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ABSTRACT 

An analytical expression for the shear stress field of 

a semi-infinite dislocation wall and the stress contours 

are presented. The first order approximation of the ex- 

pression is identical to the approximate formula previously 

reported by Amelinckx and Li. The expression of the shear 

stress field of a ledged dislocation wall is obtained by 

the superposition of two separated semi-infinite walls. 

The stress contours are illustrated. 

The dilatation field of a ledged dislocation wall is 

analyzed. With the aid of the characteristics of the dila- 

tation contours, an analytical approach to the volume 

change of the dilatation field is presented.  Both approxi- 

mate and accurate expressions for the volume exchange of a 

ledged dislocation wall are given.  Based on these 

analyses., the solute saturation effect around the ledge of 

a dislocation wall is quantitatively estimated. The re- 

sults indicate that the width of the ledge plays a dominant 

role, in solute saturation and that the solute saturation in 

a ledged grain boundary may be higher by 1~2 orders of mag- 

nitude than that of a perfect ledge-free grain boundary. 



I. Introduction 

It is well known that a small angle tilt grain bound- 

ary can be treated as an edge dislocation wall.  Based 

on first order elastic continuum theory, analytical solu- 

tions of the stress fields of an infinite dislocation wall 

were obtained. L-'-J it became evident that because the 

fields of individual dislocations cancel each other, there 

are no long range stress and strain fields for an infinite 

dislocation wall.  Some approximate expressions of the 

stress fields at a large distance for a finite and a semi- 

infinite dislocation wall have been reviewed by Li.L J 

The interaction and saturation of solutes with an infinite 

dislocation wall have been discussed by Webb. L-'J These 

fundamental studies were conducted in order to provide a 

better understanding of the mechanical and chemical be- 

havior of the grain boundary. 

Actual grain boundaries, however, are seldom 

straight. Often many additional line defects are present, 

such as, grain boundary dislocations and grain boundary 

ledges. The modes of line defects of grain boundaries have 

been described and summarized by Balluffi.L J Direct ex- 

perimental observations of grain boundary ledges via TEM 

have been reported by several authors.L->J it is expected 

that the formation of ledges in a grain boundary, i.e., a 

dislocation wall, will distort the stress and strain fields 



of the dislocation wall, especially in the region around 

the ledge. The greater the ledge width, the stronger the 

distortion. In view of the fact that a large number of 

ledges are often present along a grain boundary (e.g., a 

density of 10 ~ 10^ (number/cm) in purified iron),L J the 

mechanical and chemical behavior of a grain boundary with 

a high density of ledges might be quite different from 

those of a grain boundary without ledges. For example, 

the energy of the grain boundary and the saturation limi- 

tation of solute atoms may correspondingly increase if 

more ledges are present. From this point of view, a real 

grain boundary may no longer be considered as a straight 

dislocation wall, but as a wall with ledges. Thus, it is 

essential to provide fundamental study concerning a dis- 

location wall with ledges. The objectives of the present 

work includei 

(1) the analysis of the shear stress field of a ledged 

dislocation wall, based on a detailed analysis of the 

shear stress field of a semi-infinite dislocation wall, 

and, 

(2) the study of the characteristics of the dilatation 

fields, volume change, and solute saturation of a disloca- 

tion wall with ledges, based on both analytical and numer- 

ical approaches. 



II. The shear stress field of a ledged dislocation wall 

1. The shear stress field of a semi-infinite dis- 
location wall 

Because a ledged dislocation wall can be con- 

sidered as a superimposition of two semi-infinite walls, a 

study of a semi-infinite dislocation wall can be useful. 

The stress fields of a semi-infinite wall can be expressed 

as 2      2 
\i*        »    yn(3xc-yn*) 

0*„       =   — ' *J o O    o \ -w 
XX and-v)  n=0  (x2-yn

2)2 

^ 2TT(1-V)  n=0     (x2+y V n 
^b «>        y 

°zz = -    ;   ,  E W (3) zz 2TT(1-V)  n=0 x^+y * 
n 

nb °°    x(x2+y 2) 

xy      -"2TT(1-V)  n=0  (x2+yn  ) 

where p, is the shear modulus 

v is the Poisson* s ratio 

y=y +nh, h is the spacing between two neighboring 
dislocations 

b is the Burger's vector. 

Apparently, the summation of Eq (l) ~ (3) is di- 

vergent. On the other hand, as shown in Eq (4), the sum- 

mation for shear stress c  is convergent. A general xy 

solution of this summation is considered to be diffi- 



cultL'JL11J and will be discussed in detail in the latter 

part of this paper. However, in some simple cases, when y 

takes some special values of mh, or (■* + m)h, (m being an 

integer), Eq (4) can be simplified and expressed as 

follows 1 

For y=0, i.e., along the abscissa, 

^b   * x[x2-(nh)2] 
OYV(x,0) =  -  E —5 5-5 
xy      2TT(1-V) n=0 [xz+(nh)2]2 

H« 

2TT(1-V) 2x' 

TT 

2h' 
2 TTX 

csch — 

(5) 

For y = mh   m = ±1, ±2, . . . 

o\,,,(x,mh) = 

2       2 pb   «   x -(mh+nh) 
_^_ £ ——————— 

'*r '   2TT(1-V) n=0 [x2-(mh+nh)2]2 

ubx  m-l  x
2-(nh)2 

= 0xyU'O) ' TTT A ...2,^^2,2 
2TT(1-V) n=0 [x*+(nh)*]' 

(6) 

Because the second term of this expression is only a finite 

summation, the shear stress field can be computed pre- 

cisely. 

Similarly, if y=^ and y=(i+m)h, m = ±1, ±2, . . . 

a {«.§) = 
ibx 00  x2- (§+nh)2 

2TT(1-V) n=0 [xN-(4j+nh)Z] 

pbx  ["  TT     2 TTX 
  - — sech — 
2TT(1-V) I     2h      h_ 

(7) 

(8) 



xy ["■M4--*M)-i£r£ 
!- (nh-^h) 

2TT(1-V)   n=0    xZ+fnh+|h\2 2 (9) 

In order to obtain a general solution of Eq (4), a 

trigamma function, *i"(z), was first introduced, defined 

d       d »   1 
^•(z) =  4>(z)=—o log r (z) = E  

dz      dz* n=0 (n+z)* 
(10) 

where z is a complex argument and n is an integer. 

Eq (4) can then be expressed as 

axy(x,y)   = 
ubx        «»       x2-(y+nh)2 

-pbx       » 

2TT(1-V)  n=0   [x2+(y+nh)2]2 

1 1 

2TT(1-V)  n=0 [(nh+y)+xip      [[(nh+y)-xiT 

2TT(1-V) \ 2hV L    \h      h / 

y     x 
+ *»    | i| 

h      h 

By setting z = % + *d and z = ^ - |i  , 

-pbx       l 
dv„(x,y)   = —■ ■ g [>(z)  + <Mz))] 'xy1 

since 

2TT(1-V)   2JT 

4>(z)   = i> (z) 
[9] 

(11) 

(12) 

(13) 

dz 
.d_ 
dz *• (i) = £ *(i) = 4- JUT = £ *<*> = *■ (*) 

we have 

(14) 

<Kz)   +   <|/'(z)   = ^ (z)  + IJIzT = 2Re(^'(z)]     , 



and Eq (11) becomes 

axy(lt'y) =2J&IRe[»'W] <«> 

Equation (15) is the general expression for the shear 

stress field of a semi-infinite dislocation wall. Here a 

special function, ^'(z), the trigamma function in complex 

arguments, is involved.  Because the values of trigamma 

function ^'(z) in complex arguments have not been pub- 

lished, some data of Re[i/;'(z)] and Im [I|J'(Z)] are computed 

and tabulated in Table 7 in the appendix.  On the other 

hand, ^'(z) can be expanded in the form of the asymptomic 

formula and the recurrence formula. 

The asymptomic formula of i^'(z) isiL"J 

ll- (-l)1**1*. 
*» (z) ~" + — +  E  pfr+n (16) 

z   2z  k=l  z^K x 

1,1,1         1    ,     1 1 
z       2z       6z3    30z5         42z7 30 z9 

+  •• • (17) 

(z —> oo , |arg z |< TT) 

where B^ denotes the Bernoulli number. 

The recurrence formula of *'(z) is given byL"J 

m   - 
</"(z) = ^'(z+m) + £ T^TT m = 1, 2, 3 • • .  (18) 

n=l -+n"1 

More detailed discussion about trigamma function <J"(z) and 

its asymptomic and recurrence formula will be found in the 



appendix. By substituting Eq (17) and Eq (18) for Eq (15), 

the explicit expressions for the shear stress field of a 

semi-infinite dislocation wall are obtained ast 

-nbx  1   /l   1    1    1       \ 
ov(x,y) 5 Re - + —^ + —* ? + . . . (19) 
xy      2TT(1-V) h2  \z  2z2  6z3  30z5      / 

-pbx  1   [/ 1      1 x 
o* (x,y) 5 Re (   +  * + . . .) 
xy        2TT(1-V) h      \ R+m   2f7.+m^        / . *z+m  2(z+m) 

(20) 

m = 1, 2, 3» • • • 

\n=l (z+n-1)^/ 

For a relatively large value of |z|, Eq (19) provides a 

good approximation and can be used for computing the 

values of o\,,_. Note that Eq (19) is not valid when xy 

|z| < 1 and converges very slowly when |z| ~ 1.  In these 

cases, an appropriate value of positive integer m can be 

selected to make |z+m| relatively large, and the values of 

o*-_,, can be computed using Eq (20). xy 

Equation (19) and Eq (20) are more useful than Eq (4) 

for computing the shear stress of a semi-infinite wall be- 

cause of rapid convergence. Further analysis of the devi- 

ation of these expressions will be discussed in the 

appendix. 

