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ABSTRACT 

The purpose of this dissertation is to investigate the location 

of possible failure sites and fracture initiation in weldments with 

or without crack-like imperfections by application of strain energy 

density theory with incremental theory of plasticity. Each zone of 

weldments under investigation is modeled to withstand extensive 

amount of yielding. A finite element method is used to perform the 

stress analysis. 

The different weld configurations are investigated with in- 

creasing severity in terms of the type of mechanical defects encoun- 

tered in fabrication. The perfect joint is analyzed for reference 

purpose. The decreasing load carrying capacity of the welded struc- 

ture is determined for a joint with a notch and a crack in the HAZ. 

The strain energy density criterion is applied consistently to all 

three weld configurations such that the loading, geometric and mate- 

rial parameters can be studied in a combined and consistent fashion. 



CHAPTER I - INTRODUCTION 

Despite the extreme precautions taken during weld fabrication, 

welds are frequently imperfect in that they may be misaligned or 

contain defects. These defects, in the form of cracks or voids, 

can lead to premature or unexpected failure of structures such as 

pressure vessels, aerospace components, etc. Heldments are prone 

to failure by crack propagation because: 

1. A weldment provides continuity in load transfer from one- 

component of the structure to another. Hence, crack 

growth can be extensive once started. 

2. Welds often contain various types of defects, such as 

cracks, porosity and slag inclusions. 

3. The interface between the base and weld material referred 

to as the heat-affected zone is a weak link of the sys- 

tem. Thermal gradients arising from welding can introduce 

undesirable residual stresses and excessive geometric dis- 

tortion. 

A prerequisite to the application of fracture mechanics to 

weldments is a knowledge of the stress state during and after the 

The grain sizes within the heat-affected zone (HAZ) will vary and 
be different from those 1n the weld material (WM) and base mate- 
rial (BM). 



welding process. Although residual stresses will prevail, they 

may or may not be important depending on the properties of the ma- 

terial and the fabrication procedure. If the welded material is 

ductile and cracking occurred together with appreciable deforma- 

tion, then residual stresses have little or no effect on the subse- 

quent fracture behavior of the weldment because their effects have 

been diminished through yielding and fracture [1]. Rewelding is 

not recommended [2] because it is not only an extremely costly pro- 

cedure but it may further degrade the weld quality and introduce 

additional defects. 

In order to ascertain the integrity of weldments, it is neces- 

sary to establish criteria that can assess load carrying capability 

of weldments so that acceptability conditions can be established. 

Past work in this area tended to oversimplify the problem and did 

not pay sufficient attention to an understanding of the combined 

effect of material and loading. 

The function of a weldment is to transfer load, and hence it 

must be regarded as a composite structure. It is composed of var- 

ious zones of different metallurgical properties: the weld metal 

(WM), the heat-affected base metal near the weld and the unaf- 

fected base metal (BM). The heat-affected zone (HAZ), although 

very narrow, is composed of many regions of different metallurgi- 

cal structures. Because weldments undergo gross yielding and be- 

have nonlinearly, their behaviors are inherently load history 
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dependent.    Hence, information collected from welded tensile 

specimens serves little use and cannot be transferred to structure 

design. For this reason, many of the investigations [3,4] employ- 

ing linear elastic fracture mechanics (LEFM) are obviously funda- 

mentally unsound and their results are suspect. More specifically, 

the critical stress intensity factor K, or the crack opening dis- 

placement (COD) approach cannot reliably characterize the fracture 

behavior of weldments. Some of their limitations may be outlined 

as follows: 

1. The K, or COD concept relies on the existence of an ini- 

tial crack. Because of the nonhomogeneous material prop- 

erties within a weld, it is not clear where crack initia- 

tion will first occur and hence an a priori knowledge of 

the location of initial cracks is required by the LEFM 

method. 

2. Crack initiation can occur in any plane that is not neces- 

sarily aligned normal to the applied load, a condition 
* 

that is required in the application of LEFM . 

The energy release rate quantity has been applied to solve curved 
crack problems by necessitating the stress solution of a branched 
crack and performing the questionable limiting process. The ap- 
proach requires cumbersome analytical work, is problematic and 
simply impractical. 



