
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1982

A comparative survey of computer graphics
applications in mechanical design.
Nell Carroll Cates

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Cates, Nell Carroll, "A comparative survey of computer graphics applications in mechanical design." (1982). Theses and Dissertations.
Paper 1962.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F1962&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1962&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1962&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=preserve.lehigh.edu%2Fetd%2F1962&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/1962?utm_source=preserve.lehigh.edu%2Fetd%2F1962&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

A COMPARATIVE SURVEY OF COMPUTER GRAPHICS APPLICATIONS

IN MECHANICAL DESIGN

by

Nell Carroll Cates, III

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Mechanical Engineering

Lehigh University

1982

ProQuest Number: EP76235

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest

ProQuest EP76235

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

This thesis is accepted and approved in partial fulfillment

of the requirements for the degree of Master of Science.

I4r Mc^i tqtfz
datey

'raressor. in Charge

Chairman of Department

-n-

ACKNOWLEDGEMENTS :

The author wishes to acknowledge partial support

of this work by the Control Data Corporation under PLATO

award entitled CAD/CAM 1n Industry, SRA File No, 79L01.

-tit-

TABLE OF CONTENTS

CHAPTER PAGE

1.0 NUMERICAL WIREFRAME GEOMETRIC MODELING 3

1.1 Numerical Techniques 3
1.2 Geometric Entity Description 5
1.3 Entity Data Base Structure 19

2.0 WIREFRAME GRAPHICS SYSTEM STRUCTURE 28

2.1 Principal Hardware/Software Components 28
2.2 Display Devices 30
2.3 Device-Independent Systems 34

3.0 WIREFRAME IMAGE GENERATION 41

3.1 Clipping '42
3.2 Projection 53

3.21 Orthographic Projection 53
3.22 Perspective Projection 65
3.23 Multiple Views 69

3.3 Summary 73

4.0 INTERACTION BETWEEN OPERATOR AND SYSTEM 75

4.1 Graphical Input 76
4.2 Entity Selection 84
4.3 Function Selection 85

4.31 Menu-0r1ented Systems 85
4.32 Command Language Systems 86

4.4 Graphical Interaction 87

5.0 MODEL CONSTRUCTION ENHANCEMENTS 89

5.1 Geometric Relational Expressions 89
5.2 Entity Duplication 92
5.3 Special Purpose Procedures 100
5.4 Data Base Accessibility 101

■IV-

LIST OF TABLES

PAGE

1-1 Wireframe Model Vertices 7

/ 1-2 Wireframe Model Edges 9

. 1-3 Hidden-line Calculation 15

1-4 Wireframe Model with Arcs 21

1-5 Sample Data Base 23

1-6 Minimum Entity Data Formats 25

1-7 Sample Model File 27

2-1 Sample Display File 40

5-1 Line Entity Definition Options 90

-v-

LIST OF FIGURES

PAGE

1-1 Two-level Wireframe Model 6

1-2 Two-level Topological Graph 10

1-3 Three-level Wireframe Model 12

1-4 Three-level Topological Graph 13

1-5 Wireframe Model Rotated View 14

1-6 Face Definition Vertex Ordering 16

1-7 Wireframe Model with Arcs 20

1-8 Sample Wireframe Model 24

2-1 System Structure 29

2-2 Wireframe Model Raster Image 35

2-3 Wireframe Model Calligraphic Image 36

2-4 Sample Calligraphic Image 39

3-1 2-D Clipping 43

3-2 Clipped Screen Image 46

3-3 Clipping 1n 3-D, Method 1 48

3-4 Clipping in 3-D, Method 2 49

3-5 Enlarged View Cube 51

3-6 Clipping Side-effect 52

3-7 Orthographic Projection 54

3-8 TMmetrlc Projection Process 58

■V1-

3-9 Trimetric Screen Image 59

3-10 Dimetric Projection Process 60

3-11 Dimetric Screen Image 61

3-12 Isometric Projection Process 62

3-13 Isometric Screen Image 63

3-14 Perspective Projection 67

3-15 Perspective Screen Image 68

3-16 Four-View Display, Front X-Y 70

3-17 Four-View Display, Top X-Y 72

3-18 Image Generation Sequence 74

4-1 Auxiliary Coordinate System 77

4-2 Digitizing Plane Orientation 79

4-3 Skewed-Line Entry 81

4-4 Digitizing Grid 83

5-1 Model Construction, Planar Techniques (1) 94

5-2 Model Construction, Planar Techniques (2) 95

5-3. Mirroring Procedure 97

5-4 Rectangular Array Procedure 98

5-5 Circular Array Procedure 99

■V11-

ABSTRACT

Current applications of computer graphics 1n mechanical

engineering design are reviewed. The organization of numerical

3-D wireframe geometric models 1s related to both data require-

ments and model completeness. Typical data base formats are

described for both hierarchical and list-oriented forms. A basic

turnkey system structure is then Introduced, principal hardware

and software components and display device-independence. The

characteristics of current display technologies are compared for

engineering applications in design, drafting and analysis. The

basic wireframe graphics procedures for Image generation then

are developed from this foundation, including clipping and pro-

jection. A generalized image generation process 1s described

for the production of arbitrarily scaled and rotated single and

multiple related sets of views from 3-D model data.

The way these basic principles combine 1n the interaction

between operator and machine 1s then examined. Implications of

both menu-oriented and command language-based systems are described

in terms of engineering requirements and operator convenience.

Uses of graphical Interaction in the specification of system com-

mands and model geometric data are described in their relation

to model construction techniques. Common economics In model

construction afforded by referencing and transforming existing

data dre discussed. Finally, the implications of integrated

engineering design, analysis and manufacturing are examined

regarding computing requirements and the accessibility of the

geometric model data base.

1.0 Numerical Wireframe Geometric Modeling

General-purpose 3-D computer graphics systems depend on the

existence of numerical models'which describe the geometric con-

figuration of arbitrary 3-D objects. In nearly all current sys-

tems so-called wire-form or wireframe models are used. Here the

locations of points and lines are specified relative to a 3-

dimensional cartesian coordinate system, alternately referred to

by the names wonJLd % ab&otutt ormodzl coordinates. The origin

of this coordinate system, the direction of its axes and frequently

the units of measurement can be freely chosen in most current

systems to present conditions most convenient for a particular

object.

1.1 Numerical Techniques

The size of the 3-D modeling space 1s limited by the forms

of Internal data representation that are supported by the host

computer. Systems running on smaller machines often use integer

data types, while some more recent versions using 32-bit proces-

sors have Implemented floating-point data types. In both cases,

the maximum and minimum coordinate values are restricted by the

number of bits used to represent them. For example, in one

system which uses 24-b1t Integers to represent coordinate values,

the corresponding range of representable values in two's

-3-

-W"->^^*»'SV-' -*-,'.< f .^

1.0 Numerical Wireframe Geometric Modeling

General-purpose 3-D computer graphics systems depend on the

existence of numerical models which describe the geometric con-

figuration of arbitrary 3-D objects. In nearly all current sys-

tems so-called wire-form or wireframe models are used. Here the

locations of points and lines are specified relative to a 3-

dimensional cartesian coordinate system, alternately referred to

by the names wonJbA, ab&olute. or modeZ coordinates. The origin .

of this coordinate system, the direction of its axes and frequently

the units of measurement can be freely chosen in most current

systems to present conditions most convenient for a particular

object.

1.1 Numerical Techniques

The size of the 3-D modeling space 1s limited by the forms

of internal data representation that are supported by the host

computer. Systems running on smaller machines often use integer

data types, while some more recent versions using 32-bit proces-

sors have implemented floating-point data types. In both cases,

the maximum and minimum coordinate values are restricted by the

number of bits used to represent them. For example, in one

system which uses 24-bit integers to represent coordinate values,

the corresponding range of representable values in two's

-3-

complement notation is:

(24-1) (24-1)
-2 to 2 -1 = -838860810 to +838860710

If a point-to-point resolution of 0.0001 inches is required, this

range expressed in standard units is -838.8608 inches to

+838.8607 inches. No other values are representable, and preci-

sion is maintained 1n all integer arithmetic operations excepting

division, which can introduce truncation [8]. Coordinates are

normally entered using standard units in floating-point format,

and are subsequently converted to integer form in model space

using the given resolution factor.

In contrast, one 32-bit floating-point representation scheme

uses an 8-b1t excess-128 coded exponent and 24-bit normalized-

fraction mantissa having approximately 7 decimal digits precision;

the range of possible values is .29(10)~38 through 1.7(10)38.

Although this allowable range is far more extensive than the

integer example, the loss of significance which can result from

all floating-point arithmetic operations implies that precision

is assured with the above 0.0001 inch resolution only when coor-

dinate values remain within the range -999.9999 inches to

999.9999 inches. In these systems, values entered in floating-

point form are often simply stored directly; any values less than

0.0001 thus may be lost in subsequent arithmetic.

1.2 Geometric Entity Description

The requirements of conventional engineering drafting nor-

mally can be satisfied by wireframe geometric modeling. In one

simple scheme, objects are represented as polyhedral solids;

arcs are replaced by a sequence of straight lines. This latter

form of approximation is routinely applied in the rendering of

an Image on a CRT screen, and, hence, is not a restriction for

drafting purposes.

A wireframe model comprises a collection of vertices and

edges, which correspond graphically to points and lines, respec-

tively. In the most primitive form of wireframe modeling,

moreover, there is no explicit use of the point entity; points

are referred to implicitly only as line endpoints, and the result-

ing image consists entirely of a collection of straight lines.

Figure 1-1 depicts such a simple model. The object vertices

have been labeled and floating-point numerical values have been

assigned for each vertex (see Table 1-1) with the object posi-

tioned as shown 1n a 3-d1mensional cartesian coordinate system.

