable. Also in systems 

where LRC is used the CRC can be altered by adding an odd wt 

character to it. This ensures that LRC has odd vertical parity, 

a desirable trait for identifying the start of the record in the 

read backward mode of operation. Asymmetric generator polynomials 

have also been specified. These have larger cycle length than 

symmetric polynomials and when used along with the symmetric 

generator polynomial on the data record helps to increase the range 

of checking ability, especially when bits are recorded at a higher 

density. 

Working example 

,'..34569 g(x) = 1+x +x +x +x +x 

The CRC character can be generated by the feedback shift register 

characterized by g(x) CRCSR (Fig. 31.a). 

We will consider here a record of 3 characters written on 

the tape as shown, using even vertical parity for the data. 
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0 

Write direction 

11  10  9 
XXX 

, .   2 3 5 8 9 10 p(x) = X +x +x +x +x +x 

The CRC polynomial C (x) is given by the remainder of [p(x)|g(x)] 

x+1 

9 6 5 4 3, x +x +x +x +x +1 10 9 8 5 3 2 
X +x +x +x +x +x 
10 7 6 5 4 

x +x +x +x +x +x  
9 8 7 6 4 3 2 x +x +x +x +x +x +x +x 
9 6 5 4 3, 

x +x +x +x +x +1  
8 7 5 2 

X +x +X +X +X+1 

In binary CQ = 111001011 

This is written after the last data character on the record. The \ 

tape now looks like Fig.(3.2a) below. 
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x° LRC 

forward 
read 
direction 

Fig. 
3.2a 

1 1 0 0 0 

1 0 0 0 

0 1 0 0 

0 1 0 0 

1 1 0 1 

1 0 1 1 

0 1 1 1 

0 0 1 0 
; 

0 1 1 0 0 
Fig. 
3.2b 

As (l+x) is a factor of g(x) there are even number of l's in the 

record.  Since the data has even vertical parity, the parity of 

C_ must be even.  If an LRC character is written at the end of the 

record Cn(x) is modified by adding mod 2 G.. (x) which is an odd wt 

vector.  C» = 111001011 + 111010111 = 000011100. This ensures 

that the vertical parity of LRC character is odd (Fig. 3.2b) above. 

We shall now assume that all bits in track 3 are read as l's. This 

6 4 3 
corresponds to an error polynomial E(x) = x +x +x and the code 

3 7 9 10 
polynomial v(x) = 1+x+x +x +x +x .  The received polynomial 

r(x) = r(x) + e(x) = 1+x+x +x +x +x +x . The division of v(x) 

by gOO is performed by the feedback shift register of Fig. 3.1a. 

The content of the shift register after division is given by 

x+1 

9 6 5 4 3, 
x +x +x +x +x +1 

10 9 7 6 4  , 
X  +X +X +X +X +X+1 
10 7 6 5 4 

X  +X +X +X +X +x 
9 5 . 

X +x +1 
9 6 5 4 3. X +x +x +x +x +1 

6 4 3 X +x +x = 0001101000 
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As the characters are being read they are checked for even parity. 

If an odd parity results a 1 is entered in the first bit position 

of an error pattern feedback shift register (EPSR) characterized 

by g(x) (Fig. 3.1b) and shifted in synchronism with CRCSR.  In 

our case after 4 shifts the content of ERSR is equal to 110100000. 

Since the content of CRCSR is not all zero we have detected an 

error. The error pattern of burst length 9 is indicated in EPSR. 

The track in which the error occurred can be obtained by simply 

counting the shifts necessary for the content of EPSR to match 

that of CRCSR.  For our example, after 3 shifts the contents of 

CRCSR and EPSR are identical, indicating error in the 3rd track. 

3 
Error correction can now be performed by inverting the bit a, 

for k = 1,3,4. 

3.2 Double-track Correction of Magnetic Tape Unit with Cyclic 

Redundancy Codes 

We have seen how the CRC polynomial code can correct random 

and burst error in single tracks. The idea has now extended to 

double track correction by Malhotra and Fisher [18] to increase 

reliability. Double channel correction is accomplished if a suit- 

able hardware exists which identifies the two tracks in error. 

The format of the data recorded on the tape is slightly modified. 

The length of data characters in a record is limited to 7, and the 
o 

characters 8 bits long are synbols from GF(2 ). The 8th track 

is the parity track.  In this case the check character is computed 
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g 
from data characters using an irreducible polynomial in GF(2 ). 

When the record is read the parity track consisting of 8 bits and 

the check character of 8 bit length are treated as syndromes S1 

and S„ of the record.  Obviously, if E. and E. are the error pat- 

terns in tracks i and j respectively, then S. = E. + E. and is 

computed as the mod 2 sum of the parity track written and read. 

The other syndrome S is computed by dividing the code polynomial 

by the generator polynomial using a feedback shift register similar 

to CRCSR.  S? = [x E. + xJE.] mod g(x) where g(x) is the generator 

polynomial. From S, and S~ the unknowns E. and E. can be calculated. r    J 12 l     j 

Ei = tASl + BS2^ mod g(-x^ 
E. = E. + S, 
3   i   1 

(Eq.3.1) 

(Eq.3.2) 

x3 1 
where A = -r—r-  mod g(x) (Eq. 3.3); B = -z—r- mod g(x) (Eq.3.4) 

X +XJ X +XJ 

All possible solutions for A and B can be stored in a ROM. 

Illustrative example. 

, .       ,3458 g(xj  = 1+x +x +x +x Vertical parity odd. 

7 6 5 4 3 2 
X  X  X  X  X  X  X 

1* 13N12 lr 10 9 
X  X  X  X  X  X 
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A  *   i    • V f  ^     2 3 4 5 6 7 9 10 13 data polynomial pCx) = x+x +x +x +x +x +x +x +x +x .     The 

check character is given by Remainder of p(x) divided by g(x) 

implemented a feedback shift register characterized by g(x). 

x +1 
8 5 4 3 . 

