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ABSTRACT 

This thesis considers computer systems with two mem- 

ory levels, main memory and secondary memory.  Main memory 

and secondary memory are both partitioned into fixed size 

blocks called page frames.  During the execution of a pro- 

gram, some of these page frames will contain information 

and the block of information contained in a page frame is 

called a page.  The execution of the program will require 

the passing of pages back and forth from main memory to 

secondary memory.  The process whereby this is done, in or- 

der to be reasonably efficient, necessitates a careful 

study of what can be called paging algorithms.  During the 

execution of a given program, a program behavior has a ref- 

erence string 

w = 17 i / x" n t     • • • / ^"x. • • •    *- — -1* 

where r, is the page required in main memory at time t.  If 

the required page is not in main memory, this situation is 

called a page fault.  A paging algorithm must deal with 

three policy issues:  fetch policy, placement policy, and 

replacement policy.  In dealing with these, the fetch poli- 

cy is usually implemented by demand paging whereas for the 

other two policies there are a number of strategems which 

may be used.  These are, least recently used, least fre- 

quently used, first in first out, last in first out, among 

others.  With all of these we try to establish optimal 
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algorithms.  Although in practice one cannot completely 

optimize the process, in general one can provide reason- 

ably good algorithms based on a mathematical analysis of 

the paging process.  In order to carry out this analysis, 

several functions are introduced. 

(i)  The forward distance:  For any page x, d(x) is the 

least k - o such that r, . = x.  If no such k exists 

d(x) = infinity. 

(ii)  The backward distance:  For any page x, b(x) is the 

least k = o such that r. . = x.  b(x) = infinity if no 

such k exists. 

During the execution of a program let S, be the mem- 

ory s'tate at time t, and let q, be the control state at 

time t.  On the action of a given algorithm A the opera- 

tion of the system will be given by a transition function. 

(iii)        (St+i^t+l* = 9z(St,qt,rt) 

To examine the replacement policy we introduce a replace- 

ment function: 

(iv)  R(S , q, , r.) = y where y is to be the page removed 

for the memory state S., control state q, and referenced 

page r,. 

In terms of these functions, for example, the least 

recently used replacement policy may be described by 
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R(St,wt,r ) = y iff b(y) = Max [b(z)] 
ZES 

By using these functions and assumptions about them 

as well as various cost functions, the analysis of some 

paging algorithms can proceed.  The analyses in this 

thesis follow the material in [1], [2] below. 

1. Aho, A. V. Denning, P. J., and Ullman, J. D. Prin- 

ciples of optimal page replacement. J. ACM 18, 1 (Jan. 

1971) , 80-93. 

2. Ingargiola, G. Korsh, J. F. Finding optimal demand 

paging algorithms.  J. ACM 21, 1 (Jan. 1974) 40-53. 
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1. Introduction 

The purpose of this thpsis is to discuss some aspects 

of paging algorithms. The discussion is somewhat informal 

though we state some of the main facts as theorems. The 

theorems are not proved though we hope the discussion makes 

them plausible. Our discussion is based on U.3, [21. 

We limit our attention to a computer system with two 

tiemory levels , main memory and secondary memory. The main 

memory is in the machine Itself and the secondary memory is 

in the disk or drum which is connected to the machine. The 

machine can operate only on information in the main memory. 

If the information in the secondary memory is needed then it 

has to De brought into the main memory. 

We define the page as a certain size of information, 

and the page frame is a block of contiguous location 

addresses with a certain size In the computer main memory. 

The size of both page and nage frame consist of. c cells. 

tfe define N as the Droaram name space which is the 

space that the program occunied in the secondary memory. N 

is divided into n pages.The svstem main memory space M is 

the space that is authorized to the programing job in the 

naln me-nory. M is divided into m page frames. 

M is a set of pages indexed by 1,2,3 ,n we write 
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M=(t,2,3 ,n> 

and  similarly  we  reaard  M  Is  a set of page frames 

indexed l,2,3,....,m we write 

M={1,2,3, , m> 

We only care about those Indices of Dages or page 

frames in the system, we don't care about the information 

inside any page or page frame. 

If the user's program reouires n pages, but only m page 

frames are available where m<n, then the program can not be 

fitted in tne main memory . Then we copy m pages of the 

program into the m page frames in main memory. Of course if 

n = m we can copy the entire program into main memory. 

We  define the time parameter t as a discrete parameter 

where t=l,2,3,  represent the instants of processing the 

program  . \    program behavior  for  a  given  program  is 

described  in  a  machine  independent  way by its reference 

string 

w=r ,r , r ,   r w t>=i. 
12       t        t 

The reference string is a time  seguence  of  pages  r 
t 

wnere  r  is the page which is referenced at time t. That is 
t 

tne page r  is needed in bv the machine at  time  t. If  the 
t 

page  r   is not in the main memory at time t then it should 
t 

oe orought into main memorv to make  it  available  for  the 

machine. 

-5- 



ht   each moment of time t there Is page map 

f :M >MU<0} 
t 

where 

f (x) = y if the paae x resides in the page frame y at 

time t. 

f Cx)=0 if the page x is missing from main memory at 

time t. 

We use the term paae fault to Indicate a situation in 

which a referenced page is not j.n the main memory, and the 

memory is full. Then we have to choose a page to be removed 

to make the space available for the page which is 

referenced. The page fault rate F(w) of a reference string 

w is the number of page faults encountered in processing the 

reference string when the length of the reference string Is 

Known. 
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2. Paging Algorithm 

A paging algorithm is an algorithm for moving paqes 

between secondary memory and main memory. In developing such 

an algorithm there are three policies: 

1. Fetch policy: determine which page is to be brought 

into main memory, and when that will occur. 

