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ABSTRACT 

New simulation results presented herein indicate 

that certain sub-optimum forms of a nonlinear sequential 

receiver, which is used to jointly detect and decode 

high-speed digital data transmitted through noisy 

channels with intersymbol interference, will outperform 

an optimum linear receiver. Three methods of achieving 

near'-optimum performance from a sequential receiver 

having only a fraction of the calculations of the 

optimum sequential receiver are discussed. The first 

eliminates marginal calculations based on a probability, 

threshold criterion, the second based on a noise toler- 

ance criterion, and the third ranks the decision 

statistics. The simulated performance of the sub-optimum 

receivers means a real software or hardware implemen-. 

tation Is no longer impractical due to lengthy calcula- 

tions or large data storage problems. 

1, 



SUB-OPTIMUM SEQUENTIAL RECEIVERS FOR CODED DIGITAL 
DATA AND CHANNELS WITH INTERSYMBOL INTERFERENCE 

1.  INTRODUCTION. 

When high-speed digital data is transmitted through 

noisy narrow-bandwidth channels, adjacent pulses begin 

to overlap* This phenomenon, called intersymbol inter- 

ference, may severely affect the reliability of a commun- 

ications system. There are several methods, however, of 

compensating for intersymbol interference. By designing 

a receiver with some knowledge of the transmitted symbol 

probabilities, as well as the channel characteristics, 

the probability of receiver error can be held to a minimum. 

Several optimum receivers have been proposed recently, 

but all of them suffer from being too complex to implement 

economically for long codes or channels with severe 

interference, This study attempts to simplify the non- 

linear sequential receiver proposed by Abend and Fritchman 
* 

[l], and the joint sequential receiver derived from it, 

which simultaneously detects and decodes convolutionally 

encoded data. The optimum performance of the joint receiver 

has previously been studied by Sattar [2j, and his results 

are used as a yardstick for comparison of the sub-optimum 

results derived herein.      ( 

2. 



9 
Chapter 2 briefly examines the history of optimum- 

receiver development, and explains why a sub-optimum 

receiver, rather than an optimum one, is generally 

desirable for practical application. 

Chapter 3 develops the sequential receiver of Abend 

and Fritchman, beginning with the basic communications 

channel model* Chapter if adds convolutional coding to 

the transmitted source bits, which then requires an 

optimized decoder to be appended to the optimized 

detector discussed in Chapter 3* 

Chapter f? demonstrates how the separately-optimized 

detector-decoder can be greatly improved by a joint 

detector-decoder algorithm* 

Chapter 6 contains the simulation results of 

three attempts at reducing the complexity of the 

joint receiver. The results indicate that even though 

performance is degraded below optimum for the joint 

receiver, the sub-optimum joint receiver still out- 

performs the separately-optimized receiver, with 

considerably less complexity and fewer calculations* 

Chapter 7 summarizes the results of Chapter 6, 

attempts to choose the best sub-optimum scheme of the 

three examined* and concludes with suggestions for 

further study* 

Details on the computer simulations appear In 

Appendix A* 

3. 



2. TYPES OF RECEIVERS. 

Intersymbol interference is the major hindrance 

to high data rates in typical wireline and radio 

data channels* Significant research has led to various 

schemes of minimizing the effects of the interference* 

These schemes can be broadly lumped into two classes* 

linear and nonlinear receivers* 

The class of linear receivers is attractive from 

the standpoint that they can be described and evaluated 
V. 

analytically. Also, their implementation is straight- 

forward, and hence they a^»e frequently used in real 

applications. 

The idea behind the linear receivers is to 

flatten out.the amplitude and delay distortions which 

naturally occur in a real channel, so that the net 

affect of the channel and receiver approaches an 

ideal linear-amplitude-and-phase frequency response* 

This process, called equalization, is based on the 

fact that samples every T seconds from a receiving 

filter matched to the transmitting filter and channel 

characteristics constitute a sufficient set of 

statistics for estimating the input sequence [3]• 

A transversal equalizer is a tapped delay line 

that approximates the required matohed filter* The 

process of adjusting the tap coefficients to a specific 

channel was a tedious manual process until algorithms 



Introduced in 19&5> [V]»[£] provided automatic 

adjustment. Further improvements in 1966 |_6>J provided 

the ability to track time-varying channel coefficients, 

A linear feedback equalizer is similar to the 

transversal equalizer except that intermediate 

outputs from the tapped delay line are fed backward 

as well as forward. The result is a small improvement 

in performance, but not a significant one. 

Normally, the tap coefficients would be chosen 

to minimize P(E), the average probability of error [Y].> 

But P(E) is such a nonlinear function of these 

coefficients that other criterions such as "peak 

distortion" Fin , foj are used instead. 

The class of nonlinear receivers is based on 

efforts to use P(E) as a performance criterion. 

These, receivers are characterized by excessive data 

manipulation and defy analytical prediction of their 

performance. 

Fourney [8] has applied the Viterbi algorithm to 

processing samples from a whitened matched filter, 

and has obtained tight bounds on its performance. 

Ungerboeck and Mackechnie have developed a similar 

receiver f9j » but have eliminated the need for a 

pre-whitening filter. Chang and Hancock [lti\   have 

proposed a receiver in which the received symbols 

are partitioned into overlapping sequences K synibols 



long. Then the sequences Aj^A^^A^g... form a Markov 

chain from which maximum likelihood (ML) decisions 

are made* 

A nonlinear ML receiver which minimizes P(E) 

on each symbol has been developed by Abend and 

Fritchman [lj• This receiver sequentially computes 

the a posteriori decision statistics for each 

received symbol, making symbol-by-symbol ML decisions 

after only a short delay D. Because the receiver is 

recursive, long sequences do not have to be stored, 

and the receiver remains optimum for any length 

sequence. 

Unfortunately^ the sequential receiver grows 

exponentially as m^, where m is the size of the 

source symbol alphabet'* When the source data is 

convolutionally encoded, the receiver becomes a 

detector-decoder pair, increasing the complexity 

by that of the decoder. Because of the similarity, 

between the optimum detector and the optimum decoder 

algorithms, however, a joint detector-decoder 

algorithm can be derived without much more complexity 

than either of the separate parts |_2j. 

