
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1982

Growth and properties of niobium bicrystals.
Bing-Chu Cai

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Materials Science and Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Cai, Bing-Chu, "Growth and properties of niobium bicrystals." (1982). Theses and Dissertations. Paper 1961.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228649667?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F1961&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1961&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1961&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/285?utm_source=preserve.lehigh.edu%2Fetd%2F1961&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/1961?utm_source=preserve.lehigh.edu%2Fetd%2F1961&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


GROWTH AND PROPERTIES OF NIOBIUM BICRYSTALS 

by 

BING-CHU CAI 

A Thesis 

presented to the Graduate Committee 

of Lehigh University 

in Candidacy  for  the Degree of  . 

Master of Science 

in 

Metallurgy and Materials Engineering 

Lehigh University 

1982 



ProQuest Number: EP76234 

All rights reserved 

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted. 

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion. 

uest 

ProQuest EP76234 

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author. 

All rights reserved. 
This work is protected against unauthorized copying under Title 17, United States Code 

Microform Edition © ProQuest LLC. 

ProQuest LLC. 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346 



CERTIFICATE OF APPROVAL 

This thesis is accepted £ji partial fulfillment of the 

requirements for the degree of Master of Science. 

^h r, < ? <p2__ 
(date) 

Professor in Charge 

Department Chairman 

ii 



Table of Contents 

Pafie 

Certificate  of Approval  ii 

Acknowledgement           v 

Abstract    1 

I. Introduction  2 

II. Part 1 A New Technique for the Growth of Bicrystals of 

Refractory Metals   4 

1. Introduction    5 

2. Preparation of Bicrystal Seed  6 

3. Discussion  9 

References  11 

Figure Captions  12 

III. Part 2 Etch Pits on Single Crystals and Bicrystals of Niobium 18 

1. Introduction ."  19 

2. Experimental Procedure  19 

3. Results and Discussion  . . 20 

4. Conclusions.. • •  26 

References  27 

Appendix  28 

Figure Captions  30 

IV. Part 3 Correlation Between Grain Boundary Hardening and Grain 

Boundary Energy in Niobium Bicrystals   40 

1. Introduction  41 

2. Experimental Procedure    42 

3. Results and Discussion  43 

4. Conclusions  45 

iii 

* 



Table of Contents (continued) 

Page 

References   46 

Figure Captions   47 

Vita   55 

iv 



Acknowledgment 

The guidance, advice and encouragement of Professor Y. T. 

Chou, the author's adviser, is gratefully acknowledged.  Since 

appreciation is also extended to Dr. A. DasGupta for his helpful 

assistance and discussion. 

The financial support of the National Science Foundation is 

deeply appreciated. 



Abstract 

A "match-up" seed method of growing bicrystals  of niobium was 

developed.    Experimental results show that  the new method eliminates 

some of the  limitations of  the Y-shaped seed method previously 

reported. 

Etch pits  on various crystallographic planes  of single crystals 

and bicrystals were observed.    A relationship between the shape of 

the pits and  the  orientation of the etching surface was established 

and discussed on the basis of the surface energy concept. 

Grain boundary hardening was determined by microhardness 

'measurements.    Boundary hardening was  found to be misorlentation 

dependent and related to the boundary energy.    For bicrystals with 

low angle boundaries, boundary hardening varies with misorlentation 

in a  linear relationship of the Read-Shockley type.     For bicrystals 

with high angle boundaries, hardening cusps (minima) were observed 

near the coincidence site lattice boundaries. 



I.  Introduction 

The study of grain boundaries has received increasing attention as 

a subject of research because of their importance in the general field 

of physical metallurgy (phase transformation, diffusion, solidification, 

recrystallization, grain growth, etc.). The presence of grain boundaries 

often controls the occurrence of individual slip, twinning and cracking 

and hence has influence on deformation behavior and consequently mechanical 

properties. Grain boundary segregation of Impurities is believed to be 

responsible for a variety of failure processes such as embrittlement, 

stress corrosion cracking, or cavitation. 

In view of the significant effects of grain boundaries, the emphasis 

in the study of materials properties during the past decade has moved 

from the interior of grains to the interface of grains. The structure, 

energy, diffusion, sliding and migration of grain boundaries have been 

studied extensively. Successful applications of new techniques including 

transmission electron microscopy, computer simulation, field-ion micros- 

copy and Auger spectroscopy, have greatly facilitated the direct exami- 

nation or determination of the structure of grain boundaries. 

Despite these recent developments, many problems, especially those 

involving the structures of grain boundaries, remain to be solved. 

Most previous studies of grain boundaries, however, were concerned with 

f.c.c. metals. Because of the difficulty in specimen preparations, 

boundary properties of b.c.c, metals, except for Fe-Si alloys, are 

practically unknown. The purpose of this investigation was to develop 

methods for growing bicrystals of b.c.c. metals with precontrolled 

orientation (niobium bicrystals, for example) and to provide new data on 
-2- 



grain boundary properties of these bicrystals. The present work, there- 

fore, contains three separate parts:  (a) methods of bicrystal growth, 

(b) observation of etch pits and (c) measurements of grain boundary 

hardening. 



A   Nev*- 

PART  1 

chnlque  for  the Growth of Bicrystals of Refractory Metals 

\ 
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1.     Introduction 

Pande, et al.   [1,23 reported a method of growing bicrystals  of 

refractory metals.    The method utilized a special seeding procedure 

in which a single crystal seed was  first grown from a polycrystalline 

rod in a vertical floating-zone electron beam melting unit.    The  top 

end  of the resultant single crystal was  cut along a center plane, 

thereby yielding two split sections which were  then bent apart 

symmetrically with respect to the center plane of the crystal. 

