
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1982

A study of computations on binary decision
diagrams.
James Patrick McHugh

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
McHugh, James Patrick, "A study of computations on binary decision diagrams." (1982). Theses and Dissertations. Paper 1982.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228649791?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F1982&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1982&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1982&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F1982&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/1982?utm_source=preserve.lehigh.edu%2Fetd%2F1982&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

A STUDY OF COMPUTATIONS ON

BINARY DECISION DIAGRAMS

by

James Patrick McHugh

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Electrical Engineering

Lehigh University

1982

ProQuest Number: EP76255

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest

ProQuest EP76255

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

/ CERTIFICATE OF APPROVAL
/

This thesis is accepted and approved in partial fulfillment of

the requirements for the degree of Master of Science in Electrical

Engineering.

?>//±/fl.
(date)

Professor in Charge

Chairman of Department

■ii-

ACKNOWLEDGEMENT

I am grateful to Professor A. K. Sussklnd for his patient

guidance 1n the research and preparation of this paper. I also

wish to thank Connie Weaver for typing the final manuscript and

my wife, Mary, for drafting the illustrations.

•111-

TABLE OF CONTENTS

Page

Abstract 1

1. Introduction and Background 2

2. Objectives 9

3. Algorithms 11

3.1 Entry of a Diagram into Memory 11
3.2 Vertex Movement in the Presence of Faults 14
3.3 Fault-Tracing Algorithm 17
3.4 Test Generation • 20

4. Example for the Fault-Tracing Algorithm 22

5. Data Structures 29

5.1 Node Representation 29
5.2 General Diagram Structure 31
5.3 Global Data 32

6. The Program Package for Diagram Manipulation 34

6.1 Implementation Considerations for the Algorithms... 34
6.2 Choice of a Programming Language 36
6.3 Outline of the Program Package 37

7. Performance Evaluation 38

7.1 CPU Time Versus Memory Usage 38
7.2 Implementation Details 39
7.3 Test Cases 41
7.4 Test Results 43

8. Conclusions 54

References 56

Vita 57

iv

LIST OF FIGURES

Page

Figure 1 - Binary Decision Diagram of f = A~B + BC 3

Figure 2 - Counting of Vertices 4

Figure 3 - Binary Decision Diagram With Unfeasible Paths 6

Figure 4 - Merging of Identical Subgraphs 8

Figure 5 - Example Diagram For Fault Analysis 15

Figure 6 - Binary Decision Diagram for f » ABCD + ABC + ABC
+ ABCD + CE, with C stuck-at-1 and E stuck-at-0.. 22

Figure 7 - Sample Node Record 30

Figure 8 - "Folding" of a Three-Variable Binary Tree 42

Figure 9 - Results for Tests la, 2a and 3a 52

Figure 10- Results for Tests lb, 2b and 3b 53

-v-

LIST OF TABLES

Page

Table 1 - Information Saved In Algorithm Step 3c Aigoi
ia AB, for C-node Reached Via AB 23

Table 2 - Partial Test Information for C-node
Reached Via AB 25

Table 3 - Information Saved in Algorithm
Step 3c for E-node 26

Table 4 - Partial Test Information for E-node 26

Table 5 - Partial Test Information for C-node
Reached Via A~B 27

Table 6 - Results of Analysis of Figure 6 28

Table 7 - Sample Output from Test la 45

Table 8 - Sample Output from Test lb 46

Table 9 - Sample Output from Test 2a 47

Table 10 - Sample Output from Test 2b 48

Table 11 - Results for Test 1 49

Table 12 - Results for Test 2 50

Table 13 - Results for Test 3 51

■VI-

ABSTRACT

Binary decision diagrams are tools with which boolean functions

may be analyzed without the need to resort to intricate algebraic

manipulations. Their structure allows them to be represented on a

computer in a straightforward manner. This paper explores the costs,

in terms of GPU time and memory usage, associated with'manipulation

of these diagrams within a computer.

An algorithm is developed which uses a diagram of a function to

analyze the movements of vertices between the true and false bodies

of that function in the presence of stuck-variable faults. From

this information a set of fault-detection tests is derived. A com-

puter program which implements this algorithm is then presented.

The program is designed to provide a worst-case measurement of the

CPU time required for analysis. The performance of this program is

measured for binary trees with from one to twelve variables. The

results indicate that although the algorithm is effective, further

development is needed to arrive at a more efficient implementation

of the algorithm.

1. INTRODUCTION AND BACKGROUND

Binary decision diagrams are a tool with which large boolean

functions may be manipulated and analyzed without the need to resort

to complex algebraic manipulations. They were first introduced by

Akers [1]. The key feature of these diagrams is that they can be

used to perform functional rather than implementation-dependent

analysis of boolean functions. Specifically, they can be used to

analyze the effects of faults upon a function and yield results

which apply to all implementations of the function. Before pursuing

this point, some of the basic nomenclature associated with binary

decision diagrams will be introduced.

A binary decision diagram is a directed acyclic graph [1].

Unless otherwise specified, all edges are directed downward, that

is, away from the root node. Each node in the diagram may have any

number of entering edges. Only and exactly two edges leave all

nodes other than the terminal nodes. There are two terminal nodes,

labeled zero and one. (These may be repeated at several places on a

diagram for clarity.) Associated with each node other than the

terminal nodes is a variable which is called the node variable. It

1s possible for one variable to be associated with more than one

node; however, a restriction will be placed on this condition later.

Consider the diagram of the function A~B + Fc (Figure 1). The

function f 1s depicted as entering the root node of the diagram.

From there a number of paths may be traced through the diagram.

Figure 1 - Binary Decision Diagram Of f = A~B + B~C

The value of A determines which edge is chosen for traversal to an

offspring node. Unless otherwise specified a node variable with

value zero selects the left exiting edge. A value of one selects

the right exiting edge. Suppose that A is equal to zero. The next

node in the path is then the leftmost of the two B nodes. The left

and right outgoing edges of this B node are labeled with a one and a

zero respectively to indicate that they differ from the convention

of zero-edge on the left and one-edge on the right. Such a change

is usually made to neaten the diagram. Now suppose that B is equal

to zero. The next node encountered is then C. If C is equal to one

then the next node encountered is the one terminal node. Thus the

value of the function is one for the input combination A = 0, B ■ 0,

C = 1. The path which has been traced through the diagram is called

an activation path. Since this activation path ends in a one it

-3-

represents a nrinterm of the function. That mlnterm 1s A BC. Each

vertex of the function can be represented by an activation path

through the diagram from the root to a terminal node. The value of

the terminal node which is reached is equal to the value of the

vertex, that is, the value which the function assumes in response to

that input combination. For example, the vertex ABC produces an

activation path which ends at a zero node. Thus, the value of the

function at this vertex is zero, as it 1s for the vertices AB C and

ABC.

