
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1983

The measurement and estimation of the reliability
of computer software.
Larry S. Musolino

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Musolino, Larry S., "The measurement and estimation of the reliability of computer software." (1983). Theses and Dissertations. Paper
1923.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228649471?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F1923&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1923&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1923&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F1923&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/1923?utm_source=preserve.lehigh.edu%2Fetd%2F1923&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

THE MEASUREMENT AND ESTIMATION OF THE
RELIABILITY OF COMPUTER SOFTWARE

by

Larry S. Musolino

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Electrical Engineering

Lehigh University

1983

ProQuest Number: EP76196

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest

ProQuest EP76196

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

This thesis is accepted and approved in partial fulfillment

of the requirements for the degree of Master of Science in

Electrical Engineering.

_^»ssate>__??U-M^
(date)

Chairman of Department

ABSTRACT

This thesis will deal with the measurement and estimation of

the reliability of computer software. The software portion of

a computer system is the instruction or code used to program

the hardware portion. The separation between hardware and software

in a computer system with respect to reliability is a distinct one.

Much theory and methodology has been developed and applied

in the area of hardware reliability, however the basic differences

between hardware and software reliability requires the development

of models specifically geared for the measurement of software

reliability.

-3-

TABLE OF CONTENTS

INTRODUCTION p 5

STATISTICAL MODELS AND WORK TO DATE p 11

THE SOFTWARE DEVELOPMENT PROCESS p 19

CURRENT METHODS OF SOFTWARE TESTING p 22

MEASURING AND ESTIMATING THE RELIABILITY

OF COMPUTER SOFTWARE p 34

SUMMARY . . .''•' -P 47:

REFERENCES AND BIBLIOGRAPHY -.p. 48

VITA . . .p 52

-4-

INTRODUCTION

Until recently, advances in hardware capabilities and reliability have

not been matched by corresponding advances in the software area. To

make matters worse, software is now being applied to solve larger and

more complicated problems. Also, the use of computers is finding

more widening applications in almost every aspect of daily life.

With respect to large computer systems, the cost of computer software

as part of total system cost is increasing faster than the associated

hardware. Currently, it is estimated that U.S. users spend over 10

billion dollars for software every year [1]. The ratio of

software expenditures to hardware expenditures is currently estimated

at four to one. This ratio is predicted to rise to nine to one by

1985 [1]. These exorbitant software costs can be mainly

attributed to software maintenance and testing (See Figure 1).

tA AiM-reMAKicE,

Figure 1. Typical breakdown of software costs

-5-

The costs of maintenance (fixing errors and adding changes after

software is installed) and testing account for approximately 75 %

of the cost of software. For example, the SAGE system, a military

defense system, had an average software maintenance cost of

approximately 20 million dollars per year after ten years of oper-

ation, compared to an initial development cost of 250 million dollars

[2]. In typical releases of the IBM OS/360 operating

system, approximately 60 % (and as high as 75 %) of the software

costs were incurred after system installation. For both these exam-

ples, the costs mentioned are for maintenance only. The maintenance

and testing costs probably exceeded 80 % of the total costs.

It is obvious that the high cost of software is mainly due to

reliability problems. In fact, in many instances the situation exists

where software reliability is the limiting factor in the total

reliability of a computer system. Thus, the need for a formalized

method for measuring and estimating the reliability of computer

software is apparent.

If the study of hardware reliability is taken as a starting point

because a large amount of theory has been developed, then

one would consider the possibilities of applying these

results to the analysis of software reliability. Several attempts

at this course of action have led to only limited success [3].

The primary reason for this limited success is

the significant differences between hardware and software

reliability, especially with respect to failure mechanisms.

-6-

A hardware component (e.g. integrated circuit) is assumed

to have failed if a certain parameter or characteristic is

found to have fallen out of a specified range or interval. This

can occur either through catastrophic failure or a gradual drift

out of specification. Software, however does not actually

fail. Rather, it may contain one or more errors. The error has

been present from the outset and when that section of the program

containing the error is executed the error becomes apparent.

The error(s) may or may not cause system failure. Thus,

software remains the same as it was before an error was

discovered, whereas hardware undergoes a change at the

instant of failure.

Another inherent difference between hardware and software

is with respect to testing. If software could be tested

exhaustively for every possible input (an impractical task

in most instances), then that particular software could

be considered error free, i.e. never causing system failure.

Hardware, however, could fail following extensive and even

exhaustive testing.

A third difference is redundancy. Hardware reliability

can be significantly improved through redundancy (i.e.

parallel connection of identical components). Redundancy in

software is meaningless since the same error or errors would be

present in identical software.

If we formulate a reliability model where it is assumed that hardware

-7-

reliability is independent of software reliability, then the total

system reliability is the product of the hardware and software

reliabilities. In practice, computer systems will utilize time-

tested and established hardware whereas the software is specialized

and still developing. Because of this, software problems may

manifest themselves during all but possibly the last stages of a

system's life. Software reliability measurement is crucial during

the debugging and testing stages of system development. As an

example, the question of the amount of money and time to be spent

on debugging and testing can be answered only if reasonable

measurements and accurate predictions of the reliability of the

software can be made. Also, software reliability measurement is

necessary to provide information and protection to current and

future users of computer systems.

In an attempt to satisfy these goals, the development of techniques

and testing procedures to prove that a computer program is error-

free would be very desirable. However, for large programs or groups

of programs this methodology may not be practical. For example,

Dijkstra [4] establishes the correctness of a six-line

program through a proof which is two pages long. The complete test-

ing of a program may also not be feasible since a large program can

be subjected to only a small percentage of all possible inputs.

