
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1983

A study of paging algorithms.
William H. Wu

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Wu, William H., "A study of paging algorithms." (1983). Theses and Dissertations. Paper 1938.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228649546?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F1938&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1938&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1938&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=preserve.lehigh.edu%2Fetd%2F1938&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/1938?utm_source=preserve.lehigh.edu%2Fetd%2F1938&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

A STUDY OP

PAGING ALGORITHMS

by

William H. Wu

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Computing Science

Lehigh University

1983

ProQuest Number: EP76211

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest

ProQuest EP76211

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Certificate of Approval

This thesis is accepted and approved in partial

fulfillment of the requirements for the degree of

Master of Science.

cA£. /*-, /<?/3
(date)

Professor in Charge

Head of the Division

ii

Acknowledgment

The author wishes to thank Professor Samuel

[J. Gulden for his helpful suaaestions and thoughts in

preperation of this thesis.

ill

Table of Contents

0. Abs t ract 1

1 . In t roducti on h

2. Paging algorithm 7

3.0ptimalalgorithm 11

3. 1 Cos t func t i on 11
3.2 Optimal replacement 12

t . S tack a 1 gor i thm 1 ^

5. Priority algorithm 16

6. Independent reference model 19

7. LRU stack model 21

8. More study on optimal paging algorithm 23

8.1 Property of the optimal algorithm 27
8.2 The non-stationary case 28

9. The cost function 30

9.1 Cost of a given replacement policy 31
9.2 How to determine the optimal cost and replace-

ment po 1 i cy 33
9-3 Extension to a larger program 3&

Table of Con tents

0. Abs t ract 1

1 . I n t roducti on A

2.Pagingalgorithm 7

3. Optimal algorithm 11

3. 1 Cos t funct i on 11
3.2 Optimal replacement 12

A. S tack a 1gori thm 1 h

5. Priority algorithm 16

6. Independent reference model 19

7. LRU stack model 21

8. More study on optimal paging algorithm 23

8.1 Property of the optimal algorithm 27
8.2 The non-stationary case 28

9. The cost function 30

9.1 Cost of a given replacement policy 31
9.2 How to determine the optimal cost and replace-

ment po 1 i cy 33
9.3 Extension to a larger program 36

-iv-

Table of Con tents

0 . Abs t ract 1

1 . I n t roduc t i on *t

2.Pagingalgorithm 7

3. Optimal algorithm 11

3. 1 Cos t function 11
3.2 Optimal replacement 12

A . S tack a 1 gor i thm 1 *»

5. Priority algorithm 16

6. Independent reference model 19

7. LRU stack model 21

8. More study on optimal paging algorithm 23

8.1 Property of the optimal algorithm 27
8.2 The non-stationary case 28

9. The cost function 30

9.1 Cost of a given replacement policy 31
9.2 How to determine the optimal cost and replace-

ment policy 33
9.3 Extension to a larger program 36

- i v

Lehicih University

ABSTRACT

This thesis considers computer systems with two mem-

ory levels, main memory and secondary memory. Main memory

and secondary memory are both partitioned into fixed size

blocks called page frames. During the execution of a pro-

gram, some of these page frames will contain information

and the block of information contained in a page frame is

called a page. The execution of the program will require

the passing of pages back and forth from main memory to

secondary memory. The process whereby this is done, in or-

der to be reasonably efficient, necessitates a careful

study of what can be called paging algorithms. During the

execution of a given program, a program behavior has a ref-

erence string

w = 17 i / x" n t • • • / ^"x. • • • *- — -1*

where r, is the page required in main memory at time t. If

the required page is not in main memory, this situation is

called a page fault. A paging algorithm must deal with

three policy issues: fetch policy, placement policy, and

replacement policy. In dealing with these, the fetch poli-

cy is usually implemented by demand paging whereas for the

other two policies there are a number of strategems which

may be used. These are, least recently used, least fre-

quently used, first in first out, last in first out, among

others. With all of these we try to establish optimal

-1-

algorithms. Although in practice one cannot completely

optimize the process, in general one can provide reason-

ably good algorithms based on a mathematical analysis of

the paging process. In order to carry out this analysis,

several functions are introduced.

(i) The forward distance: For any page x, d(x) is the

least k - o such that r, . = x. If no such k exists

d(x) = infinity.

(ii) The backward distance: For any page x, b(x) is the

least k = o such that r. . = x. b(x) = infinity if no

such k exists.

During the execution of a program let S, be the mem-

ory s'tate at time t, and let q, be the control state at

time t. On the action of a given algorithm A the opera-

tion of the system will be given by a transition function.

(iii) (St+i^t+l* = 9z(St,qt,rt)

To examine the replacement policy we introduce a replace-

ment function:

(iv) R(S , q, , r.) = y where y is to be the page removed

for the memory state S., control state q, and referenced

page r,.

In terms of these functions, for example, the least

recently used replacement policy may be described by

-2-

R(St,wt,r) = y iff b(y) = Max [b(z)]
ZES

By using these functions and assumptions about them

as well as various cost functions, the analysis of some

paging algorithms can proceed. The analyses in this

thesis follow the material in [1], [2] below.

1. Aho, A. V. Denning, P. J., and Ullman, J. D. Prin-

ciples of optimal page replacement. J. ACM 18, 1 (Jan.

1971) , 80-93.

