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ABSTRACT 

Current applications of computer graphics 1n mechanical 

engineering design are reviewed.    The organization of numerical 

3-D wireframe geometric models 1s related to both data require- 

ments and model completeness.    Typical data base formats are 

described for both hierarchical and list-oriented forms.    A basic 

turnkey system structure is then Introduced, principal hardware 

and software components and display device-independence.   The 

characteristics of current display technologies are compared for 

engineering applications in design, drafting and analysis.    The 

basic wireframe graphics procedures for Image generation then 

are developed from this foundation, including clipping and pro- 

jection.   A generalized image generation process 1s described 

for the production of arbitrarily scaled and rotated single and 

multiple related sets of views from 3-D model data. 

The way these basic principles combine 1n the interaction 

between operator and machine 1s then examined.    Implications of 

both menu-oriented and command language-based systems are described 

in terms of engineering requirements and operator convenience. 

Uses of graphical  Interaction in the specification of system com- 

mands and model geometric data are described in their relation 

to model construction techniques.    Common economics In model 

construction afforded by referencing and transforming existing 



data dre discussed.    Finally, the implications of integrated 

engineering design, analysis and manufacturing are examined 

regarding computing requirements and the accessibility of the 

geometric model data base. 



1.0 Numerical Wireframe Geometric Modeling 

General-purpose 3-D computer graphics systems depend on the 

existence of numerical models'which describe the geometric con- 

figuration of arbitrary 3-D objects.    In nearly all current sys- 

tems so-called wire-form or wireframe models are used.    Here the 

locations of points and lines are specified relative to a 3- 

dimensional cartesian coordinate system, alternately referred to 

by the names wonJLd % ab&otutt ormodzl coordinates.    The origin 

of this coordinate system, the direction of its axes and frequently 

the units of measurement can be freely chosen in most current 

systems to present conditions most convenient for a particular 

object. 

1.1 Numerical Techniques 

The size of the 3-D modeling space 1s limited by the forms 

of Internal data representation that are supported by the host 

computer.    Systems running on smaller machines often use integer 

data types, while some more recent versions using 32-bit proces- 

sors have Implemented floating-point data types.    In both cases, 

the maximum and minimum coordinate values are restricted by the 

number of bits used to represent them.    For example, in one 

system which uses 24-b1t Integers to represent coordinate values, 

the corresponding range of representable values in two's 
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1.0 Numerical Wireframe Geometric Modeling 

General-purpose 3-D computer graphics systems depend on the 

existence of numerical models which describe the geometric con- 

figuration of arbitrary 3-D objects.    In nearly all current sys- 

tems so-called wire-form or wireframe models are used.    Here the 

locations of points and lines are specified relative to a 3- 

dimensional cartesian coordinate system, alternately referred to 

by the names wonJbA, ab&olute. or modeZ coordinates.    The origin . 

of this coordinate system, the direction of its axes and frequently 

the units of measurement can be freely chosen in most current 

systems to present conditions most convenient for a particular 

object. 

1.1 Numerical Techniques 

The size of the 3-D modeling space 1s limited by the forms 

of internal data representation that are supported by the host 

computer.    Systems running on smaller machines often use integer 

data types, while some more recent versions using 32-bit proces- 

sors have implemented floating-point data types.    In both cases, 

the maximum and minimum coordinate values are restricted by the 

number of bits used to represent them.    For example, in one 

system which uses 24-bit integers to represent coordinate values, 

the corresponding range of representable values in two's 
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complement notation is: 

(24-1) (24-1) 
-2 to 2 -1  = -838860810 to +838860710 

If a point-to-point resolution of 0.0001  inches is required, this 

range expressed in standard units is -838.8608 inches to 

+838.8607 inches.    No other values are representable, and preci- 

sion is maintained 1n all integer arithmetic operations excepting 

division, which can introduce truncation [8].    Coordinates are 

normally entered using standard units in floating-point format, 

and are subsequently converted to integer form in model  space 

using the given resolution factor. 

In contrast, one 32-bit floating-point representation scheme 

uses an 8-b1t excess-128 coded exponent and 24-bit normalized- 

fraction mantissa having approximately 7 decimal  digits precision; 

the range of possible values is .29(10)~38 through 1.7(10)38. 

Although this allowable range is far more extensive than the 

integer example, the loss of significance which can result from 

all  floating-point arithmetic operations implies that precision 

is assured with the above 0.0001  inch resolution only when coor- 

dinate values remain within the range -999.9999 inches to 

999.9999 inches.    In these systems, values entered in floating- 

point form are often simply stored directly; any values less than 

0.0001  thus may be lost in subsequent arithmetic. 



1.2    Geometric Entity Description 

The requirements of conventional engineering drafting nor- 

mally can be satisfied by wireframe geometric modeling.    In one 

simple scheme, objects are represented as polyhedral solids; 

arcs are replaced by a sequence of straight lines.    This latter 

form of approximation is routinely applied in the rendering of 

an Image on a CRT screen, and, hence, is not a restriction for 

drafting purposes. 

A wireframe model comprises a collection of vertices and 

edges, which correspond graphically to points and lines,  respec- 

tively.    In the most primitive form of wireframe modeling, 

moreover, there is no explicit use of the point entity; points 

are referred to implicitly only as line endpoints, and the result- 

ing image consists entirely of a collection of straight lines. 

Figure 1-1 depicts such a simple model.    The object vertices 

have been labeled and floating-point numerical values have been 

assigned for each vertex (see Table 1-1) with the object posi- 

tioned as shown 1n a 3-d1mensional  cartesian coordinate system. 

Orientation of the object with respect to the coordinate system 

origin 1s completely arbitrary; for reasons to be shown later, 

it is often most convenient for the user to align one face of 

the object parallel  to one of the principal axes.    Many current 

wireframe systems permit the user to make reference to auxiliary 

-5- 
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VERTEX COORDINATES 
X Y Z 

VERTEX COORD I NATES 
X Y Z 

A -150. -94. -99. N 150. -94. 99. 
B -150. -94. 99. 0 150. 47. -99. 
C -150. -44. 99. P 150. 47. -38. 
D -150. 94. -99. Q 150. -60. 99. 
E -150. 94. -39. R 90. 47. -38. 
F -56. -44. 99. S 90. 47. -99. 
G -56. 43. 99. T 90. 94. -99. 
H -56. 94. -39. U -150. 41 . -28. 
I -13. -60. 99. V -150. -2. 2. 
J -13. 94. -99. w -150. -32. 47. 
K -13. 94. -39. X -56. 41 . -28. 
L -13. 43. 99. Y -56. -2. 2. 
M 150. -94. -99. z -56. -32. 47. 

TABLE 1-1.    Wireframe Model Vertices 
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coordinate systems to facilitate entity specification and the 

various graphics display devices each necessarily involve their 

own particular hardware-fixed coordinate systems.    All must 

ultimately be mapped by software into the model coordinate system 

when defining geometry; the Inverse mapping must likewise be 

performed when generating graphical output. 

After establishing the 3 coordinates for each vertex, the 

existence of edges can be simply indicated by including a data 

structure which defines the topology or "connectivity" of the 

object.    Table 1-2 lists an integer array specifying the edges 

for the object shown in figure 1-1.    The two letters in each row 

are the beginning and end vertices for each line.    Order is 

clearly unimportant for modeling purposes, but often can be 

optimized for drawing speed. 

This form of hierarchical model structure is conveniently 

illustrated by a topological graph; such a graph has been drawn 

for the object of figure 1-1, and is shown in figure 1-2.    For 

the simple wireframe modeling technique described above, an object 

is first defined in terms of a discrete number of bounding 

edges, which are then further subdivided into beginning and end 

vertices.    The utilization of separate data structures for each 

topological level  takes advantage of the fact that vertices are 

necessarily shared by a number of edges, and, hence, avoids 



INE VERT ICES 

START END 

1 D A 
2 A B 
3 B C 
4 E D 
5 F G 
6 G H 
7 C F 
B G L 
9 E K 
10 D T 
1 1 I L 
12 L K 
13 K J 
14 I J 
15 N Q 

16 Q P 
17 P 0 
18 0 M 
19 M N 

L I NE       VERT ICES 

START   END 

20 B N 
21 I Q 

22 A M 
23 R T 
24 T S 
25 S R 
26 R P 
27 S 0 
28 C W 
29 U E 
30 H X 
31 Z F 
32 w V 
33 V U 
34 X Y 
35 Y Z 
36 W Z 
37 V Y 
38 u X 

TABLE 1-2.    Wireframe Model Edges. 
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duplication [1].    This simplified wireframe model form is gener- 

ally not used in wireframe drafting systems, but is sufficient 

for object definition and is sometimes more efficient for appli- 

cations involving high-speed dynamic graphics. 