Some years ago, Amelinckx L J and LiL1<JJ derived a 

formula for the shear stress field of a semi-infinite dis- 

location wall which is valid only for the region far from 

8 



the origin, i.e., for large |z| value. Their formula is 

as followsi 
-lib*      y -  _ __._„_ >    _ (21) 

xy  2tr(l-v)  h(x2+y2) 

It is interesting to note that Eq (21) is identical to the 

first term of Eq (18), that is 

-^bx    1   /l\ 

°xy ~  2TT(1-V) ' h2  W 

2TT( 

ibx  1    l"h(y-xi)j 
l^v)  h2 e |_ y2+x2 J 

-ubx    y 
= *—*- (22) 

2IT(1-V) hix^+y^) 

Based on Eq (15), Eq (19) • and Eq (20), the contour 

of the shear stress field of a semi-infinite dislocation 

wall is computed and plotted in Figure 1.  A part of the 

data for the stress field is tabulated in Table 8 in the 

appendix.  It is seen that the o*  field in the upper half xy 

plane where no dislocation exists is similar to that of a 

single dislocation,L1J but has a greater strength. The 

a„„ field of the lower half region containing the disloca- 
y 

tion wall is similar to that of an infinite wall.L J At a 

large distance from the origin, the contour lines tend to 

straighten out, in agreement with the approximate solution 

of Eq (21) given by Li.  In fact, for the contours of 

o"  - constant, Eq (21) can be written as 



-ubx     y      -|ibx  1 

2TT(1-V) h(x2+y2)  2TT(1-V)  2 
a  = g-—g- =  (- sin 2e) = const. 

Thus, when 0 is constant, it indicates that the con- 

tours are straight line at a large distance from the 

origin. 

2.  The shear stress field of a ledged 
f   dislocation wall. 

Figure 2 shows a ledged dislocation wall which 

consists of two semi-infinite dislocation walls I and II. 

The shear stress of this ledged wall can be expressed as 

the sum of the two semi-infinite walls, 

*xy = Ky>l + f'xAl (23) 

If another semi-infinite dislocation wall, III, 

denoted by the dashed lines in Figure 2, is introduced, 

Eq (23) becomes 

*xy = <*xy>I + <*xy>III + (axy}II " ^XAH   (24) 

Here, wall I and wall II constitute an infinite wall, 

i.e., 

ubx      TT    cosh 
(a    )T + (c    >. 

2TT(X+6) cos M-i 
Wl       loxy'lII  - 2Tr(l-v)'h2'[sinh2 ^1      + 8inT^ 2 

.   .   .   (25) 

10 



where E is the half width of the ledge. Combining Eq (25), 

Eq (15), and Eq (24) yields 

/ 

V bx 
xy  2n(l-v) h2 

A osh 2nix+£l cos 2gZ _ -g 
[sinh2 TrLx±£i + s.n2 Tgr j 

+ Re - Re (S + ^ (26) 

Equation (26) is the expression for the shear 

stress field of a dislocation wall with a ledge of width 

2f. Figure 3 shows the shear stress contours of such a 

ledged dislocation wall with ledge width 2c equal to h. 

III. Dilatation field and volume change around 
a ledge in a dislocation wall 

1.  Dilatation field and volume change of an 
infinite dislocation wall 

The dilatation field of an infinite dislocation 

wall can be expressed as the sum of the dilatation fields 

of the individual dislocations L-U 

'7) 
00 

=  2 

inf 

b(l-2v)(-.yn) 

2TT(1-V)(X
2

+V
2
) 

b(l-2v)  IT cos ^ ,   sin ^ 

2TT(1-V)  h sin2M+sinh2:22£ 
h h 

(27) 

The volume change of this dilatation field per 

11 



unit area of the wall was set forth by WebbL^J as followsi 

<£*V)inf ^'o'-'o^f ****** 

-b(l-2v) w 0#79 -b(l-2y) 
8(l-v)        2n(l-v) 

(28) 

2.     Dilatation field of a lodged dislocation wall 

Similar to the discussion of the shear stress 

field,  the dilatation field of a ledged dislocation wall, 

as shown in Figure 2,  can be expressed as 

(f)x ♦(flnx ♦®n - (f) III 

= b(l-2v) 

2TT(1-V) 

[TT      S 

h si 

"; ( 5^_ 
n=o \(x-e)2+y 

8in(f)   . co.m 

in2 m +sinh2^2: 

(x+er+y ^). 

b(l-2v) 

2TT(1-V) 

TT !inf • oos- 

h Sin 2/TQ? (f) +Sinh 

HZ 
h 

2Tr(x+g) 

oo 

+    2 
n=0 (x2+e2+y2)2-(26x)2 

(29) 

To find an explicit expression for the second 

term in Eq (29)   is difficult.    However,  this summation 

12 



converges rapidly because its denominator is 3 orders of 

magnitude higher than its numerator and can be computed 

numerically by taking a finite number of terms (e.g., 

n=100). Plots of dilatation contours for ledged dislo- 

cation walls with the width e equal to 0.25h, 0.5h, and 

l.Oh, are illustrated in Figures k,   5>  and 6, respec- 

tively. 

3. Characteristics of zero lines of the dilatation 
field of a ledged dislocation wall 

Figure 7 shows the zero dilatation lines of an 

infinite dislocation wall. Figure 8 shows the computed 

zero dilatation lines of ledged dislocation walls with 

e = 0.5h, l.Oh, and 2.Oh, respectively. For an infinite 

wall, i.e., 6=0, the zero dilatation lines are parallel 

horizontal lines at y=0,:bj, ±h . . . ±~. . .  . Thus, 

regions of dilatation and compression alternate in the 

parallel horizontal strips with a width of h/2, as shown 

in Figure 7» The field of the same sign is discontinuous. 

From Figures 8(a) and (b), it is seen that for small ledge 

widths (e=0.5h and l.Oh), the zero lines contract into a 

sinusoidal-shaped curve. From Figures 8(b) and (c), it is 

noted that as the ledge width e increases, the zero lines 

strongly tend to be straighten and coincide with the y 

axis in the region near the ledge. For example, when 

e=h [Figure 8(b)J, the zero line is identical with the y 

axis within the range of -4h < y <  4h, and when e 

13 



increases to 2h [Figure 8(c) [J, the zero line coincides 

with the y axis in the whole range of ±10h. Hence, it 

can be concluded that the wider the ledge width, the 

greater the coincidence range between the y axis and the 

zero line. Data on the coincidence ranges between the y 

axis and zero line for different values of e are listed 

in Table 1. 

From the characteristics of these dilatation zero 

lines it is clear that the region of the same sign, i.e., 

either dilatation region or compression region, appears 

to be continuous. Thus, it can be considered that, with 

the exception of those small shaded regions near the dis- 

location cores, the field is negative in x>0 (e.g., region 

of compression) and positive in x<0 (e.g., region of dila- 

tation) .  Such a consideration would be helpful in sim- 

plifying the analysis given in the next section for the 

volume change of the dilatation field of a ledged dislo- 

cation wall. 

TABLE 1 

THE COINCIDENCE RANGES BETWEEN THE 
Y AXIS AND THE ZERO LINE 

Ledge width e/h 0.8 1.0 1.5 2.0 2.5 3.0 3-5 4.0 

Coincidence range 
between y axis 
and zero lineCl/h) 1 4 17 68 402 703 2142 6300 

14 



4. Approximate expression for the volume change 
of a ledged dislocation wall 

From the above discussion, it is clear that in a 

certain range of a ledged wall (near the ledge) the y axis 

can be considered as the zero-line of the dilatation 

field, provided the e is not very small. Following the 

analysis of Webb, the volume change of the dilatation 

field per unit area of the ledged wall, in the region of 

the same sign, 0<y<h and 0<x<j (the shaded strips in 

Figure 2), can be expressed approximately as 

(2AVo)appr=i/^/h^dxdydz 

h JoJoJo 
b(l-2y)rg 

2ir(l-v)[ 

cosjjM.   SinC# JW 

oo 

2n(l-v)L Sin2(g)+ sinh2[*^] 

^xyy n 
-n=0 (x2+<r2+y2)2-(2ex)2 •] dxdydz (30) 

Because the integration of the first term is zero, it 

follows that 
b(l-2v) 1 4ex(y+h) 

(x2+e2+y2)2-(2ex)2 

^€x(y+h) 
+   + . . . 

[x2+e2+(y+h)2]-(2ex)2 

4fx(y+mh) 

[x2+e2+(y+mh),2]2-(2ex)2 
dxdy 

15 



b(l-2v)   1   , v2
+,

2
+^^2        2€X 

2IT(1-V)   h ° m->oo  * +e t^-(2cx)2 
(3D 

b(l-2v) 1 ,, 
  h/'jim ' 
2TT( 1- v) m->« 

1 
-[in 
2 

(x+<r)2-(mh)2 

(x-e)2+(mh)2 
-in 

(x+e) 

(X-6)' 

when m—><*> 

in 
(x+e)2+(mh)2 

(x-e)2+(mh)2 
-> 0. 

and Eq (32) becomes 

(SAVO), appr 

Ml- 

2n( 

-b(l-2v) 1 . 
-JlJn 

1-2V) if" 

u-v) H 

2TT(1-V) h'° 

i+e 

x+e 

in 
i-€ 

x-e 

+ e^n 

dx 

2 ,21 
i -e 

] (33) 

For z»€>  Eq (33) can be expanded into Taylor's series. 

By neglecting the terms of higher orders, Eq (33) can 

be simplified as 

-b(l-2v) 2e 
(SAVo) aPpr   2Tr(l-v)  h 

[in (|) - 1]     (34) — r.n fJL 

Similarly, for an arbitrary region of kh<y<(k+l)h, the ap- 

proximate expression for the volume change per unit area 

of a ledged wall can be expressed as 

16 



(SAVK) 

dxdydz  = 

_ b(l-2y)   1    ,        (k+1)h 

2TT(1-V) 

-b(l-2v)    1 

^^xy. n 
aPPr      2TT(1-V>   h    °'°'kh n=0  (x2

+€
2

+y2)2-(2ex)2 

*n 
(J+02+(kh)2 

U-e)2+(kh)2 
2TT(1-V)    2h 

[(i+e)2W][(*-02+(kh)2] 
+ 6 in 

[€2+(kh)2]2 

+ 2kh(taiT1 £lf - tan"1 ilf -2tan_1 J_ ) 
kh kh kh 

(35) 

where k = 0, ±1, ±2 . . . 