There is a very high probability that a large software system will

have one or more errors during the debugging and testing stages and

it is also likely that one or more bugs will remain even following

several years of field operation. It is in recognition of these

-8- ■

difficulties that computer programs which are not perfect are accept-

ed and more attention is addressed to the problem of measuring the

reliability of computer programs.

Since computer software does not age with time, it is reasonable

to assume that the failure rate is constant between points in time

where changes are made. Each time an error is detected, an attempt

is made to eliminate the error, with the goal of reducing the overall

failure rate. In practice, however, an attempt to eliminate an

observed error may in fact introduce new errors causing the failure

rate to actually increase. If we assume that tl, t2, ... are points

in time at which errors are detected then a possible model for the

failure rate of the software would be as shown in Figure 2.

\-M_vjRe.
I

t, tl ^ t,

Figure 2. Failure rate as bugs are detected

Reliability models of the type above are difficult to work with

and are not discussed extensively in the literature. Instead, the

above model is simplified by assuming that no new errors are intro-

-9-

duced when software is modified. This assumption causes the failure

rate to resemble a step function, as shown in Figure 3.

RATE.

t, -> t

Figure 3. Failure rate as bugs are removed

This fail'ure rate forms the basis for the reliability models prop-

osed by Jelinski-Moranda and Shooman. These, as well as several oth

models are discussed in the next section.
er

-10-

STATISTICAL MODELS
AND

WORK TO DATE

Several authors have formulated models for the reliability of

software and a few are described here:

A. Jelinski-Moranda Model

This model [5,6,7] has received widespread attention

and use. This model also forms the basis for the methodologies

proposed herein.

It assumes an exponential probability density function (pdf)

for software bugs. The software failure rate for the i th

bug, lambda(i), is assumed to be proportional to the number

of bugs remaining in software, thus

lambda(i)=C[E(0). - (i-1)] (1)

where lambda(i) is the software failure rate for the i th
bug,

C is a proportionality constant,

E(0) is the number of initial errors, i.e. the
number of errors present at time t=0.

Using the exponential model and a failure rate given by

equation (1), the relationship between reliability function R(t)

and failure rate lambda(t), namely:

-11-

R(t) = exp[-/ lambda(x)dx]
o

gives:

R(t) =exp[-C(E(0)-i+l)t] (2)

The mean time to failure (MTTF) can then be derived as:

MTTF = J R(t)dt

= r^expt -C(E(0)-i+l)t]dt
Jo

-1 exp[-C(E(0)-i+l]
= { }

C(E(0)-i+l)

1
= (3)

C(E(0)-i+l)

Thus the MTTF is seen to be inversely proportional to the

number of initial errors and number of remaining errors.

B. Shooman Model

This model [8,9] assumes that the total number of machine

language instructions is a constant, the number of errors at

the start of integration is a constant and decreases as errors

are corrected. No new errors are introduced during the process

of testing. The difference between the errors initially present

and cumulative errors, corrected represent the residual errors.

The failure rate is then assumed proportional to the number of

these residual errors.

Thus: eres(x) = e(0) - ecum(x) (4)

-12-

where E(0) = the number of initial errors

e(0) = the number of errors present at
time x=0 normalized to the
total number of machine
language instructions, I.

= E(0) /I.

eres(x) = number of residual errors present
at time x, normalized by I.

ecum(x) = Number of cumulative errors
corrected by time x, normalized
by I.

x = the debugging time since the
start of system integration.

Since the failure rate is assumed proportional to the number of

residual errors:

lambda(t) = D eres(x)

where D = constant of proportionality

Thus the reliability function can be found by:

R(t) = exp[-J lambda(x)dx]

= exp[-/ D eres(x)dx] (6)
Jo

And, as assumed, since the hazard rate is assumed independent of

time, a constant failure rate is obtained:

1 l
MTTF = = — (7)

lambda(t) D eres(t)

In order to estimate the mean time to failure, equation (4) is

substituted in equation (7) producing:

1 1

D eres(t) D [e (0) - ecum (x)]

-13-

1
= (8)

D[(E(0)/I) - ecum.(x)]

There are two unknowns in Equation (8), namely D and E(0).

There are various methods for estimating these parameters,

two of which are the moment matching method [10] and the

maximum likelihood method [8], The moment matching method

is discussed here:

Consider two debugging intervals xl and x2 such that xl < x2,

Then:

and

Tl 1

nl D [e(0) - ecum(xl)]

T2 1

n2 D [e (0) - ecum(x2)]

(9)

(10)

where Tl, T2 = system operating time
corresponding to xl and x2.

nl, n2 = number of software errors
during xl and x2.

Dividing equation (9) by (10) , recalling that E(0) = I e{0) and

letting alpha = (Tl n2)/{T2 nl) = MTTF1/MTTF2 yields:

Tl n2 e(0) — ecum(x2)
alpha = = —

.T2.nl e(0) - ecum(xl)

e(0) - ecum(x2)
e(0) = ; + ecum(xl)

alpha

-14-

e(0) - ecum(x2) alpha ecum(xl)
I e(0) = I{ '+ ~ }

alpha alpha

I e(0) alpha * ecum(xl) - ecum(x2)
E{0) = + i { - }

alpha alpha

alpha * ecum(xl) - ecum(x2)
E(0) = I { } (11)

alpha - 1

This provides an estimate for E(0). To estimate D, we

can combine this result, Equation (11) with Equation (9)

to produce:

nl
D - _:

Tl {[E(0)/I] - ecum(xl)}

This provides an estimate for D.

