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ABSTRACT

New simulation results presented herein 1ndicete
that.certaln sub-optimum forms of a nonlinear'eequential
receiver,'which i1s used to jointly detect and decode
high—speed dlgital data transmitted through noisy
channels with intersymbol interference, will outperform
" an optimum linear recelver. Three methods of achieving
near=optimunm performance from a sequential receiver

havlng only avfraction of the-calculations of the
| optiﬁum.sequential reoeiver are discussed; The first
eliminates marginal calculations based on a probability.
threshold criterion, the second based on a nolse toler= .

-

ance criterion, and the third ranks the decision

stgtistics. The simulated.performance of the subeopti;uﬁ
receivers means a real software Or hardware implemen=. .
tation is no longer 1mpractical due to lengthy calcula=-

tions or large data storage problems. ,

1.
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SUB=OPTIMUM SEQUENTIAL RECEIVERS FCR CODED DIGITAL
DATA AND CHANNELS WITH INTERSYMBOL INTERFERENCE

1. INTRODUCTION, . ‘
When high-speed digital data is transmitted through
noisy narrow-bandwldth ch;nnels, ad Jacent pulses begin
to overlap. - This phenomenon, called intetsyﬁboi inter-
ference, may severeiy affect thé reliability of a commﬁn—
lcations System.- There are several methods, however, of
vcémpenéating for intersymbol interference. By designing -
a recelilver with somejknowledge of the transmitted symbol
‘probabilities, as well as the channel characteristics,
the probability qf receiver error can be held to a ﬁinimum.
Several optlmum receivers hate been proposed recently, ,“.
‘but all of them suffer from being too complex to 1mplement' |
Zeconomically for long codes or channels with severe
interference. This study attempts to simplify the none
linear sequeéEI;I-receiver proposed by Abend and Fritchm;n
'[i], ;hd the Joint sequential receiver derived from it,
which simultaneously detects and decodes convolutionally
encodgd daté. Theyoptimnm"performance of the joiht recelver
has previously been studied by Sattar [2], and his results
are'ugéd as a yardstick for comparison of the sub-optinmum
results derived‘herein.

Lo
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Chapter 2 briefiy e£gmines the history of optimmm-
receiver development, and explains why a sub-optimu@
recelver, rather than an optimum one, is generally
desirable for practical application.

Chapter 3'develoﬁé the sequential receiver of Abend
 and Fritchman, beginning with the basic commmunications
channel model. Chapter 4 adds convolutional coding to
"the transmitted sourcé\bits, which then requires an
optimized decoder to be appended to the optimized
detector discu;sed in Chapter 3.

Chapter 5 demonstrates how the separately-optimized

detector=decoder can be greatly improved by a joint
 detector-decoder algorithme

Chapter 6 gontaihs the simulation results of
three“atteﬁptS'atfreducing the complexity of the
joint receiver. The results indicate that even though
performance is degraded below optimum for the join#
receiver; the sub-optimum joint receiver still out-
perfofms the séparately-optimizéd receiver, with
éonsiderablyvless complexity and fewer calculations,

Chapter 7 summarizes the results of Chapter 6,
attempts to choose the best sub-qptimum”schemg of the
three examined; andfconciudas with suggestions for
further study. : o

Detalls on the computer simulations appeéﬁ 1n-
Appendix A. '

3.



2. TYPES OF RECEIVERS. *

Intersymbol interference 1s the major hindrance
to high data rates in typical wireline and radio
data channels, Significant research has led to various
schemes of minimlzling the effects of the 1ntarferen;e. “
These‘schemeS'can be broadly lumped 1lnto two classes,

- linear and nonlinear=receivers;

The class of linear receivers is attractive from
the standpoint thét they caq}bg described and evaluated
analytically. Also, thelr iﬁplembntation is straight=-
forward;and hence they a#e frequently used in réal
applications. | »

The idea behind the linear feceivers is to
flatten out.the amplitude and delay distortions,ﬁhich
naturally ocbuﬁ in a real channel, so that the net
affect of the channel and receiver approaches an
‘ldeal linear-amplitude-and-phase fréqﬁéﬁcy response.’
'This process; calleg equalization, is based on the
fact that samples everj.T sééonds from a receiving
filter matched to the transmitting filter and channel
characteristics constitute & sufficient set of
statistics for estimating the input sequence [}].
| A transversal equalizer is a tapped delay line
that approximates the‘réquired matohed filter. The
process of adjusting the tap coefficients to a specific

channel was a tedious manual process until algorithms

,4-0 . . | s
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1ntroduced in 1965 [hj,[S] provided automatic

ad justment. Further improvements in 1966 [6] provided
the ability to track time-varjing channel coefficient;.
A 1inearﬂfeedback equalizer is similar to the
transversal equalizer exéept that Intermediate
outputs from the tapped delay line are fed backward
as wéll as forward., The result is a small improvement
in performance, but not a significant one..
Normally, the tap coefficlents would be chosen
to minimize P(E), the average probaﬁility of error [7],
But P(E) is such a nonlinear function of these
coefficlents that other criterions such as "pedk
distortion" [h],[6] are used instead.
The class of nonlinear receivers is based on
efforts to use P(E) as a performance criterion.
These recelvers are characterized by excessive data
manipulation and defy analytical predict.on of thelr
performance. |
Fourney [8] has applied the Viterbl algorithm to
processing samples from a whitened matched filter,

and has obtained tight bounds on its performance.

Ungerboeck and Mackechnie have developed a similar

regaiver [9], but have eliminated the need for a
pre-whitening filter. Chang and Hancoék [i@} have
préposed a receiver in which the receié;d‘symbolﬁl
are partitioned into overlapping sequences K synbols

Se



long. Theh‘the sequences Ak4k+1A£+2"° form a Markov
chain from which maximum likelihood (ML) decisions
are made.

A Anonl‘ineé.r‘N'IL receiver which minimizes P(E)
on eaéh sjﬁﬁﬁl has been developed by Abend and
‘Fritchman [l]. This receiver sequehtially computes
the a.posteriori declslion statistics for each
recelved symbol, making symbol-by-symbol ML decisions
after only a short delay D. Because the recelver 1is
recursive, long sequences do not have to be stored,
.aqd the recelver remains optimum for any length |
sequence.

