Lehigh University
Lehigh Preserve

A study of paging algorithms.

William H.Wu

Follow this and additional works at: http:/ / preserve.lehigh.edu/etd
Part of the Computer Sciences Commons

Recommended Citation

Wu, William H., "A study of paging algorithms." (1983). Theses and Dissertations. Paper 1938.
A STUDY OF
PAGING ALGORITHMSby
William H. Wu
A Thesis
Presented to the Graduate Committeeof Lehigh University
in Candidacy for the Degree of
Master of Science
in
Computing Science
Lehigh University1983

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest EP76211
Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

Certificate of Approval

This thesis is accepted and approved in partial fulfillment of the requirements for the degree of Master of science.

Leet 151980°
Acknowledgment
The autnor wishes to thank Professor Samuel L. Gulden for his helpful suraestions and thoughts in preperation of this thesis.

Table of Contents

0. Abstract 1
1. Introduction 4
2. Paging algorithm 7
3. Optimal algorithm 11
3.1 Cost function 11
3.2 Optimal replacement 12
4. Stack algorithm 14
5. Priority algorithm 16
6. Independent reference model 19
7. LRU stack model 21
8. More study on optimal paging algorithm 23
8.1 Property of the optimal algorithm 27
8.2 The non-stationary case 28
9. The cost function 30
9.1 Cost of a given replacement policy 31
9.2 How to determine the optimal cost and replace- ment policy 33
9.3 Extension to a larger program 36

Table of Contents

0. Abstract 1
1. Introduction 4
2. Paging algorithm 7
3. Optimal algorithm 11
3.1 Cost function 11
3.2 Optimal replacement 12
4. Stack algorithm 14
5. Priority algorithm 16
6. Independent reference model 19
7. LRU stack model 21
8. More study on optimal paging algorithm 23
8.1 Property of the optimal algorithm 27
8.2 The non-stationary case 28
9. The cost function 30
9.1 Cost of a given replacement policy 31
9.2 How to determine the optimal cost and replace- ment policy 33
9.3 Extension to a larger program 36

Table of Contents

0. Abstract 1
1. Introduction 4
2. Paging algorithm 7
3. Optimal algorithm 11
3.1 Cost function 11
3.2 Optimal replacement 12
4. Stack algorithm 14
5. Priority algorithm 16
6. Independent reference model 19
7. LRU stack model 21
8. More study on optimal paging algorithm 23
8.1 Property of the optimal algorithm 27
8.2 The non-stationary case 28
9. The cost function 30
9.1 Cost of a given replacement policy 31
9.2 How to determine the optimal cost and replace- ment policy 33
9.3 Extension to a larger program 36

Lehiah Iniversity 1987

ABS TRACT

This thesis considers computer systems with two memory levels, main memory and secondary memory. Main memory and secondary memory are both partitioned into fixed size blocks called page frames. During the execution of a program, some of these page frames will contain information and the block of information contained in a page frame is called a page. The execution of the program will require the passing of pages back and forth from main memory to secondary memory. The process whereby this is done, in order to be reasonably efficient, necessitates a careful study of what can be called paging algorithms. During the execution of a given program, a program behavior has a reference string

$$
w=r_{1}, r_{2}, \ldots, r_{t} \ldots \quad t \geqq 1
$$

where r_{t} is the page required in main memory at time t. If the required page is not in main memory, this situation is called a page fault. A paging algorithm must deal with three policy issues: fetch policy, placement policy, and replacement policy. In dealing with these, the fetch policy is usually implemented by demand paging whereas for the other two policies there are a number of strategems which may be used. These are, least recently used, least frequently used, first in first out, last in first out, among others. With all of these we try to establish optimal
algorithms. Although in practice one cannot completely optimize the process, in general one can provide reasonably good algorithms based on a mathematical analysis of the paging process. In order to carry out this analysis, several functions are introduced.
(i) The forward distance: For any page $x, d(x)$ is the least $k \triangleq 0$ such that $r_{t+k}=x$. If no such k exists $d(x)=$ infinity.
(ii) The backward distance: For any page $x, b(x)$ is the least $k \xrightarrow{2} 0$ such that $r_{t-k}=x . \quad b(x)=$ infinity if no such k exists.

During the execution of a program let S_{t} be the memory state at time t, and let q_{t} be the control state at time t. On the action of a given algorithm A the operation of the system will be given by a transition function.

$$
\begin{equation*}
\left(S_{t+1}, q_{t+1}\right)=g_{z}\left(S_{t}, q_{t}, r_{t}\right) \tag{iii}
\end{equation*}
$$

To examine the replacement policy we introduce a replacement function:
(iv) $R\left(S_{t}, q_{t}, r_{t}\right)=y$ where y is to be the page removed for the memory state S_{t}, control state q_{t} and referenced page r_{t}.

In terms of these functions, for example, the least recently used replacement policy may be described by

$$
R\left(S_{t}, w_{t}, r_{t}\right)=y \text { iff } b(y)=\operatorname{Max}_{z \varepsilon S}[b(z)]
$$

By using these functions and assumptions about them as well as various cost functions, the analysis of some paging algorithms can proceed. The analyses in this thesis follow the material in [l], [2] below. 1. Aho, A. V. Denning, P. J., and Ullman, J. D. Principles of optimal page replacement. J. ACM 18, l (Jan. 1971), 80-93.
2. Ingargiola, G. Korsh, J. F. Finding optimal demand paging algorithms. J. ACM 21, 1 (Jan. 1974) 40-53.

1. Introduction

The purpose of this thesis is to discuss some aspects of paging ヨlgorithms. The discussion is somewhat informal though we state some of the main facts as theoremse The theorems are not proved thouqh we hope the discussion makes them plausible. Our discussion is based on [1], [2].

We linit our attention to a computer system with two nemory levels, main memory and secondary memory. the main memory is in the machine itself and the secondary memory is in the aisk or drum which j.s connected to the machine. The machine can operate only on information in the main memory. If the information in the secondary memory is needed then it nas to oe brought into the main memory.
'Ae Jefine the page as a certain size of information, and the page frame is a block of contiquous location addresses with a certain size in the computer main memory. The size of both page and Dage frame consist of cells.