.Simulation results indicate that the sequential 

~"~ tActually, the complexity increases as 
mL+(D-L)m for D >L, L is the effective duration 
of the interference. 

6. 



detector is superior to the class of linear receivers 

[lj, but lacks the simplicity of a linear receiver. 

Further results haye shown that the optimum joint 

detector-decoder also does better than the separately 

optimized case [2J. This paper is motivated, then, 

by the possibility of reducing the complexity of the 

joint sequential receiver to a practical level, yet 

maintaining an edge in performance above what the 

separately optimized detector and decoder can achieve. 

Linear equalizers, while mathematically tractable 

and practical to implement, are not optimum due to 

their tuning techniques; the "peak distortion" 

criterion is an example. The optimum nonlinear 

receivers are too complex to be practical. Hence, 

a sub-optimum receiver results. The next several 

chapters provide the background needed to understand 

the reduced complexity sequential receivers of 

Chapter 6. 



3.  OPTIMUM SEQUENTIAL DETECTOR. 

The basic model for a communications system with 

independent (non-coded) source symbols is shown in 

Figure 3.1» 

B-i Bo« »Bv* • * 1 g  K—£ MODULATOR 
S(t) 

Bn Bp • • • Bj_ • •. 
RECEIVER 

*  CHANNEL, 
R(t) 

white-noise 
n(t) 

X(t) 

Fig* 3*1* Basic Communication System. 

The source symbols are assumed to be binary for 

our purposes, although the m-ary case is easily derived* 

The ones and zeros from the data source are then passed 

through the digital data modulator. Here we will assume 

pulse-amplitude modulation (PAM), so the signal S(t) 

becomes a train of pulses each of amplitude -1 or 1 

and of T seconds duration. That is, 

S(t) =ZAkg(t-kT) (3.D 

where A^ s 1 if Bk a 1, Ak a -1 if B^ s 0, and g(t) 

is a unit pulse T seconds long. 

The finite bandwidth of the transmission channel 

causes adjacent pulses to overlap at the output, hov 



a perfect Nyquiat channel, this is no problem, because 

the channel is then sampl d such that all interfering 

terms are zero* But all real channels are subject to 

phase delays and other perturbations, causing inter- 

symbol interference* 

If the impulse k(t) 

response of the 

channel, for 

example* is as 

shown in Pig* 3»2. 

then the sampled 

value Rjj. is given by 

Pig. 3*2. Sample channel 
response* 

\ = Bkh0 + B k-lhl + Bk-2h2 

or   Rk = B^ + Bk-1h1+... +Bk-L+1hi-1 (3.2) 

in general, for an impulse response L samples long* 

Intersymbol interference occurs when more than one of 

the h^'s are non-zero* The delayer allows both future 

and past symbols to interfere* 

The standard assumption of additive white Gaussian 

noise completes the channel model, so that the received 

signal becomes 

X(t) = R(t) + N(t) (3*3) 

or  Xk= Rk + Nk (3.1*, 

for statistically Independent noise samples* 

9. 



Actually, "colored" noise can also be handled If a 

noise-whitening filter is added to the front end of A 

the receiver in Pig. 3*1. 

The basic problem this model presents is designing 
A 

a receiver, to produce an estimate Bk of B, such that 

the average probability of error is a minimum. The 

sequential detector of Abend and Pritchman is an 
A 

optimum receiver when B. depends on no more than XX .„ 

X,  , where D is the time delay before making a decision 
KTU 

onBk. 

The decision, for our binary example, is to choose 

B. = b. when 

P(Bk = \>±\  X1...Xk+D) > P(Bk = bj| X1#..Xk+D) 

b^bj £ jl,-l] ,  bi/bj (3.5) 

This is identical to calculating the probabilities 

p(Bk,X1...Xk+D) because in 

P(Bk I ^•••3Ck+j)) -  p(Bk,X2«..Xk+j)<yp(X2«« .XJ^JJ), 

(3.6) 
the term p(X, •• .X-JTJ) is a common proportionality 

constant* By noting that the input symbols are indepen- 

dent, and that Xk depends only on the L values B. L+l*** 

**k' **°*» / 

(3.7) 

then we can recursively calculate * 

viB^X^ = PfB^pttJ Bx) 

10. 



pXB^.X-jXg) = p(X2|B1B2,X1)p(B1B2>X1) 

P(X2|B1B2)P(B2|B1,X1)P(B1,X1) 

P(B2)p(X2|B1B2)p(B1,X2) 

= P(B3)P(X3|B;LB2B3)P(B1B2,X1X2) 

p(Bk..•Bk+D,X1.. .Xk+D) 

= F(Bk+D)p(Xk+DlBk+D-lH-l
,#,Blc*-D) 

' ~  p(Bk-lV *-Bk+D-l'Xl-* ^k+D-l* 

^ (3.8) 

from which . 

p(Bk,x1...xk+D) = 2-.    • ••£- P(
B

JC»»-
B
JCI.D»X:L..JC1B|PI)).- 

Vl  WD (3.9) 

For binary equally-likely source symbols, the term 

P(Bk+D* of *3*8) wil1 alwavs be i/2- The third term, 

in the summation, is known from the calculations for 

the previous symbol. Finally, the second term is 

calculated for all 2 sequences Bj^D T+1»«»Bk+D by noting 

that 

P(XklBk-L+l--
Bk) =f<Xk-Rk> (3-10) 

and that f(#) is the noise probability density* 

Equations (3*8) and (3*9) constitute the core of 

the sequential detection algorithm in \l] , and also 

serve as a decoding algorithm for convolutional codes, 

with only slight modiication, as the next chapter will 

show* 

11. 
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if.  OPTIMUM DETECTOR PLUS OPTIMUM DECODER. * 
i 

Shannon has shown that data sequences, when 

properly coded, can reduce the probability of trans- 

mission error to zero* Of course, an infinitely long 

code generator would be needed, not to mention the 

more difficult decoding problem. But even short coding 

techniques can be used to achieve higher reliability 

without too much additional cost* 

A convolutional coder consists of V  shift registers 

and n modulo-two adders* Figure lj.*l shows such a coder 

with V  = 3 and n =* 2* 

input, 

Pig. 4*1. Convolutional coding. 

