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NOMENCLATURE

A

concentration of water vapor in the air spaces
initial value of C

final value of C

moisture content at time t

average moisture content

moisture diffusivity

thermal diffusivity

moisture diffusion constant

moisture diffusion coefficient

thermal diffusion coefficient

the energy required for one unit of mass to move into the solid

Young's modulus

the amount of moisture leaving a unit of volume of void space

thickness of the plate

thermal conductivity

the amount of moisture absonned by unit mass of solid
average amount of moisture absorbed by the solid

the mass of moisture contained in the volume of the composite
per unit mass of solid .

average amount of moisture abosrbed by the composite per unit
mass of solid

equilibrium moisture content

‘moles of the vapor

vapor pressure of air at temperature T]

vapor pressure of air at temperdture T,
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= ¥ )

heat flux out pef unit area

gas constant

relative humidity
absolute temperature
time in hours

initial temperature
temperature at time t

final temperature

average temperature through the plate

D/D
D,/0

volume occupied"by the void per unit volume
weight of specimen at time t
initial dry weight of the specimen
axis in thickness direction
coefficient: of thermal expansion
coefficient of moisture expansion.
specific humidity

strains |

dimensionless time

cpnstantw

constant

Poisson's ratio

dimensionless space

density of composite



- density of solid
- depsity of air

- constant

- stféSses“”y;

= constant
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ABSTRACT

The influence of coupled diffusion of heat and moisture on the
trénsient moisture and stress distribution in a composite is;investi-
gated analytically. The moisture diffusion coefficient is assumed to
be témperature dependent while the thermal diffusion coefficient is

kept constant. !

A study of the coupled diffusion equations was made by application
of the finite-difference scheme allowing time-dependent changes in the
humidity and temperatufé of the environment. The appropriate tran-
.sient_moisture and/or temperature bdundary conditions are specified on
the surfaces of an infinite plate such that'the‘probiem is one-dimen-

sional with changes occurring only in the thickness direction.

Degradation of mechanical properties and dimensional changes due
to moisture are analogous to those caused by thermal effects. For
the most part, hygro-e]astfc stress analysis is simi]ay to thé%;al
stress ana]y;is. In an epoxy system, the moisture diffusion process
is several orders of magnithde slower than the thermal conduction pro-
cess. MWith reference to the exposure time, thermal shoék is consid-

ered to be rare in practice whereas moi;fure shock is rather common.

Numerical calculations were carried out for the T300/5208 graphite
fiber-reinforced epoxy matrix composite in which the nonuniformity of
moisture and temperature is evaluated for sudden changes in the sur-
face moisture and/or temperature. The coup]ing effect between tem-

perature and moisture is found to be most significant when the plate

o\ 1-
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undergoes a sudden change in surface temperature while the surface
moisture concentration is held constant. For a sudden change in the
surface temperature, the results indicate that the stresses due to

coupling car deviate from the uncoupled results anywhere from 20 to

80 percent depending on the surface temperature gradient. This sug-

gests the need to perform additional experiments for evaluating the

coupled diffusion phgnomenon and its influence on the mechanical be-

havior of epoxy-resin-composites.

,)f‘»



I. INTRODUCTION

Owing to their favorable performance characteristics, composite
materials have been gaining wide use in industry because of their low
weight and high strength characteristics. Absorption of moisture by
composites causes dimensional changes through non-uniform expansion
and/or contraction of material elements'which, in turn, leads to ihter—
nal stresses and strains. Therefore, in order to utilize the full po-
tential of composite materials, their response to moist environments

should be understood.

Classical solutions assume that the moisture and temperature ef-
fects are uncoupled. Refer to the studies of Shen and Springer, Pipes
et al and Tenny [1-3]. Other solutions consider the time varying dif-

fusivity such as those by Weitsman and Harris et al [4,5].

However, little attention has been given td the coupling of mois-
Vture and'heat which, in turn, can affect the transient stresses and
strains in the composite materials. The significant variables in such
a study must, at least, involve time, relative humidity of the envi-
ronment, temperature, relevant physical constants, etc. The governing
equations for coupled moisture and temperature effects were studied
by Henry [6] and Hartranff and Sih [7]. Five different physical models
that léd'to the same type of governing equatidns,were discussed by
Hartranft and Sih [8]. The coefficients in these models are associated
with the basic thermodynamic properties of the solid and can be related

to one another.