Orientation of the object with respect to the coordinate system

origin 1s completely arbitrary; for reasons to be shown later,

it is often most convenient for the user to align one face of

the object parallel to one of the principal axes. Many current

wireframe systems permit the user to make reference to auxiliary

-5-

m

i

i

VERTEX COORDINATES
X Y Z

VERTEX COORD I NATES
X Y Z

A -150. -94. -99. N 150. -94. 99.
B -150. -94. 99. 0 150. 47. -99.
C -150. -44. 99. P 150. 47. -38.
D -150. 94. -99. Q 150. -60. 99.
E -150. 94. -39. R 90. 47. -38.
F -56. -44. 99. S 90. 47. -99.
G -56. 43. 99. T 90. 94. -99.
H -56. 94. -39. U -150. 41 . -28.
I -13. -60. 99. V -150. -2. 2.
J -13. 94. -99. w -150. -32. 47.
K -13. 94. -39. X -56. 41 . -28.
L -13. 43. 99. Y -56. -2. 2.
M 150. -94. -99. z -56. -32. 47.

TABLE 1-1. Wireframe Model Vertices

-7-

coordinate systems to facilitate entity specification and the

various graphics display devices each necessarily involve their

own particular hardware-fixed coordinate systems. All must

ultimately be mapped by software into the model coordinate system

when defining geometry; the Inverse mapping must likewise be

performed when generating graphical output.

After establishing the 3 coordinates for each vertex, the

existence of edges can be simply indicated by including a data

structure which defines the topology or "connectivity" of the

object. Table 1-2 lists an integer array specifying the edges

for the object shown in figure 1-1. The two letters in each row

are the beginning and end vertices for each line. Order is

clearly unimportant for modeling purposes, but often can be

optimized for drawing speed.

This form of hierarchical model structure is conveniently

illustrated by a topological graph; such a graph has been drawn

for the object of figure 1-1, and is shown in figure 1-2. For

the simple wireframe modeling technique described above, an object

is first defined in terms of a discrete number of bounding

edges, which are then further subdivided into beginning and end

vertices. The utilization of separate data structures for each

topological level takes advantage of the fact that vertices are

necessarily shared by a number of edges, and, hence, avoids

INE VERT ICES

START END

1 D A
2 A B
3 B C
4 E D
5 F G
6 G H
7 C F
B G L
9 E K
10 D T
1 1 I L
12 L K
13 K J
14 I J
15 N Q

16 Q P
17 P 0
18 0 M
19 M N

L I NE VERT ICES

START END

20 B N
21 I Q

22 A M
23 R T
24 T S
25 S R
26 R P
27 S 0
28 C W
29 U E
30 H X
31 Z F
32 w V
33 V U
34 X Y
35 Y Z
36 W Z
37 V Y
38 u X

TABLE 1-2. Wireframe Model Edges.

-9-

o
I

duplication [1]. This simplified wireframe model form is gener-

ally not used in wireframe drafting systems, but is sufficient

for object definition and is sometimes more efficient for appli-

cations involving high-speed dynamic graphics.

More elaborate wireframe models include an additional level

which defines the several faces of the object. Figures 1-3 and

1-4 show such an object and its topological graph. Information

concerning the faces of a wireframe model is normally required

only when certain forms of kidden-tcne. processing are used, and

usually 1s not maintained 1n wireframe CAD systems. The progress

of one such hidden-line algorithm from this face Information 1s

shown in Table 1-3 operating on the Image data for figure 1-5.

Here all faces are defined directly in terms of the bounding

vertices, arranged in a particular order; the vertices are listed

in a sequence which traces a counter-clockwise motion when that

face's outer surface faces the observer, and thus 1s visible.

This ordering process 1s shown 1n figure l-6a for the object in

figure 1-3. Figure l-6b illustrates the result of calculating

a rotated projection of the same object. A normal vector extend-

ing from the outer surface of the sample face now subtends an

angle greater than 90° with the line of sight, and the original

order now traces a clockwise motion according to the observer.

•11-

1 i

1

OBJECT

CO
I

■fc.
I

I

PROJECTED
POINT

COORDINATES
X Y

A - 1 79. -88.
B -86. - 125.
C -179. 95.
D -151 . 84.
E -58. 109.
F -30. 98.
G 86. -59.
H 179. -95.
I 179. -62.
J -86. -58.
K 3. 61 .
L 35. -45.
M 86. 7.
N -1 18. 47.

FACE DATA

VERTICES.CCW EDGES

Fl
F2
F3
F4
F5
F6
F7
F8
F9
F10
Fl 1

CDFEC
AGHBA
EFME
ACEMGA
ABJNDCA
DNKFD
BHILJ
GMIHG
FKIMF
IKLI
LKNJL

3-4-6-7
1-5-8-10
4-13-14
2-5-6-13il6
1-2-3-9-15-22
7-12-15-23
8-9-11-18-19
10-11-16-20
12-14-17-20
17-18-21
19-21-22-23

AREA

3446.

26792.
9878.

24667.
1 -9207.

1994.
14720.
26395.

AREA CALCULATION, FlOt
179 3 35 179

-62 61 -45 -62

LINES
SHARED

(HIDDEN)

179(61) - 3(-62)
♦31-451 - 35(61)
+351-621 - 179J-45)

10919 ♦ 186 -135
-2135 - 2170 + 8055

FIG. 1-6. Face Definition Vertex Orderi

-16-
ng

All such rearward-pointing faces in any subsequent rotations

can be found by computing the area enclosed by the bounding

edges using the so-called determinant method [2]. This method

results in a negative area for each face in which the pre-defined

counter-clockwise ordering is reversed. Hidden lines are then

removed by scanning the list of rearward-pointing faces and

eliminating all lines which are shared by two such faces. When

applied to. convex polyhedral wireframe models this algorithm is

sufficient to eliminate all hidden lines; for concave solids

it becomes a preliminary step 1n a more complicated process

which must further compute> face/edge intersections [7].

The abovementioned geometric modeling techniques contain

all information necessary for generating wireframe images on a

CRT screen or Incremental plotter, and are sufficient for pro-

duction of pictorial engineering drawings. As a consequence of

the trend toward more highly integrated design, analysis and

manufacturing systems, it has become commonplace for the graphi-

cal data base Itself to contain far more extensive information.

Virtually all systems provide automated generation of part

dimensions, usually including several forms of radial and

horizontal or vertical linear dimensions. The numerical values

are extracted automatically from the model data base; the user

often simply indicates the dimension required and the desired

■17-

location. Extension lines and arrowed dimension lines are gener-

ated automatically. The numerical dimension is expressed in

standard units with a specified precision; some systems even

append explicit tolerance information. Dimension instances nor-

mally are stored with the rest of the model data as geometric

entities. Most systems also include a facility for adding text

strings to the object model for manufacturing notes, parts lists,

etc. Like dimensions, many systems associate text with a parti-

cular view of the model. In these systems characters and dimen-

sions are not defined in 3 dimensions, and, therefore, cannot

be transformed along with graphical data to obtain rotated views.

Another natural development was the inclusion of arcs as

separate entitles in the model data base. Although this capabil-

ity requires further software procedures to generate line seg-

ments for the display of arc entitles, the almost universal

occurrence of axisymmetric geometry makes the subsequent use of

numerical control machine tools impossible without such model

information. Clearly this single addition eliminates much of

the simplicity of the previously described modeling techniques.

Specification of a general arc entity in the geometric model

requires at least the following pieces of information: 3-D

center coordinates, radius, beginning and end angles, and

finally information concerning the plane of the arc (commonly

•18-

the elements of a transfonnation matrix). Figure 1-7 shows an

adaptation of the object of figure 1-1, this time with arcs

defined as part of the object model; the corresponding form of

the data base is listed in table 1-4.

1.3 Entity Data Base Structure

Further elaboration of the model data base, arising primarily

from the desire to produce numerical control data'for automated

manufacture, reflects modeling techniques quite different from

those which satisfy the relatively simple requirements of wire-

frame image generation. The capability of maintaining complex

3-D surface data, for example, in forms suitable both for display

and for manufacturing purposes, relies primarily on the use of

larger, Hst-orlented data bases instead of the earlier hierarch-

ical forms. These Improvements are introduced at the expense of

both storage capacity and processing time; resources which are

in short supply in minicomputer-based CAD systems.

Early versions, relying primarily on 16-bit processor archi-

tecture, were often designed around integer arithmetic operations

because of the limited scope of the CPU Instruction set. Because

of the high level of interaction necessary with graphics systems,

reasonable speed could be achieved only by maintaining and

operating on an integer data base. Such systems were entirely

■19-

I

o
i

FIG. 1-7. Wireframe Model with Arcs

I
ro

VERTEX COORDINATES
X Y Z

A -150. -94. -99.
B -150. -94. 99.
C -150. -44. 99.
0 -150. 94. •99.
E -150. 94. -39.
F -56. -44. 99.
G -56. 43. 99.
H -56. 94. -39.
I -13. -60. 99.
J -13. 94. -99.
K -13. 94. -39^
L -13. 43. 99.
M 150. -94. -99.
N 150. -94. 99.
0 150. 47. -99.
P 150. 47. -38.
0 150. -60. 99.
R 90. 47. -38.
S 90. 47. -99.
T 90. 94. -99.

LINE VERTICES
START END

1 D A
2 A Q
3 B C
4 E D
5 F G
6 G H
7 C F
8 G L
9 E K
10 D T
11 I L
12 L K
13 K J
14 I J

Al

LINE VERTICES

START END

15 N 0
16 Q P
17 P 0
18 0 M
19 M N
20 B N
21 I 0
22 A M
23 R T
24 T S
25 S R
26 R P
27 S 0

CENTER RADIUS. ANGLES
X Y Z

150. 94. 99. 138. 180. 270.

A2 -56. 94. 99.

TABLE 1-4. Wireframe Model with Arcs

138. 180. 270.