2. Ingargiola, G. Korsh, J. F. Finding optimal demand

paging algorithms. J. ACM 21, 1 (Jan. 1974) 40-53.

-3-

1. Introduction

The purpose of this thpsis is to discuss some aspects

of paging algorithms. The discussion is somewhat informal

though we state some of the main facts as theorems. The

theorems are not proved though we hope the discussion makes

them plausible. Our discussion is based on U.3, [21.

We limit our attention to a computer system with two

tiemory levels , main memory and secondary memory. The main

memory is in the machine Itself and the secondary memory is

in the disk or drum which is connected to the machine. The

machine can operate only on information in the main memory.

If the information in the secondary memory is needed then it

has to De brought into the main memory.

We define the page as a certain size of information,

and the page frame is a block of contiguous location

addresses with a certain size In the computer main memory.

The size of both page and nage frame consist of. c cells.

tfe define N as the Droaram name space which is the

space that the program occunied in the secondary memory. N

is divided into n pages.The svstem main memory space M is

the space that is authorized to the programing job in the

naln me-nory. M is divided into m page frames.

M is a set of pages indexed by 1,2,3 ,n we write

■k-

M=(t,2,3 ,n>

and similarly we reaard M Is a set of page frames

indexed l,2,3,....,m we write

M={1,2,3, , m>

We only care about those Indices of Dages or page

frames in the system, we don't care about the information

inside any page or page frame.

If the user's program reouires n pages, but only m page

frames are available where m<n, then the program can not be

fitted in tne main memory . Then we copy m pages of the

program into the m page frames in main memory. Of course if

n = m we can copy the entire program into main memory.

We define the time parameter t as a discrete parameter

where t=l,2,3, represent the instants of processing the

program . \ program behavior for a given program is

described in a machine independent way by its reference

string

w=r ,r , r , r w t>=i.
12 t t

The reference string is a time seguence of pages r
t

wnere r is the page which is referenced at time t. That is
t

tne page r is needed in bv the machine at time t. If the
t

page r is not in the main memory at time t then it should
t

oe orought into main memorv to make it available for the

machine.

-5-

ht each moment of time t there Is page map

f :M >MU<0}
t

where

f (x) = y if the paae x resides in the page frame y at

time t.

f Cx)=0 if the page x is missing from main memory at

time t.

We use the term paae fault to Indicate a situation in

which a referenced page is not j.n the main memory, and the

memory is full. Then we have to choose a page to be removed

to make the space available for the page which is

referenced. The page fault rate F(w) of a reference string

w is the number of page faults encountered in processing the

reference string when the length of the reference string Is

Known.

•6-

2. Paging Algorithm

A paging algorithm is an algorithm for moving paqes

between secondary memory and main memory. In developing such

an algorithm there are three policies:

1. Fetch policy: determine which page is to be brought

into main memory, and when that will occur.

2. Placement policy: choose an available target page

frame into which a fetched page is to be stored.

3. Replacement policy: choose the page or pages to be

removed from main memory in order to make space

available for new panes.

A paging algorithm A provides the mechanism for processing a

reference string w=r ,r , ,r ,.... and generating a
1 7 t

seguence of memory states s ,S ,...,s ,.. For a given time
I ? t

t, if a page fault occured, let x be the page referenced and

y be the page removed then S =s + x-y. If no page fault
t + 1 t

occured then S =S . Space s is the initial state.
t + 1 t f>

A demand, aaaioa alaaE.ltb.si is one in which a page is

fetched from secondary memorv only when the required page is

missing from main memory. Removal of a page occurs only

when the main memory is full.

Let g (5,q,x) be the transition function which
A

describes the change of memory and control states under a

page algorithm A. If the memory state is S, the contol state

is q and the page referenced is x then after the application

of A the memory state becomes S' and control state becomes

q'. »e write a (S,q,x) = (S',a' 1.
A

For a demand pagina alaorithm and given m>0 the

transition function has the nronertles:

If g (S,q,x)=(S*,q') then
A

s'=s if xes

S'=S + x if x^S and ABSfSXm

S'=S+x-y if x^S and ARS{S}=m

Here ABStS] is the number of pages in main memory at

state S. We define the forward distance dCx) at time t as

the numoer of time periods to the first occurence of x from

t in the reference string.

d(x)=k if r is the first occurence of x in
t+k

r ,r ,
t t + 1

d(x)=infinity if x never occurs in r , r ,...
t t + 1

We define the backward distance b(x) as the number of

time periods to the last occurence of x from t in the

reference string.

b(x)=k if the last occurence of x was r in
t-k

r it /...; r
1 2 t

b(x)=infinity if x does nor occur in r , r ,...,r
1 2 t

We define the replacempnt function R(S,g,x) as the page

to be removed when memorv state is s and control state is q

the page referenced is x. Tf the page removed is y then

RCS,q,x)=y.

Now let us introduce some further special paging

algorithms.

LEUtL&as.L tacaat usadl : The page which is replaced is

the page with largest backward distance .