X +x +x +x +1 
13  10 9765432 

X +x +x +x +x +x +x +x +x +x 
13 10 9 8 5 

X +x +x +x +x 
8 7 6 4 3 2 

x +x +x +x +x +x +x 
8 5 4 3, 

x +x +x +x +1  
7 6 5 2 X +x +x +x +x +1 

The check character C_ = 11100111 is now written at the 

end of the data characters to form a complete record. 

7 6 5 x x 

^  K  K  K  K  IN i 
Error track 

76543210 xxxxxxxx 

Forward 
read 
direction 

Error track 

T> 13 lMf 1(>9X 8 
X  X  X  X  X  X  x 

Assuming that error was detected in tracks 2 and 4 as a result 

of the bits marked with asterisk being inverted (i=2,j=4), the 

computed parity track during read is equal to 11100000, S, = 

11000011 +- 11100000 = 00100011. The received code polynomial 

2 3 4 9 10 13 r(x) = 1+x +x +x +x +x +x . The syndrome S« is computed as 

follows: 

-47- 

V&&N 



8 5 4 3 n x +x +x +x +1 

x +1 
13 10 9 4 3 2 . 

x +x +x +x +x +x +1 
13 10 9 8 5 

x +x +x +x +x  
8 5 4 3 2 . 

X +x +x +x +x +1 
8 5 4 3, 

x +x +x +x +1 

The coefficient A and B in Eq. 3.1 is computed using the formula 

in equations 3.3 and 3.4.  In binary A = 01011001 and B = 00010110. 

During implementation these are the 8 bit addresses given by the 

ROM supplied with track pointers.  Error pattern E_ is given by 

Eq. 3.1.  The partial products and sums modulo g(x) is implemented 

by shift registers. The result Ex-ored with S.. gives the error 

pattern E . 

Sj = 00100011 

S = 00000100 

A = 01011001 

B = 00010110 

g(x) = 100111001 

00100011 

x 01011001 

00100011 

00100011000 

001000110000 

+ 00100011000000 

00101111001011 

00010110 

x 00000100 

01011000 BS, 

AS, 

00101111001011 

+ 01011000 

00101110010011 

AS 

BS, 

AS + BS 

where x and + stands for shift and addition mod 2. 
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 1010 
100111001 I 101110010011 

100111001 

100101101 

100111001 

101001  = E2 

E. = 00100011 + 00101001 = 00001010 
4 

When E_ and E. are added to the tracks 2 and 4 of the record 
2     4 

the correct information is restored.  If errors occurred in more 

than 2 tracks, this scheme is unable to correct the errors. The 

capability to detect uncorrectable error can be extended by adding 

additional check characters generated by 9th degree polynomials 

similar to the generation of the CRC check character at the end 

of the record. 

3.3 Single and Double Track Correction Using Optimal Rectangular 

Codes 

Another code capable of correcting single track error and 

double track errors with track pointers is the Optimal Rectangular 

code developed by Hong and Patel [17]. They are being used com- 

mercially in models 4, 6, 8 of the IBM 3420 series tape unit. The 

recording density on these standard y inch 9 track tapes is 6250 

bits per inch.  The code has a rectangular format of 9 rows and 

8 columns.  Information is recorded as 8-bit bytes along columns. 

There are 7 information bytes in the code word and a check byte 

generated from the information byte using an irreducible polynomial 
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Q 

in GF(2 ). This is written on the first column of the rectangular 

array.  Bits in track 0-7 in the array are treated as track bytes. 

The 8th track is the vertical parity track. Each bit in this 

track is a vertical parity of the upper 8 bits in the column. 

Track 
Bytes 

co Cl C2 S C4 C5 C6 C7 
0 \ 

1 2 3 4 5 6 7 

1 1 
\ 

3 4 5 6 7 8 

2 2 3 
\ 

5 6 7 8 9 

3 
3 4 5 N 7 8 9 10 

4/ •4 
5 6 7 \ 9 10 11 

5 5 6 7 8 9 H 11 12 
6 6 7 8 9 10 11 H 13 
7 

7 8 9 10 11 12 13 
\ 
\ 

Fig. 3.3 

Line of symmetry 

.th th th 
If Z.(j) is the j  bit in track i and C. (j) the j  bit in i 

character for 0 _< i <_ 7  and 0<^j £7, C (j) 0 £ j <_ 7  represents 

the check character and C. (j) 0 _< j _< 7, 1 < i < 7, the information 

characters.  If we associate Z. (j) with the number x = i+j we 

observe that the array is symmetrical with respect to x (Fig- 3.3). 

This orthogonal symmetry is used to construct the parity check 

matrix of the code. 

If we recall from the previous chapter Hong and Patel had 

developed a general class of maximal codes using matrix H , for 

code construction.  The ORC code can be represented by an H matrix 

(Fig. 3.4) which uses H ,   for code construction.  This belongs 

to the shortened version of the maximal code as a is the root of 
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g 
an irreducible non-primitive polynomial in GF(2 ). The code word 

using this H matrix is the concatenation of track bytes and parity 

byte [ZXZ?Z Z Z ZXP],  Such a code we have seen has single 

byte error correcting ability. Hence any error in any single 

track can be correctly decoded. Moreover, if we know the location 

of the errors we can correct double errors. Due to the orthogonal 

symmetry of the code the parity check matrix of Fig. 3.4 can be 

modified to represent the codeword in terms of the information 

bytes [CnC1C0C„C/1C[.C.C_Pl.  From Fig. 3.3 we find that bit Z. (j) = 01234567 l 

C.(i) and that the powers of a in H matrix (Fig- 2.4) are associated 

with integer x.  In the modified parity check matrix H' (Fig. 3.5) 

