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ABSTRACT 

ANALYSIS OF NEAR-MILLIMETER WAVEGUIDING STRUCTURES 

USING SURFACE MAGNETOPLASMONS 

Together with the advantagious use in integrated circuit 

technology, doped semiconductors show interesting anisotropic 

characteristics under the application of a magnetic biasing field 

when exposed to electromagnetic excitations. Parameters can be 

chosen such that a near-millimeter wave interacts with the 

semiconducting material to exhibit non-reciprocal propagation. Such 

a behavior is considered in the fundamental case of the plane 

interface between dielectric and semiconductor regions to exploit 

the similarity in the field displacement effects of magnetoplasmons 

and edge-guided waves in ferrites (EGW). Subsequently, the curved 

single interface is analysed. The exact dispersion relation is 

derived and approximate expressions are given for the additional to 

the attenuation constant due to curvature effects. The last 

structure considered includes five regions defining two 

semiconducting slabs surrounded by dielectrics. The results of an 

exact analysis of the complex dispersion relation are given to 

provide the basic modal behavior. This is then used in the analysis 

of isolation and phase-shift capabilities. 



TABLE I: 1 1ST OF SYMBOLS 

to = angular frequency (rad/s) 

to =yne2/e m* (plasma frequency, rad/s) 

to = eB /m* (cyclotron frequency, rad/s) 

n = carrier concentration (m ) 

e = electron charge (coulombs) 

m* = electron effective mass..(Kg) 

= 0.067 me (for GaAs) 

m = electron rest mass (Kg) 

B = d.c. magnetizing field (v/eb/m2) 

eo'po = vacuum permittivity and permeability, respectively 

E^
0
' = static dielectric constant of the semiconducting material 

= 12.95 (for GaAs) 

v = 1/x (collision frequency, rad/s) 

T = momentum relaxation time of the semiconducting material 

Y = a + j3 (complex propagation constant) 

a = attenuation constant 

3 = phase constant 

k- = transverse wave number of the i-th region 

e. = relative dielectric constant of the i-th region 

ee(u) = effective relative dielectric constant of the semiconducti 
medium (e (w) =  E2) 

D1'D2'D3 = Wldtns °f tne s^ab regions 

ng 



1. INTRODUCTION 

Increasing need for higher frequency bands in communication 

systems have led to the investigation of the near-millimeter wave 

range. Development of passive and active devices operating between 

K band and optical frequencies is aimed at yielding a very compact 

technology and lurge bandwidths. Thus, interests are in the analysis 

ana design of non-reciprocal components which will perform, at high 

frequencies, the same important role as those already available at 

lower frequencies. 

A promising technique, introduced by Nurmikko and Bolle in 

1930, involves the use of surface waves supported by appropriate 

semiconducting substrates. The interaction of near-millimeter waves 

with the magnetically induced anisotropic properties of solid-state 

plasma leads to interesting non-reciprocal behavior that can be 

exploited in a number of useful devices. 

The investigation of surface magnetoplasraons on high quality 

semiconductors have direct application to the design of isolators, 

phase-shifters, circulators, directional couplers and many other 

devices which will operate in the 100-1000 GHz range [l-5J. 

In this work, the basic structure considered is the interface 

between dielectric and semiconducting half-spaces. The 

unidirectionnal propagation of surface magnetoplasmons along such an 
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interface in a range of frequencies of interest to us, shows a 

similarity with the propagation of edge-guided wave (EGW) which 

occurs at lower frequency on ferrite microstrips L6j- With such a 

feature in mind, we first analyse the influence of several 

parameters on the propagation of surface raagnetoplasmons along a 

flat single interface. Subsequently, the case of a curved interface 

is studied and expressions for bending losses are derived under the 

assumption of large radii and low material loss. Finally, a more 

complex structure is considered which involves two slabs of 

semiconductor surrounded by dielectric material delimiting four 

interfaces. The modal behavior is discussed and some dispersion and 

loss data are computed to provide information about the isolation 

ana phase-shift capabilities. Only marginally acceptable 

characteristics are obtained principally due to material loss. 

The substrate is presumed to be a high quality, moderately 

doped n-type GaAs material, with a carrier concentration of 

n=10 ^cm J which is equivalent to a plasma frequency Wp"10 rad/s. 

At liquid nitrogen temperatures (77 K), mobilities of the order of 

2x10"5cm£vVs which is equivalent to a momentum relaxation time of 

-12 8x10  s can be obtained.  Losses in the semiconductor are modelled 

through this parameter. The momentum relaxation time T, which 

denotes the inverse of the collision frequency V, represents the 

average time between collisions in the impurity scattering process. 

One can neglect both the interaction with lattice vibrations at 
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these low temperatures and the interaction with optical phonons due 

to the fact that our frequency range of interest is much less than 

the optical phonon frequency. Higher mobilities are also considered 

to provide numerical examples which apply to improved materials or 

techniques that ure, however, not yet available. 

For all the geometries considered, a biasing magnetic field is 

applied parallel to the interface(s) and perpendicular to the 

direction of propagation (Voigt configuration). A biasing magnetic 

field of 3B10 Gauss which is equivalent to a cyclotron frequency 

6J =10 rad/s will generally be assumed. It should be pointed out 

that such a value satisfies the condition ki,T>1 , which is required 

for an effective interaction between the semiconductor and the 

electromagnetic fields. 

Under these circumstances and in the range of frequencies 

considered, the interaction is described well by the local theory of 

plasmas (Drude model). In this case the semiconducting material can 

be considered as an anisotropic dielectric medium characterized by a 

permittivity tensor £(w) [2]. For a biasing magnetic field in the y- 

direction, the dielectric tensor takes the following form: 

:(*) 

C  o  -on 

0   c   0 

jn  0   5 

(1.0 



wnere 

M2(M-Jy) (1 

^   C     u[(u-jv)" - Ul£j 

2 
-10 til 

n=____ec  (,.3) 

2 

^ =c(0) -ir^jvy (i.4) 

and Uc  is the cylotron frequency, 
&■ is the plasma frequency 
V is tne collision frequency 
u   is the operating frequency 

See Table I for a complete list of symbols employed. 

1.1 The plane semi-infinite structure 

This case, represented in Figure 1.a, has already been studied 

in [2J anu is restated here for the reader's convenience. 

With no variation in the y-direction and assuming a uniform dc 

magnetic field BQ applied in this direction, the only solution that 

allows for transverse confinement in the vicinity of the interface 

i3 a TH mode: components Hy, Ex, E„. It is assumed a propagation 

factor exp(jkit - yz) where jf = <*> + j/? is the propagation constant, 

solution of the dispersion relation (1.15). The electromagnetic 

fields distribution is then a3 follows. 



-in   the  dielectric   region   (#1): 

Hy1   =  A  ek1x (1.5) 

1 
Ex1   =       A  ek1x (1.6) 

k1 
Ez1   =    A  ek1x (1.7) 

Jw<ro£1 

-in  the semiconducting  region  (#2): 

Hy2 - A e~k2x (1.8) 

1 H 

Ex2 =    (   JT -  jk2-i)  A e"k2x (1.9) 
Jw*0

ee ? 

Ez2  =      (   k2  +   JJ-1)   A  e"k2x (1.10) 
jwe0ee       * 

where A is an arbitrary constant proportional to the square root of 

the power carried by the field (5-20) and is the effective 

dielectric constant of the medium, given by: 

e>) =~—=   ^   '   L-J2 TTT-^  (1.11) 

The transverse decay factor satiafy: 

kf - -J2 - kg'fi, (1.12) 

4 " "^ " ko*e (1-13) 

ko = u%*0 (1-14) 

Hatching  the boundary  conditions  at  the interface gives  the 



following dispersion relation: 

— -      —      ^'7 

1      c    e * 
(1.15) 

1.2 The edge guided waves 

Within the frequency range (w^ <0<U^ [l] and Fig.l.b) only the 

forward mode, called the S mode, may propagate. The fields 

distribution shows exponential decay on both sides of the interface 

with exponential decay factor k^ (region i). Thus it is readily seen 

that less than 1$ of the amplitude of the fields remains beyond a 

distance greater than 5/1^ away from the interface into region 

i. Therefore, at any frequency between CJ^ and CJg, the coupling 

between the two interfaces may be neglected if we consider a 

semiconducting slab wide enough (width w>5/ki). Such slab forms a 

waveguiae in which the fields cling to one interface in the forward 

direction of propagation and to the opposite for the reverse 

direction. This field displacement effect is quite similar to the 

one observed in the edge guided mode on ferrite microstrip3 1.6]. 

Therefore, all the various structures envisaged for ferrite loaded 

devices such as circulators, isolators and phase-shifters using such 

modes can be transposed to the near-millimeter wave range. The 

conditions for such a transfer of device capabilities are that 

acceptable insertion loss must be obtained while attaining the 

required plasma concentration in the semiconducting material and for 



structures of finite dimensions. 

In this study we consider only the serai-infinite structure (no 

variation in the y-direction) and we refer to the H-guide described 

in [4] as an exuraple of a more realistic geometry. Note that if 

contact injection is to be used for the the creation of the plasma 

concentration (see section 2.3 and [_Vj), the metal plates readily 

provide the necessary electrodes. 



2. Influence of the parameters on the propagation 

In the following we discuss the effects of: 

- the dielectric loading (6^), 

- the  cyclotron  frequency,  proportional  to  the biasing 
magnetic field, 

- the plasma frequency, related to the plasma concentration, 

- and the collision frequency, 

on the following propagation characteristics: 

- attenuation constant (c<), 

- the exponential decay factors k^ and k2, 

- and the useful bandwidth. 

