
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1982

A high level input/output system for
microprocessor based instruments.
Bruce Allen Muschlitz

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Muschlitz, Bruce Allen, "A high level input/output system for microprocessor based instruments." (1982). Theses and Dissertations.
Paper 1986.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228649818?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F1986&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1986&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1986&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F1986&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/1986?utm_source=preserve.lehigh.edu%2Fetd%2F1986&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

A HIGH LFVKh INPUT/OUTPUT SYSTEM

FOR MICROPROCESSOR RASKD INSTRUMENTS

by

Rruce Allen Muschlltz

A Thesis

Presenter! to the Graduate Corr.rlttee

of I.ehlcjh University

in Candidacy for the beqree of

Master of Science

in

Electrical Engineering

Lehigh University

1982

ProQuest Number: EP76259

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest

ProQuest EP76259

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Certification

This Thesis is accepted and approved

in partial fulfillment of the requirements

for the degree of

Master of Science

in

electrical Knaineerina

(ia'te) Professor in Char,

Chairman of Department

11

Acknowledgments

The Author would llkp to thank Pr. Authur I. t.arky,

professor of Electrical and Computer K'nalneerirn, for his

tlrpless advice throuahout this tnesis prolect. I would

also like to thank the Lehigh University KCK department

and ~aroenter Technoloqy Corporation for their financial

support. Finally, 1 would like thank my devoted fiancee,

Oarlene, for her patience and understandina durlno my

TraJuate work.

ill

Table of Contents

Certification ii

Acknowledgments ill

Abstract 1

1. INTRODUCTION 3

1.1 Tensile Testing 3
1.2 The I/O Proolem in Automated Instruments 4
1.3 Desi cm Objectives 5

2. CURRENT COMPUTER I/O SYSTEMS 7

2.1 Primitive Systems 7
2.2 Contemporary .Systems ?
2.3 An Effective 1/n System 13

3. PROPOSED I/O SYSTEM 1R

3.1 System Goals IB
3.2 Structure of the I/O System 20
3.3 Components of the Hin System 22
3.4 I/O Systen Software Levels 23
3.5 I/O Syste-n Commands 32

4. RESULTS 35

4.1 Demonstration of the HIO system 35
4.2 Line Editlna Characters 36
4.3 Value Editing Characters 36

5. CONCLUSIONS 40

I. Source Code for the HIO System 42

Vita 44

Bibliography 45

lv

List of Figures

Figure 2-1:
Figure 2-2:
Figure 4-1:
Figure 4-2:
Figure 4-3:

Lo* level T/0 routine
Mian level I/O
Character Editing Sample Output
Value Fvditlna Proqran Example
Demonstration Source Proaram

10
10
36
3 7
37

List of Tables

Table 3-1J Level 1 Devices : Hariw^rr
Table 3-2: Level ? Devices : Logical
Table 3-3: Line Erl.tt.lnq Characters
Table 3-4: ASCII input Types

25
26
27
29

vl

Abstract

Microprocessor-based instr oments are t radi t ional ly

tore difficult to desian and operate than their analoa

counterparts. This thesis details a sLxucLur£d approach

to an operatlm system suitable for stand-alone use in an

Instrument. The system is demonstrated in an automated

Instrument used to determine the mechanical pronerties of

steel.

The proposed T/n system allocs a computer oroaram to

converse *ith the operator usin-T a "natural" laniud'ie.

The system functions as a hiqh level interface between

the application proarammer nnd trie conputer user. This

suo-system uses the structured design method to define a

powerful virtual opTatim syste-n that can be placed In

R3M. The aim of the operating system is to simnllfy the

application proaram Interface with the hardware of the

computer system. The svstem is lnterestim in that the

virtual devices are defined in independent levels so that

additional syste.n capabilities may h<? added at a later

date. The system is desiqned to be "Fall-Proof" in that

erroneous user entries cannot cause the system to halt or

aoort. This aspect is very important in Instrumentation

automation oecause the user is certain to enter wronq

data on occasion.

The structured approach to system design Is haspH

upon the construction of new components out of previously

defined ones. The distinction between software and

hardware becomes immaterial because this approach is

based uoon hlrjh level functions rather than Physical

implementation. Groups of functions define pacKaaes

*nlch characterize the set of operations which may be

performed by the system.

1. INTRODUCTION

The input/output section of a connuter system

defines the ultimate interface netween the HLL (Hiah

Level Language) application program an) the computer

user. Through this sub-system, the user must make his

Intentions known to the program. Littl* theoretical

research has oeen done in the area of user-computer

interactions because many people consider it to be a

minor part of a large programmed system. This thesis

details the design and construction of an advanced

input/output sub-system for automated instruments. Two

parallel problems currently facing computerized

instruments are difficulty in design and difficulty in

operation. The lllah level rnput/Outnut (Miu) system

proposed simplifies both of these Problems.

1.1 Tensile Testing

Tne motivation behind this research was the

development of an automated tensile testing system. A

tensile testing system is used to determine the

mechanical properties of materials by axially loading a

specimen and recording the responses of the sample. The

automated tensile testing machine performs intelligent

data reduction by recording the ra* tensile results and

comoutinq the parameters of the material under test.