2. Placement policy: choose an available target page 

frame into which a fetched page is to be stored. 

3. Replacement policy: choose the page or pages to be 

removed from main memory in order to make space 

available for new panes. 

A paging algorithm A provides the mechanism for processing a 

reference string w=r ,r , ,r ,.... and generating a 
1 7 t 

seguence  of memory states s ,S ,...,s ,..  For a given time 
I  ?     t 

t, if a page fault occured, let x be the page referenced and 

y be the page removed then S  =s + x-y.  If no page  fault 
t + 1  t 

occured then S  =S . Space s is the initial state. 
t + 1  t        f> 

A demand, aaaioa alaaE.ltb.si is one in which a page is 

fetched from secondary memorv only when the required page is 

missing from main memory.  Removal of  a page occurs only 

when the main memory is full. 

Let  g (5,q,x)  be  the  transition  function which 
A 



describes  the change of memory and control states under a 

page algorithm A. If the memory state is S, the contol state 

is q and the page referenced is x then after the application 

of A the memory state becomes S' and control  state becomes 

q'. »e   write a (S,q,x) = (S',a' 1. 
A 

For  a  demand  pagina  alaorithm  and  given m>0  the 

transition function has the nronertles: 

If g (S,q,x)=(S*,q') then 
A 

s'=s if xes 

S'=S + x if x^S and ABSfSXm 

S'=S+x-y if x^S and ARS{S}=m 

Here ABStS] is the number of pages in main memory at 

state  S. We  define  the forward distance dCx) at time t as 

the numoer of time periods to the first occurence of x  from 

t in the reference string. 

d(x)=k  if  r    is  the  first occurence of  x  in 
t+k 

r ,r   ,  
t  t + 1 

d(x)=infinity if x never occurs in r , r   ,... 
t  t + 1 

We define the backward distance b(x) as the  number  of 

time periods  to  the  last occurence  of  x from t in the 

reference string. 

b(x)=k if  the  last  occurence of x  was  r     in 
t-k 

r it   /...; r 
1  2       t 



b(x)=infinity if x does nor occur in r , r ,...,r 
1   2     t 

We define the replacempnt function R(S,g,x) as the page 

to be removed when memorv state is s and control state is q 

the page referenced is x. Tf the  page removed  is  y then 

RCS,q,x)=y. 

Now let us introduce some further special paging 

algorithms. 

LEUtL&as.L tacaat usadl : The page which is replaced  is 

the page with largest backward distance . 

Thus R(S,q,x)=y if and only if b(y)=Max   [b(z)3 
zfeS 

& LEle.lad,j£    adLlmal    alaac.ltb.ial     :     The    page    which     is 
a 

replaced has largest forward distance.  R(S,q,x)=y  if  and 

only if d(y)=Max  td(z)] 
zes 

LELLtl&asLL fxaoueaLlii: us.e.dl:  The page replaced is the 

page having received the least numoer of  references.  Let 

f (x)   denote  the number of  references  to x  in r , 
t 1 

r ,.... ,r . Then 
2      t 

R(S,q,x)=y if and onlv If bfy)=Max    Cb(z)] 
zes" 

where zeS" if and onlv if t   (z)=Min   [f (u)] 
t      ues t 



EIE:aif.Lc.s.tsLa£.ir.atsaatl:  The  page replaced is the one 

*hich has been in memorv for  the  longest  time.  Define 

3 (z)=i  as the largest integer less than or egual to t such 
t 

that S -S  =r = z. Then 
i  i -1  i 

R(S,q,x)=y if and only if a   (y)=Min   [g (z)] 
t      zes  t 

LLEltLaaL=iLasf,ii:s.t.sauLl: The page replaced has been in 

the main me:nory for the least time. 

R(S,q,x)=y if and onlv if n (y)=Max   [g (z)] 
r zes t 
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3. Optimal algorithm 

3.1 Cost function 

The cost generated bv a naging algorithm A, operating 

on the reference string w=r ,r ,...,r  in the memory of size 
1 7 T 

m>0 is denoted by C(A,w,m). C(A,w,m) is the total  time  the 

algorithm  A takes in transferring the pages in and out of 

main memory of size m while processing the reference  string 

w. Suppose  h(k) is the time it takes for a single secondary 

memory transition involvina a  group of k  pages.   If 

S  =S -X +Y  where ABS[X ] is the number of pages involved 
t+1  t  t  t t 

in the transition, then 

C(A,w,:n)=£h(ABS[X ]) 
t 

If A is a demand paging algorithm then ABSCX ]<=1.   So 
t 

it  is  a one page or no nage transition for each reference. 

Then 

C(A,w,m)=2ABSCX ] 
t 

For, the transition takes  time  T +T  where  T  is 
w t        w 

waiting time and T is the transmission time between main 
t 

memory and secondary memory . A k-page transition will  take 

time  kCT +r )  if  the secondary memory uses  electronic 
w  t 

selection, that is core memory,  or  time  T' +T'  if  the 
w  t 

memory uses rotational selection, that is disk or drum. 
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Normally  T' >T .  In  the rase that the page Is in the 
w  w 

core memory we would have hCk)=Vc. In the case that the page 

is  in  the disk or drum then hfio<ic and h(k) = l+a(k-l) where 

0<=a<=l 

Theorem 1: Suppose that h(k)>=lc for a given 
algorithm A then there exists a demand paging 
algorithm A' such that 

C(A',wfm)<=C(A,w,nO 

3.2 Optimal replacement 

An optimal algorithm is an algorithm which minimizes 

the cost function for anv reference string and at any size 

of memory. We wish to minimize nage transfers. Hence when 

memory is full we want to choose "as a page to be removed one 

which either will never he referenced again or one which 

will not be referenced for a relatively long period of time. 