These parameters are of primary importance in our study since 

we seek devices that have low attenuation loss over large 

bandwidths. Furthermore, in our aim of designing non-reciprocal 

devices using the properties of dielectric-semiconducor interfaces, 

the transverse decay constants d^=l/Ke[k^] in the regions i (i=1,2) 

are important factors. Indeed, as explained in the introduction 

(1.2,), the amplitude of the fields has decreased by more than 99$ 

beyond 5d^ from the interface. Therefore the analysis for the plane 

single interface is still valid if another interface is placed at 

such a distance to form a slab waveguide or if the structure is 

curved by a radius of at least this order of magnitude. Section 3-3 

gives more detail on this last point. 
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By defintion of U>^ (Figure 1 .b and [l]), the effective 

permittivity eg is nul whon evaluated at this frequency. Thus, the 

dispersion relation (1.15) gives k2 = -j}( • Therefore the transverse 

decay constant d2 in the semiconducing region is seen to attain the 

value \lp at urQ ' and to asymptotically reach infinity at k>g since 

k2(W^) =* 0 (Figure 1.b and [l]). Assuming a semiconducting slab with 

width w, each interface may be considered separately, i.e., with 

negligable coupling, for all frequency below k^x such that 

5d2(wmax)<w. In this chapter, only slabs wide enough such that 

interface coupling can be ignore will be assumed. 

2.1 Dielectric loading 

To obtain meaningful insight into the effects of the dielectric 

loading (value of y ) the following parameters are plotted in Figure 

5. 

- dj : the transverse decay constant equal to the inverse of 
the exponential decay factor Re[k^] computed at CJ^ (Fig. 
1.b). This frequency has been chosen since above it dj 
decreases, and only the forward mode propagates, as 
desired. 

- t<(CJ]) : the attenuation constant computed at the same 
frequency as the one considered above. This factor 
strongly depends on the momentum relaxation time . Two 
cases (7-8x10 s and 10 °s) have been considered giving 
an insight into the effects of available and improved 
material characteristics. In the case of T"10" a, a plot 
is also given for the attenuation constant evaluated at 
the upper frequency defined below. This provides the 
maximum value of the attenuation constant over the 
frequency range considered. 

- BW : the useful bandwidth is defined in the lossless case 
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by Kin(«Jg,w2)-w1 (L2], Fig.l.b). In the los3y case, BW is 
defined by w -w, where the upper frequency u is defined 
so that the insertion loss over a length equal of d1 is 
constant. This definition is most meaningful when curved 
structures are considered. Indeed, in this case the 
dimension of the device is proportional to the radius and 
thus to d1 . Therefore the insertion loss in such a 
device, operating at the frequency , will be proportional 
to A{u)'d](U]). To obtain comparable results the insertion 
loss should remain constant. This constant, once chosen, 
allows computation of the upper operating frequency. In 
Figure 4, the constant is arbitrarily chosen to be equal 
to the value of the insertion loss defined in this way, at 
(A ''for €i=1» This gives a value corresponding to an 
insertion loss of 3-9 db (? =8x10"12s) or .35 dB 
(7 =1O0x1O"12) over a length equal to 5d, (1.7 mm). 

As the dielectric loading increases, the energy on the dielectric 

side clings more to the interface as it is expelled from the 

dielectric medium.   Thus,  the transverse decay factor in the 

dielectric decreases and then, since more energy has to travel 

inside the semiconductor,  the  lossy material,  the attenuation 

constant increases. Therefore a trade-off situation arises. The 

optimum dielectric loading with respect to these two factors (d^ and 

c<) can be found from the plot (Fig.5) of the product of these two 

parameters. However, the useful bandwidth has to be taken into 

account. Figure 3 shows that a relative permittivity of at least 4 

is required to obtain interesting bandwidth characteristics. Since 

this value is near the optimum previously obtained and since the 

bandwidth requirement ia to be emphasized, it follows that for the 

case considered, the optimum loading which minimizes the insertion 

loss for a structure of length proportional to d^  and which 

maximizes the useful bandwidth is obtained for a dielectric of 

12 



relative permittivity equal to 4- 

2.2 Cyclotron frequency 

The cyclotron frequency CJC    is directly proportional to the 

amplitude of the biasing magnetic field through the relation (1.6). 

1 ? 
As a typical example a cylotron frequency of 10 rad/s corresponds 

to biasing magnetic field of approximately 3810 GBUBS. 

The effect of the cyclotron frequency is studied by plotting 

(Fig.4): 

- The transverse decay factor d^ computed at the frequency 

- The attenuation constant c< at this frequency. 

- The useful bandwidth defined as in section 2.1. It is to 
be noted that the arbitrary constant has been chosen to be 
equal to 3 dB for r=8x10~1?s. 

As the cyclotron frequency, i.e., the biasing field, increases, it 

is observed (Figure 2.) that the effective permittivity increases 

quasi linearly, at least for some range of value.  Therefore, as BQ 

increases more energy is expelled from the semiconductor into the 

dielectric region, thus the wave experiences lower loss and a higher 

value for the decay factor in the dielectric.  However the trade-off 

situation obtained in the previous section does not appear here due 

to the sharp decrease in the attenuation constant. Indeed the 

product of these two factors, giving the insertion loss on a device 

of  length  dj ,  decreases  over  the  whole  range  of cyclotron 
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frequencies considered.  In Figure 4. it is seen that to obtain a 

low attenuation constant the ratio ^/Wp should be above 1/2. 

However, this is correct only for the attenuation constant computed 

at ^1 . In Figure 5, the attenuation characteristic is plotted with 

the cyclotron frequency as a parameter. It is then observed that a 

ratio UC/CJ     above .15 does not improve the loss figure further. 

Moreover, the useful bandwidth decreases above some value of CJ„/kL. 
i, p 

Finally, to ensure a realistic value of the biasing magnetic field 

when the expected value of the plasma frequency is CJ = lO1-^ rad/s, 

a ratio of 1/10 is chosen. This give a cyclotron frequency of CJC = 

1012rad/s (Bo=3810 Gauss). 

2.3 Plasma and collision frequency 

These parameters are generally determined by the semiconducting 

material considered. Here the effects of the plasma and collision 

frequencies are analysed to illustrate the desired characteristics 

of the semiconductor. 

We rewrite the dielectric tensor elements (1.2) and (1.3) as: 

s-(0)+n —U) ' (2-1) 

 K = =~ (2.2) 
Ul/0>p    [(«0-jV)     /0)p    -    Wc/Wp] 
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It is readily seen that only the ratios k)c/
Wp> w/wpt ^/^p ure 

involved. The choice of the plasma frequency is thus determined by 

the frequency range of interest and the available biasing magnetic 

field. To decrease the effect of material loss, a low ratio V/6J is 

desired. Since the plasma frequency is proportional to the square 

root of the carrier concentration n and the collision frequency is 

inversely proportional to the mobility p., the requirement for low 

loss is a high concentration n of carriers of high mobility^. In a 

semiconductor, a large plasma concentration produced by doping means 

the introduction of impurities, thus increasing the plasma frequency 

also increases the collision frequency. Improved characteristics, 

compared to the one considered in this study, will be obtained if 

higher quality material can be produced or if more promising means 

for inducing plasmas than doping can be used in the present context 

of this study. Examples are contact injection, impact ionization, 

laser illumination. Further work in this direction is also 

suggested in section 4.3. 

To give some insight into the dramatic improvement obtained 

from a higher collision frequency, the attenuation constants d(CJ^) 

computed for r=8x10"12s (V=. 125x1012rad/s) and ?=10"10s 

(D=10' rad/a) are plotted in Figure 3 (closely dotted lines). 
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2.4 Choice of the parameters 

Generally, loss increases with the dielectric loading and 

decreases with increasing either the biasing field or the plasma 

frequency. The transverse decay factor in the dielectric region 

displays the opposite behavior, this is readily understood since 

loss occurs in the semiconducting material. The trade-off situation 

thus arising leads to slighlty different choices depending upon the 

particular applications and the required bandwidth. 

Throughout the analysis of the five-region canonical structure 

the chosen parameters will then be the same as described in the 

introduction and the central dielectric will be chosen to have a 

permittivity four times that of vacuum. 

Before studying such a structure, the aptitude of surface 

magetoplasmons in handling curvature is investigated. The curvature 

effects are of primary importance since curved structures are basic 

to EGW devices. 

16 



3- THE CURVED STRUCTURE 

The effects of curvature on the propagation of surface waves 

along the interface between a dielectric medium and a semiconductor 

are investigated. Two possible geometries are represented in Figure 

6.a and b, showing the cases where the center of curvature lies 

outside and . inside the semiconducting region, respectively. 

Following the analysis given for the plane interface (1.1), we 

derive the dispersion relation for each structure. Due to the 

computational complexity of the analysis which involves Besael 

functions, no attempt has been made here to obtain exact solutions. 

However, when large radii are considered, the propagation constants 

can be derived from those computed for the case of a plane 

interface. Furthermore, considering low material loss, the 

additional radiation loss introduced by the curvature can be 

obtained in a closed form following Marcuse's analysis j_ 10J- The 

major assumption in this analysis is to consider a large radius R 

such that the field near the bent waveguide can be approximated by 

the field of the plane structure. Other methods include: 

- the one presented by Marcatilli [ll] which uses asymptotic 
formulae for Bessel functions to give an approximate form 
for the dispersion relation. This is then solved using the 
first terms of series expansions in 1/R. 

- the perturbation method employed by Lewin [12]. His 
concern with circular waveguide did not allow the use of 
Marcuse's method due to the lack of any known solution of 
the wave equation in toroidal coordinates. 

- the  numerical method  reported  by Dang in a private 
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communication [ref.4 in [l2j]. The case considered was a 
bent dielectric slab and Lewin pointed out that "since the 
propagation constant involves only a small imaginary part, 
very high accuracy in the computations is necessary for 
calculating the attenuation accurately". 