We define N as the orofran name space which is the space that the program occunied in the secondary memory. N is Aivided into n pages. The sustem main memory space M is the space that is authorized to the proaraming job in the nain menory. 4 is divided into m pase frames. N Is a set of pages indexer by $1,2,3 \ldots \ldots$ we write

$$
N=\{1,2,3 \ldots, n\}
$$

and similarly we refard 1 is a set of page frames indexed $1,2,3, \ldots ., m$ we write

$$
M=\{1,2,3, \ldots, \ldots, m\}
$$

We only care about those indices of pages or Dage franes in the system, we don't care about the information inside any page or page frame.

If the user's program reoulires n pages, but only m page franes are avallable where m<n, then the proaram can not be fitted in tine main memory . Then we copy m pages of the projram into the m page frames fin main memory. Of course if $n=n$ we can copy the entire proaram into main memory.

We define the time narameter t as a discrete parameter where $t=1,2,3, \ldots$ represent the instants of processing the program . A program behavior for a qiven proqram is described in a machine Indenendent way by its reference string

The reference string is a tine sequence of paqes r wnere r is the page which is referenced at time t. That is tne page r is needed in by the machine at tine t. If the page r is not in the main memory at time t then it sholld t be orought into main memory to make it available for the nachine.

```
    At each moment of time t there is oaqe map
    f}:N=--->MU{0
    where
    f (x)=y if the page x resites in the paqe frame y at
time
    f(x)=0 if the page x is missing from main memory at
        t
time t.
    We use the term page fault to indicate a situation in
which a referenced page is not. In the main memory, and the
nemory is full. Then we have to choose a page to be removed
to make the space avallahle for the page which is
referenced. The page fault rate F(w) of a reference string
w is the numoer of page faults encountered in processing the
reference string when the lenath of the reference string is
known.
```


2. Paging Algorithm

A paging alyorithm is an algorithm for moving paqes between secondary memory and main memory. In developing such an ョlgorithn there are three nolicies:

1. Fetch policy: determine wich page is to be brought into main memory, and when that will occur.
2. Placenent policy: choose an avallable target page frame into which a fetcher page is to be stored.
3. Replacement policy: choose the page or paqes to be renoved from main memory in order to make space avallable for new pares.

A paging algorithm A provites the mechanism for processing a reference string $w=r, \ldots, \ldots . . r_{t} \ldots .$. and qenerating a sequence of memory states $S_{i}, \ldots, \ldots S_{i} \ldots$ For a given time t, if a page fault occurer, let x be the paqe referenced and y be the pare removed then $S=S+x-y$. If no page fault $t+1 \quad t$ ofcured then $S_{t+1}=S_{t}$. Space S_{n} is the initial state.

A demand paging alaoritam is one in which a page is fetched from secondary memory only when the required page is nissing from main memory. pemoval of a page occurs only When the main nemory is full.

Let $g_{A}(S, q, x)$ be the transition function which
describes the change of memory and control states under a page algorithm A. If the memory state is S, the conto state is q and the page referenced is x then after the application of A the memory state becomes S^{\prime} and control state becomes q°. Ne write $g(S, q, x)=\left(S^{\circ}, \sigma^{\circ}\right)$. A
For a demand paging algorithm and given m>0 the transition function has the nronerties:

If $\exists(S, q, x)=\left(S^{*}, q^{*}\right)$ then A
$S^{\circ}=S$ if $x \in S$
$S^{\prime}=S+x$ if $x \neq S$ and $A B S\{S\}<m$
$S^{\prime}=S+X-Y$ if $X \neq S$ and $A R S\{S\}=m$
Here $A B S[S]$ is the number of pages in main memory at state S. 'we define the forward distance dix) at time t as the number of time periods to the first occurence of x from t in the reference string.
$d(x)=k$ if r is the first occurence of x in $t+k$

${ }^{r}, r(t+1$

$d(x)=i n f i n i t y$ if x never occurs in $r_{t}, r_{t+1} \ldots$
We define the backward distance $b(x)$ as the number of time periods to the last occurence of x from t in the reference string.
$b(x)=k$ if the last occurence of x was r_{t-k} in $r_{1}, r_{2}, \ldots r_{t}$
$b(x)=$ infinity if x does not occur in $r_{1}, r_{2}, \ldots, r_{t}$
We define the replacement finction $R(S, q, x)$ as the page to be removed when memory state is S and control state is a the page referenced is x. Tf the page removed is y then $R(S, 7, x)=Y$.

Non let us introdice some further special paging algorithns.

LRUCleast receat usedl : The page which is replaced is the page with largest back:ard distance.

Thus $R(s, q, x)=y$ if and only if $b(y)=\operatorname{Max}[b(z)]$ $z \in S$

E CBelady aptimal alaoritaml : The page which is 0
replaced has largest forward distance. $R(s, q, x)=y$ if and only if $d(y)=M 3 x$ [d(z)] $z \in S$

LEU6least frequeatly usedj: The page replaced is the page having received the least numoer of references. Let $f(x)$ denote the number of references to x in r_{1}, $r_{2}, \ldots . r_{t}$. Then
$R(S, q, x)=y$ if and onlv if bfy)=Max [b(z)] $z \in S^{\prime \prime}$
where $z \in S^{n}$ if and onlv iff $f(z)=M n_{u \in S}^{[f(u)]}$

EIEJCfirst=iafirst=alti: The page redlaced is the one wich has been in memory for the longest time. Define $\mathcal{J}(z)=i$ as the largest integer less than or equal to t such t that $S-S=r=z$. Then

1 i-1 1
$R(S, q, x)=Y$ if and only if $G_{t}(y)=M_{z \in S}\left[q_{t}(z)\right]$

LIEユClast=ia=firstaqutl: The oage replaced has been in the maln nenory for the least time.

$$
R(S, 4, x)=y \text { if and only if } \pi(y)=\operatorname{Max}_{t \in S_{t}[q(z)]}
$$

3. Optimal algorithm

3.1 Cost function

The cost generated bv a naging algorithm A, operating on the reference string $w=r,{ }^{\prime}, \ldots . ., r$ in the memory of size $n>0$ is denoted $D Y \subset(A, W, m)$. $C(A, w, m)$ is the total time the algorithn A takes in transferring the pages in and out of main menory of size malle nooessing the reference string w. Suppose $h(k)$ is the time it takes for a single secondary nemory transition involvina a group of k paqes. If $S_{t+1}=S_{t}^{-X_{t}}+Y_{t}$ where $A B S\left[X_{t}\right]$ is the number of pages involved in the transition, then
$C(A, N, m)=\sum n(A B S[X])$
If A is a demand pagina algorithm then $A B S[X]<=1$. So t
it is a one page or no bage transition for each reference. Then
$C(A, N, m)=\Sigma A B S[X]$
For, the transition takes time $T+T$ where T is waiting tine and T is the transinsion time between main nemory and secondary memory - A k-page transition will take time $k(T+T)$ if the secontary memory uses electronic selection, that is core memory, or time $T^{\circ}+T^{\circ}$ if the nemory uses rotational selection, that is disk or drum.