This Y-shaped crystal was  used as a bicrystal seed  that could grow 

into a polycrystalline rod placed above  it.    A schematic representation 

is shown in Fig.   1. 

Although  the Y-shaped  seed method has been  used   successfully  in   the 

growth of symmetrical  tilt boundary bicrystals,  it has certain limitations. 

The bicrystal metal must be ductile.    Thus  it is not suitable  for hard 

metals  such as Mo, W,  or Cr.     In addition,   the method  is not effective for 

bicrystals with  large-angle boundaries, and  it is not applicable  for 

nonsymmetrical bicrystals. 

Recent studies  [33  on grain-boundary flux pinning  in niobium super- 

conductors have indicated  the  importance of obtaining nonsymetrical bicrystal 

samples  with high angle boundaries.     In an effort  to provide such samples, 

a modification of the Y-shaped seed method  that  overcomes   some  of  the  short- 

comings  mentioned above was developed.     The modified growth  process  is 

reported  in  this  note. 

-5- 



2.     Preparation of a Bicrystal Seed 

In one of our early attempts in niobium bicrystal growth,   the bi- 

crystal seeds were made from two half cylinders,  each cut from a single 

crystal rod of preassigned orientation.    The  two half crystals were placed 

face to face and  tied together with a fine niobium wire.     The "match up" 

seed was then used for bicrystal growth.    Unfortunately, none of these 

trials succeeded.     It was  learned, during later development of the 

Y-shaped seed method,  that the failure was due  to uneven heat flow in  the 

two sections of the bicrystal seed.     It appears  that continuous,  uniform 

heat flow is necessary for successful growth.    This   important  feature is 

taken Into account in the present approach  to bicrystal growth. 

The new approach may be illustrated conveniently by a special bicrystal 

growth procedure  for the study of flux pinning in niobium bicrystals [3]. 

The theory of Campbell and Evetts for flux pinning by grain boundaries [4] 

emphasizes  the anisotropy of Hp_   in the material.     In niobium,  the highest 

and  lowest H__ are known to be along the < 111> and < 100> directions, 

respectively.    For the maximum difference in Hr_ between these  two directions, 

a maximum elementary pinning force is expected.    To verify  this  theory,   it is 

desirable  to measure the pinning force on a niobium bicrystal in which one 

crystal is  parallel to the < 111> and the other to the < 100> direction 

(Fig.  2).    Such a bicrystal sample was prepared by the following procedure 

(see Fig.  3). 

Two single crystals with [ Oil]  orientation,   in  the shape of a rod 

0.635 cm in diameter and at least 4 cm in length, were grown in a vertical 

floating-zone electron beam melting   unit. One rod was cut longitudinally 

along the  (211) plane  (step i), and  the  other along  the   (0U) plane  (step ii). 
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One half was selected from each rod, and the two halves were placed together 

to form a composite unit, which was tied together with a fine niobium wire. 

A large section of the unit was then remelted in the electron beam melting 

unit. However, a portion 12 mm long at one end of the composite (the end 

which would ultimately serve as the bicrystal seed) was not exposed to the 

electron beam and, therefore, remained unmelted (steps iii and iv). This 

seed was then used for growing the bicrystal with a controlled asymmetrical 

tilt grain boundary.  The remelting of a major portion of the composite 

unit alleviated the problem of uneven heat flow in the bicrystal seed. 

The long cut down the axis of each rod and the remelting process made this 

procedure somewhat laborious. Consequently, a modification was made to 

simplify the process. 

A [ Oil] single crystal rod 5 cm in length was grown. This rod was 

cut into two halves at a depth of 12 mm along the (211) plane in the longi- 

tudinal direction. These two half sections were then cut off the stem 

(Fig. 4, step i). The remaining portion of the single crystal was again 

cut in half at a depth of 12 mm,but this time along the (Oil) plane (step 

ii).  One half of the newly sectioned region was removed (step iii), and 

in its place was inserted one of the halves from the previous cut along 

the (211) plane.  The two halves were tied together with niobium wire 

(step iv). t 

It was evident, however, that the seed so prepared was not suitable 

for growing a bicrystal. The half crystal from the first cut had a much 

higher resistance to heat flow compared with the one that is contiguous 

with the stem, due to the gap existing in the path of its heat flow. 

Therefore, a local melting of this gap was necessary to assure that both 

crystals of the seed had the same conditions of heat conduction.  This was 
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achieved by placing the heating filament around the gap. When the 

gap was welded, the power supply was reduced immediately (step v in 

Fig. 4). The filament was then moved to the end of the seed, and 

the bicrystal growth could begin. The key points in this method are 

that there must be a good fit between the two half crystals, and 

that the local melting of the gap must be over the entire cross 

section of the rod. 

The above modified method is as effective as the original, but 

eliminates the necessity of a long cut and remelting.  It was used 

successfully in our laboratory for the preparation of bicrystal 

seeds. 

For the growth of bicrystals with symmetrical tilt grain 

boundaries, the procedure for seed preparation is similar to the 

above with a minor revision. Here the original single crystal seed 

is grown with the [Oil] direction deviated from the longitudinal 

axis by 6/2 where 8 is the desired misorlentation angle. The planes 

cut along the two longitudinal sections are identical, and before 

the two crystals are matched together, the half cylinder from the 

first cut section is rotated through an angle of 180° to meet the 

symmetry of the tilt boundary. This sequence of seed preparation 

is illustrated in Fig. 5. 