In the case where ,e»€, Eq (35) becomes 

-b(l-2v) 1 
appr (2AVk) 

2TT(1-V) 2h 

J!2+(kh)2 

Z' m 
(rK)2+(kh)2 

(i-€)2+(kh)2 

+ € j>n 
e2+(kh)2J 

-4kh tan"1^ 

(36) 

Equation (35) or Eq (36) can be considered as the 

general expression for the volume change per unit area 

of a ledged wall for an arbitrary range of kh<y<(k+l)h. 

At k=0, Eq (35) and Eq (36) are identical to Eq (33) and 

Eq (3*0 i respectively. 

From Eq (35) or Eq (36), it is noted that the value 

of volume change per unit area, SAV^ , is no longer con- 

stant for a ledged dislocation wall as compared with that 

of an infinite wall, which has a constant value of 

17 



0.79 ~$iii-$   '   P5* (28)1-    It is»  therefore, useful to 

introduce an average value of the volume change over the 

range of y from 0 to nh, 

1        n 
(EAV) =      2    (ZAVk) 

• appr      (n+1)  k=0 appr 

1        n    b(l-2v)   1 (/+€)2+(kh)2 

2 0   •   -en  5 s 
(n+1)  k=0  2TT(1-V)   2h (j-ej^+dch)* 

,    . /+(kh)2 

-4khtan x ^- + 6 to -5 * (37) 
101 €N-(kh)z 

for e/h « n « i/h  , 

n (^+6)2+(kh)2 

E    i  .   zn  5 5 « 4n£ 
k=0 (i-€)^+(kh)^ 

and 

n 
E    4kh tan_J- r~ « 4n€   . 

k=0 Kn 

The sum of the first two terms of Eq (37)  then equals 

zero,  i.e., 

  -b(l-2v) 1 n i2+(kh)2 

( EAV) „ « ■     E    eJn 21,,.^x2 appr       2TT(1-V)    2(n+l)h k=0 62+(kh) 

For €/h « n « z/h 

-b(l-2v) 26 Z 
(EAV) »  - [(n+1)  jri - -In n!] (38) 

appr       2TT 1-v)    2(n+l)h n 

18 



5. More accurate expression for the volume 
change of a ledged dislocation wall 

It is emphasized that Eq (33) - Eq (38) provide a 

good approximation only insofar as the zero dilatation 

line is nearly identical with the y axis. However, if the 

ledge width € is relatively small or the k value is rela- 

tively large, these equations might not be valid because 

of the sinusoidal shaped curve of the zero line. For ex- 

ample, in Figure 8(a), € = 0.5h is relatively small, and, 

in Figure 8(b), at the region of k > 5. the zero line 

does not coincide closely with the y axis. . Therefore,the 

additional volume change contributed by the small shaded 

area, which is located between the y axis and the sinu- 

soidal curve of the zero line, must be taken into account. 

Thereafter, the approximate expressions of Eq (33)~(38) 

should be modified by adding a calibration term, A., where 

Ak is defined as the total volume change contributed by 

the shaded area within the range of kh < y < (k+l)h, that 

is 

\ = "c f d<Ck> - //^ f d<°k> (39) 

k = 0, ±1, ±2, . . . 

where C^ and D. denote the two shaded areas between the y 

axis and the zero line as shown in Figure 8(a). A more 

accurate expression of the volume change, therefore, can 

be written as 
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(E*Vaco = ^Vappr + Ak (4o) 

The computed results for the relationship of EAV 

and €/h from both approximate and accurate expressions 

are plotted in Figure 9»  It is seen that Eq (33) pro- 

vides a good approximation when € > 0.2h. If € < 0.2h, 

calibration should be taken into account. It is also 

seen that the value of ledge width € strongly influences 

the local volume change around the ledge. For instance, 

when ledge e = loh, its EAVQ value is almost 100 times 

that of an infinite dislocation wall(€ =0). 

Similary, Eq (37) or Eq (38) can be modified as 

(^>acc = <^*%pP +ijx 
A* (41) 

It is difficult to obtain an explicit expression for 

A, because an explicit expression for the dilatation field 

given by Eq (39) has not been developed. However, since 

the areas- of C. and D. are finite, the values of Ak for 

different e and k are not difficult to obtain by numerical 

integration. Some of these values, from AQ to A1000' 
for 

different 6, were computed and are tabulated in Table 6 in 

the appendix. 
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6. Solute saturation around a 
ledged dislocation wall 

The volume change of the dilatation field will 

cause the interaction between the solute atoms and the 

ledged dislocation wall. On the basis of the foregoing 

discussion, it is not difficult to estimate the saturation 

effect of solute atoms around a dislocation wall which 

contains a certain ledge density. 

It is known that the volume change dV, associ- 

ated with a solute atom of radius r', can be expressed in 

terms of the misfit factor € = (r'-r)/r as 

dV (solute) = 4fTr^€ 

The number of solute atoms required to saturate the dila- 

tation field of one sign associated with unit length of 

the ledged wall can be expressed as 

N0 = (EAV)ArTr
3€ (43) 

It is assumed that a tilt grain boundary can be simulated 

by a ledged edge dislocation wall. Let m be the ledge 

density, i  the grain diameter, and n x m the density of 

dislocation in the wall. It will be found that by sub- 

stituting Eq (38) into Eq (43), the total number of solute 

atoms required to saturate a unit length of dislocation 

wall (or grain boundary) is 
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(NJ, 
1  -b(l-2v)  2€ 

0 appr  4Ttr3€ 2*(l-v) (n+l)h 

and 
1   1  n 

(n  ) = (N )    +  * 2 A, o^appr -^T€  n+1 k=Q k 

(n+1) in £ - m  n! 

o'acc 

• (**5) 

(46) 

For example, if m = 10 ~ 10-\ the tile angle 

6 = 6°, 12°, 18° and other parameters are the same as 

Webb • s, L-' J namely i 

b = 3 x 10"8cm,  v = 1/3.  € = 0.2,  r = 1.5 x 10~
8cm 

Z  = 10^m. 

The values of n for different e and m can be calculated. 

The results are listed in Table 2. 

TABLE 2 

THE VARIATION OF n WITH 6 AND m 

e h 
(cm)' 

n 
m=104 m=105 

6° 3x10"7 333 33 
12° 1.5xlO"7 667 67 
18° l.OxlO"7 1000 1000 

For different values of €, n, and e, the number 

of solute atoms required to saturate unit length of grain 

boundary, NQ, was computed from Eq (45) and the values 

are tabulated in Table 3. 

Figure 10 and Table 4 show the comparison of the 
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approximate and accurate values of N , computed at e - 18° 

from Eqs (45) and 46), respectively. It is seen from 

Figure 10 that when € > l.Oh, the linear relation formula 

of Eq (45) provides a good approximation of the values of 

N . Thus the ledge width strongly influences the level of 

saturation of solute atoms. For example, for ledge 

density of 10^ ~ 105, width € = l.Oh, the value of NQ is 

one order of magnitude higher than that of an infinite 

wall (€ = 0). For € = lOh, NQ is of two orders of mag- 

nitude higher.  Since the ledge width in a real grain 

boundary is often of the order of several h, it may be 

expected that the saturation limit of solutes for a real 

grain boundary with ledges may be 1 ~ 2 orders of magni- 

tude higher than that for a perfect ledge-free grain 

boundary. 
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TABLE 3 

COMPUTED VALUES OF NQ FROM EQ (45) 

€A 

(NJO^T. 
x 10~' 0 appr 

L4 

m= 4 1<T m=105 

e=6° 0=12° 6=18° 0=6° 6=12° 6=18° 
0.025 0.62 0.52 0.46 0.97 0.85 0.79 

0.050 1.24 1.05 0.93 1.94 1.71 1.60 

O.IOO 2.49 2.09 1.86 3.89 3.^3 3.19 

0.250 6.22 5.23 4.66 9.74 8.59 7.98 

0.500 12.40 10.50 9.32 19.50 17.20 15.90 

1.000 24.90 20.90 18.60 38.90 34.40 31.90 

2.000 49.80 41.90 37.30 77.90 68.70 63.8O 

4.000 99.60 83.70 74.50 155.00 137.00 127.00 
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TABLE 4 

COMPUTED VALUES OF NQ FROM EQ (45)   AND EQ  (46)  AT  e=18° 

€/n 

No     . 
-14 xlO x* 

n=100   ( 6=18°   ,   n i=105 n=1000( 6=18°   ,  m =10*) 
n 
EAk /n 
1 K ^  o'appr (N  )acc 

n 
2Ak /n 
1 K 0 appr <No>acc 

0 2.2 

0.025 2.20 0.79 3-00 2.20 0.46 2.66 

0.100 2.14 3.19 5-33 2.15 1.86 4.00 

0.250 2.10 7.98 10.1 2.14 4.66 6.80 

0.500  ' 2.06 15.90 18.00 2.11 9.32 11.40 

1.000 2.01 31.90 33.90 2.09 18.60 20.70 

2.000 0.67 63.8 64.50 L96„ 37.30 39.30 

4.000 0.00   \ 127.7 127.7 0.00 74.50 74.50 
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IV.  Summary 

1. For a semi-infinite edge dislocation wall, only 

the shear stress field a      is finite.  The general solu- xy 

tion of the shear stress o"  is given by Eq (15) in terms xy 

of trigamma function^' (z) with complex argument. The 

values of shear stress can be calculated directly with 

required accuracy by means of Eq (19) and Eq (20), which 

converge more rapidly than Eq (4). The approximate for- 

mula, Eq (21), of shear stress for a semi-infinite wall at 

a large distance, derived by Amelinckx and Li, is identi- 

cal to the first order approximation of the complete ex- 

pression.  Contours in the half plane of the shear stress 

field where no dislocation exists is similar to that of a 

single dislocation, while that of the other half (con- 

taining the semi-infinite wall) is similar to that of an 

infinite dislocation wall. The shear stress field of a 

ledged dislocation wall can be obtained by superposition 

of the two separated semi-infinite walls. 