The purpose of this investigation is to develop an analytical mode1
and technique for calculating the nonuniform moisture, temperature and

stresses in a composite system.

The properties of the T300/5208 graphite/epoxy system were used in
the numerical célcu]ation as the diffusion data and the Qafiation of
the moisture diffusion coefficient with temperature for this material
is}readily available [9]. A finite difference computer program was de-
veloped for solving the coupled diffusion equations with transient

boundary conditions on moisture and/or temperature.

Exémples'and numerical calculations are provided for moisture and/
or tempefature diffuging into a plate from its surfaces. The plate i§
initially at a uniform temperature with a given moisture content dis-
tributed uniformly throughout the plate. Suddenly, the temperature
and/or moisture at the plate surfaces are changed and maintained con-
stant thereafter. The corresponding stresses are also calculated as a
function of time while the numerical results for other quantities of

interest are displayed graphically.



II. MOISTURE CONTENT
II.1 Coupled Diffusion Equations of Moisture and Heat

In this study, an elemenf of the composite material will be
modeled by a medium that is occupied partly by the solid and partly by
air spaces or voids. Assume that the solid portion can always be con-
sidered as in equilibrium with its immediate surrodndings such that a

linear dependence on both temperature and moisture can be taken:

M=oC - ol + const =3 . (1)
where C is the concentration of water vapor in the air spaces,gkpressed
in g/cm+3, M is the amount of moisture absorbed by unit mass of solid,
o and w are constant (may be functions of C and T), and T is the tem-

perature.

Henry [6], altered the classic uncoupled equations for diffusion
of heat and moisture to incorporate effects due to porosity and thermo-

dynamics. The heat conduction equation is given by
' (

~N

- 3T M |
L Vg= - elyap e g S (2)

q=- kVT - (3)



Here, q is heat flux out per unit area, k is thermal conductivity,

and p is the density of the composite. The unit of space consists of

void space, occupying volume V, and the solid occupies the volume 1-V.

Thé.density for the solid is p: o | -.% 4
pg = p/(1-V) | (4)

and the thermal diffusivity is

D, = k/(pCp)}w : (5)

while n is the heat lost by the solid when it absorbs a unit mass of

moisture.

The amount of moisture leaving a unit of volume of void space is

oo _ 3 p oM | I

Vi=-%-V5t (6)
where

f=- gD VC (7)

T am
- -
. .

and g is a correction factor accounting for the intricacy of the paths
through the void space. Dm is the moisture diffusivity. When both Dh
and D, are constants, M may be eliminated from equations (2) and (6).

With the aid of equations (3) and (7), the following system of coupled

-6-



¢
equations are obtained [7]:

DV3C - 2= (C-2T) = 0
' (8)
2T - 22 (T-vC) = 0
where
D = gD /[1 + pa/V]
v =o/lw+ Cp/n]
A =w/lo+ V/o]

and V2 is the Lap]acian'bperator in the space variables. The diffusion
coefficients D and D have units of area per unit time. The parameters

A and v have units of mass-per unit volume per unit temperature and the
reciprocal, respectively. These equations are relatively easy to solve
when the coefficients‘are cons%ant and boundary values of temperature

and moisture content are held constant [7].
It has been noted experimentally that the moisture diffusion co-
efficient, D, depends on temperature by a relation of the»form [10]

D= Do exp(-Eo/RT) ’ }. (10)

in which Eo is the energy required for one unit of mass to move into

-

-7-



the solid, R is the gas constant and T is the absolute temperature.
The form of D in equation (10) can be incorporated into the coupled
theory giving g
{
: -3 (CaT) =
v - (ovC) 5t (C AT) =0
(1)
V3T - ——-(T-vC) =0

where D is constant throughout this study. When D is a function of
temperature, equations (11) are nonlinear and a numerical scheme for

solving equatfons (11) is required.

