
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1983

The measurement and estimation of the reliability
of computer software.
Larry S. Musolino

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Musolino, Larry S., "The measurement and estimation of the reliability of computer software." (1983). Theses and Dissertations. Paper
1923.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228649471?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F1923&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1923&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1923&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F1923&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/1923?utm_source=preserve.lehigh.edu%2Fetd%2F1923&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


THE MEASUREMENT AND ESTIMATION OF THE 
RELIABILITY OF COMPUTER SOFTWARE 

by 

Larry S. Musolino 

A Thesis 

Presented to the Graduate Committee 

of Lehigh University 

in Candidacy for the Degree of 

Master of Science 

in 

Electrical Engineering 

Lehigh University 

1983 



ProQuest Number: EP76196 

All rights reserved 

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted. 

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion. 

uest 

ProQuest EP76196 

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author. 

All rights reserved. 
This work is protected against unauthorized copying under Title 17, United States Code 

Microform Edition © ProQuest LLC. 

ProQuest LLC. 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346 



This thesis is accepted and approved in partial fulfillment 

of the requirements for the degree of Master of Science in 

Electrical Engineering. 

_^»ssate>__??U-M^ 
(date) 

Chairman of Department 



ABSTRACT 

This thesis will deal with the measurement and estimation of 

the reliability of computer software.  The software portion of 

a computer system is  the instruction or code used to program 

the hardware portion. The separation between hardware and software 

in a computer system with respect to reliability is a distinct one. 

Much theory and methodology has been developed and applied 

in the area of hardware reliability, however the basic differences 

between hardware and software reliability requires the development 

of models specifically geared for the measurement of software 

reliability. 
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INTRODUCTION 

Until recently, advances in hardware capabilities and reliability have 

not been matched by corresponding advances in the software area.  To 

make matters worse, software is now being applied to solve larger and 

more complicated problems.  Also, the use of computers is finding 

more widening applications in almost every aspect of daily life. 

With respect to large computer systems, the cost of computer software 

as part of total system cost is increasing faster than the associated 

hardware.  Currently, it is estimated that U.S. users spend over 10 

billion dollars for software every year [1].  The ratio of 

software expenditures to hardware expenditures is currently estimated 

at four to one.  This ratio is predicted to rise to nine to one by 

1985 [1].  These exorbitant software costs can be mainly 

attributed to software maintenance and testing (See Figure 1). 

tA AiM-reMAKicE, 

Figure 1. Typical breakdown of software costs 
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The costs of maintenance (fixing errors and adding changes after 

software is installed) and testing account for approximately 75 % 

of the cost of software.  For example, the SAGE system, a military 

defense system, had an average software maintenance cost of 

approximately 20 million dollars per year after ten years of oper- 

ation, compared to an initial development cost of 250 million dollars 

[2].  In typical releases of the IBM OS/360 operating 

system, approximately 60 % (and as high as 75 %) of the software 

costs were incurred after system installation.  For both these exam- 

ples, the costs mentioned are for maintenance only.  The maintenance 

and testing costs probably exceeded 80 % of the total costs. 

It is obvious that the high cost of software is mainly due to 

reliability problems.  In fact, in many instances the situation exists 

where software reliability is the limiting factor in the total 

reliability of a computer system.  Thus, the need for a formalized 

method for measuring and estimating the reliability of computer 

software is apparent. 

If the study of hardware reliability is taken as a starting point 

because a large amount of theory has been developed, then 

one would  consider the possibilities of applying these 

results to the analysis of software reliability.  Several attempts 

at this course of action have led to only limited success [3]. 

The primary reason for this limited success is 

the significant differences between hardware and software 

reliability, especially with respect to failure mechanisms. 
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A hardware component (e.g. integrated circuit) is assumed 

to have failed if a certain parameter or characteristic is 

found to have fallen out of a specified range or interval.  This 

can occur either through catastrophic failure or a gradual drift 

out of specification.  Software, however does not actually 

fail.  Rather, it may contain one or more errors.  The error has 

been present from the outset and when that section of the program 

containing the error is executed the error becomes apparent. 

The error(s) may or may not cause system failure.  Thus, 

software remains the same as it was before an error was 

discovered, whereas hardware undergoes a change at the 

instant of failure. 

Another inherent difference between hardware and software 

is with respect to testing.  If software could be tested 

exhaustively for every possible input (an impractical task 

in most instances), then that particular software could 

be considered error free, i.e. never causing system failure. 

Hardware, however, could fail following extensive and even 

exhaustive testing. 

A third difference is redundancy.  Hardware reliability 

can be significantly improved through redundancy (i.e. 

parallel connection of identical components).  Redundancy in 

software is meaningless since the same error or errors would be 

present in identical software. 

If we formulate a reliability model where it is assumed that hardware 
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reliability is independent of software reliability, then the total 

system reliability is the product of the hardware and software 

reliabilities.  In practice, computer systems will utilize time- 

tested and established hardware whereas the software is specialized 

and still developing.  Because of this, software problems may 

manifest themselves during all but possibly the last stages of a 

system's life.  Software reliability measurement is crucial during 

the debugging and testing stages of system development.  As an 

example, the question of the amount of money and time to be spent 

on debugging and testing can be answered only if reasonable 

measurements and accurate predictions of the reliability of the 

software can be made.  Also, software reliability measurement is 

necessary to provide information and protection to current and 

future users of computer systems. 