The current concept of characterizing weldment behavior by a 

single parameter such as K, or critical COD is ill-conceived. A 

weldment is a nonhomogeneous system, and each section of the weld 

such as WM, HAZ and BM must be addressed separately. What should 

be determined is the load carrying capacity of the weld and not 

some ill-conceived fracture parameters that serve no useful pur- 

pose. Many of the claims made by the LEFM practitioners [5] are 

simply not valid. 

The selection of a suitable failure criterion should not be 

based on force-fitting experimental data with concocted analytical 

theories or results.  It is desirable to have a criterion that pos- 

sesses versatility and ease for treating, not just a few special- 

ized situations, but general loadings, complex geometries and dif- 

ferent materials whether linearly elastic or nonlinearly plastic. 

Sih [6] proposed the Strain Energy Density (SED) criterion for 

characterizing the fracture behavior of ductile and brittle mate- 

rials with the objective of resolving the specimen size effect [7]. 

Sih's theory assumes that the critical strain energy density func- 

tion (dW/dV) 1s a material constant that may be applied to pre- 

dict fracture Initiation of a material element near a crack tip, 

notch tip, reentrant corner, or 1n an unflawed structure [7]. 

This versatility of Sih's theory is unique because, unlike the 

LEFM approach, which 1s based on an energy release rate or stress 

intensity factor, it does not require a precise knowledge of the 

-5- 



size and location of the initial flaw.  In addition, SED criterion 

has been valuable in predicting crack path, fracture load and 

crack instability for structural members subjected to mixed mode 

loading conditions. 

The main objective of this dissertation is to apply,the SED 

criterion for predicting failure in welded joints. Potential fail- 

ure sites are identified with the help of results obtained from 

plasticity stress analysis, using the finite element method. 

-6- 



CHAPTER II - CURRENT METHODOLOGY 

Ductility is a desirable feature of weldments, as it permits 

the dissipation of energy due to deformation and distortion, the 

lack of which could lead to failure. To design for ductility is 

difficult because weldment behavior is influenced by loading, ge- 

ometry and material properties. Specimen thickness alone for ex- 

ample can influence the brittle to ductile transition [7], Figure 

1 in which a    is the critical applied stress on a specimen contain- 

ing a crack of length 2a. This transition region represents a 

change in failure mode from the very brittle by rapid crack propa- 

gation to the very ductile by plastic collapse. 

Comprehensive reviews of elastic-plastic fracture can be found 

in [7-9]. The LEFM theory applies only for wery  thick specimens 

when the quantity a <ftfa  no longer varies with the specimen thick- 

ness. Only then it can be referred to as the fracture toughness 

value K, . The K, type of specimen testing approach cannot be 

applied to weldments because energy release at instability, should 

1t happen by the propagation of a single crack, can only occur 1n 

one part of material at a given time: either 1n WM, HAZ or BM. 

In other words, (/uxctuxz toughnu&  applies in the case of a homo- 

geneous material. 

One of the current methods for measuring the so-called mate- 

rial toughness of weldments is to machine a sharp notch in or near 

a welded joint and load it to failure. For instance, the COD bend 
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test or the notched tension tests are often used for this purpose. 

In addition to the criticisms of the basic approach as stated ear- 

lier, the test data contains much scatter. This is due to varia- 

tions in notch locations, orientations, weldment and specimen de- 

sign [10]. Despite these shortcomings, the COD approach is being 

adopted by many practitioners and researchers. Their results are 

inconsistent in that they themselves cannot agree on the location 

of the crack where the COD measurement should be taken. In fact, 

the COD quantity in .itself has no physical meaning and its relation- 

ship with the critical stress intensity factor K, or energy re- 

lease rate 6, holds only if the material is linearly elastic, 

given by [11]: 

(1-v2>Klc Glc = COD ays, Glc =  £—— (plane strain) (1) 

where a     is the yield strength an<J E is the Young's modulus. 

Needless to say, the above relationship cannot be applied when 

yielding takes place ahead of the crack [12]. Note that equation 

(1) renders grossly different values of G, for the two curves 

shown in Figure 2. 

Since weldments undergo yielding at large, the COD approach 

cannot be expected to give accurate results. The path indepen- 

dent J-integral has the same basic shortcomings as it cannot ac- 

count for the energy dissipated due to plastic deformation. The 

empirical relation 
-8- 



J = mays  COD (2) 

1s subject to the same criticisms as equation (1). The parameter 

m is determined experimentally. The range of l£m<2 has been claimed 

[13]. Although equations (1) and (2) are similar, J does not have 

the physical meaning of energy release rate, as G. The only dif- 

ference between J and G is that the former applies to a nonlinear 

elastic material and the latter to a linear elastic material. Both 

quantities lose their significance when applied to an elastic-plas- 

tic material whose behavior depends on load history. Despite this 

obvious limitation, K, , COD and J have been used indiscrlminantly 

to welded structures [14]. 