The method presented by Marcuse has the advantage of simplicity 

while at the same time giving results which are in good agreement 

with those of Harcatilli. The disadvantage is the indeterminance of 

the range of validity of the formulae so derived. However the method 

is well suited for providing a first approximation of losses due to 

curvature. 

3.1 Theory 

In this section the field expression and the dispersion 

relations for the curved single interface are developed. The 

geometries considered are represented in Figures 6.a and b. These 

structures are assumed to be infinite in the y-direction. Note that 

the x and z coordinates are retained in the figures to indicates 

their correspondence to the cylindrical coordinates r and <f) when R 

tends to infinity or R>>x. The TM modes interact with the 

anisotropic properties of the semiconductor polarized in the y- 

direction. These modes have three components: H , E^, Er. The 

electric field components can be expressed as functions of the 

transverse magnetic field through Maxwell's equations. Assuming a 

propagation factor expL j(&Jt-v/>)], the wave equation in cylindrical 

coordinates becomes the well-known Bessel equation: 
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_ ^2HV    <)HV 
u2 —^ + u—i  + ( u2 - v2 ) Hv - 0 (3.1) 

<)u2     iu y 

where in the dielectric region: 

u2 = uf = k2e,r2 (3.2) 

or in  the semiconductor: 

u2 = u| - k2£e(w)r2 (3-3) 

Material loss in the semiconductor yields a complex effective 

permittivity written as: 

6e(w) = 6g(w) -j€g(W) (3.4) 

In this case u., Up and v are also complex and will be written as: 

ui = ui  + jui  ; i=1,2 (3-5) 

v = v' - jv" = /SVR = /SCR -  jo(cR (3-6) 

The general solution to the above equation (3«1) is a linear 

combination of Bessel functions of complex order v and complex 

argument u^. The boundary conditions require bounded fields at the 

origin and at infinity. Considering the lossless case to simplify 

the initial analysis, the transverse magnetic field is found [13-15J 

to be respectively proportional to a Bessel function of the first 

kind and a Hankel function of the second kind. Using the following 

notation relating to the geometry of Figure 6.a, 

Fv(u,) « Jv(u,) 

F„(u9) = H<2>(u5) 
(3.7) 
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and for the geometry of Figure 6.b, 

Fv(u,) =HJ2)(U1) 
(5.8) 

Fv(u2) = Jv(u2) 

and using the prime ' to denote the derivative with respect to the 

argument u^, we obtain the following expressions for the fields 

valid in both geometries. 

In the dielectric region: 

H y1   = C  FV(U1) (3.9) 

1 JH  , C        U1     , 
20!= — = FV(U1) (3-10) 

jOJ60^     cir        jwfi0£1   r 

1 1   JHy1 C jv 
Erl   = — = Fv(ui) (3.11) 

jue0£)   v    30 jw£0£,   r 

and in the semiconducting region, 

Hy2 = B Fv(u2) (3.12) 

1 3Hy h   <)HV 
E02 =     C —  +  J1 -~  ] 

jw<= 6.      ir g o e r 

[ — Fv(u2)   + - Fv(u2)] (3.13) 
jW606e      r fr 

-1 1   3Hy n    3Hy 

Er2 =   [ i   -j i ] = 
jwe0£e      r 30 Ijr 3r   . 
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B      v         IJU2  , 
  L 0-Fv(u2) + j Fv(u2)] (3.14) 

wnere 

u, = k0/e7r (3.15) 

u2 -    *oFer      if ee>0 C3.16) 

u2 " ~koKr if 4<0 

This sign change is needed to ensure a finite field at infinity in 

the semiconductor. Another point of view could have been used when 

the real part of the effective permittivity is negative. We could 

then have considered the resulting Bessel equation as a modified 

Bessel equation whose solutions are written in terms of the modified 

Bessel functions. Such an approach would have lead to expression 

equivalent to (3.12)-(3«16) due to the relation between regular and 

modified Bessel functions [13.14]. 

It  is  found  convenient  to  introduce  the  two  positive 

quantities: 

»H = /JO/— -±~ (3.17) 

*e ,    , 
nz = — (3.18) 

nR 

and also the effective index of refraction n such that: 
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if   £e>0 

if   £e<0 (3.19) 

n -  /fce = nH -  j nx 

n = ~fh = nI " J nK 

Applying continuity of the tangential field components at the 

interface (r=R) gives the relotion between the amplitudes B and C 

and the dispersion relation: 

C Fv(u,) - B Fv(u2) (3.20) 

u, Fv(u1)/Fy(u1)   u2 Fv(u2)/Fy(u2) r\ ■ v 

5-.«o 
(3-21) 

with 

»1 = ko/g1 R (3-22) 

and 

u2 = kQ n R (3-23) 

It is interesting to compare this dispersion relationship to the 

corresponding equation for the plane interface (1.15). It follows 

(see Appendix A.1): 

lim [v/R] = lira [/3C] -j lira [e<e] = -j/ = fi -  j rt 
R->°°        R->«>        R->oo 

r
ui F>i>/FvK>   / ^ " /' 

lim I  = < 

f<^ 
L 

k2 - /-^e 

;i"l 

;i-2 

(3.24) 

(3.25) 
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5.1.1 Radius of curvature 

In the case of the plane interface, the fields amplitude decays 

exponentially away from the interface with a constant decay factor 

J^ in the region i=1,2. Less than \%  of the field amplitude remains 

beyond a distance di=5/ReLki] from the interface.  Therefore if the 

radius of curvature R is greater than d^,    the effect of bending 

should be negligible. However, this iB not the only condition. To 

neglect the effect of curvature, the radius must also be large 

enough so  that  the bend is negligible compared to the guide 

wavelength.  It is assumed that over a distance of one guide 

wavelength,  the curvature can be neglected if it introduces a 

deviation of less than 1/> compared to the straight direction. This 

is illustrated by the following figure. 

Xg/lOO 

<R+ g/lOO)
2 a R2 + \2     .  R = 5Q.^ 

Therefore the curvature effect may be neglected within approximately 

\%  error if the radius R satisfies the condition: 

R > Hax[ 5/Be[kA] ; 5Q\    ] (3.26) 

At this point it is interesting to evaluate the order of 

magnitude involved in the above relations (3-21) and (3.26). For 
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this purpose we consider the following example: 

CJp  ■ 1015 rad/s  ;  £(o) = 13 

tic  = 10
12 rad/s 

W = 2.2 1012 rad/s  =  350 GHz 

Therefore f => -13.04, 1= -11.84, £g= -2.29 <0 calculated here in the 

lossless case. For the plane interface case with j=1, we compute 

for the S mode in the forward direction (section 1.1): 

5/ReLk, j =■ 1 .77 mm 
5/Rei.k2J = .37 mm 
50 X0        = 40  ram 

mm and k0/?7 R = 15 R=2mm ;  =300 R=40 

k0/|^e|R = 22 R=2mni ; =440 R=40mm 

R = 16 R=2mm ; =320 R=40mra 

In the latter case (R=40mm) the asymptotic approximation for Bessel 

functions of large order and argument can be used to calculate the 

term involved in the dispersion relation (3.21). In this case, it 

can be shown (A.1.2) that the dispersion relation reduces to the one 

obtained for the flat interface case. As an example, the following 

relations are obtained in the case of Figure 6.a (5.18): 

    = k)       =       2822 
R Jv(u,) 

u2 H(
2
)'(U2) 

 TT;  = k2  = -13623 
R H<2> (u2) 

For the sake of simplicity the numerical value are given for the' 
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lossless case. 

In the case of a small radius (e.g. H=2mm), the computation of 

Bessel functions using the subroutine COMBES [16] gives: 

    = k,  =  3654 

u2 HJ
2
)'(U2) 

 —  = k2  a _11426 
R H<2> (U2) 

This example shows that in the case of a radius larger than d^^ but 

smaller than fifty times the guide wavelength, the curvature is non- 

negligible. Further work is needed if an exact propagation constant 

v is desired. In the following we will consider large radii such 

that the propagation constant v is related to the one computed for 

the flat interface through the relation (5.24): v = /9.R - jc(R. 

The attenuation constant (c<) arises from the material loss and has 

to be increased by an additional term to account for the effects of 

curvature.  This term is derived in the following section. 

3.2 Bending loss 

An approximate expression is derived for the attenuation 

constant <*rc. This gives the additional power loss due to curvature. 

The case of Figure 6.b is considered fir3t for the lossless case. 