In an attempt to satisfy these goals, the development of techniques 

and testing procedures to prove that a computer program is error- 

free would be very desirable.  However, for large programs or groups 

of programs this methodology may not be practical.  For example, 

Dijkstra [4] establishes the correctness of a six-line 

program through a proof which is two pages long.  The complete test- 

ing of a program may also not be feasible since a large program can 

be subjected to only a small percentage of all possible inputs. 

There is a very high probability that a large software system will 

have one or more errors during the debugging and testing stages and 

it is also likely that one or more bugs will remain even following 

several years of field operation.  It is in recognition of these 
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difficulties that computer programs which are not perfect are accept- 

ed and more attention is addressed to the problem of measuring the 

reliability of computer programs. 

Since computer software does not age with time, it is reasonable 

to assume that the failure rate is constant between points in time 

where changes are made.  Each time an error is detected, an attempt 

is made to eliminate the error, with the goal of reducing the overall 

failure rate.  In practice, however, an attempt to eliminate an 

observed error may in fact introduce new errors causing the failure 

rate to actually increase.  If we assume that tl, t2, ... are points 

in time at which errors are detected then a possible model for the 

failure rate of the software would be as shown in Figure 2. 

\-M\_vjRe. 
I 

t,       tl       ^       t, 

Figure 2. Failure rate as bugs are detected 

Reliability models of the type above are difficult to work with 

and are not discussed extensively in the literature.  Instead, the 

above model is simplified by assuming that no new errors are intro- 
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duced when software is modified.  This assumption causes the failure 

rate to resemble a step function, as shown in Figure 3. 

RATE. 

t, -> t 

Figure 3. Failure rate as bugs are removed 

This fail'ure rate forms the basis for the reliability models prop- 

osed by Jelinski-Moranda and Shooman.  These, as well as several oth 

models are discussed in the next section. 
er 
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STATISTICAL MODELS 
AND 

WORK TO DATE 

Several authors have formulated models for the reliability of 

software and a few are described here: 

A. Jelinski-Moranda Model 

This model [5,6,7] has received widespread attention 

and use.  This model also forms the basis for the methodologies 

proposed herein. 

It assumes an exponential probability density function (pdf) 

for software bugs.  The software failure rate for the i th 

bug, lambda(i), is assumed to be proportional to the number 

of bugs remaining in software, thus 

lambda(i)=C[E(0). - (i-1)] (1) 

where lambda(i) is the software failure rate for the i th 
bug, 

C      is a proportionality constant, 

E(0)    is the number of initial errors, i.e. the 
number of errors present at time t=0. 

Using the exponential model and a failure rate given by 

equation (1), the relationship between reliability function R(t) 

and failure rate lambda(t), namely: 
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R(t) = exp[ -/ lambda(x)dx] 
o 

gives: 

R(t) =exp[ -C(E(0)-i+l)t] (2) 

The mean time to failure (MTTF) can then be derived as: 

MTTF = J     R(t)dt 

= r^expt -C(E(0)-i+l)t]dt 
Jo 

-1      exp[-C(E(0)-i+l] 
= {  } 

C(E(0)-i+l) 

1 
=    (3) 

C(E(0)-i+l) 

Thus the MTTF is seen to be inversely proportional to the 

number of initial errors and number of remaining errors. 

B. Shooman Model 

This model [8,9] assumes that the total number of machine 

language instructions is a constant, the number of errors at 

the start of integration is a constant and decreases as errors 

are corrected.  No new errors are introduced during the process 

of testing.  The difference between the errors initially present 

and cumulative errors, corrected represent the residual errors. 

The failure rate is then assumed proportional to the number of 

these residual errors. 

Thus:      eres(x) = e(0) - ecum(x)      (4) 
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where E(0) = the number of initial errors 

e(0) = the number of errors present at 
time x=0 normalized to the 
total number of machine 
language instructions, I. 

= E(0) /I. 

eres(x) = number of residual errors present 
at time x, normalized by I. 

ecum(x) = Number of cumulative errors 
corrected by time x, normalized 
by I. 

x  = the debugging time since the 
start of system integration. 

Since the failure rate is assumed proportional to the number of 

residual errors: 

lambda(t) = D eres(x) 

where D  = constant of proportionality 

Thus the reliability function can be found by: 

R(t) = exp[ -J lambda(x)dx] 

= exp[ -/ D eres(x)dx] (6) 
Jo 

And, as assumed, since the hazard rate is assumed independent of 

time, a constant failure rate is obtained: 

1 l 
MTTF  =   =  —        (7) 

lambda(t)       D eres(t) 

In order to estimate the mean time to failure, equation (4) is 

substituted in equation (7) producing: 

1 1 

D eres(t)      D [e (0) - ecum (x)] 
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1 
=  (8) 

D[(E(0)/I) - ecum.(x)] 

There are two unknowns in Equation (8), namely D and E(0). 