More elaborate wireframe models include an additional level 

which defines the several faces of the object.    Figures 1-3 and 

1-4 show such an object and its topological graph.    Information 

concerning the faces of a wireframe model is normally required 

only when certain forms of kidden-tcne. processing are used, and 

usually 1s not maintained 1n wireframe CAD systems.    The progress 

of one such hidden-line algorithm from this face Information 1s 

shown in Table 1-3 operating on the Image data for figure 1-5. 

Here all  faces are defined directly in terms of the bounding 

vertices, arranged in a particular order; the vertices are listed 

in a sequence which traces a counter-clockwise motion when that 

face's outer surface faces the observer, and thus 1s visible. 

This ordering process 1s shown 1n figure l-6a for the object in 

figure 1-3.    Figure l-6b illustrates the result of calculating 

a rotated projection of the same object.    A normal vector extend- 

ing from the outer surface of the sample face now subtends an 

angle greater than 90° with the line of sight, and the original 

order now traces a clockwise motion according to the observer. 
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PROJECTED 
POINT 

COORDINATES 
X Y 

A - 1 79. -88. 
B -86. - 125. 
C -179. 95. 
D -151 . 84. 
E -58. 109. 
F -30. 98. 
G 86. -59. 
H 179. -95. 
I 179. -62. 
J -86. -58. 
K 3. 61 . 
L 35. -45. 
M 86. 7. 
N -1 18. 47. 

FACE DATA 

VERTICES.CCW     EDGES 

Fl 
F2 
F3 
F4 
F5 
F6 
F7 
F8 
F9 
F10 
Fl 1 

CDFEC 
AGHBA 
EFME 
ACEMGA 
ABJNDCA 
DNKFD 
BHILJ 
GMIHG 
FKIMF 
IKLI 
LKNJL 

3-4-6-7 
1-5-8-10 
4-13-14 
2-5-6-13il6 
1-2-3-9-15-22 
7-12-15-23 
8-9-11-18-19 
10-11-16-20 
12-14-17-20 
17-18-21 
19-21-22-23 

AREA 

3446. 

26792. 
9878. 

24667. 
1 -9207. 

1994. 
14720. 
26395. 

AREA CALCULATION, FlOt 
179    3    35  179 

-62 61   -45   -62 

LINES 
SHARED 

(HIDDEN) 

179(61) - 3(-62) 
♦31-451 - 35(61) 
+351-621 - 179J-45) 

10919 ♦ 186 -135 
-2135 - 2170 + 8055 



FIG. 1-6. Face Definition Vertex Orderi 
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All such rearward-pointing faces in any subsequent rotations 

can be found by computing the area enclosed by the bounding 

edges using the so-called determinant method [2].    This method 

results in a negative area for each face in which the pre-defined 

counter-clockwise ordering is reversed.    Hidden lines are then 

removed by scanning the list of rearward-pointing faces and 

eliminating all lines which are shared by two such faces.   When 

applied to. convex polyhedral wireframe models this algorithm is 

sufficient to eliminate all hidden lines; for concave solids 

it becomes a preliminary step 1n a more complicated process 

which must further compute> face/edge intersections [7]. 

The abovementioned geometric modeling techniques contain 

all information necessary for generating wireframe images on a 

CRT screen or Incremental plotter, and are sufficient for pro- 

duction of pictorial engineering drawings.   As a consequence of 

the trend toward more highly integrated design, analysis and 

manufacturing systems, it has become commonplace for the graphi- 

cal data base Itself to contain far more extensive information. 

Virtually all systems provide automated generation of part 

dimensions, usually including several forms of radial and 

horizontal or vertical linear dimensions.    The numerical values 

are extracted automatically from the model data base; the user 

often simply indicates the dimension required and the desired 

■17- 



location. Extension lines and arrowed dimension lines are gener- 

ated automatically. The numerical dimension is expressed in 

standard units with a specified precision; some systems even 

append explicit tolerance information. Dimension instances nor- 

mally are stored with the rest of the model data as geometric 

entities. Most systems also include a facility for adding text 

strings to the object model for manufacturing notes, parts lists, 

etc. Like dimensions, many systems associate text with a parti- 

cular view of the model. In these systems characters and dimen- 

sions are not defined in 3 dimensions, and, therefore, cannot 

be transformed along with graphical data to obtain rotated views. 

Another natural development was the inclusion of arcs as 

separate entitles in the model data base. Although this capabil- 

ity requires further software procedures to generate line seg- 

ments for the display of arc entitles, the almost universal 

occurrence of axisymmetric geometry makes the subsequent use of 

numerical control machine tools impossible without such model 

information. Clearly this single addition eliminates much of 

the simplicity of the previously described modeling techniques. 

Specification of a general arc entity in the geometric model 

requires at least the following pieces of information: 3-D 

center coordinates, radius, beginning and end angles, and 

finally information concerning the plane of the arc (commonly 

•18- 



the elements of a transfonnation matrix).    Figure 1-7 shows an 

adaptation of the object of figure 1-1, this time with arcs 

defined as part of the object model; the corresponding form of 

the data base is listed in table 1-4. 

1.3    Entity Data Base Structure 

Further elaboration of the model data base, arising primarily 

from the desire to produce numerical control data'for automated 

manufacture, reflects modeling techniques quite different from 

those which satisfy the relatively simple requirements of wire- 

frame image generation.    The capability of maintaining complex 

3-D surface data, for example, in forms suitable both for display 

and for manufacturing purposes, relies primarily on the use of 

larger, Hst-orlented data bases instead of the earlier hierarch- 

ical  forms.    These Improvements are introduced at the expense of 

both storage capacity and processing time; resources which are 

in short supply in minicomputer-based CAD systems. 

Early versions, relying primarily on 16-bit processor archi- 

tecture, were often designed around integer arithmetic operations 

because of the limited scope of the CPU Instruction set. Because 

of the high level of interaction necessary with graphics systems, 

reasonable speed could be achieved only by maintaining and 

operating on an integer data base.    Such systems were entirely 

■19- 
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VERTEX  COORDINATES 
X Y Z 

A -150. -94. -99. 
B -150. -94. 99. 
C -150. -44. 99. 
0 -150. 94. •99. 
E -150. 94. -39. 
F -56. -44. 99. 
G -56. 43. 99. 
H -56. 94. -39. 
I -13. -60. 99. 
J -13. 94. -99. 
K -13. 94. -39^ 
L -13. 43. 99. 
M 150. -94. -99. 
N 150. -94. 99. 
0 150. 47. -99. 
P 150. 47. -38. 
0 150. -60. 99. 
R 90. 47. -38. 
S 90. 47. -99. 
T 90. 94. -99. 

LINE   VERTICES 
START END 

1 D A 
2 A Q 
3 B C 
4 E D 
5 F G 
6 G H 
7 C F 
8 G L 
9 E K 
10 D T 
11 I L 
12 L K 
13 K J 
14 I J 

Al 

LINE VERTICES 

START END 

15 N 0 
16 Q P 
17 P 0 
18 0 M 
19 M N 
20 B N 
21 I 0 
22 A M 
23 R T 
24 T S 
25 S R 
26 R P 
27 S 0 

CENTER    RADIUS.  ANGLES 
X   Y   Z 

150. 94. 99.   138.  180.  270. 

A2 -56.   94.   99. 

TABLE 1-4.    Wireframe Model with Arcs 

138.      180.     270. 

PLANE 
— __ 
0 0 1 
0 1 0 
1 0 0 

0 0 1 
0 1 0 
1 0 0 
— — 



adequate for the purposes of wireframe drafting, which can be 

accomplished using relatively simple data structures.    It 1s 

expensive and intrinsically Inefficient, however, to Interface 

these data structures, through intermediate files, to other 

machines running independent analysis and manufacturing software. 

This has led to the increasing use of 32-bit "super-minicomputers" 

with floating-point hardware, capable of handling a larger pro- 

portion of all 3 applications. 

Accordingly, most systems now record floating-point data, 

some using as many as 64 bits for exponent and mantissa.    In 

perhaps the most flexible data base scheme, each separate object 

model  1s written Into a single ]argeli.bfia/iy &U.Q. on mass storage. 

Each separate pa/tf- likewise consists of an end-to-end sequence 

of variable-length records, one record being entered for each 

geometric entity as it is created.    The general appearance of 

such a data file is shown in table 1-5 for the part or collection 

of entities in figure 1-8.    Each entity type normally requires 

a different amount of information for its description. 

One possible set of minimum formats for point, line and 

arc entities is shown 1n table 1-6.    Here a point entity consists 

of 3 successive 64-bit entries representing its x, y and z coor- 

dinates 1n model space.    Line entities require six 64-bit entries, 

giving the model space coordinates of the beginning and end 

-22- 



LIBRARY  FILE 

r~r\n i     w i •    •    »    J    .* rnn i     r^. 