The total number of vertices in the false and true bodies of a

function may be determined as follows (see Figure 2). The function

f = AB + BC contains three variables, therefore it has eight

vertices. These are depicted as entering the root node from f.

f

2/ \2 2/ \2

1 (C) "0

1 / X 2

0' "1

Figure 2 - Counting Of Vertices

Upon exiting the root node,A,these vertices divide equally between

the two outgoing edges. This is because one-half of the vertices

-4-

contain A and one-half contain A. The four vertices which enter the

leftmost B node are again divided equally, with one-half entering the

one terminal node and one-half continuing on to node C. The two

vertices which enter the one terminal node are A~B C and A~BC. These

are in the true body of the function. Likewise, the four vertices

which enter the rightmost B node are divided equally. Two (AB C and

ABC) enter the zero terminal node (they are in the false body of the

function)and two continue on to node C. Node C has four entering

vertices. This number is obtained by summing the numbers of vertices

associated with each of the edges which enter node C. The four

entering vertices are ABC, A BC, ABC" and A BC. These four divide

equally between the two edges which leave the C node. In fact,

closer observation shows that if each entering edge is considered

separately, the vertices which enter along that edge divide equally

between the two outgoing edges. Of the four vertices which enter the

C node, two (A~B C and ABC) pass through to the zero node and two

(A~ BC and A BC) pass through to the one node. The total number of

vertices 1n the true and false bodies of the function may be deter-

mined by summing the total numbers of vertices which enter one and

zero nodes, respectively. In this case an equal number, four, are

in each body.

A procedure for deriving a binary decision diagram from an

input-output specification of a function will not be presented here,

as several have been described by Akers in [2]. However, there are

two situations which may be encountered during the derivation of a

-5-

diagram which are of importance here. The first relates to the

restriction mentioned earlier on the number of nodes which may be

associated with a variable. Consider the arbitrary diagram of

Figure 3. An attempt to trace the path which has been highlighted

0 1

Figure 3 - Binary Decision Diagram With Unfeasible Paths

leads to a contradiction. The first time a B node is encountered the

value of B is one. However, the second time B is zero, yet the same

variable B is associated with both nodes. This contradiction exists

because the variable B appears twice in a path from the root of the

diagram to a terminal node. An activation path which requires a

single variable to assume both the values zero and one is called an

unfeasible path. Such a path can never be activated within the

context of a real boolean function, although it may exist within a

valid binary decision diagram for that function. Unfeasible paths

will not be allowed in the diagrams which will be considered in

later chapters because of the confusion they can cause when tracing

the movements of vertices through a diagram in the manner described

earlier.

A second situation which may be encountered during the deriva-

tion of a diagram is depicted in Figure 4. Figure 4(a) can be

recognized as another version of Figure 1. Note that both B nodes

have the same zero-offspring. Rather than repeat it, it may be

drawn once. The zero-edges of both B nodes are then redirected to

this one subgraph, as in Figure 4(b). This procedure is valid for

any size of subgraph. Then, to make the reduced diagram appear

neater, the zero- and one-edges of the leftmost B node are reversed

and labeled, as in Figure 4(c). A motivation for reducing diagrams

to the greatest extent possible will be presented in a later chapter.

The information presented in this chapter is basic to the under-

standing of the chapters which follow. More detailed presentations

may be found in [1] and [2J.

-7-

oo

-X

(a) (b) (c)

Figure 4 - Merging of Identical Subgraphs

2. OBJECTIVES

The primary objective of this study is to explore the feasi-

bility of computer manipulation of binary decision diagrams. The

manipulations to be performed relate to analyzing the effects of

stuck-variable faults on the diagram (and therefore on the function)

and to the generation of tests which will detect the presence of

these faults. Several subgoals are presented by this task. The

first of these is to study the movement of vertices between the true

and-false bodies of a function in the presence of one or more stuck-

variable faults. Once this movement has been determined the infor-

mation gained is to be used to generate tests which will detect the

presence of the faults. The third subgoal is to gain familiarity

with the data structures and programs needed to manipulate binary

decision diagrams within the computer. The fourth and most Impor-

tant subgoal is to gain familiarity with the costs associated with

these manipulations. The costs will be specified chiefly in terms

of CPU time and memory space used by the programs and data.

In order to meet the goals outlined above, several tasks must

be completed. Primary among these 1s the development of algorithms

which perform the desired manipulations. Data structures must also

be developed to represent binary decision diagrams within the

computer memory. Once the algorithms and data structures have been

specified a program package must be developed which implements the

algorithms. Finally, a method of evaluating the performances of

both program and data structures must be developed and then imple-

mented. The details and implementations of each of these tasks are

presented in the next five chapters.

-10-

3. ALGORITHMS

The previous chapter introduced two algorithms which are to be

implemented on the computer. The first algorithm must determine

which vertices of a function move from its true body to its false

body in the presence of a fault condition (single or multiple) and

which vertices move from its false body to its true body under the

same fault condition. This determination must be made in such a way

that no cancellation occurs between vertices moving in opposite

directions. Only in this way can a reliable count be made of ver-

tices whose values change in the presence of a fault. Once these

changed vertices have been isolated,the second algorithm is needed to

derive from them a set of tests for the specified fault conditions.

A third algorithm, which is peripheral but essential to these two

main tasks, is one which will enter the binary decision diagram

into computer memory. These three algorithms constitute the main

functions of the program package.

3.1 Entry of a Diagram into Memory

The process of entering a binary decision diagram into memory

is described first so that the reader may become familiar with the

characteristics of the diagrams which are to be manipulated. It is

beyond the scope of this thesis to attempt to develop or implement an

algorithm which would derive a binary decision diagram from a boolean

function or some other input-output specification. Instead, an

-11-

algorithm is presented which will accept, validate and enter into

memory a previously derived diagram so that it can be manipulated.

Main memory has been chosen over peripheral mass storage because of

its greater access speed. (Full details of the data structures used

to represent a diagram are presented in Chapter 5.)

The basic diagram entry algorithm is quite simple. First the

root node is entered, then its left subgraph is entered, then its

right subgraph is entered. Each subgraph is entered in the same

manner. This recursive method of entering the diagram (the entry

procedure invokes itself) constitutes a preorder traversal of the

diagram [3]. Nodes are created and edges are established during the

traversal in response to Information entered by the user.

Certain criteria must be met before a new node or edge can be

generated. The criteria which a new node must meet are:

1. The node variable must be a legal variable. A legal variable

has a name which falls within the user-specified length requirement

and, in the case of the root node, is not either the zero or one

terminal node.

2. An offspring node variable must not already appear in any

path from the root to one of its parent nodes. That is, cycles and

unfeasible paths are not allowed in these diagrams.

•12-

The restriction against cycles was imposed by Akers [1], presumably

to prevent ambiguity in the evaluation of a function by means of a

diagram. This and the additional constraint against unfeasible

paths are necessary to avoid confusion when vertices of the function

are counted and traced through the diagram.