Both the Shooman and Jelinski-Moranda models have the same basic

structure, each representing the failure rate as a decreasing

step function. In the Shooman model, however, the number of

errors corrected instead of the number of errors found to

have occurred is used to estimate the reliability (number of

remaining errors). The distinction between the number of

errors which have occurred and the number of errors removed

is needed when the errors are not corrected at the time they

are discovered.

-15-

C. SCHICK MODEL

The Schick Model [11] assumes a failure rate

proportional to the remaining errors and debugging

time.

Let t(i) be the time interval between the (i-1) and

i th error.

Then

lambda(t) =F[E(0) - (i-1)] *x(i) (12)

where F is a proportionality
constant

The reliability function can be obtained by:

R(t) = exp [flambda(x)dx]

exp [-F * (E(0) - i + 1] * t * t
= __ _ _ „ {13)

2

MTTF = / R(t)dt

pi
, —— (14)
2 * F[E (0) - i '+ 1]

There are advantages and disadvantages in assuming

the hazard rate proportional to the debugging time.

Application to existing data is probably the optimal

way to decide if this method is suited for a

particular application.

Several more models have been proposed in the literature by various

authors [7]. In addition, Bayesian models have also

-16-

been proposed [12]. The true value of any particular model

lies in its ability to predict with a desired accuracy. Since data

is relatively scarce, software error documentation is sparse (and there

is a lack of consistency in what data is available), experimental

validation of these models is limited. One such attempt has been

reported [7] wherein nine models were compared. The error

data used by Sukert came from the Software Problem Reports (SPRs)

during the software development of a large command and control system.

The software was written in Jovial J4 code and consisted of approx-

imately 250 routines and over 100,000 lines of code. The data was

restructured so that each entry corresponded to a single error and

entries due to non-software errors were deleted. The data was then

sorted according to.the date of the SPR in order to provide a time-

wise input to the models. Data on CPU time was not available and a day

was considered the basic unit of debugging time.

Several models were then compared and the following conclusions were

drawn (The Shooman model could not be compared due to the unavailabil-

ity of CPU data) by Sukert:

1) The Jelinski-Moranda and Schick models provided higher

predictions for the number of remaining errors than was

actually the case.

2) The Jelinski-Moranda and Schick models appeared to

provide fairly accurate results for the number of

remaining errors where the testing phase was short or

program length relatively short.

-17-

3) For programs where the testing phase was long or progr-

am length was large, a slightly modified version of the

Jelinski-Moranda model provided the best prediction of all

the models studied for the number of remaining errors in

the software.

It should be noted that the study was limited in scope and further

research of this kind is required before any concrete assessments

can be made.

-18-

THE SOFTWARE DEVELOPMENT PROCESS

The software development process can be organized into the following

six phases:

1) System Requirement Analysis

2) Software Specifications

3) Software Design

4) Software Implementation

5) Software Validation

6) Software Operation and Maintenance

The system requirements explicitly state the performance requirements,

rules, and possibly criteria for evaluating the final product. The

requirements are used as the standard against which the acceptance of

a product is based. The system requirements are analyzed to determine

if they are to be included in hardware or software subsystems.

Software subsystem requirements are formulated at this point. These

requirements now become the software specifications and serve as the

basis for software design, implementation, validation and documenta-

tion. Research has shown [13,14] that most software errors

(up to 70 %) are introduced due to incomplete specifications. Most

of these errors are not detected until well into the development

process. Of course, the cost to find and correct these errors

-19-

increases as development time increases.

Following software specification, software design begins. This design

consists mainly of the algorithms, data structures-and formulations

of specific functions on a particular computer system. A recently

developed software design technique emphasizes top down design to

minimize logical errors through rigid structuring and a sequence

of steps designed to break each task into a number of smaller tasks,

thus affecting "modular" design [15,16].

Software implementation consists of coding programs according to the

software design. It is in this step that a structured program may

improve reliability and productivity. Also, a high level language is

chosen, as well as programming standards. The errors resulting from

software implementation are, in general, easier and relatively inexp-

ensive to discover and correct.

Software validation is an unnecessary step if the previous four phases

have been executed error - free. However, this is very often not the

case. Validation consists of demonstrating that the software meets

the previously established requirements. This will consist of either

code analysis or testing, or both. Code analysis or testing refers

to whether or not program execution is required. Code analysis will

typically consist of program and flow analysis, i.e. statement never

reached, variable never initialized, etc. Code testing will consist

of verifying that the program actually executes to implement the est-

ablished requirements (i.e. input and output specifications). Much

-20-

research has recently been devoted to "proving" a program is correct

[17], however this approach has been used only in small

programs.

The testing of a program consists of executing the program with cert-

ain inputs and checking the respective outputs for validity. In

order for this to guarantee correctness, it implies that all

"necessary" test cases are included and the number of test cases is

reasonable. Testing of a program for every possible input combina-

tion is not always a feasible alternative. Finding a small subset

of possible inputs for use in program testing is a current area of

active research [18]. Software testing and validation is

discussed in more detail In the following section.

Software operation and maintenance refers to the time period following

the "installation" of software. Errors may be detected by the cust-

omer/other modifications may be due to changing or mis-interpreted

requirements. Changes in the software, once installed, may introduce

additional errors, and after a certain point it may be cost effective

to develop an entirely new system.