‘Unfortunately; the sequential recelver grows
exponentially as ﬁ[% where m 1s the size of the
source symbol alphabetT. When the source data 1is
convolﬁtionally eﬁcoded, the recelver becomes &
detector-decoder pair, increasing the complexity
by that of the decoder. Because-éf the similarity.
between the optimumvaetector and the optlimum decoder
algorithms; however, a joint detector-decoder
algorithm can be derived without much more complexity
than ®ither of the separate parts [2]. |

~Simulation results indicate that the sequential

tActually, the coﬁpleiity increases as ‘
n¥ +(D-1L)m for D>L, L is the effective duration
of the interferencee.

6.



detector is superlor to the class of linear_receivers
[1], but lacks thetéimplicity of a linear recelver,
Further results have shown that the optimum joint
detector-decoder also does bettefbthan the separately
optimized case [2]. This paper is motivaﬁed,‘then,
by'the possibllity of reducing the complexity of the
\J;int sequential recei&er to a practical level, yet
maintaining an edge in performance above whaf the
separately‘optimized detector and decoder can achieve.
Linear equalizers, while mathematically tractable
and bractical to lmplement, are not optimum due to
thelr tuning techniques; the "peak distortion"
criterion is an example. The optimum nonlinear
réceiﬁers are too complex to be pragtical. Hence .
a sub=-optimum recelver results. The next.severél
chaptefs provide the background needed to understand |
the réduced complexity sequential réceiverg of

Chapter 6.

Te
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3, OPTIMUM SEQUENTIAL DETECTOR.

The basic model for a commnications system with
1ndependent}(noh-coded) source symbols is shown in
Figure 3.l.

¥

B1Bo..Byesy| _S(t R(t)
122k SIMODULATQR ,() )ICHANNE& (e)

white-noise

BB ...B LN J
< 172 k

RECEIVER

Fig. 3.1, Basic Communication System.

The source symbols are assumed to be binary for
our purposes, although the m-ary case is easily derived.
The ones and zeros from the data source are then passed
thrbugh the dlgital data modulator. Heie we will assume
pulse-amplitﬁde modulation (PAM), so the signallS(t)
becomes a trailn of‘pulses each of amplitude -1l or 1

and of T seconds duration, That is,

s(t) = %Ak g(t=kT) (3.1)

where Ay = 1 if By = 1, Ay = =1 if B, = 0, and g(t)
is a unit pulse T seconds long.
The finite bandwidth of the transmission channel

causes ad jacent pulses to overle- at the output. h&r

8.



a perfect Nyquist channel, this 1is no‘problem, because
the channel is then sampl d such that all interfering
.terms are zero. But all real channels are subject to
phase delays and other perturbations, causing inter-
symbol interference.
If the impulse
response of the
channel, for

example, 1s as

. >t
shown in Fig. 3.2,
then the sampled Fige 3.2. Sample channel
response.
value Rk is given by P
Rk =B h + Bk 1h1 + Bk_zh2
or R, = Bhgy + B hitees +B ; b o (3.2)

in general, for an impulse response L samples longe
Intersymbol 1nterference occurs when more than one of
the hi's are nonezero. The delay ¥ allows both future
and past symbola to Interfere. M ‘
The standard assumption of additive white Gausslan
- noise completes the channeltmodel, so that the received
signal becomes
X(t) = R(t) + N(t) | . (3.3)
or X, = Rk + Ny (3ely,

for statistlically independent noise sarples.

9.
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Actually, "colored" nolse can also be handled if a
noise-whitening filter 1is added to the front end of .
. the receiver in Fig. 3. 1. )

The basic problem this model presents 1s designing
a receiver to produce an estimate Bk of Bk such that \
the average probability of error 1s a minimum. The
sequential detector of Abend and Fritchman is an
optimum recelver when Bk depends on no more than X_X_see

12
xk&D’ where D is the time delay before making a decision

on Bk'

The decislon, for our binary examplé, is to choose
Bk = bi when )
| P(B, = by | XjeeeXyup) > P(By = bJ|' X1 00 oXpeup)
bysbye {L,-1} , Dby # by (3.5)
This 1s identical to caiculating the probabilities
(Bk’xl"°xk+D) because in

P(Bk| Xloooxk+D) = p(Bk’xl.ooxk+D /b(xl"°kaD)’
: (3.6)
the term p(xl"'kaD) is a common proportionality

constant. By noting that the input symbols are indepen=-
dent, and that X, depends only on the L values B

k-Ift'l. L X J
k’ 1.60. (
p(xk ‘31000B ,xloooxk 1) = p(Xk ‘ k-L+looo( )’)
o7
then we can recursively calculate "

P(By,Xy) = P(B,)p(X, | B,)

10.



p(B;By,X1X5) = p(X5]|ByBs,Xq)p(ByB5,X,)
p(X,|ByB,)P(B,| By,X,)p(By X )
P(B,)p(X,| ByB,)p(By,X,)
p(Bl 2B3»X xsz)

p(B ...Bkw,xl...ka) |
L %: p(Bk-lBk. . .Bk"'D-l’xl.. .Xk+D_1)
k=l (3.8)
from which .
4P(Bk,xloooxk+D) = % ..’.BZ p(Bk...Bk"'D’xl...xki-D)./
rl o TletD (3.9)

For bihary equally=likely source symbols, the term
P(Bk+D) of (3.8) will always be 1/2. The third term,
in the summatlion, 1s known from the calculations for
the previous symbol. Finally, the second term is

L
calculated for all 2™ sequences Bk+D L+1“’Bk*D by noting
that

p(X, | By 1i1e0B) = £(X =R, ) (3.10)
and that f£(+) 1s the noise probability density.
Equations (3.8) and (3.9) constitute the core of
the sequential detection algorithm in [}], and also
serve a3 a decoding algorithm for convolutionsal codes,
with only slight modiication, as the next chapter will
show.