Normally $T^{\circ}>T_{W}$. In the case that the page is in the core menory we would have $h(k)=k$. In the case that the page is in the ilsk or drum then $h(k)<k$ and $h(k)=1+a(k-1)$ where $0<=3<=1$

Theorem 1: Suppose that $h(k)>=k$ for a qiven algoritnin A then there exists a demand paging algorithn A° such that

$$
\Sigma\left(A^{\prime}, W, m\right)<=C(A, W, m)
$$

3.2 Optimal replacement

An optimal algorithm is an algorithm which minimizes
the cost function for anv reference string and at any size of nemory. de wish to minimize nage transfers. Hence when memory is full we want to chnose as a page to be removed one which either will never he referenced again or one which Will not be referenced for a relatively long deriod of time. We don't want to move a pare in and out while the other pages stay in the main memory without being referenced. In the demand paging algorithm at a given time one page is referenced ant another nase is remover. So an optimal algorithm is one in which we trv to find the "best" choice of page to be removed.

As nentioner above the "hest" cholce of a page to be removed is the one with longest expected time until its next
reference, that is the one with longest expected forward distance.

4. Stack algorithm

An algorithm A is called a stack algorithm if its memory states satisfy the inclusion property:
$S(n, N)$ included in $S(m+1, w)$ for all m, and w.
Where $S(\pi, N)$ is the state of the memory of size mafter the reference string w has been referenced. It is also called "stack".

The inclusion property is equivalent to the following statement whiah indicates in more detail the structure of $S(M, N)$.

For each w there exists a permutation of N $s(N)=\left\{S_{1}(N), S_{2}(W), \ldots \ldots S_{n}(N)\right\}$ where S_{i} is the 1 th page after the application of w such that for all m>0 $S(m, N)=\{s(N\}, s(w), \ldots \ldots, S(w)\} . S(m, w)$ is the top most m pages of $\mathrm{s}^{1}\left(\mathrm{w}^{2}\right)$. It ${ }^{m}$ is clear that $\mathrm{S}(0, w)=$ and $\{S(N)\}=S(1, w)-S(i-1, w)$. The vector $S(m, W)$ is called a stack i vector or fust a stack. If i<f then $s(w)$ is said to be higher in the stack then $s(w)$ and $s(w)$ is the paqe on the top of the stack.

The stack distance D_{x} for oage x is the position that the page occupies in the stack $s(w)$. If $s\left(w^{\prime}\right)=x$ then $D(w)=k$ else if x is not in the stack then $D(w)$ is infinity.

A stack algorithm has three basic properties:

```
    P1.. The most recently referenced page is at the top of
the stack. D (NX)=1
    P2.. An unreferenced Dage wfll never move higher on the
stack. 1.e.
    D (N)<=D (NX)
    PY.. Pages below the one referenced remain fixed on the
staこk.
    S (NX)=s (NX) if D (w)<<
    Thus an algorithm is a stack algorithm if and only if
R(S+y,q,x)=R(S,q,x) or y if x is not in Sty.
```


5. Priority algorithm

A paging algorithm is called a priority algorithm if there exists a mapping that associates with each reference string $w=r, r_{2} \ldots \ldots r_{1}$ a sequence of linear orderings P_{1}, $P_{2 .} . . . P_{T-1}$ such that

1. $P(1<=t<=T)$ is an ordering of distinct pages in $r_{1}, r_{2} \ldots \ldots r_{T}$
2. For all $m>=1$ if. $r_{t+1} S\left(m, r, r_{2}, \ldots, r_{t}\right.$ and $A B S[S(n, r \quad r \ldots . . . r)]=m \quad 1<=t<=T$ then the page in $S(m, r \quad r \ldots r)$ which is enlaced is given by the least element of. P_{t} container in $S\left(m, r r_{2} \ldots . . r_{T}\right)$.

Now let Min $[S]$ denote the least element of p contained in t
S.

Then

$$
\begin{aligned}
& R\left(S_{t}, q, r_{t+1}\right)=M \ln _{P}\left[S_{t}\right] \text { if. } \operatorname{MBS}\left[S_{t}\right]=m \text { and } r_{t+1} \text { not in } S_{t} \text {. } \\
& \text { t. } \\
& R\left(S_{t}, q_{t+1}\right)=0 \text { if } A B S\left[S_{t} 1<m \text { or } r_{t+1} S_{t}\right.
\end{aligned}
$$

The LRU, B, LFU, and LTFO algorithm are priority 0 algorithms whose priority lists order pages, respectively, by increasing backward distance, increasing forward distance, decreasing frequency of use and increasing times of entering main memory. for each different priority algorithm there is a different priority list.

A priority algorithm is a stack algorithm
for,
$R(S+y, q, x)=M i n[S+V]=M i n[M i n[S], Y]$
since $R(S, q, x)=M i n[S]$ so
$P(S+y, q, x)=M \ln [R(S, x, x), y]$
where $R(S+y, q, x)$ is either $R(S, q, x)$ or y. The converse is also true. This is the same conclusion we had in the last chapter.