the column that goes with the bit C.(j) will have the lower half 

identical to the column of H (Fig. 2.4) associated with bit Z.(i) and 

a 1 in the i  row as 0 _< j <_ 7  for some i. The parity checking 

T 
equation becomes H1 [CflC C.C.CXXCJ] =$. The check bytes can 

now be computed from the information bytes according to the 

equations 

7 
C = I      TXC (Eq.3.5) 
P i=l    1 

7 
P(i) = I      C (j) (Eq.3.6) 

Eq. 3.5 in polynomial form can be written as 

7 
C (be) = I      xXC (x) mod g(x) (Eq.3.7) 
P    i=i    x 
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Eq. 3.7 can be implemented by a linear feedback shift register 

characterized by g(x) similar to Fig. 3.1a whereas Eq. 3.6 can be 

implemented through the usual Ex-Or tree. We are now ready to 

see the working of ORC with an illustrative example. The generator 

polynomial selected is g(x) = 1+x +x +x +x . This is an 8th 
o 

degree irreducible self reciprocal polynomial in GF(2 ) with the 

lowest exponent.  This property we shall see saves valuable 

correction time. 
0  12  3  4  5  6 xxxxxxx    _ 

C0    Cl    C2/S/
C4/

C5/ 
C6^C7 8 

Read 
direction 

12    Error track 

Fig.   3.6 

In Fig. 3.6 the information bytes are the characters C. 1 < i < 7, • 

T ,    • , ^   ^   r s i   i    i 2   i 3   i 4   i 5 In polynomial form C. (x) = a + a x + ax + ax + ax + ax + 

i 6        i 7 i ..,,.„.     ^,      . th    , . , , th 
6?"     "   " " 

atx    + atx  ,  where a^is  the bit in the i       character and k      track 

Using Eq.   3.7 to compute Cn(x)   for the information bytes in Fig.   3.6 

r>   r ^        r   ,,     2    3    6    7. 2,n 3    4. 3f       3    4^  6^  7.   ^ c
n00   =   [x(l+x +X +X +X )     +  X   (1+x+x +x )     +  x   (x+x +x +x +x )   + 

4,    3    6    7. 5,, 3    5    6    7. 6, 2    3^  5    6    7.   ^ X   (   X +X +X   )   +   X   (1 + x+x +x  +x +x  )   +   x   (x  +X  +X  +X  +X  J   + 

7ri     2    3    4.,        ,       ,3458 x  (1+x +x +x JJ  mod.     1+x +x +x +x 
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where © stands for mod 2 addition 

r   ,  .   r  2689 13,   , T  3 4 5 8    7 
CnCx) = [x+x +x +x +x +x ] mod 1+x +x +x +x = x+x 

The parity track P is the even parity of the bits in each column 

according to Eq. 3.6. The complete codeword is now the concate- 

nation of the bytes [CnC.C„C_C .C-C^C^P]. We shall now assume 

that an error occurs in track 3 and all the bits in this track 

are erased. As the erroneous record is read, each character 

is fed to the feedback register in Fig. 3.7a and also the charac- 

ter along with its parity bit is passed through 9-way Ex-OR gate 

(Fig. 3.7b) to generate the first bit of the syndrome S..  The 

feedback shift register after seven shifts contains the syndrome 

S„ and the syndrome S1 is stored in a buffer. Mathematically 

the syndromes are calculated as follows: 

error pattern E = 011111111 = S 

.n„,.   2/  2 3 4 56 7.. 
error polynomial E(xj = x (x+x +x +x +x +x +x ) 

A i • -, r  •»   26789 13 code polynomial v(xj = x +x +x +x +x +x 
- A       i    • -,     r  -.   2 4 5 10 13 received polynomial r(x) = x +x +x +x +x 

S2 = |r(x) mod g(x) 

,   2 3 4 6 
= 1+x+x +x +x +x 

The content of the feedback register after seven shifts is 

01011111. According to the parity check rules of H1 S- = E and 

S2 = T
XE or S2 = T

3^  T_1S2 = Sj  Tn'h2  = Sj where n is the 

exponent of g(x) and j gives the location of the track in error. 

Thus if the feedback shift register with content S be shifted 

k = n-j times the content matches the error pattern S-.  For our 
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Fig.   3.7 
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example k = 14, n = 17, j = 3. The error magnitude S1 can now be 

added to the erroneous track 3 to retrieve the correct information. 

The error correction ability of this code can be increased 

to two if the location of the tracks in error can be identified. 

Parity checking rules for double error correction using the parity 

check matrix H' are given by 

Sl = el © e2 

TV © TJ'e9     if i t  j t  8 
<;. = 
2    i T e1 if j = 8 

From the above two equations e. and e„ can be uniquely determined 

if i and j are known erroneous tracks. 

e = S © e2 

8 [I © I0'"1]'1 (Sj © T_1S2)   if i t  j £ 
e_ = 

S © T-1S2 if j = 8 

i-i -1 [I © TJ  ]  is an 8x8 matrix connected as an Ex-Or network for 

j-k=l,2,3...7. The implementation scheme is identical to single 

track correction.  In general, the ORC can be applied to any number 

of t tracks involving computation with elements from GF(2 ~ ). 