1l.



L. OPTIMUM DETECTOR PLUS OPTIMUM DECODER. ?
Shannon haé shown éhat daté,sequences, ihen
properly coded, canmreduce the probability of trans-
mission error to zero. Of course, an infinitely long
code generator would be needed, not to mention the
more difficult decoding problém. But even short coding
techniques can be used to achieve higher reliability
~without too much additional coste
A convolutional coder consists of V shift registers
and n ﬁé&ulo-two adders. ‘Figure>h.l shows such a coder

with V ='3 and n = 2,

input ,
_‘_’l By Bpaa Bya2

Tx,2
> Ty,1

Fig. 4.1. Convolutional coding,

This coder can be represented by the code generator

| matrix

G =

OHH
KO

In  general, if 81 3 = 1,-there is a connecticn
]

between the 1th shift register and the 3th modulo-two .

12,



adder.
There are n outputs (rate 1/n) every T seconds
. when & new source symbol is shifted in. These can be
computed as
Tie,1 = BiBr1 ®By180) ©c oo @By 118y
.

T

. B ' B
kyn kgln e eee C) k- V+1 vn o (4e1)
The nature of this coding technique makes decoding
i1t very simllar to detecting data in the presence of

Intersymbol interference, since the outputs '1‘k 1°°°
: 4

T depend not only on Bk’ but on V-1 past symbols as
k,n :

well,
The decoder functions analogously to equation (3.8),
only now the Xy's are replaced by the vectors

k = (Tk.l’...’Tk’n) (,-I-OZ)

and the necessary joint probabilities are calculated

. following a delay of d input symbols (d) V)

P’(Bk‘-..B +pTaeeeT )

k+d’=1 ) )
=P(B k+d)P(2k+dl Brd-y +1°°*Bisa)

BZ P(By 1By oPria-1oTy o o Tyegan e

. k=l (4a3)

In this case, the second term can be calculated as

~k+d

P(Tk+d|13k+d V+1...Bk+d) = P(Tkl )

T Tgrp(Tk.Jlti 1

' (o)
13,



where 1=1,2,.0.,2" That 1s, there are 2" possible
sequences L3 =t43t5500.ty, (some of which might be
redundant) because there are 2V_possib1e "states" of
the_shift reglisters., Each individual probability
P(Tk,jlti,j) is either p, or l-p, when we assume the
channel to be binary symmetric with cross=-over probabile
ity p. If T, =14, then P(T.|t;)= (1-p)B,

‘ The communication model, with the addition of
convolutional coding, appears in Fig. le2.

MODULATION,

"eseBpeee| CODER leeTy Troq 7eee
seeBgees k,nT k+1,1 TRANSMISSION,
DETECTION,
&
e+ eBreee | DECODER coe T seee DEMODULATION
P k=letl (FIG. 3.1)

Fige +«2. Channel with coded rymbols.

In this case, the model of Fige 3.1 accepts the binary

symbols “’Tk-l,nTk,l k,2°°° as 1f they were independent,

A

. A A
producing ML estimates "'Tk—l,nTk,lTk,2°" which are

then processed by the decoder., The decoder produces
. A '
one source-symbol estimate, B, , for every n detected

A A
symbols Tk,j’ or alternatively, for every‘veotor Ek'

The detector of the previous chapter must delay

A
its declision L~l1 symbols Tk 5 while tlie convolutional
ey »

lhﬂ



decoder must wait for V.n of these symbols. The result
is an effective delay before estimating Bk of -

D_pp= D+ [L—;—] | s

time intervals T, when the rate of the B,'s 1s 1/T.

The quantity [L;.;—l-l 1s the least integer }L;]' o An

example makes this clearer. If V=3, n=2, tslncllT L=, _

then the source symbol B, affdcts _'gk, Ly4y0 and 2k+2’ '

so the decoder must wait vT= 3T secondsT until Bk is
A

shifted out of the coder to compute Bk’ Note, however,

that xk+2,2 depends not only on Tk+2,2’ but on Tk+3,1,
Tk+3,2, and Tk+).|.,1 as well. This represents an addi=
tional lag on the system, hence the effective delay

becomes

Depp =3 + P*'a'—q =l

TNote that it 1s possible to estimate By before
its effects die out, for some delay d, d<V , Indeed,
this example also assumes D= L=l, although same DK
L-1 might perform nearly as well for negligible inter-
symbol interference., For the purposes of thils paper,
however, we generally allow d2>V, D2 L=1 to achieve
the most favorable error rates,

15,



S5 OPTIMUM RECEIVER,

Intuitively, a detector which does not employ
all of the information Bresent in the coded symbols
it receives willl make more errors than one that does.
Recall that the separate detector Pf Chapter 4 basea_
- 1ts decislions only on knowledge of the channel, and not
of the code. This intermediate decision, prior to
decoding, is a lossy process ﬁhich can be eliminated by
the jointly optimized receiver we shall now describe.
The jolnt receiver estimates theﬂoriginal source symbols
directly from the X, 's, rather than first making a bit-

by-bit decision T «es followed by a decoding

A
k, 10t k,2
process.

The procedure is the vector-extension of the

scalar equations (3.8) and (3 9)3

p(Bk,Xl. o Xprg) —BZ . 2: P(ByeeeByis sXyeeoXyys)
and k+l k+8 ' . (501)

p(Bk. - N SR ._Jg]m)

= P(Bieyp )0 (Xpag | By oprae s oBiers)

oBkzlp(Bk_lBko ° .Bk+$-l ,_x_lo ° o£k+s-1)o (5.2)

The first term is again known to be 1/2 for our binary
data. The third term is the stored value from the

previous iteration, and the second term is now the

product (assuming independent noise samples)

P -k+s| Birs 1+1"‘Bk+8 ﬁf(“ka—& (5.3)

16,



Again, there is a delay, 5 , such that Bk+é is
transmitted before decision on By. The length £ 1s
the effective overall constraint length, and 1is given
by | <

(=ve=2] (5.1)
for the identical reasons stated for equation (4.5).