One may, in principle, simplify the above procedure by eliminat- 

ing the step of the horizontal cut at the middle of the split cylin- 

der (see Fig. 5).  In this case, the right half of the split cylin- 

der is initially removed, but then set back into its original 

position after a 180 rotation about the normal of the longitudinal 
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axis.     The   length   of   the center-plane sectioning can also be 

reduced   by   one half.      However,   the drawback to  this   simplified 

method   is   that   the   cross  section  of  the  seed part  is  slightly 

different   from  that   of  the stem due   to the removal of the material 

by cutting.     This  would   cause uneven heat flow in the growth pro- 

cess,  which  is critical  for bicrystal rods  of small diameters. 

In   addition   to   niobium bicrystals,  bicrystals   of molybdenum 

and   chromium,   which   could not be  produced  by  the Y-shaped  seed 

method  because  of   their   low ductility, have been grown successfully 

using   the   present   technique. 

3.     Discussion 

The   probability   of success  in bicrystal growth  is affected by 

a  number   of   factors.      One  of  these   is  the  alignment  of  the  seed and 

the   polycrystal   charge   in the electron beam melting unit,  because 

the  symmetry of   the   temperature field in both crystals of the seed 

depends   upon  the   positions of the crystals   inside  the electron beam 

filament.      The  shape   of   the  filament  is also important in order  to 

provide   a   uniform heat   input.    The  control of the power supply which 

induces   a   steep   temperature  gradient along  the axial direction is 

likewise   critical.     The  correct power selection is achieved by con- 

trolling   the   "neck"   shape of the melting zone,  and  the speed control 

of  the   filament must   be   matched with   the power supply. 

The   above procedure  for preparing symmetrical bicrystals with 

tilt  boundaries   is   to   some extent similar  to that used by Cheng and 

Chou  in   their study   of   the  fracture  of molybdenum bicrystals [5]. 

Their method  is  shown   schematically  in Fig.  6  (for bicrystals with 

tilt boundaries)   and  Fig.   7   (with   twist boundaries).     The main dif- 
-9- 



ference between the two methods is that in the previous approaches 

(including those of the diffusion bonding and arc zone-melting [6, 

7]), the grain boundary is formed by a joining process and therefore 

is not a growth product, whereas in the present method the boundary 

grows continuously from its seed as the melting zone advances. 

The present method can also be used for bicrystals with twist 

boundaries [5,8].  In this case, two single crystals of different 

orientations but with center planes having the same Miller indices 

are required. After sectioning along the center planes and matching 

the appropriate halves, the orientations of the two crystals at the 

interface differ by a preassigned angle. This yields a bicrystal 

seed of a known twist boundary. 

In conclusion, the modified "match-up" seed method can be used 

for bicrystals of arbitrary misorientations and is suitable for both 

ductile and brittle metals. The probability of success is high for 

bicrystals with low grain boundary energies.  For bicrystals with 

high grain boundary energies, the probability of success is satis- 

factory, but the length of the boundary would be somewhat shortened. 
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Figure Captions 

Fig.  1:    Schematic diagram Illustrating the Y-shaped seed method for 

growing ductile blcrystals:     (1)  single crystal grown on a 

polycrystalllne rod;   (11)  a longitudinal cut along a center 

plane;   (111)  bending to form a Y-shaped bicrystal seed; 

(lv) alignment of polycrystalllne charge;   and  (v) a bicrystal 

grown from Its seed.     (Pande.et al. [1].) 

Fig.  2:    A   nonsymmetrlcal bicrystal. 

Fig.  3:    Schematic diagram illustrating the "match-up" seed method for 

bicrystal growth:     (i)   (2ll) cut;   (ii)   (Oil) cut;   (iii) 

matching of two half crystals;   and  (iv)  lower section remelted for 

even heat conduction. 

Fig. 4:    Schematic diagram showing the modified"match-up"seed method 

for bicrystal growth:     (i)  sectioning along  (211) and removal 

from the stem;   (ii) and  (iii)  sectioning along  (Oil), half 

removed;   (iv)   (211)  section matched with  (Oil) section;   and   (v) 

local melting to fuse  the horizontal gap. 

■ Fig. 5:    Preparation of'match-up"seed for symmetrical blcrystals: 

(i) single crystal with [Oil] direction tilted  from the cylinder 

axis;  (ii)  sectioning along  (hkl) and horizontal cut at the 

middle of the split cylinder;   (iii) right halves of both cylinders 

removed;   (iv) Upper left half cylinder rotated about the cylindrical 

axis by 180    and matched with the lower left half;   and  (v)  local 

melting to fuse the horizontal gap. 
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Fig. 6: Schematic illustration showing preparation of symmetrical 

bicrystals with tilt boundaries:  (i) single crystal seed 

with longitudinal reference mark; (ii) crystal cut perpen- 

dicular to the cylindrical axis, the upper crystal rotated 

by 180 ; (iii) rejoining by local melting; and (iv) bound- 

ary elevated to eliminate voids at the interface. The 

method is not applicable if the cylindrical axis has a 

rotational symmetry.  (Cheng and Chou [5].) 

Fig. 7:  Schematic illustration showing preparation of bicrystals 

with twist boundaries:  (i) single crystal with longitudinal 

reference mark; (ii) transverse cut and rotation about the 

cylindrical axis by a preassigned angle; (iii) rejoining by 

local melting; and (iv) elevation of boundary to eliminate 

voids at the interface.  (Cheng and Chou [5].) 
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PART 2 

Etch Pits  on Single Crystals and Bicrystals  of Niobium 
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1. Introduction 

Etch pits were observed on the surface of niobium crystals by 

several authors during their studies of the motion of dislocations. 