When an offspring of a node already exists within a part of the

diagram which has previously been entered, as when identical sub-

graphs have been merged, the offspring node and the subgraph of which

it is the root need not be entered again. They are entered only

when they are first encountered. Subsequent connections to the

desired node are made by entering an activation path to it from the

root node. The activation path is entered wherever it is desired to

establish a link to the previously entered node. These links must

also meet certain criteria. They are:

1. The activation path must terminate at a node which has

already been entered.

2. Variables which appear in the path from the root to the

node from which the link is to be made (inclusive) must not appear

in any subgraph of the node to which the link is to be made. Other-

wise unfeasible paths would exist in the diagram.

3. Links should not be established in this way between any

node and the zero or one terminal nodes. A link to one of these two

nodes is established automatically when either zero or one is

entered as a node variable.

-13-

4. A node should not have the same node as both Its left and

right offspring. This would result in a "dummy" node, which serves

no useful purpose.

Once a link has been successfully established, the counts of vertices

which enter nodes in the linked subgraph are adjusted to reflect the

additional entering vertices.

Now that the basic characteristics of binary decision diagrams

in computer memory have been presented, the movements of vertices in

response to a fault can be examined.

3.2 Vertex Movement in the Presence of Faults

Two basic types of fault conditions may be placed on a binary

decision diagram. These are stuck node variables and stuck edges.

Akers [1] describes how to place these fault conditions on a

diagram. The primary interest here is in stuck node variables, which

may represent faulted logic elements in a circuit. Methods similar

to those described here should apply to stuck edge faults as well.

Consider the diagram of Figure 5. If the variable C is stuck-

at-0 then the vertices 001, Oil, 101 and 111 would all assume a

value different from the fault-free case. One could say that the

vertices were shifted from the right (or 1) branch of each C node

into the left (or 0) branch of that node. Thus, four vertices have

had their values changed in Figure 5. Another way to view this

-14-

0 10 11 0 1 0

Figure 5 - Example Diagram For Fault Analysis

situation is to say that two vertices have moved from the true body

of the function to the false body and two have moved from the false

body to the true body. Note that four is also the number of

vertices shifted by the fault C stuck-at-1.

Now consider the fault B stuck-at-0. Examination of the

diagram shows that no vertices change value in the presence of this

fault. The fault A stuck-at-0 causes four vertices to change value.

The multiple fault A stuck-at-0, C stuck-at-0 may be analysed by

considering first the subgraph isolated by the fault on A, then the

subgraphs isolated by the fault on C. It is necessary to consider

the faults in order from the root down so that nodes which are

isolated by faults at higher levels do not introduce errors in the

tally of shifted vertices. Under fault-free conditions the vertices

100 and 110 assume value 1 and vertices 101 and 111 assume value 0.

With the faults on A and C in effect these vertices are changed as

follows: ic

Vertex Becomes:

000

Fault-free
Value

Faulted
Value

100 1 0

no 010 1 0

101 000 0 0

111 010 0 0

Note that all faults are removed when the fault-free performance of

these vertices 1s studied and all faults are in effect when their

performance under faulted conditions is studied. The values of two

of these vertices have been affected by the faults.

At this point all vertices 1n the one-branch of A (the branch

isolated by the fault at A) have been accounted for, including those

1n that branch which are affected by the fault on C. Thus the only

vertices which have not been considered are those which are normally

on the zero-branch of A (those not affected by the fault on A). Of

these, only the vertices OOi and Oil are affected by the fault on C.

The effect on these is as follows:

Fault-free Faulted
Vertex Becomes: Value Value

001 000 1 0

Oil 010 i 0

The values of two more vertices have been affected, bringing the

total to four for this multiple fault.

Although this example is rather simple, it illustrates the key

features of the algorithm used to trace the movement of vertices

-16-

between the true and false bodies of a function 1n the presence of

one or more faults. The general algorithm, called the Fault-

Tracing Algorithm, follows.

3.3 Fault-Tracing Algorithm

1. Start at the root node of the diagram.

2. Continue traversing the diagram in pre-order until a

faulted node is encountered or the end of the diagram is reached.

2a. If a faulted node is found, perform steps 3, 4 and 5.

Then continue searching for faulted nodes along the edge specified

by the fault.

2b. If a node is encountered which is set to a specified

state (as opposed to having an undefined state) but it is not

faulted, then continue the traversal only along the edge specified

by the node state.

2c. If the end of the diagram is reached then stop.

3. Traverse in pre-order that subgraph which is inaccessible

because of the fault found in step 2.

3a. Ignore all fault conditions on the subgraph.

3b. If a node is encountered which is set to a particular

state but is not faulted, then continue the traversal only along the

edge specified by the node state.

■17-

3c. Each time a terminal node (zero or one) 1s encountered,

save the following Information.

I. The subcube which reaches that node.

II. The number of vertices which reach that node.

111- The value of the terminal node (zero or one).

4. Perform step 5 for each of the subcubes saved in step 3c.

5. Traverse in pre-order that subgraph into which all subcubes

saved in step 3c are forced by the faulted node. For each node

encountered in the subgraph:

5a. If the node is faulted, then continue the traversal

along the edge activated by the fault, allowing all vertices which

remain from the subcube saved in step 3c to pass through this node.

5b. If the node has been set to some particular state but

is not faulted, then perform step 5a as if the node was faulted to

the specified state.

5c. If the node is not faulted or set to a particular

state but the node variable appears in the subcube under consider-

ation from step 3c, then perform step 5a as if the node was faulted

to the state it has in the subcube.

5d. If the node does not meet the conditions of steps 5a,

b or c and the node is not a terminal node, then continue the

traversal along, first the left, then the right edges from this

node, dividing the vertices remaining from the subcube saved in

step 3c equally between the two edges.

-18-

5e. If the node 1s a terminal node (zero or one) and its

value differs from the value of the terminal node which was saved 1n

step 3c for the subcube under consideration, then add the number of

vertices forced to this terminal node by the fault (those remaining

after steps 5a through 5d) to the total number of vertices which

have their values changed by the fault.

End of Fault-Tracing Alogrithm.

The following points can be made about the algorithm just

presented.

1. In the ideal case, subgraphs which have multiple parents,

that is, identical subgraphs which have been merged, need be

traversed only once. The intermediate results accumulated during

this traversal can (ideally) be saved and recalled upon subsequent

visits to the root of the subgraph. In this way repeated visits to

nodes become unnecessary. If each node is only visited once the

execution time of this algorithm becomes linearly dependent upon the

number of nodes in the diagram. However, the storage space required

for the intermediate results may be prohibitive. This important

point will be considered further when the performance of the program

is evaluated.

2. The user may, if he wishes, preset one or more node vari-

ables without having them treated as faulted. This allows the

diagram to be pruned so as to reduce execution time.

■19-

3. This algorithm treats each occurrence of a preset or faulted

variable separately. Thus, the user could analyze Individual node

faults 1f he so desired, but the results obtained would apply only to

implementations of the function which are based on the diagram. On

the other hand, when all occurrences of each faulted variable are

treated together the results are implementation-independent, due to

the general functional representation provided by the diagram.