The analysis presented by Marcuse [lO] is outlined. Then we consider 

the lossy case and finally formulae for the case of Figure 6.a are 
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given. This anulysis has the main advantage that it shows clearly 

how radiation loss due to curvature arises. Indeed the field 

distribution, proportional to a Hankel function, is approximated by 

an asymtotic expression in which the radiation term is readily 

identified. Then the Poynting vector component due to such radiation 

is evaluated. Finally the power loss is calculated. It is pointed 

out that such calculation gives an expression for power loss due to 

the effects of curvature only. This term exists in both the lossless 

and lossy case. When the lossy case is considered, attenuation due 

to material loss is also to be 'taken into account. Therefore the 

total attenuation constant is given by a summation of the two 

contributions: 

«tot = d  + °<rc C-5'27) 

3.2.1 Radiation in dielectrics: lossless case 

The geometry considered is given in Figure 6.b. The field 

distribution can be represented by the transverse magnetic field H 

(section 3.1): 

Hy1 " Hv^Xo/V) 

Which is approximated in the case of large radii R as follows 

[13,14]: 

expL /SR(arctanh m - ra)] (3.28) 
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where      m 1   - ad —^ and 
ko/*1 

fi 

(3.29) 

+ C0 
F(r/R)= arctanh m   -   m 

Real 

Imaginary 

- jco 1 Interface 

Figure 7 Exponent of (3.28) 

This graph shows how the distribution of the fields (3.28) changes 

from a surface wave (5«14) at the interface (r=R) to an outward 

travelling wave (3-30) at the infinity (r approaching infinity) as 

the exponential factor /9-R-F(r/R) changes from real to imaginary 

values. Indeed as the ratio r/R is less than 1/a (3.29), the factor 

in the exponent of (3.28) is real and positive and its slope with 

respect to r is real and negative.  This means that a certain value 

of r/R < 1/a, the first order expansion at this point shows that the 

amplitude of the fields decreases exponentially. As an example, near 

the interface (rsR ; r=R+x, x<<R), the expression for the transverse 

magnetic field can be approximated by (5.14) in which the term 

expL-kjxj demonstrates the exponential decreasing behavior of the 

field distribution. It is to be pointed out that such distribution 
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is the same as for the plane case C1 - 5) - 

Above 1/a, the exponent of (3-28) becomes imaginary and for 

large value of r/R, H ^ becomes: 

l~\        ' !-jk0/e7r + j(v-l/2)TT/2} 
Hv1 = C / —- e (3.30) 

This expression demonstrates that radiation occurs in the dielectric 

region. Ve observe that (3-30) represents an outward travelling wave 

propagating in the positive r-direction in a medium of relative 

permittivity £y . The r-component of the Poynting vector is expressed 

using (3.30) and (3.10): 

# 
S     =  ReL-1/2  E0,Hy1J 

1     Z°   , 
**   =71? lHyi 

1 z0        c2 
ar =--=|Hv1|

2 =   (3.51) 

*S 2ue0€^T 

This expression represents the radial power flow at any angle (6. 

Each length element along the waveguide contributes an amount of 

radiated power proportional to the power carried by the mode, i.e., 

the ratio of the Poynting vector Sr to the power carried by the mode 

P is a constant with respect to 0. The value of this constant taken 

at the interface (rcfi) gives the power loss 2£<rc per unit length of 

waveguide. 

Sr(R) 
2«rc  -   (3-32) 
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Substitution of (3.31) and (A.25) into (3.32) yields: 

2(<rc  = -1 [ J—  + -£- - 1- j"1  e (3.33) 
C1   C1k1   Cek2 I   'e 

with U, (A.15), a positive value which increases monotonically with 

frequency: 

k1 ?  p  p 
U1 = 2/3arctanh — - 2k,    ; kf^-k^f, 

For constant radius, the power loss decreases as the frequency 

increases. Such behavior is to be expected since in this case the 

guide wavelength decreases, thus reducing the effect of curvature. 

It is also to be pointed out that if the dielectric permittivity 

increases, U, increases and so the power loss due to the curvature 

decreases, since the higher the dieletric constant, the more energy 

clings to the dielectric side of the interface and so the les3 

radiation due to the curvature is likely to occur in the dielectric 

region. 

3.2.2 Radiation in dielectric: lossy case 

If material loss in the semiconductor is taken into account, 

the propagation constant v becomes complex (3.6). Since low loss is 

considered, only the factor in the exponent has to changed. The 

modified expression (3»31) of the r-component of the Poynting vector 

is: 
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C2 KTTR     -2dz 
Sr    =        e       e 13.54) 

2«f0£,r 

and   the power I03S  aue  to  curvature  effect  equals: 

21k,!     fi /a n       .      {-(HeCuJ-^R) (3-35) 
2*rc      =  [ r 

+ -r-r rl"1   e 
€1      *1k1        £ek2       ^e 

where only the real part of each parameters in the factor in front 

of the exponential need to be taken for the low loss case. This 

approximate formula shows how the material loss affects the bending 

loss, which not surprisingly increases as the attenuation constant 

of the corresponding plane structure increases. 

3-2.3 Radiation in the semiconductor region 

Two cases arise depending upon the sign of the real part of the 

effective permittivity. For the positive value, the case is much the 

same as the previous analysis, with .however, some additional 

complexity due to the introduction of an imaginary part of the 

effective permittivity. The power loss is derived as before and 

using (5«36) takes the following approximate form: 

21 k21     /3 fi if -(Re[u2]-o(7r+2k0nI)R (3-36) 
2°<rc = —-[7-7 + -r-r - —d"1   fc * 

Kl ^1*1   (ek2     f€c e 
where 

- ee > 0 

- U2 given by (A.15) can be rewritten: 
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1 +k2//3 

U2 =/9 1n|abs[   ] | - 2k2 
1 +k2//? 

If the real part of the effective permittivity i3 
positive, i.e., for the frequency range between co^ ' and 
U^, U2 is also positive and decreases from infinity (in 
the lossless case) to zero as the frequency increases 
within this range. Therefore, R being constant, the power 
loss increases with frequency. This behavior is explained 
by the fact that the exponential factor in the 
semiconductor k2 decreases with frequency, thus decreasing 
the energy on the semiconductor side of the interface. 

and where the amplitude factor fc in (5.36) is a measure 
of o(rc and is given by: 

^ = **l  /|fe|/£e 3 

Figure 8 Factor fc 

It is interesting to note that for low loss, fQ tends to unity 

for positive values of the real part of the effective permittivity 

and thus does not alter the expression (3.36) dramatically. However, 

the exponent, when compared to the one in (3-35), has changed by a 

factor 2kQnjR where n^ is given by (3^1B) and is proportional to the 

imuginary part of the effective permittivity. This factor 

conterbalances to some degree the effect of the attenuation constant 
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[<&).   This is intuitively correct since the radiution is absorbed by 

the lossy medium in which it occurs. 

For negative values of the real part of the effective 

permittivity, the use of (5.37) in the previous analysis gives the 

following expression for the power loss: 

2|k2|  /?    p           9       -(Re[u2]-cdr+2k0nR)R    (3-37) 
2d,      =  [   + -r-r r]" -f-'e 

i 

where € < 0. e 

In comparison with the previous case (3«36). this expression 

differs only by the change from nj to nR. Indeed in this case, 

radiation due to curvature effects occurs only due to material loss 

as can be seen from the radiation term exp[-jkQnjr] of the field 

distribution (5-32). It is in accordance with the expectation that 

the power loss in such a case increase with higher material loss as 

is shown by the behavior of the factor fc< It is pointed out that 

the term kQnp=K /|fe | in the exponent is somewhat compensated for by 

the term k2= //3 + k2) j£e | in Re[u2J. Also it can be seen that large 

negative values of Ce decrease, as expected, the power loss due to 

the factor fc. In most cases the power loss given by (3.37) if found 

to be negligible. However, further work is needed to obtain a 

correct expression when the effective permittivity tends to zero. 
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3.2.4 Numerical examples 

Let ua consider a typical example: 

£,=4; e(o^ = 13; Wp=10
15 rad/s; 6JQ=10

12 rud/s 

Then at £J=2.4x1012 rad/s ( = 328 Ghz) 

* =47 Np/m = .4 dB/mm     if 7 = 10~10 s 

/9 =19813 rad/m 50A =16 mm 

mm 

k1=11671 -j80 m~1     5/Re[k1J=.43 

k2=17106 +J95 m"
1     5/Re[k2]=.29 

Radiation into dielectric (Figure 6.b): 

In the lossless case: 

^rc" 625y e"5454 R = .054 dB/mm (R=2mm) 

and in the lossy case: 

<<rc= 6259 e"
5506 R = .073 db/mra (R=2mra) 

Radiation into semiconductor (Figure 6.a) : €e=1.56 > 0 

In the lossless case: 

e(rc= 23528 e"17558 R =  1.11x10~15 dB/mm  (R=2mm) 

and in the lossy case: 

rtrc= 23505  e"17410 R =  1.51x10~15 dB/mm  (R=2ram) 

At 0)=2.2x1012  rad/s  (= 350 Ghz) 

*=24 Np/m -   .21   dB/mm if r=10~10 s 

/?»1b965 rad/m 50A„=18.5 mm 
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-1 k,= 8510 -j4y m_1 S/ReLkjJ-.W mm 

k2=20287 +j8y m"
1      5/Re[k2J=.25 mm 

Hadiation into semiconductor (Figure 6.a) : £e=-2.30 < 0 

c<rc= U in the lossless case 

c(rc= 335 e"°
U4  R  negligible in the lossy case 

at 6J=\ .5x1012 rad/s (5 239 Ghz) 

*=4.3 Np/m = .037 dB/mm   if r = 10"10 s 

/3= 10455 rad/m 50^ =30 mm 

k,= 3028 -j15 m-1     5/Re[k1]=1.7 mm 

k2=26903 +J104 m"
1    5/Re[k2]=.18 mm 

Radiation into dielectric (Figure 6.b): 

In the lossless case: 

«<rc= 860 e"
178 R = 5.2 dB/mm (R=2mm) 

In the lossy case: 

c^c= 660 e"
165 R = 5.4 db/mra (R=2mm) lossy) 

or = .053 db/mm (R=30mm) 

Radiation into semiconductor (Figure 6.a) : €e=-24.5 < 0 

\c-0 in the lossless case 

tfj.j,3 32 e-4-^0-'" "  negligible in the lossy case 

These numerical examples show that bending loss in the semiconductor 

is negligible in the case of Figure 6.a and in the frequency range 

for which the effective permittivity is negative. Indeed, for these 
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frequencies the exponential decay factor 1<2 in the semiconducting 

region is larger than the one in the dielectric region and thus the 

energy clings more tightly to the interface on the semiconductor 

side, thus being only weakly affected by the curvature. Bending 

loss in the case of Figure 6.b, i.e., radiation into the dielectric 

region due to curvature effects, could be non-negligible. A more 

accurate analysis should be undertaken if small radii are 

considered. However, for most cases power loss due to curvature 

effects can be neglected in the case of Figure 6.a and also in the 

case of Figure 6.b provided that large radii (R>50A_) are used here. 