This coder can be represented by the code generator 

matrix 

0 « 

In general, if g 
i.3 

1 o 
l l 
0 1 

= 1, there is a connection 

between the ith shift register and the jtn modulo-two 

12* 



adder* 

There are n outputs (rate 1/n) every T seconds 

when a new source symbol is shifted in. These can be 

computed as 

Tk,l = BiAi@Bk.Ai©—©lWi«w. 

\.»=Vln©—   — ©BkWW "• <M) ■ 
The nature of this coding technique makes decoding 

it very similar to detecting data in the presence of 

intersymbol interference, since the outputs T -,••• 
k»l 

T   depend not only on B. , but on 1/-1 past symbols as 
ic,n & 

well* 

The decoder functions analogously to equation (3*8), 

only now the Xj^s are replaced by the vectors 

and the necessary joint probabilities are calculated 

following a delay of d input symbols (d^f) 

p(Bk...Bk+d,T1...Tk+d) 

= P(Bk+d
)P(Ik+dl 

Bk+d-|/+l—*W 
*2- P(Bk-1Bk. . .B^^,^. • .Tk+d-1) . 

*       k"1 (U.3) 

In this case, the second term can be calculated as 

p(Xk+dlBk+d-^i--Vd) = p^Jii) 

13. 



where i =1,2,...,2^.    That is, there are 2^ possible 

sequences Jb^ = til'bi2*,*ti»/ (some of which might be 

redundant) because there are 2? possible "states" of 

the shift registers. Each individual probability 

P(Tk Jtj j) is either p, or 1-p, when we assume the 

channel to be binary symmetric with cross-over probabil- 

ity p. If Tk=t±, then P(Tk|ti)= (l-p)n. 

The communication model, with the addition of 

convolutional coding, appears in Pig. lj..2. 

• • • -"V. . . CODER •••Tk,nTk+l,l••• 
MODULATION, 

TRANSMISSION, 

DETECTION, 

& 

DEMODULATION 
(PIG. 3.1) 

(» 

• « »D\-* . . DECODER •"•-k-k+l"' 

Pig. i|..2. Channel with coded rymbols. 

In this case, the model of Pig. 3«1 accepts the binary 

symbols •••Tjc-ln
Tk lTk ?•*" as if tkQy were independent, 

'   '    '   A      A   A 
producing ML estimates • ••Tic-1 n

T]£ iTk p*"* w^^cn are 

then processed by the decoder. The decoder produces 
A 

one source-symbol estimate, B^, for every n detected 
A A 

symbols T^ ., or alternatively, for every vector T^m 

The detector of the previous chapter must delay 
A 

its decision L-l symbols T. ., while the convolutional 
•K, j 



decoder must wait for lAn of these symbols* The result 

Is an effective delay before estimating B. of 

Deff- V+ [ir| «»•» 
time intervals T, when the rate of the BjJs is 1/T* 

The quantity \^\   is the least integer >^~ . An 

example makes this clearer* If U= 3» n=2, and. Ls=]|, 

then the source symbol Bfc af f e*cts T. , T,+_, and T.+2, 

so the decoder must wait VT= 3T seconds^ until B. Is 
A 

shifted out of the coder to compute B. * Note, however* 

that Xk+2 2 depends not only on T, +2 , but on T.- , 

Tk+3 2 and Tk+ii 1 as well» This represents an addi- 

tional lag on the system, hence the effective delay 

becomea 
Deff =3+ \k?\=h' 

''"Note that It is possible to estimate B^ before 
its effects die out, for some delay d, d< V * Indeed* 
this example also assumes D= L-l, although some D^ 
L-l might perform nearly as well for negligible inter- 
symbol interference* For the purposes of this paper, 
however, we generally allow d>t>, D^L-1 to achieve 
the most favorable error rates* 

i£. 



5.  OPTIMUM RECEIVER . 

Intuitively, a detector whicfi. does not employ 

all of the Information present in the coded symbols 

it receives will make more errors than one that does* 

Recall that the separate detector pf Chapter \\  bases 

its decisions only on knowledge of the channel, and not 

of the code. This intermediate decision, prior to 

decoding, is a lossy process which can be eliminated by 

the jointly optimized receiver we shall now describe. 

The joint receiver estimates the original source symbols 

directly from the Xi*3* rather than first making a bit- 
- A   A 

by-bit decision T, -.fT, _... followed by a decoding 

process* 

The procedure is the vector-extension of the 

scalar equations (3*8) and (3.9)* 

p(Bk'-l*' *-k+* * %? • • • &- p(Bk* • #Bk+* »&.• • •£]»*) 
and k+l   k+s .     (5.D 

p(Bk-"Bk+«^l-'^k+f
) 

•B
S P(Bk-iBk---Bk+s-i^r-^k+g.1). (5.2) 
k-l 

The first term is again known to be l/2 for our binary 

data. The third term is the stored value from the 

previous iteration, and the second term is now the 

product (assuming independent noise samples) 

p(£kJ Bkrf,*.l".-IW = IX*■<»**«, j}-    (*-3> 

16. 



Again, there is a delay, S , such that B^+^ is 

transmitted before decision on B^. The length / is 

the effective overall constraint length, and is given 

for the identical reasons stated for equation (if»$)« 

The joint algorithm, as expected, shows marked 

improvement over the separately optimized case. Pig. 

J>.1 illustrates an improvement of at least 3dB in the 

signal-to-noise ratio needed to achieve identical 

error rates, for the sample channel and convolutional 

code used* 

17- 



CODE GENERATING 
MATRIX: 

111 
0 0 1 
0 10 
0 0 1 

CHANNEL IMPULSE 
RESPONSE: 

8 u 
w 

O 

H 
•H 
.Q 
GO 

O 

• IP" 

•001 

10 

-0.355 
0.059 
1.000 
0.059 

-0.273 

Optimum receiver 

Sub-optimum 
receiver 

Tj7 5. 67 7« 
Signal-to-Noise Ratio  (dB) 

Pig.  5»1»    Performance  of sub-optimum and optimum 
receivers   [21 • 
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6.  ALGORITHMS TO REDUCE"THE COMPLEXITY OP THE JOINT 
SEQUENTIAL COMPOUND DETECTOR-DECODER. 

6.1. Motivation, K 

For binary data transmission, the size of the 

optimum sequential receiver grows exponentially aa 

2 , where A is the effective length of the intersymbol 

interference when the effects of the code constraint 

length are combined with the channel pulse duration. 