1.2 Trie I/O Problem In Automated Instruments

Automated testlnn has a problem common to all

computerized instrumentation - a larqe number of

operation options. If the machine operator is required

to select a value for each option, the instrument will he

difficult to use. The problem of massive 1/n is overcome

in manually operated Instruments nv having all control

oarameters stay the same unless chanqed by the operator.

The I/n system for an Instrument should address five

problems :

1. Eacn control value must ne alterable hy the
operator.

2. Most variables will not be chanqed each time
the instrument is used.

3. L'acn value should have a pre-set (default)
value so that a reasonable selection is
ensured.

4. The operator usually sets many controls
without looklnq at the control name.

5. Tne machine should announce the naine of the
control parameter that the operator is
viewing.

1.3 Design Objectives

The input/output system described in this thpsis is

designed for a Ion- life-cycle cost. Tn order to satisfy

this constraint, some overall objectives are instituted

In the system. The main goals of the design rire that it

be applicaole to a larqe variety of computer based

equipment and be simple enough for application

programmers to use. From this, sub-goals are established

to ensure that the I/O system will he universally used.

Tne I/O sub-system is human engineered in the sense that

the Interface reacts with the operator (user) without

requiring vast MM, rroqrammini. The user can change the

pace of the computer conversation by enterlna responses

before the queries are put to him.

Trie I/O system is modu lar 1 zed" to operate in levels.

l,ow level routines, (such as serial device drivers), are

embedded within higher level routines, (such as strinq

output routines), which are called by the MLL software.

Tnis structured programming functions to insulate the HI.L

orogram from any ur>-nece,ssarv details about the hardware

and operating system characteristics. The structure also

permits modification of the operatlnq system by either

re-writing old Interfaces or building new layers of

software lncorDoraflna exlstina levels.

The I/O section to be described in this section was

i.TDlerrpnted in PL/^ for the TMFL 90«0 microprocessor.

This language is simple to learn ani is easily translated

into another structured language such as PASCAL, ADA, or

ALGOL. The operating system level structure encourages

the programmer to add new levels or change operating

characteristics to suit his individual needs. The

console I/O s/stem has been re-targeted to the software

from the ISIS-Rn operatlna system with reasonable

success. Interfacing the I/O system with a more flexible

operating system would have resulted in a much smoother

user-to-computer communication svstem.

2. CURRENT COMPUTER I/O SYSTEMS

The chief function of an T/n system Is to allo* the

user to manipulate control parameters of the Hi,I. proaram.

'lany different classes of I/O structures are in current

use. T*o classes are widely used :

- Menu Driven - Sinale character commands
for menu selection

- Line flufferirn -line orlpnted lnnuts(ex:
numeric.a 1, strinqs)

From tne user's point of view, the I/O system is a major

part of the operatlna systpm. It Is the responsibility

of the I/O system to maintain an efficient conversation

rfith the user.

2.1 Primitive Systems ,

I/O subsystems have evolved much since primitive

computers were first used. Many different Interaction

styles have been developed to interface users with

particular programs. In many cases, the operating system

level boundary Is riot clear because Individual programs

control their o*n I/O.

The interactions of I/O systems with users are based

upon models. These models havp evolved as users come to

expect tiore services to be provided to th^m. Rarly

computer svstem? had Uttlp or no incut/output

facilities. These systems *ere rirslaned to test simnie

algorithms and Input was done prior to proaram execution

and output after execution. Input consisted of chanaing

fixed memory locations where data was expected and output

was In the for" of memory dumps.

Later, the batch environment was Invented. In hatch

systems, the program read all data at the start of

execution and printed results in a readable format. The

input data was typically prepared off-line and stored on

punched cards or Daper tape. These systems were advanced

compared to earlier systems because the user could make

minor Tiodi 11 cat ions to his data and re-run the rrorjram.

This I/n style endured for manv yerirs and Is still In

wide use in the business data processing field.

The next major advance was the on-line time shared

environment. This system allowed the user to monitor

program execution and analyze Intermediate results. In

some cases, on-line error detection mechanisms were

Incorporated into the user programs to ensure reasonable

data was entered. The feedback to the user was immediate

when errors were made. Programs on these early on-line

systems used much of the code In the I/n section. When

I/O errors ivere discovered, the syster- would grind to a

halt.

The on-line systems brought with them a

disadvantage. With these systems, the user could not

simply change one piece of data. When the program was

re-run, all of the data to the program had to be

re-entered oy the user. This problem Is severe In the

automated testinq environment because each run generally

uses most of the same data as the previous run. This

execution environment left much to be desired from both

the programmer's and user's point of view.

Programmer Too rruch time *as soent *'ritln<7 I/O code.

User An error would regulre re-entering all
data.

2.2 Contemporary Systems

with the current growth in computer usage, users

have come to expect more and more capabilities from the

operating system. Computer designers have responded by

introducing features in a patchwork fashion because old

software had to be compatible with the new operating

systems. Many advanced operating systems have abandoned

the notion that input and outout are the sole

resoonsiol1ity of the user program. These new operating

systems handle most of the data movement un to character

maniDUl ation. Even thPse operatin; systems do not oo far

enough in providina support to user oro7rams.