-21-

CURRENT METHODS OF SOFTWARE TESTING

Software, in general, has had a radical increase in complexity in the

last 10.years. Software testing has undergone a corr-

esponding increase. Previously, software testing was an informal

process where the programmer would exercise his code against a small

set of arbitrary test cases. As the volume and complexity of software

has increased, it has become clear that a formal and thorough proced-

ure for software testing is increasingly important.

Software testing now has more formal procedures:

1) Software testing is now performed over as much of the

development cycle as possible.

2) Testing is now more formalized with specifically

identified activities.

3) Some aspects of software testing are being performed

by organizations independent of the software designer

or programmer.

This section will discuss the current software validation techniques

which are being employed. Software validation is one approach taken

-22-

towards the goal of achieving reliable software. Of course, the approach

of improved design and implementation to achieve reliable software is

preferred.

Software validation consists simply of ensuring that the particular '

software module being tested meets its specific requirements. Since

a major problem in dealing with large software systems is their size

and complexity, automation and the ability to automate validation

techniques is discussed. In dealing with software validation, it is

important to realize the types of errors encountered and how they might

be introduced. A software error is some mechanism which causes the

software to deviate from its intended program behavior. These errors

can be broadly sub-divided into performance and logical errors. The

former are errors which lead to failures where results are not

produced within specified limits (e.g. time or space). The latter are

errors which may be introduced through implementation. Logical errors

can.be further divided as:

a) Control flow errors: these errors may result from a

failure to test for a certain condition, and may

result in the execution of erroneous programming.

b) Path selection errors: these errors may occur due to

a condition being incorrectly expressed, thus, an

action is sometimes performed (or not performed) under

erroneous conditions.

c) Incorrect action: these errors may result when a

required computation is either not performed or performed

-23-

incorrectly,

d) Interface errors:- these errors may occur if a calling

and called module (e.g. subroutines) are inconsistent

with each other.

A similar classification of errors is proposed in Reference 19.

PROGRAM TESTING

Program testing is the process of exercising a program with a set of

inputs and checking the corresponding outputs. Software program testing

is currently an area of very active research, especially with respect to

the selection of input test sets. A set of test data is optimal if it

detects errors in a program whenever it is incorrect. Using the

notation given by Howden [20], let P be a program to implement

a function F with domain D. Then T, a certain test set which is a sub-

set of D, is a reliable test iff V d £ T' P(d) = F(d) implies y d£ D

that P(d) = F(d).

An optimal test criterion is one that generates reliable tests. Good-

enough [21] has proposed that a test criterion C is reliable

if it can be shown that every set of test input T is executed

successfully by the program or every set is executed unsuccessfully.

C is a confirmed criterion if and omly if it can be shown that for

every error contained in the program, there is a set of test data

that satisfies the criterion and is capable of showing the error.

An optimal test criterion thus is one which is both reliable and conf-

irmed. Exhaustive testing is both a reliable and confirmed test

■ ■ ■ -24- ■

criterion. In practice, showing a particular criterion, which is not

exhaustive, to be both reliable and confirmed may be difficult. How-

ever, the theory explains why testing all program statements,

branches, loops, etc. may not be optimal test criteria.

Howden [20] showed there to be no general procedure for

obtaining a reliable test from a program. Thus, the best possible may ;

be test strategies which will work only for a particular class of

programs. Testing still remains a very important tool in software

validation, despite these discouraging theoretical results. In many

applications there may be no substitute for testing, especially for

very large programs. In addition, where software is used in critical

applications the testing may have to be performed in the operating

environment.

EXHAUSTIVE TESTING

Exhaustive testing requires that all possible inputs belonging to the

input domain be used. Such a set of tests will also be reliable.

Exhaustive testing, in theory, can guarantee software validity.

Obviously both excess validation time and excess expense can become a

problem. Thus, due to the large number of possible inputs,- exhaustive

testing may not always be feasible. Also, it may be impossible to test

for certain program behavior. In fact, some programs may have infinite

input domain so that exhaustive testing is a certain impossibility.

An alternative, proposed by Boehm [1] suggests that every

executable path in a program be exercised at least once. This test

-25-

criterion however, may not expose errors due to control flow or path

selection. Also, the number of test cases required tends to be large

and testing all executable paths at least once may be infeasible.

Another alternative is to test a program with a large number of inputs

which are randomly distributed over the input space. The intention is

that the results of a random sample will give a,reliable indication

of program reliability. Statistical methods can then be used to derive

an estimate of reliability with corresponding confidence intervals.

FUNCTIONAL TESTING

Functional testing, the most widely used testing method consists of

selecting an appropriate set of test inputs, executing the program

and examining the outputs. This selection of test inputs is based

on a review of the software requirements, design, etc.

The tests are selected to show that the software contains certain

desired capabilities and characteristics. In actual practice, the

selection of these inputs is usually made by an experienced programmer,

who has some idea of the sources of common errors. In Reference 21,

Goodenough suggests a procedure to select input test data via a

decision table. All possible combinations of conditions that can occur

are tabulated. As software development proceeds, the table is expanded

Subsequently, test cases are selected such that all entries in the

table are tested.