2. The dilatation field of a ledged dislocation wall 

is analyzed. From the computed results and plotted con- 

tours, it is noted that the zero dilatation lines of a 

ledged dislocation wall tend to coincide with the y axis 

over a certain range near the ledge as the width of the 

ledge increases. Approximately, the half plane on the 

right side of the y axis can be considered as the com- 
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pression field and the other half as the dilatation field. 

3. Quantitatively, the volume change per unit area 

of the ledge wall, 2Avk, as well as the saturation number 

of solute atoms, NQ, are linearly proportional to the 

width of the ledge, provided the width is relatively 

large (e.g., € > h). If the ledge width is relatively 

small, the value of 2AV. and No apparently deviate from 

the linear relations, and calibrations should be taken 

into account. 

4. The width of the ledge plays an important role 

in the saturation of solute atoms along the grain bound- 

ary.  The saturation limit of a real ledged grain bound- 

ary may be one or two orders of magnitude higher than 

that of a perfect ledge-free grain boundary. 
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Figure 1. The stress field of a semi-infinite 
edge dislocation wallt 
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Figure 2. A dislocation 
wall with a ledge. 
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Figure 3» The shear stress field of a ledged 
dislocation wall (2€ = h). 
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Figure 4. The dilatation field of a ledged 
dislocation wall (2€ = 0.5h). 
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Figure 5-     The dilatation field of a ledged 
dislocation wall (2€ = h). 

32 



i 

Figure 6.  The dilatation field of a lodged 
dislocation wall (2C = 2h). 

33 



0 Line 

0 Line 

0 Line 

0 Line 

0 Line 

0 Line 

0 Line 
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for an infinite dislocation wall. 
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Figure 9- Approximate and accurate values 
of volume change per unit area of a lodged 
dislocation wall (EAV ). 
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Figure 10. The relationship between N 
and e/h, computed from both approximate 
and accurate expression (Eq (45) and (46)) 
at 6 = 18°. 
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Appendix 

Evaluation of trigamma function ^'(z) and its asymptomic, 
recurrence formulas. 

Because the values of <K(z) are not found in mathe- 

matical tables, they have been numerically revaluated. 

Table 7 lists the data for the range of 0 £  y £  4- with an 

interval of 0.1. 

The asymptomic formula given by Eq (17) gives an ap- 

proximation for large values of |z|, even when Re|z| is 

small. The error of Eq (17) for n terms is numerically 

less than the absolute value of the (n+1) term, provided 

|arg z | < V**. L10J For example, for |z| > 4, the error 

of i/,i (z) in taking the first 4 terms of Eq (17) will be 

less than the 5"th term, that is 

1111     s 
A< m  = - ~ io"° 

kZ  z(      hZ  V 

As a comparison, if the first 100 terms in Eq (b)   are 

summed, the error equals 
2  2 x -y 1    _k 

A  =  2 —3—f~2  ~  s ~9 >  10 
n=101 (x +y*r  n=101 XT 

Apparently, the error in taking k  terms of Eq (17) is much 

less than that in 100 terms of Eq (4) . It is advantageous 

*to use Eq (19) instead of Eq (4) for the shear stress o*v,, Ay 
of a semi-infinite wall because of its more rapid con- 
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vergence and less deviation. Table 5 gives a further com- 

parison of the accuracies of the shear stress data, which 

are computed from Eq (k),  Eq (19) and Eq (20), and 

Eqs (5) ~ (8), respectively. There, the accurate values 

from Eq (5) and Eq (8) act as specific key points to 

evaluate the deviation of the approximate expression, 

Eq (4) and Eq (19) and Eq (20). 

It must be noted that Eq (17) does not converge if 

|z| < 1, and converges slowly if |z| ~ 1. In these cases, 

the recurrence formula Eq (18) is introduced.  One can 

select an appropriate value of positive integer m, to make 

|z+m| relatively large. In that case, the combination of 

Eq (17) and Eq (18) yields 

-nbx  1 
o- (x.y) ^ Re 
xy      2n(l-v) h2 

Z1      X   +  1- . . . ) 
\z+m  2(z+m) 

\n=l (a+n-l)V 

m = 1, 2, 3 • • • 

(This is Eq (20) which is used for relatively small |z| 

valuei  |z|<l,|z|~l. 
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TABLE 5 

COMPARISON OF THE ACCURACY OF COMPUTED VALUES OF a. xy 

y/h x/h 
0xy from Eq (5) 

Eq (8) 

tf  from Eq (4), 

first 1000 terms 

a      from Eq (19), 
y Eq (20) 

first 5 terms 

Accurate 
Value 

Calculated 
Value Error 

Calculated 
Value Error 

0.0 

0.10 

0.50 

1.00 

2.00 

9.8387033898 

1.4659010545 

0.5369999034 

0.2501376757 

9.83880 

1.46640 

0.53800 

0.25214 

10-4 

10-3 

10-3 

10-3 

9.838703379 

1.465901030 

0.536999951 

0.250137726 

10-S 

10-8 

ID"8 

10-7 

0.5 

0.10 

0.50 

1.00 

0.W8098633 

0.3919012478 

0.0367245519 

0.44771 

0.39140 

0.03573 

10-* 

10-3 

10-3 

0.447809867 

0.391901258 

0.036724541 

IO-9 

ID"8 

ID"8 

1  
-nb Note:  The constant of 2 7^—r is not taken into account 

in the calculation. 
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TABLE 6 

COMPUTED CALIBRATION CONSTANT Ak FOR 

ACCURATE EXPRESSION OF  EC CK>) 

Ak 
€/n 

0.00 0.025 0.10 0.25 0.50 1.00 1.50 2.00 2.50 3.00 J+.00 

Ao 0.79 0.60 0.2U 0.07 0.01 

Al 0.77 0.73 0.69 0.57 
A2 0.78 0.75 0.72 0.67 

A3 
• 
• • 

0.79 0.76 

0.77 
0.73 
0.75 

0.68 

0.73 0.68 

A5 
• 

• • • 
• 

• • 
t 

• 
t 

• 
0.7^ 

• • 
0.70 

• 
• 

• 
• 

• 
• 

• 
• 

• 
• 

A10 
• • • • 0.76 0.75 o.7*» 0.0 

• 
• 
■ 

A17 

• 

* . 0.75 0.7^ 
• ■ • 
• t • • 

A68 
• 

• 
• • 

0.75 

• • 
A100 

• • 

AU02 
• • • 

A703 • 

• • 

0.75 
• • • 
• • • • 

0.75 
• • 

^LOOO 0.79 0.79 0.78 0.77 0.76 0.75 0.75 0.75 

• 

0.75 

0.00 

• 

0.75 0 

i.9» 10  ^ 0.77 0.71 0.67 o.6i* 0.43 0.00 0.00 0 0 

1 " 
100 £*k 0.79 0.79 0.76 0.75 0.7^ 0.72 0.24 0.00 0.00 0 0 

T    999 
,, *_ - r« 0.79 0.77 0.76 0.75 0.75 0.70 0.45 0.22 0 0 iooo Q k 
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TABLE 7 
TRIOAKMA PUNCTIOI1 FOR COMPLEX  ARGUMENTS 

ReV'(Z)     Im^(z) Heip.(z)     la «f/. (Z) 

°-° 0.1 

0.00 
.10 
• 20 
• 30 
• <»0 
.50 
.60 
.70 
• 80 
.90 

1.00 
1.10 
1.20 
1.30 
l.(*0 
1.50 
1.60 
1.70 
1.30 
1.90 
2.00 

-98.38703 
-23.1*7723 
-9.72179 
-5.01822 
-2.93180 
-1.86569 
-1.26927 
-.9121*8 
-.68687 
-.53700 
-.'♦3293 
-.35772 
-.3011*6 
-.25809 
-.22382 
-.19616 
-.1731*6 
-.151*56 
-.13863 
-.12507 

-.23632 
-.i*i*9i»8 
-.62237 
-.71*721 
-•8250<* 
-.8628** 
-•87009 
-.85615 
-.82889 
-.79^*23 
-.75628 
-.71769 
-.68307 
-•6M»30 
-.61080 
-.57971 
--55101 
-.521*57 
-.50023 
-.'♦7783 

0.2 

26.26738 
13.25132 

1.2051<» 
-1.82**37 
-1.95396 
-1. 5i*8i*i* 
-1.15108 
-.81*952 
-.631*73 
-.1*8378 
-.37710 
-.30061 
-.21* 1*72 
-.20301* 
-.17128 
-.11*659 
-.12702 
-.11121* 
-.09831 
-.08758 
-.07356 

0.00000 
-16.11*612 
-12.78252 
-7,50186 
'km i»97i*6 
-2.91*753 
-2.11825 
-1.6i»371 
-1.35121* 
-1.15727 
-1.01966 
-.91622 
-.831*71* 
-.76820 
-.71237 
-.66«*57 
-.62302 
-.5861*8 
-.55i*0«* 
-.52502 
-.1*9890 

101.1*3330 
l.i»1102 

-10.65251* 
-6,71*857 
-i*.05561 
-2.51*112 
-1.67192 
-1.15193 
-.82796 
-.61833 
'•**7771 
-.38009 
-.31007 
-.25829 
-.21893 
-.18e27 
-.16336 
-.11*1*0 7 
-.12777 
-.111*15 
-.10265 

12.21*536 
9,12235 
l*,0t»6i*8 
1.03432 
-.1531*9 
-.1*91*18 
-.52371* 
-.1*5927 
-.3781*9 
-.30593 
-.21*705 
-.20101* 
-.16553 
-.13808 
-.11672 
-.09939 
-.0861*6 
-.07560 
-.06670 
-.05932 
-.05313 

0.00000 
-50.18358 
-16.3521*1* 
-6.1*9509 
-3.37339 
-2.16110 
-1. 60<*5l 
-1.30902 
-1,12975 
-1.00736 
-.91559 
-.81*201 
-.7801*0 
-.72738 
-.68097 
-.63989 
-.60321* 
-.57035 
-.51*070 
-.51381* 
-.i*89i*3 