We don't want to move a page in and out while the other 

pages stay in the main memory without being referenced. In 

the demand paging algorithm at a given time one page is 

referenced and another pane is removed. So an optimal 

algorithm is one in which we trv to find the "best" choice 

of page to be removed. 

As mentioned above the "best" choice of a page to be 

removed is the one with longest expected time until its next 
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reference,  that  is the  one with longest expected forward 

distance. 
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4. Stack algorithm 

An algorithm A is called a stack alqorithm if its 

memory states satisfy the inclusion property: 

S(!ti,v) included in SO + 1 ,w) for all m, and w. 

where S(n,tf) is the state of the memory of size m after 

tne reference string w has been referenced. It is also 

called "stack". 

The inclusion property is equivalent to the following 

statement which indicates in more detail the structure of 

S C m, v) . 

For  each  w  there  exists  a permutation of  N 

s(v) = <s (rf),s (w), ,s Cw)> where  s  is  the ith paae 
12 n i 

after  the  application  of  w such that  for all  m>0 

S(m,w)={s (wj,s Cw),....,s (w)>.  S(m,w) is the top  most  m 
1     2 m 

pages  of  s(w)   .   It  is  clear  that  S(0,w)= and 

{s C/f)>=SCi#w)-S(i-l ,w). The vector S(m,w) is called a stack 
i 

vector or lust a stack. If i<1 then s (w)  is  said  to be 
i 

higher  in the stack then s (w) and s (w) is the paqe on the 
1        1 

top of the stack. 

The stack distance D for oage x is the position that 
x 

the page occupies in the stack S(w). If s (w)=x then n (w)=k 
k x 

else if x is not in the stack then D (w) is Infinity. 
x 

A stack algorithm has three basic properties: 

.,/,_ 



PI.. The most recently referenced page is at the top of 

the stack.  D (*x)=l 
x 

P2.. An unreferenced oage will never move higher on the 

stack, i.e. 

D UK = D (wx) 
y Y 

P3.. Pages below the one referenced remain fixed on the 

stack. 

s (wx)=s (wx) if D (WKV: 
k     k       x 

Thus  an  algorithm Is a stack algorithm if and only if 

R(S+y,q,x)=R(S,q,x) or y if x is not in S+y. 
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5. Priority algorithm 

A paging  algorithm is called a priority algorithm if 

there exists a mapping that associates with each reference 

string w=r ,r , r ,  a seauence of linear orderings P , 
1  2      T 1 

P , ..., P   such that 
2       T-l 

1. P (K = t< = T)  is  an ordering  of  distinct  pages  in 
t 

r # r ;••• t••fr 
1  2 T 

2. For   all m>=l   if  r     S(m,r ,r ,...,r   and 
t + 1       12     t 

ABS[S(m,r r .....r )1=m l< = t<=T then the paoe  in 
1 2      t 

S(m,r r ...r ) which is renlaced is oiven by the least 
1 2   t 

element of P contained in S(m,r r  r ). 
t 1 2     T 

Now let Min  CS] denote the least element of P contained in 
P t 
t 

S. 

Then 

RCS ,q,r   )=Min  [S 1 If ABSCS ]=m and r   not in S . 
t   t+1    P  t        t        t+i        t 

t 
RCS , q,r   )=0 if ABsrs Km or r  6 5 

t   t+1 t       t+1  t 
The  LRU,  R ,LFU,  and  LTFO  alaorithm are  priority 

0 
algorithms whose priority lists order pages ,  respectively, 

by  increasing  backward  distance,   increasing forward 

distance, decreasing frequency of use and increasing times 

of  entering main memory.   For each different priority 

algorithm there is a different priority list. 
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A priority algorithm is a stack algorithm 

for, 

R(S*y, q, x)= Min[S+vla MinCMinCS], vl 

since R(S,q,x)=MinCS] so 

P.CSfy, g, x)=Min[R(s, n,   x),   y] 

where R(S+y, g, x) is either R(S, q, x) or y. The 

converse is also true. This ts the same conclusion we had 

in the last chapter. 

Stack: uadatiua tatacaduxe. 

Let S(w) and S(wx) be two successive stacks and suppose 

0 (rf)=m  .  Let  x  be  the  last page of the stack that is 
x 

referenced.   After  the reference  the  stack becomes as 

follows: 

1. s Cwx)=x if i=l 
i 

2. s (wx)=Max[s (w), Minrs(i-i,w)]] if KKm 
i i 

3. s (rfx)=Min[S(m-l,W)i if i=d, 
i 

4. s Ux)=s Cw) if i>m 
i     i 

Line  1  is from PI in the last chapter, i.e. the first 

page is the page most recently referenced. Line  4  is  from 

P3,   i.e.  those pages below  the  page referenced stay 

unchanged. The line 2 indicates those pages were not removed 
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from  the  stack,  where MtnfRfs,q,x),yl  is the paqe to be 

removed and ^axCR(S,q,x),v] indicates  those  that  are not 

removed  . In line 3 i=m is the nosltion vacated by the paqe 

referenced and filled by the nacre replaced from the  set of 

m-1 pages above it in the stack. 