Thus R(S,q,x)=y if and only if b(y)=Max [b(z)3
zfeS

& LEle.lad,j£ adLlmal alaac.ltb.ial : The page which is
a

replaced has largest forward distance. R(S,q,x)=y if and

only if d(y)=Max td(z)]
zes

LELLtl&asLL fxaoueaLlii: us.e.dl: The page replaced is the

page having received the least numoer of references. Let

f (x) denote the number of references to x in r ,
t 1

r ,.... ,r . Then
2 t

R(S,q,x)=y if and onlv If bfy)=Max Cb(z)]
zes"

where zeS" if and onlv if t (z)=Min [f (u)]
t ues t

EIE:aif.Lc.s.tsLa£.ir.atsaatl: The page replaced is the one

*hich has been in memorv for the longest time. Define

3 (z)=i as the largest integer less than or egual to t such
t

that S -S =r = z. Then
i i -1 i

R(S,q,x)=y if and only if a (y)=Min [g (z)]
t zes t

LLEltLaaL=iLasf,ii:s.t.sauLl: The page replaced has been in

the main me:nory for the least time.

R(S,q,x)=y if and onlv if n (y)=Max [g (z)]
r zes t

10-

3. Optimal algorithm

3.1 Cost function

The cost generated bv a naging algorithm A, operating

on the reference string w=r ,r ,...,r in the memory of size
1 7 T

m>0 is denoted by C(A,w,m). C(A,w,m) is the total time the

algorithm A takes in transferring the pages in and out of

main memory of size m while processing the reference string

w. Suppose h(k) is the time it takes for a single secondary

memory transition involvina a group of k pages. If

S =S -X +Y where ABS[X] is the number of pages involved
t+1 t t t t

in the transition, then

C(A,w,:n)=£h(ABS[X])
t

If A is a demand paging algorithm then ABSCX]<=1. So
t

it is a one page or no nage transition for each reference.

Then

C(A,w,m)=2ABSCX]
t

For, the transition takes time T +T where T is
w t w

waiting time and T is the transmission time between main
t

memory and secondary memory . A k-page transition will take

time kCT +r) if the secondary memory uses electronic
w t

selection, that is core memory, or time T' +T' if the
w t

memory uses rotational selection, that is disk or drum.

-1 1

Normally T' >T . In the rase that the page Is in the
w w

core memory we would have hCk)=Vc. In the case that the page

is in the disk or drum then hfio<ic and h(k) = l+a(k-l) where

0<=a<=l

Theorem 1: Suppose that h(k)>=lc for a given
algorithm A then there exists a demand paging
algorithm A' such that

C(A',wfm)<=C(A,w,nO

3.2 Optimal replacement

An optimal algorithm is an algorithm which minimizes

the cost function for anv reference string and at any size

of memory. We wish to minimize nage transfers. Hence when

memory is full we want to choose "as a page to be removed one

which either will never he referenced again or one which

will not be referenced for a relatively long period of time.

We don't want to move a page in and out while the other

pages stay in the main memory without being referenced. In

the demand paging algorithm at a given time one page is

referenced and another pane is removed. So an optimal

algorithm is one in which we trv to find the "best" choice

of page to be removed.

As mentioned above the "best" choice of a page to be

removed is the one with longest expected time until its next

-12-

reference, that is the one with longest expected forward

distance.

13-

4. Stack algorithm

An algorithm A is called a stack alqorithm if its

memory states satisfy the inclusion property:

S(!ti,v) included in SO + 1 ,w) for all m, and w.

where S(n,tf) is the state of the memory of size m after

tne reference string w has been referenced. It is also

called "stack".

The inclusion property is equivalent to the following

statement which indicates in more detail the structure of

S C m, v) .

For each w there exists a permutation of N

s(v) = <s (rf),s (w), ,s Cw)> where s is the ith paae
12 n i

after the application of w such that for all m>0

S(m,w)={s (wj,s Cw),....,s (w)>. S(m,w) is the top most m
1 2 m

pages of s(w) . It is clear that S(0,w)= and

{s C/f)>=SCi#w)-S(i-l ,w). The vector S(m,w) is called a stack
i

vector or lust a stack. If i<1 then s (w) is said to be
i

higher in the stack then s (w) and s (w) is the paqe on the
1 1

top of the stack.

The stack distance D for oage x is the position that
x

the page occupies in the stack S(w). If s (w)=x then n (w)=k
k x

else if x is not in the stack then D (w) is Infinity.
x

A stack algorithm has three basic properties:

.,/,_

PI.. The most recently referenced page is at the top of

the stack. D (*x)=l
x

P2.. An unreferenced oage will never move higher on the

stack, i.e.

D UK = D (wx)
y Y

P3.. Pages below the one referenced remain fixed on the

stack.

s (wx)=s (wx) if D (WKV:
k k x

Thus an algorithm Is a stack algorithm if and only if

R(S+y,q,x)=R(S,q,x) or y if x is not in S+y.

15-

5. Priority algorithm

A paging algorithm is called a priority algorithm if

there exists a mapping that associates with each reference

string w=r ,r , r , a seauence of linear orderings P ,
1 2 T 1

P , ..., P such that
2 T-l

1. P (K = t< = T) is an ordering of distinct pages in
t

r # r ;••• t••fr
1 2 T

2. For all m>=l if r S(m,r ,r ,...,r and
t + 1 12 t

ABS[S(m,r rr)1=m l< = t<=T then the paoe in
1 2 t

S(m,r r ...r) which is renlaced is oiven by the least
1 2 t

element of P contained in S(m,r r r).
t 1 2 T

Now let Min CS] denote the least element of P contained in
P t
t

S.