It would be very desirable to trim the size of the 

receiver in a way which does not seriously degrade per- 

formance, while eliminating much of the required storage 

(in hardware or in software) and much of the data manip- 

ulation needed by the optimum algorithm0 If the resulting 

sub-optimum sequential receiver performs better than the 

separately optimized detector-decoder pair, then the 

sub-optimum receiver is judged successful. 

6.2. An Example* 

To Introduce the sub-optimum algori thras , a specific 

example of the functioning of the optimum joint algorithm 

will be helpful. 

Consider the code generator In Fig. 6.2.1. The 

code used is rate 1/2 with a constraint length of 29 

and is completely specified by the code generator matrix 

G. Fig. 6.2.2 is a tree which represents the pairs 

t, ., t. 2 transmitted by the coder given any previous 

state. Moving up one level indicates e zero was shifted 

19. 
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Pig. 6.2.1. Code generator and generating 
matrix. 

00 

00 

00 
00 
11 

-LI 

11 

01 
in 

01 

10 

1 

11 

00 

11 • 

10 0 

01 

01 

t 
00 

10 

I 00 

11 1 
11 

10 

01 

01 

10 

00 

10 , 

11 
01 
■tn 10 

Pig. 6.2.2, Code tree of vectors Tj_, 

,20. 



into the coder, while moving down one level implies a 

1 was shifted in* A source-symbol sequence of 0,1,1, 

for example, would transmit the coded pairs 00,11,01 

(after modulation, these are really -1-1,11,-11)* Note 

that the two source symbols in the convolutional coder 

uniquely determine which pair of symbols is transmitted. 

Now assume the channel has an impulse response 

Of hQ=l, h2=«25>» causing interference between adjacent 

symbols. Then the possible received symbols R^ (see 

model of Pig* 3.1) appear in the tree of Pigo 6.2.3« 

The upshot of the intersymbol interference is an effec- 

tive constraint length of three source-symbols* Each 

received vector R, =s-h()+h:L, i^O-^lf depends on the 

two source-symbols in the convolutional coder plus the 

symbol most recently shifted out* There are 2-8 such 

R fs, and these are assumed known by the receiver* 

Decisions on each B, are made after a delay d= 

J?-l = 2 to ensure that the effects of Bk have died away. 

The decision on B_ (in the second column of Pig* 6*2*3) 

is delayed until the first information on Bh is re- 

ceived, and made as follows: 

Calculate the eight "incremental" probabilities 

.*£«- p(Bk+d>p%£+dlV"Bk+d) 

J"'""'8    = P(
VP

(
2%I 

B2B3V 
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Pig. 6.2.3. Possible received vectors R^ for the 
code of Pig, 6.2.2 and a length-two 
impulse response* 
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= P(Bli)lPLf (\,i)       * (6.2.1) 

then weight these by the "old"  probabilities,  or 
nOLDP»s": 

0LDPk+d = ?" P(Bk-A- • 'Vd-l'^l' • • '^k+d-l5 

L =*»,...;*     \^ 

= 22 P(B1
B2B3»-l-2^3) (6.2.2) 

Bl 

In this example, the four OLDP's are (J)+<5) , 

@+© , 0+(2) 9  and <£)-»-® , representing the sums over 

B, of the eight statistics from the previous decision. 
A 

Finally, we pick    B   =1    if 

> 5ZZP(B^)P(X^|0 B3Blf)Zp(B10 63,^2^2^3)        (6.2.3) 

A 
An alternate expression would be to choose Bg =1 if 

ZA'fjW^ > £. A^OLDF^1' where i- -f or J|i 
** ** ^ whichever is even. 

Again looking at the tree of Pig. 6.2.3, we see that 

the upper four paths in the rightmost column represent 

paths for which B_ = 0. The next four paths are from 

B2 = l« Had we let d=3# then all 16 paths would have 

been retained, but with no gain in information because 

the top half of the tree is identical to the lower half. 
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6.3. Sub-optimum Receiver by Threshold Techniques. 

Clearly, to reduce the complexity of the optimum 

joint sequential receiver, we must calculate only 

a subset each time of the incremental probabilities 

k+d' j = l»«»»#2^. Each of these probabilities can 

be thought of as a branch on a tree (Pig 6.2.3)» 

weighted by terms from earlier branches. A logical 

criterion for deciding which paths to retain, therefore, 

would be some quality possessed by the weights. 

If most of the energy due to the source symbol 

Bj^ has been received prior to receipt of Xir+d* *ken 

it is reasonable to expect that much of the information 

for the decision on B, is contained in the weighting 

terms 

0LDP£d = ? p(fek-i'Bk"-Bk+d-i'*i—W 
k-l _        t-\ 

i — J.,2, . • . ,2    , 

summarizing the history of the received sequence. 

Many of these terms, the "old" probabilities, are 

very small compared to the ones which are "closest" 

to the true sequence. That is, 
2i-l 

S. 0LDPkid ■x %      (6-3-1} 

for the optimum receive •,  and if we discard all those 

OLDP's satisfying OLDP*1] < THRESHOLD, then 

OLDP<*> = l-€ • (6.3.2) 
i=l   k+d 

2k. 



The smaller £ is, the more closely the sub-optimum 

approximates the optimum receiver. But the larger   , 

€ (and the larger THRESHOLD), the less the required 

calculations by the receiver. In practice, all OLDP^ 

are normalized with respect to the largest OLDP. 

Every time an OLDP falls below the threshold, it is 

not necessary to calculate the two incremental prob- 

abilities associated with it, and in this manner the 

receiver size is reduced. 

Fig. 6.3»1 shows the effect of arbitrarily 

picking a fixed threshold to trim marginal paths 

from the received-symbol tree. The two convolutional 

codes used are each constraint length two and code 

rate two, and the channel is similar to the wireline 

channel used in [l]. Whenever the noise gets large 

(the noise samples are shown in Fig* 6*3.2), the 

receiver responds by retaining more paths. Likewise, 

few paths are retained when the additive noise is rel- 

atively quiet. Fig. 6.3«3 is the probability of error 

(P(E)) for these two codes as a function of the signal- 

to-noise ratio, with THRESHOLD as a parameter, and Fig. 

6.3.1}. is the probability of error as a function of the 

threshold. 