3.4 Error-correcting Codes for Single Channel Disc Systems 

The codes discussed so far were suitable for encoding infor- 

mation on magnetic tapes.  However, in magnetic disc systems 

information between tracks are distinct and there is essentially 
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no coordination between them.  Basically, therefore, the coding 

system must serve a single track file containing long serial 

records. As was the case with magnetic tapes burst errors pre- 

dominate in high speed disc file. The best known cyclic codes 

for single burst correction with simple decoding scheme are the 

Fire codes. These codes are generated by polynomials of the form 

g(x) = (x -1) p(x) where p(x) is an irreducible polynomial of 

degree m and order e and e does not divide c with code length n = 

LCM(e,c).  The code is capable of correcting single burst of 

maximum length b and detecting simultaneously single burst of 

maximum length d >_ b provided m >_ b and c >_ d+b-1. The decoding 

can easily be accomplished with r stage feedback shift register 

characterized by g(x), r being the degree of g(x) using the error 

trapping technique.  Information encoded on the disc track using 

generator polynomial g(x) appears at both input 1 and 2 of Fig. 

3.8. After the entire record has been read the feedback shift 

register contains the syndrome.  If the content of the feedback 

shift register is zero the record is error free. However, if the 

record includes a burst error the syndrome is non-zero.  Infor- 

mation is shifted out bit by bit and synchronized with a cyclic 

shift of the feedback register till the output of the OR gate is 

zero. The rightmost b bits of shift register contain the error 

pattern.  Gate 2 is opened and Gate 1 is closed and the error is 

added to the next b bits coming out of the buffer.  If the left- 

most r-b stages of the shift register never contain all zero till 
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the k information bits are shifted out of the record then an 

uncorrectable burst has been detected. 

Although the decoder has simple hardware the delay in 

shifting records of long length is considerable to make it unsuit- 

able for high speed application. To overcome this handicap 

Chien [20] has proposed a high speed decoding algorithm, using 

the Chinese Remainder Theorem.  The decoding circuit requires 

additional feedback registers.  For example, the Fire code for 

37    19 5 2 
19-bit burst correction generated by g(x) = (x +1)(x +x +x +1) 

would require 19 360 ,,731 shifts for decoding.  With high speed 

37    9 4    10 3 
decoding algorithm g(x) = (x +1) (x +x +1) (x +x +1).  It will 

require two additional feedback registers of length 9 and 10 

9 4       10 3 
characterized by x +x +1 and x +x +1.  However, 100 percent of 

all burst up to 9 bits and 99.6 percent of all burst from 10 to 

19 bits can be corrected and the other 0.4 percent detected 

within 1060 shifts. 

3.5 Error-correcting Schemestor Multi-channel Disc Systems 

Recently an error correcting scheme for multi-channel disc 

systems having relatively fast access time has been proposed by 

Malhotra [18]. The scheme is capable of correcting single errors 

in any one track and single errors in two tracks if track pointers 

are available.  Information is written on the disc in the fol- 

lowing format: 
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Tracks Data bits 

f  ° 
1 

Data 
Tracks       J 

2 

3 

4 

5 

Check 
V6 

P 
Tracks 8 

01 

11 

02 

12 

08 

18 

D 
61 D62 

D 
68 

(Check track) 

(Parity track) 

The 8 data bits along a track are divided to form two clusters 

of 4 bits each such that each cluster represents an element in 

4 
GF(2 ).  Each such element from track 0-8 are combined to form 

a codeword according to the parity check matrix. 

111111110 

1 
H = 

0  1  2  3  4  5  6 n 

proposed by Bossen for b-adjacent bit correction, where a  is the 

4 
primitive element in GF(2 ). The codeword is constructed as 

W = tD0r"D04 Dir--D14 D2r-D24 D31'--D34 D41''-D44 D5r--D54 
T 

D,....D.. P....P. C....C.1 such that WH =4. The check bits 
61   64 1   4 1   4J r 

C.....C. can be computed from the data bits using an Ex-OR network 

connected according to H and the parity bit through a 7-way Ex-OR 

Gate. For single track correction, the parity checking rules are 

given by 

i = 8 S. = e.    0 < i < 6    S, = 3. 
1   l     —  —      1   l 

s2 = V s2 = o 

i = 7   Sj = 0 

S2 = e. 
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sl = 

The solution of i for all possible values of S and S„ can be 

stored in a 256 word x 4 bit ROM chip such that S.. and S? form 

an 8-bit address to correct the error.  S1 is added to the faulty 

track indicated by the output of the ROM. 

For double track correction with available track indicators 

i and j the parity checking rules become 

ei +  e^ i ft j   f (Eq.3.8) 

e. j=80<i<7 
1 J —     — 

a1e.  +    •'e. i^ij^8 

a e. + e. j=8      0<.i<.6 
.   X J (Eq.3.9) 

„ ae. j=70<i<6 
S2 = -     - 

e. i = 7      j  = 8 

In all cases e. and e. can be uniquely determined from Sn and S_. i     3 n  / 12 

The implementation scheme for error in single track is si- 

milar to the 2-redundant Hamming type code.  If S and S„ com- 

puted by the Ex-OR tree as an 8-bit address is nonzero, the magni- 

tude of the error is given by the first four bits and the location 

of the error is provided by testing the condition S_ +  S, = 0. 

The basic correcting scheme is shown in Fig. 3.9. 

Correction of errors in two track can be illustrated with 

an example. 
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Data elements 

Track 

0 

1      (0010) 

2 

3 

4      (1100) 

5 

6 

7 

8 

Assuming that elements marked with asterisk are altered and the 

data elements are read as 0010 and 1100 instead.  The hardware 

detects error in tracks 1 and 4.  Using Eq. 3.8 and Eq. 3.9 for 

i = 1, j = 4, we get 

(Eq.3.10) 

(Eq.3.11) 

Sn  = en © e. 1     14 

S2 = a ej 
4 a e, 

The syndromes S1 and S? are computed through the Ex-OR tree 

as S = 1001, S = 0111. 