There are various methods for estimating these parameters, 

two of which are the moment matching method [10] and the 

maximum likelihood method [8],  The moment matching method 

is discussed here: 

Consider two debugging intervals xl and x2 such that xl < x2, 

Then: 

and 

Tl 1 

nl D [e(0) - ecum(xl)] 

T2 1 

n2 D [e (0) - ecum(x2)] 

(9) 

(10) 

where Tl, T2 = system operating time 
corresponding to xl and x2. 

nl, n2 = number of software errors 
during xl and x2. 

Dividing equation (9) by (10) , recalling that E(0) = I e{0) and 

letting alpha = (Tl n2)/{T2 nl) = MTTF1/MTTF2 yields: 

Tl n2   e(0) — ecum(x2) 
alpha  = = —  

.T2.nl   e(0) - ecum(xl) 

e(0) - ecum(x2) 
e(0)  = ; + ecum(xl) 

alpha 
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e(0) - ecum(x2)    alpha ecum(xl) 
I e(0)  = I{ '+ ~ } 

alpha alpha 

I e(0)          alpha * ecum(xl) - ecum(x2) 
E{0)  = + i { - } 

alpha alpha 

alpha * ecum(xl) - ecum(x2) 
E(0)  = I { }    (11) 

alpha - 1 

This provides an estimate for E(0).  To estimate D, we 

can combine this result, Equation (11) with Equation (9) 

to produce: 

nl 
D - _:  

Tl {[E(0)/I] - ecum(xl)} 

This provides an estimate for D. 

Both the Shooman and Jelinski-Moranda models have the same basic 

structure, each representing the failure rate as a decreasing 

step function.  In the Shooman model, however, the number of 

errors corrected instead of the number of errors found to 

have occurred is used to estimate the reliability (number of 

remaining errors).  The distinction between the number of 

errors which have occurred and the number of errors removed 

is needed when the errors are not corrected at the time they 

are discovered. 
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C. SCHICK MODEL 

The Schick Model [11] assumes a failure rate 

proportional to the remaining errors and debugging 

time. 

Let t(i) be the time interval between the (i-1) and 

i th error. 

Then 

lambda(t) =F[E(0) - (i-1)] *x(i)   (12) 

where F is a proportionality 
constant 

The reliability function can be obtained by: 

R(t) = exp [flambda(x)dx] 

exp [ -F * (E(0) - i + 1] * t * t 
= __ _ _ „  {13) 

2 

MTTF = / R(t)dt 

pi 
, ——   (14) 
2 * F[E (0) - i '+ 1] 

There are advantages and disadvantages in assuming 

the hazard rate proportional to the debugging time. 

Application to existing data is probably the optimal 

way to decide if this method is suited for a 

particular application. 

Several more models have been proposed in the literature by various 

authors [7].  In addition, Bayesian models have also 
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been proposed [12].  The true value of any particular model 

lies in its ability to predict with a desired accuracy.  Since data 

is relatively scarce, software error documentation is sparse (and there 

is a lack of consistency in what data is available), experimental 

validation of these models is limited.  One such attempt has been 

reported [7] wherein nine models were compared.  The error 

data used by Sukert came from the Software Problem Reports (SPRs) 

during the software development of a large command and control system. 

The software was written in Jovial J4 code  and consisted of approx- 

imately 250 routines and over 100,000 lines of code.  The data was 

restructured so that each entry corresponded to a single error and 

entries due to non-software errors were deleted.  The data was then 

sorted according to.the date of the SPR in order to provide a time- 

wise input to the models.  Data on CPU time was not available and a day 

was considered the basic unit of debugging time. 

Several models were then compared and the following conclusions were 

drawn (The Shooman model could not be compared due to the unavailabil- 

ity of CPU data) by Sukert: 

1) The Jelinski-Moranda and Schick models provided higher 

predictions for the number of remaining errors than was 

actually the case. 

2) The Jelinski-Moranda and Schick models appeared to 

provide fairly accurate results for the number of 

remaining errors where the testing phase was short or 

program length relatively short. 
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3) For programs where the testing phase was long or progr- 

am length was large, a slightly modified version of the 

Jelinski-Moranda model provided the best prediction of all 

the models studied for the number of remaining errors in 

the software. 

It should be noted that the study was limited in scope and further 

research of this kind is required before any concrete assessments 

can be made. 
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THE SOFTWARE DEVELOPMENT PROCESS 

The software development process can be organized into the following 

six phases: 

1) System Requirement Analysis 

2) Software Specifications 

3) Software Design 

4) Software Implementation 

5) Software Validation 

6) Software Operation and Maintenance 

The system requirements explicitly state the performance requirements, 

rules, and possibly criteria for evaluating the final product.  The 

requirements are used as the standard against which the acceptance of 

a product is based.  The system requirements are analyzed to determine 

if they are to be included in hardware or software subsystems. 

Software subsystem requirements are formulated at this point.  These 

requirements now become the software specifications and serve as the 

basis for software design, implementation, validation and documenta- 

tion.  Research has shown [13,14] that most software errors 

(up to 70 %) are introduced due to incomplete specifications.  Most 

of these errors are not detected until well into the development 

process.  Of course, the cost to find and correct these errors 
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increases as development time increases. 