0.3 

0.00000 
-6.11870 
-7.33135 
-5.88615 
-i*.251*39 
-3.07559 
-2,30663 
-1,80970 
-1. 1*801*8 
-1.25386 
-1.09111 
-.96926 
-.871*56 
-.79854 
-.73588 
-.68310 
-•63786 
-.59851* 
-.56399 
-.53333 
-.50591 
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Reiy'(Z) ImV(Z)  Re H/» (Z)  Iuvj/'U) 

0.4 0.5 

0.00 
.10 
.20 
.30 
.40 
.50 
.60 
.70 
.80 
.90 

1.00 
1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.70 
1.A0 
1.90 
2.00 

7.27536 
6.20664 
3.99003 
2.06874 
.89573 
.29937 
.02991 

-.07774 
-.11138 
-.11357 
-.10392 
-.09100 
-.07833 
-.067m 
-.05768 
-.04984 
-.04337 
-.03802 
-.03359 
-.02988 
-.02676 

0.00000 
-2.86628 
-4. 19155 
-4.11629 
-3.47441 
-2.78885 
-2.2308'* 
-1.81470 
-1.51140 
-1.28912 
-1.12309 

-.99601 
-.89619 
-.81583 
-.74969 
-.69U19 
-.64634 
-.60590 
-.570 0 7 
-.53841 
-.51020 

<».93<*90 
4.47810 
3.40437 
2.25903 
1.36B2A 

.78380 

.43479 

.23691 

.12783 

.06861 

.03672 

.01962 

.oicua 

.00559 

.00299 

.00159 

.00085 
•00045 
.00024 
• 00013 
.0CC37 

0.00000 
-1.56159 
-2.53936 
-2.82900 
-2.67739 
-2.35189 
-2.00793 
-1.70711 
-1.46270 
-1.26938 
-1.11707 

-.99612 
-.89878 
-.81918 
-.75304 
-.69724 
-.64951 
-.60819 
-.57202 
-.54007 
-.51162 

0.6 0-7 

0.00 3.63621 0.00000 
.10 3.40952 -.94649 
.20 2.83671 -1.63739 
.30 2.14424 -1.97791 
.40 1.51671 -2.03156 
.50 1.03272 -1.91754 
.60 .69303 -1.73443 
.70 .46681 -1.540 4 5 
.80 .31988 -1.36235 
.90 .22507 -1.20881 

1.00 .16347 -1.08002 
1.10 .12280 -.97297 
1.20 .09530 -.88388 
1.30 .07619 -.80926 
1.40 .06251 -.74618 
1.50 .05241 -.69232 
1.60 .04474 -.64585 
1.70 .03876 -.60537 
1.80 .03398 -.56979 
1.90 .03009 -.53826 
2.00 .02687 -.51012 

2.83405 
2.70881 
2.37779 
1.94399 
1.50844 
1.13278 

.83776 

.61879 

.46126 

.34942 
•27C25 
.21326 
.17203 
.14155 
.11856 
.10087 
.08698 
.0751* 
.06685 
•0594C 
•05317 

0.00000 
-.62009 

-1.11511 
-1.42150 
-1.54816 
-1.54484 
-1.46652 
-1.35506 
-1.23614 
-1.12301 
-1.02115 
-.93190 
-.85462 
-.78790 
-.73020 
-.68007 
•>. 63624 
-.59768 
-.56353 
-.53308 
-.50578 
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Reiy'(z)       Imy(z)       Re H" (Z) Ira *P'(Z) 

0.3 

0.00 
.10 
.20 
.30 
.40 
• 50 
• 60 
.70 
.60 
.90 

1.00 
1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.70 
1.80 
1.90 
2.00 

2.29947 
2.2245,0 
2.02035 
1.73780 
1.43301 
1.14808 

.90495 

.70931 

.55746 
• '♦'♦186 
.35454 
.28852 
.23826 
.19958 
.16944 
.1*.561 
.12650 
.11096 
.09817 
.08750 
.07852 

0.00000 
-.43084 
-.79490 

-1.05158 
-1.19500 
-1.24449 
-1.22889 
-1.17504 
-1.10290 
-1.0252 3 
-.94938 
-.87877 
-.81477 
-.75755 
-.70669 
-.6615^ 
-.62141 
-.58562 
-.55358 
-.52478 
-.49877 

1.0 

1.64493 
1.61297 
1.52277 
1.38932 
1.23178 
1.06820 
•91209 
.77155 
.65002 
.54770 
.46300 
.39352 
.33672 
.29026 
.25212 
.22C63 
.19446 
.17256 
.15408 
.13838 
.12493 

0.00000 
-.23632 
-.41*948 
-.62237 
-.74721 
-.82504 
-•86284 
-.87009 
-.85615 
-.92889 
-.791*23 
-.75528 
-.71769 
-.68007 
-.64430 
-.61080 
-.57971 
-.55101 
-.52457 
-.50023 
-.'♦7783 

1.92254 
1.871.78 
1.7«»202 
1.55104 
1.33410 
1.11879 
•92312 
.75549 
.61736 
.50623 
.41798 
.34P25 
.29308 
.24923 
.21410 
.18569 
.16248 
• li*33t* 
.12737 
.11394 
.10254 

1.43330 
1-41102 
1.34746 
1.25143 
1.13470 
1.00918 

. 88 469 

.76807 

.66316 
• 571<+4 
.49273 
.42614 
.37008 
.32303 
.28353 
•25C35 
.22222 
.19838 
.17803 
.16057 
.14548 

0.9 

0.00000 
-.31334 
-.58845 
-.79925 
-.93720 

-1.00869 
-1.02823 
-1.01205 
-.97423 
-.92521 
-.87199 
-.81882 
-.76805 
-.72080 
-.67746 
-.63801 
-.60224 
-.56982 
-.54041 
-.51369 
-.48935 

1.1 

0.00000 
-.18358 
-.35244 
-.49509 
-.60522 
-.68181 
-.72796 
-.74902 
-.75105 
-.73967 
-.71953 
-.69420 
-.66625 
-.63742 
-.60882 
-.58115 
-.55479 
-.52992 
-.50662 
-.48485 
-.46455 
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Re^'(Z)  Irar(Z)   Re vjj'(Z)  Im ^ (Z) 

1.2 

1.26736 
1.25132 
1.20514 
1.13<«21 
1.04604 
.94858 
.81*892 
.75248 
.66285 
.58197 
.51048 
.44819 
.39443 
. 34827 
.30872 
.27484 
.24576 
.22074 
.19913 
.18039 
.16406 

0.00000 
-.14612 
-.28252 
-.40127 
-.49746 
-.56941 
-.61825 
-.64691 
-.65920 
-.65900 
-.64984 
-.63462 
-.61560 
-.59445 
-.57237 
-.55016 
-.52835 
-.50727 
-.48712 
-.46798 
-.44989 

1.3 

1.13425 
1.12235 
1.08790 
1.03432 
.96651 
.88990 
.80959 
.72979 
.65360 
.58295 
.51888 
.46168 
.41118 
.36690 
.32826 
.29459 
.26527 
.23970 
.21737 
.19780 
•18061 

0.00000 
-.11870 
-.23076 
-.33059 
-.41439 
-.48044 
-.52886 
-.56118 
-.57975 
-.58720 
-.58610 
-.57873 
-.56699 
-.55236 
-.53600 
-.51873 
-.50116 
-.48368 
-.46659 
-.45006 
-.43418 

1.4 1.5 

0.00 1.02536 
.10 1.01632 
.20 .99003 
.30 .94874 
.40 .89573 
.50 .83477 
.60 .76955 
.70 .70332 
.80 .63862 
.90 .57726 

1.00 .52034 
1.10 .46843 
1.20 .42167 
1.30 .37990 
1.40 .34282 
1.50 .31001 
1.60 .28103 
1.70 .25545 
1.80 .23285 
1.90 .21285 
2.00 .19513 

a.ooooo 
-.09811 
-.19155 
-.27629 
-.34941 
-.40931 
-.45569 
-.48926 
-.51140 
-.52389 
-.52856 
-.52715 
-.52119 
-.5119 6 
-.50049 
-.48758 
-.47383 
-.45970 
-.44550 
-.43147 
-.41775 

.93480 

.92780 

.90734 

.87495 
•83289 
.78380 
.73 0*1 
.6751° 
.62G20 
.56701 
.51672 
.46999 
.42713 
.38e21 
.35310 
.32159 
.29340 
.26821 
.24572 
.22564 
.20768 

0.00000 
-.08230 
-.16124 
-.23384 
-.29785 
-.35189 
-.39546 
-.42880 
-.45273 
-.46839 
-.47707 
-.48008 
-.47863 
-.47377 
-.46639 
-.45724 
-.44688 
-.43577 
-.42424 
-.41255 
-.40089 
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Re^'(Z)  Im^'CZ)  Re *f(z)  Iaipt(z) 

1.6 

0.00 
• 10 
• 20 
.30 
.40 
.50 
.60 
.70 
.80 
.90 

1.00 
1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.70 
1.80 
1.90 
2.00 

.858(43 

.85291 

.83671 
•81090 
.77706 
.73711 
.69303 
.64674 
.59988 
.55380 
.50949 
.46764 
.42*63 
.39267 
.35978 
.32986 
.30276 
.27828 
.25620 
.23630 
•21836 

0.00000 
-.06993 
-.13739 
-.20013 
-.25642 
-.30507 
-.34554 
-.37782 
-.40235 
-.41985 
-.43123 
-.43745 
-.43944 
-.43805 
-.43405 
-.42808 
-.'♦2066 
-.'♦1223 
-.'♦0312 
-.39360 
-.38387 

.79323 

.78881 

.77579 

.75493 

.72 737 

.69451 

.65 732 
•6ie7q 
.57873 
.53877 
.'♦9977 
.'♦6239 
.42707 
.39405 
.363*6 
.33530 
.30951 
.28596 
.26451 
•24500 
•22728 