1 

i 

WEDGE  BLOCK LINE LINE POINT 

ARC O A OT      -*M 
L . 1 INC. r^rvn i     wi> i 

TABLE 1-5.    Sample Data Base 



(-4,0,-4) 

(0,3,-4! 

(-4,0,0) 

(0,3,0) 

LINES: 

"WEDGE BLOCK' 

7 -4,0,-4; -4,0, O 

8 0,3,-4;  0,3, 0 

9 0,0,-4;  0,0, 0 

1 -4,0, O; 0,3, O 

2 0,0, O; 0,3, O 

3 0,0, O; -4,0, O 

4 0,0,-4; -4,0,-4 

5 0,3,-4; 0,0,-4 

6 -4,0,-4; 0,0,-4 

FIG. 1-8.    Sample Wireframe Model 
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8        64 64 64 

POINT 1 X Y Z 

LINE 
ro 
en 
i 

ARC 

8 64 64 64 

2 XI Yl Zl X2 Y2 Z2 

8 

3 X Y Z RADIUS START END 

CENTER COORDINATES ANGLES 

Til T21 T31 T12 T22 T32 T13 T23 T33 

PLANE OF ARC 

TABLE 1-6.    Minimum Entity Data Formats 



points of the line.   Arc entities require fifteen 64-bit entries: 

3 for center coordinates, 1 for radius, 2 for beginning and 

end angles, and the remaining 9 for the elements of a 3x3 trans- 

formation matrix defining the plane of the arc.    Table 1-7 shows 

the actual values recorded in the data base for the object of 

figure 1-8.    The single-byte record header gives the entity 

type, and consequently the number and manner in which the follow- 

ing bytes are to be interpreted.    Most systems also include a 

block of integer data within each entity record specifying vari- 

ous status Information, such as an entity number, display mode 

(solid, dashed), pointers to other entities, etc. 

The most significant differences between current systems 

Involve the methods by which complex entities, e.g., splines, 

analytic curves, planar and curved surfaces, etc., are described. 

It Is from these entries that much of the Information for numer- 

ical analysis and manufacturing is derived; hence, It can be 

expected that modeling techniques 1n this area will be continually 

refined as design, analysis and manufacturing become more widely 

integrated. 
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2.0 Wireframe Graphics System Structure 

Current wireframe graphics-systems are alike in that nearly 

all are supervised by dedicated minicomputer systems. The basic 

operation of these systems consequently is fixed by the common 

constraints imposed by minicomputer system architecture and the 

intrinsic computational demands of wireframe graphics. 

2.1 Principal Hardware/Software Components 

The diagram of figure 2-1 shows the typical structure of a 

multi-user wireframe graphics system. The two blocks at the top 

of the diagram, the graphics procedures library, and the model 

data base, can be shared by all users of the system; the blocks 

below are duplicated for each individual user or workstation. 

In this scheme the graphics procedures library is the set of 

all software procedures (or subroutines)  in executable form 

responsible for carrying out each of the graphics functions 

implemented by the system.    The data base resides on mass stor- 

age devices, comnonly high-capacity hard-disk drives, often in 

both permanent and temporary forms; I.e., each workstation nor- 

mally writes to its own scratch area, editing not the original 

but a copy of the permanently filed part. 

The remaining software, which is duplicated for each user, 

consists primarily of a real-time I/O monitor loop which 
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periodically polls or queues user I/O events.    Other user- 

specific components are mostly various pieces of display or 

interaction hardware, such as keyboards, CRT's, function buttons, 

etc.    In these systems user commands typically are issued either 

as alphanumeric strings entered using a standard keyboard, or, 

more effectively, using pre-defined (and sometimes user-defined) 

function buttons.    The monitor program accepts and evaluates the 

various forms of input data, and matches user requests to execu- 

table procedures maintained in the system library.    Control  is 

then transferred to the selected procedure, which, using para- 

meters passed to it by the monitor program, operates on or extends 

the current data base as necessary.    Results are communicated to 

the user either as messages indicating current system status or 

as changes in the displayed image. 

2.2    Display Devices 

Details of the conversion from model data to displayed image 

are highly machine-dependent, particularly with respect to the 

type of CRT being driven.    There are three significantly differ- 

ent technologies 1n current use:    storage tube, vector refresh 

and raster scan.    All  three find application in engineering 

graphics, and each excels in certain specific areas. 
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Storage tube displays are generally the most economical, both 

in hardware cost and in software requirements.    They typically    j 

communicate with the host computer via standard serial interfaces, 

and have traditionally afforded the highest screen resolution 

(4096x4096 is not uncommon).    Lines are produced on the screen 

by issuing sequences of character codes representing the endpoint 

screen coordinates; hardware local  to the display (referred to 

as the display processor) interprets the data and activates the 

deflection circuitry of the CRT.    Since all lines are retained 

on the screen Indefinitely, an image may be "painted" line-by-Hne 

at any arbitrary speed.    Storage tube CRT's are normally mono- 

chrome, although beam-penetration models with up to four different- 

colored phosphor layers are available. 

Vector refresh CRT's are similar to storage tube models 

except for the obvious absence of the storage feature.   Stable 

images are obtained through rapid retracing of the entire display 

(approximately 30 times per second is common).    High persistence 

phosphors are often used to reduce the apparent flicker of com- 

plex images. 

Raster scan CRT's used in computer graphics are enhanced 

versions of commercial  television monitors.    In these displays, 

deflection circuitry does not trace the image directly on the 

screen face, but rather generates a fixed pattern of horizontal 
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scan lines.    Dots are produced at precise locations along each 

scan line by pulsing the acceleration potential of the electron 

beam.    As in vector refresh displays, the data for any particular 

image must be stored by the display hardware as long as the 

image is to be displayed. 

The three types of displays above fall  into two classes so 

far as engineering graphics applications are concerned:    static 

displays, and dynamic displays.    The storage tube terminal is 

most appropriate for line drawing tasks requiring a relatively 

low interaction level, such as 1n defining model geometry or in 

plotting graphs.    Here higher screen resolution produces a 

smoother, more accurate rendering of curves.    These terminals 

also can be located remotely from the host computer since they 

use standard serial communication methods.    The vector refresh 

display, in contrast, is inherently dynamic, requiring a con- 

stant stream of image data 1n order to produce any coherent 

image at all.    As a natural consequence, a smooth motion of the 

object can be simulated by recalculating this image data in real 

time.   Motion of an image helps the designer visualize complex 

3-D objects, and helps the engineering analyst visualize deflec- 

tions due to applied loads or free or forced vibration, for 

example. 
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Until  recently vector refresh terminals had been used almost 

exclusively for dynamic display applications.    Sharply decreas- 

ing hardware costs, however, particularly in random-access memory 

packages are making raster scan displays economically competitive. 

Further, they afford the advantage of color.    While vector 

refresh displays require that the complete set of graphics instruc- 

tions and data, called the dUplay ^Itz , be stored for reference, 

raster scan displays store numerically the state of each addres- 

sable screen dot, on.pi.xzZ[5],For monochrome tubes the value stored 

corresponds to a gray scale intensity level; for color tubes the 

value is a number corresponding to intensity levels for each 

of the three primaries red, green and blue.    Implementing a 

512x512 matrix of pixels in a 16-color or l6-1ntensity system 

requires a vast amount of image memory:    512*512*4 bits of data 

per pixel = 128K (131,072) 8-bit bytes.    The display file for 

vector refresh displays, in contrast, is typically no more than 

several  thousand bytes in length. 

The relatively low screen resolution of raster scan displays 

is typified by the "staircase effect" in the representation of 

an angled line.    While storage tube and vector refresh displays, 

referred to as calligraphic or stroke displays, generate a 

straightline between any two discretely addressable screen coor- 

dinates using analog methods, raster displays illuminate only a 
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string of dots, each being one of the addressable screen coordi- 

nates.    Figure 2-2 shows a raster image of a fairly complex 

object, produced on a dot matrix printer with a dot spacing of 

0.033 inch, comparable to a 512x512 12-inch diagonal  CRT. 

Figure 2-3 shows the same object as reproduced on a high- 

resolution drum plotter having a step size of 0.0004 inch.    The 

staircase effect is of little practical consequence in systems 

using such a plotter, since designers working on raster CRT's 

need only interact with images good enough to verify the integrity 

of the model data base; high quality engineering drawings can 

be generated independently if needed at a later time. 

2.3   Device-Independent Systems 

The wide variations in display capability and mode of oper- 

ation have resulted inevitably in graphics systems suitable only 

for certain kinds of applications. This high level of parti- 

cular device dependence also constitutes one of the major obsta- 

cles to the user's understanding of the underlying principles of 

computer graphics. Both problems have served to hinder the pro- 

gress of integration of design, analysis and manufacture. 