-9- 
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CHAPTER III - STRAIN ENERGY DENSITY THEORY 

A complete description of the stress and strain state of a 

given element requires a knowledge of the six components of stress 

and strain. The prediction of failure by yielding and/or fracture 

requires the specification of failure criteria. The two classical 

criteria for predicting yielding are the total strain energy den- 

sity, or Beltrami-Haigh theory, and the distortional energy, or 

Huber-von Mises Hencky theory. According to these theories, fail- 

ure in a material by yielding occurs when the total or distortional 

strain energy per unit volume absorbed by the material equals the 

energy per unit volume stored in the material when loaded in uni- 

axial tension at yield. This quantity corresponds to the limiting 

strain energy density and is assumed to be a material constant. 

Extensive experiments have been carried out to measure the strain 

energy density quantity corresponding to failure by yielding [15]. 

A generalized strain energy density theory for predicting material 

failure by yielding and fracture has been proposed by S1h [16-18]. 

He associated yielding with the threshold values of the maxima of 

the strain energy density function dW/dV, and fracture Initiation 

with the minima. This concept 1s extremely general since (dW/dV) max 
and (dW/dV) , are known to exist at a given point in all stressed 

solids regardless of the material behavior. 

Because of the limitation of continuum mechanics theories, 

failure Initiation cannot be identified precisely but must be as- 

sumed to occur over a finite region within which the microstructure 
-12- 



effects of the material cannot be ignored. The radius of this re- 

gion is assumed to be r . The size of r„ has been estimated theo- 3 oo 
retically by Sih and Kipp [19] and experimentally by Theocaris 

[20]. In this connection, 

dW _ S m 
dV-F (3) 

follows naturally where S 1s known as the strain energy density 

factor whose critical value S is related to K, by the relation: 

^ . iH^l ^ (4) 

When equation (3) is applied to the crack tip, r becomes r 

and dW/dV is the strain energy density in an element outside the 

circular or core region with radius r . Figure 3 gives a sche- 

matic representation of the relationship 1n equation (3) at the on- 

set of fracture Initiation, I.e., (dW/dV) = sc/
r
c- 

Tne critical 

ligament distance r 1s known once (dW/dV) 1s determined from the 

area under the true stress and strain curve while S 1s found from 

a K, test. 

In general, the function dW/dV can be computed from 

dV = / 01jdE1j  1'j = 1>2'3 (5) 

where o.. and e.. are the rectangular components of the stress and 

strain tensor. _i3_ 



The basic hypotheses of the strain energy density theory may 

be stated as follows: 

Hypothesis (1): The relative minima of dW/dV, (dW/dV) . , and 

maxima, (dw*/dVl  . are assumed to coincide with the locations of 
max 

fracture and yielding respectively. 

Hypothesis (2): Yielding and fracture are assumed to initiate 

when (dW/dV)   and (dW/dV) ,    reach their respective critical 
* 

values . 

Hypothesis (3): The rate of yielding and fracture are assumed 

to obey the relation 

<dY}  '■r'-r' — 'U' — 'r-' const. (6) 
av c  rl  r2      rj       rc 

if the process leads to unstable failure. Then 

r] < r2 < — < r^ < — < rQ (7) 

In situations where yielding and fracture come to arrest, then 

r}  > r2 > — > r. > — > rQ (8) 

The critical  strain energy density value (dW/dV)    in the elastic 

material  should be distinguished from that in the plastic material 

(dW/dV)*. 
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such that 

©  = r- = const- <9> 
C    0 

where r corresponds to the radius of the core region. 

This completes the introduction of the strain energy density 

criterion. It is now pertinent to apply 1t to predict possible 

failure sites in weldments. To this end, a knowledge of the stress 

state in weld joints is required. 