Following software specification, software design begins.  This design 

consists mainly of the algorithms, data structures-and formulations 

of specific functions on a particular computer system.  A recently 

developed software design technique emphasizes top down design to 

minimize logical errors through rigid structuring and a sequence 

of steps designed to break each task into a number of smaller tasks, 

thus affecting "modular" design [15,16]. 

Software implementation consists of coding programs according to the 

software design.  It is in this step that a structured program may 

improve reliability and productivity.  Also, a high level language is 

chosen, as well as programming standards.  The errors resulting from 

software implementation are, in general, easier and relatively inexp- 

ensive to discover and correct. 

Software validation is an unnecessary step if the previous four phases 

have been executed error - free.  However, this is very often not the 

case.  Validation consists of demonstrating that the software meets 

the previously established requirements.  This will consist of either 

code analysis or testing, or both.  Code analysis or testing refers 

to whether or not program execution is required.  Code analysis will 

typically consist of program and flow analysis, i.e. statement never 

reached, variable never initialized, etc.  Code testing will consist 

of verifying that the program actually executes to implement the est- 

ablished requirements (i.e. input and output specifications).  Much 
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research has recently been devoted to "proving" a program is correct 

[17], however this approach has been used only in small 

programs. 

The testing of a program consists of executing the program with cert- 

ain inputs and checking the respective outputs for validity.  In 

order for this to guarantee correctness, it implies that all 

"necessary" test cases are included and the number of test cases is 

reasonable.  Testing of a program for every possible input combina- 

tion is not always a feasible alternative.  Finding a small subset 

of possible inputs for use in program testing is a current area of 

active research [18].  Software testing and validation is 

discussed in more detail In the following section. 

Software operation and maintenance refers to the time period following 

the "installation" of software.  Errors may be detected by the cust- 

omer/other modifications may be due to changing or mis-interpreted 

requirements.  Changes in the software, once installed, may introduce 

additional errors, and after a certain point it may be cost effective 

to develop an entirely new system. 
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CURRENT METHODS OF SOFTWARE TESTING 

Software, in general, has had a radical increase in complexity in the 

last  10.years.  Software testing has undergone a corr- 

esponding increase.  Previously, software testing was an informal 

process where the programmer would exercise his code against a small 

set of arbitrary test cases.  As the volume and complexity of software 

has increased, it has become clear that a formal and thorough proced- 

ure for software testing is increasingly important. 

Software testing now has more formal procedures: 

1) Software testing is now performed over as much of the 

development cycle as possible. 

2) Testing is now more formalized with specifically 

identified activities. 

3) Some aspects of software testing are being performed 

by organizations independent of the software designer 

or programmer. 

This section will discuss the current software validation techniques 

which are being employed.  Software validation is one approach taken 
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towards the goal of achieving reliable software.  Of course, the approach 

of improved design and implementation to achieve reliable software is 

preferred. 

Software validation consists simply of ensuring that the particular      ' 

software module being tested meets its specific requirements.  Since 

a major problem in dealing with large software systems is their size 

and complexity, automation and the ability to automate validation 

techniques is discussed.  In dealing with software validation, it is 

important to realize the types of errors encountered and how they might 

be introduced.  A software error is some mechanism which causes the 

software to deviate from its intended program behavior.  These errors 

can be broadly sub-divided into performance and logical errors.  The 

former are errors which lead to failures where results are not 

produced within specified limits (e.g. time or space).  The latter are 

errors which may be introduced through implementation.  Logical errors 

can.be further divided as: 

a) Control flow errors: these errors may result from a 

failure to test for a certain condition, and may 

result in the execution of erroneous programming. 

b) Path selection errors: these errors may occur due to 

a condition being incorrectly expressed, thus, an 

action is sometimes performed (or not performed) under 

erroneous conditions. 

c) Incorrect action: these errors may result when a 

required computation is either not performed or performed 
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incorrectly, 

d) Interface errors:- these errors may occur if a calling 

and called module (e.g. subroutines) are inconsistent 

with each other. 

A similar classification of errors is proposed in Reference 19. 

PROGRAM TESTING 

Program testing is the process of exercising a program with a set of 

inputs and checking the corresponding outputs.  Software program testing 

is currently an area of very active research, especially with respect to 

the selection of input test sets.  A set of test data is optimal if it 

detects errors in a program whenever it is incorrect.  Using the 

notation given by Howden [20], let P be a program to implement 

a function F with domain D.  Then T, a certain test set which is a sub- 

set of D, is a reliable test iff V d £ T' P(d) = F(d) implies y d£ D 

that P(d) = F(d). 

An optimal test criterion is one that generates reliable tests.  Good- 

enough [21] has proposed that a test criterion C is reliable 

if it can be shown that every set of test input T is executed 

successfully by the program or every set is executed unsuccessfully. 

C is a confirmed criterion if and omly if it can be shown that for 

every error contained in the program, there is a set of test data 

that satisfies the criterion and is capable of showing the error. 