The diagram of figure 2-1  incorporates steps to ensure device- 

independent system structure.    A two-step translation process is 

assumed between the procedures library and the display screen, 
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namely the display file and the display processor.    This extended 

structure is sufficient to implement any and all of the three 

previously mentioned types of CRT technologies, though it may 

require redundant processing, especially with storage tube dis- 

plays.    A separate display file procedure can be included in the 

library for each different type of display, all sharing the same 

model data base.    The proper procedure'is then invoked automati- 

cally by the system, transparent to the user.    The resulting dis- 

play file is either transmitted serially to the display device, 

or may simply be made available to the display processor in cen- 

tral memory for independent, high-speed access. 

/'   The actual  translation process which occurs between model 

data base and displayed image thus consists of the assembly, in 

the host computer, of a sequence of commands and data represent- 

ing the desired image in a form recognizable by the particular 

device's display processor.    This implies a dual representation 

of the object to be displayed; the data base contains a general- 

ized 3-D geometric model of the object, while the display file 

is an instruction code sequence representing a particular 2-D 

projection of the object. 

To illustrate, assume a calligraphic CRT having a display 

processor which implements in hardware the follbwing limited 

set of graphics primitive operations: 
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MOVA xx,yy move absolute 

DRWA xxtyy draw absolute 

MOVR xx,yy move relative 

DRWR xx,yy draw relative 

Here the "move" operation causes an Invisible change in the posi- 

tion of the electron beam on the CRT face.    The "draw" operation 

causes the beam position to move 1n a straight line from the 

current position to the specified one, leaving a visible trace 

on the screen.    In these Instructions, for the absolute form, 

xx and yy (positive Integers) give the screen coordinates of 

the new position.    In the relative form, xx and yy (positive or 

negative Integers) commonly Indicate changes from the current 

position.    The display file for this processor-giving the image 

shown 1n figure 2-4a would thus appear as listed 1n table 2-1. 

The path of the electron beam 1n tracing this image 1s shown 1n 

figure 2-4b. 

The graphics system structure as presented 1n this chapter 

1s typical of the more powerful 3-D wireframe systems currently 

available, and is most readily adapted to different displays and 

expanded to wider applications.    In the next chapter the content 

of the procedures library will be examined 1n greater detail, 

particularly those graphical  functions most frequently applied 

in engineering design. 
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ENDP0INT5  LINES DISPLAY FILE INSTRUCTIONS 

i 

O 
I 

A 48,20 A,B 1 MOVA B 48,50 CD 2 DRWA C 76,63 B,C 3 MOVA D 76,33 A,D 4 DRWA E 25,36 E.F 5 MOVA F 25,65 G,H 6 DRWA G 53,78 F,G 7 MOVA H 53,49 E,H 8 DRWA 
A,E 9 MOVA 
B,F 10 DRWA 
C,G 1 1 MOVA 
D,H 12 DRWA 

48,20 
48,50 
76,63 
76,33 
48,50 
76,63 
48,20 
76,33 
25,36 
25,65 
53,78 
53,49 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

MOVA 
DRWA 
MOVA 
DRWA 
MOVA 
DRWA 
MOVA 
DRWA 
MOVA 
DRWA 
MOVA 
DRWA 

25,65 
53,78 
25,36 
53,49 
48,20 
25,36 
48,50 
25,65 
76,63 
53,78 
76,33 
53,49 

TABLE 2-1. Sample Display File 



3.0   Wireframe Image Generation 

Early engineering graphics systems were introduced primarily 

to supersede manual drafting.   As a consequence many began as 

2-D systems, the model data base tailored specifically to the 

efficient generation of, single view drawings.    The desire to 

produce sets of related orthographic views, and later the inte- 

gration of drafting with design* analysis and manufacturing led 

to more elaborate 3-D modeling techniques, similar to those 

developed in Chapter 1.   This trend has necessarily generalized 

the procedures required for assembling a particular display file 

from the model data base. 

The function of these basic graphics procedures is essen- 

tially that of mapping a 3-D model coordinate system into the 

2-D screen coordinate system of the display device.    Two of 

these procedures, referred to as clipping and projection, deter- 

mine   how much of the object appears in the screen image, and 

in what orientation, respectively.   These functions have been . 

handled in a variety of ways 1n currently available wireframe 

graphics systems, and are possibly the greatest source of con- 

fusion to new users.    The methods used in any particular system 

also dictate to a large degree the form of man/machine inter- 

action best suited to that system, and are often a significant 

factor in the choice between competing vendors. 
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3.1    Clipping 

The clipping procedure is one of the most basic graphics oper- 

ations.    In order to generate a close-up or "zoomed" image of 

an object, all geometric entities which would consequently lie 

off the screen must be actively suppressed from the corresponding 

display file for that image.    Figure 3-1  illustrates for the 2- 

dimensional case a typical situation to be resolved by the 

clipping procedure.    As shown in the figure the boundary of the 

"visible" portion of the data base, referred to as a window, 1s 

almost universally rectangular, often square.    This is not an 

essential restriction, but greatly simplifies the testing proce- 

dure.    Point entitles afford the least difficulty; their coor- 

dinates are compared with those of the four lines which define 

the window, and the point is declared either in or out according 

to the results of the test.    Line entitles, however, are much 

more complex[4].There are four possible cases encountered in 

the clipping of lines, classified by number in figure 3-1: 

CASE 1.    IN-IN - line is completely within 
window; entire line displayed 

2.    IN-OUT - line is partially within 
window; segments Ee and Df 
displayed, segments eF and 
fF not displayed 

\ 
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3. OUT-OUT - Hne is entirely outside 
window, not displayed 

4. OUT-IN-OUT - line is partially within 
window; segments ab and dc 
displayed, segments Aa, bB, 
Ad and cC not displayed. 

Like many other higher-level graphics procedures, clipping 

is essentially a sorting operation.    It not only reduces the 

whole collection of lines in the object to a particular subset, 

but moreover it modifies existing lines by creating new endpoints 

(those labeled with lowercase letters 1n the figure).    The new 

endpoints can be determined by solving the original line equa- 

tions, derived from the endpoint coordinates (x-j.yj) and (xj.yj) 

stored in the model data base, for an intersection (x^.y^) with 

the given window boundary. 

At left or right side:        x^ = ^ 3.1 

yi"yi  , yk =yi +7h7(Vxi) 3'2 

x.-x. 
At top or bottom: x,, = x< + -*—- (yu.-y<) 3.3 

yj"y1 

yk - yw 3.4 

The calculation using equations 3.1 and 3.2 above for the 

new endpoint f of line DF is given in figure 3=1; the clipped 
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screen Image described in the resulting display file is graphi- 

cally represented in figure 3-2.   Window specification normally 

is made by giving center coordinates and either a single scale 

factor for square boundaries, or two linear dimensions for rec- 

tangular boundaries. 

Computational requirements incurred by a general  floating- 

point clipping procedure alone can clearly become quite substan- 

tial for complex objects, particularly since the intersection 

equations involve both multiplication and division.    Lines must 

also be classified among the four possible cases stated above 

using the only available data, the coordinates of the two end- 

points In model space.    In many cases, it 1s not possible to 

determine Immediately from this information alone which window 

border is violated.   Algorithms for this procedure are commonly 

Iterative or recursive, either by explicitly solving for boundary 

Intersections 1n x and y repeatedly until both coordinates are 

on or inside the window, or by searching logarithmically for a 

point on the line which falls just Inside the window according 

to some fixed tolerance.    Processing time for clipping purposes 

alone often is sufficient to preclude dynamic image generation 

on minicomputer-based systems. 

The 2-d1mens1onal example presented above is extended by 

analogy to the general 3-D case.   The visible region of the model 
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data base subsequently becomes a 3-D volume, usually cubic, 

referred to as the view volume or view cube.    The clipping pro- 

cedure must further be concerned with intersections at the 

"front" and "back" of this region.    Two different approaches 

to the 3-D clipping problem have been taken in current wireframe 

systems, producing images significantly different 1n content. 

Those current 3-D systems which originally evolved from more 

primitive 2-D versions often are betrayed by their particular 

use of clipping in the view direction. 

The first method simply applies a 2-D clipping procedure 

identical  to that detailed above to al_I entities in the view 

direction.    The front and back of the view volume are thus fixed 

at the bounds of model space.    Figure 3-3 is a graphical  repre- 

sentation of such a system.    Here the plane triangular object 

of figure 3-1 has been extended non-un1formly 1n the depth direc- 

tion, completing a 3-D model.    The 2-D screen Image generated 

from this model 1s shown in the figure in front of and along 

the direction of view of the 3-D space containing the object 

model.    The orientation of the rectangular view volume is Indi- 

cated in dashed lines, enclosing as described the full extent 

of model space In the view direction. 