Hetzel [22] has shown functional testing to be more attractive

than criterion dependent testing, to be discussed below. The

attractiveness of a testing procedure depends on the selection of test

-26-

cases. A certain programmer may choose test inputs based on his prior

experience or the intended operation of the software. Thus his test

inputs may test only those parts of the program with which he is fam-

iliar, possibly leaving some errors undetected. It is seen that

a methodological approach to the selection of input test data is

required.

CRITERION DEPENDENT TESTING

In criterion dependent testing, test inputs are generated until a given

test criterion is satisfied. The test criterion is usually based on

program structure. One criterion often employed is to choose a set of

inputs such that every statement in the program is executed at least

once. This criterion may not exercise all branches and not detect

errors in program flow control.

Possibly an improved criterion is to select the input set

such that all branches are executed at least once [18].

This will guarantee also that all statements are executed

at least once. Howden also proposes a boundary test criterion based

on the observation that a number of errors result from the handling of

boundary conditions in loops. These criteria are based on program stru-

cture, and procedures for finding paths satisfying these criteria can be

automated.

A basic hypothesis for criterion dependent testing is that the program

input domain can be partitioned into a number of equivalence classes with

the property that a test of a representative in an equivalence class will

test the entire class. Thus, testing representatives from each equival-

-27-

ence class will be sufficient to test the program. All the above ment-

ioned criteria fail to have this property. In fact these criteria fail

to have the reliable and confirmed requirements discussed earlier. The

effectiveness of these criteria is still under debate and further

research is required.

Another approach to define test criterion is based on the type of errors

which can be detected by the test data [23]. The type of error

is defined by modifications to a program and these modifications are

usually small changes at a single point in the program. The modified

programs are termed mutants. ■. A set of test cases is said to be adequate

if it identifies all mutants from the from the correct program. This

concept is similar to error seeding. In error seeding, the seeded errors

are planted into the program manually while the mutants are generated

methodically. Both techniques attempt to find a set of test cases that

identifies these artificial errors.

AUTOMATED SOFTWARE EVALUATION

Ramamoorthy [24] broadly defines the characteristics of any comp-

uting system into two categories, namely behavioral and structural char-

acteristics. A program is typically specified by its input-output rel-

ationship, which is a behavioral property. The structure of the program

however is usually a function of the software designer(s). Ramamoorhty

suggests that a program can be considered as the sum of its behavioral

characteristics of the components on its structural form. Thus, since the

complete validation of a program may not be feasible, the strategy will

-28-

be to attempt a partial validation of the program components using

techniques that have the potential of automation.

Many of the partial validation techniques presently used attempt

to decompose the above mentioned characteristics into classes and

then validate each separate class to a specified extent. However,

decomposition of behavioral characteristics is a difficult task.

Fortunately, careful analysis of the structural characteristics

may reveal useful information which could assist in the decomp-

osition and validation strategies. This analysis of structural

characteristics lays the groundwork for most automated software

evaluation procedures.

Three underlying techniques form the basis for current software

evaluation:

1) Static analysis

2) Dynamic analysis

3) Simulation

Static analysis is based on the examination of the design and pro-

gram code. Dynamic analysis is based on the examination of program

behavior during execution.

Static Analysis

Static analysis includes a set of program analysis procedures

directed towards the indictment of certain software attributes.

The presence or absence of these attributes may imply a negative

or positive quality concerning the software or possible sources

-29-

of error(s). Static analysis primarily consists of the attempt

to detect semantic and structural errors; the removal of obvious

errors from the program in order to set up a configuration of the

program for further analysis; and to identify questionable areas

of the software which can be candidates for dynamic analysis.

These features generally require a large amount of repetitive

scanning of source information to be performed. In actual prac-

tice, in order to achieve efficiency, most software evaluation

systems represent the programs in an internal database. Thus,

static analysis consists of two major components: (1) an input

analyzer to produce the database, and (2) routines for performing

the structural analysis.

Analysis procedures are typically based on program and data flow.

For program flow analysis, graph theory is usually employed where

the program is represented by a graph and the nodes corres-

pond to the statements and the edges correspond to the flow of

control. Thus, unreachable code and looping errors may be

identified by analyzing the graph [25]. Data flow analysis

is achieved by program optimization techniques [26]

which attempts to discover mainly errors in variable references;

for example, that all variables are properly initialized.

Static analysis systems oftentimes utilize compilers to analyze

the source code for syntax errors. Also, compilers are used to

generate efficient code. In order to optimize the compilation,

compilers are designed to save as little information as possible.

-30-

Thus, many program details such as interface parameters are not

recorded at all. Even if this information is saved during comp-

ilation, it is discarded once the compilation is completed. In

order to generate the data base for diagnostic purposes, the

penalty of compiling the entire program is incurred, even though

only minor changes may have been made to several routines.

Static analysis systems, on the other hand, are typically

designed to document as much programming data as possible. The

data is usually stored in secondary storage. As the source code

is modified, only those parts of the data corresponding to the

updates are changed. This data also represents the current

status of the program and can be used for maintenance as well

as documentation purposes. Custom- made analysis routines can

be developed and can complement facilities already provided by

the compiler.

The philosophy then, is to search for attributes in the software

which may represent common programming errors or poor programming

practices. Thus, static analysis systems are limited by their

nature. Other errors, possibly even trivial ones will remain

undetected. Also static analysis is unable to adjust its focus

based on results found earlier. In many cases this analysis will

indicate only the existence of possible deviations because the

feasibility of the path along which the deviation was detected

cannot be easily determined. These deviations would then require

further analysis by other means. In addition, most of this analysis

-31-

is designed to detect program structure and syntax errors while

logical errors will not be detected.