Then

RCS ,q,r)=Min [S 1 If ABSCS]=m and r not in S .
t t+1 P t t t+i t

t
RCS , q,r)=0 if ABsrs Km or r 6 5

t t+1 t t+1 t
The LRU, R ,LFU, and LTFO alaorithm are priority

0
algorithms whose priority lists order pages , respectively,

by increasing backward distance, increasing forward

distance, decreasing frequency of use and increasing times

of entering main memory. For each different priority

algorithm there is a different priority list.

16-

A priority algorithm is a stack algorithm

for,

R(S*y, q, x)= Min[S+vla MinCMinCS], vl

since R(S,q,x)=MinCS] so

P.CSfy, g, x)=Min[R(s, n, x), y]

where R(S+y, g, x) is either R(S, q, x) or y. The

converse is also true. This ts the same conclusion we had

in the last chapter.

Stack: uadatiua tatacaduxe.

Let S(w) and S(wx) be two successive stacks and suppose

0 (rf)=m . Let x be the last page of the stack that is
x

referenced. After the reference the stack becomes as

follows:

1. s Cwx)=x if i=l
i

2. s (wx)=Max[s (w), Minrs(i-i,w)]] if KKm
i i

3. s (rfx)=Min[S(m-l,W)i if i=d,
i

4. s Ux)=s Cw) if i>m
i i

Line 1 is from PI in the last chapter, i.e. the first

page is the page most recently referenced. Line 4 is from

P3, i.e. those pages below the page referenced stay

unchanged. The line 2 indicates those pages were not removed

-17-

from the stack, where MtnfRfs,q,x),yl is the paqe to be

removed and ^axCR(S,q,x),v] indicates those that are not

removed . In line 3 i=m is the nosltion vacated by the paqe

referenced and filled by the nacre replaced from the set of

m-1 pages above it in the stack.

The algorithm stack and oriority list are identical at

each moment of time only If the algorithm is LRU. That is if

S(rf)=[s (*),s (*)»... ,s (w)] is an LRU stack then i<1
12 n '

implies that s Cw) was more recently referenced than s (w)
i j

in *.

-18-

6. Independent reference model

In this chapter we shall consider the performance of a

paging algorithm in terms of an expected page fault rate.

The reference string w is a sequence of independent random

variables Kith common stationary distribution <b ,b ,... ,
1 2

fc> } such that P (r =n=h for i>=l. Let the random
n r t 1

variable d (x) denote the forward distance of x right after
t

r has been referenced,
t k-1

P Cd (x)=fc]=b Cl-b)
r t xx

where the mean of d (x) is 1/b
t x

A is the algorithm in which the choice of page
0

replaced is the one in the memory whose expected forward

distance is the greatest, that is the one for which b is
x

least. If ie let the naoes oe numbered so that

b >=b >=....>=b the replacement rule of A is
1 2 n 0

R(S, q, x)= the largest numbered page in S

We use the theory of Markov chains to analyze the LRU

paging algorithm. Let {S > 1=1,2,3,.... be the sequence of
i

stacks generated by the LRU alnorithm for a reference strinq

where the memory size is m. The states of a Markov chain are

then the topmost m pages on the stack. The set 0 consists of

all the permutation of m elements taken from w. The

transition probability

PCS, S')=P [S =S I S =S1
r i 1-1

If S=[j ,j ,...,j] and S'=[k,j ,...,1 ,j ,...,j]
12m 1 i-l 1+1 m

*nere k=j then P(S,S')=b
1 k

Because <S } Is irreducible, that is, for each S and S'
i

there exists a positive number k such that P CS,S') is the

probability of passing from state S to state S' in k

transitions, and P is non=zero. This implies
m

P (S,S')= b >0
jl

for all S and s' in n

Let (IT) denoted the eouil Ihrium probability vector and

P be the transition probability matrix then (7n = (7T)P. Let

7T and S=[j , j ,...,j] denote the equilibrium probability
s 12m

of state S then {£(70 >=i . Let p (S) denote the probability
s f

that a page fault occurs then

F(LRU)=2> (S)(7t) where F(LPU) is the number of page
£ s

faults of the LRU algorithm.

Theorem 1: For the independent reference model
2 _. m

F(LRU)=X P (S) IT b /D (S)
SGQ 1 1=1 1 i

i
^- m+i-1

where S=[j ,j ,...1 1 and D (S)=l- *- b
12m i k=l j

K

-20-

7. LRU stack model

Let S(w)={s (w),s (w"),...s (w)} where s (w) is the i-th
1 2 n i

■nost recently referenced oaae that is S(w) order the pages

according to increasing back-ward distance. Let D (w) denote
x

the position of page x in the s^ack s(w). We were able to

associate the distance string D , D , ,D , ... in the
1 2 t

reference string.

If we let D be the distance of r in the stack S
t t t-1

then D becomes the number of distinct oaqes referenced
t

since the most recently referenced page is r . The LRU-stack
t

distance string is considered to be a sequence of

independent random variables governed by a stationary

prooabillty mass function

P CD =i]=a i = l ,2,....,n
r t i

whose cumulative distribution function is given by
i

* = I a
i j = l 1

Let I=i ,i ,...,i ,... he the sequence of sample values
1 2 t

for the randoii variables and let S ,S ,...S ,.. be the
0 1 t

corresponding LRU-stack seauence with S the initial state.
0

Tnen

S ={s (l),s (2),...,s (nl>, the string qenerated by I,
t t t t

is defined as w=r , r , r ,..., r ,... r =s (1) with the
12 1 t t t

initial stack understood. For a given probability mass

21

function (a > the class of strings definable in this manner
i

will be called the class of T.Rti reference strings.