The algorithm stack and oriority list are identical at 

each moment of time only If the algorithm is LRU. That is if 

S(rf)=[s (*),s (*)»...  ,s (w)] is  an  LRU stack  then  i<1 
12 n  ' 

implies  that  s Cw) was more recently referenced than s (w) 
i j 

in *. 
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6. Independent reference model 

In this chapter we shall consider the performance of a 

paging algorithm in terms of an expected page  fault  rate. 

The reference  string w is a sequence of independent random 

variables Kith common stationary distribution  <b ,b ,...  , 
1  2 

fc> }  such  that  P   (r =n=h  for  i>=l.   Let the random 
n r   t    1 

variable d (x) denote the forward distance of x right  after 
t 

r  has been referenced, 
t k-1 

P Cd (x)=fc]=b Cl-b ) 
r  t       xx 

where the mean of d (x) is 1/b 
t        x 

A  is  the  algorithm  in  which  the  choice  of page 
0 

replaced is the one in the memory whose expected  forward 

distance  is  the greatest, that is the one for which b  is 
x 

least.    If ie     let  the  naoes oe       numbered   so   that 

b >=b >=....>=b  the replacement rule of A  is 
1   2        n 0 

R(S, q, x)= the largest numbered page in S 

We use  the theory of Markov chains to analyze the LRU 

paging algorithm. Let {S > 1=1,2,3,.... be the sequence of 
i 

stacks generated by the LRU alnorithm for a reference strinq 

where the memory size is m. The states of a Markov chain are 

then the topmost m pages on the stack. The set 0 consists of 

all  the permutation of m elements  taken from w. The 

transition probability 



PCS, S')=P [S =S I S   =S1 
r i    1-1 

If  S=[j ,j ,...,j ] and S'=[k,j ,...,1   ,j   ,...,j ] 
12m 1      i-l  1+1      m 

*nere k=j  then P(S,S')=b 
1 k 

Because <S } Is irreducible, that is, for each S and S' 
i 

there exists a positive number k such that P CS,S')  is  the 

probability of passing from state S to  state S' in k 

transitions, and P is non=zero. This implies 
m 

P (S,S')= b   >0 
jl 

for all S and s' in n 

Let (IT) denoted the eouil Ihrium probability vector  and 

P be the transition probability matrix then (7n = (7T)P.  Let 

7T  and S=[j , j ,...,j ] denote the equilibrium probability 
s 12m 

of state S then {£(70 >=i . Let p (S) denote the probability 
s f 

that a page fault occurs then 

F(LRU)=2> (S)(7t)  where F(LPU) is the  number  of  page 
£     s 

faults of the LRU algorithm. 

Theorem 1:  For the independent reference model 
2   _. m 

F(LRU)=X  P  (S) IT  b  /D (S) 
SGQ 1     1=1  1   i 

i 
^-   m+i-1 

where  S=[j   ,j   ,...1   1   and  D   (S)=l- *- b 
12m i k=l j 

K 
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7. LRU stack model 

Let S(w)={s (w),s (w"),...s (w)} where s (w) is the i-th 
1    2       n i 

■nost  recently referenced oaae that is S(w) order the pages 

according to increasing back-ward distance.  Let D (w) denote 
x 

the position of page x in the s^ack s(w). We were able  to 

associate  the  distance string D , D , .... ,D , ... in the 
1   2        t 

reference string. 

If we let D be the distance of r in the stack S 
t t t-1 

then D  becomes  the  number  of distinct oaqes referenced 
t 

since the most recently referenced page is r . The LRU-stack 
t 

distance  string is  considered to be  a  sequence  of 

independent  random variables governed by a stationary 

prooabillty mass function 

P CD =i]=a  i = l ,2,....,n 
r t    i 

whose cumulative distribution function is given by 
i 

* = I   a 
i  j = l  1 

Let I=i ,i ,...,i ,... he the sequence of sample values 
1  2     t 

for the randoii variables  and  let  S ,S ,...S ,..  be the 
0  1    t 

corresponding LRU-stack seauence with S  the initial state. 
0 

Tnen 

S ={s (l),s (2),...,s (nl>, the string qenerated by I, 
t  t    t        t 

is  defined as w=r ,  r ,  r ,..., r ,...  r =s (1) with the 
12  1      t      t  t 

initial stack understood.  For  a given probability mass 
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function  (a > the class of strings definable in this manner 
i 

will be called the class of T.Rti reference strings. 

If the distance distribution is chosen  to be biased 

toward  short  distance  th*t  Is  a >=a >=....>=a then the 
1   2        n 

reference  string will  exhibit  a tendency  to  cluster 

reference   to   the  pages  near  the  top  of  the  stack. 

Conversely, if the distance distribution  is  biased  toward 

long  distances  then  ,  the  reference string will tend to 

exhioit random scattering of references across many pages. 

The  LRU paging  algorithm  is  optimal  for a class of LRU 

reference  strings  for  m>=l   whenever  the  distance 

distribution satisfies 

a >=a ....>=a 
1  2      n 
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8, More study on optimal paging algorithm 

We have defined demand oarrlng algorithms and for those 

we have introduced-- FIFD, l,RH, ... etc are demand pagina 

algorithms . Mow we turn our attention exclusively to demand 

paging algorithms. We do this for two reasons. First, with 

certain constraints on memory system organizations, an 

optimal paging policy must a demand policy. Second, a great 

number of systems for which a demand policy would in theory 

be optimal are committed bv their implementation to using 

demand paging only. 