The joint ;lgorithm, as expected, shows marked
Improvement over fhe separately optimized case. Fig.
5.1 illustrates an improvement of at least 3dB in the
signél-to-noise ratlo needed to achieve 1dent1ca1
error rates, for the sample éhannel and convolutional

code used.

17.
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6. ALGORITHMS TO REDUCE: THE COMPLEXITY OF THE JOINT
SEQUENTIAL COMPOUND DETECTOR-DECODER.

6.1. Motivation.

s

For binary data transmission,'the‘size of the
optimum sequentlal receiver grows exponentialij as
2!, where £ 1s the effective length of the intersymbol
interference when the effects of the code constraint
length aré combihedlwith the channel pulse duration.

It would be very desirable to trim tﬁe size of the
receiver 1n a way which does not seriously degrade per-
formance, while eliminating much of the required storage
(in hardware or in software) and much of the data manip-
ulation needed by the optimum algorithm, If the resulting
sub=-optimum sequential receiver performs better than the
separately éptimized detector—decodér pair, then the

sub-optimum receiver is judged successful,

6e2. An Example.

To iIntroduce the sub-~optimum algoritﬁms, a specific
example of the functionihg of the optimum joint algorithm
will be helpful,

Consider the code generator in Fig. 6.2.1. The
code used islrate 1/2 with a constraint length Qf 2,
and 1s completely specified by the code generator matrix
' Gs¢ Fige. 6.2.2 is a tree which represents the pairs
tk,l’ tk,a transmitted by the coder given any previous

state. - Moving up one level indicates e zero was shifted
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Fige 6.2.1, Code generator and generating
matrix, . :
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Fig. 6.2.2. Code tree of vecto.s Tpee
| : 20, |



into the coder, while moving down one level implies a

1l was shifted in. A source-symbbl sequence of 0,1,1,

for example, would transmit the coded pairs 00,11,01

(after modulation, these are really -l-l,11,-11). Note

that the two source symbols in the convolutional coder s

uniquely determine which pair of symbols 1s transmitted.
Now assume the channgl has an impulse response

of ho:=1, hi==.25, causing interference between adjacent

symbols. Then the possible received symbolé Ry (see

model of Fig. 3.1) appear in the tree of Fig, 6.2.3.

The upshot of the intersymbol interference 1s an effec=

tive constraint length of three source-symbols. ~Each o

received vector _R_k ={thot hy, tho‘_thl} depends on the

two source=symbols in the convolutional coder plus the

symbol most recently shifted out, There are 2£==3-such

Bk's, and these are assumed known by the recelver,
Decisions on each Bk are made after a delay d=

K-1=2 to ensure that the effects of B, have dled away.

The dec;sion on B2 (in'the second column of‘Fig. 6.243)

is'delayéd until the first information on B), is re-

ceived, and made as followss

L]
Calculate the eight "incremental" probabilities

(1)
A|k-;d = P(By, g)P(Xy 4| ByeeeByyq)
J=u...,

= P(By )p (X, B,B;By )
2
P )T Te(x, =Ry ,)

21.



-ho-hl ) -ho-hl
=hg=hj, =ho=hyf

=hny=hj y=hn=h
-hg hy,hg=hy
"“‘%STQ—;L'ho+h1,-hg+h3
————————— -ho+h1 » -ho-‘hl
-hgthy shp=hy -
@ h0+h1 ’ h0+h1
ho-hy shgthy i
0o
T
1 .
hQ-h;g ho+h1
=hot+h] , hQ-hL_ @ .
hg+hj sho+hy
(:) — | hothys=-hgothy
ho st hO'l'hl . ‘
. : B O Mt L 0 D |
: hot+hi ,hothy
ho+hjy ,=hgt+hy ’ :
, % =hg-hy sho=hy

‘ ho-hl 9 -h0+
I ho-h]_L, -ho-!'h]

'Fig. 602.3. Possible received vectors Ry for the
' code of Fig. 6.2.2 and a length-two
impulse response. ,
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P(Bh)ﬁf(N ) - ‘(6.2.1)

where Lh— (-h o~hytN ,1’h -h1+N ,2

then weight these by the "old" probabilities, or
"OLDP's":

(1) _
OLDPy 5 = 22" p(Be_1Byes o By 19X10++ perqe)
L=l Bk..]_
=§2 P(B)BB,LEX X)) (6.2.2)

In this example, the four OLDP's are O+®,
@+® , ®+@ , and ®+® , representing the sums over
B1 of the eight statistics from the previous decisione

A
Finally, we pick B_, =1 if

2

Z ZP(Bh)p(X |1 BB)) Zp(Bll B3,x1x23_3

> ZZP(Bh)p(}_ghIO B Bh)gllp(s 0 (6.2.3)

XX
'3’-)-(-1-2—3)
An alternate expression would be to choose 82—1 if

A(ﬂ)owp(” > Eh_:A(j)OLDPh, where 1= 4- or J%l
J+1 ) whichever is even.

Again looking at the tree of Fig. 6.2.3, we see that
the upper four paths in the rightmost column represent
paths for which B,=0. The next four paths are from
By, =1.. H;d we let d=3, then all 16 paths would have
been retained, but with no gain in information because

the top half of the tree is identical to the lower half,
. 23.



6.3. Sub-optimum Receiver by Threshold Techniques.

Clearly, to reduce the complexity of the optimum
Joint sequentlal receiver, we must calculate only
a subset each time of the incremental probabilities
Zﬁﬁjé, j==1,,..,2£. Each of these probabilities can |
be thought of -as a branch‘oh a tree (Fig 6.2.3),
weighted by terms from earlief branches. A logical
criterion for declding which paths to retaln, therefore,
would be some quality possessed by the weights.