A r>e*' model of the input/outont process needs to be

developed. The oDeratlna system must cleanly separate

the user from the proaram desirinq the I/O services. The

proqram should only convey Its objective to the operatina

system. The executing proqram should not be aware of any

unnecessary details of data movement such as formattIno.

The whole idea of the operatlnq system should be the

aDStractlon of data flow. The T/i system deslaned for

the automated tensile testing system will now i>e

described.

The ooeratinq system vas implemented in a botton-up

fasnion. This method allows easy extensions to the

system while allowina software self-checks to be

incorporated within the code. The lowest level of

aostraction Is the only part that refers to the actual

hardware iiaKeup of the system. At the highest level,

even the characters processed by the I/O system need not

be <nown oy the user (application) program. Some

examples *ill illustrate the abstraction levels :

10

CT : PROCEDURE o PYTE;
/* WAIT A:;D READ IWPIIT CHAP */

DECLARE /* PORTS AND MASKS*/
CSTAT LITERALLY 'OEDH' ,
COATA LITERALLY 'OFCH' ,
RXRDY LITERALLY ' 0?W ,
PMASK LITERALLY '7FK' ;

DECLARE /* VARIARI.ES */
STATUS HYTF /* UAPT STATUS
CHAR flYTE /* UART DATA */

*/

STATUS = INTUT(CSTAT) ;
DO WHILE (STATUS ArJD RXRPY) <> 0

STATUS = IfiPMT(CSTAT) ;
END ;

CHAR = TNPUTfCPATA) AKD P.'IASK ;
RETURM CHAR ;
END CI ;

Figure 2-1: Low level I/O routine

11

ADDER : PROCEDURE o ;
/* ADO TrtO NUMBERS FROM

DECLARE
SYSCO.V LITERALLY ' 0' ,
CR LITERALLY '00H'
(Vi,V2,RESULT) ADDRESS

KFYBOARD */

CALL PROMPT(.C'ENTER
CALF, READSK .VI) ;
CALL PROMPT (.('ENTER
CALL READSK .V2) ;
RESULT = VI + V? ;
CALL WRITESS(SYSCC)M ,
CALL WRTTESI (SYSCOM
CALL WRITESC (SYSCOM
E<JD ADDER ;

DATA 1

DATA 7

0))

0))

('AMSWER =
RESULT) i
CR) ;

)))

Figure 2-2: ujoh level I/O

12

Figure 2-1 shoves a procedure written at a low levpl

which reads a ctiarartPr from the console. This

Illustrates the conventional approach to T/n destan In

that the Physical characteristics of the input/output

device are reflected in the code to onerate the device.

This lb" level of proirarrmi na restricts the system to

operating with only one type of device.

In contrast, the high level procedure shown in

figure 2-7 does not refer to any of the characteristics

of the Physical device. The Input device Is an abstract

ooject that Is dealt with only In teris of formatted data

tnat coTPS from it. The phvslcal makeup of the device is

hidden from the programmer so that another device could

ne substituted for the console.

2.3 An Effective I/O System

One of the simplest and easiest I/O systems ever

■levlsed is the marked knot). Consider the temperature

control on a household oven. When the oven is activated,

tne user deci les upon a temperature to onerate the oven

at. Tne user an do many things at this nolnt :

1. Change the settlnq of the control

2. Ignore the control (do not change the value)

13

.). Look at the current settino

4. Operate the Icnob outside the proper reaion (Ie
: gainst the stop)

5. wrike a mental note about- the oven (Kx : 10
minutes to pre-heat)

The last three options do not deter-nine a settlna, so the

user T,ust a^ain Choose one of the five choices.

This example, although simple, illustrates many

inefficiencies in current I/O methods. Slmole ouery I/O

systems allo* only the first option to pe accepted,

'■tenu-dr 1 ven I/O systems limit the choice to the first two

options. These I/O methods are clearly restrictive in

the options available to the user. Tf the users cannot

properly interact *lth -J control, the productivity of the

operator *'ill be diminished. A case of multiple Inputs

will clarify the differences between the current approach

and the proposed I/O methods.

An oscilloscope is another marked knoo I/O system.

Tnls differs from an oven controller In that many

controls are used. As a further complication, each

control hill be covered so that examining the current

value requires a physical operation. The covers are used

to simulate the effect of prooram variables (data) whose

values are hidden. In addition, the user may select an

14

invalid range and should be warned that It is not

possible to accept the input. Also, Jt is assumed that

the user will sequentially operate tne controls in a

fixed sequence. This last constraint should he examined.

So far, all operations on the controls should appear

natural except oossibly the ordering of the operations.

Some type of ordering is needed to ensure that no control

has been overlooked. The ordering constraint appears to

be cumoersome ^Men all possible controls on the

oscilloscope are considered. The least used controls can

be grouped and an access cover nlaced over these

controls. This gives the user another choice in the

operation of the instrument - whether or not to open the

access cover to the control qroup. Although this sounds

strange, this method is actually used in modern

oscilloscopes. For example, a screwdriver is needed to

focus the instrument and the calibration controls may be

adjusted only vith the instrument open for servicing.