3.3 Range of validity 

Difficulty arises when limits of validity have to be given for 

the relations developed. The three following criteria, ordered from 

the less to the most restrictive, have been encountered: 

- R > 5/Re[k^J ; this essentialy allows us to ignore the 
effect of curvature on the transverse fields since their 
amplitudes decrease by more than 39% in the transverse 
direction for r=R and if the analysis for the straight 
guide still holds. 

- R >> Rm^n (5.38) j this mathematical criteria is derived 
in appendix (I.4). It establishes the condition which 
allows the use of asymptotic expansions for the Bessel 
functions involved in the analysis. It leads to more 
severe conditions in the case of Figure 6.b. A more 
detailed analysis is needed for the special cases of nul 
or complex effective permittivities. 

- R > 50Ag ; this criteria ensures that the curved structure 
may be approximated by the corresponding plane case, i.e. 
v=/3R. 
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The given bending loss formulae hold for low material loss and large 

radii which satisfy these criteria. In this case and for the 

structure of Figure 6.b, the additional loss due to curvature has to 

be taken into account if the last condition is not respected. 

However, it can be neglected in the case of Figure 6.a or even in 

the case of Figure 6.b, provided that the third criterion is 

respected. 

To conclude it is pointed out that interesting devices such as 

circulators, isolators, phase-shifters using edge wave-like surface 

magnetoplasraons should preferably be based on the structure 

represented in Figure 6.a where the curvature does not introduce 

excessive loss. Further work is needed to solve the dispersion 

relation more accurately and to allow extending such conclusions to 

the more general cases. 
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4. THE FIVE-REGION CANONICAL STRUCTURE 

In this chapter a canonical structure of five regions including 

two slabs of semiconductors as shown in Figure 9.b is explored. The 

aim of this study is to provide the basic understanding of the modal 

behavior of such structures. This is the first step toward the study 

of devices such as isolators, phase-shifters, modulators, 

directional couplers. In the numerical analysis performed here, the 

case of opposed biasing fields in each slab is considered 

(BQ.= -BQ2)- The chosen field amplitude corresponds to a cyclotron 

frequency ^c=10
12rad/s (BQ=3810 Gauss). 

If the gap D2 between the two semiconducting slabs is allowed 

to increase to infinity, it is seen that the dispersion 

cnaracteristics must correspond to the case of the single 

semiconducting slab between dielectric material of the same 

(symmetrically loaded) or different permittivity (asymmetrically 

loaded, Figure 9-a). Considering a single slab of GaAs, the 

propagating waves exhibit a field displacement effect when exposed 

to a uniform d.c. magnetic field [1,2]. In addition, we observe non- 

reciprocal propagation characteristics for semiconducting slabs 

asymmetrically loaded. Thi3 is because, within the range of 

interest, the effective permittivity of the semiconductor becomes 

negative in two separate frequency intervals, i.e., for 0 < W < U\'' 

and (J00< 0) <U£f',  as seen in Figure 3 and further discussed in [1]. . 
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To remain in the lower frequency range, only the first interval is 

analysed. Thus, for a magnetized GaAs slab, only branches A and S 

(figure 10.a) are taken into account. 

The theoretical analysis of the five-region canonical structure 

is briefly given in section 4.1 and follows closely the one given in 

[2], which can be considered as a particular case, i.e., no biasing 

field in the second seraiconducing slab (region tiA). 

In section 4.2 the first results of this analysis are 

presented. Typical dispersion and loss diagrams are presented 

(Figures 11.,12.) and discussed. 

4.1 Theory 

The geometry to be analysed is shown in Figure 9-b. It is 

assumed to be infinite in the y-direction. Regions 1 and 5 extend to 

x_> _oo and x-> <XJ respectively. Regions 2 and 4 are the 

semiconducting slabs while region 1 ,3 and 5 are pure dielectric of 

any desired permittivity. The electromagnetic fields propagate in 

the z-direction. 

For a uniform d.c. magnetizing field, the semiconductor is 

characterized by a permittivity tensors which takes the form given 

in the introduction (1.1). A subindex iB added to indicate the 

region concerned.  Only TM modes are considered here since fields 
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corresponding to TE modes do not exhibit interesting interactions 

with the semiconducting material. For an infinite structure in the 

y-direction only three field components results: H„, Ev and E„. The 

analysis is restricted to the bounded mode of the structure, i.e. 

those for which the field decays exponentially in the transverse 

direction, away from the guiding structure. For each region, the 

field component satisfies the wave equation obtained from Maxwell's 

equation. The solution for the transverse magnetic field H„ is 

obtained and the electric field components are then derived for each 

region to give: 

-regions i = 1, i,  5: 

k,(x-x,)    -k-(x-x-) 
H . = Aie 

1   1 + B^ 1   n (4.1) 

k,(x-x,) -k.{x-x.) 
Exi=3^i7[Aie +Bie ] (4.2) 

k, k.(x-x.) -k,(x-x.) 
E71- =T—— [A,e 1        i    - B.e    1        1 J 

-regions  i = 2,  4: 

c     -  L- [(Y + jk,n/e) A e i        i + (Y - jk,n/c) Be1*        1 ]U.5) XI       Jwe0ee  ,-,,       -■,»■"• M       -   -, 

i k.(x-x.) k.(x-x.) 
E7i = TZTT- C(ki  " J'vn/?) He'        '  - (k. + jYn/C) Be1 ](4.6) "zi      JWE E    L4  l o e 
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In these relations, 

Ki
2 - -Y2 - K0

2
Ei ; 1-1,3,5                 (4.7) 

^--Y'-^M ; 1 - 2.4                «.B> 

KQ
2 - »V0 (4.9) 

c 2  2 

eei^
=-V"L U-10) 

x, = 0 

x5 = D, 

x4 = D1 + D2 

x5 = D1 + D2 + D3 

and Am, B , m = 1,...,5 are constants. Refer to Table I for a 

complete list of the symbols employed in these expressions. 

The boundary conditions appropriate to the geometry represented 

in Figure 9«b, lead to a complex transcendental equation whose 

complex roots yield the propagation constants 

Y = d + j ft characteristic of this waveguiding system. This 

transcendental equation or dispersion relation is given below. The 

notation employed is shown in Table I. 

-2K2D1 e 4 3(Rie 
3 2-R2e 

3 2)-e 4 3(R3e 
3 2-R4e 

3 2) 

e 4 3(R5e 
3 2-R5e 

3 2)-e 4 3(R?e 
3 2-R8e 

3 2) 
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F(OJ,Y) = 0 (4.11) 

The coefficients R, to R8 are obtained from the function 

n V 

R(u,k,v,e,tn,n,p,q) = (K4 + ujy ■£ + k z^ ^). (4.12) 

(K4 + vJ^e7+ ^  Ee4Z7>" 

(K4 + m*r^+nEe2^). 

Tlo K, 

in the following way 

R. = R( u k V m     n P q) 

Rx = R(-l -1      1 

R2 = R(-l 1    -] L    -1    -1 

R3 = R(  1 -1 -1    -] L    -1       1 

R4 = R( 1 -1 -1 L    -1    -1 

R5 = R(-l L      1    -1 -1 -i) 

R6 = R(-l 1    -' -1 -i) 

R7 = R( 1 -1 _1    _ 1    -1 -1 -i) 

R8 = R( 1 -1 -1 -1 -i) 

jut Throughout these calculations, a time dependence factor e 

and a propagation factor e~'z have been assumed. The dispersion 

41 



relation, when solved for different values of frequency , gives the 

modal spectrum of the configuration. Two typical examples are given 

in Figures 11 and 12. The dispersion relation is solved using an 

algorithm based on Davidenko's method [s.H. Talisa, Ph.D. 

dissertation, Brown University, June 1982]. This method consists of 

reducing the Newton-Raphson iterative procedure to a set of 

simultaneous first order differential equations in a dummy variable. 

This system is then solved numerically using the subroutine RKF 45 

L3j. This algorithm has proven to be very efficient and reliable. 

The computations have been performed on the Hewlett-Packard 1000 of 

the Department of Electrical and Computer Engineering at Lehigh 

University. The program and its subroutines are written in FORTRAN 

language and is referenced under the filename SBGM6, a modified 

version of Talisa's SBGMJ5. 

4.2 Results 

Two typical loss and dispersion diagrams showing the lower 

modal spectrum for the five-region model considered are given in 

Figure 11 {■D]=^D^^00 jum, D2=50 /im) and Figure 12 (D, =D?=25/im, 

D2=50/um). As a first example, the case of two identical 

semiconducting slabs oppositely biased (i.e., D2=Dv, €1=€5> 

BQ2=-BQ^) is considered. In the frequency range of interest, the 

dispersion diagram shows four possibles modes labeled Og, EQ, 0» and 

E^. This notation is used to refer to the odd and even distribution 

of the transverse magnetic field Hy. The subindices S and A refer to 
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the corresponding single slab case. Indeed the chosen geometry and 

biasing field polarisation lead to coupling between single slab 

moaes which each show the same dispersion behavior. These single 

slab moaes are labeled S and A to refer to the symmetric and 

untisymmetric distribution of the transverse magnetic field [ij. It 

is pointed out that because of our convention, the single slab 

dispersion diagram (Figure 10) for the reverse direction of 

propagation should be compared with the double slabs dispersion 

diagram (Figure 11, 12) for the forward direction and vice versa for 

the other direction of propagation. Due to the symmetry of the 

structure, the odd and even modes correspond to the case of a 

magnetic and electric wall respectively as a boundary condition in 

the middle of the central region (#3). Therefore the case of even 

modes has already been presented through the study of an "insulated 

image guide" [4]. This last structure has the advantage of 

decreasing the loss by half since only one lossy semiconducting slab 

is involved. 