If most of the energy due to the source symbol
‘ By has been received prior to receipt of §k+d’ then
it is reasonable to expect that much of the information
for the declsion on Bk 1s contained in the weighting
terms

e k+d_1’_x_lo ..';x'k"'d)

1=1,2,0..,20°L

(1) _ =

summarizing the history of the received sequence.
Many of these terms, the "o0ld" probabilities, are
very small compared to the ones which are "closest"

to the true sequence. That 1s,

od=1 | |
?:_:1 omr&c’l =1 ‘ (6e3.1)

for the optimum receive ., and if we discard all those

OLDP's satisfying OLDPI({:A < THRESHOLD, then

-1
éloLDPL}'?i = l-e ® (603.2)
‘ 2,.}.



The smaller € 1s, the more closely the sub-optimum
wapproximates the optimum recelver. But the larger )
€ (and the larger THRESHOLD), the less the required
calculations by the receiver. In practice, all OLDP's
are normalized with respect to the largest OLDP,
Every time an OLDP falls below the threshold, it 1s
not necessary to calculate the two incremental prob-
abllities associated with it, and in this manner the
recelver size is reduced. |
| Fig. 6.3.1 shows the effect of arbitrarily
piéking a fixed threshold to trim marginal paths
from the received-symbol tree. The two convolutional
c;des used are each constraint length two and code
rate two, and the channel i1s similar to the wireline
channel used in [1]. Whenever the nolse gets large
(the noilse samples are shown in Fig. 6.3.2), the
recelver responds by retaining mors paths. Likewise,
few paths afe retained when the addltive nolse 1s rel-
ativeiy quiet. Fig. 6.3.3 is the probability of error
(P(E)) for these two codes as a function of the signale-
to-noise r&tio, with THRESHOLD as a parameter, and Fig.
6.3.4 1s the probability of error as a function of the
threshold.

These two codes, though véry simple, poin; out
several interesting facts. First, P(E) is affected
hardly at all by eliminaﬁing the lowest probability
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Fig. 6.3.3. Performance of “wo length-two codes.
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paths . Second, even though most paths are rejected
by setting THRESHOLD high, P(E) does not blow up to
1/2. 1Indeed, for a very high threshold (say, .999
for the normalized OLDP's), the algorithm becomes

" "decision-directed," allowing only two paths to be -
considered following retention of only one OLDP from

the previogs decision. One miéht believe that a declsion-

directed process like thié>wou1d continue to make errors
after a burst of nolse causes a deviation from the
correct path. That the threshold algorithm always

(as far as we can tell) returns to thse correct path,
without a long string of errors, 1s a remarkable fact.
Last, we observe that although one code may out-perform
another in the optimum case, 1t may be worse for a
glven threshold.

In order to more rellably predict the effq9ts of
the THRESHOLD algorithm, simulation on a more compli-
cated code was performed., Fig. 6.3.5 shows P(E) for
several thresholds and the code and chanhel used in [2].
As a result of the small number of errors and hence the
need for excessive computer time, simulation was not
done for signal-to-noise ratios above 5dB, But the
pattern 1s clear: only a small subset of the paths
used by the optimum alégrithm can out-perform fhe
separately-optimized detector-decoder. Fig. 6.3.5 is
better understood with the aid of Table 6.3.1, which
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4

-SIGNAL-TO-NOISE RATIO

THRESH-  I° 2. 3 b
OLD AVE DEV AVE DEV AVE DEV AVE DEV
0.5 2.3 79 243 70 2.2 60 . 2.2 .50
0.1l 3.5 1.7 3.1 1l 2.8 1.1 2.5 1.0
.01 6.2 hoo ,4.8 2.8 3.8 1.8 3.3 loh
.001 100 70 7ol L7 5.2 3.0 Lol 2.0

Table 6,3.1. Few paths retained for high thresholds.

lists the average number of paths retained (out of 6l)
and the associated standard deviation for each point
on the sub-optimum curves,

Fig. 60.3.6 1llustrates how widely changing the
number of paths retailned by this code can be, As in
Fig. 6.3.1, the number increases as the noise does, and
drops durlng more qulet periods. The four curves have
roughly the same shape, indicating that a nolsy intervall
causes most of the marginal (smallest) OLDP's to

increase in likelihood,

6oie Sub-optimum Receiver by Noise Tolerance
Criterion. '

‘The vectors zk can be thought of as polnts in
n-space (if the code rate is 1/n), and the noise X

k
as a-distance vector from the true point Bk in that
space:

X, =R + N , ' \K\\
Hk = .x..k - Ek L] (60,401)
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This suggests another method for limiting the
optimum receiver complexity. Calculate only those
incremental probabilities [kk:falling inside an n=-
sphere of radius Ca'from.‘_lik where oo 1s the standard
deviation of the nolse. The effect is the same as the
THRESHOLD algorithm, but not nearly as stable. The
number of paths retained is allowed to vary, depending
mostly on the noise, but also on the location of the
polnts R, in n-space. Certain codes result in better
separation of the Ek's, and it is possible for the
Intersymbol interference to improve separation even
more, . |

Fige 6.1 shows curves of P(E) for various tol=-
erances CO, compared withfthe optimum results for the
code and channel in [2]. As was the case for the THRESE-
OLD algorithm, a select subset of paths ylelds nearly
optimum performance. Only 39.2 out of 6l paths were
retained on the average for TOLERANCE= 5 (and SNR(dB)
= 3.0), yet the simulated error rate was the same as
the optimum P(E) (noting, of course, that only a finite
number of symbols can be economically simulated, hence
emall differences in P(E) afe obscured).

Unlike the THRESHOLD algorithm, the TOLERANCE
algo;ithm falls apart when the tolerance is éet to
- exclude too many paths. The c#lprit causing this

0

3’4.

problem is the low energy of h.  and hl’ compared to
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ho, the main pulse of the channel response used in the
simulations. The low energy tail of h(t) places several
of the possible R, 's close together, and when a noise
sampie brings the received value zk too close to the
wrong Bk and the tolerance 1s smail, only the one wrong
path 1s retalned. Errors seem to propagate using the
TOLERANCE algorithm, thus there would be a sharp knee

in a graph of P(E) vs. Co, where the algorithm suddenly
begins to work well., '

Overall, the TOLERANCE aigorithm 1s less rellable
and predictable than the THRESHOLD algorithm. There 1is
a third algorithm, however, which is more promising
than either TOLERANCE or THRESHOLD, because it limits
the potentlal size of the receiver. This is the RANKING
algorithm,

6.5, Sub-gpti@uﬁ Recelver by Rankinge.