-15- 
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CHAPTER IV - STRESS ANALYSIS PROCEDURE 

The stress analysis is performed using the modified version 

of the "Plastic Axisymmetric/Planar Structures (PAPST)" computer 

program that was developed to solve structural problems involving 

both material and geometric nonlinearities. The incremental theory 

of plasticity with a von flises yield criterion is incorporated in 

PAPST. The twelve node quadrilateral isoparametric elements with 

cubic displacement shape functions are used such that accuracy near 

the crack is achieved by placing the two 6id.n-nod.zA  at the 1/9 and 

4/9 distance of the sides along the corner node at the crack tip 

[21]. Numerical results for the strain energy density at the nodes 

can vary from 10 to 20 percent depending on the interpolation tech- 

nique employed. This uncertainty is avoided by displaying the val- 

ues of dW/dV at the quadrature points of each element in the form 

of contour plots. 

The effect of finite strain is incorporated in PAPST through 

the use of an updated Lagrangian formulation such that the coordi- 

nate system is convected with the deformation. The relationship 

between the true strain rate and deformation rate (or velocity) is 

unchanged for the small strain theory in this coordinate system. 

The program automatically checks and controls the equilibrium con- 

dition throughout the loading history [22]. 

Following the incremental variational principle presented by 

Washizu [23], the system under consideration refers to an arbi- 

-17- 



trary reference state LR of the local path as shown in Figure 4. 

It is assumed that all state variables are given at the refer- 

ence state LR upon which basis the stresses, strains and displace- 

ments of the current state L are determined. The current and c 

reference state are assumed to be incrementally close. The local 

(initial) coordinate system X^ is taken as a Lagrangian frame of 

reference in relation to the current state L . This coordinate c 

system is assumed to be fixed with the body as It deforms from LR 

to L . When deformed, these coordinates also become convected. 

The global reference system is YJ  and is used to assemble all ele- 

ments of the discretized body [24], Figure 4. 

Incremental plasticity equations are used. The general equi- 

librium equation when written 1n rate form 1n the absence of In- 

ertia effects becomes 

Da. . 

*rp+bj30 (10) 

1n which a., 1s the stress rate/unit volume, and b. 1s the body 

force rate/unit volume.    For incompressible plastic flow, the gen- 

eral constitutive equation 1s 

°ij = *Meij +frfcekk61j " 2vje?j (11) 

with u being the shear modulus, v the Poisson's ratio, e.-• the to- 

-18- 



tal strain rate and e?. the plastic strain rate. 

The von-Mises yield criterion or J~-flow theory of plasticity 

is used. The deviatoric strain rate is expressed in terms of the 

current deviatoric stress components S.,. and the components of the 

deviatoric stress rate S.., as follows: 

e. 
ij 

"IT *ij + I f(ae)Sij°e' where ae=ay; °e>0; 1/<j 

1+v : 
~rsij , otherwise 

(12) 

in which e^ is the deviatoric strain rate components, 

eij 
= c 

ij 3 epp5ij 

'ij " aij 3" app51j 
(13) 

S' = s bij  bij 'ij 

In equations (12) and (13), E is the Young's modulus, o the 

current yield stress, S.. the current deviatoric stress components, 

S!J the deviatoric stress 

the current yield surface. 

S'.i  the deviatoric stress components measured from the center of 

The coordinate a., of the stress space of the center of the 

yield surface is given by   _-,g_ 



aij 

I 8Sk*.Sij/oe2' where °e=V ae>0 

, otherwise 

(14) 

and 

°e = '? SijSij (15) 

where o is the von Mises effective stress, and a'  the von Mises 

effective stress with respect to the coordinate of the current cen- 

ter of the yield surface: 

*e " / 7 S1jSij (16) 

Let the function f(0, which depends on the uniaxial stress- 

strain curve, be defined as 

f(oe) 
°eae 

(17) 

such that e^ represents the uniaxial plastic strain rate in terms 

of the effective stress and effective stress rate. The parameter 6 

in equation (14) can vary from 0 to 1 with 0=0 corresponding to iso- 

tropic hardening and 8=1 to kinematic hardening. A combined iso- 

tropic and kinematic hardening can also occur. The yield surface 
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of isotropic hardening expands uniformly about the origin in stress 

space, Figure 5(a), whereas the yield surface of kinematic harden- 

ing translates as a rigid body in a direction normal to the yield 

surface, Figure 5(b). Combined hardening theory allows both expan- 

sion and translation of the yield surface, Figure 5(c). The deri- 

vation of the equation corresponding to these cases can be found 

in [25,26]. 