An optimal test criterion thus is one which is both reliable and conf- 

irmed. Exhaustive testing is both a reliable and confirmed test 
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criterion.  In practice, showing a particular criterion, which is not 

exhaustive, to be both reliable and confirmed may be difficult.  How- 

ever, the theory explains why testing all program statements, 

branches, loops, etc. may not be optimal test criteria. 

Howden [20] showed there to be no general procedure for 

obtaining a reliable test from a program.  Thus, the best possible may ; 

be test strategies which will work only for a particular class of 

programs.  Testing still remains a very important tool in software 

validation, despite these discouraging theoretical results.  In many 

applications there may be no substitute for testing, especially for 

very large programs.  In addition, where software is used in critical 

applications the testing may have to be performed in the operating 

environment. 

EXHAUSTIVE TESTING 

Exhaustive testing requires that all possible inputs belonging to the 

input domain be used.  Such a set of tests will also be reliable. 

Exhaustive testing, in theory, can guarantee software validity. 

Obviously both excess validation time and excess expense can become a 

problem.  Thus, due to the large number of possible inputs,- exhaustive 

testing may not always be feasible.  Also, it may be impossible to test 

for certain program behavior.  In fact, some programs may have infinite 

input domain so that exhaustive testing is a certain impossibility. 

An alternative, proposed by Boehm [1] suggests that every 

executable path in a program be exercised at least once.  This test 
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criterion however, may not expose errors due to control flow or path 

selection.  Also, the number of test cases required tends to be large 

and testing all executable paths at least once may be infeasible. 

Another alternative is to test a program with a large number of inputs 

which are randomly distributed over the input space.  The intention is 

that the results of a random sample will give a,reliable indication 

of program reliability.  Statistical methods can then be used to derive 

an estimate of reliability with corresponding confidence intervals. 

FUNCTIONAL TESTING 

Functional testing, the most widely used testing method consists of 

selecting an appropriate set of test inputs, executing the program 

and examining the outputs.  This selection of test inputs is based 

on a review of the software requirements, design, etc. 

The tests are selected to show that the software contains certain 

desired capabilities and characteristics.  In actual practice, the 

selection of these inputs is usually made by an experienced programmer, 

who has some idea of the sources of common errors.  In Reference 21, 

Goodenough suggests a procedure to select input test data via a 

decision table.  All possible combinations of conditions that can occur 

are tabulated.  As software development proceeds, the table is expanded 

Subsequently, test cases are selected such that all entries in the 

table are tested. 

Hetzel [22] has shown functional testing to be more attractive 

than criterion dependent testing, to be discussed below.  The 

attractiveness of a testing procedure depends on the selection of test 
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cases.  A certain programmer may choose test inputs based on his prior 

experience or the intended operation of the software.  Thus his test 

inputs may test only those parts of the program with which he is fam- 

iliar, possibly leaving some errors undetected.  It is seen that 

a methodological approach to the selection of input test data is 

required. 

CRITERION DEPENDENT TESTING 

In criterion dependent testing, test inputs are generated until a given 

test criterion is satisfied.  The test criterion is usually based on 

program structure.  One criterion often employed is to choose a set of 

inputs such that every statement in the program is executed at least 

once.  This criterion may not exercise all branches and not detect 

errors in program flow control. 

Possibly an improved criterion is to select the input set 

such that all branches are executed at least once [18]. 

This will guarantee also that all statements are executed 

at least once.  Howden also proposes a boundary test criterion based 

on the observation that a number of errors result from the handling of 

boundary conditions in loops.  These criteria are based on program stru- 

cture, and procedures for finding paths satisfying these criteria can be 

automated. 

A basic hypothesis for criterion dependent testing is that the program 

input domain can be partitioned into a number of equivalence classes with 

the property that a test of a representative in an equivalence class will 

test the entire class.  Thus, testing representatives from each equival- 
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ence class will be sufficient to test the program.  All the above ment- 

ioned criteria fail to have this property.  In fact these criteria fail 

to have the reliable and confirmed requirements discussed earlier.  The 

effectiveness of these criteria is still under debate and further 

research is required. 

Another approach to define test criterion is based on the type of errors 

which can be detected by the test data [23].  The type of error 

is defined by modifications to a program and these modifications are 

usually small changes at a single point in the program.  The modified 

programs are termed mutants. ■.  A set of test cases is said to be adequate 

if it identifies all mutants from the from the correct program.  This 

concept is similar to error seeding.  In error seeding, the seeded errors 

are planted into the program manually while the mutants are generated 

methodically.  Both techniques attempt to find a set of test cases that 

identifies these artificial errors. 

AUTOMATED SOFTWARE EVALUATION 

Ramamoorthy [24] broadly defines the characteristics of any comp- 

uting system into two categories, namely behavioral and structural char- 

acteristics. A program is typically specified by its input-output rel- 

ationship, which is a behavioral property.  The structure of the program 

however is usually a function of the software designer(s).  Ramamoorhty 

suggests that a program can be considered as the sum of its behavioral 

characteristics of the components on its structural form. Thus, since the 

complete validation of a program may not be feasible, the strategy will 
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be to attempt a partial validation of the program components using 

techniques that have the potential of automation. 