1.7 

0.00000 
-.06009 
-.11832 
-.17299 
-.22271 
-.26653 
-.30389 
-.33465 
-.35902 
-.37745 
-.39055 
-.39903 
-.40360 
-.40494 
-.40367 
-.40035 
-.39545 
-.38936 
-.38240 
-.37484 
-.36689 

1.3 

0.00 
• 10 
.20 
.30 
.40 
.50 
.60 
.70 
.80 
.90 

1.00 
1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.70 
1.80 
1.90 
2.00 

.73697 

.73338 

.72278 

.70571 

.68301 

.65571 
•62495 
.59184 
.55746 
.52272 
.48839 
.45506 
•42317 
.39299 
.36470 
.33837 
.3140C 
.29152 
.27087 
.25193 
.23458 

0.00000 
-.05214 
-.10286 
-.15085 
-.19500 
-.23451 
-.26889 
-.29791 
-.32165 
-.34038 
-.35450 
-.36452 
-.37098 
-.37441 
-.37533 
-.37419 
-.37141 
-.36734 
-.36228 
-.35647 
-.35014 

.68 79 7 
•68501 
.67627 
•66215 
.64327 
.62039 
.59439 
.56614 
•53650 
•50 623 
.47596 
•44628 
•41753 
.39 0 03 
.36398 
.33 948 
.31658 
.29527 
.27552 
.25726 
.24C<*2 

1.9 

0.00000 
-.04564 
-.09018 
-.13258 
-.17198 
-.20769 
-.23927 
-.26649 
-.28933 
-.30793 
-.32256 
-.33357 
-.34138 
-.34640 
-.34903 
-.34966 
-.34865 
-.34630 
-.34288 
-.33863 
-.33375 
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Rey(Z)  Iray.(z)  Re^.(z)  la ^ (z) 

o.oo 
.10 
.30 
• 30 
.1*0 
.50 
.60 
-70 
• 80 
.90 

1.00 
1.10 
1.20 
1.30 
1.1*0 
1.50 
1.60 
1.70 
l.flO 
1.90 
2.00 

2.0 

• 6<»i»93 
.6*»2<»7 
.63519 
•62339 
.60753 
•58820 
.56607 
.51*183 
.51617 
.1*8971 
.1*6300 
.1*3652 
..U1062 
.38561 
.36168 
.33897 
.31755 
.2971*6 
.27868 
.26119 
• 2<*«*93 

0.C0000 
-.01*026 
-.07966 
-.11736 
-.15258 
-.18501* 
-.211*05 
-.239!»9 
-.26127 
-.2791*6 
-.29<*23 
-.30581* 
-.311*58 
-.32076 
-.32472 
-.32678 
-.32722 
-.32632 
-.321*32 
-.3211*3 
-.31783 

.6C635 

.601*79 

.59866 

.58870 

.57527 

.55881 

.53985 

.51893 

.1*9662 
• <*73<*1 
.**!*978 
.1*2 611* 
.<*0283 
.3BC1G 
.35817 
.33717 
.31720 
.29832 
.28055 
.26387 
.21*827 

2.1 

0.00000 
-.03577 
-.0708** 
-.101*56 
-.13636 
-.16577 
-.1921*1* 
-.21615 
-.23681 
-.25i*i*2 
-.26909 
-.28098 
-.29032 
-.29735 
-.30232 
-.30550 
-.30713 
-.3071*1* 
-.30661* 
-.301*92 
-.3021*5 

2.2 2.3 
0.00 
.10 
.20 
.30 
.1*0 
.50 
.60 
.70 
.80 
.90 

1.00 
1.10 
1.20 
1.30 
l.WO 
1.50 
1.60 
1.70 
1.80 
1.90 
2.00 

.57293 

.57118 

.56598 

.55751 

.51*601* 

.53193 

.51558 
• i*97l»l* 
.1*7791* 
.1*5752 
.1*3657 
.i»15l» i» 
.391*1*3 
.37379 
.35370 
.331*32 
.31576 
.29808 
.2M31 
.265(*8 
.25057 

0.00000 
-.03197 
-.06338 
-.09370 
-.12246 
-.11*926 
-.17381 
-.19589 
-.2151*1 
-.23233 
-.21*672 
-.25868 
-.26838 
-.27598 
-.28171 
-.28577 
-.28835 
-.28966 
-.28988 
-.28917 
-.28769 

• 54251* 
.51*101* 
.53659 
.52933 
.5191*7 
.50729 
.1*9311 
.1*7729 
• 1*6019 
.1*4215 
.1*2353 
.1*01*61 
.38566 
.36690 
• 3i*e52 
.33066 
• 3131*3 
.29691 
.28111* 
.26615 
.25196 

0.00000 
-.02871* 
-.05702 
-.081*1*1 
-.11052 
-.13502 
-.15765 
-.17822 
-.19661 
-.21280 
-.22679 
-.23866 
-.21*852 
-.25650 
-.26278 
-.26750 
-.27081* 
-.27297 
-.271*01* 
-.271*19 
-.27356 
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Re vp'(z)       Im4>»(Z)       Re ip' (z)       Im4J»(Z) 

2.4 2.5 

0.00 
.10 
.20 
.30 
.<*0 
.50 
• 60 
.70 
.60 
• 90 

1.00 
1.10 
1.20 
1.30 
1.14 0 
1.50 
1.60 
1.70 
1.80 
1.90 
2.00 

.51515 

.51386 

.51CC3 

.50377 

.^9523 
• <»8<»65 
.1*7229 
.1*581*2 
.M*335 
.1*2738 
.<4l077 
.39380 
.37668 
.35961* 
.31*282 
.32637 
.3101*0 
.29U98 
.28018 
.266014 
.25256 

0.00000 
-•02596 
-.C5155 
-.0761*1 
-.10021 
-.12267 
-.11*356 
-.16273 
-.18001* 
-.1951*6 
-.20899 
-.22065 
-.23053 
-.23871* 
-.21*539 
-.25062 
-.25i«55 
-.2573i» 
-.25911 
-.25999 
-.26010 

.149 03 6 0.00000 

.1*8921* -•02357 

.1*8592 -.01*683 

.<*80<*7 -.06948 

.1*7301* -.0912'* 
• <*6380 -.11189 
.1*5296 -.13122 
.1*1*076 -.11*909 
.427«*3 -.16538 
.«*1323 -.18003 
.39839 -•19301* 
.38312 -.2Ci*i*3 
.36761* -.211*23 
.35213 -.22251* 
.33671* -.2291*3 
.32159 -.23502 
.30680 -.2391*1 
.2921*1* -.21*273 
.27857 -.21*507 
.26521* -.21*656 
.2521*8 -.21*729 

2.6 2.7 

0.00 
.10 
.20 
.30 
• <*0 
• 50 
.60 
.70 
.80 
.90 

1.C0 
1.10 
1.20 
1.30 
l.UO 
1.50 
1.60 
1.70 
1.80 
1.90 
2.00 

.1*6781 

.1*6683 

.1*6393 

.1*5918 

.1*5267 

.1*14 U56 

.U3501 

.<*2i*22 

.1*123 8 

.39971 

.3861*0 

.37265 

.35863 

.3U 1*51 

.3301*1 

.3161*6 

.30276 

.28939 

.2761*2 

.26388 

.25182 

0.00000 
-.021«*9 
-.01*271 
-.063(»3 
-.0831*1 
-.1021* 1» 
-.12036 
-.13703 
-.15235 
-.16626 
-.1787** 
-.18979 
-.199«»l* 
-.20771* 
-.211*77 
-.22061 
-.22535 
-.22908 
-•23189 
-.23389 
-.23515 

.1*1*721 

.<* <*636 

.i*(»381 

.1*3 963 

.1*3391 

.1*2675 

.1*1830 

.1*0872 

.39817 

.38643 

.37U17 

.362«*5 

.31*973 

.33685 

.32393 

.31108 

.2981*0 

.28596 

.27 312 

.26205 
•25066 

0.00000 
-.01966 
-.03911 
-.05813 
-.07652 
-.091*11 
-.11075 
-.12632 
-.11*073 
-.15393 
-.16586 
-.17651* 
-.18599 
-•191*22 
-.20131 
-.20731 
-.21230 
-.21635 
-.21953 
-.22191* 
-.22365 
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Re^«(z)  Imvy'(Z)  Re vp' (z)  Im vy' (Z) 

2,3 

.1*2833 

.i*Z7S8 

.i*2533 
• <*216<» 
.1*1658 
.1*1023 
.<*0272 
.39M8 
.381*75 
.37«*57 
.36379 
.35255 
.3<*099 
.32922 
.3173 7 
.30552 
.29378 
.28221 
.27287 
.25982 
.21*908 

0.30000 
-.01806 
-.03591* 
-.053<*5 
-.0701*3 
-.08673 
-.10222 
-.11678 
-.13035 
-.11*285 
-.151*25 
-.161*55 
-.17371* 
-.18186 
-.18891* 
-.19503 
-.20018 
-.201*1*7 
-.20795 
-.21070 
-.21278 

.1*1096 

.1*1030 
• 1*0831 
.1*0503 
.1*0053 
.391*88 
.38818 
.38051* 
.37208 
.36291 
.35317 
.31*297 
.332i*i* 
.32168 
.31079 
.29987 
.28899 
.27823 
.26761* 
.25726 
.21*715 

2.9 

0.00000 
-.01665 
-.03313 
-.01*931 
-.06503 
-.08017 
-.091*61 
-.10825 
-.12102 
-.13287 
-.11*375 
-.15365 
-.16258 
-.17053 
-.17755 
-.18367 
-.18891* 
-.1931*0 
-.19711 
-.20013 
-.20251 

3.0 3.1 

0.00 .391*93 
.10 .391*31* 
.20 .39257 
.30 .38965 
.1*0 .38563 
.50 .38059 
.60 .371*58 
.70 .36772 
.80 .36010 
.90 .35183 

1.00 .31*300 
1.10 .33373 
1.20 .321*12 
1.30 .311*26 
1.1*0 .30U25 
1.5C .291*17 
1.60 .281.09 
1.70 .271*07 
1.80 .261*18 
1.90 .251* i*5 
2.00 .21*1*93 