If the distance distribution is chosen to be biased

toward short distance th*t Is a >=a >=....>=a then the
1 2 n

reference string will exhibit a tendency to cluster

reference to the pages near the top of the stack.

Conversely, if the distance distribution is biased toward

long distances then , the reference string will tend to

exhioit random scattering of references across many pages.

The LRU paging algorithm is optimal for a class of LRU

reference strings for m>=l whenever the distance

distribution satisfies

a >=a>=a
1 2 n

■22-

8, More study on optimal paging algorithm

We have defined demand oarrlng algorithms and for those

we have introduced-- FIFD, l,RH, ... etc are demand pagina

algorithms . Mow we turn our attention exclusively to demand

paging algorithms. We do this for two reasons. First, with

certain constraints on memory system organizations, an

optimal paging policy must a demand policy. Second, a great

number of systems for which a demand policy would in theory

be optimal are committed bv their implementation to using

demand paging only.

We now introduce another non-stationary Markov process,

which is called a program.

Definition 1: ft orogram P is a system with
five components. They are N, a, u , f, p. N is the

0
set of pages, U is the set of program states, and u

0
is the initial state which is included in U, where f
is the state transition function f:N*U -> n, p is
the probability function p(x,u,t) which is the
Drobability at the time t that the page referenced
is x, and the program state is currently at u . For
each u U and t>0 then <Tpfx,u,t))=1. The program P
generates a reference string r ,r ,...r as follows:

1 2 T
For any t>=l, r has the value x with

t
probability p(x,u ,t) and u =f(r ,u)

t-1 t t t-t

The program is said to be an 1-order program if

■23-

i\BS[U]=H-l that is the nroarai has 1 states besides the

initial state. It is stationary if the probability function

P is independent of time t.

Example:

Consider a program whose states consist of U=Nl){u >
0

with transition function f:w*n >u" given by f(x,u)=x.

Clearly the program is an n-order program. If

P Ct)=P [r =j|r =i] then take
ij r t t-1

p(x,u,t)=p (t)=P Cr =x|r 1. Clearly £p(x,u,t)=£p Ct) =
ut r t t-i ux

P Cr =x|r]=1
r t t-1

We now talce another look of the cost function in the

paging algorithm which is executing the reference string.

Here the reference string was aenerated by the program. We

let w=r , r ,..., r ,...,r u =u and S =s. We define the
1 2 t t + k t t

cost function C (S,u,t) for k references beyond time t
k

recursively as follow:

C (S,u,t) = £ p(x,u,t+l)
k

* c cs,f(x,m,t + i) if xes
k-l

else if x is not in S then

*[1+Min C ((S+x-z),f(x,u),t+l)]
k-l

■2h-

When xes then there is no transaction and t moves to

t + 1, k becomes k-1. If x Is not In S then there must be a

transition as the result of a paqe fault, thus there is an

increment of at least 1. The algorithm has not been

completely specified. We use "Min" to designate any

algorithm which can minimize the cost. We may call this the

optimal algorithm.

Definition 2: An algorithm A is said to be
1-ootimal if for all T and S,C (A,S)=C (S,u ,0)

T TO
whenever the probability of a reference string of
length T is determined bv a program P=(N,U,u f,o)

0
which is 1-order. We denote such an algorithm by A

1
and call it an 1-optimal Dronram .

A is much too difficult to imDlement since it reguires
1

ooth the knowledge of the probabilities as well as of the

reference string. The latter mav not be known in advance.

However the case 1=0 can be trpated with some simplicity and

we do that here by examining 0-order programs.

Recall that a 0-order orogram is a program which has

only one state i.e. the initial state. We write p(x,t)

instead of p(x,u,t). In this case the cost function

simplifies to:

-25-

z cs,t)=o
0

: cs,t)= X p(x,t+u
k xe M

* C CS,t+1 ") if xe s
K-l

or *[1+ MinC (S+x-z, t + l)l x not in S
k-l

Ihe. altaaaL s-LaLlaaanji case.

The almost stationary case is defined to be the case in

which the probability distributions maintain their relative

order with respect to time. That is if p(x,t)>=p(y,t) then

p(x, t + t')> = p(y,t + f) for all t>=n. Under this circumstance,

as given in the definition below, we can define a binary

relation < on M such that we can ootain the smallest element

of any S.

Definition 3: A stationary rankinq relation <
is a binary relation on M such that x<y if and only
if p(x,t)<=p(y,t) for an t>0 . The notation x<=y
means x=y or x<y where x=v means pCx,t)=p(y,t). The
notation s=Min S means s s and s<=x for all x S.

Observe the following consequences of the definition.

Lemma 4: For some t>0 and S' included in N x<y
implies Z (S'+x,t)>C (S'+v,t). Then if s=Min S then

k k
" (S-s,t)=Mln CS-z,t).
k zes

-26-

Lemma 5: Suppose < Is the stationary ranking of
W and x<y then 1>=C (S+x,t) - Z (S+y,t)>=0 where x,y

k k
are not in S and t>0.