The RANKING algorithm is based on the same logic
as the THRESHOLD algorithm =- 1limit the number of
paths'k;pt in the received symbol tree; only the apprbach
is a 1little more involved. Whereas a simple comparison
. was all that was needed for each OLDP in THRESHOLD,
RANKING requires each hew set of OLDP's to be ranked
by value, choosing a fixed number, Nh, to keep eéch time.'
Because Ny is fixed, there is no need for the "spare"
room that THRESHOLD and TOLERANCE retain for expansion
during noiay'sequenceSo
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The advantage of a fixed-size receiver outweighs
the dlsadvantage of the additional calculations needed
to rank the OLDP'!'s (as detailed in the next phapter).
It also outweighs the simulatlion results, showing
that the RANKING algorithm does worse for a given NR
than the THRESHOLD recelver and an equivalent average
path retention. Fig. 6.5.1, for example, indicates
that 6.2 paths (THRESHOLD= .01) has P(E) =,02l4, while
NR==8 (RANKING) has P(E)= ,026. This result can be
expected, because the TIRESHOLD algorithm is allowed
to "open up," or expand, when it needs to.

Fig. 6.5.2 more vividly demonstrates how only a
small set of paths need be retained to achlieve a
nearly optimal error rate. Out of 6l possible paths,
going from two to four yields the most substantial
improvement., After about ten paths are retained, no
further improvement is noticed. Changing the signale
to-nolilse ratio changes the vertical positiop, but not
the shape, of the curves P(E) vs. paths retained,

A more detailed explanation of the method of
simulating RANKING, as well as the THRESHOLD, TOLERANCE,
and optimum algorithms appears in Appendix A. But the
‘next chapter trles to sort out the complexlity of the
simnlations to see if anything was really gained, and

speculates on the complexity of a hardware roalization.
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7. COMPLEXITY AND REALIZATION OF THE SUB=-OPTIMUM
ALGORITHMS,

The simulation results of Chapter 6 indicate
that by using only a small subset of the possible
paths as a basis for an ML decision‘on the source=~
symbols, an error rate is achleved below the rate of
the separatély-optimized detector-decoder. This
conclusion, however, is only useful if the sub=-optimum

~Jjoint receiver can be implemented for less cost than
the optimum case.

Oné reasonable criterion for judging a software
approach to realiZing the sub-optimum recelver 1is
the amount of CP time consumed by processing one
symbole Fig. Tel represents the CP time/symbol for
the code and channel used extensively for error rate

comparisons in Chapter 6.

.06 |

«05 }
cP Ol b
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Fige Tele CP time in FORTRAN simulations.
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The THRESHOLD and TOLERANCE algorithms lineerly
consume less CP time for each path dropped, since
dropping one path is equal to skipping that part of
the code which computes the associated incremental
probability. While the data for Fig. 7.l comes from
the FORTRAN simulation outlined in Appendix A, the ,
general shape and relative position of each curve 1is
probably similar to a dedicated software approach which
pays more attention to code optimization.

On.the basis of time consumed, the RANKING -
algorithm performs least satisfactorily. The reason
for this is due to the parﬁicular=manner that the
Incremental probablltlies were ranked. If two paths
were required, all 32 OLDP's were interchange=sorted,
requiring 31 comparison of mostly gero data. Similarly,
for 62 paths, 314 30+29+ eee +1 = 65 comparisons must
be made for each symbol. By ranking only nbn-zero
data, the sorting algarithm is simplified, but this
advanfage is lost iﬁ additional memory references
needed to keep track of which incremehtal probability
is associated with which "0l1ld" probability.

To get a rough idea of the.computations saved by
'trimming the potentlal paths, conslider that the CDC
6,00 can do = floating point multiply in 5,[/49, and
an integer addition in 600 ns. That means that a

' ll-lo



subset of less than ten paths out of 6l saving

.02 CP seconds/symbol off the optimum algorithm saves
3500 multiplies, ar 33,000 additions, or a combination |
thereof,

Ideally, a sub=optimum algorithm could be incorp-
orated 1nto a plece of hardware, such as a MODEM for
voice=-grade chanpeis. For this application, the
RANKING algorithm is the only practical one because
it requires a fixed size receiver. The THRESHOLD
saves little or nothing in hardware since it can, in
theory, expand to the size of the optimum receiver
when all OLDP's exceed the threshold. The RANKING algorithm
hardware could be serial, with minimum hardware and
minimum speed, or it could have a register and
arithmetic unit for each path, a "pipeline" effect
with maximum speed. Only the ranking itself would
require serial processing. The various possible Rk's
could be maintained in a ROM and looked up as in the
FORTRAN simulation.

Thus we have progressed from the sequential
detector algoriﬂhm through the addition of a separate
convolutiohal encoder to the jolnt detector-decoder.
For a single symbol, the matched filter receiver
provides a lower bound on the error rate P(E), But

fér'long strings, the optimum joint sequenﬁial receliver

h2.



outperforms the matched filter/transversal equalizer,
which cannot be practically optimized. The complexity
of the sequential receiver, however, invites the study
of a simplified sub-optimum form, hence the simulation
resulﬁs presented herein. Indications are that a sub=
optimum algorithm like THRESHOLD or RANKING 1s espec=
lally attractive for long codes, or severe symbol
overlap, because good performance is obtained even
with smgll path subsets.

Further study of this receiver structure should
include a search for an algogithmic estimate of P(E),
and finding out why the THRESHOLD and RANKING algor-
ithms return to the correct path following an errore.
An ambitious project would be the construction of a

hardware realization of the RANKING algorithm.
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APPENDIX A
COMPUTER SIMULATION OF THE OPTIMUM AND SUB=-OPTIMUM
" RECEIVER ALGORITHMS

A computer simulation of the optimum and sub-
.optimum algorithms described in Chaps. 5-6 was performed
on a Control Data 6hOO computer, and the programs were
written in the FORTRAN IV language. The 6,00 can do
a floating point multiply in 5.74s and an integer
addition in 600ns, but when one considers that parts
of the decislon segment of the optimum program may be
evaluated thousands of times, it 1is clear why long
codes were not tested nor were high SNR's used., Every
attempt to optimizq oft-used code was made, hence sub-
routine calls were mostly eliminated and several
FORTRAN conventlons were adapted to fit speclal needs.