Many of the partial validation techniques presently used attempt 

to decompose the above mentioned characteristics into classes and 

then validate each separate class to a specified extent.  However, 

decomposition of behavioral characteristics is a difficult task. 

Fortunately, careful analysis of the structural characteristics 

may reveal useful information which could assist in the decomp- 

osition and validation strategies.  This analysis of structural 

characteristics lays the groundwork for most automated software 

evaluation procedures. 

Three underlying techniques form the basis for current software 

evaluation: 

1) Static analysis 

2) Dynamic analysis 

3) Simulation 

Static analysis is based on the examination of the design and pro- 

gram code.  Dynamic analysis is based on the examination of program 

behavior during execution. 

Static Analysis 

Static analysis includes a set of program analysis procedures 

directed towards the indictment of certain software attributes. 

The presence or absence of these attributes may imply a negative 

or positive quality concerning the software or possible sources 
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of error(s).  Static analysis primarily consists of the attempt 

to detect semantic and structural errors; the removal of obvious 

errors from the program in order to set up a configuration of the 

program for further analysis; and to identify questionable areas 

of the software which can be candidates for dynamic analysis. 

These features generally require a large amount of repetitive 

scanning of source information to be performed.  In actual prac- 

tice, in order to achieve efficiency, most software evaluation 

systems represent the programs in an internal database.  Thus, 

static analysis consists of two major components: (1) an input 

analyzer to produce the database, and (2) routines for performing 

the structural analysis. 

Analysis procedures are typically based on program and data flow. 

For program flow analysis, graph theory is usually employed where 

the program is represented by a graph and the nodes corres- 

pond to the statements and the edges correspond to the flow of 

control.  Thus, unreachable code and looping errors may be 

identified by analyzing the graph [25].  Data flow analysis 

is achieved by program optimization techniques [26] 

which attempts to discover mainly errors in variable references; 

for example, that all variables are properly initialized. 

Static analysis systems oftentimes utilize compilers to analyze 

the source code for syntax errors. Also, compilers are used to 

generate efficient code. In order to optimize the compilation, 

compilers are designed to save as little information as possible. 
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Thus, many program details such as interface parameters are not 

recorded at all.  Even if this information is saved during comp- 

ilation, it is discarded once the compilation is completed.  In 

order to generate the data base for diagnostic purposes, the 

penalty of compiling the entire program is incurred, even though 

only minor changes may have been made to several routines. 

Static analysis systems, on the other hand, are typically 

designed to document as much programming data as possible.  The 

data is usually stored in secondary storage.  As the source code 

is modified, only those parts of the data corresponding to the 

updates are changed.  This data also represents the current 

status of the program and can be used for maintenance as well 

as documentation purposes.  Custom- made analysis routines can 

be developed and can complement facilities already provided by 

the compiler. 

The philosophy then, is to search for attributes in the software 

which may represent common programming errors or poor programming 

practices.  Thus, static analysis systems are limited by their 

nature.  Other errors, possibly even trivial ones will remain 

undetected.  Also static analysis is unable to adjust its focus 

based on results found earlier.  In many cases this analysis will 

indicate only the existence of possible deviations because the 

feasibility of the path along which the deviation was detected 

cannot be easily determined.  These deviations would then require 

further analysis by other means.  In addition, most of this analysis 
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is designed to detect program structure and syntax errors while 

logical errors will not be detected. 

Dynamic Analysis 

Dynamic analysis involves the execution of programs and correspond- 

ing observation of run-time behavior.  This is intended to examine 

certain behavioral characteristics which are not examined in static 

analysis.  This analysis will involve both error diagnosis and the 

verification that performance requirements are being met.  It helps 

to detect and locate errors by noting the various steps that occurred 

during execution.  Paths which are traversed are recorded by the 

dynamic analyzer.  The amount of code not exercised by the test case 

is usually a good indication of test ineffectiveness.  Sections of 

code that are most frequently executed are identified for optimiza- 

tion purposes.  These objectives are often achieved by inserting 

tracking code (mostly counters) in the source code in order to 

observe run - time behavior.  This tracking code, especially for a 

large program, may affect the storage requirements and execution 

time of a program.  Thus, any interference because of this tracking 

code must be predictable and must not affect program output. 

Simulation 

This is a procedure wherein system hardware/software is modeled to 

study its characteristics.  Simulation procedures can and should 

be used throughout the development of software to assure that 

requirements are constantly being met.  During system design and 

analysis, simulation allows the designer to assess if system obj- 
G 
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ectives are being met by the set of derived requirements, test 

various proposed algorithms, and identify errors early in the 

design stages.  The structure of the simulation will obviously 

be dependent on application and operating environment.  References 

27 and 28 describe systems that provide tools to assist simulations 

and automated mechanisms for inserting models into simulation runs. 
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MEASURING AND ESTIMATING THE RELIABILITY 
OF COMPUTER SOFTWARE 

It is very likely that a large software system will have one 

or more bugs during debugging and testing and it is also very 

likely that one or more bugs will remain even after several 

years of operational use.  This is due, in part, to the fact 

that every executable branch and/or statement will probably not 

be exercized during software testing.  As the size of the software 

increases, the amount of coverage afforded by testing will decrease, 

This section will attempt to provide an estimate for the time 

required to debug software to a given level of reliability. 