The etch pits on the (111) planes were reported to be triangular [1-3], 

while the pits on the £^112} planes were reported to be of a pennant 

shape [4]. More recently, Baranova [5], using a new etching solution, 

observed lenticular pits on the {013} planes and triangular pits on the 

{111} planes. 

This note reports a detailed study of etch pits on niobium single 

crystals and bicrystals. The procedure for revealing the etch pits is 

given in Section 2.  In Section 3, it will be shown that the shapes of 

the etch pits are related to the orientation of the surfaces on which 

the pits develop. The shape of a pit depends on its surface position 

in the unit stereographic triangle ([100]-[110]-[111]) and can be 

explained by the surface energy concept.  In addition, it is possible 

from the characteristic lines of etch pits to determine the misorientation 

of tilt boundaries in bicrystals. The details are included in Section 3. 

„ 2. Experimental Procedure 

The specimens used  in this  study were niobium single crystals and 

bicrystals with  tilt and  twist boundaries.    These crystals were grown 

in a vertical floating-zone electron beam melting furnace [6,7] and 

contain 130 ppm oxygen,  7 ppm nitrogen,  5 ppm hydrogen,  20 ppm carbon, 

410 ppm tantalum, and 65 ppm tungsten.     Each of  the as-grown specimens 

was mechanically ground through   600-grade emery paper and chemically 

polished in a solution containing equal volume of HN0_ and HF for 30 

seconds at room temperature. -19- 



The critical step in developing etch pits  is the exposure  to a 

suitable etching solution.    The etchant used in the present investigation 

is  a modification of the etching solution used by Baranova [5].     It con- 

tains  60 ml HF   (487. conc.)> 40 ml H-02   (30% cone),  and  0.55 g NaF.     The 

etching  time was 5 minutes at room temperature. 

After  the etch  pits were produced and photographed,   the  surface was 

reground  for the determination of the surface orientation by the Laue 

back-reflection x-ray technique.    A qualitative correlation was established 

between  the morphology of the etch pits and the  orientation of the etching 

surface. 

3.    Results and Discussion 

A.     Observation of Etch Pits  on Single Crystals 

The etch pits observed on niobium single crystals range from 

triangular  to bricklike in shape, depending on the orientation of the 

etching surface.    Etch pits,  developed on  the [111}  planes, were in the 

shape of an equilateral triangle  (Fig.   1).    The shape of pits on planes 

deviating from the [111} plane changed gradually  (Fig.  2).    No etch 

pits were visible on  the [110} planes.    However, when the etching surface 

was  inclined to the [110},  the pits appeared.    Figure 3 shows the brick- 

like etch pits on a plane,  8    from the [110} plane.    No etch pits were 

visible on the [100}  planes,  but when  the etching surface was inclined 

to the [100},  lenticular pits were observed (Fig. 4). 

Etch pits on other planes along and inside the  unit  stereographic 

triangle  ([100]-[110]-[111]) are shown in Figure 5.    When the'plane 

rotates from a [111}   to [110},  the shape of the pits changes from that 

of an equilateral to an isosceles  triangle.    As  the rotation increases, 
-20- 



the length of the two equal sides of the Isosceles triangle becomes 

increasingly shorter, and,  finally,  the pits become bricklike.    However, 

when the plane changes  from a [111)  to a {112},  the shape of the etch 

pits also becomes  isosceles  triangular, but with the equal sides extended. 

Upon reaching  the  {112} plane,  the pits become  lenticular, as shown in 

Figure 4. 

From the above observations,   it is apparent that the shapes of the 

etch pits are orientation dependent.    For a given plane, a certain type 

of etch pit appears  to occur.     It is worth'noting that there is no 

correlation between the direction of the dislocation lines  (with respect 

to the surface) and the shape of the etch pits.    The presence of dis- 

locations merely initiates the etch pits as a result of high strain 

energy and/or their association with impurities and precipitates. 

To understand why the shape of the etch pits varies with crystal- 

lographic planes,  it is useful to introduce the concept of minimum 

surface energy.    It is well-known that the atomically densest plane 

has  the  lowest surface energy and the highest resistance to chemical 

attack.    In b.c.c. metals  the {110} planes are the most closely packed. 

Thus one should expect that the {110} planes would be the  least attacked 

and  the most stable and would,  therefore,  form the  three sides of a 

tetrahedral pit which intersect with the {111} base plane, resulting 

in an equilateral triangular shape on the etching surface. 

The above assumption can be verified experimentally.    From the 

geometry of a {110}-slded-{lll}-base tetrahedron in a cubic crystal,  the 

ratio of the height of the  tetrahedron to its {111}-base plane can be 

calculated to be /T/12,  or 0.204  (Appendix A).    However, direct measure- 

ment of the height by experiment is difficult.     Instead, an indirect 
-21- 



* 
evaluation was made by comparing the shape change from the {111} pit    to 

a pit whose surface is inclined slightly to the {111}  plane.    The details 

are described in Appendix B.     Indirect measurement gives a value of 

0.206, which is in good agreement with the  theoretical value of 0.204. 

The above assumption is also supported by the change in shape of a 
/ 

{110}-sided-{lll}-base  tetrahedral pit.    When the etching surface tilts 

from the  < 111>    to the  < 100> pole,   the  triangular characteristics  of 

the {110}-sided pit should be  lost totally when the tilt angle reaches 

19.47     (Appendix C).    As shown in Figure 4,      the etch pits on the {112}  plane 

are of lenticular shape and there is no trace of triangular pits.    The 

angle between [111] and [112]  is  19.5°,  slightly greater than 19.47°. 