An Image produced from the same model using an explicit 3-D 

clipping algorithm 1s depicted for comparison in figure 3-4. 
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In this case the view volume is a cube, commonly specified in 

current systems by its width and center coordinates in model 

space.    The screen image showing the contents of this view 

volume differs from that of figure 3-3 in the omission of a line 

representing an edge near the back of the object.    This detail 

is suppressed by the clipping procedure because it Hes outside 

the view cube.   The scales of the two screen images are identical. 

Details of the back of the object are revealed in the latter 

screen image only if the location or width of the view cube is 

modified to enclose these entities.    Figure 3-5 shows the results 

of relocating and enlarging the view cube; the change in shape 

near the back of the part is now included in the screen image, 

and the entire object appears in a smaller scale. 

One side-effect of the implementation of clipping is the 

ability to become "lost" in model space; i.e., the possibility 

of specifying a window in 2-D, or view volume in 3-D, which 

encloses no part of the modeled, object.    The probability of 

such an occurrence is aggravated by 3-D clipping procedures; 

figure 3-6 shows such a situation.    More effective systems guard 

against such a frustration.    The distinction between graphics 

systems utilizing 2-D or 3-D clipping is important in engineer- 

ing applications, particularly regarding the generation of consis- 

tent sets of orthographic views, and will be examined more fully 

in the next section. 
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3.2    Projection 

The other basic wireframe graphics procedure, responsible 

for collapsing the 3-D model data onto the 2-D screen or view 

plane, is referred to as projection.    Much of the power of 

graphics systems lies in their ability to generate an Image from 

a 3-D model showing the object in any possible physical orienta- 

tion.    This ability is founded upon the methods of matrix coor- 

dinate transformations.    There are two principal  forms in use: 

orthographic or parallel projection, and perspective or central 

projection. 

3.21    Orthographic Projection 

The process of orthographic projection has been tacitly 

employed in all of the preceding figures and examples.    Up to 

this point the x and y model space axes have been presumed paral- 

lel  to the view plane x and y axes, with the viewer located 

infinitely far from the view plane.    This situation 1s repre- 

sented graphically in figure 3-7.    In this case, device x and y 

coordinates for all entitles to be displayed are obtained, after 

appropriate scaling and type conversion, directly from the exist- 

ing model x and y coordinates.    Graphically, this implies that 

projection lines extend from the object vertices to the view 

plane parallel  to the line of sight.    For other arbitrary 
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orientations the scaling and conversion steps mentioned above 

are preceded by a transformation of all model vertices into the 

desired rotated coordinate system; this can be represented by 

the equation 

Cx*y*z*H = cxyzncin 

where x*, y* and z   arle Vertex coordinates of the rotated object, 

x, y and z are original model vertex coordinates, and T is the 

particular transformation matrix. 

In this expression the transformation matrix has nine mem- 

bers (three rows, three columns); this form 1s derivable from 

the more general 4x4 homogeneous coordinate form and is commonly 

used in current graphics systems to compute single or compound 

rotat1ons[4].Further, since the three columns represent mutually 

orthogonal vectors, the third column of fjf] can be obtained by    > 

taking the cross product of the first and second columns.    In 

some graphics systems, especially those which provide user-defined 

auxiliary coordinate systems, such transformation matrices are 

stored more efficiently by retaining only the first two columns. 

They are used profusely to map from one coordinate system to 

another. 

View rotations are mostsimply performed about the model x, 

y or z axes through some specified angle e[6]. For single axis 
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rotations the members of the transformation matrix are given as 

follows: 

rotation about x:   Q"] =  < 
no    o i 
0   cose    sine> or expanding x =x 
0 -sine   cosej y =ycose-zsine 

z*=ysine+zcose 

[cose 0   -sine] 
rotation about y:   \JJ"J =  <   0    1       0    \> or x =xcose+zs1ne 

(sine 0     cosej       y*=y 
z s-xsine+zcose 

[ cose   sine   0]        # 
rotation about z:   [jQ = <]-s1ne    cdse    0j> or x =xcose-ysine 

y*=xsine+ycose 
<-sine   cose   u,> 
I   o        0      ij 

z*=z 

Compound rotations can be performed in one step by first 

calculating the corresponding transformation matrix product; 

for example, rotation about the y-ax1s by $ degrees followed by 

rotation about the x~ax1s e degrees gives: 

.   fcos#   0   -sin*]  [10        0   ]      [cos*   sin«(>s1ne -slrtycose] 
(2Q - <   0       1       0    ><.0   cose   sinei-=<  0        cose sine,   ; 

[s1n«f>   0     cos<f>J  (0 -sine   cosej      (sin<)> -sinecos<f>   cos<j>coseJ 

This method is frequently used to produce all three types of 

classical orthographic projection employed in engineering 

graphics, referred to as trlmetrlc, dlmetric and isometric [3]. 

The trlmetrlc form Is the most general of the three classi- 

fications.    After rotation, distances measured along each of the 
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three principal axes are foreshortened by unequal amounts.    There 

are an infinity of possible rotations which satisfy this condi- 

tion; figure 3-8 is a representation of the projection process 

for a cube, and figure 3-9 shows the resulting image as it would 

appear on the screen.    The rotation angles and the members of 

the transformation matrix specified thereby also are given in 

figure 3-9, along with the angles between the axes and the fore- 

shortening of distances in the resulting 2-D projection.    The 
■a 

latter details are sufficient for a draftsman to construct manually 

such a projection on paper.    Trimetric projection, however, has 

rarely been used by draftsmen because of the difficulty in laying 

out distances along the projected axes. 

Dimetric projection is distinguished by the property that 

two of the three orthogonal planes are foreshortened by equal 

amounts, and two of the three axes are separated by equal angles. 

Figures 3-10 and 3-11 show the projection process and the result- 

ing image for such a rotation .    This class of projection has been 

more often used by draftsmen because the foreshortened distances 

along xp and yp are identical, and those along zp are precisely 

half of the actual  values. 

In isometric projection the dimensions along all  three axes 

are equally foreshortened, and the axes appear equally spaced, 

120° apart.    Figures 3-12 and 3-13 show the projection process 
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and the resulting image.    This procedure is most often used by 

draftsmen when pictorial drawings of 3-D objects are wanted, since 

the scaling factors applied along all  three axes, being equal, 

can be ignored completely in the construction process. 

Comparison of the three screen images illustrated in the 

preceding examples indicates that the trimetrlc and dimetric 

rotations, although difficult to produce on a drawing board, 

present more information about 3-D objects than the isometric. 

The more frequently used isometric leads to a somewhat ambiguous 

image, particularly for the cube in the examples.    This obser- 

vation has made the more arbitrary rotations desirable for pic- 

torial applications in engineering graphics, and most systems 

accordingly provide, along with predefined front, top and side 

orthographic and isometric and dimetric view matrices, the means 

to obtain arbitrary rotations of these standard views. 

The most common method performs rotation through a specified 

angle about one axis of a coordinate system (xs,ys,zs) fixed to 

the display screen, rather than the model coordinate system.    Such 

rotations are easily visualized, and through repeated execution 

can give any arbitrary viewing position.    Using this technique 

the operator may, for example, obtain the particular trimetrlc 
i- 

view shown 1n figure 3-9 by starting from the system-defined 

front orthographic view (i.e., model x and y axes are parallel 
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to the screen xs and ys axes) and subsequently rotating first 

-50.783° about ys, then 34.849° about xs (see figure 3-8).    This 

particular function typically is handled as a compound rotation. 

The transformation matrix relating the new view to the stored 

model coordinates is found by pre-multiplying the given rotation 

matrix by that for the current view: 

fl    0    0"|   f  .632    -.443    .636)       f   .632    -.443    .636] 
[Tl  =   <0    1    OW.      0        .821     .571 > = <       0        .821     .571 

(O    0    1J   [-.775    -.361     .519)       [-.775    -.361     .519J 

Here the matrix on the left defines the front orthographic view, 

and is in this case simply the identity matrix; in this way the 

requested rotation reduces directly to that in figure 3-8. 

In another common approach a desired axis of rotation and 

desired angle of rotation is specified.    The axis usually is 

located by its endpoints in model space.    This method is not 

as easy to specify or interpret as the one previously described, 

but is often useful, for example, in more easily obtaining images 

in which a skewed face is parallel  to the plane of the screen 

and thus is viewed in true shape. 

3.22   Perspective Projection 

Some wireframe graphics systems also can generate perspec- 

tive projections as well as the standard orthographic projections. 
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This feature is useful  to engineers mostly in a pictorial sense, 

such as in the production of rotated views for assembly drawings. 