For the problem at hand, only the moisture and temperature
changes in the plate thickness or z direction is considered, Figure 1,
and hence V2 = 3%/3z%. It is expedient to introduce the dimensionless

. . '
space and time variables

4D t
£=22, -9 (12)

in which h stands for the plate thickness. Equations (11) can thus be

expressed in terms of £ and 6 as (Appendix 1)

226+ 12 (29N expl- 22) - (-2 2 - 0
(13)

92T aT aCy _
DSE?-DO(%'-\)B—G)-O



In what follows, two types of transient boundary conditions wj]l be

treated, namely sudden change in moisture and temperature. '
I1.2 Sudden Change in Moisture
I1.2.1 Diffusion Equations |

Consider the problem of diffusion into an infinite plate
as shown in Figure 1. The temperature and moisture concentration are
initial]y uniform at the values T1 and Ci, respectively. At time t=0,
the moisture at both sdrfaces Zz = +th/2 are suddenly changed to Cf, and
maintained constant thereafter. The surface temperature of the plate
is always kept at Ti' These conditions may be stated as

L]

T(z,0) = T,, C(z,0) = C, (14)

and .

T(h/2,t) = T, C(zh/2,t) = C. for t>0 | (15)

In terms of the nondimensional variables £ and 6 in equations (12), the

solution for moisture and temperature may be expressed in the forms

i

C(t) ci + (Cf‘ci)f(gse)

(16)

T(t) Ti + V(Cf'ci)g(goe)



1n¢wh1ch f(g,8) and g(E.G)-afe functions to be determined from the
conditions in equations (14) and (15). Substituting equations (16) in-

to equations (13) yields (Appendix 2)

of _ 1 v 32 of
5 = o G 52 * I * Trebgre 3¢ 81

o
(17)
- 3 _ 1 1 azg ~33f af 3g
"W T {uo og2 * Flggz (e B )7 % 35]}
where
D
__0
Y =7

I11.2.2 Finite Difference Method

Since equations (17) cannot be solved analyticalle it
is necessary to resort to approximate numerical methods. FThe method
of finite difference is adopted to replace the governing partial dif-
ferential equatjeps. This then reduces the problem to a set of simul-
taneous algebraic equations which can be easily solved. Referring to
the space and time interval in Fidure 2, the first of equations (17)

may be written in difference form as

-10-



fn .+l f

{Av ( m+l,n'29m,n+9m-l,n)
1 Av

A8 {AE)S
| -2f _+f
m+l n"'m,n m-l,n AB x
+ F(m,n) TaE) 2 (T¥8g,,
ﬂn+1 n m n m+1 n m n '
x )( )1} (18)

while the second of equations (ﬁ?) becomes

Im,n+1 " %m,n _ 1 {1 (gm+1,n'zgm,n+gm-1,n)

A6 - T-xv u_o' (AE)®
-2f_ _+f .
m+1 ,N ~m,n m-1 AB
* Fmn gt * (remg,
f -f '
< ( m+l,n m,n)(gm+1 n m n)]} (19)

ag

[N

In order to achieve acceptable accuracy in the finite difference cal-
'culations, the grid size in space, Af, and time, A8, must be suffi-

ciently small and satisfy the stability requirement that

2
At < Az\ exp(E_/RT) (20)
Do 0

. ‘\«

The boundary conditibh§ in equations (14) and (15) may then be written

in terms of f(£,8) and g(£,8). They become

f(g,0) = 0, g(g,0) = 0 (21)

and
-11-



- f(21,8) =1, g(21,6) =0 (22)

N e

.o~

for 6>0.
A computer program was developed'to solve equation§ (18)

through (22) for the functions f(£,6) and g(£,6) from which the mois-

ture and temperature throughout the solid can be determined.
I1.2.3 Average Moisture Quantities

Referring to equation (1), the mass of moisture contained
in the volume of the composite per unit mass of solid m, is given by

-~

m= %7C + M= w(x-T) + constant o ' (23)

>

The average values of these moisture content quantities are defined as
T=1fcav, W= m=lmd (24)
= V—6 » M= V'{ Mdv, m = V’{ mdV

The total moisture in the voids, solid and cbmpo§ite are, respectively,
vWC, pVM, and pVm. Now, let the average values of T, C, and m be de-

fined by the integrals
T(t') ’..hfz T( " )d
= z,t)dz
b _hr2
oo =1 " ezt (25)
t) = z,t)dz :
b _h72