These two codes, though very simple, point out 

several interesting facts. First, P(E) is affected 

hardly at all by eliminating the lowest probability 

25. 
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1.       2.       3.       1+. 
SIGNAL-TO-NOISE RATIO (dB) 

Pig, 6#3#3. Performance of -TJO length-two codes. 

28. 



►003 

SNR = 3 dB for both codes 

J. X J. J_ J 
0.   .1  .2 •If  .5  .6  .7  .8  ,9  1. 

THRESHOLD 

Fig. 6«3»l+« Similar codes perform differently. 
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paths • Second, even though most paths are rejected 

by setting THRESHOLD high, P(E) does not blow up to 

l/2.  Indeed, for a very high threshold (say, .999 

for the normalized OLDP's), the algorithm becomes 

"decision-directed," allowing only two paths to be 

considered following retention of only one OLDP from 

the previous decision. One might believe that a decision- 

directed process like this would continue to make errors 

after a burst of noise causes a deviation from the 

correct path. That the threshold algorithm always 

(as far as we can tell) returns to the correct path, 

without a long string of errors, is a remarkable fact. 

Last, we observe that although one code may out-perform 

another in the optimum case, it may be worse for a 

given threshold* 

In order to more reliably predict the effects of 

the THRESHOLD algorithm, simulation on a more compli- 

cated code was performed. Fig, 6.3«f? shows P(E) for 

several thresholds and the code and channel used in [2J» 

As a result of the small number of errors and hence the 

need for excessive computer time, simulation was not 

done for signal-to-noise ratios above 5>dB, But the 

pattern is clears only a small subset of the paths 

used by the optimum algorithm can out-perform the       ' 

separately-optimized detector-decoder. Fig, 6.3«5> is 

better understood with the aid of Table 6,3«1» which 
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l.C- P(E) 

,01 

,001 

10 -fc 

THRESHOLD = .£ 

THRESHOLD = .1 

THRESHOLD = .01 

OPTIMUM 

J. SNR (dB) 

1. 2. 3* 4* 

Pig. 6.3.5.  P(E) vs. SNR for THRESHOLD algorithm. 
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SIGNAL-TO-NOISE RATIO 

THRESH- 
OLD 

1. 
AVE DEV 

2 
AVE 

• 

DEV 
3 

AVE DEV 
4 

AVE DEV 
0.5 2.3 .79 2.3 .70 2.2 .60 2.2 .50 

0.1 3.5 1.7 3.1 1.4 2.8 l.i 2.5 1.0 

• 01 6.2 4.0 4.8 2.8 3.8 1.8 3.3 1.4 
.001 10. 7.0 7.1 4-7 5.2 3.0 4.1 2.0 

Table 6.3.I. Pew paths retained for high thresholds. 

lists the average number of paths retained (out of 64) 

and the associated standard deviation for each point 

on the sub-optimum curves. 

Fig. 6.3.6 illustrates how widely changing the 

number of paths retained by this code can be. As in 

Fig. 6.3.1, the number Increases as the noise does, and 

drops during more quiet periods. The four curves have 

roughly the same shape, indicating that a noisy interval 

causes most of the marginal (smallest) OLDP's to 

increase in likelihood. 

6.4» Sub-optimum Receiver by Noise Tolerance 
Criterion. 

The vectors X.   can be thought of as points in 

n-space (if the code rate is l/n), and the noise N. 

as a distance vector from the true point R in that 

space: 

*k * *-k + % ' 

V^k-^k'      <6.1*.l) 
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This suggests another method for limiting the 

optimum receiver complexity. Calculate only those 

incremental probabilities A. falling inside an n- 

sphere of radius Ccr from R.   where cr  is the standard 

deviation of the noise* The effect is the same as the 

THRESHOLD algorithm, but not nearly as stable. The 

number of paths retained is allowed to vary, depending 

mostly on the noise, but also on the location of the 

points R. in n-space. Certain codes result in better 

separation of the R 's, and it is possible for the 

intersymbol interference to improve separation even 

more* 

Pig, 6,i|,l shows curves of P(E) for various tol- 

erances Ccr ,  compared with the optimum results for the 

code and channel in [2J« As was the case for the THRESH- 

OLD algorithm, a select subset of paths yields nearly 

optimum performance. Only 39 o 2 out of 6i| paths were 

retained on the average for TOLERANCE= $    (and SNR(dB) 

= 3»0), yet the simulated error rate was the same as 

the optimum P(E) (noting, of course, that only a finite 

number of symbols can be economically simulated, hence 

small differences in P(E) are obscured). 

Unlike the THRESHOLD algorithm, the TOLERANCE 

algorithm falls apart when the tolerance is set to 

exclude too many paths. The culprit causing this 

problem is the low energy of hQ and h,, compared to 

A. 



i. c t    P(E) 

TOLERANCE = 2<T 

TOLERANCE = 3<y- 

SEPARATELY 
OPTIMIZED 

«%► 

.01 

• 001 

TOLERANCE = ]^<y 

OPTIMUM 

TOLERANCE = $a 

10 rhl 1 ± |SNR(dB) 

1.0 

Pig. 64.1. 
2.0 3.0 k*0 

P(E) v». SNR for TOLERANCE algorithm. 
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h.2»  the main pulse of the channel response used In the 

simulations. The low energy tail of h(t) places several 

of the possible Rj-'s close together, and when a noise 

sample brings the received value X.   too close to the 

wrong R^ and the tolerance is small, only the one wrong 

path is retained. Errors seem to propagate using the 

TOLERANCE algorithm, thus there would be a sharp knee 

in a graph of P(E) vs. C<r, where the algorithm suddenly 

begins to work well. 

Overall, the TOLERANCE algorithm is less reliable 

and predictable than the THRESHOLD algorithm. There is 

a third algorithm, however, which is more promising 

than either TOLERANCE or THRESHOLD, because it limits 

the potential size of the receiver. This is the RANKING 

algorithm* 

6.5. Sub-optimum Receiver by Rankingo 

The RANKING algorithm is based on the same logic 

as the THRESHOLD algorithm — limit the number of 

paths kept in the received symbol tree; only the approach 

is a little more involved. Whereas a simple comparison 

was all that was needed for each OLDP in THRESHOLD, 

RANKING requires each new set of OLDP's to be ranked 

by value, choosing a fxxed number, NR, to keep each time. 