Figure 3-14 shows the perspective projection process for the 

same object as figure 3-7.    In this form of projection the viewer 

is located a finite distance from the view plane; projection 

lines are thus no longer parallel  to the line* of sight as before, 

but converge to the specified view point.    In this way the model 

vertex coordinates are modified based on their apparent distance 

from the viewer.    Figure 3-15 shows the screen image as it-would 

appear to the user.    Perspective projection clearly 1s a valu- 

able tool for more effectively conveying depth information in a 

wireframe Image. 

The process of calculating view plane x and y coordinates 

for perspective images is often reduced to the following equa- 

tions, derivable from the general 4x4 homogeneous coordinate 

form 

xp(i) = x(1) 

yp(D = yd) 

where Vp is the location of the viewer along the model space z-axis. 

The perspective effect becomes more or less pronounced as the 

viewpoint is moved closer to or farther from the model space 
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FIG, 3-14. Perspective Projection 
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origin.    This calculation is quite costly in processor time, 

adding both further multiplication and division for each model 

vertex to the display file creation procedure. 

3.23   Multiple Views 

The generation of multiple views in one screen display, par- 

ticularly sets of related orthographic views, is a practical 

necessity in engineering graphics.    It is often an integral part 

of the model input process.    The addressable screen area is par- 

titioned Into separate sections for the different views.    These 

independent screen areas are called viwpofcU; most current sys- 

tems permit one, two or four views to be shown simultaneously 1n 

this fashion.    Figure 3-16 shows such a screen display.    In this 

figure the layout of the four views follows traditional American 

drafting practice as described previously, with the three ortho- 

graphic projections (top, front and right side) correctly aligned 

in the second, third and fourth quadrants, respectively.    The 

upper-right viewport 1s almost universally used for rotated 

views; in standard practice this' view 1s developed from the 

front orthographic, or lower-left viewport.   The axes orientation 

shown in the figure Indicates a right-handed coordinate system, 

with the top view parallel to the x-z plane, the front view 

parallel to the x-y plane and the right-side view parallel  to 

the y-z plane. 
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Differences in the image generation procedures implemented 

in current wireframe systems are most noticeable in the proper- 

ties of multiple-view displays.    The more recent systems, in 

which manufacturing practices have contributed towards the design, 

typically use a different view labeling convention.    In these 

systems the top view shows the x-y plane; this is consistent 

with the operation of many numerical-control machine tools, 

which assume the cutting tool rotates about the z-axis.    The 

front view then becomes thex-z plane, and the right-side view 

the y-z plane.    Figure 3-17 shows the appearance of such a dis- 

play for the same model as figure.3-16. 

A more important difference 1s that correctly aligned ortho- 

graphic views are automatically produced only by a minority of 

these systems.    Those which do not perform 3-D clipping, as 

mentioned 1n section 3.1, commonly apply a 2-D clipping operation 

independently to each view.    As a result, orthographic sets will 

not be consistent unless the scale is manually forced to be 

identical 1n each view, and furthermore is such that no clipping 

is necessary In any of the views.   A consistent set of ortho- 

graphic views is always guaranteed regardless of scale only in 

those systems which use a single 3-D clipping operation to Identi- 

fy simultaneously visible data for all three views. 
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3.3   Summary 

The entire image creation process is accomplished through 

execution of a set of graphics procedures applied to the data 

base in a particular sequence.    The processes responsible for 

creating a display file appropriate for engineering graphics are 

organized in a threerstep procedure in figure 3-18 [4]. Data first 

is truncated in model space to that portion specified as visible 

by the location and width of a normally cubic view volume; 

output may take the form of a list of pertinent geometric enti- 

tles.    Next, the desired projective transformation 1s applied 

to the 11st of points provided by step 1, generating a new list 

of 2-D view plane coordinates.    Finally, these view plane coor- 

dinates are mapped into device coordinates 1n the intended area 

on the display screen.    If multiple viewports are requested, 

control returns to step 2, computing a different view and mapping 

to the corresponding viewport, until  finished. 
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4.0    Interaction Between Operator and System 

The software for interactive minicomputer graphics systems is 

closely related to its more general counterpart, the interactive 

operating system in larger minicomputer and mainframe systems. 

Both manage user access to the available hardware and software 

resources, and can be conceptualized as providing the means of 

selecting operations from a wide range of alternatives, ideally 

in the most natural, concise and consistent manner possible.    Com- 

paratively, however,  interactive computer graphics systems are 

intrinsically more communication-intensive.    The need for interac- 

tiveness has inspired a great deal of research and development of 

computer peripheral  devices, particularly those which afford a 

means of geometric interaction.    Currently available systems con- 

sequently exhibit a variety of interactive environments, perhaps 

better evaluated using subjective rather than objective criteria. 

The principal  trade-offs typically occur between flexibility and 

degree of imposed structure; i.e.  freedom in the selection and 

sequence of modes and options is often compromised with the 

possibility of more definitive prompting and reduction of user 

error. 

The process of defining model geometry by entering model 

space point coordinates.1s usually augmented by one or both of 

the following two more convenient methods:    use of auxiliary 
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coordinate systems, and 2-D graphical  input.    In one approach 

auxiliary coordinates called wonk coonxLLwteA can be established 

freely by the user to simplify model construction.    This auxiliary 

coordinate system can be translated or rotated with respect to 

the fixed model  space system; all  input is automatically trans- 

formed using matrix techniques before addition to the data base. 

Figure 4-1 shows the use of an auxiliary coordinate system 1n 

constructing the model for one of the figures used previously 

in Chapter 3.    An essential goal of wireframe graphics systems is 

provision of a means of adding to or modifying the object model 

by Interacting graphically with a 2-D Image.    For this purpose 

virtually all systems rely on screen cursors or crosshairs, 

controlled by-2-degree-of-freedom devices such as digitizing tab- 

lets, joysticks or thumbwheels. 

4.1    Graphical  Input 

The use of interactive 2-D Input 1n the construction of 3-D 

models Immediately poses the problem of how to map 2-D Informa- 

tion into the 3-D data base.    Since the fundamental data item in 

wireframe graphics 1s the set of three cartesian coordinates of 

points 1n model space, 2-D digitizers can be used to supply cur- 

sor or crosshair coordinates in a plane which, in the most general 

case, 1s arbitrarily oriented in 3-D model space.    Specification 
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of the location of the digitizing plane with respect to the model 

space coordinate system then suffices to determine the three 

required model space coordinates.    This specification is made 

conveniently using matrix transformation techniques similar in 

form to those used for view generation. 

The most straightforward manner of handling 2-D input fixes 

the digitizing plane parallel to a plane formed by two of the 

three model space axes; e.g., the x-y plane.    In this case the 

required transformation matrix becomes, like that for an x-y 

orthographic view, the identity matrix; I.e., model x-axis is 

aligned with the digitizer horizontal, model y-ax1s is aligned 

with the digitizer vertical.    The missing third coordinate, 

commonly referred to as depth (here 1t is the model z-axis), is 

simply fixed at some prescribed default value.    To enter a 

point entity 1n the model data base, the user simply positions 

a cursor superimposed on an x-y orthographic view at-the 

desired location in that plane; the system then writes these x 

and y values, after the usual scaling and type conversion, directly 

into a new entity record.    The current depth value provides the 

z-coordinate.    Figure 4-2 represents this situation graphically. 

A square "screen" area with a small cursor is shown on the left; 

on the right the orientation of the digitizing plane in 3-D 

model space for default condition z=0 is shown, along with the 
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corresponding 3-D position of the screen cursor.    By redefining 

the current depth value, the user can specify points anywhere 

in the visible portion of model space. 

Most systems restrict graphical interaction to a single 

view, called the wonkv-lew, even when multiple views are dis- 

played.    Some, however, permit simultaneous digitizing in two- 

orthogonal -view displays, with separate depth values maintained 

for each.    In this case the digitizer surface is implicitly par- 

titioned, like the display screen, into two independent sections. 

Both methods are most effectively used in conjunction with the 

predefined front, top and right-side views for defining line and 

arc entities in orthogonal planes.    This property is usually 

exploited by suitable orientation of the object with respect 

to the model space coordinate system.    The definition of geo- 

metry that 1s not parallel to one of the principal planes 1s 

possible but less convenient.    A skewed line, for example, can 

be entered by first digitizing one endpoint; the current depth 

value for that viewport must then be altered, 1n the middle of 

the line definition process, to correctly digitize the remaining 

endpoint in a different plane.    Figure 4-3 represents the process 

of defining such a skewed line in a largely orthogonal object. 