The optimum receiver algorithm follows the loéic
of the flow-charts in Fig, Al-All. The code rate is
1/N, the code constraint length is L. Other important
variables are described in Table Al,

Rather than computing the code symbols Ek‘ah each
B, is shifted into the coder, prior to “transmission,"v
and then calculating the intersymbol interference due

: :
., o previous gk s? we note that each sequence‘Bkﬁlwl’
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eesB, can be used directly to find R,. First, a code
table 1s constructed (flow~-chart of Fig. Aly) in which
the Zv posslble shift-register combinations map into

a set of coded symbols gk, whose cardinality 1s less
than or equal to 2%, Second, the 2l' possible channel
symbols Rk,i (the HK's in Filg. A5) are found as -h
-hl...-hL_l,...,+ho+h1+...+hL_1. Last, by using this
information, the intermediate step of finding the I, 's
is eliminated (Fig. A6), reducing the similation of tha
coder and the channel to a table look-up for each
sequence Bkel+1°"Bk'

Using the example of section 6.2, a source=-
symbol sequence By_o,By.1,By=0,1,1 generates P
T oqsTy =00,11,01. From this we find Ry = (»-14-.25;
1l=e25) = (=+75,++75)e But the sequence 0,1,1 is an
effective-length sequence, and will always yleld the

same R, , so we write
B.k(oolsl) = B.k(,-lv) = (=e75,+475), (A1)

using the fact that 0,1,1 looks like the binary form
of three, and noting that one must be added to correct
for the lack of zero suberipting in FORTRAN.

Whenever modulo-n and logical AND functlions appear,
they are ﬁsed to obtain special bits within a data word.
Far example, MOD(7,l4) ylelds the rightmost bits 1,1 out
of the.sequence 1,1,1. Integer multiplles and divides
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are used as left and right shifts. 7/ corresponds
to shifting 1,1,1 two places to the right, leaving
0,0,1, In this manner a lohg binary sequence can be
stored in one word of memory. The variables NUSEQ,
HSEQ, TKSEQ, BKSEQ, and IZ all represent symbol
ssquences, not integer numbers, | |

Random input symbols and white Gaussian nolse
are generated by the subroutines RANDU and GAUSS,
respectively, which are part of the IBM Scientific
Subroutine Package. ‘

The rest of the program is the straightforward
application of the recursive rule given by (5.1) and
(5.2)e For each new input symbol By an output '
vector X, is calculated, and the 2% terms of (6e42.1)

are found from

AW = P‘,(Bk)ﬁf(Nk g)
1=1

d=..., 2t n
2
.5 E(xk,i’ak,i) .
= Jame o*R T oy ) (a2)

for each possible R, . EFach term is weighted by the
correct “"OLDP," and the terms are summed to obtain
By.g+1® The weighted.lﬁ&k's are then summed over
Bk!l to become the next OLDP!'s, and the cycle 1s
repeated. Note that the OLDP'S must be normalized
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each time to compensate for roundlng errors, and to

allow common factors such as .S/b/Eﬁﬁﬁ) to be dropped.
An explanation of modifications to the optimum

program to simulate various sﬁb-optimum cases follows

the flow-charts of Fige.'s Al-All,
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N‘- Inverse of the code rate
NU - Code constraint length
L - Channel constraint length
H - Channel response samples
G - Code matrix .
NCOUNT - No. of symbols simulated in each run
SNRDB

Signal-to-noise ratio (dB)
D - Delay (no. of intervals of T sece)
LEF

Effective chammel length
AM - noise mean |
.SUMH = Sum of channel samples squared
TK, NUSEQ, HSEQ, SYMSEQ, TKSEQ - Used as binary'
sequences for mapping input sequences into
channel responses
HRK - Channel resporses
VRNC - Noise variance =~

ERCNT « BError counter

RANDU

Random number generator, uniform distribution
GAUSS = Random number generator, normal distribution
BK - A generated symbol |

BKK - Generated symbol sequence
XK = Channel response plus nolse terms
NWPRB - New probabllities computed
OLDP - 01d probabilities, formed from the NWFRB's

"Table Al. Flow-chart nomenclature.
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LEF<NU+(L
-1+(N-1))/N

!

N, NU, L,

Fig. Al.  Data Input / Output.
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TWOLEF « 2LEF
TWOLF1 <~ oLEF-1
TWONU «2NU

TWON « 2N

TWOL « 2L
TWONUle— TWONU=1,
TWOLle TWOL-1

LLe TWOLFl-l
LLL<-TWOLEF-1

L

AM<-0,
SUMH«O.

A
!
)
i
|
—d

e S . WP SES G s WS G e

Fig. A2. Initialization.
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P
i
{
[ t
TK(I)«O 2 ! SUM«SUM +
|| 6(vUt1-IK, IJ)
: ! *NUSEQyop »
P
}
-7 % {
|
| ! ! | sHIFT NUSEQ
|
; : ¢ | RIGHT ONE BIT
NUSEQ «I-1 | : :
|
SUM<0 ! : :
I
A I l { Lo -
|
o
SHIFT TK(I) |
t
t
\ |
Lo + SUMyop 2
t '
L)
)
)
S P
Fig. A3. Code table.
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""""" 1
1
|
|
a
[
O
HK(I)< 0. }
(
|
| : HK(I)e-H(I)
} CH(IJ)*K F"‘
|
_ ‘ |
1 : :
! SHIFT HSEQ
HT ONE BIT
Ke-HSEQ ! '. RIGHT ©
MOD 2 l I
|
|
c e
e e e - 5
Fige Alje Channel symbols.
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ITKe< LEF
-NU + 1

SYMSEQe—TI=-1
HK(I)& 0.