Based on  the assumption that the etch pit is a tetrahedron composed 

of three {110} sides with a {111} base,  the observed geometry of etch 

pits  on niobium single crystals  can be explained.    When the etching 

surface is a {111} plane,  three symmetrical {110}  planes can intersect 

with it  (Fig.  6).    The shape of the pit  is then an equilateral triangle. 

When  the etching surface deviates from a {111} plane,  the cross-section 

through the pyramid    defined by the three {110} planes deviates  from an 

equilateral triangle, as shown in Figure 2.    When the surface of the 

specimen is a {110} plane, etch pits form with difficulty because there 

are no other {110} planes that intersect the {110}  surface at an acute 

angle.    This is noted in Reference 3 and  is supported in the present 

study.    As  the surface of the specimen deviates  from a {110} plane, 

other {110} planes come into coincidence, making acute angles with the 

By a {111}  etch pit, we mean that the etching surface is a {111}  plane. 
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ef ot» <r»g    surface,  and etch pits are developed.    However,  to show the 

irxt ersec ting {110} planes in a pit by metallography,  the angle of 

deviation   should not be too small.    Figure 3 shows the pits  on a plane 

about    S        from a {110) plane.    The intersecting {110} planes in the pits 

are     c learly visible. 

From   Figure 6,   it can be expected  that when the etching surface 

tilts     from   a {111}  plane  to a {110}  plane,   the  triangle becomes 

Isosceles,     and  that the  length of the  two equal sides becomes increas- 

ing ly    shorter on approaching a {110}  plane.    Likewise, as the etching 

stxr race     tilts  from a {111}  to a {100},   the equal sides of the isosceles 

triangle    become  increasingly longer.    These expectations are in agree- 

ment    with    experimental observations• 

It    should be noted that the relative surface energies  of various 

crys ta 11 ographic planes can be altered by  the presence of impurities and 

alloying    elements and by  the chemical composition of the etching reagent. 

Thvxs „      the    same  type of etch pits observed in pure niobium may not occur 

In     its     alloys or in other metals.    For example,  etch pits  in tungsten 

were      found   to develop only on those surfaces which are inclined up to 

38°      to    a    £100} plane [8].     In Cu-Al alloys [9],  f.c.c.  in crystal struc- 

ture »      the    shape of etch pits on the {111}  planes changes  from that of an 

equilateral   triangle  for pure copper  to that of a rounded ellipse  for a 

Cu    -*-    2.5%   Al  alloy. 

B. Observation  of Etch Pits   on Bicrystals 

Bicrystals of both tilt and twist boundaries were examined.    Etch 

pits     -were    produced on surfaces perpendicular to the grain boundary 

planes -        For   tilt boundary bicrystals,  the etching surfaces are also 
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perpendicular to the  tilt axes.     Figure  7 shows  the etch pits  on 

the  (111) plane of a [011]/[lll3 bicrystal with a symmetric  tilt 
* o boundary.      The boundary has a misorientation of 22   ,  as measured by 

the  Laue back-reflection x-ray  technique.     Etch  pits were also grown 

on  the  (111) plane of a second [Oil]/[111] bicrystal of 25    misori- 

entation, as  shown in Figure 8.     Figure 9 illustrates etch pits  on 

the   (211) plane of a [011]/[211] bicrystal with a misorientation of 

19   .    The  (211)  pits are not lenticular,  as  expected,  because the 

specimen was  over-etched deliberately to enlarge the pits  for accu- 

rate measurement of their angles.    In this case,   the misorientation 

can be determined simply by  the change  in direction of the elongated 

pits as  they cross  the grain boundary.     Figure  10 shows  the etch 

pits  on a bicrystal of  twist boundary with a misorientation of 70  . 

Based on the geometry of the pits  on niobium single crystals 

discussed above,   it is possible  to use the etch pit  technique  to 

determine the misorientation of tilt boundary bicrystals.    At  this 

point,   it is  useful to introduce  the  term,   "< 112>   characteristic 

lines."    For a [110]-sided-[lll)-base tetrahedron,  the intersecting 

line of two [110]  planes  is  the   < 111>   direction and  its projection 

on the {111} plane is along  < 112> .    This projection  line will be 

referred  to as  the  "< 112> characteristic  line."    For convenience, 

one may also use  the  term "characteristic  line" for  the projection 

* 
The designation refers  to bicrystals grown  from the Y-shaped seeds. 
The  first vector  indicates  the  symmetrical pair of vectors  that 
span the misorientation angle of  the bicrystal.    The second vector 
indicates the  tilt axis. 
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lines of < 111> on any other etching plane.  In such cases the pre- 

term < 112> is omitted. 

Referring to Figure 11, let the misorientation of the tilt bound- 

ary be designated by (L + 0„, where 8, and 0_ are the angles between 

the normal of the boundary plane and the < 112 > characteristic line 

of the etch pit in crystal 1 and crystal 2, respectively.  By the 

etch pit technique, the values of 0. and 0„ can be measured. In Flg- 

» o 
ure 7, 9, and 0„ and both 11 , and the grain boundary is symmetrical. 

In Figure 8, 0, and 8„ are 15 and 10 , respectively. The boundary 

is, therefore, an asymmetrical tilt boundary of mlsorientation 25 . 