We now introduce another non-stationary Markov process, 

which is called a program. 

Definition  1:   ft  orogram P is a system with 
five components. They are N, a, u  , f, p. N is  the 

0 
set of pages, U  is the set of program states, and u 

0 
is the initial state which is included in U, where f 
is the state transition function f:N*U  -> n, p is 
the probability function p(x,u,t) which is the 
Drobability at the time t that the page referenced 
is x, and the program state is currently at u . For 
each u U and t>0 then <Tpfx,u,t))=1. The program P 
generates a reference string r ,r ,...r as follows: 

1  2     T 
For  any  t>=l,  r  has  the value x with 

t 
probability p(x,u  ,t) and u =f(r ,u   ) 

t-1        t   t  t-t 

The program is  said to be  an 1-order program  if 
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i\BS[U]=H-l  that  is  the nroarai has 1 states besides the 

initial state. It is stationary if the probability function 

P is independent of time t. 

Example: 

Consider  a  program  whose  states consist of U=Nl){u > 
0 

with transition function f:w*n >u" given by f(x,u)=x. 

Clearly  the  program  is  an  n-order  program.   If 

P  Ct)=P [r =j|r  =i] then take 
ij    r  t   t-1 

p(x,u,t)=p  (t)=P Cr =x|r  1.   Clearly £p(x,u,t)=£p  Ct) = 
ut    r t   t-i ux 

P Cr =x|r  ]=1 
r  t   t-1 

We now talce another look of the cost  function in the 

paging algorithm which  is executing the reference string. 

Here the reference string was aenerated by the program.  We 

let  w=r ,  r ,..., r ,...,r u =u and S =s. We define the 
1    2      t     t + k  t       t 

cost function C (S,u,t)  for k  references beyond time  t 
k 

recursively as follow: 

C (S,u,t) = £ p(x,u,t+l) 
k 

* c  cs,f(x,m,t + i)   if xes 
k-l 

else if x is not in S then 

*[1+Min C   ((S+x-z),f(x,u),t+l)] 
k-l 
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When xes then there is no transaction and t moves to 

t + 1, k becomes k-1. If x Is not In S then there must be a 

transition as the result of a paqe fault, thus there is an 

increment of at least 1. The algorithm has not been 

completely specified. We use "Min" to designate any 

algorithm which can minimize the cost. We may call this the 

optimal algorithm. 

Definition  2:  An algorithm A is said to be 
1-ootimal if  for  all  T  and  S,C (A,S)=C (S,u ,0) 

T      TO 
whenever  the probability of a reference string of 
length T is determined bv a  program P=(N,U,u f,o) 

0 
which is 1-order.  We denote such an algorithm by A 

1 
and call it an 1-optimal Dronram . 

A  is much too difficult to imDlement since it reguires 
1 

ooth the  knowledge  of the probabilities as well as of the 

reference string. The latter mav not be known in advance. 

However the case 1=0 can be trpated with some simplicity and 

we do that here by examining 0-order programs. 

Recall  that a 0-order orogram is a program which has 

only one state i.e.  the  initial  state.  We write  p(x,t) 

instead  of p(x,u,t).  In this  case  the cost  function 

simplifies to: 
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z  cs,t)=o 
0 

: cs,t)= X        p(x,t+u 
k        xe M 

* C   CS,t+1 ")       if xe s 
K-l 

or  *[1+ MinC   (S+x-z, t + l)l   x not in S 
k-l 

Ihe.  altaaaL s-LaLlaaanji case. 

The almost stationary case is defined to be the case in 

which the probability distributions maintain their relative 

order with respect to time.  That is if p(x,t)>=p(y,t)  then 

p(x, t + t')> = p(y,t + f) for all t>=n.  Under this circumstance, 

as  given in the definition below, we can define a binary 

relation < on M such that we can ootain the smallest element 

of any S. 

Definition 3: A stationary rankinq relation < 
is a binary relation on M such that x<y if and only 
if p(x,t)<=p(y,t) for an t>0 . The notation x<=y 
means x=y or x<y where x=v means pCx,t)=p(y,t). The 
notation s=Min S means s s and s<=x for all x S. 

Observe the following consequences of the definition. 

Lemma 4: For some t>0 and S' included in N x<y 
implies Z   (S'+x,t)>C (S'+v,t). Then if s=Min S then 

k        k 
"  (S-s,t)=Mln   CS-z,t). 
k zes 
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Lemma 5: Suppose < Is the stationary ranking of 
W and x<y then 1>=C (S+x,t) - Z   (S+y,t)>=0 where x,y 

k k 
are not in S and t>0. 