Solving for e.. and e. from Eq. 2.10 and Eq. 2.11 we get 

4 
e.. = S„ © a S 

e4 = Sj © e± 

For our example e, = 0111 © 1000 = 1111 

e. = 1001 © 1111 = 0110 

When e.. and e. are added mod 2 to the elements in track 1 and 4, 

correction is achieved. 
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3.6 Error Correction in Photo Digital Storage Systems 

The error-correcting scheme used in IBM Photo Digital Storage 

System (PDSS) designed by Oldham, Chien, Tang [21] uses the Reed- 

Solomon code. These codes can be constructed to correct random 

multiple burst errors but require a complicated decoding scheme 

which prevents it from being used in many systems. 

The photodigital storage system is a photographic system 

in which data is recorded on a photographic film chip by an elec- 

tron beam.  Each bit occupies an area 14p by 16M and is written 

sequentially in lines. The film is developed and stored in small 

boxes called cells which are stored in file modules. The data 

can be read optically with a flying spot scanner.  Errors in such 

systems generally result from surface contamination of film chips 

during recording and development or during subsequent storage 

and reading. Consequently, 90 percent of the errors seem to be 

isolated single errors or multiple burst errors. A search among 

the different burst correcting codes conducted showed that the 

Reed-Solomon code [22] over GF (2 ) with 11 characters of redundancy 

was best suited to meet the error control requirements. The code 

has a capacity to correct up to 5 character errors and detect up 

to 6 in a single memory line and is generated by the following 

polynomial: 

r  i   r      58.. ,  59.. ,  60.. .      61.. ,  62., ,  0.. 
g(x) = (x-a )(x-a )(x-a )(x-a ) (x-a )(x-a ) 

(x-a) (x-a ) (x-a )(x-a )(x-a ) 

_  11  14 10 59 9 6 8 28 7 54 
- x +a x +a x +a x +a x +a 

6 54 5 28 4 6 3 59 2 14  0 
x +a x +a x +a x +a x +a x+a 
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where a is a primitive element in GF (2 ).  Incoming data to be re- 

corded are broken up into 300 bit lines to which is appended a 

12 bit line number, which can be treated as 52 six bit characters 

considered to be elements of GF(2 ).  The line is now treated 

as a polynomial and encoded using the feedback circuit in Fig. 3.10. 

Each line and block in the figure handles six data bits. The re- 

mainder in the encoder is appended to the data to form a complete 

(378,300) code of length 63 characters and recorded as a line of 

memory on the film chip. 

The complex decoding scheme has been simplified by using a 

hybrid hardware and software technique.  Encoding, calculation 

of power sums and error detection is done by hardware whereas 

the correction is implemented by software using a control processor 

on a short time shared basis which can be interrupted to handle 

the error correcting routine. When a line is read it is divided 

by the factors of the generator polynomial instead of g(x) and 

the power sums are individually transmitted to the processor.  If 

all the power sums are not zero an error has been detected. A 

feature of the correcting routine is to assume the number of errors 

rather than solve for it.  Initially it is assumed that only one 

character is in error which requires only two power sums for error 

correction. This computation is completed in 0.34 ms less than 

the time needed to read one memory line.  After trying single- 

error correction and rereading several times, two error correction 

is attempted.  If this fails then three error correction is at- 

tempted. The execution time for double and triple error correction 
-66- 
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is 3.5 and 16 ms. The correction of four and five errors is slow, 

requiring 25 ms and 37 ms respectively, but is seldom attempted 

as 99.5 percent of the time single character correction is 

essential. 

The scheme has been effectively demonstrated in the IBM 

Photo Digital Storage System and it is found that only one in 2.14 

million lines contain non-decoded errors. 

3.7 Summary 

In this chapter we saw the use of error correcting codes in 

computer peripheral devices.  The three main devices covered were 

the magnetic tape drives, magnetic disc drives and photodigital 

mass memory.  CRC and ORC codes were found applicable to magnetic 

tape units.  In magnetic disc systems Fire codes with high speed 

decoding could be used for single channel. Malhotra and Fisher 

(Ref. 18) proposed a practical error correcting scheme for multi- 

channel disc systems.  Reed-Solomon codes were best suited for 

photodigital mass memories and employed both hardware and software 

to simplify the decoding procedure. 
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CHAPTER 4.  ERROR-CORRECTING CODES FOR 

COMPUTER ARITHMETIC PROCESSORS 

The arithmetic processor is the part of the computer where 

all the arithmetic operations, such as complement shift, rotate, 

add, subtract, multiply, divide, etc., are done. Any error in 

this area may lead to an erroneous result, causing total system 

failure if no protective redundancy is provided. As in the memory 

and peripheral system, all arithmetic operations are in binary 

mode with the difference that the error correcting code used in 

arithmetic processors may not preserve its mathematical structure 

under them.  In the light of this observation the codes discussed 

so far are not suitable for computation in processors. The first 

major contribution for the development of codes suitable for 

arithmetic processors were proposed by Diamond and Brown in the 

early sixties. Many of the concepts, however, have been borrowed 

from algebraic codes which were developed earlier. 

4.1 Nature of Errors in Arithmetic Processors 

In the organization of the arithmetic processor some opera- 

tions are done on single operand like complement and shift, while 

others like subtract and multiply would require two operand. 

For purpose of computation, the operands and the operation code 

must be specified to the arithmetic processor and the result 

checked. 
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R: Result <KA,B) 

The input operand B, the internal operand A and the result R 

are each assumed to be in binary digits. The operation code 

could be k bits long where k is sufficiently long to accommodate 

all the possible operations of an arithmetic processor.  If $ is 

an odd operation then R may represent the sum A+B modulo m denoted 

as IA+BI  where m = 2 for two's complement or m=2 -1 for one's 1   'm r 

complement arithmetic.  Simple arithmetic logic faults may be 

caused by E = ±2-*.  An error is said to occur whenever the actual 

outpur R' = (r'  ,r' __...r' ) differs from the expected value 

R = (r ,,r _...r_) due to the error pattern E = fe ,.e _... 
^ n-1' n-2   0 r n-1' n-2 

en) where e. = r.-r.' for i = 0,1...n-1.  For binary output 

r.' and r. can be only 0 or 1 and consequently e. can be 0,-1,1. 