The relationship between the uniaxial stress and strain is non- 

linear. Permanent deformation prevails when the material is loaded 

beyond the yield point. The stress-strain curve is approximated 

by using a multilinear model to describe the uniaxial response. 

The following relationship is used: 

* - f + r (or°ys>+ r- <°2-
0i> + — + r'vvi'      <18> 

where o„ i<o<a„ and 
n-l   n 

EAe -Aa„ 
n  n 

ln "  Ao 
n 

(19) 

The plastic strain rate is given by 

a a 
n e 

"plastic   T 

and hence together with equation (17), f(o ) becomes 

-21- 
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f (ae) = Elastic = ^_     ' (21) 

aeCTe    e 

in which a is chosen to correspond with the current value of the n 
effective stress [27]. 
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CHAPTER V - ITERATIVE SOLUTION PROCEDURE BY FINITE ELEMENT 

The governing equations of incremental plasticity are solved by 

the finite element method. The system of equations is ducAoXA-zzd 

to form a system of nonlinear algebraic equations: 

K(u) • u - R = 0 (22) 

where R is the nodal loading vector and u the corresponding nodal 

velocity vector. The stiffness matrix is 

K(u) =   z I BTD(u)BdA (23) 
~ ~   elements element area - - - - 

It depends on the current nodal displacement vector through the 

matrix D(u) relating the stress and strain rates and through the 

matrix B relating the strain rate to the nodal displacement rates. 

This nonlinear system of equations is then solved for the nodal dis- 

placements, u, for each load Increment by the Newton-Raphson tech- 

nique (tangent stiffness method). Convergence criteria are based 

on the following three factors: 

(1) The mean square of the residual force vector accounts for 

changes in incremental stiffness due to geometric distor- 

tion and material nonllnearlty. The condition 

|F|2 = F • F (24) 
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enforces global equilibrium. 

(2) The mean squares of the Increment load vector is 

• * PI i ? IAR|2 = AR • AR (25) 

(3) The total load vector for the particular increment is 

|R|2 = R • R (26) 

such that 

^-p- <_ C1 = .05 (increment equilibrium) (27) 

and 

T < C2 = 10"7 (overall equilibrium) (28) 

Refer to [22] for more details. 
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CHAPTER VI - ANALYTICAL MODELING AND MATERIAL PROPERTIES 

Figure 7 shows two plates joined together by a butt joint. 

Two heat-affected zones HAZ, and HAZp are formed between the weld 

material (WM) and based material (BM). In general, the problem 

is three-dimensional in character. Depending on the nature of 

loading, certain simplifications will be introduced. For example, 

if the welded plate structure is sufficiently wide and undergoes 

cylindrical bending, then it suffices to utilize a two-dimensional 

analysis considering only the stress and strain variations in the 

thickness and longitudinal direction, while the variations in the 

transverse direction are  assumed to be negligible. 

While the mechanical properties of the BM and WM can be deter- 

mined before welding by standard testing procedures, those of the 

HAZ and WM after welding cannot be easily evaluated. Data on me- 

chanical properties from tests of presumably homogeneous specimens 

removed from welds are available. Soete and Denys [28] performed 

tests on small slices cut parallel to the weld. The slices are 

small enough that homogeneity of the metallurgical microstructure 

along the transverse and longitudinal direction can be assumed to 

be uniform. The results of these tensile tests yield useful infor- 

mation on the change of mechanical properties at different loca- 

tions of the weld. The residual stresses are released by cutting. 

The following properties are found in [28]: 
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(1) The yield strength of the BM after welding has the 

lowest values in comparison with those of the HAZ and 

WM. 

(2) The highest yield strength obtained is for the HAZ while 

that of the WM fell in between those for the BM and HAZ. 

The mechanical properties for the BM, WM, HAZ, and HAZp to be 

used in this work are given in Table 1, in which e^ is the final 

strain at failure. 