P SR |

TK(SYMSEQMOD — 1)

l
I
[
l
TKSEQE-TKSEQeTWON + |
|
|
|
[
|

L

SHIFT SYMSEQ
RIGHT ONE BIT

T
'.
1

v

HRK(I,

+1)

HK(TKSE

IK)e—

Q'MOD TWOL

R

SHIFT TKSEQ
RIGHT ONE BIT

G SN G G- G I GE S G W TR G emE e S S MR- W W e
|

— v — o -

- G WS SEA AN DR WS AEn dh GR SR S W MRS W GBS WL AN tue AT GUR Gl WER SR GES R G W @

. Fig. A5. Input sequences — output symbols.
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-
i
|
i
g
E OLDP(I)e-1
a
]
i
]
oo 8
VRNG <10+ sy ( ~S¥RDB/10.
| STDV < ~/VRNC
DPl¢D+1 TVRNC « 2+ VRNC
IAND <2 (LEF=-DP1) f
TWope- 20 :
Twopple 2PF1 o
NCNT< BKK <
ERCNT< BKSEQ
<0 '
IX¢ IXGa-1

Fig. A6, Main Loop Initialization.
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BK<«-0

I

SHIFT BKSEQ

RIGHT ONE BIT [&——

I
l
[
f
'

SHIFT BKK
RIGHT ONE BIT

L

BKK<« BKK
+ BK*TWOD

y

GAUSS
(IXG,STDV,
AM,GNK)

l

XK(I)<HRK(BKSEQ

+1,I) + GNK

r——-—v—---- — A A G- N WS 4R e S U CNP ER @ED R S wwme

- Fige AT

"Transmitter.”
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(10

i

XNSQR< XNSOR+
SUM1< SUM2&-0 R QR+ (XK(1J)
~-HRK(I,IJ))2
- m ‘— ——————
HY
F<~EXP(~-XNSQR/
Ige1 TVRNC )
Z«1I-1 NWPRB(I ) F- OLDPT

il

"|OLDPT<—OLDP((IZ A LL)e*2+1

XNSQRe~O0.

- S A S S . . . — —— ——rr — G —— — — O —y i . - . — O— - —

Fig. A8. Calculation of the 1ncrementa1
probabilities.



SUMl<-SUM1
+ NWPRB(I)

SUM2 <« SUM2
+ NWPRB(I)

¥ BKG <1
N L
v
BKMD <-BKK A 1
"\
ERCN’;' -
ERCNT + 1

Fig. A9, Decision calculation.
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— an G- . —— G G D A S AN e S GRS M ER G N GND N WS SN GE SR Smn D D

T

RNORM<«- O,

[

4

OLDP(I)<—
OLDP(I)/RNORM

OLDP(I)<«—NWPRB(I)
+ NWPRB(I+1)

OLDP(I
>RNORM
Y

RNORM &«
OLDP(I)

Fig. Al0. Normalization of OLDP's and

error summary.
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|
{
!
|
|
|
]
[

NCNT €«
NCNT+1

Y

ERCNT <0,

N
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©

ERPRB < ERCNT
/(NCOUNT=10)

ERPRB

D<«D+INCD

D<-D=INCD
* INCDNO

SNRDB <—
SNRDB+ RING

Fige. All. Output and wrapup.
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The modifications to the optimum nonlinear joint
sequential detector-decoder appear 1h the flow=charts
of Figures Al2-Al5, .

Basically, the THRESHOLD (sub-optimum) program
functions identically to the optimum program (see Fig,
Al2), except that only a fraction of the data manip-
ulation is done, particularly in the segment where
significant amounts of squaring and exponentiation are
performed. This segment is bypassed whenever the
variable OLDPf falls below the prescribed threshold.
Fewer calculatlons result in a shorte. program running
time, or alternatively, less hardware, when parallel .
processing 1s pefformed.

The TOLERANCE algorithm, illustrated by Fig. A13;
is similar to the THRESHOLD algorithm in that it by-
passes many calculations, but the approach is differerit,.
Rather than examining OLDPT, whicl represents all the
0ld information available on a symbol, this algorithﬁ
allows the nolse estimate, XNSQR, to be computed for
each allowable Bk' All vectors not within the preset
tolerance are eliminated,"

The RANKING algorithm (Figs. Allj-A15) 1s imple-
mented in two segments. The first is the decision
segment, similar to the TOLERANCE and THRESHOLD decisi mns.
The second is the actual ranking segment which ranks
the OLDP's and maintains the correlation between thp.
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OLDP's and the NWPRB's affected by them. An inter-
change sort 1s used, and all OLDP's not within the group
are set to zero. Thilis particular program is quite

inefficient, but generality, not efficiency, was stressed.
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| OLDPT«~OLDP( (IZA LL) e 21

XNSQR=XNSQR+(XK(IJ)
-HRK(I,1J))2

—

SUM2 €~ SUM2
+ NWPRB(I)

|

Flge. Al2,.

Changes to optimum program to
simulate THRESHOLD algorithm.
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Y (SRTSGR >TOL

N

F& EXP(-XNSQR/
TVRNC )

NWFRB(I )e—FeOLDPT

A

SUM2¢- SUM2
+NWPRB(I)

Fige. Al3, Program flow for TOLERANCE algorithm,
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IZ&I-1
XNSQR€-0
NWPRB(I)€ 0

)

OTe(IZALL)2+1

SUM2€-SUM2
+ NWPRB(I)

Fig. All. Program flow for decision segment

of RANKING algorithm.
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MIM «—
LLL=2°IJ {

INeINDX(I)

L

OLDP(IN)«-0

MAD S G5 Gh An 4D SR Eh SR SR G G S am MR e e s

OL<OLD(I+2)
INeINDX(I+2)

4

OLD(I42)e¢ \OLD(I)
INDX (I+2)eINDX(I)

)

OLD(I)«OL
INDX(I)<«IN

Fig. Al5.

Ranking segment of RANKING
algorithm,
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