All the dispersion curves but E« have the line ICQ as their low 

frequency asymptote. Near this asymptote, low loss as well as weak 

energy confinement is obtained. Another interesting feature is the 

turnback in the loss characteristic for the mode Og and Eg, and also 

S in the single slab case. For the Eg and S cases this behavior can 

be explained by the following fact [l,2]: for some frequency range 

the fields adhere to one interface; as the frequency increases a 
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transition occurs in which the field energy is redistributed to trie 

opposite interface. In the narrow frequency range over which this 

transition occurs, the attenuation constant increases considerably 

as more energy travels inside the GaAs slab, the only source of 

loss. Then the loss characteristics shows a lower loss region on a 

limited bandwidth before increasing again at high frequency as the 

mode becomes a "volume" mode for which the energy lies principally 

inside the semiconducting slab. For the Og case, the turnback in 

the attenuation characteristic is due to radiation occurring in the 

vicinity of the cut-off frequency which is clearly defined for the 

lossless case only. A detailed explanation follows under the 

discussion of such a mode. 

After these general statements, each mode is discussed in more 

detail. 

EA: 

The dispersion curve of these modes starts, at low frequency, in the 

neighbourhood of the light line ^-QJ£ meaning that most of the 

energy travels inside the semiconducting slab. Then an asymptotic 

value given by the surface magnetoplasmon frequencies is approached 

as  the  propagation  constant  tends  to  infinity.  In  the  case 

considered £J
rap=1.98 and 2.22 x10 rad/s for the forward and reverse 

directions of propagation, respectively [l]. 
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1%  +/"c + 4 fe£/u(0) ♦ 6.) 
%-     V   S 1 (4.13) 

i=1, £, =1;  CJ      = 3.22 and 2.22 xlO12 rad/s 

i = 3, €-. = 4;  O      = 2.98 and 1 .yB x1012 rad/3 

At a given frequency the complex propagation constant for the 

reverse direction is always less than the value in the forward 

direction. Such non-reciprocal behavior increases with increased 

coupling, i.e., increase of the permitivitty of the central 

dielectric or decrease of its width D2. Thus, this mode could have 

been promising for isolation or phase-shift purpose if its insertion 

loss had been lower (2-5dB/mm, 200-320GHz in the case of Figure 10). 

Using thinner semiconducting slabs increases the attenuation of this 

mode. This may be contrary to expectation. The reason for this 

behavior is that the A type modes experience a larger amount of 

energy travelling inside the semiconductor. Indeed, considering the 

single slab case, it is seen that as the width decreases, the 

coupling affects the dispersion curves in such a way that branch A 

moves further away from the dielectric light line, thus increasing 

the attenuation of this mode as more energy resides in the 

semiconducting slab. It is pointed out that S modes and its 

derivatives show the opposite behavior. 

The Efr    modes demonstrates  the  coupling  effects.  Indeed, 

considering branch A in the single slab case (Figure 10), it is seen. 
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that the fields cling to the interface between the semiconductors 

and the dielectric of highest permittivity. The structure under 

stuay involves two such interfaces separated only by region 3 (width 

1)2)1 thus leading to a strong coupling. The coupling strengh is 

readily determined by the gap width D2 and the dielectric 

permittivity of the central region (#'}). Decreasing the dielectric 

region thickness by a factor 2 has approximately the same effect on 

the attenuation and dispersion curves as increasing the dielectric 

constant by a factor 4 [4j. 

V 
This mode is only slightly non-reciprocal. As its dispersion curve 

approaches the light line kg, this mode is weakly confined. For 

example, in the case of Figure 11 , at 240 Ghz, a 99!° decrease in tne 

field amplitudes is obtained about 3Ag away from the "air-GaAs" 

interface, compared to -BAg at the same frequency for the E« mode. 

Its loss characteristics show attenuation increasing sharply as the 

dispersion curve moves away from the light line kg. For the same 

example, attenuation less than 1 dB/mra is obtained below 320 GHz in 

the forward direction and below 290 GHz in the reverse direction. 

This shows that the 0^ modes are useless for isolation. 

The 0^ mode does not show a cut-off frequency as could have 

been expected from the case of the odd mode on the corresponding 

symmetrically loaded dielectric slab [n].  The following facts 
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explain such absence. For the geometry considered, the central 

dielectric (region 3) can be seen as a symmetrically loaded 

dielectric slab with adjacent regions (1,2 and 4,5) corresponding to 

the surrounding medium in the symetrically loaded single dielectric 

slab ca3e. At the interface between regions 2-3 and 3-4, the energy 

concentration begins to decrease as the frequency increases (note 

that for the 0 mode the energy concentration increases with 

frequency). On the contrary, for the odd mode on a symetrically 

loaded single dielectric slab, the energy concentration at the 

interfaces increases with frequency. This explains why the cut-off 

pnenomena occurs for the Og mode only. 

The weak non-reciprocity of the 0^ mode has been seen to be 

useless for isolation purpose. It is however sufficient to show weak 

differential phase-shift. The dispersion curves of the OA mode have 

been plotted in Figure 13 for several different geometries. It can 

be seen that such curves remain almost unchanged once the slab width 

(D^ = D2) exceeds about 100 urn. The explanation is obtained through 

the analysis of the field structure. When the dispersion curve is 

close to the light line kQ, the fields stick to the "external" 

interfaces, i.e., the interface between the regions 1-2 and 4-5- 

Once these two "external" interfaces are separated beyond a certain 

value, then no further influence is felt since the coupling between 

these two interfaces becomes negligible. 
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Since the 0. mode derives from the A mode of the single 

semiconducting slab, the differential phase-shift increases as the 

non-reciprocity of this A mode increases. This is readily achieved 

by increasing the difference between the loading dielectric 

perimittivities, in the case considered ^i=ec and £•*, and decreasing 

the width of the semiconducting slab. Unfortunately, low insertion 

loss requires a large semiconducting slab width so that little 

energy travels in the central dielectric (region 3)» Thus, a trade- 

off situation is met. To obtain the maximum differential phase-shift 

with an attenuation constant of less than 1 dB/mm, the following 

geometry has been chosen: D^ = Dv = 200/wm ; D2 = 25/im. The 

differential phase shift is plotted versus the frequency in Figure 

13- It is pointed out that the differential phase shift increases 

sharply with the frequency and simultaneously: 

- the dispersion curve moves away from the light line kg, 

- the loss increases, 

- the fields propagate more and more into the semiconducting 
slab to stick eventually to a new interface, i.e., the 
region 3-seraiconductor interface. 

In order to increase the differential phase-shift the following 

geometry has been tried : D^ = lOO^ra; D2 "  50^; D-j c 25um. The aim 

was to obtain more non-reciprocity through an asymmetric structure. 

Results are given in Figure 13 and are found to be close to the ones 

previously plotted in the same figure. 
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The conlusion from this limited study of the 0^ phase-shift 

capability, is that hope of obtaining useful performance is subject 

to the premise of lower insertion loss. 

Es: 

In the reverse direction of propagation, the dispersion diagram of 

this mode exhibits clearly the transition phenomena discussed in the 

introduction of this section. The loss characteristic follows the 

behavior previously described, but the lower attenuation constant 

reached in the turnback is still very large (9 dB/mm at 360 GHz, 

Figure 10;. Meanwhile, in the forward direction, the geometry can be 

chosen such that the propagation experiences much lower loss, again 

at the cost of weaker energy confinement. In reference [4], where 

similar modes have been studied, an isolation ratio of 10:1 and 

insertion loss of less than .5 dB/mm over a bandwidth of 65 GHz in 

the 400 GHz range have been reported. In one of our example ,Figure 

12, an isolation ratio greater than 30:1 and an insertion loss than 

1 dB/mm over a 50 GHz bandwidth also in the 400 GHz is obtained. In 

this last example the field amplitudes decrease by more than 99$ 

after 2.5A„ at 414 GHz (worst case). 

As explained in the beginning of this section, this mode has 

been discussed in [4] through the study of an "insulated image 

guide". Therefore, further information on this mode can be obtained 

from this reference. 
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Os: 

Unlike modes 0«, these modes are cut-off at a frequency which 

depends upon the geometry and upon the direction of propagation. 

This dependence is illustrated in Figure 14. The forward direction 

cut-off frequency is always lower than the one in the reverse 

direction. This is a promising feature for isolation purposes. 

Recall that the cut-off frequency has been defined as the 

frequency at which the field amplitudes remain constant instead of 

decreasing exponentially away from the slabs: k< = kc = 0 . In the 

reverse direction and as the frequency increases, the energy is 

closely restrained to the interfaces between the central dielectric 

and the semiconductor slabs. At the same time the propagation 

constant increases, ultimately becoming infinite as the frequency 

reaches a surface magnetoplasmon frequency (W = 2.98x10 rad/s 

for £-z = 4). Therefore, the mode 0S exists only between these two 

limits; above the cut-off frequency and below that surface 

magnetoplasmon frequency. As the geometry changes with decrease in 

J>2 or in DpDj, the cut-off frequency increases. In the reverse 

direction and below a certain width Dj =>T)-z or gap D2, the Og mode 

ceases to exist since the cut-off frequency approaches the surface 

magnetoplasmon frequency. Numerically, problems arise near this 

condition due to conflicting requirements: one being k< " 0, the 

other k. ->°o . 
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Anoher feature ol' 0S modes is the turnback in the lass 

characteristic in the vicinity of the cut-off frequency. This is due 

to the conditions used to defined the cut-off frequency, which 

looses its strict meaning when loss is taken into account. 