TABLE 1 - MECHANICAL PROPERTIES OF ZONES 

OF THE WELDED JOINTS 

ay$  (MPa) cf (dW/dV)c(MJ/m
3) 

BM 4.483 x 102 .117 1.891 x 102 

WM 4.828 x 102 .117 1.419 x 102 

HAZ] 6.552 x 102 .0935 3.470 x 101 

HAZ- 5.517 x 102 .105 7.426 x 101 

Since the chemical compositions are not altered significantly 

during welding, the elastic modulus and Poisson's ratio should be 

unaffected [29] and the values of E = 2.069 x 105 MPa and v = .3 

will be used. The Ramberg and Osgood relation with a » .2 and n=5 

is used: 

e = 

a 
F - ys 

r O + a{(-—) - l}o ], o>o 
ys     yb 
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and assumed to apply for the WM, HAZ and BM with different yield 

strength. Refer to Figure 8. The test data in [28], however, are 

based on the small specimen uniaxial tensile tests by removing the 

WM, HAZ and BM from the weldments. They may not represent the ac- 

tual situation since it is well-known that the translation of small 

specimen data to the larger size component structure is still not 

well understood even though the material microstructure is unal- 

tered. Ductility and brittleness of a material depend sensitively 

on the volume to surface ratio of the specimen. 

Weldment failures have been identified with cracks along the 

fusion line, in the WM, HAZ or in the BM itself [30]. Figure 9(a) 

shows a pipeline structure that is welded longitudinally. The in- 

ternal pressure tends to load the joint by cylindrical bending. 

In this case, the weldment is entirely yielded. The objective in 

design 1s to assess the allowable load or internal pressure 1n 

terms of the construction of the weld joint. Several possibilities 

are shown in Figure 9(b) 1n which the perfectly aligned situation 

with no initial defects 1s taken as a reference, while the other 

cases of an edge notch, Figure 9(c), and undercut 1n one of the 

BM and a crack 1n the HAZ are investigated to show the difference 

in failure modes. 

In order to have a realistic appraisal of the load carrying 

capacity of the weld joints shown in Figure 9, the analytical model 
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should include the combined influence of the BM, HAZ and WM. The 

dimensions of the three weld joints to be analyzed are shown in 

Figures 10 to 12. 
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Fusion Line 

FIGURE 7 - VARIATION OF YIELD STRENGTH OF A HELD JOINT 

IN LONGITUDINAL DIRECTION 
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FIGURE 8 - UNIAXIAL STRESS-STRAIN CURVES FOR 

BM, WM, HAZ2. HAZ, 
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FIGURE 12 - DIMENSIONS OF THE J-SHAPED WELD JOINT WITH CRACK 



CHAPTER VII - DISCUSSION OF RESULTS 

The finite element grid patterns for the perfect joint, 

notched joint and J-shaped joint with crack are shown in Figures 

13, 16 and 22, respectively. They are all subjected to pure bend- 

ing loads simulated by linearly varying compressive and tensile 

stresses according to the simple beam formula a  = M /I where M is 

the bending moment, y the distance from the centroidal axis and I 

the moment of inertia. The loading increments for the three joints 

are different and they are given in Table 2. The maximum applied 
• • 

stress for the perfect joint is 3a , the notched joint is 1.6a and 
*      * p 

J-shaped joint with crack os 0.9a where a = 6.897 x 10 MPa. 

Pe/i^ect Joint  [FiguAeA  10 and 13).    The finite element results 

for this weld configuration are summarized in Figures 14 and 15 in 

terms of the effective stress a « and strain energy density dW/dV 

contours. Figure 14 gives nine a -*  contours with magnitude from 

2.758 x 102 to 1.310 x 103 MPa. Referring to Table 1, the stress 

states corresponding to contours 5 to 9 are beyond the yield 

strength a     of the WM, BM and HAZ. The intensity of yielding in- 

creases as the surfaces of the plates are approached. Contours of 

constant strain energy density are displayed in Figure 15. Rela- 

tive minima of dW/dV or (dW/dV)m1n are sited at five (5) different 

*    
The effective stress a ff  = /3J? where J« is the flow criterion of 

von Mises. eTT    c c 
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TABLE 2 - RATE OF LOADING OF THE THREE WELD JOINTS 

ncrement 
Number 

Perfect Joint 

o* (MPa) 

Notched Joint 

o* (MPa) 

J-Shaped Joint 
with Crack 

a* (MPa) 