PLANE
— __
0 0 1
0 1 0
1 0 0

0 0 1
0 1 0
1 0 0
— —

adequate for the purposes of wireframe drafting, which can be

accomplished using relatively simple data structures. It 1s

expensive and intrinsically Inefficient, however, to Interface

these data structures, through intermediate files, to other

machines running independent analysis and manufacturing software.

This has led to the increasing use of 32-bit "super-minicomputers"

with floating-point hardware, capable of handling a larger pro-

portion of all 3 applications.

Accordingly, most systems now record floating-point data,

some using as many as 64 bits for exponent and mantissa. In

perhaps the most flexible data base scheme, each separate object

model 1s written Into a single]argeli.bfia/iy &U.Q. on mass storage.

Each separate pa/tf- likewise consists of an end-to-end sequence

of variable-length records, one record being entered for each

geometric entity as it is created. The general appearance of

such a data file is shown in table 1-5 for the part or collection

of entities in figure 1-8. Each entity type normally requires

a different amount of information for its description.

One possible set of minimum formats for point, line and

arc entities is shown 1n table 1-6. Here a point entity consists

of 3 successive 64-bit entries representing its x, y and z coor-

dinates 1n model space. Line entities require six 64-bit entries,

giving the model space coordinates of the beginning and end

-22-

LIBRARY FILE

r~r\n i w i • • » J .* rnn i r^.

1

i

WEDGE BLOCK LINE LINE POINT

ARC O A OT -*M
L . 1 INC. r^rvn i wi> i

TABLE 1-5. Sample Data Base

(-4,0,-4)

(0,3,-4!

(-4,0,0)

(0,3,0)

LINES:

"WEDGE BLOCK'

7 -4,0,-4; -4,0, O

8 0,3,-4; 0,3, 0

9 0,0,-4; 0,0, 0

1 -4,0, O; 0,3, O

2 0,0, O; 0,3, O

3 0,0, O; -4,0, O

4 0,0,-4; -4,0,-4

5 0,3,-4; 0,0,-4

6 -4,0,-4; 0,0,-4

FIG. 1-8. Sample Wireframe Model

-24-

8 64 64 64

POINT 1 X Y Z

LINE
ro
en
i

ARC

8 64 64 64

2 XI Yl Zl X2 Y2 Z2

8

3 X Y Z RADIUS START END

CENTER COORDINATES ANGLES

Til T21 T31 T12 T22 T32 T13 T23 T33

PLANE OF ARC

TABLE 1-6. Minimum Entity Data Formats

points of the line. Arc entities require fifteen 64-bit entries:

3 for center coordinates, 1 for radius, 2 for beginning and

end angles, and the remaining 9 for the elements of a 3x3 trans-

formation matrix defining the plane of the arc. Table 1-7 shows

the actual values recorded in the data base for the object of

figure 1-8. The single-byte record header gives the entity

type, and consequently the number and manner in which the follow-

ing bytes are to be interpreted. Most systems also include a

block of integer data within each entity record specifying vari-

ous status Information, such as an entity number, display mode

(solid, dashed), pointers to other entities, etc.

The most significant differences between current systems

Involve the methods by which complex entities, e.g., splines,

analytic curves, planar and curved surfaces, etc., are described.

It Is from these entries that much of the Information for numer-

ical analysis and manufacturing is derived; hence, It can be

expected that modeling techniques 1n this area will be continually

refined as design, analysis and manufacturing become more widely

integrated.

-26-

n i-i r-is 2 -4 0 0 0 3 0 i» :J ncuvjc LJi_i-/^r\

1
2 0 0 0 0 3 0 2 0 0 0 -4 0 0

2 0 !. 0 -4 -4 0 -4 2 0 3 -4 0 0 -4
0)

' u.

0)
"O o z:

2 -4 0 -4 0 0 -4 2 -4 0 -4 -4 0 0 a~

m

i

2 0 3 -4 0 3 0 2 0 0 -4 0 0 0 CO

r-

1 -2. 1. 5 -2. 3 -2. 1.5 -2. 0.5 0 360

0 0 .8 0 -.8 0 • « i • L> • O

•27-

2.0 Wireframe Graphics System Structure

Current wireframe graphics-systems are alike in that nearly

all are supervised by dedicated minicomputer systems. The basic

operation of these systems consequently is fixed by the common

constraints imposed by minicomputer system architecture and the

intrinsic computational demands of wireframe graphics.

2.1 Principal Hardware/Software Components

The diagram of figure 2-1 shows the typical structure of a

multi-user wireframe graphics system. The two blocks at the top

of the diagram, the graphics procedures library, and the model

data base, can be shared by all users of the system; the blocks

below are duplicated for each individual user or workstation.

In this scheme the graphics procedures library is the set of

all software procedures (or subroutines) in executable form

responsible for carrying out each of the graphics functions

implemented by the system. The data base resides on mass stor-

age devices, comnonly high-capacity hard-disk drives, often in

both permanent and temporary forms; I.e., each workstation nor-

mally writes to its own scratch area, editing not the original

but a copy of the permanently filed part.

The remaining software, which is duplicated for each user,

consists primarily of a real-time I/O monitor loop which

■28-

WORKSTATION #N
——————i

i
ro
»

-^
LIBRARY OF

GRAPHICS

PROCEDURES
<=> DATA BASE

..rprrp-
DISPLAY FILE

I/O MONITOR
DISPLAY

PROCESSOR

WORKSTATION #1

CRT

KEYBOARD

OTHER DEVICES

<._ _ _ _ j

FIG. 2-1, System Structure

periodically polls or queues user I/O events. Other user-

specific components are mostly various pieces of display or

interaction hardware, such as keyboards, CRT's, function buttons,

etc. In these systems user commands typically are issued either

as alphanumeric strings entered using a standard keyboard, or,

more effectively, using pre-defined (and sometimes user-defined)

function buttons. The monitor program accepts and evaluates the

various forms of input data, and matches user requests to execu-

table procedures maintained in the system library. Control is

then transferred to the selected procedure, which, using para-

meters passed to it by the monitor program, operates on or extends

the current data base as necessary. Results are communicated to

the user either as messages indicating current system status or

as changes in the displayed image.

2.2 Display Devices

Details of the conversion from model data to displayed image

are highly machine-dependent, particularly with respect to the

type of CRT being driven. There are three significantly differ-

ent technologies 1n current use: storage tube, vector refresh

and raster scan. All three find application in engineering

graphics, and each excels in certain specific areas.

-30-

Storage tube displays are generally the most economical, both

in hardware cost and in software requirements. They typically j

communicate with the host computer via standard serial interfaces,

and have traditionally afforded the highest screen resolution

(4096x4096 is not uncommon). Lines are produced on the screen

by issuing sequences of character codes representing the endpoint

screen coordinates; hardware local to the display (referred to

as the display processor) interprets the data and activates the

deflection circuitry of the CRT. Since all lines are retained

on the screen Indefinitely, an image may be "painted" line-by-Hne

at any arbitrary speed. Storage tube CRT's are normally mono-

chrome, although beam-penetration models with up to four different-

colored phosphor layers are available.

Vector refresh CRT's are similar to storage tube models

except for the obvious absence of the storage feature. Stable

images are obtained through rapid retracing of the entire display

(approximately 30 times per second is common). High persistence

phosphors are often used to reduce the apparent flicker of com-

plex images.

Raster scan CRT's used in computer graphics are enhanced

versions of commercial television monitors. In these displays,

deflection circuitry does not trace the image directly on the

screen face, but rather generates a fixed pattern of horizontal

-31-

scan lines. Dots are produced at precise locations along each

scan line by pulsing the acceleration potential of the electron

beam. As in vector refresh displays, the data for any particular

image must be stored by the display hardware as long as the

image is to be displayed.

The three types of displays above fall into two classes so

far as engineering graphics applications are concerned: static

displays, and dynamic displays. The storage tube terminal is

most appropriate for line drawing tasks requiring a relatively

low interaction level, such as 1n defining model geometry or in

plotting graphs. Here higher screen resolution produces a

smoother, more accurate rendering of curves. These terminals

also can be located remotely from the host computer since they

use standard serial communication methods. The vector refresh

display, in contrast, is inherently dynamic, requiring a con-

stant stream of image data 1n order to produce any coherent

image at all. As a natural consequence, a smooth motion of the

object can be simulated by recalculating this image data in real

time. Motion of an image helps the designer visualize complex

3-D objects, and helps the engineering analyst visualize deflec-

tions due to applied loads or free or forced vibration, for

example.

-32-

Until recently vector refresh terminals had been used almost

exclusively for dynamic display applications. Sharply decreas-

ing hardware costs, however, particularly in random-access memory

packages are making raster scan displays economically competitive.

Further, they afford the advantage of color. While vector

refresh displays require that the complete set of graphics instruc-

tions and data, called the dUplay ^Itz , be stored for reference,

raster scan displays store numerically the state of each addres-

sable screen dot, on.pi.xzZ[5],For monochrome tubes the value stored

corresponds to a gray scale intensity level; for color tubes the

value is a number corresponding to intensity levels for each

of the three primaries red, green and blue. Implementing a

512x512 matrix of pixels in a 16-color or l6-1ntensity system

requires a vast amount of image memory: 512*512*4 bits of data

per pixel = 128K (131,072) 8-bit bytes. The display file for

vector refresh displays, in contrast, is typically no more than

several thousand bytes in length.

The relatively low screen resolution of raster scan displays

is typified by the "staircase effect" in the representation of

an angled line. While storage tube and vector refresh displays,

referred to as calligraphic or stroke displays, generate a

straightline between any two discretely addressable screen coor-

dinates using analog methods, raster displays illuminate only a

-33-

string of dots, each being one of the addressable screen coordi-

nates. Figure 2-2 shows a raster image of a fairly complex

object, produced on a dot matrix printer with a dot spacing of

0.033 inch, comparable to a 512x512 12-inch diagonal CRT.