- ; h/2
m(t) = ¢ [2 m(z,t)dz

-12-



In terms of f(£,8) and g(£,8), equations (25) become

| 1
T(t) - T, = 5 (CeCy) [ ote.0)¢

1
Tt) - ¢4 = 3 (6Cy) [ fle.0)de (26)
' 1

m(t) - my = 75 (C-Cy) [ [F(2,0) - dvg(e,0)1de

~ In view of equations (14) and (15); the third of equa-
tions (26) may be put into the dimensionless form [m(t) - mill(mf'mi)
which, when approXimated by Simpson's rule for a fixed time eo, gives

¢

m(t)-

+ ...+ 4f(n-1,eo) + f(n,eo)] - Av[g(l,eo)

+'4g(2,eo) + ...+ 4g(n-1,60) + g(n,eb)]} (27)
}
I1.2.4  Numerical Examples

Numerical calculations are made for a T300/5208 epoxy
resin plate with thickness h = 0.2 cm. The constants Do = 1.53 x 10°
cn?/hr and Eo = 1.25-x 10" cal/g-mole are obtained from [9]. For the \&
coupled diffusion problem, the particular values of u = 0.1, A = 0.5
and v = 0.5 are chogén by comparing the analytical pre&iction of the
percent moisture content as a function of /t with the experimePtal da-
ta in [9]. Note that u = D/D shou]a be distinguished from Uy in equa-

-13-



tion (17). The constants A and B in equation (17) are determined from
an initial temperature of T, = 21°C = 294°K, C; = 0 and a gas constant '
~of R =1.986. Hence

- .
_ 0o _ 1.25x10" _
A= RT;'_ - = 21.41
va 0.5 Cf

_ _ _ -3
B—Ti————z'gu——-].7)(]0 Cf

in which Cf, the equilibrium moisture concentration, can be obtained

from

fon I @

for different relative humidity of the environment. In equation (28),
Y is the specific humidity measured in grams of water per 1bm of dry
air and Pa is the density of the ambient air in units of g/cm®. An-
other important quantity in the diffusion analysis is the relationship
between equiiibrium moisture content m(«) of the composite and RH of
the environment. For the post-cured T300/5208 epoxy }esin, the rela-

tion [9]
m(«) = 0.0155 (RH) o o (29)

may be used in which RH is expressed in percent. There remains the
appropriate selection of the time and space interval before carrying
out the finite difference calculations. For example, if the plate in

-14-
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the z-direction is divided into seven segments and hence Az = h/7 while
At must satisfy the stability condition in equation (20). Results are
expressed in terms of percent moisture content m(t) as manifes ted by
the weight gain of the composite: : - -

/ t -
At) = WO 100  (20)

Y
where w(t) is the weight of the specimen at time t and wy is the ini-

tial dry weight of the specimen.

Figure 3 gives a plot of m(t) versus v/t for different
relatige humidities of RH = 13, 33, 52, 75 and 100 percent at Ti
= 21°C. The moisture diffusion coefficient D is assumed to be tempera-
_ ture dependent. The dotted curves represent solutions for the uncou-
pled theory in which A = w =B =0, Av = 0 and u_can be arbitrary.
They differ very little from the curves for the coupled theory:’ Simi-
lar results can also be obtained for T; = 43°C, 63°C and 82°C. Fig-
ures 4 and 5 show the variations of moisture content m(t) with the
normalized thickness coordinate 2z/h for RH = 13, 33. In%tia]]y, i.e.,
for small time t, only the region close to the plate surface expéri-
ences moisture while the center region of the plate is not affected.
“As time increases, moisture is penetrated into all the material ele-
ments wfth the minimum infiuence at z=0. The difference of m(t) be-

tween z=0 and z = *h/2 increases with increasing RH.

.