Dynamic Analysis

Dynamic analysis involves the execution of programs and correspond-

ing observation of run-time behavior. This is intended to examine

certain behavioral characteristics which are not examined in static

analysis. This analysis will involve both error diagnosis and the

verification that performance requirements are being met. It helps

to detect and locate errors by noting the various steps that occurred

during execution. Paths which are traversed are recorded by the

dynamic analyzer. The amount of code not exercised by the test case

is usually a good indication of test ineffectiveness. Sections of

code that are most frequently executed are identified for optimiza-

tion purposes. These objectives are often achieved by inserting

tracking code (mostly counters) in the source code in order to

observe run - time behavior. This tracking code, especially for a

large program, may affect the storage requirements and execution

time of a program. Thus, any interference because of this tracking

code must be predictable and must not affect program output.

Simulation

This is a procedure wherein system hardware/software is modeled to

study its characteristics. Simulation procedures can and should

be used throughout the development of software to assure that

requirements are constantly being met. During system design and

analysis, simulation allows the designer to assess if system obj-
G

-32-

ectives are being met by the set of derived requirements, test

various proposed algorithms, and identify errors early in the

design stages. The structure of the simulation will obviously

be dependent on application and operating environment. References

27 and 28 describe systems that provide tools to assist simulations

and automated mechanisms for inserting models into simulation runs.

-33-

MEASURING AND ESTIMATING THE RELIABILITY
OF COMPUTER SOFTWARE

It is very likely that a large software system will have one

or more bugs during debugging and testing and it is also very

likely that one or more bugs will remain even after several

years of operational use. This is due, in part, to the fact

that every executable branch and/or statement will probably not

be exercized during software testing. As the size of the software

increases, the amount of coverage afforded by testing will decrease,

This section will attempt to provide an estimate for the time

required to debug software to a given level of reliability.

As background, the model proposed by Jelinski and Moranda

[5], and discussed in Section 2 is summarized

below. It is assumed that the software contains an initial

number of errors, i.e. errors occurring at time t=0, E{0), and

that the failure rate is proportional to the number of remain-

ing errors in the program. The failure rate, as given in Eq.

(1), shows a linear dependence on E(0) and on the constant of

proportionality, C. The model assumes that an error when

encountered is removed. It is further assumed that during this

error removal process, no new errors are introduced.

-34-

Equation (2), Section 2 provided the reliability function,

namely:

R(t) .« exp[-C(E(0)-i+.l)t]

From this, the failure distribution can be obtained as :

F(t) = 1 - exp [-C(E(0)-i+l)t]

Applying the basis of the model, i.e. every time a software

error is encountered, it is removed with probability one, and

since the failure rate is assumed proportional to the number

of remaining errors, it can be seen, that the time between

failures will tend to increase. The time interval between

the (i-l)st and the ith failure, t_i, will have a distribution

of the form 1 - exp { -C[E{0)-i+l]t_i}.

In order to effectively make use of this model, however,

both C, the constant of proportionality and E(0), the number

of initial errors must be known. In actual circumstances

this is not the case, and thus it is necessary to derive

estimates for both C and E(0) using the time between failures.

This section will deal with statistical aspects of the reliability

model proposed by Jelinski and Moranda. This model can be used to

address the amount of time needed to resolve a given software to a

certain level of reliability, i.e. amount of debug time necessary.

Obviously, the values of E(0) and C are paramount to answer this

question. We assume first that these two parameters are known.

Reliability, by definition, is measured on a probability scale, and

-35-

can be treated as such. Thus, if t_obj is the objective time

for the software and tl the time to the first detected error, the

probability that the software will perform to the objective can be

expressed as:

P[tl > t_obj] = P_obj (14)

To reach this objective level of reliability, the number of errors

to be removed from the software is needed. If we call this number

of errors r, then:

exp [-C(E(0) - r)t_obj = P_obj (15)

or:

r = E(0) + (In P_obj)/(C*t_obj) (16)

where r is taken as the closest integer value satisfying the above

equation. Thus, r is a function of the parameters,E(0) and C, and

also of the objective reliability P_obj and objective program operat-

ing time t_obj. Also, there are certain factors which affect the

model but are difficult to include mathematically. For example, there

are finite amounts of time required to run the software, discover the

errors, and locate and correct these errors. The size of the soft-

ware will have an impact as will the method of debugging. Other

factors which will affect the time to detect and correct errors in-

clude the programming language, the type of inputs used, programming

structure, expertise of the debugger and so on. These parameters do

not lend themselves to the inclusion in this model and are thus omit-

-36-

ted. The model does take into account the time needed to detect

these software errors.

The probability of detecting an error in software prior to installation

will be proportional to the probability of exercizing the particular

segment of code containing the bug. If exhaustive testing were

employed, all errors would be detected in the validation phase, however

as previously mentioned, exhaustive testing may be an impractical or

even impossible task. This probability of detection will be based

on the criticality (i.e. frequency of execution) and failure rate

of individual program execution paths. With this scenario, the "most

obvious" or most probable errors will be detected first, i.e.

relatively small time to failure, while "embedded" errors, e.g.

seldom called routines or utility modules will be the most difficult

or least probable to detect.

Equation (16) provides a method to determine the number of errors

that are to be removed from the software. Let the time between

the detection of the i th and (i+1) st error be expressed as X(i+1).

Let this also include the time required to remove the error.