Staェk undatiag pracedure

Let $S(w)$ and $S(w x)$ be two successive stacks and suppose $D(w)=m$. Let x be the last page of the stack that is x referenced. After the reference the stack becomes as follows:

1. $\mathrm{s}_{\mathrm{i}}(\mathrm{NX})=\mathrm{x}$ if $\mathrm{i}=1$
2. s $(w x)=\operatorname{Max}[s(w), ~ M i n r s(1-1, w)]$ if $1<1<m$
3. $s(N X)=\operatorname{Min}[S(m-1, w)]$ l.f $1=m$

1
4. $S_{i}(N X)=S_{i}(W) \quad$ if $1>m$

Line 1 is from Pi in the last chaoter, l.e. the first page is the page most recently referenced. Line 4 is from P3, i.e. those pages below the page referenced stay uncnanged. The line 2 indicates those paqes were not removed
from the stack, where MinfR(S,q,x),yl is the page to be remover and Yax[R(S,q,x),v] indicates those that are not removed. In line $3 \mathrm{i}=\mathrm{m}$ is the nosition vacated by the page referenced and filled by the nace replaced from the set of $n-1$ pages above it in the stack. The algorithm stack and oriority list are identical at each monent of time only if the algorithm is LRU. That is if $S(N)=\left[S_{i}(N), S_{2}(x), \ldots, \quad S_{n}(w)\right]$ is an LRU stack then $i<1$ inplies that $s(w)$ was more recently referencer than $f_{f}(w)$ in N.
6. Independent reference model

In this chapter we shall consider the verformance of a paging algorithm in terms of an expected page fault rate. The reference string w is a sequence of independent random variables with common stationary distribution ib, ,,\ldots, b $\}$ such that $P \quad(r=1)=h$ for $i>=1$. Let the random variable $f(x)$ denote the forward alstance of x right after r has been referenced.
t k-1
$\left.\mathrm{P}_{\mathrm{r}}^{\mathrm{f}} \mathrm{t}_{\mathrm{t}}(\mathrm{x})=\mathrm{k}\right]=\mathrm{b}(1-\mathrm{b})$
where the mean of $d_{t}(x)$ is $1 / b_{x}$
A is the algorithm in which the choice of page 0
replaced is the one in the memory whose expected forward Alstance is the greatest, that is the one for which b is least. If we let the nades oe numbered so that $\mathrm{b}_{1}>=0_{2}>=\ldots>=\mathrm{b}_{\mathrm{n}}$ the replacement rule of A_{0} is
$R(S, q, x)=$ the largest numhered page in s
We use the theory of Markov chains to analyze the LRU paging algorithm. Let $\{S$, $1=1,2,3, \ldots$ be the sequence of stacks generated by the f RU alaorithm for a reference string where the menory size is m. The states of a Markov chain are then the topnost mpages on the stack. The set Q consists of all the permutation of m elements taken from N. The transition probability
$P\left(S, S^{0}\right)=P_{r}\left[S_{i}=S \mid S_{\{-1}=S\right\}$

where $k=j$ then $P\left(S, S^{\circ}\right)=b$.
 there exists a positive number k such that $p^{k}\left(S, S^{\prime}\right)$ is the probability of passing from state s to state s° in k transitions, and P is nonzero. This implies

m

$P\left(S, S^{\circ}\right)=b>0$
11
for all S and s° in 0
Let (π) denoted the enullithrium probability vector and P be the transition probability matrix then $(\pi)=(\pi) P$. Let π and $s=\left[y_{1}, j_{2}, \ldots, j j_{m}\right.$ denote the equilibrium probability of state S then $\{\Sigma(\pi)\}=1$. Let $p(S)$ denote the probability $\mathbf{s} \boldsymbol{f}$
that a page fault occurs then
$F(L R U)=\sum P_{f}(S)(\pi)$ where $F(I, R U)$ is the number of page faults of the f RU algorithm.

$$
\begin{aligned}
& \text { Theorem 1: For the independent reference model } \\
& F(L R U)=\sum_{S \in Q} n^{2}(S) \prod_{i=1}^{m} n_{1} / D_{i}(S) \\
& 1 \\
& \text { where } s=\left[j_{1}, j_{2}, \ldots 1_{m} \text { and } D_{1}(S)=1-\sum_{k=1}^{m+i-1} h_{j_{k}}\right.
\end{aligned}
$$

7. LRU stack model

Let $S(W)=\left\{S_{1}(N), S_{2}(w), \ldots S_{n}(w)\right\}$ where $S_{1}(w)$ is the $1-t h$ nost recently referencer dare that is $S(w)$ order the pages according to increasing backwart distance. Let $D(w)$ denote the position of page x in the stack $s(\%)$. We were able to assoziate the distance strina $0_{1}, 0_{2}, \ldots ., D_{t}, \ldots$ in the reference string.

If we let D_{t} be the distance of $r r_{t}$ in the stack S_{t-1} then D becones the number of distinct paqes referenced t
since the most recentiy referenced page is r. The LRU-stack fistance string is consiferer to be a sequence of independent random variables aoverned by a stationary prooability mass function

$$
\begin{aligned}
& P_{r}\left[D_{t}=i\right]=a \quad i=1,2, \ldots, n \\
& \text { whose cumulative distribution function is qiven by }
\end{aligned}
$$

$A=\sum \quad 3$
$1 \quad j=1 \quad j$
Let $I=i_{1}, 1_{2}, \ldots i_{t} \ldots$ he the sequence of sample values for the randot variables and let $S_{0}, S_{1} \ldots . . S_{t}$... be the corresponding LRU-stack seauence with S_{0} the initial state. raen
$S_{t}=\left\{s_{t}(1), s_{t}(2), \ldots, s_{t}(n)\right\}$, the strinq qenerated by I, is defined as $w=r, r, r \ldots . . . \quad r \ldots r=s(1)$ with the $123 \quad t \quad t$ initial stack understood. For a given probability mass

1					
Will be called the class of LRII reference strings.					
If the distance distribution is chosen to be biased					
toward short distance that is $\left.\mathrm{a}^{\text {a }}>=0>=\ldots ..\right\rangle=a$ then the					
reference string will exhinit a tendency to cluster					
reference to the pages near the top of the stack.					
Eonversely, if the distance distrioution is hiased toward					
long distances then, the reference string will tend to					
exhioit randon scattering of references across many pages.					
The LRU paging algorithm is optimal for a class of LRU					
reference strings for m>=1 whenever the distance					
distribution satisfies					
$\mathrm{a}_{1}>=\mathrm{a}_{2} \ldots . . \mid>={ }^{\text {a }}$					

8. More study on optimal paqing algorithm

We have Jefined demand oaring algorithms and for those we have introduced-- FIFO, $I, R I$, ... etc are demand pagina algorithns . Now we turn our attention exclusively to demand paging algorithms. We do this for two reasons. First, with certain constraints on memory system organizations, an optimal paging policy must a remand pollcy. Second, a qreat number of systems for whtch a demand policy would in theory be optimal are committed hu their implementation to usina demand paging only.