Theorem  6: If the oroaram P of 0-order has the 
stationary ranking < on w with 0-optimal algorithm 

A ,   then the optimal alrrorl thm has the man g  given 
0 A 

0 
by 

g (s,x)=s if xcs 
A 
0 

=S+x-s if x is not In S 
where s = Min S anH AR.SCsi=m 

8.1 Property o£ the optimal algorithm 

Theorem 7: Suppose < is a stationary ranking of 
M  and  its correspondent alaorithm A with ABS[M]=m 

0 
m 

generates (S  > t>0 for some reference string w. If 
t 

m m+1       m 
S   is  included in s    then S  is included in 
Om+1 o t 

S 
t 

m 
S  is the memory state at tine t where the memory size 
t 

m 
is m. Thus  the memory  states  S   satisfy an inclusion 

t 
property.  This is just the same as for the stack algorithms 

we  have discussed. Thus we can see under this circumstance 

that the optical algorithm is a stack algorithm. 
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m 
Definition  8:  Define the set L to be the set 

of the m-1 highest rankinq nages in H.   The memory is 
m 

said to be in a steadv state if and if  only  L   is 
m 

included in S 

The  settling time  T(fi) is the expected time required 

for the algorithm to enter the steady state. If T(S)=0  then 

ne     say S   is  a good starting  state. Althouqh T(S) is 
0 

generally not zero, it can be shown that the cost of qetting 
m 

into a steady state is low.  I.et S = L -S then the  settling 
0 

time T(S ) for S  is less than or equal to ( l/o  ) 
0      0 i 

Theorem 9:  Suppose the 0-order page reference 
probabilities are stationary under A . The expected 

0 
cost per reference is 

_ n 2 
C'(S)=Lim C CS)/k =R-1/R( 2.  p  ) 

k .1 = 1  i 
where  *J=< 1 ,2, 3 ,... , n>  and p >=p >=p  and 

1   2       n 
n 

B= Z  P 
i = m  1 

B.2 The non-stationary case 

The binary relation that is the ranklnq relation only 

can be  defined  for  th*  almost  stationary case or in a 

non-stationary case with the followinq restrictions.  If x<y 

then y nust appear before x in the  reference string or  x 
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does  not appear at all. Define n(x,t)=l If r =x or p(x,t)=0 
t 

otherwise. So 0=p(x,t)<p(v,t)< = i If  x< y.  Note  that  x< y 
t t 

iuplies to x<  y  if r is not y. 
t-1     t 
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9. The cost function 

Here we shall define the notion of program differently. 

We  define  a  program  to  e>e a 5-tuDle P{N,U, (7t), A» 1) 

where N={I,2, 3,....} is the set of  pages  of  the  program. 

U=(u ,u ,....,u >  is  the  set  of Drogram states.  where7T 
1  2      k 

= {(7H , (71) , ..C70 } where (7P  is the probability that u 
12k i i 

is  the  initial state, A=<o  (f) i>=l j<=k t=123...} is the 
11 

set of transition probabilites.  Recall that P    is  the 
i,j 

probability that  there will be a transition from program 

state i to program state 1 at time t, and  I  is a mapping 

from program states space " into the set of pages N. 

So the reference strlnn can be considered as the set of 

functions  of a finite state Markov chain. We now define the 

set of absorption states as  those  states  which when the 

program enters them it never leaves.  In the state space we 

consider we assume that there is  at  least one reachable 

aDSorption state  in it .  Tn the real world we can take an 

aosorptlon state as a ston mode. 
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9,1 Cost of a given replacement policy 

We no.v assume that finitely many pages are referenced 

oefore ^e meet the absorption state. We define C  as cost of 
g 

the replacement policy g for the program P which generates 

the reference string. This C  is the number of page faults 
g 

encountered in executing the reference strina.  Let C (S,t) 
u 

be the average number of oaae faults incurred after time t, 

assuming the memory state is S and the program state is u at 

timt t, when the program is executed under the replacement 

policy  g. C (S,0) is the cost if the initial state is u and 
u 

tne memory state is S. Let a be the optimal Dolicy that will 

minimize the cost C (S,T) for an u U and all memory states 
u 

S in N and ABS[S]=m t>0. 
* 

Let 2     (S,t) denote the ootimal cost . It must satisfy 
u 

the recursive definition of the cost: 

: cs,t)= £     p  (t+nc cs,t + n 
U 1 ( X ) 6 S  I) , X       X 

+ y P  (t+n* 
Kxlnot in s u,x 

Cl+Min   r    rs+i(x)-z,t+l)j 
ze S x 

tfhere the page referenced is l(x). 
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Tt  is  clear  that if  x  Is  an  absorDtion  state then 

Z     (S,t)=0.  If i  is a optimal policy then the z  in the 
x 

equation  above  can be renlaced by the replacement function 

g(u,S,x,t). 

For a given policy g we can define a matrix Q Ct+1)  of 
g 

n-1      n-1 
the size k(     )*k(     ). Th*> entry of the matrix in the 

■n-1      m-1 
position (u,S), (x,5') is the cost for the program to change 

it's  program state from u to x and memory state from S to S' 

when the page referenced is l(x) under the Dolicy g. Because 

the page referenced l(x) must not be in S but must be in  S' 

we  only  consider  m-1  pages  of  n-1  pages.If  x  is  an 

absorption state then the entry (u,S),  Cx,S')  will  he  0. 

Then the equation above can he written as : 

c ct)=Q ct+i)*c ct+n+bct + n 
g   g     g 

where  b(t+l)= £     °   ft + 1) so b(t) is indepentdent 
1(X)6S u,x 

of the policy g. 

Mow we define R (t,k+1) as the  column matrix  of  the 
g 

cost matrix when g has been  followed by Vc+1 references 

during the time from t to t+vt+t. Then of course E (t,0)=0. 
g 

E Ct,k+1)=Q (t+l)*E ft+1 ,lcHb(t + l) 
g      g     g 

The  sequence  E Ct,0),F: (t,l), E (t,k+t)  is  non- 
g       a q 

decreasing  and bounded  above by Z   (t) . Moreover C is the 
g g 

limit given by 
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fc = l  r=l 
If  the  transition  probability of program P is 

independent of time t then 

C =2 C +b 
3  3 3 

and (I-Q ) must invertabie. Z    is the unique solution 
3 3 

-1 
of  the above equation which is given by (I-Q )  *b.  These 

1 
result are summarized by the following theorem. 