Then the total time required to remove all r errors in the soft-

ware , X_tot , can be expressed as:

X_tot = XI + X2 + X3 + ... + Xr

If we assume that these times are independent of each other, then

the distribution of the Xi's can be obtained as the convolution of

the distribution of the r individual times. This density function

-37-

can then be given as:

f(Xi) = C[E(0)-i+'l] * exp [-C (E (0)-i+1) t]

The moment generating function of this density function

can be obtained by:

M_Xi(y) = Expected [exp (y*xi)']

C(E(0)-i+l)

C(E(0)-i+l) -y

Thus the moment generating function of the total time, X_tot

can be formed as the product of the individual generating

functions: r

X tot(y) = ||
C(E(0)-i+l)

M
(=1 C(E(0)-i+l) - y

In order to obtain the inverse of M_X_tot(y), partial fraction

expansion is necessary. This proves to be a long and tiring

procedure and only the result is given here;

where the first factor in the summation is not evaluated at

i=j. Needless to say, this is.a lengthy expression for the

distribution of X_tot, and in many cases it may be more

pragmatic to deal with an estimate of the bounds of the

-38-

distribution. To discuss the bounds on the distribution, it

is necessary to utilize theorems developed by Barlow [29]]

concerning increasing failure rates. The distributions for

the Xi's, i=lr2#...,r are all increasing failure rates. This

is due to the fact that the model assumes the failure rate to

be proportional to the number of remaining errors. The

distribution of the total failure times, X_tot is the convolut-

ion of the individual Xi's and thus this distribution itself is

an increasing failure rate, which has a mean, m_X_tot, given

by:

m_X_tot = (1/C)*[(l/(E(0)-r+l) + (1/(E(0)-r+2)

+...+ (1/E(0))]

Again, using a theorem from Reference 29, a largest bound on

the distribution, F(X_tot), can be obtained as:

P(X_tot) < 1 - exp[-X_tot/m_X_tot]

For a least bound, Theorem 2.4.5 of the same reference yields:

F(X_tot) > 1 - exp[-a*X_tot]

where a is the solution of:

exp[-a*X_tot] + a*m_X_tot =1

As a specific application of these results, consider the case

when r = E(0), that is, the software is debugged until all errors

are removed. Also, let C, the constant of proportionality be

-39-

unity. Thus, the distribution of the time to debug becomes:

en

and, correspondingly, the upper bound on the distribution can be

written as:

F(X_tot) < 1 - exp[-X_tot/m_X_tot]

or

F(X_tot) < 1 - exp[-X_tot/((1/i)]

The lower bound on the distribution can be written as:

P(X_tqt) > 1 - exp[-a*X_tot]

where a is the solution of:

exp[-a*X_tot] + a*[(1/i)] = 1

These equations are plotted for the specific cases of E(0) = 2,

5, and 10 in Figures 4, 5 and 6 respectively.

-40-

F(X tot)

I

Fig. 4 Distribution of time to debug with bounds for number of

of initial errors = 2,

x tot

Fig. 5 Distribution of time to debug with bounds for number of

initial errors = 5,

F(x__tOt)

I

to

x tot

Fig. 6 Distribution of time to debug with bounds for number of

initial errors = 10,

For the specific case of E(0) = 2, the distribution becomes:

F(X_tot) = 2*{ [l-exp(-X_totj] - 0'.5*[l-exp(-2*X_tot)] }

and the upper and lower bounds are, respectively:

F(X_tot) < 1 - exp[-X_tot/1.5]

F{X_tot) > 1 - exp[-a*X_tot]

where a is the solution of:

exp[-a*X_tot] ■+. 1.5*a = 1

This distribution for E(0) = 2 is tabulated below. In addition,

the distribution with corresponding upper and lower bounds is plotted

in Figure 4a.

X tot | F{X tot)

0.0 | 0.000
0.5 | 0.155
1.0 | 0.399
1.5 | 0.604
2.0 | 0.748

X tot | F(X tot)

2.5 | 0.843
3.0 | 0.903
3.5 | 0.940
4.0 | 0.960

■4.5 | 0.987

If some arbitrary decision rule is then chosen, e.g. probability of

0.95 or greater, then an estimate of the time to debug software can

be formulated. Thus, the value of the distribution will give the

probability that the time to totally debug the software will take on

-44-

a value equal to or less than X_tot.

Limitations of the model

Of course, the value of or an estimate of the number of initial errors

present in the software is required for this model to be useful.

Jelinski [6] has obtained estimates of E(0) by utilizing the times

between software errors, however these estimates require caution in

their use [6]. Another method to estimate the number of initial errors

in a program is proposed by Halstead [30]. This interesting approach

is to assume a programmer can handle on the average five "concepts" of

information simultaneously. Based on this, Halstead derived n, the

mean number of mental discriminations between potential errors in progr-

amming. The total number of mental discriminations required to develop

a program, N, is estimated based on the total number of statements,

operands, etc. in the software. The value of N, as developed by

Halstead, takes into account the program volume and the level of

the programming (i.e. program difficulty). Given n and N for a

program E(0), the estimated number of initial errors is given by:

E(0) = n/N

Surprisingly, this prediction agrees well with observed experimental

data [30]. Measures of this type, however, are not suitable for

accurate predictions of software reliability. They are based on obser-

vations with software having similar characteristics and the accuracy

of such a measure on a particular program cannot be easily determined.

Thus, these measures should only be used as a rough estimate of

-45-

reliability.