Theorem 6: If the oroaram P of 0-order has the
stationary ranking < on w with 0-optimal algorithm

A , then the optimal alrrorl thm has the man g given
0 A

0
by

g (s,x)=s if xcs
A
0

=S+x-s if x is not In S
where s = Min S anH AR.SCsi=m

8.1 Property o£ the optimal algorithm

Theorem 7: Suppose < is a stationary ranking of
M and its correspondent alaorithm A with ABS[M]=m

0
m

generates (S > t>0 for some reference string w. If
t

m m+1 m
S is included in s then S is included in
Om+1 o t

S
t

m
S is the memory state at tine t where the memory size
t

m
is m. Thus the memory states S satisfy an inclusion

t
property. This is just the same as for the stack algorithms

we have discussed. Thus we can see under this circumstance

that the optical algorithm is a stack algorithm.

27-

m
Definition 8: Define the set L to be the set

of the m-1 highest rankinq nages in H. The memory is
m

said to be in a steadv state if and if only L is
m

included in S

The settling time T(fi) is the expected time required

for the algorithm to enter the steady state. If T(S)=0 then

ne say S is a good starting state. Althouqh T(S) is
0

generally not zero, it can be shown that the cost of qetting
m

into a steady state is low. I.et S = L -S then the settling
0

time T(S) for S is less than or equal to (l/o)
0 0 i

Theorem 9: Suppose the 0-order page reference
probabilities are stationary under A . The expected

0
cost per reference is

_ n 2
C'(S)=Lim C CS)/k =R-1/R(2. p)

k .1 = 1 i
where *J=< 1 ,2, 3 ,... , n> and p >=p >=p and

1 2 n
n

B= Z P
i = m 1

B.2 The non-stationary case

The binary relation that is the ranklnq relation only

can be defined for th* almost stationary case or in a

non-stationary case with the followinq restrictions. If x<y

then y nust appear before x in the reference string or x

-28-

does not appear at all. Define n(x,t)=l If r =x or p(x,t)=0
t

otherwise. So 0=p(x,t)<p(v,t)< = i If x< y. Note that x< y
t t

iuplies to x< y if r is not y.
t-1 t

-29-

9. The cost function

Here we shall define the notion of program differently.

We define a program to e>e a 5-tuDle P{N,U, (7t), A» 1)

where N={I,2, 3,....} is the set of pages of the program.

U=(u ,u ,....,u > is the set of Drogram states. where7T
1 2 k

= {(7H , (71) , ..C70 } where (7P is the probability that u
12k i i

is the initial state, A=<o (f) i>=l j<=k t=123...} is the
11

set of transition probabilites. Recall that P is the
i,j

probability that there will be a transition from program

state i to program state 1 at time t, and I is a mapping

from program states space " into the set of pages N.

So the reference strlnn can be considered as the set of

functions of a finite state Markov chain. We now define the

set of absorption states as those states which when the

program enters them it never leaves. In the state space we

consider we assume that there is at least one reachable

aDSorption state in it . Tn the real world we can take an

aosorptlon state as a ston mode.

30-

9,1 Cost of a given replacement policy

We no.v assume that finitely many pages are referenced

oefore ^e meet the absorption state. We define C as cost of
g

the replacement policy g for the program P which generates

the reference string. This C is the number of page faults
g

encountered in executing the reference strina. Let C (S,t)
u

be the average number of oaae faults incurred after time t,

assuming the memory state is S and the program state is u at

timt t, when the program is executed under the replacement

policy g. C (S,0) is the cost if the initial state is u and
u

tne memory state is S. Let a be the optimal Dolicy that will

minimize the cost C (S,T) for an u U and all memory states
u

S in N and ABS[S]=m t>0.
*

Let 2 (S,t) denote the ootimal cost . It must satisfy
u

the recursive definition of the cost:

: cs,t)= £ p (t+nc cs,t + n
U 1 (X) 6 S I) , X X

+ y P (t+n*
Kxlnot in s u,x

Cl+Min r rs+i(x)-z,t+l)j
ze S x

tfhere the page referenced is l(x).

■31-

Tt is clear that if x Is an absorDtion state then

Z (S,t)=0. If i is a optimal policy then the z in the
x

equation above can be renlaced by the replacement function

g(u,S,x,t).

For a given policy g we can define a matrix Q Ct+1) of
g

n-1 n-1
the size k()*k(). Th*> entry of the matrix in the

■n-1 m-1
position (u,S), (x,5') is the cost for the program to change

it's program state from u to x and memory state from S to S'

when the page referenced is l(x) under the Dolicy g. Because

the page referenced l(x) must not be in S but must be in S'

we only consider m-1 pages of n-1 pages.If x is an

absorption state then the entry (u,S), Cx,S') will he 0.

Then the equation above can he written as :

c ct)=Q ct+i)*c ct+n+bct + n
g g g

where b(t+l)= £ ° ft + 1) so b(t) is indepentdent
1(X)6S u,x

of the policy g.