Theorem 1: In the rase of time varyinq 
transition probabilities, the cost of a policy g is 
jiven  by  the  minimal   nonnegtive   solution  of 

Z' (t)=0 (t + l)*C (t + l)+b(t + n.  This   solution  is 
b$t + l)+g[ 9.   Ct+o)]*b(t + ic + n 

g 

9.2 How to determine the optimal cost and replacement policy 

The most simple way to determine the optimal policy  is 

to  enumerate  the  cost of all the replacement policies and 

find the least one. Rut this is not practical,  so now we 

present  a way for  searching  for  an optimal replacement 

policy in the policy space. 

Assume  the  stationary case i.e.   the  probability 

function is independent of time r. Then the cost C =(I-Q )*b 
g    g 

where b  is  a constant independent of the policy g. For a 

specified policy g and the replacement function g(u,S,x) for 
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all  u,  S, and x, the page referenced is l(x). Then the new 

nemory will be (S+l (x)-g(u,S,x)"). He see that the policy g 

only specifies the page that to be removed from main memory. 

If we cnange the policy from a to g' then we change g(u,S,x) 

to be g'(u,S,x). So we define another C' =C - C  . Thus 
g g  g 

-l 
C = CI-Q  )  *C0 -0  )*C 
g      3*      g  g*   a 

where CI-Q  )  = Z_  °  >=0 
g'    k=0 g 

Consequently C <=C  if  and only  if C >=0. By the 
g'   n g 

equation above we have to know the value of  (0 -0  )  which 
g g' 

is  matrix which has all zeroes except in the entry position 

(u,S), Cx, S + l(x)-g(u,S,x)) and fu,S), (x,S+l(x)-g' (u,S,x)). 

If the differences are r and -r then only 0, r, -r appear in 

the matrix.  Consequently C  can be positive only  if 
a 

C (S+l(x)-g'(u,S,x))<=C (S+l(xl-a(u,S,x)).    We  obtain the 
u u 

conclusion: 

1. C  can be positive if at least one  decision changes 
g 

fro;n  g(u,S,x) to g'(u,S,x) and we then get the result 

C (S+lCx)-g'Cu,S,x))< C (s+i(x)-g(u,S,x)) 
u u 

2. C  must be greater than or equal to 0 if each decision 
3 

change satisfies condition (1). 

Mow ie  consider the replacement nolicy of choosing the best 
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page to be removed at any aiven time. Thus there is no 

general rule for the replacement policy as we had in the 

previous chapter. 

tfe introduce  the followinn strategy for searching the 

optical policy in the policy snace. 

1. Pick an initial policy sav g and calculate  the cost 
0 

-1 
C   =CI-Q  )  *b. Let n=0 and go to (2). 
g     3 
o     o 

2. If MinC CS + l(x)-z)=C (S + i(x)-g (u,S,x)) for all xc-U or 
u u        n 

l(x)  in S then this is the case to stop, otherwise we 

have  to keep on searching  for  another.   Define 

g  Cu,S,x)=z  where Mln  Z   (S+l(x)-z)=C (S+l(x)-z ) 
n+1       0 zes x x       0 

for all u,and S, go to m. 
-1 

3. Determine the cost C   =fI-Q   )  *b if C   =C 
g      g g    g 
n+1     n+1 n+1  n 

then stop . 

4. If Z <Z       then n becomes n+1 and go to 2. 
g   g 
n+l  n 

This  strategy is based on the two rules we had earlier. It 

stops when an optimal policy is found, otherwise it iterates 

again. This iteration procedure can not  repeat a policy 

since  g is not equal to a   for all 0<p<=n .  Since there 
n n-o 

are only finite number of nolicles in the policy space the 
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iteration must converge. This represents an efficient 

technique in searching through the policy space to get an 

optinal policy. But the choice of the initial policy may 

influence the speed of converaence. Of course, the choice of 

an optinal policy as the initial policy would be the best. 

If the case is non-stationary then the time-varying 

transition probability will make the process more complex. 

9.3 Extension to a larger program 

The procedure developed above was  for the  stationary 

case  in a  program with  onlv  few states. Now we present 

another method for extending to a larger program. 

Let G={3 ,G ,....G } he  a  partition  of  the  program 
1  2      L 

states  space Q of program P. Those G are non-empty and 
i 

disjoint the union of G Is II , The set of states  reachable 
i 

from G  and not in G will be denoted by G' . Then we define 
i I 1 

the program P  to be the nrogram whose set of pages is 
i 

M =<l(x)lx in G or G' }, and the program state set is  the 
i i     i 

union of  G  and G' , the transition probabilities are are 
i       I 

those of A restricted to G and denoted by A .   The states 
i 1 

G'  are absorption states . 
i 

Let C (1)  be the column matrix of the optimal cost of 
L 

the program P under an optimal  policy.  If u  is  in  the 
L 
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intersection  of G'   and IT then it is an absorption state 
L-i     t. 

of U       .  Tnen the cost  of  u  ran be assigned  from the 
L-l 

appropriate  component of C   (11. Hence all of the absorption 
L 

states in U will be assianed a cost not necessarily zero. 
L-1 

2 denotes the column matrix of the cost for  the program 
L-l 

P    under an optimal poHcv.Th°n this procedure is carried 
L-l 

out for ?   ,P   ,...  ,P  each time  on  the  sets  G'   of 
L-l  L-2       1 i 

external  states  G'  of G  .  Thus each P ,P ,...P  will be 
11 1  2    L 

be  considered  once,  with  a  certain  cost  and  policy 

determined for it. 