A further limitation of the model occurs since the derivation assumes

that an error, when encountered is removed. It is further assumed tha

during this error removal process, no new errors are introduced.

-46-

SUMMARY

Numerous models for estimating the reliability of computer

software have been proposed by various authors. Several have

been discussed and one in particular, the widely-accepted

Jelinski-Moranda is expanded on. This model provides an est-

imate of the distribution of time to debug software given that

the reliability objectives are stated.

Also presented was .a discussion of the software development

process as well as a discussion of methods which are currently

employed in the validation of software.

-47-

References
and

Bibliography

1. Boehm, B.W. "Software and its Impact: A Quantitative

Assessment", Datamation, May, 1973

2. Thayer, R.H. "Rome Air Development Center R&D Program

in Computer Language Controls and Software Engineering

Techniques", RADC TR 74-80, Grifiss Air Force Base,

Rome, N.Y., 1974

3. Hecht, H. "Can Software Benefit from Hardware Experience"

Proceedings of the 1975 Annual Reliability and

Maintainability Symposium, IEEE, N.Y.,.1975

4. Dijkstra, E.W. "Notes on Structured Programming"

University of Maryland Computer Sciences Center, EWD 249,

1971

5. Moranda, P. and J. Jelinski "Software Reliability Research

in Statistical Computer Performance Evaluation", Edited

by Walter Freiberger, Academic Press, N.Y., 1972

6. Moranda, P. and J. Jelinski "Final Report on Software

Reliability Study" McDonnell Douglas Aeronautic Corp.

MDC Report Number 63921, December, 1972

7. Sukert, A.N. "An investigation of Software Reliability

Models" Proceedings of 1977 Annual Reliability and

Maintainability Symposium, IEEE, N.Y., 1977

8. Shooman, M.L. "Operational Testing and Software

-48-

Reliability Estimation During Program Development"

1973 IEEE Symposium on Computer Software Reliability,

IEEE, 1973

9. Shooman, M. L. and A. K. Trivedi "A Many State Markov

Model for Computer System Performance Parameters",

IEEE Transactions on Reliability, 1976

10. Singh, C. and R. Billinton "System Reliability

Modeling and Evaluation" Hutchinson, London, 1977

11. Schick, G.J. "An Analysis of Competing Software

Reliability Models" IEEE Transactions on Software

Engineering, March, 1978

12. Littlewood, B. and J. W. Verrall "A Bayesian Reliability

Growth Model for Computer Software" 1973 IEEE

Symposium on Computer Software Reliability, IEEE, 1973

13. Bell, T.E. and T.A. Thayer "Software Requirements

Are They Really a Problem?" Proceedings of the 2nd

International Conference on Software Engineering

October, 1976

14. Reifer, D.J. "Automated Aids for Reliable Software"

Proceedings of the International Conference on

Reliable Software, April, 1975

15. Parnas, D.L. "A Technique for Software Module Specifi-

cation with Examples" Communications of the ACM, May,

1972

16. Wirth, N."Program Development by Stepwise Refinement"

Communications of the ACM, April, 1977

-49-

17. Gerhart, S.L. "Observations of Fallibility in Appli-

cations of Modern Programming Methodologies" IEEE

Transactions on Software Engineering, September, 1976

18. Huang, J.C. "Error Detection through Program Testing"

in Current Trends in Programming Methodologies,

Prentice-Hall, Englewood Cliffs, N.J., 1977

19. Howden, W.E. "Reliability of Path Analysis Testing

Strategies" IEEE Transactions on Software Engineering

September, 1976

20. Howden, W.E. "Methodology for the Generation of

Program Test Data" IEEE Transactions on Computers

May, 1975

21. Goodenough, J.B. and S.L. Gerhart "Towards a Theory

of Test Data Selection" IEEE Transactions on Software

Engineering, June, 1975

22. Hetzel, W. "An Experimental Analysis of Program

Verification Methods" Dissertation, University of

North Carolina at Chapel Hill, 1976

23. DeMillio, R.A. "Hints on Test Data Selection; Help

for the Practicing Programmer" Computer, April, 1978

24. Ramamoorthy, C.V. "Design and Construction of an

Automated Software Evaluation System" IEEE Transactions

on Computer Software Reliability, 1973

25. Hect, M.S. "Flow Analysis of Computer Programming"

North Holland Press, New York, 1977

26. Allen, F.E. and J. Cocke "A Programming Data Flow

-50-

Analysis Procedure" Communications of the ACM, March,

1976

27. Rose, C.W. "LOGOS and the Software Engineer"

AFIPS, FJCC, 1977

28. Bunger, R.T. "AUTASIM: A System for Computer Assembly

of Simulation Models" SIGPLAN Notices, January, 1974

29. Barlow, R.E. "Mathematical Theory of Reliability", John

Wiley and Sons, New York, 1965

30. Halstead, M.H. "Elements of Software Science", Elsevier Press,

New York, 1977.

-51-

VITA

Larry S. Musolino was born and raised in New York City, New York

where he attended the Bronx High School of Science. He was

graduated from the City College of New York in 1980 with a

Bachelor of Science degree in Electrical Engineering, awarded

cum laude. He is a member of the Tau Beta Pi and Eta Kappa nu

national honor societies.

-52-

	Lehigh University
	Lehigh Preserve
	1-1-1983

	The measurement and estimation of the reliability of computer software.
	Larry S. Musolino
	Recommended Citation

	tmp.1451580486.pdf.4LZEt