Figure 2-3 shows the same object as reproduced on a high-

resolution drum plotter having a step size of 0.0004 inch. The

staircase effect is of little practical consequence in systems

using such a plotter, since designers working on raster CRT's

need only interact with images good enough to verify the integrity

of the model data base; high quality engineering drawings can

be generated independently if needed at a later time.

2.3 Device-Independent Systems

The wide variations in display capability and mode of oper-

ation have resulted inevitably in graphics systems suitable only

for certain kinds of applications. This high level of parti-

cular device dependence also constitutes one of the major obsta-

cles to the user's understanding of the underlying principles of

computer graphics. Both problems have served to hinder the pro-

gress of integration of design, analysis and manufacture.

The diagram of figure 2-1 incorporates steps to ensure device-

independent system structure. A two-step translation process is

assumed between the procedures library and the display screen,

•34-

' en
i

FIG. 2-2. Wireframe Model Raster Image

I

I

FIG. 2-3. Wireframe Model Calligraphic Image

namely the display file and the display processor. This extended

structure is sufficient to implement any and all of the three

previously mentioned types of CRT technologies, though it may

require redundant processing, especially with storage tube dis-

plays. A separate display file procedure can be included in the

library for each different type of display, all sharing the same

model data base. The proper procedure'is then invoked automati-

cally by the system, transparent to the user. The resulting dis-

play file is either transmitted serially to the display device,

or may simply be made available to the display processor in cen-

tral memory for independent, high-speed access.

/' The actual translation process which occurs between model

data base and displayed image thus consists of the assembly, in

the host computer, of a sequence of commands and data represent-

ing the desired image in a form recognizable by the particular

device's display processor. This implies a dual representation

of the object to be displayed; the data base contains a general-

ized 3-D geometric model of the object, while the display file

is an instruction code sequence representing a particular 2-D

projection of the object.

To illustrate, assume a calligraphic CRT having a display

processor which implements in hardware the follbwing limited

set of graphics primitive operations:

-37-

MOVA xx,yy move absolute

DRWA xxtyy draw absolute

MOVR xx,yy move relative

DRWR xx,yy draw relative

Here the "move" operation causes an Invisible change in the posi-

tion of the electron beam on the CRT face. The "draw" operation

causes the beam position to move 1n a straight line from the

current position to the specified one, leaving a visible trace

on the screen. In these Instructions, for the absolute form,

xx and yy (positive Integers) give the screen coordinates of

the new position. In the relative form, xx and yy (positive or

negative Integers) commonly Indicate changes from the current

position. The display file for this processor-giving the image

shown 1n figure 2-4a would thus appear as listed 1n table 2-1.

The path of the electron beam 1n tracing this image 1s shown 1n

figure 2-4b.

The graphics system structure as presented 1n this chapter

1s typical of the more powerful 3-D wireframe systems currently

available, and is most readily adapted to different displays and

expanded to wider applications. In the next chapter the content

of the procedures library will be examined 1n greater detail,

particularly those graphical functions most frequently applied

in engineering design.

■38-

100

YS

G

F

^ >

c

^y ̂
E K y D

A

xs
(a)

100

ARBITRARY
INITIAL

POSITION

(b)

FIG. 2-4. Sample Calligraphic Image

-39-

ENDP0INT5 LINES DISPLAY FILE INSTRUCTIONS

i

O
I

A 48,20 A,B 1 MOVA B 48,50 CD 2 DRWA C 76,63 B,C 3 MOVA D 76,33 A,D 4 DRWA E 25,36 E.F 5 MOVA F 25,65 G,H 6 DRWA G 53,78 F,G 7 MOVA H 53,49 E,H 8 DRWA
A,E 9 MOVA
B,F 10 DRWA
C,G 1 1 MOVA
D,H 12 DRWA

48,20
48,50
76,63
76,33
48,50
76,63
48,20
76,33
25,36
25,65
53,78
53,49

13
14
15
16
17
18
19
20
21
22
23
24

MOVA
DRWA
MOVA
DRWA
MOVA
DRWA
MOVA
DRWA
MOVA
DRWA
MOVA
DRWA

25,65
53,78
25,36
53,49
48,20
25,36
48,50
25,65
76,63
53,78
76,33
53,49

TABLE 2-1. Sample Display File

3.0 Wireframe Image Generation

Early engineering graphics systems were introduced primarily

to supersede manual drafting. As a consequence many began as

2-D systems, the model data base tailored specifically to the

efficient generation of, single view drawings. The desire to

produce sets of related orthographic views, and later the inte-

gration of drafting with design* analysis and manufacturing led

to more elaborate 3-D modeling techniques, similar to those

developed in Chapter 1. This trend has necessarily generalized

the procedures required for assembling a particular display file

from the model data base.

The function of these basic graphics procedures is essen-

tially that of mapping a 3-D model coordinate system into the

2-D screen coordinate system of the display device. Two of

these procedures, referred to as clipping and projection, deter-

mine how much of the object appears in the screen image, and

in what orientation, respectively. These functions have been .

handled in a variety of ways 1n currently available wireframe

graphics systems, and are possibly the greatest source of con-

fusion to new users. The methods used in any particular system

also dictate to a large degree the form of man/machine inter-

action best suited to that system, and are often a significant

factor in the choice between competing vendors.

-41-

3.1 Clipping

The clipping procedure is one of the most basic graphics oper-

ations. In order to generate a close-up or "zoomed" image of

an object, all geometric entities which would consequently lie

off the screen must be actively suppressed from the corresponding

display file for that image. Figure 3-1 illustrates for the 2-

dimensional case a typical situation to be resolved by the

clipping procedure. As shown in the figure the boundary of the

"visible" portion of the data base, referred to as a window, 1s

almost universally rectangular, often square. This is not an

essential restriction, but greatly simplifies the testing proce-

dure. Point entitles afford the least difficulty; their coor-

dinates are compared with those of the four lines which define

the window, and the point is declared either in or out according

to the results of the test. Line entitles, however, are much

more complex[4].There are four possible cases encountered in

the clipping of lines, classified by number in figure 3-1:

CASE 1. IN-IN - line is completely within
window; entire line displayed

2. IN-OUT - line is partially within
window; segments Ee and Df
displayed, segments eF and
fF not displayed

\

-42-

'MAX
WINDOW BOUNDARY

Xw =100.
"MAX

100.

33 + 75~33 (100-72)
1 11-72

33 + 1.077(28: 63.2

P = (100,63.2)
FIG. 3-1. 2-D Clipping

-43-

3. OUT-OUT - Hne is entirely outside
window, not displayed

4. OUT-IN-OUT - line is partially within
window; segments ab and dc
displayed, segments Aa, bB,
Ad and cC not displayed.

Like many other higher-level graphics procedures, clipping

is essentially a sorting operation. It not only reduces the

whole collection of lines in the object to a particular subset,

but moreover it modifies existing lines by creating new endpoints

(those labeled with lowercase letters 1n the figure). The new

endpoints can be determined by solving the original line equa-

tions, derived from the endpoint coordinates (x-j.yj) and (xj.yj)

stored in the model data base, for an intersection (x^.y^) with

the given window boundary.

At left or right side: x^ = ^ 3.1

yi"yi , yk =yi +7h7(Vxi) 3'2

x.-x.
At top or bottom: x,, = x< + -*—- (yu.-y<) 3.3

yj"y1

yk - yw 3.4

The calculation using equations 3.1 and 3.2 above for the

new endpoint f of line DF is given in figure 3=1; the clipped

-44-

screen Image described in the resulting display file is graphi-

cally represented in figure 3-2. Window specification normally

is made by giving center coordinates and either a single scale

factor for square boundaries, or two linear dimensions for rec-

tangular boundaries.

Computational requirements incurred by a general floating-

point clipping procedure alone can clearly become quite substan-

tial for complex objects, particularly since the intersection

equations involve both multiplication and division. Lines must

also be classified among the four possible cases stated above

using the only available data, the coordinates of the two end-

points In model space. In many cases, it 1s not possible to

determine Immediately from this information alone which window

border is violated. Algorithms for this procedure are commonly

Iterative or recursive, either by explicitly solving for boundary

Intersections 1n x and y repeatedly until both coordinates are

on or inside the window, or by searching logarithmically for a

point on the line which falls just Inside the window according

to some fixed tolerance. Processing time for clipping purposes

alone often is sufficient to preclude dynamic image generation

on minicomputer-based systems.

The 2-d1mens1onal example presented above is extended by

analogy to the general 3-D case. The visible region of the model

-45-

2-D MODEL SPACE

WINDOW
BOUNDARY

i

I

VIEW
PLANE

FIG. 3-2. Clipped Sereen Image

data base subsequently becomes a 3-D volume, usually cubic,

referred to as the view volume or view cube. The clipping pro-

cedure must further be concerned with intersections at the

"front" and "back" of this region. Two different approaches

to the 3-D clipping problem have been taken in current wireframe

systems, producing images significantly different 1n content.

Those current 3-D systems which originally evolved from more

primitive 2-D versions often are betrayed by their particular

use of clipping in the view direction.

The first method simply applies a 2-D clipping procedure

identical to that detailed above to al_I entities in the view

direction. The front and back of the view volume are thus fixed

at the bounds of model space. Figure 3-3 is a graphical repre-

sentation of such a system. Here the plane triangular object

of figure 3-1 has been extended non-un1formly 1n the depth direc-

tion, completing a 3-D model. The 2-D screen Image generated

from this model 1s shown in the figure in front of and along

the direction of view of the 3-D space containing the object

model. The orientation of the rectangular view volume is Indi-

cated in dashed lines, enclosing as described the full extent

of model space In the view direction.

An Image produced from the same model using an explicit 3-D

clipping algorithm 1s depicted for comparison in figure 3-4.