Mow we define R (t,k+1) as the column matrix of the
g

cost matrix when g has been followed by Vc+1 references

during the time from t to t+vt+t. Then of course E (t,0)=0.
g

E Ct,k+1)=Q (t+l)*E ft+1 ,lcHb(t + l)
g g g

The sequence E Ct,0),F: (t,l), E (t,k+t) is non-
g a q

decreasing and bounded above by Z (t) . Moreover C is the
g g

limit given by

-32-

fc = l r=l
If the transition probability of program P is

independent of time t then

C =2 C +b
3 3 3

and (I-Q) must invertabie. Z is the unique solution
3 3

-1
of the above equation which is given by (I-Q) *b. These

1
result are summarized by the following theorem.

Theorem 1: In the rase of time varyinq
transition probabilities, the cost of a policy g is
jiven by the minimal nonnegtive solution of

Z' (t)=0 (t + l)*C (t + l)+b(t + n. This solution is
b$t + l)+g[9. Ct+o)]*b(t + ic + n

g

9.2 How to determine the optimal cost and replacement policy

The most simple way to determine the optimal policy is

to enumerate the cost of all the replacement policies and

find the least one. Rut this is not practical, so now we

present a way for searching for an optimal replacement

policy in the policy space.

Assume the stationary case i.e. the probability

function is independent of time r. Then the cost C =(I-Q)*b
g g

where b is a constant independent of the policy g. For a

specified policy g and the replacement function g(u,S,x) for

-33-

all u, S, and x, the page referenced is l(x). Then the new

nemory will be (S+l (x)-g(u,S,x)"). He see that the policy g

only specifies the page that to be removed from main memory.

If we cnange the policy from a to g' then we change g(u,S,x)

to be g'(u,S,x). So we define another C' =C - C . Thus
g g g

-l
C = CI-Q) *C0 -0)*C
g 3* g g* a

where CI-Q) = Z_ ° >=0
g' k=0 g

Consequently C <=C if and only if C >=0. By the
g' n g

equation above we have to know the value of (0 -0) which
g g'

is matrix which has all zeroes except in the entry position

(u,S), Cx, S + l(x)-g(u,S,x)) and fu,S), (x,S+l(x)-g' (u,S,x)).

If the differences are r and -r then only 0, r, -r appear in

the matrix. Consequently C can be positive only if
a

C (S+l(x)-g'(u,S,x))<=C (S+l(xl-a(u,S,x)). We obtain the
u u

conclusion:

1. C can be positive if at least one decision changes
g

fro;n g(u,S,x) to g'(u,S,x) and we then get the result

C (S+lCx)-g'Cu,S,x))< C (s+i(x)-g(u,S,x))
u u

2. C must be greater than or equal to 0 if each decision
3

change satisfies condition (1).

Mow ie consider the replacement nolicy of choosing the best

.3/,-

page to be removed at any aiven time. Thus there is no

general rule for the replacement policy as we had in the

previous chapter.

tfe introduce the followinn strategy for searching the

optical policy in the policy snace.

1. Pick an initial policy sav g and calculate the cost
0

-1
C =CI-Q) *b. Let n=0 and go to (2).
g 3
o o

2. If MinC CS + l(x)-z)=C (S + i(x)-g (u,S,x)) for all xc-U or
u u n

l(x) in S then this is the case to stop, otherwise we

have to keep on searching for another. Define

g Cu,S,x)=z where Mln Z (S+l(x)-z)=C (S+l(x)-z)
n+1 0 zes x x 0

for all u,and S, go to m.
-1

3. Determine the cost C =fI-Q) *b if C =C
g g g g
n+1 n+1 n+1 n

then stop .

4. If Z <Z then n becomes n+1 and go to 2.
g g
n+l n

This strategy is based on the two rules we had earlier. It

stops when an optimal policy is found, otherwise it iterates

again. This iteration procedure can not repeat a policy

since g is not equal to a for all 0<p<=n . Since there
n n-o

are only finite number of nolicles in the policy space the

-35-

iteration must converge. This represents an efficient

technique in searching through the policy space to get an

optinal policy. But the choice of the initial policy may

influence the speed of converaence. Of course, the choice of

an optinal policy as the initial policy would be the best.

If the case is non-stationary then the time-varying

transition probability will make the process more complex.

9.3 Extension to a larger program

The procedure developed above was for the stationary

case in a program with onlv few states. Now we present

another method for extending to a larger program.

Let G={3 ,G ,....G } he a partition of the program
1 2 L

states space Q of program P. Those G are non-empty and
i

disjoint the union of G Is II , The set of states reachable
i

from G and not in G will be denoted by G' . Then we define
i I 1

the program P to be the nrogram whose set of pages is
i

M =<l(x)lx in G or G' }, and the program state set is the
i i i

union of G and G' , the transition probabilities are are
i I

those of A restricted to G and denoted by A . The states
i 1

G' are absorption states .
i

Let C (1) be the column matrix of the optimal cost of
L

the program P under an optimal policy. If u is in the
L

■36-

intersection of G' and IT then it is an absorption state
L-i t.

of U . Tnen the cost of u ran be assigned from the
L-l

appropriate component of C (11. Hence all of the absorption
L

states in U will be assianed a cost not necessarily zero.
L-1

2 denotes the column matrix of the cost for the program
L-l

P under an optimal poHcv.Th°n this procedure is carried
L-l

out for ? ,P ,... ,P each time on the sets G' of
L-l L-2 1 i

external states G' of G . Thus each P ,P ,...P will be
11 1 2 L

be considered once, with a certain cost and policy

determined for it.