Further details relating to the Implementation of this algorithm

may be found 1n chapter 6.

3.4 Test Generation

The algorithm described in the previous section may be modified

to generate fault-detection tests. The modifications generate a

test by combining a fault-free subcube saved 1n step 3c with any

variables, faulted or not, which: a) are specified in a particular

faulted path for that subcube, and b) do not already appear in the

subcube. The steps to be modified are:

5. Before beginning the traversal generate a "core" for the

test which contains the states of all variables in the subcube

under consideration.

5e. If a terminal node meets the condition specified in this

step then add to the test "core" the states of any variables in the

faulted path which are not already specified there, including

faulted nodes. Do not change the states of any variables already

-20-

specified 1n the test "core". Display the test to the user, then

remove the states just added so that the test "core" 1s ready for

the next encounter with a terminal node.

The comments which applied to the original algorithm also apply

to the modified algorithm. It should be noted, however, that the

additional recordkeeplng involved in keeping track of paths forced

by the fault and in generating tests will increase the execution

time of the algorithm. This point will also be considered further

when the performance of the program is evaluated.

The next chapter illustrates how the fault-tracing algorithm

is used to obtain test vectors for a binary decision diagram with

faults.

-21-

4. EXAMPLE FOR THE FAULT-TRACING ALGORITHM

The following example Illustrates an application of the fault-

tracing algorithm with test generation.

Consider the diagram of the arbitrary function f = ABCD + A~BC

+ ABC + ABCD + CE, which appears in Figure 6. The faults C stuck-at

-1 and E stuck-at-0 are assumed to exist. The edges which are

forced active by these faults are highlighted.

Figure 6 - Binary Decision Diagram for f = ABCD
+ ABC + ABC + ABCD + CE, with C
stuck-at-1 and E stuck-at-0

-22-

The first step of the algorithm leads to the root rode (A) of

the diagram. Step two leads to the C-node which 1s reached by the

path AB. This 1s the first faulted node to be encountered 1n a pre-

order traversal. Since C 1s stuck-at-1, the zero-edge leaving C 1s

traversed in step 3. This edge leads to the D-node, with four

vertices entering 0. Since D is not preset to a particular state,

these vertices divide equally, two to each offspring. The two

leaving the zero-edge of D reach the zero terminal node. Step 3c

requires that the information in the first line of Table 1 be saved.

Similarly, the information in the second line of the table 1s saved

when the one-edge leaving D is traversed to reach the one terminal

node. The subgraph which is the zero-offspring of C has now been

completely traversed.

TABLE 1 - Information Saved In Algorithm
Step 3c for C-node Reached Via A"B

Subcube Reaching Number of Vertices Value of
Terminal Node Reaching Node Node

MCD 2 0

A15CD 2 1

Step 4 of the algorithm specifies that step 5 is to be executed

once for each subgraph saved in step 3c, so step 5 is executed

twice. The first time deals with the subcube ABCD. The test "core"

which is constructed from this subcube is 0000-, where "-" signifies

that, at this point, the value of E is "don't care" (unspecified).

Traversal of the subgraph into which this subcube is forced by the

•23-

fault on C leads to node E. This node Is stuck at zero. Step 5a

specifies that all vertices represented by the subcube ABCD pass on

to the zero-offspring of E. The zero-offspring of E is the zero

terminal node. Since Its value is equal to the nominal value of the

subcube, no test can be generated. Repeating step 5 for the subcube

ABCD (test "core" = 0001-) leads to the same terminal node. However,

in this case the nominal value of the subcube is one. The two

vertices contained within the subcube ABCD have had their values

changed. According to step 5e, the variable E with value zero must

be added to the test "core". Thus, the test for the change in this

subcube is 00010. This is, in fact, one test for the multiple fault

C stuck-at-1, E stuck-at-0.

Since the C-node under consideration has multiple parents, it

is worth noting at this point that all subcubes which reach this

node and nominally exit on the zero-edge exhibit some commonality in

their responses to this fault. In fact, as was just demonstrated,

one-quarter of all vertices which enter this faulted C-node have

their values changed by the fault. The values of C, D and E in all

test vectors for these vertices are 010. Thus, we know that in

subsequent visits to this node, all subcubes with C = 0 and D 3 1

will have their values changed by this fault. Test vectors which

detect this change may be generated by prefixing the vector C = 0,

D = 1, E = 0 with the values of A and B from the subcubes.

•24-

In general, a table may be made describing the effects of a

fault at a node upon vertices which nominally enter the subgraph

isolated by the fault. This table is made by considering only the

subgraph whose root is the faulted node. The table contains:

1. A list of all subcubes within the subgraph whose values are

changed by the fault at its root, as determined by steps 3, 4 and 5

of the fault-tracing algorithm.

2. The nominal values of each of these subcubes, from which

their faulted values are easily derived.

3. The ratio of the number of vertices in eaqh of these

subcubes to the total number of vertices entering the subgraph.

4. A test sub-vector for each subcube which detects the change

in the value of the subcube.

Note that this could conceivably be a large amount of information.

It must be saved for all faulted nodes which either have multiple

parents or whose ancestors have multiple parents. Such a table for

the subgraph of C which has just been analyzed would look like

Table 2. This table will be used later.

TABLE 2- Partial Test Information for C-Node Reached Via A"B

Changed Nominal # Changed / Test
Subcube Value /Total Vertices Sub-vector

CD 1 1/4 —010

-25-

Now that steps 3, 4 and 5 of the algorithm have been completed,

the search for faulted nodes is continued with the one-offspring of

the C-node, as specified by step 2a of the algorithm. The next node

encountered is the E-node, which is faulted. Execution of step 3

results in Table 3.

TABLE 3 - Information Saved in Algorithm Step 3c for E-node

Subcube Reaching Number of Vertices Value of
Terminal Node Reaching Node Node

ABCE 2 1

Step 4 specifies that step 5 is to be executed once. Execution of

step 5 with subcube ATTCE (test "core" - 001-1) leads immediately to

step 5e. At this point it is determined that the two vertices con-

tained in subcube A"BCE have their values changed by the fault. The

test for this change is 001-1. A table similar to Table 2 is gener-

ated for this faulted node because one of its ancestors has multiple

parents. The new table is Table 4.

TABLE 4 - Partial Test Information for E-node

Changed Nominal # Changed^/ Test
Subcube Value -^Total Vertices Sub-vector

E 1 1/2 1

This completes the analysis of the zero-offspring of the B-node

reached via A.

■26-

Step 2 now leads to the one-offspring of the B-node reached via

A. Analysis of the subgraph whose root is this C-node results in the

detection of four changed vertices, all in subcube ABlf. The test for

these changes is 010—. The change in value is from zero to one.

Since this C-node also has multiple parents, intermediate results

are saved. These appear in Table 5.

TABLE 5 - Partial Test Information for C-node Reached Via A~B

Changed Nominal # Changed/' Test
Subcube Value ^Total Vertices Sub-vector

C" 0 1/2 — 0—

Note that the test sub-vector specifies "don't care" for D and E.