These results are consistent with those measured by the Laue back- 

reflection technique.  In Figure 7, the etch pits on the left crystal 

deviate slightly from equilateral triangles in shape due to an inade- 

quately prepared etching surface. However, it still may be concluded 

that the etch pits on both sides of the boundary have the same shape, 

as the corresponding pair of < 112 > characteristic lines of pits in 

both crystals are symmetrical about the normal of the boundary plane. 

This method, however, is not valid for bicrystals with [100] and 

[110] tilt axes, because of the difficulty of producing etch pits on 

[100} and [110} planes. 

The etch pit technique may be used as a guide to distinguish the 

type of the boundary in a bicrystal.  This can be illustrated by the 

following example: A bicrystal was grown accidentally on a single 

crystal of niobium. The boundary of the bicrystal was parallel to 

the growth direction, [011]. Etch pits were produced on the surface, 

cut parallel to the growth direction and perpendicular to the bound- 
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ary plane (Fig. 12). From the photograph in Figure 12, it can be 

seen that two of the characteristic lines, one from each crystal, 

are parallel to each other but perpendicular to the boundary plane. 

This indicates that the [Oil] directions of crystal 1 and crystal 2 

are both parallel to the boundary plane and the growth direction. 

Since [Oil] is the common direction, it must be a tilt boundary. 

From these features, one would expect that this bicrystal with a 

tilt boundary would be grown accidentally as the result of a rela- 

tive rotation of the left and right half crystals around the [Oil] 

growth direction. This expectation was indeed confirmed by the 

x-ray diffraction patterns included with the etch pit pattern in 

Figure 12. However, since the tilt axis is not perpendicular to 

the etching surface, it is no longer possible to measure the bound- 

ary misorientation by the directional change of the characteristic 

lines between crystal 1 and crystal 2. 

4. Conclusions 

1. Three different types of etch pits were observed in single 

crystals of pure niobium based on the position of the etching 

surface in the unit stereographic triangle. The shape of the 

pits is clearly orientation dependent. 

2. It was assumed that the {110} planes, which have the lowest 

surface energy in b.c.c. metals, are the most stable during 

etching of niobium. The concept of minimum surface energy 

has been used successfully to explain the crystallographic 

geometry of etch pits in niobium single crystals and bicrystals. 
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3 •    The etch pit technique may be used to determine the misorienta- 

tion of a tilt-boundary bicrystal by the directional change in 

the etch pit characteristic  lines.    This allows  one also  to 

determine qualitatively the  type of boundary in a bicrystal 

(whether twist or tilt,  symmetric or asymmetric). 
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Appendix 

A. Computation  of the height-to-base ratio of a f llll   tetrahedral pit. 
\ ■•■_.. ....►....> 

For a  tetrahedron composed of  three  [110)   planes as  sides and  one 

{111}  plane as base   in a  unit cube  of cubic  symmetry,   the height,  DE 

(Fig.   13a),   is  given by 

DE - AD  sine - ^ AB  sin0, (A   1) 

where AD  is half of the cube diagonal, AB is  the diagonal of the cubic 

face, and 8  is  the angle between the [HI] and [112] axes.    Hence the 

ratio, 

g - & sine  « ig - 0.204 (A 2) 

B. Experimental evaluation of the height-to-base ratio for a fllll 

tetrahedral pit. 

A {111} tetrahedral pit is composed of three identical sides and an 

equilateral triangular base.  To prove that the three sides are {110} 

planes, it is necessary to show that the ratio of the height to the base 

of the tetrahedron is Vr (-0.204). 

Because of the small size of the tetrahedral pit, direct measurement 

of the ratio is difficult. However, indirect evaluation can be made by 

measuring the size of the isosceles triangular pit on an etching surface 

tilted from the {111} plane by the tilt angle cp (Fig. 13a). 

Consider Section CDF of the {111} pit and Section C'D'F* of the pit 

inclined by an angle 9 from the {ill} plane (Fig. 13b).  Since the base 

ABC of the tetrahedron is an equilateral triangle and its three sides are 

symmetrical about the axis of the tetrahedron, the angles a  and 0 are 

determined only by the height DE and base AB.  For simplicity of analysis, 

let us consider an equivalent case in which the CEF and C'E'F' are made 
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coincident (Fig. 13c). The two vertices D and D' are then separated and 

D'E ■= DE.  From Figure 13d, it can be seen that 

/3 
D*E* - D'E cos cp - *r- AB cot a  cos 9 (A 3) 

E'F' - D'E' cot(B + 9) (A 4) 

and 

EF*  « EE'  + E'F'   "   3   AB coca [cot(P + cp)cos cp + sin cp] (A 5) 

When cp is  small, it is permissible  to assume  that AABE and AA'B'E' 

are similar. 

Hence 

A'B1  - 2AB cot a [cot(B +cp)cos cp + sin cp] (A 6) 

and 
2 

A'B1  m _/-r-      tan g sec    9   (1 -  tan g tan 9) ,.   ., 
E'C '      (tan g + tan 9)   (2 + tan g tan 9) K* '' 

In equation (A 7),  the value of the ratio A'B'/E'C'  can be measured on 

microphotographs  of the etching surface, and  the angle 9 by the back- 

reflection Laue patterns. 

For the case where 9-9° and A'B'/E'C  - 0.77,   the value of tan g 

"is  found to be 2.8 and, consequently, 

jf -^ cot g - 0.206 (A 8) 

v 

The above result is in good agreement with the theoretical value of 

0.204  for a {110}-sided-{111)-base tetrahedral pit. 

C.    Condition for disappearance of  triangular pits 

It is  seen  from Figure  13b  that the two equal sides  of the 

isosceles  triangular pit increase in  length as  the angle 9 increases. 