Let's  consider  the  oronram  itself.  For ueG , g any 
i 

policy, then the cost function nan be written as: 

Z   = Z p   C (S) 
u   x 6 G  l(x) € S  u,x x 

i 

fcx6G     Hxt   not   in   S 
i 

P [1+C   CS + Hx)-g(u,S,x))] 
u,x X 

+ y P    c cs) 
x6G'     I (x) e S     u , x   x 

i 

x 6G'     l(x)   not   in   S 
i 

P        Cl+C   (S+l(x)-afu,S,x))l 
u,x x 
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Q       is  the  matrix corresoonding to g n C=0 *C + b. Then we 
g q 

define 3'  and Q"  by 
i       i 

CQ') = COl 
i,Cu,S),Cu',S')    (u,S),Cu*,S*) 

if ufiR  U'6G 
1      i 

=n otherwisw 

CQ") = CCn 
i , (u , S) , (u ', 5 ")    (u , S) , (U ' , S ') 

If u6G n'e c• 
i      i 

=0 otherwise 

Then Q =    Q' + Q"   ,P'   and  Q"   are  0  unless  they 
g i=l   1   i    i i 

correspond to G and G' . Tnen 
i      i 

V fj 

Z   (S)=2_   CQ' +Q" )*C + b 
u    i=l   i   i 

If  0 represents the optimal policy for P then 0' +0'' 
1   i 

would represent the optimal DO!icy for P with the external 
i 

n + l 
states Z'       of  G . We let C    be the cost for the policy 

i      i u 
1 then it is the (u,S)-th comoonent in the CCn+1)  which 
n + l 

is  the  cost of P  under replacement policy q       . After the 
i n+l 

n'th iteration of the approximation procedure , the sets G' 
i 

of external states G'  of G was assiqned the non-zero value 
i    i 

cost. Let QCn+1) be the matrix  for  the policy g    then 
n+l 
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C(n + l) = 3(n + n*C(n+l)+b(n+l)  whpre  b(n+l)=b+n(n+l).  D(n+1) 

represents the contribution to r(n+l) of  the component of 

~(n)  corresponding  to the set of external states G'  of G 
i    i 

1 = 1,2,3, L. Define Q' (n + 1) and 0" (n+U  in  a  manner 
1 i 

similar to Q'  and Q"     resDeettvely then 
i       i 

C(n+l)=Q'(n + n*C(n + n+b + n(n + l) 

where D(n + 1 )=Q" (n + n*H(n) D(0)=0. 

If  QCn+1)   represents the  optimal  policy for P 
i 

1 = 1,2,3,...,h    then Q'(n+1)+0'*(n + 1)  would represent the 

optimal  policy for  P with the the set of external states 
1 

G'  of G assigned non-zero absorption state costs. Then 
i    i 

n + 1 n 
Z (S+l(x)-g   (u,S,x)=Min   C  (S+l(x)-z) 
x n + 1 z£S x 

Here hence c(l)>=C(0) b(l)=b+b(n) 
-1 -1 

C(n+l) = (T-Q'Cn + l))  *b(n+f)  , Cfn) = (I-Q ' (n))  *b(n). Assume 

o(n)>=bCn-l)    and C(n)>=C(n-l).   Then    b(n)=b+D(n) 

b(n + l)=b + D(n + n. By definition nrn+l)>=D(n) if C(n+1)>=C(n). 

Hence  o(n + l)> = b(nD and C(n + n>=C(n) for all n by induction. 

Since C(n) and b(n) are bounded, they must converge  as  n 

lncreass  to  say C and b and n is also bounded and converse 

to  say D   .   Then 

b = )-0^ 

*    -1 
Let  Q'   •nininize   (I-Q   >     *b  over     all     the     policies     0 
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which  have  the  same form as £  3' . If n Is larqe enough 
1 = 1   i 

-1 
then   CI-Q' )  *b(n+l)    will    be    very   close    to 

-1 
(I-Q'Cn + D)  *b(n+l). We talce the limit of C(n + 1) as n tends 

to infinity then 

A  <N   /^ A A      ^ 
C=Q'*C+b where b=b+D 

No*  0 = Q"*C  for  some 0" hence 6=Q'*C+h+Q"*C . Thus 

A  A  A     A. 
C = (3' + Q")*C + b 

Two remarks should be made. First, if the partition of 

G  has  the  property  that  for each i only those G can be 
j 

reached from G  where j>=l, then exactly  one  iteration  is 
i 

required   in  operating  the  approximation  procedure  to 

determine the optimal policy and its cost  for  the  program 

P. Second,  if  for each r;  with only one state from U, then 
i 

the CCn+1) for P  only has one term,  so  it  simplifies  in 
i 

solving the cost equation to get CKn+i). However, the larger 

G   of  G  is  the  faster  the convergence of the iteration 
i 

procedure.  So we face the two options namely the  cmplexity 

of   the  computation  and  the  number  of  iterations.  We 

considered these two effects and tried to reduce  the  total 

time consumed in getting the optimal cost and policy. 
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