This is because the ordering of node variables, which was a necessary

part of constructing the"graph, implies that D- and E-nodes can not

precede this C-node. Inspection shows that they do not follow it.

Thus, they are "don't cares".

The next faulted node reached by step 2 1s the C-node which is

reached via AB. At this point the partial results which were saved

during the first visit to this node may be used (see Table 5). With

regard to the subcube AB, which enters this node, it can be seen

that the subcube ABC has its value changed from zero to one. One-

half of the eight vertices which enter C from subcube AIT, or a

total of four vertices, have their values changed by the fault. The

test for these changes is 100--

-27-

Step 2a now leads to the C-node which 1s reached via AB.

Combining the entering subcube AB with the Information in Table 2,

1t 1s evident that the subcube ABCD has its value changed from one

to zero. One-quarter of the eight vertices which enter C from sub-

cube AB, or a total of two vertices, have their values changed by

the fault. The test for these changes is 11010.

The final faulted node which 1s encountered 1s the E-node

reached via ABC. Once again, combining the entering subcube ABC

with the Information previously saved at this node (Table 4) leads to

the detection of a changed subcube, ABCE, whose value 1s changed

from one to zero and which contains one-half of four, or two changed

vertices. The test for these changes is 111-1.

A summary of the results obtained from the analysis of the

diagram of Figure 6 1s given in Table 6.

TABLE 6 - Results of Analysis of Figure 6

Changed
Subcube

Nominal
Value

1

Faulted
Value

0

Test
Vector

00010

Number of Changed
Vertices

ABCD 2
ABCE 1 0 001-1 2
ABC 0 1 010- 4
ABC 0 1 100— 4
ABCD 1 0 11010 2
ABCE 1 0 111-1 2

The ability of the computer to efficiently analyze binary deci-

sion diagrams 1n the manner just described is influenced greatly by

the way in which the diagrams are represented within the computer.

The next chapter discusses the data structures used for this purpose.

5. DATA STRUCTURES

The choice of data structures used to represent a binary

decision diagram in memory plays a very important role in determining

the effectiveness and efficiency of the manipulation program.

Properly saving key items of information at each node avoids

unnecessary re-derivation of that data each time the node is visited

during a series of operations. On the other hand, too much data or

unnecessary data saved at each node can lead to a great deal of

wasted storage, as there could conceivably be hundreds or even

thousands of nodes in a diagram. A similar situation exists with

regard to data which applies to the diagram as a whole. Key items

of information of this type can be saved globally to avoid

unnecessary re-derivation or repetition with each node. However,

too much global data can lead to confusion during programming. A

balance must be reached among all of these factors. With this in

mind a review will be made of the data needed by the computer to

perform the desired processing of a diagram.

5.1 Node Representation

The information associated with a node consists of several items.

The most basic items, as described by Akers [2], are the node

variable, a pointer to the left offspring of the node and a pointer

to the right offspring of the node. Some additional information is

needed to efficiently implement the algorithms described in

-29-

chapter 3. The number of vertices which enter a node should be kept

with each node. This number is needed by the algorithm to determine

the number of vertices affected by fault conditions. Also, the

state (value) of the node variable must be stored with the node to

determine which subgraphs are to be ignored by the algorithm and

which are affected by faults. The state of a node may be zero, one

or unspecified. Finally, a flag must be maintained to indicate

whether or not the state of the node is to be treated as a fault.

Each of these data Items should be kept with the node to which they

apply so that they are available to the program when they are needed

without the need for re-computing them.

The existence of an overall data descriptor (the node) with

several detailed data fields indicates that a record structure is an

appropriate way to represent a node. An array structure might be

used but, since the elements of the array would be of different types

(some alphanumeric, some integer, some boolean), an array structure

would be difficult to use. Programming languages which allow record

structures generally allow the fields of the record to be of

different types. Thus a record structure has been chosen. A sample

node record is illustrated in Figure 7.

Node

n
a
m
e

V
a
1
u
e

Number of

changed

vertices

Pointer

to left

offspring

Pointer

to right

offspring

fault

flag

Figure 7 - Sample Node F

-30-

tecord

5.2 General Diagram Structure

The node records derived in the previous section must be inter-

connected in some way to represent a binary decision diagram. The

need for pointers from a node to its two offspring implies the use

of a linked structure. Two possible implementations of a linked

structure are an array, where the pointers to offspring are the

indices of other entries in the array, and a directly linked

structure, where the pointers to offspring are the actual memory

addresses of the offspring. These two implementations would repre-

sent a binary decision diagram respectively as an array of records

and a directly linked list of records. Either structure is

adequate. However, programming languages generally require array

dimensions to be declared in advance of any use of the array, where-

as those which can directly manipulate memory addresses generally

have a facility for dynamically requesting and releasing storage on

an item-by-item basis. Node-by-node allocation of memory space for

the diagram eliminates the need to estimate in advance the number of

nodes in a diagram. In addition, a directly linked list has the

advantage of working with actual memory addresses. An array index,

on the other hand, must undergo some arithmetic processing to be

converted into an actual memory address before it can be used. The

time required by this processing is insignificant in an individual

case, but may have a significant effect upon execution time when it

is accumulated over thousands of node references. For these two

■31-

reasons a directly linked list of records has been chosen to

represent a binary decision diagram.

5.3 Global Data

Most of the information needed by the algorithms is stored

within the diagram. However, there are certain items of information

which must be available globally. For example, there may be Items

of information which apply to the diagram as a whole and not to any

particular node. There may also be Items which relate chiefly to

the programmed implementation of the algorithm*; and not to any

particular diagram. A third group of global items are those which

are contained within the diagram but are also stored globally for

convenient access by the program. Items in the first category

include the number of variables in the diagram, a title or identi-

fier for the diagram and a flag which indicates whether or not the

diagram has been saved in a permanent storage file. The second

category includes such items as the starting and completion times of

certain operations on the diagram, the name of and pointer into the

file onto which the output from the current operation is to be

written, and a flag to indicate when output to the user's terminal

is to be suppressed. Items in the third category are the addresses

of the zero and one terminal nodes, the address of the root node, a

list of the variables in the diagram and the number of vertices in

the function which the diagram represents. In addition to these

three groups are data items which apply only to particular

-32-

procedures or subroutines within the program. Items of this nature

are stored locally within the procedure or subroutine to which they

apply. In this way the memory space used by these Items may be

returned to the operating system when the Individual procedures or

subroutines are completed.

The description of data items presented above was not developed

fully before the programming task was begun. Rather, the basic

needs were outlined in light of the tasks to be performed by the

program. Revisions and more detailed descriptions were then made as

the details of the program were developed. With this overall

description of the data structures in mind the programmed procedures

which manipulate them may now be explored in detail.