-47-

I

VIEW
PLANE

3-D MODEL
SPACE

/

FIG. 3-3. Clipping In 3-D, Method 1

I

VO
1

VIEW
PLANE

3-D MODEL
SPACE

FIG. 3-4. Clipping 1n 3-D, Method 2

In this case the view volume is a cube, commonly specified in

current systems by its width and center coordinates in model

space. The screen image showing the contents of this view

volume differs from that of figure 3-3 in the omission of a line

representing an edge near the back of the object. This detail

is suppressed by the clipping procedure because it Hes outside

the view cube. The scales of the two screen images are identical.

Details of the back of the object are revealed in the latter

screen image only if the location or width of the view cube is

modified to enclose these entities. Figure 3-5 shows the results

of relocating and enlarging the view cube; the change in shape

near the back of the part is now included in the screen image,

and the entire object appears in a smaller scale.

One side-effect of the implementation of clipping is the

ability to become "lost" in model space; i.e., the possibility

of specifying a window in 2-D, or view volume in 3-D, which

encloses no part of the modeled, object. The probability of

such an occurrence is aggravated by 3-D clipping procedures;

figure 3-6 shows such a situation. More effective systems guard

against such a frustration. The distinction between graphics

systems utilizing 2-D or 3-D clipping is important in engineer-

ing applications, particularly regarding the generation of consis-

tent sets of orthographic views, and will be examined more fully

in the next section.

-50-

3-D MODEL
SPACE

i
en

VIEW
PLANE

FIG. 3-5, Enlarged View Cube

}
I =4

I
in

VIEW
PLANE

3-D MODEL
SPACE

FIG. 3-6, Clipping Side-effect

3.2 Projection

The other basic wireframe graphics procedure, responsible

for collapsing the 3-D model data onto the 2-D screen or view

plane, is referred to as projection. Much of the power of

graphics systems lies in their ability to generate an Image from

a 3-D model showing the object in any possible physical orienta-

tion. This ability is founded upon the methods of matrix coor-

dinate transformations. There are two principal forms in use:

orthographic or parallel projection, and perspective or central

projection.

3.21 Orthographic Projection

The process of orthographic projection has been tacitly

employed in all of the preceding figures and examples. Up to

this point the x and y model space axes have been presumed paral-

lel to the view plane x and y axes, with the viewer located

infinitely far from the view plane. This situation 1s repre-

sented graphically in figure 3-7. In this case, device x and y

coordinates for all entitles to be displayed are obtained, after

appropriate scaling and type conversion, directly from the exist-

ing model x and y coordinates. Graphically, this implies that

projection lines extend from the object vertices to the view

plane parallel to the line of sight. For other arbitrary

■53-

I
in
■ft.
i

FIG. 3-7. Orthographic Projection

orientations the scaling and conversion steps mentioned above

are preceded by a transformation of all model vertices into the

desired rotated coordinate system; this can be represented by

the equation

Cx*y*z*H = cxyzncin

where x*, y* and z arle Vertex coordinates of the rotated object,

x, y and z are original model vertex coordinates, and T is the

particular transformation matrix.

In this expression the transformation matrix has nine mem-

bers (three rows, three columns); this form 1s derivable from

the more general 4x4 homogeneous coordinate form and is commonly

used in current graphics systems to compute single or compound

rotat1ons[4].Further, since the three columns represent mutually

orthogonal vectors, the third column of fjf] can be obtained by >

taking the cross product of the first and second columns. In

some graphics systems, especially those which provide user-defined

auxiliary coordinate systems, such transformation matrices are

stored more efficiently by retaining only the first two columns.

They are used profusely to map from one coordinate system to

another.

View rotations are mostsimply performed about the model x,

y or z axes through some specified angle e[6]. For single axis

-55-

rotations the members of the transformation matrix are given as

follows:

rotation about x: Q"] = <
no o i
0 cose sine> or expanding x =x
0 -sine cosej y =ycose-zsine

z*=ysine+zcose

[cose 0 -sine]
rotation about y: \JJ"J = < 0 1 0 \> or x =xcose+zs1ne

(sine 0 cosej y*=y
z s-xsine+zcose

[cose sine 0] #
rotation about z: [jQ = <]-s1ne cdse 0j> or x =xcose-ysine

y*=xsine+ycose
<-sine cose u,>
I o 0 ij

z*=z

Compound rotations can be performed in one step by first

calculating the corresponding transformation matrix product;

for example, rotation about the y-ax1s by $ degrees followed by

rotation about the x~ax1s e degrees gives:

. fcos# 0 -sin*] [10 0] [cos* sin«(>s1ne -slrtycose]
(2Q - < 0 1 0 ><.0 cose sinei-=< 0 cose sine, ;

[s1n«f> 0 cos<f>J (0 -sine cosej (sin<)> -sinecos<f> cos<j>coseJ

This method is frequently used to produce all three types of

classical orthographic projection employed in engineering

graphics, referred to as trlmetrlc, dlmetric and isometric [3].

The trlmetrlc form Is the most general of the three classi-

fications. After rotation, distances measured along each of the

-56-

three principal axes are foreshortened by unequal amounts. There

are an infinity of possible rotations which satisfy this condi-

tion; figure 3-8 is a representation of the projection process

for a cube, and figure 3-9 shows the resulting image as it would

appear on the screen. The rotation angles and the members of

the transformation matrix specified thereby also are given in

figure 3-9, along with the angles between the axes and the fore-

shortening of distances in the resulting 2-D projection. The
■a

latter details are sufficient for a draftsman to construct manually

such a projection on paper. Trimetric projection, however, has

rarely been used by draftsmen because of the difficulty in laying

out distances along the projected axes.

Dimetric projection is distinguished by the property that

two of the three orthogonal planes are foreshortened by equal

amounts, and two of the three axes are separated by equal angles.

Figures 3-10 and 3-11 show the projection process and the result-

ing image for such a rotation . This class of projection has been

more often used by draftsmen because the foreshortened distances

along xp and yp are identical, and those along zp are precisely

half of the actual values.

In isometric projection the dimensions along all three axes

are equally foreshortened, and the axes appear equally spaced,

120° apart. Figures 3-12 and 3-13 show the projection process

■57-

en
oo
i

ROTATION ANGLES:
0 = -50.783
9 = 34.849

.632 -.443 .636

0 .821 .571

-.775 -.361 .519

FIG. 3-8. Trtmetric Projection Process

YS

i
en
i

YP

\. °<3

Q°<i

^\
ZP

XP

PROJECTED ANGLES

CXj- 125.0

<X2= 120.0

<X 1 15.0

FORESHORTENED DISTANCES

XP: 0.772:1

YP: 0.821:1

ZP: 0.855:1

XS

FIG, 3-9, Trlmetrlc Screen Image

YS

i

O

ROTATION ANGLESt

0 = -22.18

9 = 20.77

T r

xs

.926 -.134 .353

0 -.935 .355

-.378 -.327 .866

FIG, 3-10. Dfmetric Projection Process

YS

i

YP

0<3

^

-

^^? XP

ZP

xs

PROJECTED ANGLES

ex 98.2

0<2= 130.9
ex 130.9

FORESHORTENED DI STANCES

XP: 0.935:1

YP: 0.935:1

ZP: 0.500:1

FIG. 3-11, Dlmetrtc Screen Image

I

ro
i

YS

s

ROTATION ANGLESt

0 = -45.00
0 = 35.21

v

^SXP T =
.707 -.408

0 .817

.577

.578

. xs -.707 -.408 .577

FIG. 3-12. Isometric Projection Process

YS PROJECTED ANGLES

i
en
U)
i

ex 120.0

<3<2= 120.0

<X, 120.0

F0RE5H0RTENED DI STANCES

XP: 0.816:1

YP s 0.816:1

ZP: 0.816:1

XS

FIG. 3-13. Isometric Screen Image

and the resulting image. This procedure is most often used by

draftsmen when pictorial drawings of 3-D objects are wanted, since

the scaling factors applied along all three axes, being equal,

can be ignored completely in the construction process.

Comparison of the three screen images illustrated in the

preceding examples indicates that the trimetrlc and dimetric

rotations, although difficult to produce on a drawing board,

present more information about 3-D objects than the isometric.

The more frequently used isometric leads to a somewhat ambiguous

image, particularly for the cube in the examples. This obser-

vation has made the more arbitrary rotations desirable for pic-

torial applications in engineering graphics, and most systems

accordingly provide, along with predefined front, top and side

orthographic and isometric and dimetric view matrices, the means

to obtain arbitrary rotations of these standard views.

The most common method performs rotation through a specified

angle about one axis of a coordinate system (xs,ys,zs) fixed to

the display screen, rather than the model coordinate system. Such

rotations are easily visualized, and through repeated execution

can give any arbitrary viewing position. Using this technique

the operator may, for example, obtain the particular trimetrlc
i-

view shown 1n figure 3-9 by starting from the system-defined

front orthographic view (i.e., model x and y axes are parallel

-64-

to the screen xs and ys axes) and subsequently rotating first

-50.783° about ys, then 34.849° about xs (see figure 3-8). This

particular function typically is handled as a compound rotation.

The transformation matrix relating the new view to the stored

model coordinates is found by pre-multiplying the given rotation

matrix by that for the current view:

fl 0 0"| f .632 -.443 .636) f .632 -.443 .636]
[Tl = <0 1 OW. 0 .821 .571 > = < 0 .821 .571

(O 0 1J [-.775 -.361 .519) [-.775 -.361 .519J

Here the matrix on the left defines the front orthographic view,

and is in this case simply the identity matrix; in this way the

requested rotation reduces directly to that in figure 3-8.

In another common approach a desired axis of rotation and

desired angle of rotation is specified. The axis usually is

located by its endpoints in model space. This method is not

as easy to specify or interpret as the one previously described,

but is often useful, for example, in more easily obtaining images

in which a skewed face is parallel to the plane of the screen

and thus is viewed in true shape.