For isolation purposes, a narrow semiconducting slab should be 

used to lower the insertion loss but the bandwidth over which the 

insertion loss is acceptable (.5 or 1 dB/mm) decreases. With the 

following configuration: D^=I>2='Ox's50/im an infinite isolation ratio 

is obtained on a 31 (48) GHz bandwidth in the 400 GHz range with an 

insertion loss smaller than .5 (1.) dB/mm. Confinement (99* decrease 

in the field amplitude in the transverse direction) is never better 

than 4\ at 450 GHz and deteriorates as the frequency decreases 

toward the cut-off frequency. These results may be compared with the 

65 GHz and 50 GHz bandwidth in the 400 GHz range, 10:1 isolation 

ratio, .5 dB/mm insertion loss obtained respectively for an 

insulated image guide [4] and a five-region canonical structure with 

only one semiconducting slab [2]. The advantage of the present 

structure resides mainly in the infinite isolation ratio due to the 

difference between the cut-off frequency in the forward and reverse 

directions. 

Strange behavior occurs in the dispersion characteristic in the 

reverse direction for the cases shown in Figures 11 and 12 and in 

the forward direction in Figure 10. Such oddities are only present 
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in high loss ranges which are useless for any practical application. 

Furthermore, they disappear when loss is removed, thus decreasing 

interests in their study. However, it is worth noting that in the 

vicinity of the critical frequencies such as £Jj ' and kJ«>, the 

effective dielectric constant of semiconducting material presents a 

large imaginary part compared to its real part iFigure 2). In this 

case, the semiconductor appears as a lossy conductor which thus 

expels the energy instead of allowing its propagation. This fact, 

together with the coupling phenomena involved, could provide some 

insight into this behavior, but more data would be needed to achieve 

certainty. However, as previously stated, efforts in this direction 

have no practical interest since losses are excessive. 

4.3 Suggestion for further work 

From the observation of the dispersion and attenuation diagrams 

for all lower modes in both reverse and forward direction, it can be 

stated in general terms that acceptable loss (<1 dB/mm) can be 

obtained only at the expense of a somewhat weak confinement, on the 

order of several guide wavelength to obtain at least 33% decrease of 

the amplitude of the fields in the transverse direction. To improve 

non-reciprocal device capability over a specified bandwidth, the 

coupling between the two semiconducting slabs has to be increased. 

Unfortunately thiB also increases the insertion loss. A way to 

decrease the loss by half is to use an insulated image guide already 

discussed in [4J, whenever only the even raodeB are considered. 
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Furtner works should include the investigation of the 

directional coupling capabilities of the structure considered. It is 

believed that the behavior of such a model will follow closely the 

simplified theory given in [_3J where a five-region canonical 

structure with only one semiconducting slab was studied. 

Furthermore, the independance of the biasing fields open the 

possibility of interesting modal behavior that could be applied to 

the design of modulators, switches and directional couplers. 

However, it is pointed out that losses will remain an important 

problem as long as doping is used to obtain the required plasma 

concentration in the semiconducting materials. 

As briefly stated in section 2.3, other means of inducing a 

solid-state plasma through impact ionization, contact injection and 

photon induced carrier creation have been described in |_*7 J • The 

optical technique mainly offers the advantage of total electric 

isolation. High mobility and high carrier concentration leading to 

low loss effects may be achieved more readily through injected 

plasmas, since it involves both electrons and holes instead of only 

one type of carrier as is the case in doped material. Also, 

impurities introduced by the doping process are avoided, thus 

improving the loss figure. Although a number of millimeter wave 

devices use the conductive properties of optically produced solid- 

state plasmas [8,9], little information has been found on the 

practical utilization of its dielectric properties.  From Mortenson 
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et al. [7], we understood that it is due to the extremely high 

magnetic fields or very low temperatures required. However, the 

structure considered here will achieve acceptable performance if the 

collision frequency can be decreased as is promised by injected 

plasmas. Further work is needed in this area. 
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5. CONCLUSION 

In the aim of providing useful information for the design of 

near-millimimeter wave passive devices such as isolators, phase- 

shifters, circulators, two structures have been analysed which use 

the non-reciprocal properties of the propagation of surface 

magnetoplasmons on semiconducting substrates. The first structure 

is simply formed by two half-spaces, one dielectric, the other a 

semiconductor polarized by a biasing magnetic field. The 

unidirectional propagation over a certain frequency range can be 

exploited in schemes similar to the edge guided wave propagation 

L9J. This could allow the design of useful devices if material loss 

is reduced and if the unidirectivity property is conserved with 

small radii of curvature. Further work in this direction would 

require an accurate analysis of the dispersion relation in the case 

of small curvature. 

More complex in terms of its geometry, the second structure 

includes two semiconducting slabs which in our numerical examples, 

are oppositely biased by a magnetic field. These two slabs are 

surrounded by dieletrics. The modal behavior is analysed and device 

capabilities including isolation and differential phase shift are 

found to be spoiled by excessive loss. 

The material loss considered arises due to impurities in the 
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doped semiconductors. Doping is needed to achieve the required 

plasma concentration. Other mean such as contact injection, impact 

ionization, or laser illumination [7] seem promising since they 

induce carriers without disturbing the substrate composition. 

Further investigation is needed to prove the validity of such an 

approach. 
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Figure 2  Real and imaginary parts of the effective 
dielectric constant for different values of w 

-12 c 

x = 1/v = 8x10   s (After S.H. Talisa) 
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Figure 6.a  Dielectric-semiconductor curved interface. 

6.b  Semiconductor-dielectric curved interface. 
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dielectrics. 
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I. APPENDIX 

1.1 Asymptotic values 

For the radius K tending to infinity we show that the relation 

obtained for the curved geometry leads to those derived for the 

plane interface case. 

Propagation constant: 

For the curved structure we have assumed a propagation factor 

exp[j(wt - v0)]. In the flat interface case this factor was exp[jwt 

- gz]. When the radius R tends to infinity the z-axis of the 

straight coordinates system can be used to describe the curved 

coordinates system through the relation: 

z = R0 (5.1) 

The two propagation factor are equivalent so that we have: 

lira (jv0) = tz (5.2) 
K->oo 
hence lira (v/R) = -jj" (5-3) 

R->°o 

using (2.6; the relation (3-24) is readily proved. 

Dispersion relation: 

We prove in the following that the dispersion relation for the 

curved structure (3.21) leads to the one for the straight geometry 

(1.15) as the radius R tends to infinity. Comparing these two 

equations and using the above result (3.24) it only remains to prove 
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tnat the equality {'}.25) holds. 

Wnen the radius R tends to infinity, the transverse coordinate 

r is best described by the relation: 

+ r = li * x   (+ Fig.6.a; - Fig.6.b) (5-4) 

which shows the dependence of the r-coordinate on the radius R. The 

x-coordinate corresponds directly to the x-axis of the straight 

waveguide. 

In the case of large radii, both the order and argument of the 

Bessel functions considered are large. Therefore, the following 

approximations may be used L13-14J: 

for ui = kjj/Tj'r or k0nr if £e > 0 

c'n t = v/u.: 

Jv(
ui)  /  exPl- v tanh t - vt ] (5.5) 

i2TTv tanh t 

Hv
2)(Ui) " -j/  exp[-v tanh t + vt] (5.6) 

J  vTTtanh  t 

for ui =  j  kQnr if  iQ < 0 

sh  t * v/u^ 

Jv(ui)  ~/  exp|[  v  cotanh  t - vt]  +jvir/2) 
V 2lTv  cotanh t 

75 

(5.7) 



f \        /     2 {b-B) 

H^2Mui)   ~/  expi[-v  cotanh  t + vt]  + jvTT/2J 
/   vTTcotunh  t 

Thus,   using   the  relation 

arctanh z = .5 ln[ (1 + z)/U -z) ]     ; z2 < 1 

FT 1        1+K/v 
F (u )  ~   -   exp +(v - ln(abs[   ]) - KJ C5.9) 
v i  / K        2       1-K/v 

where K2 = v2 - u2 = v2 - k2qr2   i=1 ,2 (*2
=^)       15.10) 

The minus sign is chosen if Fv(u.j_) represents the Bessel function of 

the first kind and the positive sign stands for the case where the 

Hankel function is used. 

Let us consider the case where positive signs are used in both 

relation (5.4) and (5.9). Other cases will be readily derived from 

the following analysis developed by Marcuse [10J which is repeated 

here for the reader's convenience. 