0.00000 
-.01539 
-.03061* 
-.01*563 
-.06022 
-.071*32 
-.08783 
-.10060 
-.11263 
-.12386 
-.131*23 
-.H*37l» 
-.15238 
-.16015 
-.16707 
-.17318 
-.17850 
-.18308 
-.18696 
-.19019 
-.19283 

.38010 

.37956 

.37798 

.37537 

.37177 

.36721* 

.35185 

.35567 

.31*879 

.3U129 
.33327 
.321*83 
.31601* 
.30700 
.29779 
.28HU7 
.27912 
.26910 
•25P35 
.251U3 
.2U2U7 

0.00000 
-.011*27 
-.0281*2 
-.01*231* 
-.05592 
-.06907 
-.08169 
-.09370 
-.10506 
-.11570 
-.12559 
-.131*71 
-.1**305 
-.15061 
-.1571*1 
-.1631*6 
-.16980 
-.1731*5 
-.1771*6 
-.18086 
-.18369 
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Revy(Z)  Im¥»(Z)  Re^'CZ)  la *'(Z) 

0.00 
.10 
.20 
.30 
.1*0 
.50 
.60 
.70 
• BO 
.90 

l.CO 
1.10 
1.20 
1.30 
i.i*a 
1.50 
1.60 
1.70 
1.80 
1.90 
2.00 

3.2 

•36632 
.36585 
.361* i*2 
.36208 
.3588$ 
.351*77 
.31*990 
.31*1*32 
.33808 
.33128 
.32398 
.31627 
.30822 
.29991 
.291<*2 
.28280 
.271*12 
.2651* i* 
.25680 
.21*825 
.23982 

0.00000 
-.01326 
-.0261*3 
-.03939 
-.05206 
-.C6W3U 
-.07617 
-.0871*8 
-.09819 
-.10828 
-.11771 
-.126«*5 
-.131*50 
-•1<»18<» 
-.1U8U9 
-.151*1*7 
-.15979 
-.16<*i*8 
-.16857 
-.17209 
-.17508 

3.3 
•35350 
.35307 
.35179 
• 3<«966 
• 3<»676 
.31*3:8 
.33868 
.33361 
.32795 
.32176 
.31510 
.30801* 
•3C066 
.29301 
.2R517 
.27719 
.26913 
.26101* 
.25297 
• 2UU9<* 
.23701 

0.00000 
-.01236 
-.021*63 
-.03673 
-.01*857 
-.C600B 
-.07119 
-.08183 
-.09196 
-.10151* 
-.11052 
-.11890 
-.12661* 
-.13376 
-.li*C26 
-.11*613 
-.1511*1 
-.15610 
-.16021* 
-.16385 
-.16696 

3.4 3.5 

0.00 .31*151* 
.10 .31*115 
.20 .31*000 
• 30 •33809 
.1*0 .3351*1* 
.50 .33211 
• 60 .32811 
.70 .32351 

•31835 .80 
.90 .31270 

1.00 .30661 
1.10 .30011* 

-.29335 1.20 
1.30 .28631 
1.1*0 .27906 
1.50 .27166 
1.60 .2bi*17 
1.7 0 .25662 
1.80 .21*907 
1.90 .2**155 
2.00 .23U08 

0.00000 
-.01155 
-.02302 
-.031*33 
-.0i»5i*2 
-.05622 
-.06667 
-.07671 
-.08629 
-.09538 
-.10395 
-.11197 
-.119«»2 
-.12631 
-.13261* 
-.1381*0 
-.11*361 
-.11*828 
-.1521*5 
-.15612 
-.15932 

• 33C36 0.00000 
.33001 -.01081 
.32696 -.02155 
.32722 -.03216 
.321.82 -.01*257 
.32179 -.05272 
.31816 -.06256 
.31396 -.07201* 
.30926 -.08112 
.301*08 -.08975 
.29850 -.09792 
.29256 -.10560 
.28631 -.11277 
.27980 -.1191*3 
.27309 -.12558 
.26623 -.13121 
.25926 -.13631* 
.25222 -.11*098 
.21*515 -•li»51*» 
.23809 -.11*885 
.23107 -.15211 
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Re V (Z)   Im^'(Z)   Re vy« (z)   Im ^'(Z) 

3.6 

.31988 

.31956 

.31860 

.31703 

.31484 

.31208 

.30876 

.30493 

.30062 

.29588 

.29075 

.28528 

.27951 

.27350 

.26728 

.26091 

.25441 

.24122 

.23459 

.22798 

0.00000 
-.01014 
-.02022 
-.03018 
-.03997 
-.04953 
-.05881 
-.06778 
-.07638 
-.08459 
-.09238 
-.0997'* 
-.10663 
-.11307 
-.11903 
-.12453 
-.12957 
-.13415 
-.13829 
-.14201 
-.14532 

3.7 

.31004 

.30975 

.30888 

.3C744 

.30544 

.30292 

.29988 

.29637 

.29242 

.28P06 

.29334 
•27B30 
.27297 
.26740 
.26163 
.25570 
.24964 
.24350 
.23730 
.23107 
• 22«485 

0.00000 
-.00953 
-.01901 
-.52838 
-.03760 
-.04662 
-.05539 
-.06387 
-.0720** 
-.07935 
-.08729 
-.09433 
-.10096 
-.10717 
-.11295 
-.11831 
-.12325 
-.12776 
-.13187 
-.13559 
-.13892 

3.8 3.9 

0.00 .30078 0.00000 
.10 .30051 -.00897 
.20 .29972 -.01790 
.30 .29840 -.0267*. 
.40 .29658 -.03543 
.50 .29426 -.01*395 
.60 .291W8 -.05225 
.70 .28826 -.06029 
.80 .28462 -.06805 
.90 .28061 -.07549 

1.00 .27626 -.08259 
1.10 .27160 -.08934 
1.20 .26667 -.09571 
1.30 .26150 -.10170 
1.40 .2561** -.10730 
1.50 .25062 -.11252 
1.60 .24496 -.11734 
1.70 .23922 -.12178 
1.80 .23340 -.12585 
1.90 .22755 -.12954 
2.CO .22169 -.13289 

.29206 

.29181 

.29138 

.28988 

.28820 
•28606 
.28352 
.28055 
.27721 
.27351 
.26948 
.26517 
.26060 
.255S0 
.25081 
.24566 
.24038 
.23500 
.22954 
.22404 
.21852 

0.00000 
-.00847 
-.01689 
-.02523 
-.03345 
-.04150 
-.04936 
-.05700 
-.06437 
-.07146 
-.07825 
-.08471 
-.09084 
-.09662 
-.10204 
-.10711 
-.11182 
-.11618 
-.12019 
-.12386 
-.12719 

52 



TABLE 8      COMPUTED VALUES 
INFINITE DISLOCATION  WALL OP  THE SHEAR STRESS  OP A SElII- 

Mb 1 
27T(1-V) '  h2 

V: xy; 
unit: 

0.0 

•9.83870 
•«».695i*5 
2.91651* 

•2.00729 
•l.«*6590 
■1.119«»1 
-.8881*9 
-.72999 
-.61318 
-.53700 
-.1*7622 
-.'♦2927 
-.39190 
-.36132 
-.33572 
-.31386 
-.291*89 
-.27821 
-.2631*0 
-.2501*1 

0.5 
0.00000 

.i* 1*781 
•68087 
.67771 
.51*731 
.39190 
.26087 
.1658** 
.10227 
.06175 
.03672 
.02159 
.01258 
.00727 
.001*18 
.00239 
.00136 
.00077 
.0GCi*i* 
.00025 
.0C01U 

0.1 

0.0 0 000 
.11*110 

-2.13051 
-2.02i*57 
-i.6222<* 
-1.27056 
-1.00315 
-.80635 
-.66237 
-.55650 
-.'♦7771 
-.i*iaio 
-.37208 
-.33578 
-.30650 
-.2821*0 
-.26217 
-.2i*i*92 
-.22998 
-.21689 
-.20530 

0.6 
0.00000 
.31*095 
.56731* 
.61*327 
.60668 
.51636 
.1*1582 
.32676 
.25591 
.20256 
.1631*7 
.13508 
.11<*36 
.09905 
.08752 
.07862 
.07159 
.06589 
.0 6117 
.05718 
.05375 

0.2 

0.00000 
1.32513 
.21*103 

-.51*731 
-.78158 
-.771*22 
-.69065 
-.591*66 
-.50778 
-.i*35i*0 
-.3771C 
-.33067 
-.29367 
-.26395 
-.23979 
-.21988 
-.20323 
-.18911 
-.17697 
-.1661*0 
-.15712 

0.7 
0.00000 
.27088 
.1*7556 
.58320 
•60338 
.56639 
.50265 
.1*3316 
.36901 
• 31448 
.27005 
.23i»58 
.206*»3 
.184C1 
.16599 
.15131 
.13918 
•12900 
.12033 
.11286 
.1063<t 

0.3 
0.00000 

.91221* 

.80930 

.31030 
-.06139 
-.21*709 
-.311.25 
-.321**9 
-.30279 
-.27531* 
-.21*705 
-.22111* 
-.19863 
-.17951 
-.1631*0 
-.14933 
-.13833 
-.12852 
-.12006 
-.11271 
-.10626 

0.8 
0.0G000 
.2221*5 
.<*0<»07 
.52131* 
.57321 

.51*297 

.1*9652 

.1*1*597 

.39768 

.351*51* 

.31737 

.28591 

.259U6 

.23721 

.2181*1 

.20239 

.18863 

.17670 

.16625 

.15703 

0.4 
0.00000 
.62066 
.79801 
.62062 
.35829 
.11*969 
.C1791* 

-.051*1.2 
-.08910 
-.10221 
-.13392 
-.10010 
-.091*00 
-.08728 
-.08075 
-.071*75 
-.06939 
-.061*61* 
-.0601*6 
-.C5678 
-.05352 