3.22 Perspective Projection

Some wireframe graphics systems also can generate perspec-

tive projections as well as the standard orthographic projections.

•65-

This feature is useful to engineers mostly in a pictorial sense,

such as in the production of rotated views for assembly drawings.

Figure 3-14 shows the perspective projection process for the

same object as figure 3-7. In this form of projection the viewer

is located a finite distance from the view plane; projection

lines are thus no longer parallel to the line* of sight as before,

but converge to the specified view point. In this way the model

vertex coordinates are modified based on their apparent distance

from the viewer. Figure 3-15 shows the screen image as it-would

appear to the user. Perspective projection clearly 1s a valu-

able tool for more effectively conveying depth information in a

wireframe Image.

The process of calculating view plane x and y coordinates

for perspective images is often reduced to the following equa-

tions, derivable from the general 4x4 homogeneous coordinate

form

xp(i) = x(1)

yp(D = yd)

where Vp is the location of the viewer along the model space z-axis.

The perspective effect becomes more or less pronounced as the

viewpoint is moved closer to or farther from the model space

-66-

FIG, 3-14. Perspective Projection

I

s
I

1

«tt>

FIG. 3-15. Perspective Screen Image

origin. This calculation is quite costly in processor time,

adding both further multiplication and division for each model

vertex to the display file creation procedure.

3.23 Multiple Views

The generation of multiple views in one screen display, par-

ticularly sets of related orthographic views, is a practical

necessity in engineering graphics. It is often an integral part

of the model input process. The addressable screen area is par-

titioned Into separate sections for the different views. These

independent screen areas are called viwpofcU; most current sys-

tems permit one, two or four views to be shown simultaneously 1n

this fashion. Figure 3-16 shows such a screen display. In this

figure the layout of the four views follows traditional American

drafting practice as described previously, with the three ortho-

graphic projections (top, front and right side) correctly aligned

in the second, third and fourth quadrants, respectively. The

upper-right viewport 1s almost universally used for rotated

views; in standard practice this' view 1s developed from the

front orthographic, or lower-left viewport. The axes orientation

shown in the figure Indicates a right-handed coordinate system,

with the top view parallel to the x-z plane, the front view

parallel to the x-y plane and the right-side view parallel to

the y-z plane.

-69-

I

o
I

TOP FRONT ROTATED
FRONT

Y

L
X

RIGHT

FIG. 3-16. Four-View Display, Front X-Y

Differences in the image generation procedures implemented

in current wireframe systems are most noticeable in the proper-

ties of multiple-view displays. The more recent systems, in

which manufacturing practices have contributed towards the design,

typically use a different view labeling convention. In these

systems the top view shows the x-y plane; this is consistent

with the operation of many numerical-control machine tools,

which assume the cutting tool rotates about the z-axis. The

front view then becomes thex-z plane, and the right-side view

the y-z plane. Figure 3-17 shows the appearance of such a dis-

play for the same model as figure.3-16.

A more important difference 1s that correctly aligned ortho-

graphic views are automatically produced only by a minority of

these systems. Those which do not perform 3-D clipping, as

mentioned 1n section 3.1, commonly apply a 2-D clipping operation

independently to each view. As a result, orthographic sets will

not be consistent unless the scale is manually forced to be

identical 1n each view, and furthermore is such that no clipping

is necessary In any of the views. A consistent set of ortho-

graphic views is always guaranteed regardless of scale only in

those systems which use a single 3-D clipping operation to Identi-

fy simultaneously visible data for all three views.

•71-

I

TOP FRONT ROTATED

FRONT RIGHT
z

5^
FIG, 3-17. Four-View Display, Top X-Y

3.3 Summary

The entire image creation process is accomplished through

execution of a set of graphics procedures applied to the data

base in a particular sequence. The processes responsible for

creating a display file appropriate for engineering graphics are

organized in a threerstep procedure in figure 3-18 [4]. Data first

is truncated in model space to that portion specified as visible

by the location and width of a normally cubic view volume;

output may take the form of a list of pertinent geometric enti-

tles. Next, the desired projective transformation 1s applied

to the 11st of points provided by step 1, generating a new list

of 2-D view plane coordinates. Finally, these view plane coor-

dinates are mapped into device coordinates 1n the intended area

on the display screen. If multiple viewports are requested,

control returns to step 2, computing a different view and mapping

to the corresponding viewport, until finished.

-73-

Model
Space

Clip to
v i ew vo1ume

WINDOW

Project
onto w i ndow
in v i ew piane

VIEW

Map Prom
w i ndow to
v i ewport

VIEWPORT

Dev i ce
Space

I

VIEW
PLANE

SCREEN

3-D MODEL
SPACE

FIG. 3-18. Image Generation Sequence

4.0 Interaction Between Operator and System

The software for interactive minicomputer graphics systems is

closely related to its more general counterpart, the interactive

operating system in larger minicomputer and mainframe systems.

Both manage user access to the available hardware and software

resources, and can be conceptualized as providing the means of

selecting operations from a wide range of alternatives, ideally

in the most natural, concise and consistent manner possible. Com-

paratively, however, interactive computer graphics systems are

intrinsically more communication-intensive. The need for interac-

tiveness has inspired a great deal of research and development of

computer peripheral devices, particularly those which afford a

means of geometric interaction. Currently available systems con-

sequently exhibit a variety of interactive environments, perhaps

better evaluated using subjective rather than objective criteria.

The principal trade-offs typically occur between flexibility and

degree of imposed structure; i.e. freedom in the selection and

sequence of modes and options is often compromised with the

possibility of more definitive prompting and reduction of user

error.

The process of defining model geometry by entering model

space point coordinates.1s usually augmented by one or both of

the following two more convenient methods: use of auxiliary

-75-

\gj

coordinate systems, and 2-D graphical input. In one approach

auxiliary coordinates called wonk coonxLLwteA can be established

freely by the user to simplify model construction. This auxiliary

coordinate system can be translated or rotated with respect to

the fixed model space system; all input is automatically trans-

formed using matrix techniques before addition to the data base.

Figure 4-1 shows the use of an auxiliary coordinate system 1n

constructing the model for one of the figures used previously

in Chapter 3. An essential goal of wireframe graphics systems is

provision of a means of adding to or modifying the object model

by Interacting graphically with a 2-D Image. For this purpose

virtually all systems rely on screen cursors or crosshairs,

controlled by-2-degree-of-freedom devices such as digitizing tab-

lets, joysticks or thumbwheels.

4.1 Graphical Input

The use of interactive 2-D Input 1n the construction of 3-D

models Immediately poses the problem of how to map 2-D Informa-

tion into the 3-D data base. Since the fundamental data item in

wireframe graphics 1s the set of three cartesian coordinates of

points 1n model space, 2-D digitizers can be used to supply cur-

sor or crosshair coordinates in a plane which, in the most general

case, 1s arbitrarily oriented in 3-D model space. Specification

-76-

/

I

I

YC
AUXILIARY
COORDINATE
SYSTEM

MODEL
v . COORDINATE
Y f SYSTEM

X

' / [xC YC ZC l] s[x Y Z fj [j]

10 0 0

0 10 0

0 0 10

-175 -119 700 1

FIG. 4-1. Auxiliary Coordinate System

of the location of the digitizing plane with respect to the model

space coordinate system then suffices to determine the three

required model space coordinates. This specification is made

conveniently using matrix transformation techniques similar in

form to those used for view generation.

The most straightforward manner of handling 2-D input fixes

the digitizing plane parallel to a plane formed by two of the

three model space axes; e.g., the x-y plane. In this case the

required transformation matrix becomes, like that for an x-y

orthographic view, the identity matrix; I.e., model x-axis is

aligned with the digitizer horizontal, model y-ax1s is aligned

with the digitizer vertical. The missing third coordinate,

commonly referred to as depth (here 1t is the model z-axis), is

simply fixed at some prescribed default value. To enter a

point entity 1n the model data base, the user simply positions

a cursor superimposed on an x-y orthographic view at-the

desired location in that plane; the system then writes these x

and y values, after the usual scaling and type conversion, directly

into a new entity record. The current depth value provides the

z-coordinate. Figure 4-2 represents this situation graphically.

A square "screen" area with a small cursor is shown on the left;

on the right the orientation of the digitizing plane in 3-D

model space for default condition z=0 is shown, along with the

-78-

3-D MODEL
SPACE

SCREEN

YS

FIG. 4-2. Digitizing Plane Orientation

corresponding 3-D position of the screen cursor. By redefining

the current depth value, the user can specify points anywhere

in the visible portion of model space.

Most systems restrict graphical interaction to a single

view, called the wonkv-lew, even when multiple views are dis-

played. Some, however, permit simultaneous digitizing in two-

orthogonal -view displays, with separate depth values maintained

for each. In this case the digitizer surface is implicitly par-

titioned, like the display screen, into two independent sections.

Both methods are most effectively used in conjunction with the

predefined front, top and right-side views for defining line and

arc entities in orthogonal planes. This property is usually

exploited by suitable orientation of the object with respect

to the model space coordinate system. The definition of geo-

metry that 1s not parallel to one of the principal planes 1s

possible but less convenient. A skewed line, for example, can

be entered by first digitizing one endpoint; the current depth

value for that viewport must then be altered, 1n the middle of

the line definition process, to correctly digitize the remaining

endpoint in a different plane. Figure 4-3 represents the process

of defining such a skewed line in a largely orthogonal object.

The practical limits of device resolution and repeatability

are serious disadvantages of direct analog positional input.

-80-

DEPTH
PLANE #2

DEPTH
PLANE #1

00

SKEWED
LINES

FIG. 4-3, Skewed-L1ne Entry

Designers using a graphics system to define manufactured parts

will, furthermore, have little use for a coarse digitizing capa-

bility, as points and Hnes representing the corners and edges of

a 3-D object must be located precisely in the model coordinate

system. The inherent simplicity of point and line entry by

"pointing" a cursor is such a desirable feature, however, that

several techniques have been developed to retain its flexibility

while still affording precise data entry.