As background, the model proposed by Jelinski and Moranda 

[5], and discussed in Section 2 is summarized 

below.  It is assumed that the software contains an initial 

number of errors, i.e. errors occurring at time t=0, E{0), and 

that the failure rate is proportional to the number of remain- 

ing errors in the program.  The failure rate, as given in Eq. 

(1), shows a linear dependence on E(0) and on the constant of 

proportionality, C.  The model assumes that an error when 

encountered is removed.  It is further assumed that during this 

error removal process, no new errors are introduced. 
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Equation (2), Section 2 provided the reliability function, 

namely: 

R(t) .« exp[ -C(E(0)-i+.l)t] 

From this, the failure distribution can be obtained as : 

F(t) = 1 - exp [-C(E(0)-i+l)t] 

Applying the basis of the model, i.e. every time a software 

error is encountered, it is removed with probability one, and 

since the failure rate is assumed proportional to the number 

of remaining errors, it can be seen, that the time between 

failures will tend to increase.  The time interval between 

the (i-l)st and the ith failure, t_i, will have a distribution 

of the form   1 - exp { -C[E{0)-i+l]t_i}. 

In order to effectively make use of this model, however, 

both C, the constant of proportionality and E(0), the number 

of initial errors must be known.  In actual circumstances 

this is not the case, and thus it is necessary to derive 

estimates for both C and E(0) using the time between failures. 

This section will deal with statistical aspects of the reliability 

model proposed by Jelinski and Moranda.  This model can be used to 

address the amount of time needed to resolve a given software to a 

certain level of reliability, i.e. amount of debug time necessary. 

Obviously, the values of E(0) and C are paramount to answer this 

question.  We assume first that these two parameters are known. 

Reliability, by definition, is measured on a probability scale, and 
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can be treated as such.  Thus, if  t_obj is the objective time 

for the software and tl the time to the first detected error, the 

probability that the software will perform to the objective can be 

expressed as: 

P[ tl > t_obj] = P_obj (14) 

To reach this objective level of reliability, the number of errors 

to be removed from the software is needed. If we call this number 

of errors r, then: 

exp [ -C(E(0) - r)t_obj = P_obj    (15) 

or: 

r = E(0) + (In P_obj)/(C*t_obj)        (16) 

where r is taken as the closest integer value satisfying the above 

equation.  Thus, r is a function of the parameters,E(0) and C, and 

also of the objective reliability P_obj and objective program operat- 

ing time t_obj.  Also, there are certain factors which affect the 

model but are difficult to include mathematically.  For example, there 

are finite amounts of time required to run the software, discover the 

errors, and locate and correct these errors.  The size of the soft- 

ware will have an impact as will the method of debugging.  Other 

factors which will affect the time to detect and correct errors in- 

clude the programming language, the type of inputs used, programming 

structure, expertise of the debugger and so on.  These parameters do 

not lend themselves to the inclusion in this model and are thus omit- 

-36- 



ted.  The model does take into account the time needed to detect 

these software errors. 

The probability of detecting an error in software prior to installation 

will be proportional to the probability of exercizing the particular 

segment of code containing the bug.  If exhaustive testing were 

employed, all errors would be detected in the validation phase, however 

as previously mentioned, exhaustive testing may be an impractical or 

even impossible task.  This probability of detection will be based 

on the criticality (i.e. frequency of execution) and failure rate 

of individual program execution paths.  With this scenario, the "most 

obvious" or most probable errors will be detected first, i.e. 

relatively small time to failure, while "embedded" errors, e.g. 

seldom called routines or utility modules will be the most difficult 

or least probable to detect. 

Equation (16) provides a method to determine the number of errors 

that are to be removed from the software.  Let the time between 

the detection of the i th and (i+1) st  error be expressed as X(i+1). 

Let this  also include the time required to remove the error. 

Then the total time required to remove all r errors in the soft- 

ware , X_tot , can be expressed as: 

X_tot = XI + X2 + X3 + ... + Xr 

If we assume that these times are independent of each other, then 

the distribution of the Xi's can be obtained as the convolution of 

the distribution of the r individual times.  This density function 

-37- 



can then be given as: 

f(Xi) = C[E(0)-i+'l] * exp [-C (E (0)-i+1) t] 

The moment generating function of this density function 

can be obtained by: 

M_Xi(y) = Expected [exp (y*xi)'] 

C(E(0)-i+l) 

C(E(0)-i+l) -y 

Thus the moment generating function of the total time, X_tot 

can be formed as the product of the individual generating 

functions: r 

X tot(y) = || 
C(E(0)-i+l) 