As the length of the registers in the processor are of finite 

length R, R1 and E are considered as elements in the finite ring 

of integers modulo m denoted by Z = {0,1,...m-1}. The modular 

arithmetic weight of an element N Z is given by 

W (N) = min(W(N),W(m-N)) 

where W(N) is the binary arithmetic weight of the integer N 
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expressed in the nonadjacent form given by 

n-1 
N = I      a.r       a. - 0,1, or -1 

i=0  x x 

such" that a.a. + l = 0 for i = 0,1,...n-2. The modular arithmetic 

wt corresponds to the Hamming wt. Similarly the modular distance 

between N, and N is given by 

which plays the same role as the Hamming distance in error control. 

All errors of modular wt d in Z is denoted by a set Vfm.d") and m 

all errors of not less than equal to d by U(m,d). For example, 

V(31,l) = U(31,l) = {1,2,4,8,16,15,23,27,29,30} 

V(31,2 = {V (3,5,6,7,9,10,11,12,13,14,17,18,19,20,21,22,24,25,26,28} 

U(31,2) = (V(31,l), V(31,2)} 

4.2 Checking Arithmetic Operations Using Residue Codes 

The class of codes found most suitable for arithmetic pro- 

cessors are residue codes. Diminished binary complement arithmetic 

is used for most arithmetic codes as it is easy to implement.  Each 

of the registers are n binary bits in length. The range of numbers 

that can be represented -2n~ +1, -2n~ +2...1,0,1,2,...2  -1, 

zero has two representations all n 0's and all n l's. The opera- 

tions are done with end around carry. 

A schematic diagram of the processor and check circuitry is 

shown in Fig. 4.1 [23]. The check circuitry is derived to check 

add, complement, shift and rotate operations. The processor 

-71- 



Master Control 
and Clock 

Check circuitry 

 1 

Contro1 
Signals 

Addend 

V) 

3 
PH 

Augent 

A 

Adder 

-*- Accumulator 

A 

-^ 

+ 
Residue 
Generator 

Rotate 
shift 
logic  

V 

Residue 
Manipulator 

*r  v 

CR 

A 

>-      SRCC 

>- 

► To 
maintain 
alarm 

V) 
3 

+J 

•p 
O 

Fig.   4.1 

■72- 



part in Fig. 4.1 is of.the order of 1000 gates and the check 

circuitry is realized by less than 400 gates increasing the hard- 

ware cost by 40 percent. Any increase in the size of the processor 

results in a proportional increase in the checker of the order 

of 30 to 35 percent. 
i 

The scheme of Fig. 4.1 employes residue checking.  If we 

consider the operation of complementation of the n-bit accumulator 

an integer N in the accumulator it is operated upon under the 

control of the master controller to produce (f>(N) = M-N where 

M = 2-1.  Before this instant of time the quantity |N|  which is 

the least non-negative integer congruent to N modulo r is gene- 

rated by the residue generator and stored in the check register, 

r is generally chosen to be 2 -1 for (k = 2,3,4...) so that 

modulo r can be accomplished without actual division. Also, r 

k n is chosen such that 2 -1 divides 2 -1 as this simplifies the 

checking logic.  Next the quantity [M-N|  is determined and com- 

pared with quantity |N|  in the check register 

|M-N|r = ||M|r - |N|r|r 

= |N|r as |M|r = 0 

Any disagreement in the comparison initiates an alarm and 

interrupts the program. 

The arrangement in which the processor operates on A and 

the checker operates on |N| can provide only error detection 

but no correction. 
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4.3 Single Error Correction with AN Code 

Representing an integer N by the product AN where A is a 

suitable prime integer is known to yield error detection and 

correction if A is an odd prime and 2 is a primitive element in 

the field of integers mod A, then correction of single errors 

is realized if N is constrained to the range 

0 < N < [2Ca-1)/2 + 1]/A 

This class of codes is called the Brown Peterson code [3]. Each 

codeword has a minimum weight 3 and is therefore single error 

correcting. Every error in V(M,1) has a unique syndrome in GF(A) 

and therefore perfect like the single error correcting Hamming 

code. 

4.4 Multiple Error-detection and Correction with Mandelbaum 

Barrow Code 

Mandelbaum and Barrow [3] discussed codes using large dis- 

2P_1-1 
tance by choosing A =    for a suitable prime P.  These codes 

provide multiple error detection and correction. The range of 

these codes is, however, too small for application to computer 

arithmetic.  Besides, the AN codes like the Brown Peterson code 

are questionable from the practical point of view of computer 

arithmetic. 
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4.5 Biresidue Codes for Single Error Correction 

Rao [24] extended the scheme of detecting errors by residue 

checking to correcting single errors in the accumulator by using 

two residue checkers instead of one.  The code is called the Bi- 

residue code.  An integer N is coded as a 3 tuple denoted by 

Q*>   |N|A» I
N
IR) where A and B are two relatively prime integers. 

The addition of two codewords defined as (N , |N1 L, |N. L) is 

equal to (|N..+N2|M, |N +N21 , |N +N? | ).  The three components 

of the code are called the accumulator part, the checker A and 

the checker B.  The syndrome for a triple (X,Y,Z) with respect 

to moduli A and B denoted as S(X,Y,Z) is a pair (S ,S,) where 
3.  D 

S = IX-YL, S, = |.X-ZL.  There are three sources of error.  If 
a   '   'A' b   '   'B 

the error is in the accumulator X' = X+e and S(X'YZ) is a pair 

(Sa,Sb) where S& = |X'-Y|A, Sb = |X'-Z|A is equal to (|e|A,|e|R). 