Because NR is fixed, there is no need for the "spare" 

room that THRESHOLD and TOLERANCE retain for expansion 

during noisy sequences* 
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The advantage of a fixed-size receiver outweighs 

the disadvantage of the additional calculations needed 

to rank the OLDP's (as detailed in the next chapter). 

It also outweighs the simulation results, showing 

that the RANKING algorithm does worse for a given N_ 

than the THRESHOLD receiver and an equivalent average 

path retention. Pig. 6.5.1, for example, indicates 

that 6.2 paths (THRESHOLD = .01) has P(E) = .02lf, while 

NR = 8 (RANKING) has P(E) = .026. This result can be 

expected, because the THRESHOLD algorithm is allowed 

to "open up," or expand, when it needr, to. 

Fig. 6.£.2 more vividly demonstrates how only a 

small set of paths need be retained to achieve a 

nearly optimal error rate. Out of 6i| possible paths, 

going from two to four yields the most substantial 

improvement. After about ten paths are retained, no 

further improvement is noticed. Changing the signal- 

to-noise ratio changes the vertical position, but not 

the shape, of the curves P(E) vs. paths retained. 

A more detailed explanation of the method of 

simulating RANKING, as well as the THRESHOLD, TOLERANCE, 

and optimum algorithms appears in Appendix A. But the 

next chapter tries to sort out the complexity of the 

simulations to see if anything was really gained, and 

speculates on the complexity of a hardware realization. 
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1. 2. J. 47 
Pig. 6.5.1. p(E) vs. SNR for the RANKING algorithm. 
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7. COMPLEXITY AND REALIZATION OF THE SUB-OPTIMUM 
ALGORITHMS. 

The simulation results of Chapter 6 indicate 

that by using only a small subset of the possible 

paths as a basis for an ML decision on the source- 

symbols, an error rate is achieved below the rate of 

the separately-optimized detector-decoder. This 

conclusion, however, is only useful if the sub-optimum 

joint receiver can be implemented for less cost than 

the optimum case* 

One reasonable criterion for judging a software 

approach to realizing the sub-optimum receiver is 

the amount of CP time consumed by processing one 

symbolo Pig. 7«1 represents the CP time/symbol for 

the code and channel used extensively for error rate 

comparisons in Chapter 6* 

CP 
TIME 
(SEC) 

.06 I 

•0$ 

•ok 
*03 

.02 

.01 
4. 

10    20   30   lj.0 
PATHS RETAINED 

£0  6o 6k 

Pig. 7»1« CP time in FORTRAN simulations. 
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The THRESHOLD and TOLERANCE algorithms linearly 

consume less CP time for each path dropped, since 

dropping one path is equal to skipping that part of 

the code which computes the associated incremental 

probability* While the data for Pig. 7»1 comes from 

the FORTRAN simulation outlined in Appendix A, the 

general shape and relative position of each curve is 

probably similar to a dedicated software approach which 

pays more attention to code optimization* 

On the basis of time consumed, the RANKING 

algorithm performs least satisfactorily. The reason 

for this is due to the particular* manner that the 

incremental probabilties were ranked. If two paths 

were required, all 32 OLDP's were interchange-sorted, 

requiring 31 comparison of mostly zero data. Similarly, 

for 62 paths, 31+30+29+ ••• +1 = lj.6£ comparisons must 

be made for each symbol. By ranking only non-zero 

data, the sorting algorithm is simplified, but this 

advantage is lost in additional memory references 

needed to keep track of which incremental probability 

is associated with which "old" probability. 

To get a rough idea of the.computations saved by 

trimming the potential paths, consider that the CDC 

61^00 can do a floating point multiply in 5>,7/cs, and 

an Integer addition in 600 ns. That means that a 

in. 



subset of less than ten paths out of 61f saving 

.02 CP seconds/symbol off the optimum algorithm saves 

3 £00 multiplies, or 33*000 additions, or a combination 

thereof. 

Ideally, a sub-optimum algorithm could be incorp- 

orated into a piece of hardware, such as a MODEM for 

voice-grade channels. For this application, the 

RANKING algorithm is the only practical one because 

it requires a fixed size receiver. The THRESHOID 

saves little or nothing in hardware since it can, in 

theory, expand to the size of the optimum receiver 

when all 0LDP»s exceed the threshold. The RANKING algorithm 

hardware could be serial, with minimum hardware and 

minimum speed, or it could have a register and 

arithmetic unit for each path, a "pipeline" effect 

with maximum speed. Only the ranking itself would 

require serial processing. The various possible R>fo 

could be maintained in a ROM and looked up as in the 

FORTRAN simulation. 

Thus we have progressed from the sequential 

detector algorithm through the addition of a separate 

convolutional encoder to the joint detector-decoder. 

For a single symbol, the matched filter receiver 

provides a lower bound on the error rate P(E). But 

for long strings, the optimum joint sequential receiver 
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outperforms the matched filter/transversal equalizer, 

which cannot be practically optimized.  The complexity 

of the sequential receiver, however, invites the study 

of a simplified sub-optimum form, hence the simulation 

results presented herein* Indications are that a sub- 

optimum algorithm like THRESHOLD or RANKING is espec- 

ially attractive for long codes, or severe symbol 

overlap, because good performance is obtained even 

with small path subseta. 

Further study of this receiver structure should 

include a search for an algorithmic estimate of P(E), 

and finding out why the THRESHOLD and RANKING algor- 

ithms return to the correct path following an error* 

An ambitious project would be the construction of a 

hardware realization of the RANKING algorithm* 
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APPENDIX A 

COMPUTER SIMULATION OF THE OPTIMUM AND SUB-OPTIMUM 
RECEIVER ALGORITHMS 

A computer simulation of the optimum and sub- 

optimum algorithms described in Chaps, f?-6 was performed 

on a Control Data 61^.00 computer, and the programs were 

written in the FORTRAN IV language. The 61^.00 can do 

a floating point multiply in 5*l/*s  and an integer 

addition in 600ns, but when one considers that parts 

of the decision segment of the optimum program may be 

evaluated thousands of times, it is clear why long 

codes were not tested nor were high SNR's used. Every 

attempt to optimize oft-used code was made, hence sub- 

routine calls were mostly eliminated and several 

FORTRAN conventions were adapted to fit special needs* 

The optimum receiver algorithm follows the logic 

of the flow-charts in Fig, Al-All, The code rate is 

l/N, the code constraint length is L, Other important 

variables are described in Table Al, 

Rather than computing the code symbols T^ as each 

B. is shifted into the coder, prior to "transmission," 

and then calculating the lntersymbol interference due 

to previous T. !s, we note that each sequence .Bj./.* 

W. 