We now introduce another non-stationary Markov process, which is callet a program.

Definition 1: $\quad A$ orogram P is a system with five components. They are $N, U_{0} u_{0}, f, D, N$ is the set of pages, U is the set of program states, and u is the initial state which is included in u, where f is the state transition function fiN*iJ -m--> U, p is the probability function $p(x, u, t)$ which is the orobability at the time that the paqe referenced is x, and the program state is currently at u. For each u U and t>0 then $\left\{\sum(x, H, t)\right\}=1$. The program P generates a reference strina $r_{1}, r_{2}, \ldots r$ as follows:

For any $t>=1, r$ has the value x with t
probability $p\left(x, u_{t-1}, t\right)$ and $f_{t}=f\left(r_{t-1}, u_{t-1}\right)$
The program is saif to be an l-order program if
$A B S[U]=1+1$ that is the nroaran has 1 states besides the initial state. It is stationary if the probability function p is independent of time t.

Example:
Consider a program whose states consist of $U=N U\left\{u_{0}\right\}$ with transition function $f: N * H-\infty=-U_{U}$ given by $f(x, u)=x$. こlearly the program is an n-orter program. If
 $p\left[r_{t}=x \mid r \quad j=1\right.$
We now take
paging algorithm which is executing the reference string. Here the reference string was aenerated by the program. We let $w=r, r_{2}, \ldots, r_{t} \ldots . . r_{t+r_{r}}=u$ and $S_{t}=S$. We define the cost function ${\underset{V}{k}}^{(S, u, t) \text { for } k \text { references beyond time } t ~}$ recursively as follow:

$$
\begin{aligned}
\tau_{k}(S, u, t)= & \sum_{k} p(x, u, t+1) \\
& * \underbrace{}_{k-1}(S, f(x, 1)), t+1) \quad \text { if } x \in S \\
& \text { else if } x \text { is not in s then } \\
* & {\left[1+41 n_{k=1}((S+x-z), f(x, u), t+1)\right] }
\end{aligned}
$$

When $x \in S$ then there is no transaction and t moves to t. +1 , k becomes $k-1$. If x is not in s then there must be a transition as the result of \rightarrow nage fault, thus there is an increment of at least 1 . The algorithm has not been completely specified. we use "Min" to designate any algorithn which can minimize the cost. We may call this the optimal ヨlgorithm.
Definition 2: An algorithm A is said to be
l-ootimal if for all T and $S, C_{T}(A, S)=C_{T}\left(S, U_{0}, 0\right)$
whenever the probability of a reference string of
length T is determined bv a proaram $P=(N, U, u f, D)$
which is l-order. We denote such an algorithm by A
and call it an l-optimal droaram.

A is much too difficult to inolement since it requires 1 ooth the knowledge of the prohabilities as well as of the reference string. The latter mav not be known in advance. However the case $1=0$ can he treated with some simplicity and we do that here by examining o-order programs.

Recall that a 0-orter oroaram is a program which has only one state i.e. the initial state. We write $p(x, t)$ instead of $n(x, u, t)$. In this case the cost function simplifies to:

$$
\begin{aligned}
& =(s, t)=0 \\
& 0 \\
& \sum_{k}(S, t)=\sum_{x \in N} p(x, t+1) \\
& \text { * } C_{K-1}(S, t+1) \quad \text { if. } x \in S \\
& \text { or } *[1+\operatorname{MinC} \underset{k-1}{ }(S+x-z, t+1)] \quad x \text { not in } S
\end{aligned}
$$

Ine almast statianary case
The alnost stationary case is defined to be the case in Which the probability distributions maintain their relative order with respect to time. That is fif $p(x, t)>=p(y, t)$ then $p\left(x, t+t^{\circ}\right)>=p\left(y, t+t^{\circ}\right)$ for all $t>=0$. Under this circumstance, as given in the definition below, we can define a binary relation $<$ on N such that we can ootain the smallest element of any S .

Definition 3: A stationary ranking relation < is a binary relation on N such that $x<y$ if and only if $p(x, t)<=p(y, t)$ for all $t>0$. The notation $x<=y$ means $x=y$ or $x<y$ where $x=v$ means $p(x, t)=p(y, t)$. The notation $s=\| i n s$ means $s \in$ and $s<=x$ for all x.

Observe the following consequences of the definition.

Lemma 4: For some $t>0$ and S° included in $N \quad x<y$ implies $\approx\left(s^{\circ}+x, t\right)>C\left(s^{\circ}+v, t\right)$. Then if $s=M i n$ S then $च_{k}(s-s, t)^{k}=\operatorname{lin}_{z \in S}(s-z, t)$.

Lemma 5: Suppose < is the stationary ranking of N and $x<y$ then $1>=C_{k}(s+x, t)-\underbrace{}_{k}(s+y, t)>=0$ where x, y are not in S and $t>0$.

Theorem 6: If the oroaram P of 0-order has the stationary ranking < on N with o-optimal algorithm
A_{0}, then the optimal alnorithm has the map g_{0} given
oy

$$
\begin{aligned}
& \text { I } \quad(S, x)=S \text { if } x \in S \\
& \quad 0 \\
& =S+x-s \text { if } x \text { is not in } S \\
& \text { where } s=M i n \text { and ARSCS } S=n
\end{aligned}
$$