Nested control qrounlng can be continued at many

levels. For examnle, an assenbly line worker need not

have access to tne controls because they need never be

varied. Control hiding Is Important so that the user's

concentration is not drawn frorr the Important controls.

15

The I/'J system must address t*o rplatei problems :

t. rne guest.inns are likely to ne repetitious and
are soon Ignored by the instrumpnt onerator

2. The operators have varying degrees of
expertise vith the Instrument

rne first problem Is minimized hy control aroup covering

and the second is eliminated through user type-ahead.

Type-ahead is «rhen the user responds to the Input reouest

before it Is actually issued. verv fe* Intelligent

Instruments offer type-ahead because the K-eybnard input

is not ouffered (ellted).

Another reguirerrent of the I/O system (and the

entire instrument in general) is that some means of

resetting the instrument is needed In case a drastic

operation error is made. The system re-start must be

orderly so that a minimum amount of typing is regulred to

olcK up from the polr.t of interruption.

The separation of the user from the application

program results in many benefits.

Application programmers can concentrate on
computation and control and leave I/O to a
separate system.

The l/l interaction is uniform. Any feature
supported by the operating system is available
on any I/O ca]1.

16

- The I/O system is portable. It Is written
uslncj a simpie-to-understand proriramminT.

»>

17

3. PROPOSED I/O SYSTEM

The proposed input/output system incorporates both

the oven ami oscilloscope novels within it. The goal is

to make the I/O process simple for the application

oroiram, yet flexible for the computer operator. Seen by

the program, tne I/O system is no more comnlex than a

vastly simpler one. The user, however, sees a computer

system that behaves in an almost human fashion.

Furthermore, the detection of input errors In an orderly

fashion is ensured by checking all user input at the

appropriate level.

3,1 System Goals

The following aoals were set for the operating

system :

- User goals :

* Free format input (no fixed colunns).

* Allow all five options discussed in the
oven example.

* Request input (prompt) only "hen the user
makes a mistake or stoos supplying
responses to questions.

* Allow input line editing (backspace,
delete 11 n P , echo line).

* Allow comments to be freely interspersed

18

with data,

* Allow 'special' characters to be entered
(Ex: debuqqer and baud chanoe).

Application program goals :

* Cone Is to be self-initializina if
possible.

* Only three parameters to be passed to the
operatinq system : profiot message, read
type, and the symbolic name of data to be
read.

* Tne operating system should handle all
input errors.

* Protect (hide) as much of the ooeratlnu
system as possible from the anollcatlon
program (Note : only one simple variable
Is snared between the application program
and the operating system).

* Allow the application program to instruct
the I/O system to flush old information.

- Hardware goals :

♦ Only two I/O routines exist : CT and CO
for console I/O.

♦ '^o formatting Is done hy the hardware.

- Modi I lability goals :

* Structured design to be used ; operating
systen levels must be cleanlv separated.

* Trie system cannot use special cases to fix

10

an apparent auirk in the softer*, Anas
In the system are to be fixed *t their
sources rather than where the error is
encountered.

* Special functions of the system arf> to be
centralized. This ensures that changes to
the functions are correctly incorporated
into the operating system by any routine
that uses that function.

* Allow the systei to be easily ungraded.

Pe-taraetaDlIty goals :

* Allow easy modification for similar
hardware (Ex: SRC RO/io board).

* Allow easy modification for similar
software (Fx: Cp/M or JS1S oneratina
system).

* Allov pasy modification for different
nrocessors.

3.2 Structure of the I/O System

Tne modular approach vas used to implement the I/O

systen. Two different design strate-jies were used :

Top-down and bottom-up. The Top-down method is most

useful uncn tne hijhest level structures are fixed at one

tine. The Bottom-up method is better suited when the

lowest level structure is specified in advance. Both

strategies were used in this project in what r call the

■Middle-out" stately.

20

In the Middle-out approach, an intermediate goal Is

established. The Intermediate goal in the case of the

I/O system Is that all data transfers proceed one hyte at

a tine *lth no "look-ahead" or "check-behind". This aoal

was selected oecause of the success of the PASCAL

run-time system [KIPTH 75, CRnC.ANO 781 which allows

logical device I/O. The design now proceeds Too-down

from the highest level to the intermediate level and

Bottom-up from the lowest to the intermediate level. At

some point, both levels will meet and he is fully

compatiole.

This method has the advantage of partitioning

responsibilities for the ooerafing system development

Into two groups. Purlng the coding phase, the groups

should require as little communication as possible. The

designers should agree first on their respective coding

stategies. For example, each procedure should accomnlish

one oeneralized function rather than grouping several

functions into one procedure. If possible, the

procedures should verify the input parameters for

validity.

The I/O system was Inspired oy TROLL, a very large

software system. All input to this program is in free

21

format -and input Is requested only when the user types

none in. The TKPLI. svstem is designed as a fully

integrated econometric rnodelllna system with thousands of

orocedures within it. The TROLL language has so many

options that a new J/n system was developed to. deal with

all of the default values that would qenerally be used in

a particular execution of the proaram. T«DLL was one of

the first generation of intelligent systems where

commands and responses were differentiated by the

operating system.