For large radius R, (5.4) is rewritten as: 

r/R = 1 + x/R   where x/R << 1 

Thus, the expression (5.10) becomes: 

K2=v2-k2£iR2U+x/R)2 

K2=v2-k2€iR2U+2x/R) 

hence 

K - ktR  (1   - k^q/k? x/R) (5.11) 
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wnere 

k?R2 = v2 - k2£i 

or using (3.6): 

k? =/32 - k2e.   1=1,2 (e2=ce) (5.12) 

Note that k^ correspond exactly to the transverse exponential 

factors used in the flat interface case. Indeed for R approaching 

infinity, the use of (3.24) gives: 

kf = -2f2 - k2^ 

In    the    denominator    of    the    expression    (5-9),     we    can    use    the 

approximation: 

/7=/k~R (5.13) 

However the expression in the exponent must be approximated more 

accurately. Let us first derived the following result: 

if a=b(l+d) with a<1 and d<<1 then an=bnO+nd) 
and 
1/2 ln[(l+a)/0-a)] = arc th a = a+a5/3+a5/5+.. .= 

=b+b5/3+b5+...+bd(l+(b2)+(b2)2+...)= 

=1/2 ln[(l+b)/(l-b)] + bd / (1-b2) 

In our case  b=ki//3v and d=k2£i/k
2-x/R 

hence, using (5.11) and (5.12) in the exponent of (5^9) and 

(5.13) in the denominator, the general expression (5.9) for the 

Bessel function considered becomes: 

Fy(Ui) ~ (k^)-^2  expL 1/2-U-R - kAx j (5.14) 
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with VL  = /?v ln|abs[   Jl - 2ki    i=1 ,2 (5-15) 

Therefore  the  transverse  magnetic  field  has  the  following 

expression: 

in the dielectric region of Figure 6.a: (.5-16) 

C  -.^R  k,x 

in the dielectric region of Figure 6.b: 

C  +.5U1R  k,x 
H = —— e       e 

/iTJR 
in the semiconductor region of Figure 6.a: 

x C  +.pU2R  -k2 
Hv = ~=  B e 

/k^R 
in the semiconductor region of Figure 6.b: 

C  -.5U2R  -k2x 
Hv =   e       e 

The derivative of the Bessel functions becomes, with the help of the 

expression for u^ (3.15), (3. 16) and the relation dr=dx from (5-4): 

Fy(Ui)«1/(koyii) dFv(Ui)/dx (5.17) 

Therefore, the following relations are derived which establishes the 

equivalence of the dispersion relations for the flat and curved 

structure as the radius of curvature tends to infinity. 

Lu./H Fv(Ul)/Fv(Ul) ] = kt 

Lu2/R Fv(u2)/Fv(u2) ] - -k2 
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It is to be pointed out that the relations derived in this Appendix 

are valid for R>>x and R large, i.e., in the vicinity of the 

interface when large radii are considered or for the case of 

infinite radii H. 

1.2 Power 

The power carried by the mode is calculated by integrating over 

the transverse coordinate the component of the Poynting vector which 

is colinear with the direction of propagation. 

P = |S|j dr   for the curved interface 

(5.19) 
S dx   for the plane interface 

The computation of SQ involves Bessel functions which do not allow 

the power P to be related to tne field amplitude (e.g. B) in a 

simple closed form. Fortunately the expression of Sz is far easier. 

Thus the power P and field amplitude A for the flat interface case 

are initially related. Then, a relation between A and B is derived 

with the help of (5.16) and (1.5). Such a relation is valid only for 

large radius H as is suggested in the section 3.4. 

The power P carried by a mode in the flat interface case is 

given by: 

P " /S1z d* + js2z  d* 
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where  Siz = Re|. 1/2 ExiH*i ]      i-1 ,2 

From the analysis of the plane geometry ([2] ,Chap.1), it i3 readily 

found: 

A2 /3        1 /?        l/k2 *        1 -2c<z 
P =   He[ + ( j —) ] e        (5-20) 

40J6o €, RetkJ   £e  fee   6e Re[k2] 

In the lossless case, the above expression becomes: 

A2     /9     p n 

4we0  ^k,  £ek2  \ie 

Now, a relation between A and B is derived in the case of the Figure 

6.a (C replaces B in the case of the Figure 6.b). For this purpose 

the radius R is assumed to be large so that the field in the 

vicinity of the curved interface can be approximated by the field of 

the straight structure. Since we are interested in the bending loss 

due to radiation, we relate the outward field distribution of the 

curved interface to its correspondent on the plane interface, i.e., 

we relate A to B in the case of Figure 6.a and A to C in the case of 

Figure 6.b. In the following, only the first case (Fig.6.a) is 

derived. The second case (Fig.6.b) is then readily obtained by 

substituting C for B and 1 for 2. So, in the vicinity of the 

interface and for large radius R, the field distributions in the 

curved (5.16) and plane (1.5) structure may be equated, giving: 

A exp[-k2x] = -j B/Zkpr exp[l/2 U2R] exp[-k2x] 

Therefore the power carried by the mode can be written as: 
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B* 1 
P  =     Re[...]      exp|ReLU2]-Rj     exp|-2<*z| (5-21) 

AU^ |k2|R 

where | | indicates that the magnitude has to be taken and Re[...J 

refers to the term in (5.20). 

1.3 Radiated power 

In the curved interface case, the transverse (r-coraponent) of 

the Poynting vector may be expressed as: 

Sr = ReL-1/2 E^ H*] = 1/2 Re[-E0/Hy] Hy 
2 

Sp = 1/2 Zr |Hy|2 (5.22) 

Using the approximation (5-6) and (5.8) for the Hankel function, the 

transverse magnetic field can be written as follow: 

for Figure 6.a 

V2 
B 

exp[  v arctanh£ - K  ] if  ep>0 (5-23) 

B 

with K2 - v2 - K2 er
2 (5.25) 

y2 
=-exp[ v arccth£ - K ]      if £e<0 (5-24) 

for Figure 6.b, 

C 
Hy1 » — exp[ v arctanh^-- K ] (5-26) 

with K2 = v2 - K^r2 (5.27) 

The electric field in the direction of propagation is found with the 
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help of  (5.10)  and   (5.13): 

for Figure 6.a,   for all       : 

1 k^  r 1 v2 nv 
E02  =      [-^-(- — ♦   -1)*-]  H  2 (5.28) 

JOJ£0ee K 2K       k^£er^ £r 

and   for Figure 6.b: 

1 k2£.r 1 v2 

Efl!   =     [ (- - + -5 5 -D]  Hy1 (5.29) 
jw«0e, K 2K      kfor 

Note that the propagation factor expLj(wt-v0)] is impicit in these 

previous expressions of the electromagnetic fields. 

We are interested in the fields expression very far away from 

the interface, where radiation due to curvature is readily 

identified. Therefore, we allow r to tend to infinity in the 

expressions (5.25),(5.27)-(5-29) which give the following relations: 

K = -j k0/i^r (5.30) 

E0i ,   _ r  Z0 
Zri = Re[- — ] = Re[   ]      i-1,2 (/i>n)        (5.31) 

'i   ■ rT~~' H-        /q 

which shows that far away from the interface, in the 
transverse direction, the two field components H and EQ 

form u plane wave propagating in a medium of relative 
permittivity  ■ 

C2 

|HV|2 «=   exp(2ReLv arctanh(K/v) - K] -2rt_R^))} 
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which give the approximate relation for large radius and far away 

from the interface ( r->oo): 

C2    |2Hu[jvTT/2 - Jk0/?Tr] - 2c<z( 
K|2 =  p=r  e (5.32) 

ko/N' 
Finally  the  r-component of the Poynting vector: 

1 C2 /l^l      |Re[jvTT-  j2k0/qr]  -2*z| (5-33) 
Sr = ■  Re[  ] e 

2 ^ol€ilr   j   £i 

for i=1,2 (e2
=e

e 
; /*2=n C3-19>> 

Note that this approximation is only valid for radius R large but 

finite. Indeed if R tends to infinity, (5-30) does not hold anymore 

but becomes: 

K = k^r = ^R (5.34) 

and the effective impedance Zr^ (5.31) tends to zero in the lossless 

case (approximately equal to zero in the case of low loss). 

Let us consider the case of Figure 6.b where R is large but 

less than r, r tends to infinity and small material loss is assumed. 

This leads to a complex propagation constant v with a small 

imaginary part that can be taken into account only in the exponent. 

Thus we have: 

v-l/S-j«0R 

where /3 and d, are the propagation and attenuation constant computed 

for the plane interface case. 
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And 

Using the two above relations into (5-53) yields to: 

1 C2 UlTR - 2*RJ 

2 Uje0^r 
Srl   = e (5.35) 

In the case of Figure 6.a, we consider two different cases for 

the positive and negative real part of the effective dielectric 

constant: 

If e'e>0  then n=nR-jnj  (3.19) and 

1 C2      / JCe I  IdTTR - 2knjr -2*z} 
sr2 = r Rew—^ e (5'56 

2 W^, |£e |r   / €e 

If €e<0 then n=nj-jnR  (3.19) and 

"UgT  i<*TTR - 2knRr -2c(z) 
Sr2 = Re[ / ] e (5.37) 

1.4 Validity of the Bessel function approximation 

When Debye's asymptotic expansions have been used in (5«5) to 

(5-8), only the first term of the expansion in 1/v has been taken 

into account. The relations derived are then valid only if all other 

terms can be neglected. This condition is satisfied if the second 

term of the series is negligible with respect to the first, i.e., 

LIH.iyj: 
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1/v ( 1/8 cotanh t - 5/24 cotanh5 t ) << 1 

where t is such that cosh t = v/x, with v the order and x the 

argument of the Bessel function involved. This yields: 

1   |2v2 + 3x2|2 

(24)2  |v2 - x2P 
<< 1 

Such inequality is very general and may be used to test the validity 

of the results obtained. It is more interesting, however, to derive 

an expression giving the order of magnitude of the minimum radius 

acceptable. For such a purpose, the structure is asssumed • to be 

lossless and is curved with a large radius such that v = /3 R. 

Furthermore, x is given by x = k0€^r , 1 = 1,2 (^2=^e^ anci evaluate^ 

at r=R since the approximations have to be valid in the vicinity of 

the interface (section 1.2).  Hence: 

1 I2/*2 + 3Klkl ,     N 
R "  - 71 2—3/2 = Rn>in (5'38) 

For the numerical examples of section 3-2.4, there results: 

u G 100 Rmin   5/Retki]  50Ag 
1? 12    12 

lO'^rad/s rad/m   mm   mm   mm   mm   mm 

2.4 19813   4.1  .9   .43  .29  16 
2.2    16965   8.3  .1   .59  .25  18.5 
1.5 10455  77.9  .4  1.7   .18  30 

It is pointed out that at least 100 Rmin is required for the 

asymptotic expansion to be valid within \%  accuracy. 
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