When 9 reaches  its  limiting value of  19.47     (=90   - g),  the point C1   is 

extended infinitely and the  triangular pit no longer exists. 
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Figure Captions 

Fig.   1:     Etch  pits  on a (ill)  plane.     800X. 

Fig.   2:     Etch pits  on a plane deviated   from (111)  plane.     400X. 

Fig. 3:    Etch pits  on a plane  inclined by 8    from [110)  plane.     500X. 

Fig. 4:     Etch pits on a {112}  plane.     200X. 

Fig.  5:     Orientation dependence of etch-pit shapes. 

Fig.  6:    Schematic representation of a  three dimensional etch pit. 

The tetrahedral pit is composed of three {HO)  planes with a 

{111}  plane as  the etching surface. 

Fig.  7:    Etch pits on plane perpendicular to [111]  tilt axis of a 

symmetric blcrystal.    The misorientation angle 9 ■ 22  . 

Fig.  8:    Etch pits on a plane perpendicular to [ill]  tilt axis of an 

asymmetric bicrystal.    8 ■ 25   . 

Fig.  9:    Etch pits on a plane perpendicular to [211]  tilt axis of a 

symmetrical bicrystal.     9 ■ 19   .     500X. 

Fig.   10: Etch pits  on both sides of a twist grain boundary.    400X. 

Fig.   11:  Schematic diagram showing the orientation of the etch pits  on 

(111) plane of a bicrystal with symmetric  tilt boundary. 

Tilt axis along [ill]. 

Fig.   12:  Etch pits on a bicrystal of natural growth.    400X.    The Laue 

back-reflection x-ray patterns  for the two prystals are included 

on  the  two sides  for comparison. 

Fig.   13:  Schematic diagram showing the geometry of a {110}-sided-{111}- 

base tetrahedron after  tilt by an angle cp about   < 110>axis. 
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PART 3 

Correlation Between Grain Boundary Hardening 

and 

Grain Boundary Energy in Niobium Bicrystals 
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1.     Introduction 

Microhardness measurements have been used in recent years in the 

study of grain boundary properties  (Westbrook    1964).    The hardness 

readings at a grain boundary are generally higher than those  in the 

grain  (Westbrook and Aust    1963, Aust, Hanneman, Niessen and Westbrook 

1968, Raghuram, Reed and Armstrong    1969, Braunovio and Haworth    1972, 

Watanabe, Kitamura and Karashima    1980).     Such excess hardening is 

believed  to be caused by boundary segregation of solute atoms;   this 

segregation plays an important role in grain boundary embrittlement 

(Stein, Joshi and LaForce    1969, Banerji, McMahon and Feng    1978) and 

grain boundary corrosion (Arora and Metzger    1966, Qian and Chou     1982). 

The  structure dependence of boundary hardening in bicrystals  of zone- 

refined  lead alloys containing ppm concentrations  of Sn,   In, Ag,  and Au 

has been investigated by Westbrook and Aust (1963).    They noted  that the 

boundary hardening was maximum for high angle boundaries and was small 

or undetectable for  lev angle boundaries.    More recently, Watanabe* 

Kitamura and Karashima  (1980) completed a detailed  study on misorientation 

dependence of boundary hardening in coarse grained Fe + 1.08 at.7. Sn 

alloy.    This  study determined that boundary hardening is misorientation 

dependent and is enhanced by the boundary segregation of tin.    Further- 

more, boundary hardening was found to be very small near the coincidence 

site  lattice boundaries with E ■ 3 and 7   (Pande and Chou    1975,  Pumphrey 

1976). 

The objective of this  investigation was to obtain new data on boundary 

hardening in b.c.c. metals.    Niobium bicrystals have been chosen as the 

model material.    An  important aspect of the present  study is  that the 
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boundary structure is precontrolled, thus making it possible to provide a 

direct correlation between grain boundary hardening and grain boundary 

energy. 

2. £xperimen ta1 Pr oc edure 

Niobium bicrystals with symmetric tilt boundaries were grown in a 

vertical floating zone electron beam melting furnace using the Y-shaped 

seed method developed by Pande, Lin, Butler and Chou (1973).  Four sets 

of bicrystals were prepared, designated by [011]/[100], [011]/[011], 

[011]/[llT], and [001]/[100] bicrystals, where the first vector represents 

the misorientation vector and the second represents the tilt axis.   The 

major impurity contents in a typical bicrystal are:  7 ppm nitrogen, 

130 ppm oxygen, 5 ppm hydrogen, 20 ppm carbon, 410 ppm tantalum, and 

65 ppm tungsten. 

Specimens for microhardness measurement were cut from the bicrystal 

rods and mounted in polyethylene as the supporting material. The surface 

of each specimen was prepared by grinding on emergy paper through 3/0 

grit and polishing in a chemical solution (707. HNO, + 307. HF) to remove 

both the distorted layer and the scratches. 

Microhardness was measured with a Reichart microhardness tester which 

utilized a diamond pyramid indenter under a constant load of 5 grams and 

a loading time of 5 seconds. The small load was chosen to distinguish the 

boundary effect from the grain. Measurements with a load of less than 

r 
The misorientation vector designates the symmetrical pair of vectors that 
span the misorientation angle of the bicrystal.  The misorientation vector 
[uvw], misorientation angle (8), and the tilt axis [hkC] form a set of base 
parameters which can be used to specify a symmetrical bicrystal as a 
[uvw](8)/[hW,] bicrystal. A general set of symmetric tilt boundary, 
bicrystals in which only 8 is varying may be termed simply a [uvw3/£hk-t] 
set. -42- 



5 grams were unreliable due to the vibration of the tester and surface 

irregularities. All microhardness measurements were made on surfaces 

perpendicular to the boundary planes (parallel to the tilt axes) and 

each data point represents an average of three readings on a given specimen. 