•33-

6. THE PROGRAM PACKAGE FOR DIAGRAM MANIPULATION

The binary decision diagram analysis program is actually a pro-

gram package consisting of a set of independent routines under the

control of a supervisory program. The routines all operate upon a

common database, which is the diagram. This chapter discusses some

implementation considerations relating to the algorithms described

in Chapter 3.

6.1 Implementation Considerations for the Algorithms

The algorithms presented in Chapter 3 center around one or more

traversals of a binary decision diagram or some subgraph of one.

Techniques for traversing graphs are discussed extensively in the

programming literature. A traversal of a diagram generally involves

a visit to every node in the diagram. Because of this, program

speed and efficiency depend greatly upon the traversal technique

which is used. Discussions of several traversal techniques and

their implementations appear in [3] and [4]. The technique of

primary interest here Is preorder traversal, as described in Chapter

3. This technique is required by the algorithms in order to keep

proper track of the vertices which are affected by faults. (If pre-

order traversal were not used it would be necessary to either

explicitly store with each node a list of all variables between that

node and the root or to backtrack to the root every time such a list

is needed.) There are two basic ways in which preorder traversal

-34-

may be implemented: Iteration and recursion [4].

Iteration uses explicit pointers and indices to keep track of

the nodes which have been visited. These pointers and indices must

be maintained manually by the programmer, that 1s, explicit source

language statements must be included within the traversal program to

perform this task. An iterative program traverses the diagram by

repeated execution of one or more loops which first process the

current node, then alter the pointers and indices so as to advance to

the next node to be processed. Recursion takes advantage of two

characteristics of binary decision diagrams: (1) Every subgraph of

a binary decision diagram is itself another binary decision diagram,

and (2) all diagrams are acyclic graphs [1]. The recursive nature

of the definition of a binary decision diagram makes implementation

of a traversal algorithm wery simple and straightforward if the pro-

gramming language used allows recursion (that is, allows subroutines

to call themselves). In this case only one basic subroutine need be

written. This subroutine would process the current node, then call

itself once to process its left offspring and once to process its

right offspring. Of course, tests must be included to prevent it

from attempting to process the offspring of a terminal node. A

recursive language processor (compiler or interpreter) generates a

run-time stack [5] which is used to automatically maintain pointers

and indices to keep track of the nodes which have been visited,

freeing the user from this task. Unfortunately, the overhead

-35-

associated with this automatic maintenance can often result 1n

greater execution time than for an equivalent iterative algorithm,

where the user has tight control over the pointer maintenance pro-

cedures. However, the simplicity of recursive code 1n an applica-

tion such as this can greatly reduce program development and

debugging time. This is one reason that recursive approach is taken

in the implementation of these algorithms. The second reason for

choosing recursion is that it allows for concentration on the desired

processing of node information, since the burden of maintaining the

required pointers into the graph is assumed by the language processor.

6.2 Choice of a Programming Language

The choice of a programming language in a given situation

depends largely upon the types of data structures required and the

algorithms to be implemented. In order to be suitable for this

particular application a programming language should possess these

characteristics:

1. A variety of high level data structures. These include

records, arrays and directly-linked lists.

2. Dynamic memory allocation so that the memory space used

may increase and decrease to suit the sizes of different diagrams,

thereby minimizing memory usage.

3. A variety of flexible control structures, including recur-

sion, IF-THEN-ELSE and CASE (conditional branching with more than

-36-

two alternatives). These control structures greatly simplify the

Implementation of the algorithms as compared to languages which

lack these structures.

Several languages which possess these characteristics are available.

The one most readily available for interactive use at Lehigh

University is PASCAL, so this the language of choice.

6.3 Outline of the Program Package

As mentioned previously, the program package for the manipula-

tion of binary decision diagrams consists of several independent

subroutines, call procedures in PASCAL, which are under the control

of a supervisory program. The supervisor accepts an instruction

from the user, invokes the appropriate procedures and monitors^'the

CPU time used by each operation and by the entire program. Error

trapping, error diagnostics and instruction lists are available to

the user both at the supervisor level and within the individual pro-

cedures. These are important to protect the user from accidentally

erasing results or diagrams, as well as for instructional and docu-

mentation purposes.

CPU utilization is closely monitored throughout the execution of

the program so that program performance may be accurately measured.

The results of these measurements for several test cases are pre-

sented in the next chapter.

•3/-

7. PERFORMANCE EVALUATION

The statement was made in Chapter 3 that the execution time

of the fault-tracing algorithm is ideally a linear function of the

number of nodes in the diagram. This hypothesis will now be dis-

cussed in more detail. A discussion of memory usage and some

peculiarities of this particular implementation will also be pre-

sented. This will be followed by the results of some sample runs.

7.1 CPU Time Versus Memory Usage

The ideal implementation which has been emphasized so far is one

which minimizes CPU time. However, there are in fact two ideal

implementations. The second is one which minimizes memory usage.

Reduction of CPU time requires the storage of a significant amount of

intermediate data. If increased usage of CPU time can be tolerated,

then memory usage can be reduced. The minimum amount of memory space

required by the algorithm is the space occupied by the diagram itself

plus the maximum storage space required by one execution of step 3 of

the fault-tracing algorithm. (This excludes the space occupied by

the program itself.) Since no intermediate data is preserved, no CPU

time is saved by reducing the diagram. That is, identical subgraphs

which have been merged will have to be traversed once for each edge

entering the subgraph. Merging of identical subgraphs in this case

serves only to reduce the memory space occupied by the diagram.

-38-

The main goal of this research is to study the cost, 1n terms

of memory and CPU time, of performing the fault-tracing algorithm

on a computer. Memory usage can be calculated in a fairly straight-

forward manner once data structures have been established. Calcula-

tion of CPU time is not so straightforward, unless one has estab-

lished some benchmark, such as the amount of time (in CPU seconds or

fractions thereof) required to process some number of nodes. The

major emphasis here has been to obtain such a benchmark. Thus, the

program described in chapter 6 is implemented so as to minimize

memory usage. This allows a wider range of graph sizes to be

analyzed than would be possible if large amounts of intermediate data

were saved. It also provides a worst-case upper bound on the CPU

time required by any implementation of the algorithm.

7.2 Implementation Details

The program has been implemented on a DECsystem-20 computer

using a local modification of the PASCAL-20 compiler. Standard

PASCAL features have been used wherever possible. On this machine

the memory image of the program fills approximately 14 800 36-bit

words of main memory. An individual node record uses five words of

memory, plus one additional word for each multiple of five letters

allowed in the name of a variable. The maximum number of variables

allowed in a diagram is a parameter in the source code which may be

varied by the user, as is the number of letters which may be allowed

in the name of a variable. The user may change these values simply

-39-

by changing two statements and recompiling the program, thus allowing

the sizes of certain arrays to be minimized for a particular applica-

tion. The memory usage specified above for the program is for

single-character variable names and up to 34 variables 1n a diagram.