1 5.067 X 102 7.528 x 101 3.419 x 101 

2 5.517 X 102 1.379 x 102 1.379 x  102 

3 5.862 X 102 2.069 x 102 2.069 x  102 

4 6.207 X 102 2.758 x 102 2.758 x  102 

5 6.552 X 102 3.448 x 102 3.448 x 102 

6 6.635 X 102 4.138 x 102 4.138 x 102 

7 6.724 X 102 4.827 x 102 4.827 x 102 

8 6.793 X 102 5.517 x 102 5.517 x 102 

9 6.897 X 102 6.207 x 102 6.207 x  102 

10 7.586 X 102 6.897 x 102 

11 8.276 X 102 7.586 x 102 

12 8.966 X 102 8.276 x 102 

13 9.656 X 102 8.966 x 102 

14 1.034 X 103 9.656 x 102 

15 1.103 X 103 1.034 x 103 

16 1.206 X 103 1.103 x 103 

17 1.379 X 103 

18 1.551 X 103 

19 1.724 X 103 

20 1.896 X 103 

21 1.965 X 103 

22 2.069 X 103 

•39- 



* 
locations. Those labelled 1 and 2 are maximum values of the local 

minima (dW/dV)Jj'J in the WM and HAZ and those labelled 3, 4 and 5 

are global minima with 3 being in the WM, 4 in HAZ and 5 in the BM. 

• 2 
At maximum load of 3 x a   =  6.897 x 10 MPa, the values of 

(dW/dV)™* at sites 1 and 2 are 4.276 MJ/m3 and 5.241 MJ/m3, re- 

spectively, which are well be Tow the threshold values of (dW/dV) 

given in Table 1. With an increasing applied load or bending, the 

(dW/dV)™* value at site 2 will first reach (dW/dV)* in the HAZ be- 

fore site 1 becomes critical. This prediction tends to agree with 

the experimental observation obtained recently for high strength 

weldments. Fracture was seen to initiate and propagate along the 

weld seams or HAZ [31]. 

The locations of the global (dW/dV) •. appear near the central 

axis of the welded structure. The interaction between the local 

and global (dW/dV)m1n determines the termination of local failure 

and the beginning of global instability at which point the welded 

structure collapses entirely. The precise relationship is beyond 

the scope of this study. 

Notchzd Joint [TLQUAM  11 and 16).    Figure 17 gives an overall 

view of the a ~-  contours when the weld joint contains a notch on 

The local minimum of dW/dV should be distinguished from the global 
minimum. The former refers to a system of coordinates within the 
system, and the latter a system of coordinates viewed from outside. 
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the tension side of the bent structure. Yielding becomes more pro- 

nounced as the notch tip is approached. The region-corresponding 

to contours 7, 8, 9, etc., is well within yield. An enlarged view 

of the notch tip region is given in Figure 18 in which the local 

oe*f  is shown to be 1.793 x 10 MPa which is several times larger 

than the yield strength of the WM. 

Of interest is the strain energy density contours near the 

notch which can yield information on fracture Initiation. There 

are four (4) (dW/dV) . locations, as indicated in Figure 16. 

Sites 1 and 2 are the local (dW/dV)™* occurring 1n the WM and 

HAZp respectively. In the WM, (dW/dV)^ = 1-517 x 102 MJ/m3 

which is substantially higher than the value of 4.276 MJ/m3 when 

the notch was absent, Figure 13. 

This has exceeded the critical (dW/dV)* » 1.419 x 102 MJ/m3 

for the WM in Table 1. Similarly, (dW/dV)JJ** = 6.621 x 101 MJ/m 3 

1n the HAZ,, also exceeded its corresponding threshold of (dW/dV) 

= 3.470 x 101 MJ/m3, whereas without the notch, the local (dW/dV)J^ 

is only 5.241 MJ/m3, Figure 13. The Influence of the notch 1s seen 

to be very  significant. These values correspond to a maximum 

stress of 1.6 x (a*  = 6.897 x 102 MPa). Figures 20 and 21 Illus- 

trate that dW/dV is a function of the radius distance r from the 

notch tip shown 1n Figure 19. At r = .3 nui, (dW/dV)JJ** 

= 1.517 x 102 MJ/m3 occurred at e = 0°, (Figure 20), while at r 

= .56 mm (dW/dV)™* = 6.621 x 101 MJ/m3 corresponding to 9 = 105°. 

The energy density increases with decreasing r. This result is to 



be expected. 

The global minima of dW/dV occur at distances much further 

away from the notch tip and hence their values are correspondingly 

lower. In Figures 16 and 19, they are labelled as regions 3 and 4 

with (dW/dV)min = .475900 MJ/m
2 and .001034 MJ/m3, respectively. 