3. Results and Discussion 

/ When microhardness was measured as a function of the distance from 

the boundary, a hardening peak appeared at the boundary plane with a width 

extended to several microns. A typical microhardness-distance profile is 

shown in Figure 1. 

The misorientation dependence of grain boundary hardening observed in 

niobium bicrystals is summarized in Figures 2 to 5. The boundary hardening 

AH is defined as the difference between the hardness of the boundary H, 

and the hardness of the grain H. Figure 6 shows the AH versus 9 plot for 
© 

low angle boundary bicrystals with the same tilt axis but different mis- 

orientation vectors. The  6-dependence of boundary hardening for bicrystals 

of the same misorientation vector but with different tilt axes is shown in 

Figure 7. 

The results summarized in Figures 2 to 5 show that for low angle 

boundaries AH increases with increasing of 8. A plot of AH/0 versus In 8 

yields the linear relationship shown in the upper left corner of each 

figure.  Such behavior is similar to the relationship between the grain 

boundary energy and 8 proposed by Read and Shockley (1950). However, upon 

approaching a coincidence site lattice boundary, AH decreases sharply, 

reaches a minimum, and rises again, yielding a boundary hardening cusp 

(minimum). 

Based on the model of the coincidence site lattice (CSL), the first 

and second CSL boundaries for bicrystals with a <001> tilt axis would 
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appear at 9 - 22.6    ( E ■ 13 ) and 9=28.1    (E =17), respectively.    Figures 

2 and 3 show that the  observed boundary hardening cusps are  located at 23 

and 28.5°  for both [011]/[100] and [001]/[100] bicrystals.    For bicrystals 

of a   <011>    tilt axis,   the first CSL boundary is at 26.5°  (E =19), whereas 

the observed hardening cusp for [01l]/[011] bicrystals  is at 28.5    (Fig.  4). 

For bicrystals with a  < 111>   tilt axis,   the first CSL boundary is  located 

at 0 = 27.8°  (E= 13).    The observed boundary hardening cusp for [011]/[lll] 

bicrystals  is at 6 = 28° (Fig.  5). 

It is  known that at CSL boundaries;  the boundary energy and boundary 

segregation are  lowered because of good atomic matching (Fumphrey    1976). 

The present data show that at the CSL boundaries  the boundary hardening is 

also lowered.    Thus,  it would seem that boundary energy, boundary segregation, 

and boundary hardening arc closely related. 

The results  summarized in Figure 6 show that bicrystals with the  same 

tilt axis   ([100]) but different misorientation vectors   ([001] and [Oil]) 

exhibit similar boundary hardening effects-.    It is noted, however,   that 

even though  the AH's are nearly equal at a given 8  in these  two 6ets  of 

bicrystals,  the corresponding H.ls  (or H  's) are not equal.    The reason for 

this effect  is not obvious.     It would be of interest to   investigate  if similar 

results would be observed in studies  of bicrystals with  other  tilt axis such 

as   < 110>   or  < 111> . 

Figure 7 shows that the boundary hardening varies for different tilt 

axes with the same misorientation vector. Bicrystals with a [ill] tilt 

axis demonstrate the highest effect and those with a [ Oil] tilt axis the 

least effect. These results clearly indicate that boundary hardening is 

structure sensitive.  The hardening sequence descending from < 111> , 

< 100> to < 110> may result from the difference in atomic densities of 
. -44- 



the boundary planes and consequently difference in the boundary segre- 

gations.  Unfortunately, the current theories of low-angle boundaries 

are inadequate to substantiate this view.  It is also not possible, be- 

cause of the high ductility of niobium, to fracture the bicrystals in 

the Auger electron spectrometer to verify the degree of boundary segre- 

gation. 

The response of boundary hardening to misorientation as observed 

above is similar to the response of boundary corrosion in niobium bicrystals 

reported by Qian and Chou (1982). 

4.  Conclusions 

The grain boundary hardening in oriented niobium bicrystals with 

symmetric  tilt boundaries was determined by use of microhardness measure- 

ments. The results can be summarized as follows: 

1. The boundary hardening is structure sensitive. 

2. For bicrystals with low angle boundaries, the boundary 

hardening (AH) increases with increasing misorientation (9). 

A plot of AH/e versus In 6 results in a linear relationship of the 

Read-Shockley type. 

3. For bicrystals with high angle boundaries, boundary hardening 

cusps (minima) appear near the coincidence site lattice boundaries. 

'4. There exists a direct correlation between grain boundary hardening 

and grain boundary energy. 
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Figure Captions 

Fig.   1.    Hardness-distance profile of a [011]/[lll] niobium bicrystal with 

synraetric tilt boundary. 

Fig. 2. Variation of AH with 9 for [Q0l]/[100] bicrystals. 

Fig. 3. Variation of AH with 9 for [011]/[l00] bicrystals. 

Fig. 4. Variation of AH with 9 for [Oll]/[0lT] bicrystals. 

Fig. 5. Variation of AH with 9 for [Oil]/[ill] bicrystals. 

Fig.  6.    AH versus 9  for different mixorientation vectors.    Tilt axis 

along [100]. 

Fig.  7.     AH versus 9  for different tilt axes.    Misorientation vector 

along [Oil]. 
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