The memory space taken by the diagram is determined dynamically

during program execution by requesting memory for each node record

as it is created, through the use of the PASCAL procedure NEW. When

a diagram is erased, the memory space which it occupied is released

by the program. For example, a full ten-variable binary tree with

single-character variable names requires six 36-bit words per node

or 6150 words (including six words each for the zero and one

terminal nodes).

The information saved during step 3c of the fault-tracing

algorithm is stored as a linked list of records. A new record is

created each time a terminal node is encountered. The memory used

for each record is:

a. one word each for the value of the terminal node, the

number of vertices which reach the terminal node, the number of

these vertices which are changed in value and the address of the

next record, plus

b. space for the subcube which reaches this terminal node.

The subcube requires (one word for each multiple of five letters

allowed in the name of a variable + one word for the state of the

-40-

variable) * the maximum number of variables allowed in a diagram.

Thus, for up to 34 variables with single-character names, each

record requires 4+((l+l)*34) = 72 words. With a maximum of 15

variables allowed in a diagram, 4+((l+l)*15) = 34 words are re-

quired for each record. It should be evident from these figures

that a substantial amount of memory space is required to store

intermediate results.

7.3 Test Cases

The wide variety of configurations which are possible among

binary decision diagrams, even those which represent the same

function, make the selection of test cases an extremely difficult

task. Since the goal here is to develop a worst-case estimate of

the CPU time required by the fault-tracing algorithm (along with the

corresponding memory usage), full binary trees are used as test

diagrams. There are several reasons why this choice is appropriate.

First, Akers has shown that no binary decision diagram can contain as

many nodps for a given number of variables as does a full binary

tree [1]. In fact, he has proven that the number of nodes in a

2V
diagram with v variables is of the order (~). Second, the number of

nodes in a full binary tree with v variables is easy to determine

(2 -1, plus terminal nodes). The third reason comes from a study of

worst case fault conditions on a full binary tree.

Several test runs were made using a full ten-variable binary

tree, with variables arranged in lexicographical order from the root

-41-

to the leaves. These test runs involved maximizing the number of

changed vertices for stuck-at faults at each of the variables in turn

(by varying the pattern of one and zero terminal nodes), then simu-

lating stuck-at faults first on that variable alone, then on all

variables. The results of these tests indicate that the worst case

stuck-at fault condition (most CPU time required) on a binary tree

is all variables stuck, where the terminal nodes are alternate

zeros and ones from left to right across diagram (although the

variation among different patterns of zeros and ones is small). This

arrangement can be modeled very simple and in a very small amount of

memory by "folding" the tree. This merging of identical subgraphs

results in a diagram similar to Figure 8. Since the program does not

take advantage of merged subgraphs, the use of a reduced tree does

Figure 8 - "Folding" of a Three-Variable
Binary Tree

not affect the execution time of the program. It does allow larger

trees to be analyzed, since more memory is free for use in step 3c

of the algorithm.

-42-

It should also be noted that the maximum possible amount of

storage required for step 3c is 2V~ records, where v is the number

of variables in the diagram. This occurs when analyzing a fault at

the root node.

7.4 Test Results

A total of six tests were run on each of twelve diagrams. The

twelve diagrams were folded binary trees (as previously described)

with from one to twelve variables. The six tests were as follows:

1. List all faults in the diagram, generate fault-detecting

tests for the faults and count the number of changed vertices.

Case A: No faults.

Case B: All variables stuck-at-zero

2. Generate fault-detecting tests for all faults and count the

number of changed vertices. (Do not list the faults.)

Case A: No faults.

Case B: All variables stuck-at-zero.

3. Count the number of changed vertices only. (Do not list the

faults or generate any tests.)

Case A: No faults.

Case B: All variables stuck-at-zero.

Tables 7 through 10 illustrate the listings produced by tests

one and two for a five-variable binary tree. Test three produced no

-43-

output other than to print the number of changed vertices at the

user's terminal.

The results of these tests are given in Tables 11, 12 and 13 and

in Figures 9 and 10. Several important observations can be made

about these results. First, listing of the faults which are present

on the diagram is an option which the user may select prior to

executing the algorithm. It requires an extra traversal of the

diagram and thus increases the amount of CPU time which is used.

Second, the generation of fault-detecting tests requires a consider-

able amount of overhead. This arises from the extra manipulations

which are required to generate the tests. Third, when the execution

times of the tests exceed approximately 0.5 CPU second, log2(CPU

time) appears to increase linearly with the number of nodes in the

diagram. This implies that the CPU time is proportional to

2(number of nodes}. u -s Mkely that be]ow Q5 cpu secQnd Qf

execution time the overhead associated with the operating system

becomes significant enough to affect the test results. Fourth,

while attempting to perform the fault-tracing algorithm on a

thirteen-variable binary tree with all nodes faulted the program ran

out of memory space. This occurred after generating over 6000 of

the records required by step 3c of the algorithm. At 34 words per

record (see section 7.2) this represents over 204,000 (decimal)

words of memory, which is several orders of magnitude greater than

that occupied by the diagram.

A number of conclusions may be drawn from these observations.

They are presented in the next chapter.
-44-

TABLE 7 - Sample Output From Test la

Fault simulation on Five variable binary tree Today Is 31~Jul-80

Faulted variables: None.

Individual faulted nodes: None.

Preset variables: None.

Individual preset nodes: None.

Tests for the specified conditions:

Nominal Faulted
Value Value A, B, C, D, E,

TOTAL of 0 vertices change value.

End of simulation.

-45-

TABLE 8 - Sample Output From Test lb

Fault simulation on Five variable binary tree Totay Is 3l~Jul-80

Faulted variables: A stuck-at-0, B stuck-at-0, C stuck-at-0
D stuck-at-0, E stuck-at-0

Individual faulted nodes: None.

Preset variables: None.

Individual preset nodes: None.

Tests for the specified conditions:

Nom
Va

nal Faulted
ue Value A, B, C, D, E.

naa>

SS3B9 >

ana>

ElSIXI >

G3SM>

aas>

n=i3i>

X3=3=*>

a=3=> ,

SSt=3>

n=3si>

=1=3 >

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0

0
0
0
0

0
0
1
1
0
0
1
1
0
0
1
I
1
1
0
0

0
1
0
1
0
1
0
I
0
1
0
1
0
1
1
0

Total of 16 vertices change value.

End of simulation.

-46-

TABLE 9 - Sample Output From Test 2a

Fault simulation on Five variable binary tree Today is l-Aug-80

Tests for the specified conditions:

Nominal Faulted
Value Value A, B, C, D, E.

TOTAL of 0 vertices change value.

End of simulation.

-47-

TABLE 10 - Sample Output From Test 2b

Fault simulation on Five variable binary tree Today is l-Aug-80

Tests for the specified conditions:

Nominal Faulted
Value Value A, B, C, D, E.

| a=a> 0 0 0 0 1
| aaa> 0 0 0 1 1
| aaa> 0 0 1 0 1
) naa> 0 0 1 1 1
1 M=> 0 0 0 I
| ciera > 0 0 1 1
| eaa> 0 1 0 1
| tastaf > 0 1 1 1
| oca > 0 0 0 0 1
| ==an> 0 0 0 1 1
| s==ija> 0 0 1 0 1
1 aaa> 0 0 1 1 1
1 E3aaa> 0 0 0 1 0 1
1 a=aai> 0 0 0 1 1 1
1 cca> 0 0 0 0 1 1
1 nxt33> 0 0 0 0 0 1

TOTAL of 16 vertices change value.