0.9 
Q.CCOOC 
.187<*8 
.3i*8i«0 
.1*6531 
.53361* 
.55939 
.55387 
.52885 
.1*9389 
.1*5561 
.«*1798 
.38307 
.35170 
.32<*00 
.29971* 
.27853 
.25997 
.21*367 
.22927 
.2151*9 
.20507 
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*3 
0.00 
.10 
.20 
.30 
.40 
.50 
.60 
.70 
.80 
.90 

1.00 
1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.70 
1.80 
1.90 
2.00 

Kh 
0.00 
.10 
.20 
.30 
.40 
.50 
.60 
.70 
.80 
.90 

1.00 
1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.70 
1.80 
1.90 
2.00 

1.0 

0.00000 
.16130 
.3C455 
.41680 
.49271 
.53410 
.54725 
.54008 
.52001 
.'♦9293 
.46300 
.43287 
.40406 
.3773** 
.35296 
.33G94 
.31114 
.29335 
.27734 
.26291 
.24986 

1.5 
0.00000 
.09278 
.18147 
.26249 
.33315 
.39190 
.43825 
.47263 
.49616 
.51C31 
.51672 
.51699 
.51256 
.50467 
.49434 
.48239 
.46944 
.45596 
.44230 
.42871 
.41536 

1.1 

1.00000 
.14110 
.26949 
.37543 
.45388 
.50459 
.53081 
.53765 
.53053 
.51429 
.49278 
.46876 
.44409 
.41993 
.39694 
.37544 
.35555 
.33725 
.32046 
.3G538 
.29097 

1.6 
0.00000 
.08529 
.16734 
.24327 
•31083 
.36855 
.41582 
.45272 
.47991 
.49842 
.50949 
.51440 
.51436 
.51047 
.50369 
.49479 
•48442 
.47308 
.46117 
.44897 
.43671 

1.2 

0.00000 
.12513 
.24103 
.34026 
.41842 
.47429 
.50935 
.52673 
.5302» 
.52377 
.51048 
.49301 
.47332 
.45275 
.43221 
.41225 
.39322 
.37526 
.35843 
.34273 
.32813 

1.7 
1.00000 
.07888 
.15516 
.22648 
.29095 
.34725 
.39469 
.43316 
.46299 
•48489 
.49977 
.50863 
.51248 
.51227 
.50885 
.50295 
.49521 
.48613 
.47612 
.46551 
.45455 

1.3 
0.00000 
.11224 
.21758 
.3103 0 
.38661 
.44495 
.48575 
.51086 
.52288 
.52466 
.51888 
.50785 
.49341 
.47697 
.45956 
.44168 
.42443 
.40749 
.39126 
.37582 
.36122 

1.8 

0.00000 
.07334 
.14456 
.21171 
.27321 
.32786 
.37497 
.41429 
.44597 
.47045 
.48839 
.50057 
.50780 
.51089 
.51059 
.50756 
.50239 
.49559 
.48757 
.47867 
^46916 

1.4 
0.00000 
.10163 
.19901 
.28462 
.35829 
.41738 
.46173 
.49232 
.51090 
.51953 
.52034 
.51528 
.50600 
.49387 
.47994 
.46501 
.44965 
.4342 6 
.41912- 
.40442 
.39026 

1.9 
O.uOOOC 
.06850 
.13525 
.19865 
•25731 
.31020 
.35663 
.39630 
•42920 
.45561 
.47598 
.49090 
.50104 
.50704 
•50957 

• .50921 
.50652 
.50196 
.49594 
.48880 
•48083 
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2.0 

o.ooooo 
.06425 
.1270** 
.18702 
.24301 
.29410 
.33964 
.37928 
.41293 
.44074 
•46300 
.4BC17 
.49275. 
.50130 
.50636 
.5C8i*6 
.50809 
.50568 
.50162 
.49625 
.48986 

2.5 

0.00000 
.0<*892 
.09718 
.14414 
.18922 
.23190 
.27178 
.30853 
.34194 
.37190 
.39838 
• 421i*3 
.44117 
.45777 
.47143 
.48239 
.49088 
. 49714 
.5C143 
.50396 
.50496 

2.1 

0.00000 
• 060t*8 
.11973 
.17661 
.23011 
.2791*1 
.32391 
.36325 
.39729 
.1*2607 
.*♦ 1*978 
.1*6876 
.1*8339 
.1*91*13 
.5011*3 
.50575 
.50752 
.50715 
.501*98 
.5?135 
.i*965i* 

2.6 

0.00000 
.01*668 
.09279 
.13775 
.18107 
.22228 
.26100 
.29695 
.32991 
.35971* 
.3861*0 
.1*0992 
.1*3036 
.1*1*786 
.1*6257 
.1*71*69 
.i*8<*i*2 
.1*9197 
.1*9755 
.50137 
.50361* 

2.2 

0.00000 
.05712 
.11320 
.16725 
.2181*2 
.26597 
.30935 
.31*821 
.38235 
.1*1177 
.1*3657 
.1*5698 
.1*7332 
.1*8592 
.1*9518 
.5CH*9 
.50522 
.50673 
.50636 
.5Gi»i*C 
.50111* 

2.7 

a.ooooo 
. Oi*i»6i» 
.08876 
.13189 
.17356 
.21337 
.25098 
.28610 
• 31851* 
.31*815 
.371*87 
.39870 
.1*1968 
.1*3790 
.1*5350 
.1*6662 
.1*771*3 
.1*8613 
.1*9288 
.1*9789 
.50132 

2.3 

0.00000 
.051*10 
.10732 
.15880 
.20779 
.25365 
.29587 
.331*10 
.36815 
.39791* 
.1*2353 
.1*1*507 
.1*6279 
.1*7697 
.1*8793 
.1*9600 
.5011*9 
.50**71* 
.50605 
.50569 
.50392 

2.8 

0.00000 
.01*276 
.08507 
.1261*9 
•16663 
.20512 
.21*163 
.27593 
•30780 
.33711 
.36379 
.38781 
.1*0918 
'.1*279 9 
.1*1*1*31 
.1*5829 
.1*7005 
.1*7976 
.1*8757 
.49365 
.49816 

2.4 

0.00000 
.05139 
.10201 
.15113 
.19809 
.21*233 
.28337 
.32090 
.351*68 
.38(*6t* 
.1*1077 
.1*3318 
.1*5202 
.1*6753 
.47994 
.1*8955 
.1*9663 
.5011*7 
.501*33 
.5C547 
.50512 

2.9 

0.00000 
.01*103 
.08166 
•12151 
•16021 
.1971*1* 
.23291 
.26638 
•29766 
.32662 
.35317 
.37727 
.39893 
.1*1818 
.1*3511 
.1*1*981 
.1*6239 
.1*7299 
.1*8175 
.48880 
.1*91*30 
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3.0 

0.00000 
.039«*3 
.07851 
.11690 
.15«*25 
.19029 
. 22*»75 
.2571*1 
.28808 
.31661* 
.31*300 
.36710 
.38891* 
.<*085i* 
.1*2596 
.'♦'♦126 

.'♦6593 

.<*7552 

.i*83i*6 

.**&<*&(> 

3.5 

0.00000 
•0330C 
.06579 
.09817 
.12993 
.16C90 
.19089 
.21977 
mZk7l*0 
.27368 
.29850 
.32181 
.31*357 
.3637^* 
.38233 
.3<i<)3t* 
.1*11*81 
.'♦2877 
.'♦'♦127 
.1*5237 
.'♦6213 

3.1 
0.00000 
.03796 
.C7560 
.11261 
.11*871 
.18362 
.21711 
.21*897 
.27903 
.30716 
.33327 
.35731 
.37925 
.39910 
• «*1690 
.'♦3271 
.'♦'♦659 
.'♦5865 
.'♦6900 
.i*777Z 
.i*8i*9«* 

3.6 

0.00000 
.C3196 
.06372 
.09511 
.12591* 
.15601* 
.18526 
.2131*5 
.2(*050 
.26629 
.29075 
.31381 
.33542 
.35555 
.371*20 
.39136 
.'♦0706 
.1*2132 
.i*3i*i9 
.'♦'♦572 
.'♦5596 

3.2 
0.00000 

.03658 

.07288 

.10862 

.1<*351* 

.17738 

.2C99»* 

.21*102 

.270'*7 

.29815 

.32398 

. 31*789 

.36986 

.3A989 

.'♦0798 

.«*2t*2C 

.'♦3860 

.'♦5125 

.'♦6225 

.'♦7167 

.'♦796'* 

3.7 

0.00000 
.03097 
.06178 
.09223 
.12218 
.1511*6 
.17993 
.2071*6 
.23391* 
.25926 
.2833<t 
.30613 
.32757 
.31*762 
.36628 
.38355 
.3991*3 
.M395 
.UZ71U 
.'♦390W 
.>*i*96<i 

. 3.3 
0.00000 
.03531 
.07036 
.10^90 
.13670 
• 1715** 
.20321 
.23353 
.26236 
.28958 
.31510 
.33881* 
.36079 
.38091 
.39924 
.1*1579 
.1*3061 
.1*1*377 
.i*553«* 
.1*6539 
.1*71*03 

3.8 

0.00000 
.03005 
.05991* 
.08952 
.11863 
.11*713 
.171*89 
.20178 
.2277 0 
.25255 
.27626 
.29876 
.32000 
.33996 
.35860 
.37593 
.3919«* 
.1*0667 
.1*2012 
.'♦3235 
.1*1*33 8 

3.4 
0.00000 

.03<*12 

.06800 

.1011*3 

.131*18 
•16605 
.19587 
.2261*6 
.251*68 
.2811*3 
.30661 
.33015 
.35202 
.37220 
.39068 
.i*07i«9 
.<*2267 
.1*3626 
.<*W833 
.t*55<ii* 
.1*6817 

3.9 

O.OOOOG 
.02918 
.05822 
.06596 
.11528 
.11*301* 
.17011 
.19639 
.22177 
.21*616 
.269U8 
.29169 
.31272 
.33251* 
.35111* 
.3681*9 
• 381*61 
.39950 
.(*1318 
.<*256fi 
.1*3703 
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