Foremost among these is the artificial imposition of a

modular geometric constraint, 1n the form of a software-generated

digitizing Qiid. Such grid systems filter all positional Input,

adjusting 1t to the nearest "currently acceptable value" before

addition to the model data base. Figure 4-4 shows a set of

orthographic views from such a system; the grid is typically

displayed as a pattern of dots which locate the currently accep-

table positions. For example, specification of a grid with 1-

unlt spacing 1n x, y and z ensures that all subsequent positional

input is adjusted to be precisely modulo 1 unit. The user need

only set the depth value and then point a cursor anywhere within

the box shown here 1n the front view to Identify correctly

point coordinates in integral units.

■82-

I
00
CO

Zt

0

DEPTH =2.

TOP

Front vIow
dI a 111z i ng
piano

(2.2.2)

FRONT
FRONT ROTATED
RIGHT

*J
FIG. 4-4, Digitizing Grid

4.2 Entity Selection

In its other essential function, positional input references

existing model geometry, either to edit the object model graphi-

cally or to define new entities related geometrically to those

already entered (parallel, perpendicular, etc.). This procedure

1s similar to the grid function in that rapid and effective inter-

action requires the system to be tolerant of user inaccuracy in

"pointing" at desired entities. Most algorithms define a

region surrounding the indicated point and perform a linear

search of the data base for entities falling within this area.

Most also stop at the first match, though some complete an

exhaustive search. All ultimately indicate in the displayed

image the entity or entitles found. Both processes are prone to

failure; often in crowded images the data base search will con-

sistently return with an unintended entity, or, in the latter

case, the desired one along with several others. To alleviate

this shortcoming, some systems allow the user to limit the search

to particular entity types such as points, lines or arcs. Many

systems also permit the user to perform selection 1n rotated

views; although the required coordinate transformation Intro-

duces further inaccuracy, rotated views often present object

edges most cleanly. As a last resort, virtually all systems

permit the user to group entitles on separate ItviU or laytu .

-84-

One or more layers .then can be made Ineligible for selection.

As mentioned in Chapter 1, the identification of layers normally

is included as part of the attribute information written in each

entity record.

4.3 Function Selection ^

Current wireframe graphics systems are often evaluated by

users according to the dominant characteristics presented by

the user/system interface. The degree of inherent structure 1s

perhaps the foremost of these characteristics; available systems

can be generally categorized as menu-oriented systems, or as

command language systems. The salient features of both types

and the particular styles of interaction which each evokes are

described below.

4.31 Menu-Oriented Systems

This group Includes the most highly-structured systems. In

this form of operation the user 1s prompted at all times with a

brief, fixed list of options, from which a single function is

chosen. The user then is presented with further sets of lower-

level sub-menus until finally a particular operation supported

in the software library is fully specified. The desired proce-

dure 1s then executed, and the user is normally returned upon

-85.

completion to the top of the menu structure. In this manner the

user chooses from the available resources in fixed, predetermined

patterns which ensure correct and unambiguous specification of all

required parameters. Option lists in force at any particular

time are often presented as character strings on the main graph-

ics display, or alternatively on a small alphanumeric monitor.

Choice 1s made by pointing a cursor or by pushing designated

buttons on a function keyboard. In one such implementation the

meaning of sets of function buttons changes with each menu level,

always corresponding to options active in the current menu.

The extensive prompting Issued by these systems makes them

easy to learn, and beginners usually progress rapidly in this

instructive environment. Skilled users, however, may come to

find the hierarchical menu structure cumbersome.

4.32 Command Language Systems

In these systems a general command syntax is defined, and

each function is assigned a unique keyword and parameter sequence.

The user may choose at any time between all of the possible

functions supported by the system; all pertinent information

must be correctly specified with each command. In more primitive

versions the user enters commands as alphanumeric strings using

a standard keyboard, similar to mainframe interactive programming

-86-

systems. More advanced Implementations make use of function

buttons or tablet menus, each button or digitizer area repre-

senting a predefined, or sometimes user-defined command string.

In these systems the user is prompted little if at all.

The price of greater flexibility is the need to learn the syn-

tax and data requirements of the full graphics instruction set.

New users often require substantially more training than they

would for menu-oriented systems. They must have available a

far greater amount of reference information in order to use the

system at all. Once this information 1s acquired, however,

skilled users often can define complex models more rapidly

without the exhaustive prompting structure of menu-oriented

systems.

4.4 Graphical Interaction

The possibility of selecting menu options with the screen

cursor was mentioned in the previous section. This is an exam-

ple of using graphical input, not as geometric data, but to

control system operation. Since the operator frequently alter-

nates between selecting functions and selecting or defining

geometry, it is convenient that the same device be used for

both. This notion is extended further in systems using symbol

recognition. This capability permits the user to associate

■87-

freehand symbols sketched on a digitizing tablet with system

command strings. By including procedures to extract specific

positional information from symbols, as well as matching them

with system commands, the processes of selecting functions and

defining geometry can be combined. In this manner both a

function and its parameters can be given simultaneously. As

an example, the user may choose to associate a horizontal or

vertical line with the procedure for defining line entitles,

requesting the extraction of the first and last points of the

sketched symbol. Horizontal or vertical lines then can be

entered very rapidly simply by sketching a line on the digiti-

zer connecting two grid points in the displayed Image.

Such features represent some direct advantages of computer

graphics systems over manual drafting; indirectly there arises

the added benefit of providing data for further use in analy-

sis and manufacturing. Although the above example is peculiar

to command language systems, the particular combination and

utilization of hardware and software in many systems permits

comparable economies in model construction. The following chap-

ter will discuss more powerful procedures commonly installed 1n

current systems to promote rapid construction of 3-D models.

■88-

5.0 Model Construction Enhancements

Several higher-level graphics functions are commonly pro-

vided in current wireframe systems to simplify the construction

of 3-D models. These functions generally enable the user to

reference existing entities in the definition of new ones, either

to satisfy common geometric relations or to perform some type

of spatial duplication. The set of functions implemented in

any one system often determines the particular construction

techniques most efficient for that system.

5.1 Geometric Relational Expressions

The use of geometric relations depends on the ability to

extract and/or calculate the required Information from data

already defined in the current model. The principles of analy-

tic geometry make possible a large number of such relations;

Table 5-1 shows a list of methods provided for the specification

of a new Hne entity in one particular menu-oriented system.

All can be computed from the standard data maintained for each

entity type; i.e., three cartesian coordinates for points, six

coordinates giving the endpoint locations of each Hne, etc.

In this kind of menu-oriented system, relations not provided

explicitly frequently can be obtained by executing a series of

the supported functions, creating and later deleting intermediate

.89,

CHOOSE LINE DEF MODE

1 TWO POINTS
2 TAN TO 2 CURVES
3 HORIZONTAL
4 VERTICAL
5 NORMAL
6 PT AND TAN CURVE
7 PT AND ABS ANGLE
8 PT - ANG FROM LINE
9 PT - PARALLEL LINE
10 PT - PERPEND CURVE
1 1 PARALLEL AT DI ST
12 PARLEL LN - TAN CURV
13 PERPTO LN - TAN CURV
14 ANGLE - TAN CURVE

TABLE 5-1. Line Entity Definition Options

-90-

entitles. This habit is typically encouraged by menu-oriented

systems, and the given functions, in conjunction with a set of

entity "editing" procedures, lead the operator into construction

techniques similar to those conventionally used in manual draft-

ing. Intermediate entitles perform a role similar to construc-

tion lines drawn and erased during manual drafting. Though

this approach often produces a model data base "cluttered" with

redundant or useless entities in inefficient systems, operators

with drafting experience are quickly trained in their use. The

editing procedures mentioned above Include such functions as

"trimming" Intersecting entitles at the point of intersection,

modifying one line endpoint, etc.

In contrast to the menu-oriented system methods, command

language systems often provide an on-line "geometric calculator"

enabling the immediate entry and solution of geometric relational

expressions. These procedures function like Interpreted algebraic

calculators; the user commonly keys in expressions which ref-

erence both a temporary storage area and the model data base

through selected entities.

A particular relation is solved by specifying temporary

storage as output for the appropriate geometric function call,

with the selected entity passed as an argument to this function.

The user then can execute an entity creation command, adding

■91-

that parameters are to be retrieved from temporary storage.

For example, assume it 1s desired to add a line entity parallel

to an existing instance, offset 5 units in the x-direction; the

required sequence may appear as follows:

ffl.1 - PRLL(0S1,5,0,0)
ADD LINE f&l)

where @L1 refers to temporary line storage, PRLL 1s the Identi-

fier of the "parallel" function, and @S1 refers to the selected

entity. This method obviates the necessity of creating and

deleting intermediate entitles, though 1t usually appears quite

foreign to new operators experienced in traditional drafting

techniques. Function call expressions, however, often can be

assigned to user-defined function keyboards or tablet menus,

thereby enabling rapid access during model construction.

5.2 Entity Duplication

Duplication of existing geometry 1s intended to take advan-

tage of the various object symmetries which frequently appear 1n

engineering design. This normally Involves the application of

coordinate transformations to existing entitles 1n order to

create scaled, translated or rotated copies. Translation trans-

formations are most often useful; with this facility an operator

can define 3-D objects by entering planar cross-sections and

that parameters are to be retrieved from temporary storage.

For example, assume it is desired to add a line entity parallel

to an existing instance, offset 5 units in the x-direction; the

required sequence may appear as follows:

0L1 - PRLL(0S1,5,0,0)
ADD LINE (@L1)

where @L1 refers to temporary line storage, PRLL is the identi-

fier of the "parallel" function, and 0S1 refers to the selected

entity. This method obviates the necessity of creating and

deleting Intermediate entitles, though 1t usually appears quite

foreign to new operators experienced in traditional drafting

techniques. Function call expressions, however, often can be

assigned to user-defined function keyboards or tablet menus,

thereby enabling rapid access during model construction.