End of s imulation.

-48-

TABLE 11 - Results For Test 1

List all faults in diagram, generate
fault-detecting tests and count
changed vertices.

Number of: CPU time (sec.) used with:

Variables Nodes No Faults All nodes faulted

1 3 0.13 0.12

2 5 0.13 0.13

3 9 0.13 0.15

4 17 0.13 0.19

5 33 0.15 0.Z6

6 65 0.19 0.45

7 129 0.27 0.90

8 257 0.43 1.89

9 513 0.73 4.06

10 1025 1.36 8.80

11 2049 2.65 19.60

12 4097 5.23 27.24

-49-

TABLE 12 - Results for Test 2:

Generate fault-detecting tests
and count changed vertices.
(Do not list faults.)

Number of: CPU time (sec.) used with:

Variables Nodes No Faults All nodes faulted

1 3 0.12 0.13

.2 5 0.12 0.12

3 9 0.13 0.15

4 17 0.13 0.17

5 33 0.14 0.23

6 65 0.16 0.36

7 129 0.20 0.68

8 257 0.30 1.38

9 513 0.47 2.99

10 1025 0.81 6.59

11 2049 1.53 14.46

12 4097 2.95 33.50

-50-

TABLE 13 - Results for Test 3:

Count changed vertices
only. (Do not list faults
or generage fault-detecting
tests.)

Number of: CPU time (sec.) used with:

Variables Nodes No Faults All nodes faulted

1 3 0.07 0.06

2 5 0.06 0.06

3 9 0.06 0.06

4 17 0.06 0.07

5 33 0.06 0.08

6 65 0.06 0.12

7 129 0.06 0.17

8 257 0.07 0.30

9 513 0.08 0.54

10 1025 0.10 1.09

11 2049 0.15 2.12

12 4097 0.23 4.35

-51-

3-

2 -

/ -

E

1 Q. en 0

' CSJ

o

-/-I

■2

V

0

0
0

0
0

§ ®

a
a o

a o

o

©

A
A

^ ^ A A A ^ A A
A

0

A

D3 Test #1
0= Test #2
A= Test #3

Q- x Intercept ss9.5

slope«0.95

O" * Intercept » 10

slope ^JO.93

/\ - x Intercept si?

sloped?

Number of nodes

Figure 9 - Results for Tests la, 2a and 3a

Q = Test #1

0= Test #2
A = Test #3

[J- x Intercept si 7.15
slope »1.H

O" x Percept ;=i 7.56
slope ^ 1.13

Z\- x Intercept ai9.89
sloped l.oo

Number of Nodes

Figure 10- Results for Tests lb, 2b and 3b

8. CONCLUSIONS

The test results presented in chapter 7 cause the program pre-

sented here to appear as an inefficient means by which to analyze

the performance of a function under fault conditions. However,

before casting it aside it is appropriate to consider a few points.

First of all, absolute worst-case analyses of the performances of

both the program and the algorithm have been presented. The case

where all variables in a function are simultaneously faulted is

rarely tested in practice. In fact, rarely are more than single or

double fault conditions tested. The performance of the program is

substantially better for these cases. In addition to this, it is

reasonable to expect that only a small percentage of the boolean

functions encountered in practice will have diagrams which approach

a full binary tree in the number of nodes which must be visited.

2V
(Recall Akers' limit of 0(—) nodes for v variables in a function.)

The performance of the program (this particular implementation

of the fault-tracing algorithm) for all cases could be improved

directly in a number of ways, txamination of the test results for

the case where no faults are present shows that a significant amount

of time is spent just traversing the diagram to locate faults (see

Figure 9). Faster methods of locating and listing faults would

measurably improve program performance. Two possibilities are to

maintain a "table of addresses of faulted nodes and to use threaded

diagrams [3j. The use of threaded diagrams would also improve the

execution times of steps 3 and 5 of the algorithm. The amount of

-54-

storage used by step 3c could be reduced by maintaining explicit

links to parent nodes within node records, allowing paths to be

traced backwards rather than stored, although this would increase

the memory space required by the diagram. Flags could then be set

to indicate which of multiple parents are to be considered in a

particular instance. Perhaps an efficient storage scheme could also

be developed which would store intermediate data, so as to reduce

the number of duplicate traversals of identical subgraphs. Any one

of these modifications could reduce the overall CPU time used by the

program and possibly result in more efficient memory utilization.

The fault-tracing algorithm as presented in chapter 3 still

appears to be an effective way of analyzing the performance of a

boolean function in the presence of fault conditions. Its most

important feature is that it provides a functional analysis rather

than an implementation-dependent analysis of the effects of stuck-

variable faults upon a function. Even the implementation presented

here required reasonable amounts of CPU (and real) time for the

worst-case stuck-at fault analyses of functions of up to twelve

variables.

•55-

REFERENCES

[1] Akers, S. B., "On the Specification and Analysis of Large
Digital Functions", Proceedings of the Seventh International
Symposium on Fault Tolerant Computing, pp. 88-93, June 1977.

[2] Akers, S. B., "Binary Decision Diagrams", IEEE Transactions on
Computers, Vol. C-27, pp. 509-516, June 1978.

[3] Knuth, D. E., Fundamental Algorithms, The Art of Computer
Programming, Vol. 1. Reading, MA: Addison-Wesley, 1969.

[4] Goodman, S. E. and Hedetnlemi, Introduction to the Design and
Analysis of Algorithms. New YorkTNY: McGraw-Hill, 1977.

[5] Gries, D., Compiler Construction for Digital Computers.
New York, NY: John Wiley & Sons, Inc., 1971.

-56-

VITA

The author was born on June 19, 1956 in San Jose, California, to

Mr. and Mrs. Gerald McHugh. In 1960 the author's family moved to

Concord, California, then to Bethlehem, Pennsylvania in 1965. They

have resided in Bethlehem since that time. Undergraduate studies

leading to the Bachelor of Science degree in Electrical Engineering

were undertaken at Lehigh University from the fall of 1974 through

the spring of 1978. Graduate studies leading to the Master of

Science degree in the same field were undertaken at Lehigh in the

fall of 1978. In August of 1979 the author married the former

Mary Melber of Allentown, Pennsylvania, who is also a graduate of

Lehigh. The author is employed by NCR Corporation in Clemson,

South Carolina.

-57-

	Lehigh University
	Lehigh Preserve
	1-1-1982

	A study of computations on binary decision diagrams.
	James Patrick McHugh
	Recommended Citation

	tmp.1451580486.pdf.Ef5Ak