B.1 Property of the optimal algorithm

Theorem 7: Suppose < fs a stationary ranking of is and its correspondent aldorithm A with $A B S[M]=m$ generates $\left\{S_{t}^{m}\right\}$ t>0 for some reference string w. If $S_{S_{0}^{m+1}}^{m}$ is included in s_{0}^{m+1} then s^{m} is included in
 S is the memory state at tine t where the memory size is m. Thus the memory states s^{m} satisfy an inciusion property. This is just the same as for the stack al.gorithms we have discussef. Thus we can see under this circumstance that the optinal algorithm is a stack algorithm.

```
m
Definition 8: Define the set \(I_{\text {, }}\) to be the set of the \(n-1\) highest ranking oates in \(N\). The memory is said to be in a steady state if and if only \(L\) is included in \(S\)

The setting time \(T(S)\) is the expected time required for the algorithin to enter the steady state. If \(T(S)=0\) then Ne say \(S\) is a good starting state. Although \(T(S)\) is 0 generally not zero, it can be shown that the cost of getting Into a steady state is low. lief \(S=L-5\) then the setting time \(T(S)\) for \(S_{0}\) is less than or equal to ( \(\left.1 / 0,1\right)\)

Theorem 9: Suppose the 0-order page reference probabilities are stationary under \(A_{0}\). The expected cost per reference is

where \(v=\{1,2,3, \ldots, n\}\) and \(p>=p_{1} \ldots \ldots=p_{n}\) and \(B=\sum_{1=n}^{n} p\)

\section*{8. 2 The non=stationary case}

The binary relation that is the ranking relation only can be defined for the almost stationary case or in a non-stationary case with the following restrictions. If \(x<y\) then \(y\) must appear before \(x\) in the reference string or \(x\)
does not appear at all. Nefine \(n(x, t)=1\) if \(r=x\) or \(p(x, t)=0\) otherwise. So \(0=p(x, t)<p(v, t)<=1\) if \(x<y\). Note that \(x<y\) inplifes to \(x<_{t-1} y\) if \(r_{t}\) is not \(y\).
9. The cost function

Here we shall define the notion of program differently. We define a program to de a 5 -tude \(P\{N, U,(\pi), A, 1\}\) where \(N=\{1,2,3, \ldots\}\) is the set of oages of the program. \(U=\left\{u_{1}, u_{2}, \ldots . u_{k}\right\}\) is the set of orogram states. where \(\pi\) \(=\left\{(\pi)_{1},(\pi)_{2}, \ldots(\pi)_{k}\right\}\) where \((\pi)_{i}\) is the probability that \(u\) is the initial state, \(A=\{0 \quad(t) \quad 1>=1 \quad j<=k \quad t=123 \ldots\) is the 1. 1
set of transition probabilites. Recall that \(p\) is the prodability that there will he a transition from orogram state \(i\) to program state \(i\) at time \(t\), and \(l\) is a mapping from program states space \(l l\) into the set of pages \(N\).

So the reference string can be considered as the set of functions of a finite state Markov chain. We now define the set of aosorption states as those states which when the program enters them it never leaves. In the state space we consider we \(\exists 5 s\) sume that there is at least one reachable aosorption state in it . Tn the real world we can take an aosorption state as a stor mode.
9.1 Cost of a given replacement podicy

We now assume that finitely nany paqes are referenced oefore we meet the absorption state. We define \(C\) as cost of the replacement policy g for the program p which generates the reference string. This \(C\) is the number of page faults a encountered in executing the reference string. Let \(C(S, t)\) be the average numher of bace faults incurred after time \(t\), assuming the memory state is \(S\) and the program state is \(u\) at timt \(t\), when the program \(1 s\) expouted under the replacement policy g. \(こ(S, 0)\) is the cost ff the inftial state is u and u the nemory state is s. Let a he the optimal dolicy that will minimize the cost \(C(S, T)\) for all \(u\) and all memory states U
\(S\) in \(N\) and \(A B S[S]=m \quad t>0\).
Let \((\quad(S, t)\) denote the ootinal cost. It must satisfy 4
the recursive definition nf the cost:
\[
\begin{aligned}
& v_{u}^{*}(s, t)=\sum_{l(x) \in S}{ }_{u, x}(t+1) \varepsilon_{x}^{*}(s, t+1) \\
& +\Sigma_{1(x) \text { not. in } s^{p} u_{x}(t+1) *} \\
& {\left[1+\min \underset{z \in S}{ } S^{*}(S+1(x)-z, t+1)\right]}
\end{aligned}
\]
where the page referencer is \(l(x)\).

It is clear that if \(x\) is an absorotion state then Z \((S, t)=0\). If 7 is a optimal policy then the \(z\) in the \(x\) equation above can be reolacer by the replacement function g(u,s, \(x, t)\).

For a given policy \(g\) we can define a matrix \(0(t+1)\) of the size \(k\left(^{n-1}\right) * k\left(^{n-1}\right.\) ). The entry of the matrix in the position \((u, s),\left(x, s^{\prime}\right)\) is the cost for the proaram to change its progran state from \(u\) to \(x\) and memory state from \(S\) to \(S^{\prime}\) when the page referenced is \(1(x)\) under the dolicy g. Because the page referenced \(l(x)\) must not be in \(s\) but must be in \(S^{\circ}\) нe only consider \(m-1\) nages of \(n-1\) paqes.if \(x\) is an aosorption state then the entry (u, \()^{\prime}\), ( \(x, s^{\circ}\) ) will he 0 . Then the equation above can he written as :
\(\approx(t)=0(t+1) * C(t+1)+h(t+1)\)
where \(\quad b(t+1)=\sum_{i}^{G} 0^{G}(t+1)\) so \(b(t)\) is indepentdent of the policy 3.

No: we define \(F(t, k+1)\) as the column matrix of the q
cost matrix when \(g\) has heen followed hy \(k+1\) references during the time from to \(t+k+1\). Then of course \(E(t, 0)=0\).
E. \((t, k+1)=0(t+1) * E(t+1, k)+b(t+1)\)