TROtiL's major advance over existing T/n systems was

that the commands qlven to It were qenerally incomplete,

^lgh level operating systems alloc the user to direct the

flotf of information without the application programs

oeing Involved in any aspect of the actual data movement.

The more responsibility that the operating system

possesses, the less worK needs to be done in application

progratming. In TROLL, this reduction was needed because

thousands of 1/0 calls are made throughout the program.

3.3 Components of the HIO System

The I/O system Is structured into six hierarchical

levels. At each level, the hardware appears more and

nore flexible (or conversely, the software becomes more

22

flexible). This level structure allocs software validity

assertions to be made in many OI^CPS. The 1/0 system

levels 3re :

t. Physical I/n : Handshake control

2. l.OJical I/O : Output to one of three devices

3. buffered l/n : Input line editino, output
character mappinq

4. Typed simple I/O : Inteaer, real, string, and
logical data typed

5. Interactive I/O : Promptinn, query, and ianore
operations

6. Formatted output : Fixed formdt for tables
(real, string, and Inteaer)

Since level three serves as the Intermediate noal In

this "Middle-out" desicjn, all software support at lower

levels is invisible to the application proqram. Kor

example, the console keyboard cannot be nolled for ready

status by level 4-6 software because all Physical aspects

of the console input are hidden. Level six has been

Implemented in another module1 OPITEST) to show how to

expand the I/O system to application specific routines.

3.4 I/O System Software Levels

The HIO system Is structured into layers (or

levels). The layer structure uses the concept of virtual

23

hardware, which ma^es software appear to operate like

hardware. Dnce this is done, the hardware and software

functions become indi st Inguishabl e.

The advantage of the virtual hardware approach is

that the system can be specified in functional terms

without refering to its actual implementation. The

system emulates all hardware that does not nhyslcally

exist. As an example of virtual hardware, consider the

intelligent terminal. This nay be used by the T/0 system

software regardless of whether it is real or merely

emulated by the software.

The I/O system levels describe virtual hardware to

De used by higher levels of the system. The following

paragraphs describe the I/O system levels in detail.

Ltiie.1-1

These routines are the hardware drivers for the I/O

devices. The software waits for the device to bp ready

oefore attempting to read or write data. The operating

system uses tnree input drivers an i three output drivers.

The three input drivers interface the system console

keynoard and printer to the operating system. The output

drivers interface thp system display device and printer

74

to the operating system. Tanle 3-1 describes all

hardware drivers used hy the operating system. "Jote that

VPO is treated by the I/n system as If It were a hardware

driver although It is really a software driver. This is

an example of the type abstract reference which this

system permits.

Device Functional
Name Description

CI Console input - read from keyboard

CD Console output - write to system display device

PI Printer input - read serial data from printer

PO Printer output - write data to be Drinted

PSTAT Printer status - read statup <»f printer port

PCOM Printer command - write commands to printer port

VPO Virtual printer output - write to SAVRD nueue

Table 3-1: Level 1 Devices : Hardware

Le.iie.L_2

These routines select among the level one hardware

and software drivers for the character outnut function.

Table 3-2 lists tne logical output devices.

25

Output character editing Is done to make the output

devices look like smart terminals. In this case, the

logical outoiit device automatically Generates line feed

characters when carriage returns are printed. The output

device gains Intelligence through software routines at

this level.

Device Device functional
Mumoer Name Description

0 SYSZ3M System console output

1 SYSPRT System virtual printer

2 SVSBUF System buffer (for edited output)

Table 3-2: Level 2 Devices : Logical

This level completes the Intermediate I/O system

level. Tnree processes are included at this level :

1. Input line editing.

2. Buffered character read (no line available).

3. Outpjt character conversion.

The principal aim of this level Is to simplify HLL

program-Ding of trie I/O, yet leave enough flexibility to

allow for Interactive I/O.

26

The input line editing task groups the console input

characters into desired typed-in lines. Table 3-3 list

the characters vhich have special meaninas to the line

e J i t o r .

Cnar acter

"B

*H or DKL.

<CR>

*.H

-U or -X

<f:sc>

Meaninn

.Switch baud rate - instructions given to
user

Enter/exit from intra-llne consent

Oelete last character

End of line, finish edltinq

Echo current line (hardcopy edit only)

Delete whole line

Enter debugger

Table 3-3: Line Editing Characters

The ooerating system protects Itself from user

errors oy earning the user when bacKspacinq at the line

neainnlng or typlna more than 80 characters on a line.

Tne earning indicator is the terminal Dell.

The buffered character read process conies the next

character in the input buffer to a variable named CHAR.

This routine serves to minimize HLL I/O interaction with

the operating system by prohibiting access to the actual

line buffer. Tne I/O system makes all character reads

27

appear as If the reading Is done directly from the

keyboard, lullt-in protection ensures that a character

read Issued when the line buffer Is emDty will he marked

as an error- Vote that this type of error Is only caused

oy programming flaws in hiqh level I/O functions. The

terminal bell Is rung if a read is attempted while at the

end of the line.