The practical  limits of device resolution and repeatability 

are serious disadvantages of direct analog positional  input. 
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Designers using a graphics system to define manufactured parts 

will, furthermore, have little use for a coarse digitizing capa- 

bility, as points and Hnes representing the corners and edges of 

a 3-D object must be located precisely in the model coordinate 

system.    The inherent simplicity of point and line entry by 

"pointing" a cursor is such a desirable feature, however, that 

several techniques have been developed to retain its flexibility 

while still affording precise data entry. 

Foremost among these is the artificial imposition of a 

modular geometric constraint, 1n the form of a software-generated 

digitizing Qiid.    Such grid systems filter all positional Input, 

adjusting 1t to the nearest "currently acceptable value" before 

addition to the model data base.    Figure 4-4 shows a set of 

orthographic views from such a system; the grid is typically 

displayed as a pattern of dots which locate the currently accep- 

table positions.    For example, specification of a grid with 1- 

unlt spacing 1n x, y and z ensures that all subsequent positional 

input is adjusted to be precisely modulo 1 unit.    The user need 

only set the depth value and then point a cursor anywhere within 

the box shown here 1n the front view to Identify correctly 

point coordinates in integral units. 
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4.2   Entity Selection 

In its other essential  function, positional  input references 

existing model geometry, either to edit the object model graphi- 

cally or to define new entities related geometrically to those 

already entered (parallel, perpendicular, etc.).    This procedure 

1s similar to the grid function in that rapid and effective inter- 

action requires the system to be tolerant of user inaccuracy in 

"pointing" at desired entities.    Most algorithms define a 

region surrounding the indicated point and perform a linear 

search of the data base for entities falling within this area. 

Most also stop at the first match, though some complete an 

exhaustive search.   All ultimately indicate in the displayed 

image the entity or entitles found.    Both processes are prone to 

failure; often in crowded images the data base search will con- 

sistently return with an unintended entity, or, in the latter 

case, the desired one along with several others.    To alleviate 

this shortcoming, some systems allow the user to limit the search 

to particular entity types such as points, lines or arcs.   Many 

systems also permit the user to perform selection 1n rotated 

views; although the required coordinate transformation Intro- 

duces further inaccuracy, rotated views often present object 

edges most cleanly.   As a last resort, virtually all systems 

permit the user to group entitles on separate ItviU or laytu . 
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One or more layers .then can be made Ineligible for selection. 

As mentioned in Chapter 1, the identification of layers normally 

is included as part of the attribute information written in each 

entity record. 

4.3   Function Selection ^ 

Current wireframe graphics systems are often evaluated by 

users according to the dominant characteristics presented by 

the user/system interface.    The degree of inherent structure 1s 

perhaps the foremost of these characteristics; available systems 

can be generally categorized as menu-oriented systems, or as 

command language systems.    The salient features of both types 

and the particular styles of interaction which each evokes are 

described below. 

4.31    Menu-Oriented Systems 

This group Includes the most highly-structured systems.    In 

this form of operation the user 1s prompted at all  times with a 

brief, fixed list of options, from which a single function is 

chosen.    The user then is presented with further sets of lower- 

level sub-menus until finally a particular operation supported 

in the software library is fully specified.    The desired proce- 

dure 1s then executed, and the user is normally returned upon 
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completion to the top of the menu structure.    In this manner the 

user chooses from the available resources in fixed, predetermined 

patterns which ensure correct and unambiguous specification of all 

required parameters.    Option lists in force at any particular 

time are often presented as character strings on the main graph- 

ics display, or alternatively on a small alphanumeric monitor. 

Choice 1s made by pointing a cursor or by pushing designated 

buttons on a function keyboard.    In one such implementation the 

meaning of sets of function buttons changes with each menu level, 

always corresponding to options active in the current menu. 

The extensive prompting Issued by these systems makes them 

easy to learn, and beginners usually progress rapidly in this 

instructive environment.    Skilled users, however, may come to 

find the hierarchical menu structure cumbersome. 

4.32    Command Language Systems 

In these systems a general command syntax is defined, and 

each function is assigned a unique keyword and parameter sequence. 

The user may choose at any time between all of the possible 

functions supported by the system; all pertinent information 

must be correctly specified with each command.    In more primitive 

versions the user enters commands as alphanumeric strings using 

a standard keyboard, similar to mainframe interactive programming 
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systems.    More advanced Implementations make use of function 

buttons or tablet menus, each button or digitizer area repre- 

senting a predefined, or sometimes user-defined command string. 

In these systems the user is prompted little if at all. 

The price of greater flexibility is the need to learn the syn- 

tax and data requirements of the full graphics instruction set. 

New users often require substantially more training than they 

would for menu-oriented systems.    They must have available a 

far greater amount of reference information in order to use the 

system at all.    Once this information 1s acquired, however, 

skilled users often can define complex models more rapidly 

without the exhaustive prompting structure of menu-oriented 

systems. 

4.4   Graphical  Interaction 

The possibility of selecting menu options with the screen 

cursor was mentioned in the previous section.    This is an exam- 

ple of using graphical input, not as geometric data, but to 

control  system operation.    Since the operator frequently alter- 

nates between selecting functions and selecting or defining 

geometry, it is convenient that the same device be used for 

both.    This notion is extended further in systems using symbol 

recognition.    This capability permits the user to associate 
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freehand symbols sketched on a digitizing tablet with system 

command strings.    By including procedures to extract specific 

positional information from symbols, as well as matching them 

with system commands, the processes of selecting functions and 

defining geometry can be combined.    In this manner both a 

function and its parameters can be given simultaneously.    As 

an example, the user may choose to associate a horizontal or 

vertical line with the procedure for defining line entitles, 

requesting the extraction of the first and last points of the 

sketched symbol.   Horizontal or vertical lines then can be 

entered very rapidly simply by sketching a line on the digiti- 

zer connecting two grid points in the displayed Image. 

Such features represent some direct advantages of computer 

graphics systems over manual drafting; indirectly there arises 

the added benefit of providing data for further use in analy- 

sis and manufacturing.    Although the above example is peculiar 

to command language systems, the particular combination and 

utilization of hardware and software in many systems permits 

comparable economies in model construction.    The following chap- 

ter will discuss more powerful procedures commonly installed 1n 

current systems to promote rapid construction of 3-D models. 
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5.0 Model Construction Enhancements 

Several higher-level graphics functions are commonly pro- 

vided in current wireframe systems to simplify the construction 

of 3-D models.    These functions generally enable the user to 

reference existing entities in the definition of new ones, either 

to satisfy common geometric relations or to perform some type 

of spatial duplication.    The set of functions implemented in 

any one system often determines the particular construction 

techniques most efficient for that system. 

5.1 Geometric Relational Expressions 

The use of geometric relations depends on the ability to 

extract and/or calculate the required Information from data 

already defined in the current model.    The principles of analy- 

tic geometry make possible a large number of such relations; 

Table 5-1 shows a list of methods provided for the specification 

of a new Hne entity in one particular menu-oriented system. 

All can be computed from the standard data maintained for each 

entity type; i.e., three cartesian coordinates for points, six 

coordinates giving the endpoint locations of each Hne, etc. 

In this kind of menu-oriented system, relations not provided 

explicitly frequently can be obtained by executing a series of 

the supported functions, creating and later deleting intermediate 
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CHOOSE   LINE   DEF   MODE 

1 TWO   POINTS 
2 TAN   TO   2   CURVES 
3 HORIZONTAL 
4 VERTICAL 
5 NORMAL 
6 PT   AND   TAN   CURVE 
7 PT   AND   ABS   ANGLE 
8 PT   -   ANG   FROM   LINE 
9 PT   -   PARALLEL   LINE 
10 PT   -   PERPEND   CURVE 
1 1 PARALLEL   AT   DI ST 
12 PARLEL   LN   -   TAN   CURV 
13 PERPTO   LN   -   TAN   CURV 
14 ANGLE   -   TAN   CURVE 

TABLE 5-1. Line Entity Definition Options 
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entitles.    This habit is typically encouraged by menu-oriented 

systems, and the given functions, in conjunction with a set of 

entity "editing" procedures, lead the operator into construction 

techniques similar to those conventionally used in manual draft- 

ing.    Intermediate entitles perform a role similar to construc- 

tion lines drawn and erased during manual drafting.    Though 

this approach often produces a model data base "cluttered" with 

redundant or useless entities in inefficient systems, operators 

with drafting experience are quickly trained in their use.    The 

editing procedures mentioned above Include such functions as 

"trimming" Intersecting entitles at the point of intersection, 

modifying one line endpoint, etc. 

In contrast to the menu-oriented system methods, command 

language systems often provide an on-line "geometric calculator" 

enabling the immediate entry and solution of geometric relational 

expressions.    These procedures function like Interpreted algebraic 

calculators; the user commonly keys in expressions which ref- 

erence both a temporary storage area and the model  data base 

through selected entities. 