The sequence \(E\left(t^{\text {g }}, 0\right), F(t, 1), \ldots . . E(t, k+1)\) is non\(q\) a \(\quad\) a decreasing and hounded ahove hy \(\underbrace{}_{g}(t)\). Moreover \(C\) is the limit given by
\[
\begin{aligned}
& b(t+1)+\sum_{k=1}\left[\prod_{r=1}^{k} Q(t+r) 1 * h(t+k+1)\right. \\
& \text { If the transition orobability of program } p \text { is } \\
& \text { independent of time } t \text { then } \\
& c=2 \tau+0 \\
& \text { コ 9 3 } \\
& \text { and (I-Q) must invertanle. } \underbrace{}_{\exists} \text { is the unique solution } \\
& \text { of the above equation which fs given by }(I-Q)^{-1} * b \text {. These }
\end{aligned}
\] result are sumarized by the following theorem.

Theorem 1: In the case of time varying
transition probabilities, the cost of a policy g is given by the minimal nonnegtive solution of
\[
\Xi(t)=0(t+1) * C(t+1)+h(t+1) \text {. This solution is }
\] \(0(t+1)+g[0(t+\pi)] * b(t+k+1)\) 9
9.2 How to determine the optimal cost and replacement policy

The most simple way to ieterimine the optimal pollcy is to enumerate the cost of all the replacement policies and find the least one. But this is not practical, so now we present a way for searching for an ontimal replacement policy in the policy space.

Assume the stationary case i.e. the probability function is intependent of time \(t\). Then the cost \(C=(I-Q) * b\) where \(b\) is a constant indeoendent of the pollcy g. For a specified policy \(g\) and the renlacenent function \(g(u, S, x)\) for
all \(u\), \(S\), and \(x\), the page referenced is \(l(x)\). Then the new nemory will be \((S+1(x)-g(u, s, x))\). We see that the policy \(g\) only specifies the page that to he removed from main memory. If we cnange the policy from a to \(g^{\circ}\) then we change \(g(u, s, x)\) to be \(g^{\circ}(u, S, x)\). So we define another \(C^{\circ}=C-C_{a}\). Thus
\[
\mathrm{C}_{\mathrm{g}}=(\mathrm{I}-0)^{-1} *\left(0-0 \mathrm{~g}^{-1}\right) * \mathrm{C}^{\circ} \mathrm{k}^{\mathrm{o}}
\]
where \((I-Q)^{-1}=\sum_{k=0} 0_{g}^{k}>=0\)
Consequentiy \(C \quad \leqslant=C_{\sigma}\) if and only if \(C>=0\). By the equation above we have to know the value of ( \(0-0\), which is matrix which has all zeroes except in the entry position \((u, s),(x, S+L(x)-g(u, s, x))\) and \((u, s),\left(x, s+1(x)-g^{\circ}(u, s, x)\right)\). If the differences are \(r\) and \(-r\) then only 0 , \(r\), \(r\) appear in the matrix. Consequentiv \(C\) con be positive only if \(こ\left(S+1(x)-J^{\circ}(u, S, x)\right)<=C(S+1(x)-a(u, S, x))\). We obtain the 11 u
conclusion:
1. C can be positive if at least one decision chanqes 9 from \(\quad(u, S, x)\) to \(q^{\circ}(1, S, x)\) and we then qet the result \(こ\left(S+l(x)-g^{0}(u, S, x)\right)<c(S+1(x)-g(u, S, x))\)
2. C must be greater than or equal to 0 if each decision 7 change satisfies condition (1).

Now we consider the replacement nolicy of choosing the best
page to be remover at any aiven time. Thus there is no general rule for the replacement policy as we had in the previous chapter.

We introduce the followina strategy for searching the optinal policy in the policy snace.
1. Piak an initial policy say \(y_{0}\) and calculate the cost \(C_{0}=(I-Q)^{-1}\) *b. Let \(n=0\) and go to (2).
2. If \(\operatorname{Hin}(S+1(x)-z)=C(S+l(x)-g(u, S, x))\) for all \(x \in U\) or \(l(x)\) in \(S\) then this is the case to stop, otherwise we have to keep on searching for another. Define \(g_{n+1}(u, S, x)=z_{0}\) where \(\ln \ln _{x}^{2}(S+1(x)-z)=C\left(S+1(x)-z_{x}\right)\) for all \(u\), and \(S\), go to (3).
 then stop.
4. If \(こ<\) then \(n\) becomes \(n+1\) and to to 2 . 7 - 7 \(n+1\) n
This strategy is based on the two rules we had earlier. It stops when an optimal policy is found, otherwise it iterates again. This iteration proceriure can not repeat a policy are only finite number of nolicios in the policy space the

Iteration must converge. This represents an efficient technique in searching through the policy space to qet an optinal policy. But the choice of the initial policy may influence the speed of convergence. Df course, the choice of an optimal policy as the initial policy would be the best. If the case is non-stationary then the time-varying transition probability will make the process more complex.

\subsection*{9.3 Extension to a larger proaram}

The prozedure developed above was for the stationary case in a program with onlv few states. Now we present another method for extendint to a larger program.

Let \(G=\left\{G, G, \ldots . G^{\prime}\right\}\) he \(A\) partition of the program states space \({ }^{1} U^{2}\) of proaram \(f\). Those \(G\) are non-empty and disjoint the union of \(G\) is \(U\). The set of states reachable from \(G\) and not in \(G\) will be tenoted by \(G^{\circ}\). Then we define the progran \(P\) to be the orogram whose set of pages is \(N=\left\{1(x) \mid x\right.\) in \(G^{i}\) or \(\left.G^{\circ}\right\}\), and the proaram state set is the 1 i 1 union of \(G\) and \(G\), the transition probabilities are are those of \(A\) restricted to \(r\) and denoted by \(A\). The states G. are absorption states.

1
Let \(\subset(1)\) be the column matrix of the optimal cost of the program \(p\) under an ontimal policy. If \(u\) is in the 1
intersection of \(G^{\circ}\) and \("\) then it is an absorption state Of \(U\). Then the cost of \(u\) ran be assigned from the appropriate component of \(C\) (1). Hence all of the absorption L
states in \(U\) Will be assigned a cost not necessarily zero. こ denotes the column matrix of the cost for the program L-1