• ••B^ can be used directly to find Rk. First, a code 

table is constructed (flow-chart of Fig, Alj.) in which 

the 2 possible shift-register combinations map into 

a set of coded symbols T, , whose cardinality is less 

than or equal to 211. Second, the 2L possible channel 

symbols Rfc ^ (the HK
fs in Fig. k%)  are found as -hg 

-h. •••-hL ,,••.,+h0+hu + ..o+hL_-L. Last, by using this 

information, the intermediate step of finding the TjJs 

is eliminated (Fig. A6), reducing the simulation of the 

coder and the channel to a table look-up for each 

sequence BT,.i+i*
,#Bic# 

Using the example of section 6.2, a source- 

symbol sequence Bic.2»
Bk-l»Bks: ^»^»^- generates T^ «» 

-k-l'-k300'11*01* Prom this we find Sk" (-1+«25» 

1-.25)= (-.75,+.7f>)« Sut the sequence 0,1,1 is an 

effective-length sequence, and will always yield the 

same R^ , so we write 

Rk(0,l,l) = RkU0 = (-.75,+ .75),    (Al) 

using the fact that 0,1,1 looks like the binary form 

of three, and noting that one must be added to correct 

for the lack of zero subcripting in FORTRAN. 

Whenever modulo-n and logical AND functions appear, 

they are used to obtain special bits within a data word. 

For example, M0D(7,lj.) yields the rightmost bits 1,1 out 

of the sequence 1,1,1. Integer multiplies and divides 
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are used as left and right shifts. 7A corresponds 

to shifting 1,1,1 two places to the right, leaving 

0,0,lo In this manner a long binary sequence can be 

stored in one word of memory. The variables NUSEQ, 

HSEQ, TKSEQ, BKSEQ, and IZ all represent symbol 

sequences, not integer numbers. 

Random input symbols and white Gaussian noise 

are generated by the subroutines RANDU and GAUSS, 

respectively, which are part of the IBM Scientific 

Subroutine Package. 

The rest of the program is the straightforward 

application of the recursive rule given by (f?»l) and 

(5>»2)« For each new input symbol B^, an output 

vector X. is calculated, and the 2* terms of (6.2.1) 

are found from 

n 
A(^ = pjBjjTTf (Nk t) 
i-i \* i=1 

.5  , n'x*.i-yi)2.   ,. 

for each possible Rjj.. Each term is weighted by the 

correct "OLDP," and the terms are summed to obtain 

Bk-d+l* Tne we*-gkted ZXj^s are then summed over 

B^ « to become the next OLDP's, and the cycle is 

repeated. Note that the OLDP'S must be normalized 
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each time to compensate for rounding errors, and to 

allow common factors such as #£/(V2Tr<r) to be dropped. 
N 

An explanation of modifications to the optimum 

program to simulate various sub-optimum cases follows 

the flow-charts of Pig.'s A1-A11» 
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N - Inverse of the code rate 

NU - Code constraint length 

L - Channel constraint length 

H - Channel response samples 

G - Code matrix 

NCOUNT - Jfo, of symbols simulated in each run 

SNRDB - Signal-to-noise ratio (dB) 

D - Delay (no. of intervals of T sec*) 

LEF - Effective channel length 

AM - noise mean 

SUMH - Sum of channel samples squared 

TK, NUSEQ, HSEQ, SYMSEQ, TKSEQ. - Used as binaryf 

sequences for mapping input sequences into 
channel responses 

HRK - Channel responses 

VRNC - Noise variance * 

ERCNT - Error counter 

RANDU - Random number generator, uniform distribution 

GAUSS - Random number generator, normal distribution 

BK - A generated symbol 

BKK - Generated symbol sequence 

XK - Channel response plus noise terms 

NWPRB - New probabilities computed 

OLDP - Old probabilities, formed from the NWPRB»a 

Table Al» Flow-chart nomenclature. 
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C START j 
, INCD, 
INCDNO 

NRDB. 
"", INCNO 

NCOUNT 

tt(ItK)K=lJ 
;I=l,..,NuV 

fiTi£,i=if.U 

, NU, L 

LEF«*-NU+(L 
-1+(N-1))/N| 

N, NU, L, 

LEF, 

NCOUNT 

H(I),I»lf 
..,L; 
G(I,K),K= 

p.,..N,I*l, 
.,NU 

6 
Pig. Al. Data Input / Output, 
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TW0LEF«-2LEP 

T\V0LF1*-2LEP"1 

TWONU*-^1117 

TW0N«-2N 

TW0L*-2L 

TWONU1*- TWONTJ-2 
TWOLl«-TWOL-l 
LL*-TWOLPl-l 
LLL«-TWOLEF-l 

AM«-0. 
SUMH*-0. 

1=1,..,L\< 7  
SUMH«— 

SUMH+H(I)2 

&.-.. 

Pig. A2.    Initialization. 
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© 
1*1,.. 
.$TWONU 

TK(I)*-0 

IJ=1,..> 

'•.,N 

NTJSEQ«-I-1 

SUM«-0 

SHIFT TK(I) 

LEFT  ONE BIT 

IK=1,.. 

.,NU 

SUW^-SUM + 
G(NU+1-IK,IJ) 
•NUSEQMQD 2 

SHIFT NTJSEQ 

RIGHT ONE BIT 

L --■© 

TK(I)<-TK(I) 

+ SUM, MOD 2 

Lb:;;::© 

Fig. A3.    Code table. 

52. 



© 
i 

,.,TWO: 

±_ 
HSEQ*-I-1 

HK(I)*-0. 

IJ^1,..N 

"! 

K*-HSEQ 
MOD 2 

I 

K«--l 

HK(I)€-H(I) 

H(IJ)«K 

SHIFT HSEQ 

RIGHT ONE BIT 

® 

Fig. All* Channel symbols. 
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ITK^LEF 

-NTJ + 1 

1=1,.. 
y..TWOLEI 

SYMSEQ«-I-1 

HK(I)*-0. 