M  
(=1 C(E(0)-i+l) - y 

In order to obtain the inverse of M_X_tot(y), partial fraction 

expansion is necessary.  This proves to be a long and tiring 

procedure and only the result is given here; 

where the first factor in the summation is not evaluated at 

i=j.  Needless to say, this is.a lengthy expression for the 

distribution of X_tot, and in many cases it may be more 

pragmatic to deal with an estimate of the bounds of the 
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distribution.  To discuss the bounds on the distribution, it 

is necessary to utilize theorems developed by Barlow [29]] 

concerning increasing failure rates.  The distributions for 

the Xi's, i=lr2#...,r are all increasing failure rates.  This 

is due to the fact that the model assumes the failure rate to 

be proportional to the number of remaining errors.  The 

distribution of the total failure times, X_tot is the convolut- 

ion of the individual Xi's and thus this distribution itself is 

an increasing failure rate, which has a mean, m_X_tot, given 

by: 

m_X_tot = (1/C)*[(l/(E(0)-r+l) + (1/(E(0)-r+2) 

+...+ (1/E(0))] 

Again, using a theorem from Reference 29, a largest bound on 

the distribution, F(X_tot), can be obtained as: 

P(X_tot) < 1 - exp[-X_tot/m_X_tot] 

For a least bound, Theorem 2.4.5 of the same reference yields: 

F(X_tot) > 1 - exp[-a*X_tot] 

where a is the solution of: 

exp[-a*X_tot] + a*m_X_tot =1 

As a specific application of these results, consider the case 

when r = E(0), that is, the software is debugged until all errors 

are removed.  Also, let C, the constant of proportionality be 

-39- 



unity.  Thus, the distribution of the time to debug becomes: 

en 

and, correspondingly, the upper bound on the distribution can be 

written as: 

F(X_tot) < 1 - exp[-X_tot/m_X_tot] 

or 

F(X_tot) < 1 - exp[-X_tot/(  (1/i)] 

The lower bound on the distribution can be written as: 

P(X_tqt) > 1 - exp[-a*X_tot] 

where a is the solution of: 

exp[-a*X_tot] + a*[  (1/i)] = 1 

These equations are plotted for the specific cases of E(0) = 2, 

5, and 10 in Figures 4, 5 and 6 respectively. 
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F(X tot) 

I 

Fig. 4 Distribution of time to debug with bounds for number of 

of initial errors = 2, 



x tot 

Fig. 5 Distribution of time to debug with bounds for number of 

initial errors = 5, 



F(x__tOt) 

I 

to 

x tot 

Fig. 6 Distribution of time to debug with bounds for number of 

initial errors = 10, 



For the specific case of E(0) = 2, the distribution becomes: 

F(X_tot) = 2*{ [l-exp(-X_totj] - 0'.5*[l-exp(-2*X_tot)] } 

and the upper and lower bounds are, respectively: 

F(X_tot) < 1 - exp[-X_tot/1.5] 

F{X_tot) > 1 - exp[-a*X_tot] 

where a is the solution of: 

exp[-a*X_tot] ■+. 1.5*a = 1 

This distribution for E(0) = 2 is tabulated below.  In addition, 

the distribution with corresponding upper and lower bounds is plotted 

in Figure 4a. 

X tot  |  F{X tot) 

0.0        | 0.000 
0.5        | 0.155 
1.0        | 0.399 
1.5        | 0.604 
2.0        | 0.748 

X tot  |  F(X tot) 

2.5         | 0.843 
3.0         | 0.903 
3.5         | 0.940 
4.0         | 0.960 

■4.5         | 0.987 

If some arbitrary decision rule is then chosen, e.g. probability of 

0.95 or greater, then an estimate of the time to debug software can 

be formulated.  Thus, the value of the distribution will give the 

probability that the time to totally debug the software will take on 
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a value equal to or less than X_tot. 

Limitations of the model 

Of course, the value of or an estimate of the number of initial errors 

present in the software is required for this model to be useful. 

Jelinski [6] has obtained estimates of E(0) by utilizing the times 

between software errors, however these estimates require caution in 

their use [6].  Another method to estimate the number of initial errors 

in a program is proposed by Halstead [30].  This interesting approach 

is to assume a programmer can handle on the average five "concepts" of 

information simultaneously.  Based on this, Halstead derived n, the 

mean number of mental discriminations between potential errors in progr- 

amming.  The total number of mental discriminations required to develop 

a program, N, is estimated based on the total number of statements, 

operands, etc. in the software.  The value of N, as developed by 

Halstead, takes into account the program volume and the level of 

the programming (i.e. program difficulty).  Given n and N for a 

program E(0), the estimated number of initial errors is given by: 

E(0) = n/N 

Surprisingly, this prediction agrees well with observed experimental 

data [30].  Measures of this type, however, are not suitable for 

accurate predictions of software reliability. They are based on obser- 

vations with software having similar characteristics and the accuracy 

of such a measure on a particular program cannot be easily determined. 

Thus, these measures should only be used as a rough estimate of 
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reliability. 

A further limitation of the model occurs since the derivation assumes 

that an error, when encountered is removed.  It is further assumed tha 

during this error removal process, no new errors are introduced. 
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SUMMARY 

Numerous models for estimating the reliability of computer 

software have been proposed by various authors.  Several have 

been discussed and one in particular, the widely-accepted 

Jelinski-Moranda is expanded on.  This model provides an est- 

imate of the distribution of time to debug software given that 

the reliability objectives are stated. 

Also presented was .a discussion of the software development 

process as well as a discussion of methods which are currently 

employed in the validation of software. 
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