A particular relation is solved by specifying temporary 

storage as output for the appropriate geometric function call, 

with the selected entity passed as an argument to this function. 

The user then can execute an entity creation command, adding 
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that parameters are to be retrieved from temporary storage. 

For example, assume it 1s desired to add a line entity parallel 

to an existing instance, offset 5 units in the x-direction; the 

required sequence may appear as follows: 

ffl.1 - PRLL(0S1,5,0,0) 
ADD LINE f&l) 

where @L1 refers to temporary line storage, PRLL 1s the Identi- 

fier of the "parallel" function, and @S1 refers to the selected 

entity.    This method obviates the necessity of creating and 

deleting intermediate entitles, though 1t usually appears quite 

foreign to new operators experienced in traditional drafting 

techniques.    Function call expressions, however, often can be 

assigned to user-defined function keyboards or tablet menus, 

thereby enabling rapid access during model construction. 

5.2   Entity Duplication 

Duplication of existing geometry 1s intended to take advan- 

tage of the various object symmetries which frequently appear 1n 

engineering design. This normally Involves the application of 

coordinate transformations to existing entitles 1n order to 

create scaled, translated or rotated copies. Translation trans- 

formations are most often useful; with this facility an operator 

can define 3-D objects by entering planar cross-sections and 
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deleting Intermediate entitles, though 1t usually appears quite 

foreign to new operators experienced in traditional drafting 

techniques.    Function call expressions, however, often can be 

assigned to user-defined function keyboards or tablet menus, 

thereby enabling rapid access during model construction. 

5.2    Entity Duplication 

Duplication of existing geometry 1s intended to take advan- 

tage of the various object symmetries which frequently appear 1n 

engineering design. This normally Involves the application of 

coordinate transformations to existing entities in order to 

create scaled, translated or rotated copies. Translation trans- 

formations are most often useful; with this facility an operator 

can define 3-D objects by entering planar cross-sections and 
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then translating a copy in the depth direction.    This step avoids 

re-entering identical, parallel faces.    Figure 5-1 shows this 

process employed in the construction of an object presented 

earlier in Chapter 1.    The orientation of the object in model 

space 1s chosen as shown in 5-la, with the longest dimension 

parallel  to the z-axis, along which   four   regions of uniform 

cross-section exist.    This form of symmetry can be exploited 

during the construction process by entering manually only those 

lines which bound the three different cross-sections.    In 

figure 5-lb the first outline 1s completed; figure 5-lc shows 

the result of translating a copy along the z-ax1s.    The remain- 

ing figures 5-ld and 5-2a-b illustrate this sequence for the" 

other 2 cross-sections.    This process often carries along 

unwanted edges; the effort needed to delete them, however, 

usually 1s small compared to the time saved.    Figure 5-2c shows 

the deletions and 1n 5-2d the remaining lines have been added, 

completing the object model.    Appropriate choice of object 

orientation and careful attention to entry sequence is clearly 

advantageous in systems providing such duplication procedures. 

A similar feature provides rapid generation of objects 

symmetrical about a central plane.    In this case the user need 

only define one side of this plane; the system completes the 

model by creating entities that are a mirror image of those 
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already entered.    This feature Is called miviofUng.    Figure 5-3 

shows a model easily constructed using this procedure.    With 

the orientation shown in 5-3a this object is symmetric about 

the z=0 plane; the designer need only enter the entities shown 

in 5-3b.    The model  is completed automatically in 5-3c by the 

mirroring procedure. 

Some systems also provide algorithms for generating planar 

rectangular or circular arrays of existing entitles.    These 

procedures automate the creation of multiple, regularly spaced 

entities or groups of entities.    In rectangular arrays the 

operator specifies step sizes in two perpendicular directions, 

and the number of rows and columns.    Figure 5-4a shows a rota- 

ted view of a ribbed housing constructed using a rectangular 

array procedure.    The operator Individually defines only the 

rib outlines shown in 5-4b; the remaining instances on that 

side of the central plane are easily added by array duplication. 

Figure 5-5 depicts the use of array duplication in the case of 

circular symmetry.    The hole circle and cehterlines are defined 

only once by the operator; the remainder of the circular bolt 

pattern is generated automatically by the array procedure. 
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FIG. 5-3. Mirroring Procedure 
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FIG. 5-4. Rectangular Array Procedure 

-98- 



FIG. 5-5, Circular Array Procedure 
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5.3   Special-Purpose Procedures 

The above general forms of automation described above effec- 

tively reduce the effort involved in constructing 3-D models 

only after entry techniques have been developed which permit 

their use.   Each system, in a sense, trains the user in methods 

often peculiar to that system alone.    This result is most fre- 

quently observed in menu-oriented systems, where rigid structure 

limits the scope of alternative construction methods.    More 

advanced systems accordingly provide a means for the user to 

define special-purpose automation procedures.    This feature is 

a natural extension of command language systems, and is imple- 

mented through provision of a macro facility.    At least one menu- 

oriented system supports this capability through a unique 3-D 

geometric programming language which can freely access the model 

data base. 

Macro Interpreters permit the definition of new graphics 

'functions 1n terms of a sequence of existing system commands; 

the user may thus, in effect, create his own Individual  inter- 

active techniques for model  construction.    The geometric pro- 

gramming language approach is in comparison far more powerful; 

by working with a more primitive instruction set the user can 

efficiently execute more complex and extensive operations, 

perform numerical computation in a more familiar fashion, and 
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define specialized data structures.    However, the large amount 

of effort required to develop compilers or interpreters to 

implement high-level graphics languages, coupled with the present 

lack of standards governing graphical operations.and data struc- 

tures frequently has discouraged this approach.    Furthermore, 

users of such facilities must be capable programmers, familiar 

with text editors and other utility software, which generally 

is not the case with new graphics system operators.    Both 

methods nonetheless are valuable 1n helping to match general- 

purpose graphic systems more effectively to the user's particular 

application and preferred style of Interaction. 

5.4   Data Base Accessibility 

Further advantages can be obtaiined through suitable organ- 

ization of the system-wide data base.   Most systems permanently 

store each model file under a unique alphabetic name in a graphics 

system-reserved area of mass storage.    Since this 1s usually 

written in a compressed format for greater space-efficiency, the 

particular graphics system must itself provide all necessary 

file management utilities, such as storage and retrieval, gener- 

ation of sorted lists, archival procedures, etc.    Virtually all 

systems allow the user to retrieve a particular model Into the 

temporary work area and subsequently store !t under a different 
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name.    This simple procedure is a first step in providing flex- 

ible "internal" accessibility.    An entire product-line of 

similar pieces can be built up quickly from a single base-line 

configuration, saving considerable operator effort. 

This concept commonly is extended to provide separate stor- 

age of frequently encountered entity groups, calledpcutteAni   or 

aittA , again under a unique alphabetic name and in their own 

library file.    In this manner pipe fittings, fasteners or any 

other commonplace subassemblies can be defined once and recalled 

at any time for addition to the current model.   A reference point 

1s specified when defining patterns, and the standard matrix 

transformations are normally made available when recalling.    In 

this way the new instance can be located and oriented properly 

about the location Indicated for the reference point in the cur- 

rent model.    This feature also 1s convenient for documentation 

purposes, as all standard subassemblies referenced in a parti- 

cular model often can be listed automatically by the system. 

A more general data base accessibility also is desirable 

but is available much less frequently 1n current graphics sys- 

tems.    The trend 1s toward greater integration of computer- 

aided design and analysis, for which various specialized forms 

of data bases must be built from the geometric model  for input 

to numerical analysis routines.    Frequently, potential users of 
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such   systems already have purchased or developed analysis pack- 

ages   executing on separate mainframe computer systems.    The 

ability   to access the geometric data base for transfer outside 

of  the   graphics system is necessary to interface the two machines. 

Most graphics systems execute under the supervision of the 

standard  operating system for their particular machine, though 

many   do   not supply compilers or other utility software for gen- 

erating  and running user programs.    In those that do the above 

problem   is solved, in at least one instance, by providing a set 

of  user-callable FORTRAN subroutines which user programs may 

reference  to gain access  Indirectly to the geometric data base. 

Those   that do not supply compilers usually substitute procedures 

which   simply write an operating system-accessible data file 

from   the model  data base in a predefined format which can be 

transferred on  tape to a mainframe system. 

Few  current minicomputer-based graphics systems are large 

enough   to enable the execution of large-problem   analysis pack- 

ages,   though some 32-bit machines equipped with floating-point 

processors can do this (with substantial  increases in analysis 

execution  time).    The advantages of graphical output from analy- 

sis   routines,  instead of the traditional  tables of numbers, how- 

ever,   can  justify the use of a large machine to handle both 

interactive design and analysis. 
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