5.2 Entity Duplication

Duplication of existing geometry 1s intended to take advan-

tage of the various object symmetries which frequently appear 1n

engineering design. This normally Involves the application of

coordinate transformations to existing entities in order to

create scaled, translated or rotated copies. Translation trans-

formations are most often useful; with this facility an operator

can define 3-D objects by entering planar cross-sections and

-92-

then translating a copy in the depth direction. This step avoids

re-entering identical, parallel faces. Figure 5-1 shows this

process employed in the construction of an object presented

earlier in Chapter 1. The orientation of the object in model

space 1s chosen as shown in 5-la, with the longest dimension

parallel to the z-axis, along which four regions of uniform

cross-section exist. This form of symmetry can be exploited

during the construction process by entering manually only those

lines which bound the three different cross-sections. In

figure 5-lb the first outline 1s completed; figure 5-lc shows

the result of translating a copy along the z-ax1s. The remain-

ing figures 5-ld and 5-2a-b illustrate this sequence for the"

other 2 cross-sections. This process often carries along

unwanted edges; the effort needed to delete them, however,

usually 1s small compared to the time saved. Figure 5-2c shows

the deletions and 1n 5-2d the remaining lines have been added,

completing the object model. Appropriate choice of object

orientation and careful attention to entry sequence is clearly

advantageous in systems providing such duplication procedures.

A similar feature provides rapid generation of objects

symmetrical about a central plane. In this case the user need

only define one side of this plane; the system completes the

model by creating entities that are a mirror image of those

-93-

p
I

i

I

en
i

fa)
(b

already entered. This feature Is called miviofUng. Figure 5-3

shows a model easily constructed using this procedure. With

the orientation shown in 5-3a this object is symmetric about

the z=0 plane; the designer need only enter the entities shown

in 5-3b. The model is completed automatically in 5-3c by the

mirroring procedure.

Some systems also provide algorithms for generating planar

rectangular or circular arrays of existing entitles. These

procedures automate the creation of multiple, regularly spaced

entities or groups of entities. In rectangular arrays the

operator specifies step sizes in two perpendicular directions,

and the number of rows and columns. Figure 5-4a shows a rota-

ted view of a ribbed housing constructed using a rectangular

array procedure. The operator Individually defines only the

rib outlines shown in 5-4b; the remaining instances on that

side of the central plane are easily added by array duplication.

Figure 5-5 depicts the use of array duplication in the case of

circular symmetry. The hole circle and cehterlines are defined

only once by the operator; the remainder of the circular bolt

pattern is generated automatically by the array procedure.

■96-

(b)

*■,

(c)

FIG. 5-3. Mirroring Procedure

-97-

(b)

FIG. 5-4. Rectangular Array Procedure

-98-

FIG. 5-5, Circular Array Procedure

-99-

5.3 Special-Purpose Procedures

The above general forms of automation described above effec-

tively reduce the effort involved in constructing 3-D models

only after entry techniques have been developed which permit

their use. Each system, in a sense, trains the user in methods

often peculiar to that system alone. This result is most fre-

quently observed in menu-oriented systems, where rigid structure

limits the scope of alternative construction methods. More

advanced systems accordingly provide a means for the user to

define special-purpose automation procedures. This feature is

a natural extension of command language systems, and is imple-

mented through provision of a macro facility. At least one menu-

oriented system supports this capability through a unique 3-D

geometric programming language which can freely access the model

data base.

Macro Interpreters permit the definition of new graphics

'functions 1n terms of a sequence of existing system commands;

the user may thus, in effect, create his own Individual inter-

active techniques for model construction. The geometric pro-

gramming language approach is in comparison far more powerful;

by working with a more primitive instruction set the user can

efficiently execute more complex and extensive operations,

perform numerical computation in a more familiar fashion, and

•100-

define specialized data structures. However, the large amount

of effort required to develop compilers or interpreters to

implement high-level graphics languages, coupled with the present

lack of standards governing graphical operations.and data struc-

tures frequently has discouraged this approach. Furthermore,

users of such facilities must be capable programmers, familiar

with text editors and other utility software, which generally

is not the case with new graphics system operators. Both

methods nonetheless are valuable 1n helping to match general-

purpose graphic systems more effectively to the user's particular

application and preferred style of Interaction.

5.4 Data Base Accessibility

Further advantages can be obtaiined through suitable organ-

ization of the system-wide data base. Most systems permanently

store each model file under a unique alphabetic name in a graphics

system-reserved area of mass storage. Since this 1s usually

written in a compressed format for greater space-efficiency, the

particular graphics system must itself provide all necessary

file management utilities, such as storage and retrieval, gener-

ation of sorted lists, archival procedures, etc. Virtually all

systems allow the user to retrieve a particular model Into the

temporary work area and subsequently store !t under a different

■101-

name. This simple procedure is a first step in providing flex-

ible "internal" accessibility. An entire product-line of

similar pieces can be built up quickly from a single base-line

configuration, saving considerable operator effort.

This concept commonly is extended to provide separate stor-

age of frequently encountered entity groups, calledpcutteAni or

aittA , again under a unique alphabetic name and in their own

library file. In this manner pipe fittings, fasteners or any

other commonplace subassemblies can be defined once and recalled

at any time for addition to the current model. A reference point

1s specified when defining patterns, and the standard matrix

transformations are normally made available when recalling. In

this way the new instance can be located and oriented properly

about the location Indicated for the reference point in the cur-

rent model. This feature also 1s convenient for documentation

purposes, as all standard subassemblies referenced in a parti-

cular model often can be listed automatically by the system.

A more general data base accessibility also is desirable

but is available much less frequently 1n current graphics sys-

tems. The trend 1s toward greater integration of computer-

aided design and analysis, for which various specialized forms

of data bases must be built from the geometric model for input

to numerical analysis routines. Frequently, potential users of

■ 102-

such systems already have purchased or developed analysis pack-

ages executing on separate mainframe computer systems. The

ability to access the geometric data base for transfer outside

of the graphics system is necessary to interface the two machines.

Most graphics systems execute under the supervision of the

standard operating system for their particular machine, though

many do not supply compilers or other utility software for gen-

erating and running user programs. In those that do the above

problem is solved, in at least one instance, by providing a set

of user-callable FORTRAN subroutines which user programs may

reference to gain access Indirectly to the geometric data base.

Those that do not supply compilers usually substitute procedures

which simply write an operating system-accessible data file

from the model data base in a predefined format which can be

transferred on tape to a mainframe system.

Few current minicomputer-based graphics systems are large

enough to enable the execution of large-problem analysis pack-

ages, though some 32-bit machines equipped with floating-point

processors can do this (with substantial increases in analysis

execution time). The advantages of graphical output from analy-

sis routines, instead of the traditional tables of numbers, how-

ever, can justify the use of a large machine to handle both

interactive design and analysis.

-103-

REFERENCES

1. Besant, C.B.: "Computer-Aided Design and Manufacture,"
ElHs Norwood Limited, Chlchester, England, 1980.

2. Chasen, S.H.: "Geometric Principles and Procedures for Com-
puter Graphic Applications," Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1978.

3. French, T.E., and Vlerck, C.J., "Graphic Science and Design,"
3rd ed., McGraw-Hill, Inc., New York, 1970,

4. Gllol, W.K.: "Interactive Computer Graphics," Prentice-
Hall, Inc., 1978.

5. Newman, w.M. and Sproull, R.F.: "Principles of Interactive
Computer Graphics," 2nd ed., McGraw-Hill, Inc., New York,
1979.

6. Rogers, D.F., and Adams, J.A.: "Mathematical Elements for
Computer Graphics", McGraw-Hill, Inc., New York, 1970.

7. Sutherland, I.E., Sproull, R.F. and Schumacker, R.A.: "A
Characterization of Ten Hidden-Surface Algorithms," Computing
Surveys, Vol. 6, No. 1, March, 1974.

8. Ullman, J.D.: "Fundamental Concepts of Programming Systems,"
Add1son-Wesley Publishing Co., System Manuals
Reading, Mass., 1976.

Appllcon, Inc.: "AppHcon Graphics System/880 User's Guide,"
3 Vols., AppHcon, Inc., Burlington, Mass., 01803.

Control Data Corporation: "AD-2000 Reference Manual," 2nd
Revision, Control Data Corporation, St. Paul, M1nn., June,
1980.

McDonnell Douglas Automation Company: "User Function Manual,
UNIGRAPHICS User Task Interface, VAX/VMS," MCAUT0, Cypress,
Ca., 90630, September 1980.

MEGATEK Corporation: "TEMPLATE Reference Manual," MEGATEK
Corporation, San Diego, Cal,, 92121, 1981.

-104-

VITA

The author was born 1n Franklin, New Jersey, 5 January 1957

to Neil C. Cates, Jr. and Winifred A. Cates. He attended the

Franklin Public School System through high school, graduating

in June 1975. He attended Lehigh University, Bethlehem, Pennsyl-

vania September, 1975 through May, 1,979 receiving a B.S, 1n

Mechanical Engineering and a minor in Computer Engineering, He

was employed June, 1979 through May, 1980 by the Guidance

Systems Division of the Bendlx Corporation 1n Teterboro, New

Jersey as an associated engineer 1n thermal analysis. He returned

to Lehigh University June, 1980 as a research assistant to the

PLATO CAD/CAM curriculum development project, receiving an M.S.

1n Mechanical Engineering, June, 1982.

-105-

	Lehigh University
	Lehigh Preserve
	1-1-1982

	A comparative survey of computer graphics applications in mechanical design.
	Nell Carroll Cates
	Recommended Citation

	tmp.1451580486.pdf.tcRje