The basic console I/O data ports have been extended

by level 3 to Intelligent terminal ports. The

intelligent terminal allows off-line character and line

editing to be performed without support of the rest of

tne J/D system. rn addition, the console now acts as a

software front panel with the <CTRIi R> and <F.SC> input

keys. Information hiding at lower levels ensures that

cnanjes to hlgner levels of software will not affect the

operation of this smart terminal. The lack of

interference also .neans that low level modifications to

tne system *lll not have a side-effect on any program

iislni level 3. software,

Le.u.e.L-1

This section of the I/f) system interfaces the

(intelligent) console device to the hardware/software

2B

architecture. This level converts data values from their

Internal representation (binary bytes) to their external

representation (f»SCII characters) and vice-versa.

Procedures are included for 1/3 of character strings,

integers, and real numbers. Another procedure is

available to read logical values from the console in the

for of "YES" and "N*n" answers. This level gives the

higher level structures the illusion of using a highly

sophisticated system console. In addition to' the level 3

functions, this console can perform Implicit conversions

to and from internal binary form-its.

The binary typed data formats are defined by the

underlying" programming standards of the system. In this

c\sc, tne language Ph/M defines the data types. The

string data type, however, is stored in a different

format fron the standard. Strings fire stored in memory

rflth a zero oyte terminating the string rather than using

string length counts throughout tne HM, program.

The ASCII inputs required for level 4 read

operations are Jefined in table .1-4.

Le.ital-5.

Level 5 structures introduce the concept of the

29

integer series of digits, no sign allowed.

Real

<slgn><integer>.<integer>[K<si'in><lnteger>]

Str lag

Logical

Series of characters un to <CH> including

the usual separators.

'Y' or *N' follower! by iny characters UD

to the Item separator.

Table 3-4: ASCII Input Typos

Interactive terminal. Ry Interactive, It Is meant that

the dialogue between the computer and user Is dependent

upon the user (no fixed dialogue Is used). H.nliKe level

4 routines, which operate on data, this level operates

upon the structure of the entered data. That Is, the

elements which separate the inout data values.

This level implicitly defines the Input line

structure to be a series of entries. fvtch entry Is of

the form :

<lnput value><Separator>

The separator is defined oelow as the EOV indicator

(character). If a separator appears before a <CR>

30

cnaracter, it Is ianored. This allocs the two follo*ina

input lines to be treated similarly :

1,2<CP>

Several special characters are used *t this level :

<CR>

Query old (current) value of the variable

Marks the end of a value (F.nvi

Marks the end of an input line (KOF,fJ) as well as
E'.iy

Certain rules are followed for unambiguous entries :

1. Check: for "?"

2. Try to read data item (stoDpinq before or at
KOV) . ,

3. Verify 5fJV found, if not then error

1. Stip over tnv character unless it Is also the

Before the user o r o q r a m attempts to read a data

item, the PR0-1PT processor is called with the promptlnq

.message. If tne user has not already responded to the

pen-liny re*d rejuest, the prompt is Issued. The PPOMPT

orocessor orlnts the query and requests a new input data

line only if the lnout character is the KOI.M. This

31

allocs the (ILL oroaram to always query the user without

worrying about cluttering the I/n dialogue.

Level 6 output demonstrates an application oriented

level of output. This level Is implemented in a separate

■nodule from the rest of the I/O system to show that it is

truly independent of the rest of the I/O system. This

layer provides fixed format output of integers, reals,

and string types. Peal numbers may be scaled before

outputting using the special routines described In level

6. The syste.n buffer (device 2) is used to accumulate

data before it is sent to the desired output device.

3.5 I/O System Commands

The input/output system allocs very limited access

to it by user program. The reason for this Is two-fold :

1. Users may use high level code for readability

2. ft small I/O set can be easily designed for
maximal error detection and correction.

A.s a side effect, hierarchical design produces produces

programs which either fail the first time or always work.

This section will discuss I/O commands implemented

12

on levels 4, 5, and 6. Three output devices are defined

in table 3-2 along with their mnemonics. The device

SYSBdF consists of a buffer array and an associated

buffer Index. The Index has the ranae

[0 .. BufferSize-i] where BufferSize is the lenath of the

array. Writes to the SYSRUF device store characters at

OOUFCOUUFSIND)

memory location and then Increment onUFSIWD. The device

is used as follows :

OntJFSIND = 0 ;
/* *rite to SYSBUF device ♦/
/* output O^UF buffer to the desired device */

Four sets of J/O commands are used by the M[,L

software :

1. Initialize : Flush the Input Duffer (Level 3)

2. Prompt/Read : Read a data value (Level 1)

3. Unformatted output J Cannot predict output
lenqth (Level 5)

4. Formatted output : Can edit level 5 outputs
(Level 6)

The initialization command is simply

CHAK s CR

33

which forces the I/O system to display th«» next prompt

messaae. This is used vhenever the HLL programmer is

unsure about the state of the input buffer wd wishes to

clear it.

The Prompt/Read set of operations consists of a

prompt followed by a read reouest. The demonstration

proTram descrioed later olves examples of the Prompt/Head

commands to read various data types (routines PROMPT,

PEAOSI, READSP, PF.ADSS, and prADSL). Tne program also

shows how the unformatted output is used in routines

WFITfcSI, w'RITESP, and WRITKSS. The formatted output

routines write to the system buffer and then copy parts

of the buffer to the desired output device. Numerous

examples of formatted output are shov^n in the TSTP

modules FILLSIN-FTNAL-DATA and the main program module

(TSTR).