J-Shapzd Joint wct/i Clack  (VIQUAU  M and  22). Consider the 

joint configuration in Figure 12 in which one of the BM is undercut 

while an edge crack prevails in the HAZ, next to HAZo. Referring 

to Figures 12 and 22, the joint is subjected to bending stresses 

such that the edge crack appears in the tension side with a maxi- 

mum stress value of 0.9 x (o = 6.897 x 10 MPa). The o ~ con- 

tours in Figure 23 show that yielding is now confined locally to 

the material near the crack tip. The values of a ,- in the dark re- 

gion are in the range of 7.586 x 10 to 1.793 x 10 MPa, well above 

the yield strength of the HAZ,, Table 1. The enlarged view of the 

HAZ, with an edge crack 1s shown 1n Figure 24. Note that the en- 

tire HAZ, is yielded with Increasing intensity of a ~ as the crack 

tip 1s approached. At contour No. 12, the effective stress 1s more 

than twice the yield stress of the HAZ, material. 

The strain energy density contours near the crack tip are dis- 

played in Figure 25. The values of dW/dV are clearly seen to In- 

crease with decreasing r, the distance measured from the crack tip. 

For r = 0.075 mm, three local minima of dW/dV are found, as illus- 

trated in Figure 26. They are (dW/dV)min = 4.000 x 10
1 MJ/m3 at 
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e = 0°, 4.621 x 101 MJ/m3 at a = -122° and 4.965 x 101 MJ/m3 at 

0 = 124°. The maximum value of the local (dW/dV) . will be de- 

noted as (dW/dV)™* = 4.965 x 101 MJ/m3. Although all three of 

these values surpassed the critical (dW/dV) = 3.470 x 10 MJ/m3 

for the HAZ,, fracture initiation would have first occurred in the 

direction of o = 124° corresponding to the location of (dW/dV)™* 
* 

while the load is increased up to the maximum value of 0.9 x (a 

= 6.897 x 102 MPa). 

This example shows that fracture initiation favors the side 

where the BM was undercut. Such information is useful for opti- 

mizing the geometric, loading and material parameters. 
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FIGURE 13 - FINITE ELEMENT GRID PATTERN AND LOCATIONS OF LOCAL AND 

GLOBAL (dW/dV)min 
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FIGURE 14 - EFFECTIVE STRESS CONTOURS AT 3a* 
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FIGURE 15 - STRAIN ENERGY DENSITY CONTOURS AT 3o* 
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FIGURE 16 - FINITE ELEMENT GRID PATTERN AND LOCATION OF LOCAL AND 

GLOBAL (dW/dV)min 
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FIGURE 17 - EFFECTIVE STRESS CONTOURS AT 1.6o 
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FIGURE  18 -  EFFECTIVE STRESS CONTOURS AROUN0 THE NOTCH AT  l.6o 
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FIGURE 22 - FINITE ELEMENT GRID PATTERN OF THE J-SHAPED 

WELD JOINT WITH A CRACK 
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FIGURE 23 - EFFECTIVE STRESS CONTOURS AT .9u* 
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CHAPTER VIII - CONCLUSIONS 

The prediction of possible failure sites in welded joints has 

been carried out in this study by application of the strain energy 

density theory and the incremental theory of plasticity. Because 

most weld joints undergo gross yielding during service, their local 

transfer characteristics are inherently dependent on the load his- 

tory. The standard specimen testing procedure is not adequate be- 

cause, in principle, weldment integrity can only be determined 

under actual loading conditions. 

Three different joint configurations are investigated with in- 

creasing severity in terms of the type of mechanical defects en- 

countered in weldment fabrication. The perfect joint is analyzed 

for reference purpose. The decreasing load-carrying capacity of the 

welded structure is determined for a joint with a notch and a crack 

in the HAZ. The strain energy density criterion is applied consis- 

tently to all three joint configurations such that the loading, 

geometric and material parameters can be studied in a combined fash- 

ion. The analytical procedure can be used to optimize weldment de- 

sign. Once the failure initiation sites are found, damage growth 

by yielding and crack growth up to global instability of the weld- 

ment can also be carried out by the strain energy density theory. 

Lacking at present are realistic data of (dW/dV) and (dW/dV) 

values of the WM, HAZ and BM. Experiments, however, will have to 
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be designed in accordance with additional analytical results on 

weld joints loaded up to final separation. The effect of loading 

rates will have to be first studied analytically. 
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