.,ITK 

SHIFT SYMSEQ 

RIGHT ONE BIT 

"I 

TKSEQ«-TKSEQ»TWON + 

TK(SYMSE0 _ ^,,,,+1) 
1/IOD TWONU 

6> , 

HRK(I,IK)« 

HK(TKSEQ 
. _ »      140D TWOL 

■ + 1# 

SHIFT TKSEQ 

RIGHT ONE BIT 

L  .J 

Fig. A£»  Input sequences—*■ output symbols* 
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"-© 

.,INCDNC r—( 20 

dL. 

SNRDB, D 

DP1*-D+1 

IAND^2(LEF-DP1) 

TWQD*- 2^ 

TW0DP1^-2DP'- 

^_ 

NCNT<!-BKK«- 
ERCNT«-BKSEQ 
<-0 
IX*-IXG^1 

1=1,.. 
,..,TWO: 

0LDP(I)«-1 

--& 

i^_ 

VRNC«-10'SUMH 

STDV<- VVRNC 

TVRNC*-2*VRNC 

(-SNRDB/10.) 

© 

Pig. A6. Main Loop Initialization. 
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© 
— k  

RANDU 

(IX,l£,RX) 

IX^IY 

BK<-1 

BK<-0 

SHIFT BKSEQ 
RIGHT ONE BIT 

N 

 Mc  

SHIFT BKK 

RIGHT  ONE BIT 

BKK^BKK 

+ BK-TWOD 

1=1,.. 
..,N 

GAUSS 
(DCG,STDV, 
AM,GNK) 

XK(I)«-HRK(BKSEQ 

+1,I) + GNK 

L -----® 
Fig. A7« "Transmitter." 
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\Z/    A.,TWOLI 

IZ««-I-1 

OLDPT«r-OLDP((IZA LL)«2+1 

XNSQP<Sr-0. 

fl J=l, . . 
..,N 

XNSQF*-XNSQF+(XK(IJ) 

-HRK(I,IJ))2 

\ 

F«-EXP(-XNSQR/ 
TVRNC) 
N\VPRB(I)^F'OLDPT 

Fig. A8.    Calculation of the incremental 
probabilities* 
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SUM1«-SUM1 
+ NWPRB(I) 

ZA IAND>QNs Y     > 
SUM2 <- SUM2; 

+ NWPRB(I) 

tf5a^ —_JL 

BKG*-0 

BKG<-1 

BKMD«~BKKA 1 

ERCNT *- 
ERCNT +1 

Fig* A9«    Decision calculation. 
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RNORM«-0. 

1 = 1,.\ 
..,LLL   I 

OLDP(I)<-NWPRB(I) 

+ NWPRB(I+l) 

RNORM «- 
OLDP(I) 

<3> 

1=1,3, 
• • f LLLy 

OLDP(I)<- 
OLDP(I)/RNORM 

NCNT«- 
NCNTM-1 

ERCNT«-0. 

I 

Pig. AlO* Normalization of OLDP's and 
error summary. 
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ERPRB«-ERCNT 

/(NCOUNT-10) 

j£- 

ERPRB 

±_ 

D«-D+INCD 

D<r-D-INCD 

•INCDNO 

SNRDB«- 

SNRDB+ RINC 

...-«© 

%------->© 
(STOP) 

Pig. All.    Output and irrapup* 
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The modifications to the optimum nonlinear joint 

sequential detector-decoder appear in the flow-charts 

of Figures A12-Al£. 

Basically, the THRESHOLD (sub-optimum) program 

functions identically to the optimum program (see Pig. 

A12), except that only a fraction of the data manip- 

ulation is done, particularly in the segment where 

significant amounts of squaring and exponentiation are 

performed. This segment is bypassed whenever the 

variable OLDPT falls below the prescribed threshold. 

Fewer calculations result in a shorten program running 

time, or alternatively, less hardware, when parallel 

processing is performed* 

The TOLERANCE algorithm, illustrated by Fig. A13, 

is similar to the THRESHOLD algorithm in that it by- 

passes many calculations, but the approach is different. 

Rather than examining OLDPT, which represents all the 

old information available on a symbol, this algorithm 

allows, the noise estimate, XNSQR, to be computed for 

each allowable R^, All vectors not within the preset 

tolerance are eliminated* 

The RANKING algorithm (Figs. All|-Al5) is imple- 

mented in two segments. The first is the decision 

segment, similar to the TOLERANCE and THRESHOLD decisi >ns. 

Ttie second is the actual ranking segment which ranks 

the OLDP*s and maintains the correlation between the 

6l.    C 



OLDP's and the NWPRB's affected by them. An inter- 

change sort is used, and all OLDP's not within the group 

are set to zero. This particular program is quite 

inefficient, but generality, not efficiency, was stressed. 
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c THRESH 

Fig. A12. 

X 
OLDPT«-OLDP( (IZA LL) -24-1 

XNSQR = XNSQR+(XK(IJ) 

-HRK(I,IJ))2 

SUM2«—SUM2 
■f-NWPRB(I) 

Changes to optimum program to 
simulate THRESHOLD algorithm. 
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r~ 

fa 

P<-EXP(-XNSQR/ 
TVRNC) 

NWPRB (I )<-F • OLDPT 

BKG<-0 

SUM2<-SUM2 
+ NWPRB(I) 

i 
I 

Pig, A13. Program flow for TOLERANCE algorithm. 
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MIN 

I 

10: 

^ 

IZ«-I-1 
XNSQR«-0 
NWPRB(I)<-0 

>f 

0T«-(IZALL)24-1 

SUM2<-SUM2 

+ NV/PRB(I) 

Fig. Ali|« Program flow for decision segment 
of RANKING algorithm. 
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I—-K ...,MII 

LLL-2-IJ 

0L«-0LD(I+2) 
IN*-INDX(I+2) 

J*L 

0LD(I+2)<-0LD(I) 
INDX(I+2)««-lNDX(l) 

I 
OLD(I)«-OL 
INDX(I)«-IN 

"^\...,MIM 

Pig. Al£* Ranking segment of RANKING 
algorithm* 
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