34

4. RESULTS

In order to demonstrate the HTQ system operation, It

has b£en modified to run with a development svsteii. The

disk ooeratin-7 system used has several unfortunate

characteristics which preclude uslna an actual print

example. These problems concern Internal line editino

none by the development system nrior to actual character

I/O. The following examples have therefore been

re-produced from runnino tests on the development svstem.

4.1 Demonstration of the HIO system

"sln*f a modified version of the hardware drivers,

the I/O systeu was r^-taraeted to the TNT^r, TSTS-TT disk

operating system. A demonstration proqram was prepared

to illustrate the system flexibilityJ The demonstration

program runs in 10 kilobytes of user code and 0.5 K of

user variables layered upon 14 K of tbe disk operatinn

system. Of this 10 K, 6 K is used oy the I/O system, 1 K

oy tfie arithmetic processor (MATHUT), and 3 K by the

floating point subroutine package (FPAL).

Two levels of edltlna have been described above :

level 1 and level 5. Level 3 editing characters form the

Immediate edltlna characters which operate as soon as

tney are typed in. Level 5 edit characters operate only

35

when the application progra-n Issues a read renuest to the

oper-jtim system.

4.2 Line Editing Characters

The first character to ho discussed Is the comment

entry/exit indicator. For example, If the user types

'•G,x,x,*r.' only the *xx' Is transmitted to the level 4

software. The screen displays the followlno characters :

(* xx *)

The usage of the level 3 (line edltlno) characters will

oe described by example. The user wishes to type the

number '1234' into the input line. Comments are used to

Indicate what the user would he dolrn with each edit.

The usage of the monitor entry and baud rate switch

are Implementation dependent and therefore will not be

discussed.

4.3 Value Editing Characters

The level S (value) editing characters will be

exen.Dll f led as *ith the level 3 functions. The

application program in this evaiiple repeatedly requests

four inputs - inteaer, real, logical, and strln-g. The

36

1. 1235 (♦ NO* DF[,FTE 5 (PY USINC «H) AND
REPLACE rflTK 4 ♦) \51

2. 11 Jl (* OELETR THF WHni.R T.I'.'E BY
nst''fi *.u *) <xxx>

3. 1735 (♦ EDIT 5 AS RFFOPF: AND FNTEP
-K TO RE-TYPE LIN'F ♦) \54 <XXX>
1234

Figure 4-1: Character Fditln;j f.ampie Outnut

user proqram issues appropriate promnts before each read

and hcilns with the Integer read. Three tvpes of output

are written to the user's console : application r.rodram

pronpts, Hin system messnes, and user Inputs. To

ilstln-julsh these three entries In flaure 1-2 below,

application nroiran prompts are written In upper/lower

case, 1(13 Tiessaqes are In upper case, and user entries

are In lower case.

The demonstration program that was used for this

exanple is listed in fioure 4-3.

37

Enter
EUpnK
Enter

'fse Pi
YES>Us

Count : wron^ anser 1
IM INTEGER, IN'V.M.ID C
Count : 17,1.01 (* a

an A ?
e Plan

.' u s t o iTi e r N a T> e ?
*)
*)
♦)

» , i n ,
Enter

(* that
,'ount :

(* luery the o
A ? (* let the

charact
since n
*ill be
lndlcnt

, (♦ ski
(* ans
(* ski

(* re-typ
result

no
de

looks ok,
(* end of

s entered
HAKACTKP **♦ AT CHT.UMM J
ns'"er nevt
question before asked *)

Id value ♦) ?
value default. note that any

er can appear In a comment.
othing but a carriage return
typed, the Hin system

es this ») <CR>
p to 'plan a' question
wer It with 'no'
p to count 'ii]*»sr. ion

■e to check the
ino line *) <XXX>
iw enter that line *)
,monstration *)

Figure 4-2: Value Editing Proaran- Example

38

DECLARE COUNT RYTE ;
DECLARE; RCOMST PEAL ;
DECLARE PLAMA RlfTF ;
DECLARE CUST (20) fc<YTE ;
DECLARE CUAR BYTE EXTERNAL /* F'PJV OP-SYS */

,'HAR S CR ; /* FLUSH THE READ HUFFER
BEFORE STARTING */

START : /* START
CALL PPOMPT(
CALL READSK
CALL PR3MPTC
CALL PEADSR(
CALL PROMPTC
CALL READSLC
CALL PR1MOTC
CALL READSSC

OF

GOTO START ;
END ;

, 0)) ;
.■.r>, ,r REAP LOOP
.('Enter Count
.COUNT) ;
.('Enter Scale Factor',o));
.RCOf.'ST);
.'Use Plan A ',0));
.PLAVA);
.('Enter Customer Nane',0));
•CUST, LENGTH(CUST));

Figure 4-3: Demonstration Source Program

39

5. CONCLUSIONS

This thesis shows how software for microcomputers

can he treated as an effective interface between the user

and the application programmer. This view Is facilitated

by the construction of "virtual hardware" which emulates

real hardware. Virtual hardware is supported thrmioh the

hierarchal structure of the architecture.