\(P\) under an optimal policv.Then this procedure is carried Le
out for \({ }_{L-1}, P_{L-2} \ldots, P_{1}\) each time on the sets \(G_{i}\) of external states \(G_{1}\) of \(G\). Thus each \(P_{1}, P_{2} \ldots P_{L}\) will be be considered once, with \(\rightarrow\) certain cost and policy determines for it.

Let's consider the broaram itself. For \(u \in G, g\) any policy, then the cost function ran be written as:
\[
\begin{aligned}
& z_{u}=\sum_{x \in G_{i}} l(x) \in S^{p} H_{x} e_{x}^{(s)} \\
& +\sum_{x \in G} 1(x) \text { not in } s \\
& \left.p_{u, x}[1+C \underset{x}{ }(S+](x)-T(u, S, x))\right] \\
& +\sum_{x \in G^{\prime}}, \quad 1(x) \in S^{\rho}{ }_{1, x_{x}^{C}}{ }^{(S)} \\
& 1 \\
& +\sum_{x \in G^{\circ}} I(x) \text { not in } s \\
& 1 \\
& p_{u, x}[1+C \quad(s+1(x)-a(u, s, x))]
\end{aligned}
\]

Q is the matrix corresponding to \(g \mathrm{n} \mathrm{C=O} * C+b\). Then we define \(2^{\circ}\) and \(2^{\circ}{ }_{1}\) by
\[
\begin{aligned}
& \left(Q^{*}\right) \\
& \quad 1,(u, s),\left(u^{*}, s^{\prime}\right)=(0) \\
& \text { if } u \in G_{1}^{\prime} \in G_{1}(u, S),\left(u^{\circ}, s^{\circ}\right)
\end{aligned}
\]
\[
\begin{aligned}
& \text { = o otherwise }
\end{aligned}
\]
\[
\begin{aligned}
& \text { lb } u \in G \quad \|^{\prime} \in \mathbb{C}_{1}^{\circ} \\
& =0 \text { otherwise }
\end{aligned}
\]

L
 correspond to \(G\) and \(G{ }^{\prime}\). Then
\(=(S)=\sum_{i=1}^{L}\left(Q^{\prime}+Q_{1}^{\prime}\right) * C+b\)
If \(Q\) represents the optimal policy for \(P\) then \(Q^{\circ}+Q^{\circ}\) would represent the optimal policy for \(P_{i}\) with the external states \(G^{\prime}\) of \(G\). We let \(C^{n+1}\) be the cost for the policy g then it is the \((u, s)-t h\) component in the \(C(n+1)\) which \(n+1\)
is the cost of \(P\) under replacement policy \(q\). After the neth iteration of the approximation procedure \({ }^{n+1}\) the sets \(G^{\circ}\) of external states \(G_{i}^{\prime}\) of \(G_{1}\) was assigned the nonzero value cost. Let \(Q(n+1)\) be the matrix for the policy \(g n+1\) then
\(\because(n+1)=2(n+1) * 2(n+1)+b(n+1)\) where \(b(n+1)=b+D(n+1)\). \(D(n+1)\) represents the contribution to \((n+1)\) of the component of \(Z(n)\) corresponding to the set \(n f\) external states \(G^{\circ}\) of \(G\) \(1=1,2,3,0\). 1 \(1=1,2,3, \ldots \ldots\). Define \(Q^{\prime},(n+1)\) and \(Q^{\prime \prime}{ }_{i}(n+1)\) in a manner similar to \(Q^{\circ}{ }_{1}\) and \(Q^{\prime}{ }_{1}\) respectively then
\(C(n+1)=Q^{\prime}(n+1) * C(n+1)+n+n(n+1)\)
Where \(D(n+1)=0^{\prime}(n+1) * C(n) \quad D(0)=0\).
If \(Q(n+1)\) represents the optimal policy for \(P\) \(1=1,2,3, \ldots, L\) then \(Q^{\prime}(n+1)+n^{\prime}(n+1)\) would represent the optimal policy for \(P\) with the the set of external states \(G_{1}\) of \(G\) assigner nonzero absorption state costs. Then


Here \(\quad b(1)=b+b(n) \quad c(1)>=c(0)\) \(=(n+1)=\left(I-2^{*}(n+1)\right)^{-1} * b(n+1) \quad, C(n)=\left(I-0^{\circ}(n)\right)^{-1} * b(n)\). Assume
\(\partial(n)>=b(n-1) \quad\) and \(\quad C(n)>=C(n-1)\). Then \(\quad b(n)=b+D(n)\) \(0(n+1)=0+D(n+1)\). By definition \(n(n+1)>=D(n)\) if \(C(n+1)>=C(n)\). Hence \(\quad \rho(n+1)>=b(n)\) and \(C(n+1)>=C(n)\) for all \(n\) by induction. Since \(C(n)\) and \(b(n)\) are bounder, they must converge as \(n\) increase to say \(\widehat{C}\) and \(\hat{b}\) and \(n\) is also bounded and converge to say \(\hat{D}\). Then
\(\hat{b}=0+\hat{D}\)
Let \(\hat{Q}\). minimize \(\left(I-Q^{*}\right)^{-1}\) *h over all the policies \(Q^{*}\)
which have the same form as \(\sum_{1=1} Q^{\circ}\). If \(n\) is large enough then (T-0. \()^{-1} * b(n+1)\) will be very close to \(-1\) \(\left(I-Q^{\prime}(n+1)\right) * b(n+1)\). We take the limit of \(C(n+1)\) as \(n\) tends to infinity then
\(\hat{C}=\hat{0} \cdot * \hat{C}+\hat{b}\) where \(\hat{b}=b+\hat{D}\)
Now \(\hat{D}=\hat{Q} \cdots * \hat{Z}\) for some \(\hat{O} \cdot \cdot\) hence \(\hat{C}=\hat{Q} \cdot * \hat{C}+h+\hat{Q} \cdot \cdots * \hat{C}\). Thus \(\hat{\hat{E}}=\left(\hat{Q}^{\prime}+\hat{Q}^{\prime} \cdot\right) * \hat{E}+0\)

Two remarks should be made. First, if the partition of \(G\) has the property that for each 1 only those \(G\) can be reached from \(G\) where \(j>=1\), then exactly one iteration is required in operating the approximation procedure to determine the optimal policy and its cost for the program P. Second, if for each with only one state from \(U\), then 1 the \((n+1)\) for \(p\) only has one term, so it simplifies in 1 solving the cost equation to get. \(D(n+1)\). However, the larger \(G\) of \(G\) is the faster the convergence of the iteration 1 procedure. So we face the two ontions namely the complexity of the computation and the number of iterations. We considered these two effects and tried to reduce the total tine consumed in getting the optimal cost and policy.

\section*{References:}
1. Aho, A. V. Dennint, P. J., ant lliman, J. D. Principles of optimal paqe renlacement. J. ACM 18, 1 (Jan, 1971), 80-93.
2.Ingarglola, G. Korsh, .T. F. Finding optimal demand paging algorithms. J. ACM 21, 1 (Jan 1974) 40-53.
The Author's name is William Wu. He was born Ho-Sun Wu in Taiwan, Republic of China, in 1952. His father's name is Tzu-Eseng Wu; his mother's name was Chung-Shu. Mr. Wu was graduated from the high school of the National Normal University in Taiwan in 1970, and was graduated from Soochew University, Department of Business Mathematics, in 1975, with a Bachelor of Art degree.```