Let's consider the oronram itself. For ueG , g any
i

policy, then the cost function nan be written as:

Z = Z p C (S)
u x 6 G l(x) € S u,x x

i

fcx6G Hxt not in S
i

P [1+C CS + Hx)-g(u,S,x))]
u,x X

+ y P c cs)
x6G' I (x) e S u , x x

i

x 6G' l(x) not in S
i

P Cl+C (S+l(x)-afu,S,x))l
u,x x

-37-

Q is the matrix corresoonding to g n C=0 *C + b. Then we
g q

define 3' and Q" by
i i

CQ') = COl
i,Cu,S),Cu',S') (u,S),Cu*,S*)

if ufiR U'6G
1 i

=n otherwisw

CQ") = CCn
i , (u , S) , (u ', 5 ") (u , S) , (U ' , S ')

If u6G n'e c•
i i

=0 otherwise

Then Q = Q' + Q" ,P' and Q" are 0 unless they
g i=l 1 i i i

correspond to G and G' . Tnen
i i

V fj

Z (S)=2_ CQ' +Q")*C + b
u i=l i i

If 0 represents the optimal policy for P then 0' +0''
1 i

would represent the optimal DO!icy for P with the external
i

n + l
states Z' of G . We let C be the cost for the policy

i i u
1 then it is the (u,S)-th comoonent in the CCn+1) which
n + l

is the cost of P under replacement policy q . After the
i n+l

n'th iteration of the approximation procedure , the sets G'
i

of external states G' of G was assiqned the non-zero value
i i

cost. Let QCn+1) be the matrix for the policy g then
n+l

-38-

C(n + l) = 3(n + n*C(n+l)+b(n+l) whpre b(n+l)=b+n(n+l). D(n+1)

represents the contribution to r(n+l) of the component of

~(n) corresponding to the set of external states G' of G
i i

1 = 1,2,3, L. Define Q' (n + 1) and 0" (n+U in a manner
1 i

similar to Q' and Q" resDeettvely then
i i

C(n+l)=Q'(n + n*C(n + n+b + n(n + l)

where D(n + 1)=Q" (n + n*H(n) D(0)=0.

If QCn+1) represents the optimal policy for P
i

1 = 1,2,3,...,h then Q'(n+1)+0'*(n + 1) would represent the

optimal policy for P with the the set of external states
1

G' of G assigned non-zero absorption state costs. Then
i i

n + 1 n
Z (S+l(x)-g (u,S,x)=Min C (S+l(x)-z)
x n + 1 z£S x

Here hence c(l)>=C(0) b(l)=b+b(n)
-1 -1

C(n+l) = (T-Q'Cn + l)) *b(n+f) , Cfn) = (I-Q ' (n)) *b(n). Assume

o(n)>=bCn-l) and C(n)>=C(n-l). Then b(n)=b+D(n)

b(n + l)=b + D(n + n. By definition nrn+l)>=D(n) if C(n+1)>=C(n).

Hence o(n + l)> = b(nD and C(n + n>=C(n) for all n by induction.

Since C(n) and b(n) are bounded, they must converge as n

lncreass to say C and b and n is also bounded and converse

to say D . Then

b =)-0^

* -1
Let Q' •nininize (I-Q > *b over all the policies 0

39-

which have the same form as £ 3' . If n Is larqe enough
1 = 1 i

-1
then CI-Q') *b(n+l) will be very close to

-1
(I-Q'Cn + D) *b(n+l). We talce the limit of C(n + 1) as n tends

to infinity then

A <N /^ A A ^
C=Q'*C+b where b=b+D

No* 0 = Q"*C for some 0" hence 6=Q'*C+h+Q"*C . Thus

A A A A.
C = (3' + Q")*C + b

Two remarks should be made. First, if the partition of

G has the property that for each i only those G can be
j

reached from G where j>=l, then exactly one iteration is
i

required in operating the approximation procedure to

determine the optimal policy and its cost for the program

P. Second, if for each r; with only one state from U, then
i

the CCn+1) for P only has one term, so it simplifies in
i

solving the cost equation to get CKn+i). However, the larger

G of G is the faster the convergence of the iteration
i

procedure. So we face the two options namely the cmplexity

of the computation and the number of iterations. We

considered these two effects and tried to reduce the total

time consumed in getting the optimal cost and policy.

-ko-

References:

1. Aho, A. V. Denntno, p. j., and Ullman, J. D.

Principles of optimal pagp renl^cement. J. ACM 18, 1 (Jan,

1971), 80-93.

2.Ingargiola, G. Korsh, .7. F. Finding optimal demand

paging algorithms. J. ACM 21, I (Jan 1974) 40-53.

./,!-

VITA

The Author's name is William Wu. He was born Ho-Sun Wu

in Taiwan, Republic of China, in 1952. His father's name

is Tzu-Eseng Wu; his mother's name was Chung-Shu.

Mr. Wu was graduated from the high school of the Nation-

al Normal University in Taiwan in 1970, and was graduated

from Soochew University, Department of Business Mathematics,

in 1975, with a Bachelor of Art degree.

-h2-

	Lehigh University
	Lehigh Preserve
	1-1-1983

	A study of paging algorithms.
	William H. Wu
	Recommended Citation

	tmp.1451580486.pdf.TExFi