Tr\e HIO system is shown to efficiently man the

user's objectives into keyboard entries. The measure of

efficiency In this case Is the reduction in keystrokes

for an error prone user.

The desiin of the system permits Its use In manv

microprocessor based Instruments. The system Is easy to

use for both the Instrument designer and the user. The

level structure permits system prog faminers to extend the

'113 system to suit Individual needs such as htah level

output devices.

The HID system was installed in an automated tensile

testlna system and produced soectacular results. An

operator wltn no previous computer experience learned to

use the I/O system within a few minutes. The user then

quickly lost the natural apprehensive feellnj aqalnst

computers. This Is attributable to the conversational

40

nature of this I/O system compared vith the question and

answer approach of other I/O systems.

In conclusion, the MTO system shoYs that hiuh

quality softk'^re can be developed for a microprocessor

operating system. This software is either very simple or

very complex depending on the point of view.

41

I. Source Code for the HIO System

The HID system has iieen lmolementPd In the standard

language PL/M. The procedures are broken do^n into three

parts by function. The tun system is currently targeted

to run on an INTEL 80/20-4 CPU board and uses

aoproxlmately 50^ bytes of RAM.

The source code is available from Lehigh University

in both CP/'-i and ISIS formats from the Electrical and

Computer Engineering Department. The three module

available are UTILS.ASM, IOUTII..PLM, and WRITET.PL*. The

-nodule UTILS.ASM is written in assembly lanauaae for the

R0RO microprocessor and contains the hardware drivers for

the I/O devices (level 1). IOUTIL.PLM contains levpls

2-6 of the UIJ system. WRTTFT.PLM contains the code for

level 6 of the I/O system. The languages used for the

UIO system ailo* it to be easily re-tarneted to another

system or another processor.

In order to use the Hio system, it must be

interfaced with a floating point I/O processing package.

The modules needed are included with the nin system and

are called LAS2EL and LEL2AS. Tt\e first module is the

ASCII to floating point conversion routine and the second

is the floating point to ASCII routine. In order to use

4 2

these modules, a floating Point nackane must be used.

The real arithmetic for this application was done with

the INTEL FPAL library which emulates a hardware floating

point processor.

To
SUT> no, the followinq nodules are needed to

implement the HI'J system on and RO/20-4 CPU board.

"TILS.ASM

IOUTTL.PLM

WRITET.PLM

LFL2AS.PLM

LAS2F-L.PL«

F'PAf,.L.IB

Level 1 of the HIC) system. .

Levels 7-6 of the MTO system.

Level 6 of the HIO system.

Floating point to ASCII conversion.

ASCII to floatlnq point conversion.

P'loating point arithmetic library.

All of the above module are available from Lehlqh

university except the FPAL.Lin module which is licensed

only throunh INTRL.

43

Vita

Rruce A. Muschlitz, son of Jar*es and Barbara, was

oorn in Bethlehem, pa In 195R. Me receiver] the B.S.

decree in Computer Enqinrerina fro* i.ehiqh University in

January, 1979. Currently* he is wor^ina toward the M.S.

decree In Electrical Knqineer Inq at Lehiqh University.

While persuincf tne M.S. deqree, he *ork:ed for 110 years

as a teaching assistant In the Electrical and Computer

Engineering department in various underaraJuate courses.

Tn addition, he was employed as a research enqineer at

Carpenter Tecnnoloqy Corporation for six months.

Mr. ^uschlitz is a memner of both the IEEE and the

IEEE Conputer Society.

44

Bibliography

[GLASS 791 K.I,.Glass.
Sattuace EaJLiablllty: tiaodtaaalc.
Prentlcp-Hall, 197°, chapter 1.1.

[GRTIGANO 7fl] ".Groqano.
Ctaatammlna la ULSLCLL.
Addlson-wes]py, l^P.

[KRPMiGttAN 81] R.w. Kprnlghan and J.K. tfashoy.
The UNJX Proorammlm Environment.
-Jil£IIIL£ H(J): 12-22, Aorll, l»flt.
IEEE Journal.

[KNUTU 6R] D.K.Knut.h.
lue Ant Qi. Caaiautar. tlcajtanaiiaa.
Addison-Wesley, \9f>H, chapter 2.2.1 and

2.2.2.
Knuth Discusses CIO queues brleflv.

MAKSOIJDIAV 69]
A. f». Maksoudlnn.
LLutiaLilllrv. dad SLaLIs.tlc£.
International Texfpno<, 1^69, paqps

272-275.

[5HAW 71] A.C.Shaw..
Iue Loulcal utislaa af. Uoccatlaa S^iLeai.
Prentice-Hall, 1974.

MIPTH 75] K.,Jensen and M. WJrth.
lifi-aCAL llset's. slaaual aod aeaatr.
Sprlnaer-Ver 1 a'j, 1975.
f-'Ulous wirth Is the author of PASCAL.

15

	Lehigh University
	Lehigh Preserve
	1-1-1982

	A high level input/output system for microprocessor based instruments.
	Bruce Allen Muschlitz
	Recommended Citation

	tmp.1451580486.pdf.WGbYI