The error goes undetected if |e|. = |e|R = 0.  If the error is 

in the checker A, the erroneous codeword is denoted by (X,Y',Z). 

Y1 = Y+e and (S ,S.) = (|-e|.,0).  Similarly, an error in checker 

B results in the syndrome (S ,S.) = (0,|-e|R).  If we consider 

class of error e such that e.^0,  eR^0 then the error in 

any component is detected and located.  For any single error in 

the n-bit accumulator e = ±2J for some j = 0,1,...n-1, there is 

a distinct syndrome pair provided n is no greater than the ab 

a       b 
where A = 2 -1, B=2-l are the two residue bases. 

Example:  a = 23-l = 7, b = 24-l = 15, n = ab=12 
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C|2j|7,|2j|15)     (|-2J|7,|-2J|15) 

0 (1,1) (6.14) 

1 (2,2) (5,13) 

2 (4,4) (3,11) 

3 (1,8) (6,7) 

4 (2,1) (5,14) 

5 (4,2) (3,13) 

6 (1,4) (6,11) 

7 (2,8) (5,7) 

8 (4,1) (3,14) 

9 (1,2) (6,13) 

10 (2,4) (5,11) 

11 (4,8) (3,7) 

The 12-bit accumulator has 22 single errors of magnitude 

|2^|j = 0,1,...11. Each of these errors is an element in the 

12 
error set V(2 -1,1) and is associated with a distinct syndrome 

pair.  Thus single errors in the accumulator can be corrected. 

Since |±2-,L £  0 and |±2^|,,- ^ 0, the range of the codeword 

12 
is M = 2 -1. Every operation <f in the accumulator has a corres- 

ponding operation <J). and <J>R in the two residue checkers RCA,RCB 

respectively.  Let us consider the codeword (4051,|4051|_, 

J40511  ) = (4051,5,1).  4051 is the number in the accumulator 

and 5,1 are the numbers in the check registers CRA,CRB of RCA and 

RCB respectively.  The residue checkers are similar to the check 

circuitry shown in Fig. 41.  In our example, CRA has length 3 

and the length of CRB is 4.  If we define <J> as complementation 

mod M, then QAAT,  are complementation mod A and mod B respectively. 
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((((4051) = 4096-4051 = 44, ^(5) = 2, $ (1) = 14. The result 

of the operation is checked by calculating the syndrome (44,2,14), 

Sa - 144-21  = 0, S - |44-14|15 = 0. Thus no error is detected. 

3 
If we now suppose an error E = 2 occurs in the accumulator, the 

syndrome (52,2,14) is given as (|52-2| ,|52-14| ) = (1,8). As 

both S and S, / 0 we detect an error in the accumulator. Error 
a     b ' 

correction can be achieved because the syndrome has 1-1 corres- 

3 
pondence with the error magnitude +2 . The syndrome decoder is 

shown in Fig. 4.2.  Ef),E1 ,E_,E_ are outputs denoting the type of 

error 

En  = 1 no error        (S = 0, S, = 0) 
0 v a   ' b   ' 

E = 1 error checker A  (S 0 0, S = 0) 
1 3-D 

E = 1  error checker B  (S = 0, S f  0) 

E_ = 1 , error in accumulator (S $  0, S, f  0) 

I is the sign indicator 

1=0       if E is positive 

=1       if E is negative 

P. is the error position 

P. = 1   if E ' = 21   for i - 0,1,...n-1 

= 0   otherwise 

In our example  a = 1, a = 0, a = 0, b =0, b = 0, b = 0, 

b„ = 1, E is positive as SRA and SRB have only 1 nonzero bit.  I 

is therefore zero.  P. = 1 for i = 3 and P. = 0 for i £  3. The 
I l 

error pattern is therefore 000000001000. This is subtracted 
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^ 

from the content of the accumulator to obtain the correct re- 

sult using l's complement arithmetic. 

Incorrect result 52 000000110100 

-8 111111110111 

000000101011 

1 

44 000000101100 Correct result 

The residue codes are also known as separate codes as the 

arithmetic unit and the checkers operate independently in the 

sense that faults in any one unit will not normally contaminate 

the other. The range of information under error control 0<N<AM 

is much larger than 0<N<M for nonseparate codes.  Implementation 

is further simplified by using l's complement arithmetic and 

selecting the moduli checkers as 2 -1 such that x divides n. 

4.6 Multiresidue Codes 

The Biresidue code was capable of detecting as well as 

correcting all single errors in the processor.  Two residue 

checkers were required for the code. Now if we increase the num- 

ber of residue checkers we can correct multiple errors in the 

processors through the use of the multiresidue code. 

The multiresidue code [25] also falls into the class of 

separate code and is represented by a (k+1) tuple as follows 

X = [X, X.. , X_ ,  . . . X, J 

where x. ■ |x|  is the i  check and least non-negative residue 
i 

of the information x mod m. for l<i<k. The m. are called the 
l l 
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check bases and often are pairwise relatively prime. The sum of 

two codewords X,Y is represented as follows 

* + Y = [|x+y|m ,|x1+Xl m, -iv^U 
0       1 k 

The addition of each component is carried out in (k+1) independent 

unit and the arithmetic is independent in the sense that no 

carries are transferred from one unit to the next. 

I 
Checker 

Decoder 

t ▼ 
Corrected Output 

The error detecting and correcting ability of the multi- 

residue code is related to an AN code in*a well specified way. 

If we consider an AN code that corrects all the errors E in the 

set U(AM,d) where M is the least positive integer whose binary 

arithmetic weight is less than d, denoted by M(A,d) and let 

A = LCM On-, ,m_. . .m, ) then we can form a corresponding multiresidue 
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codeword with processor range m_ = AM with m. being the check 

bases. There exist two categories of error:  1) errors in the 

processor, 2) errors in one or more of the checkers modulo m.. 

It is assumed that errors in the processor and checker do not occur 

simultaneously. Now, if the check bases m. are selected such that 

|E|  £ 0  for EeU(AM,d) for at least s check bases (S<k) then 
i 

every error in the processor will result in a unique syndrome 

having s non-zero component with 1-1 correspondence. For instance, 

the codeword Z and syndrome S(Z) with an error in the processor 

are given by Z = [|x+E|  , x ,x_...x, ] and S(Z) = [S,S2...S,] 

where S. = Ix+E-x,I  = |E|  . An error in checker i results in l  '    I'm.   ' 'm. 
I     l 

the erroneous codeword Z = Tx.xn... x.+E  ,...x, 1 and SfZ) = 
1  ,  i m.'   kJ 

[0.0... x.+E  ...0,01.  If t checkVrs are in error there will 
l  m. 

I 

be t nonzero components.  Errors in (S-l) or fewer checkers are 

correctable. 

Illustration 

We have seen that the biresidue code [N, |N|_,|N|1_] can cor- 

rect single errors yp.  the processor. The S(N) = (S ,S ) are dis- 

tinct and nonzero corresponding to all single errors ±2^ in the 

processor.  This Biresidue code can be shown to have direct cor- 

respondence 1-1 with a single error correcting AN code. 

A = LCM (7,15) = 105 

105M(105,3) = 212-1 
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U(212-l,l) = {1,2,4,8,16,32,64,128,256,512,1024,2048, 

2047,3071,3583,3838,3967,4031,4063,4079,4087,4091,4093, . 

4094}. 

Every EeU(AM,d) has a dinstinct syndrome |E|. given by the 

syndrome set {1,2,4,8,16,32,64,23,46,92,79,53,52,26,13,59,82, 

41,73,89,97,101,103,104}. And there is 1-1 correspondence between 

|EJln_ and the syndrome pair [|E|7,|EL_] listed in the following 

table. 

Error pattern E       |E|1Q5   ' |E|7,|E|15 

2° 1 (1,1) 

21 2 (2,2) 

22 4 (4,4) 

23 8 (1,8) 

24 16 (2,1) 

25 32 (4,2) 

26 64 (1,4) 

27 23 (2,8) 

28 46 (4,1) 

29 92 (1,2) 

210 79 (2,4) 

211 53 (4,8) 

-2° 104 (6,14) 

-21 103 (5,13) 

-22 101 (3,11) 

-23 97 (6,7) 

-24 89 (5,14) 

-25 73 (3,13) 

-26 41 (6,11) 

-27    ' 82 (5,7) 
,8 59     (3,14) 
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[N,  N ?, N 
IS* 

105N 

[44,2,14] 4620 

[52,2,14] 4628 

[1,8] I4628ll05 - -- 8 

Error pattern E lEli05 |E |7,fE 

-29 13 (6,13) 

-210 26 (5,11) 

-211 52     (3,7) 

The error control properties of the biresidue code and its 

corresponding AN code is as follows: 

Codeword 

N = 44 

E = 8 

Syndrome 

Any error in any one of the checkers will result in a syn- 

drome [|E|_,0] of [0,|E| ] having one nonzero component and is 

therefore distinguishable and correctable. 

Consequently, every multiresidue code capable of correcting 

t errors in the processor must be associated with a t error cor- 

recting AN code and vice versa.  If there exists a t error cor- 

recting AN code we can always construct a multiresidue code of the 

same error correcting ability with suitable selection of check 

bases. 

Example of multi-error correcting multiresidue code 

We have seen that Mandelbaum Borrow code has multi-error 

2B"1-1 
correcting property, A = —5  where B is a prime with 2 as a 

primitive element of the field of integers mod B.  A distance 6 

218-1     3 
MB code is given by A = —^r— = (3 )(7)(73) with range m = 
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2 -1. The code can correct EeU(mn,2). From this we can con- 

struct a triresidue code having double error correction ability 

in the processor.  The range of the processor is equal to m = 

18 
2 -1 and the check bases are suitably chosen to be m.. ■ 27x7, 

2i8-l 
m_ = 73x3, m_ ■ 73x3 such that aCM (m-^-jiii-) = A = -yg— and 

1 o 

for each EeU(2 -1,2) in the processor, the syndrome will have 3 

nonzero components which is 1-1 correspondence with residue |E f.. 

The code can therefore correct any error EeU(mn,2) or any error 

in two or fewer checkers. 

4.7 Summary 

In this chapter we viewed error correcting codes used in 

arithmetic processors. The arithmetic codes were developed on 

similar lines as algebraic codes.  The non-separate AN codes like 

the Brown Peterson code and the large distance Mandelbaum Barrow 

had single error and multiple error correcting ability but were 

undesirable from the practical point of view. However, they were 

shown to have a direct correspondence with separate residue codes 

which could be implemented easily. The increase in hardware cost 

due to the residue checkers was of the order 30-35 percent, 

proving more economical than the scheme of Triple Modular Re- 

dundancy. 
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CHAPTER 5.  CONCLUSIONS 

The survey covered a variety of error-correcting codes. 

Some of the codes were modifications of the existing communication 

codes, while others were specifically designed to meet the computer 

system requirement. The proofs of the mathematical theorems and 

derivations leading to the construction of the codes were replaced 

by working and illustrative examples to facilitate understanding. 

A general outline of the encoding and decoding scheme for the im- 

plementation of the code was presented with emphasis on simplicity, 

speed and efficiency.  In terms of economics the error-correcting 

codes offered a viable alternative to other schemes for improving 

computer system reliability. Advances in integrated circuits 

or large scale integration (LSI) have accelerated the use of error 

coding techniques in digital systems.  The survey presents a good 

reference for further work in this field. 
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