The effect of initial temperature on the penetratioh of

moisture is shown in Figure 6 for a sudden change of RH from 0 per-

-15-



cent to 100 percent. Coupling is neglected and D is taken to be a con-
stant. The time at which the plate reaches-moisture equilibrium'is
seen to decrease as Ti is increased for a fixed value of h = 0.2 am.
Table 1 give ~$he comparison of the moisture variation at 2z/h = - 1.0,
- 0.66, - QX?; and 0;0, for symmetric and nonsymmetrie* sudden moisture"
change at'21°C from (RH)i =0 percent to 75 percent. The average mois-
ture gain for nonsymmetric case is half of that for symmetric case.
The moisture gain at z = - %-for both cases are equal while at 2z/h

= 0, the deviation is about 50Apercent.
I1.3 Sudden Change inATemperature
I1.3.1 Diffusion Equations

Suppose that the surface temperature on the p]ate in

Figure 1 is changed from an initial value of T to a final value Tf

and the moisture concentrations at z = *h/2 are kept constant at all
time. Then, in addition td'equations (14), the following conditions

must aiso prevail:
T(£h/2,t) = T, C(2h/2,t) = C, T (31)

The form of the solution expressed in terms of the variables £ and 6

defined in equations (12) is
.‘ff
A
Nonsymmetr1c boundary cond1t1ons are given by T(* zyt) 1. c(- %;t)
= Cg, C(23t) = C for t>0.
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C(t) c1 + A(Tf‘Ti)f(Ese)
(32)

T(t) = T, + (Te-T,)g(£,0)

Substituting equations (32) into equations (13) yield (Appendix 3)

of _ F_ 9%f AB__ of 3gy ., 1 32
36 = T 57 * TTeg)% o€ 361 ' ug 5t
(33)
3g . 1+)v 32 AV 3%f of 3g-
3%' u, a—gg‘* v Tz + '(‘l‘B K3 ag]
where:
D E T-T

. 0 . 0 - f i _ A

uo ==, A= RT;, B = _—T;_’ F = exp(- 11369
: {

Using equations (32), the conditions in equations (31) may be written

as
f(+1,8) = 0, g(+1,8) =1 for 8 >0

As in the ﬁrevious'example, equations (33) will be solved numerically
by the finite difference method.

11.3.2 Finite Difference Equations

Equations (33) will now be cast into the finite differ-

ence form. With the nondimensional time and space interval as chosen
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in Figure 2, the following expressions are obtained

—~—

] Zf ,N fm l,n AB

e - * (T, T

fm,n+l'f _ F(m,n) [ e

A8 T=Av

(fm+1 n fm, n)( m+l,n'gm,n)] ' l_ 8

Ag Uy
9. | :
gm+l n_ (Ag)n m-1, n] | (38)
and
.9 -9 g =290 -
m,n+le m,n _ 1:Av [Zm+1,n (Agig m-1,n7 , T Av F(m,n) x
)
8 [fm+1,n'2fm,n+fm-1,n AB x
- (ag)*° (1+8g, [ )°
fm+'l n m ny Im+1, n 9m, n
x ( ) )] (35)

The stability requirement for se]eét%ng the relative size of At and
Az in the numerical calculation is the same as that state in equation
. El

(20).

II1.3.3 Moisture Content

Following the definitions of the various moisture param-
eters as discussed earlier, the average moisture content in the com-

poéite per unit mass of solid is

1
m(t) - m; =3 (T-T,) { [f(g,e0) - g(€,0)1de (36)
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From equation (23), it can be shown that (Appendix 4)

which when substituted into equation (36) yields

m(t)- mi

o= = % (3%) ([9(1,0,) + 4a(2,8,) + ... + g(n,0)]

- [f(l,eo) + 4f(2,eo) + ... + f(n,0)]1} (38)

Here, Simpson's rule has been applied for evaluating the integral in

equation (36) at 6 =
II1.3.4 Physical Meaning of Sudden Temperature Change-
From equation (1)
M =0C - wT + const
and equation (23)
v

m= B-C + M= w(%—- T) + const

where

_M __ oM
w=3r 9% 3¢
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Equations (11) read as
. a9 =
v - (DVC) - 3t (C-AT) =0
27 . 9 (7. =
oveT - 3t (T-vC) = 0

For uncoupling case, we required A=0, v=0 since A=0, for m to be fi-

nite, we have to require

= oM
w=37=0 - (39)

Note that the classical theory cannot address the influence of temper-.

ature change on the moisture content in the medium. Thus, for sudden

surface temperature change, it is necessary to use coupled theory.

For the coupling cases, assume A, v are constants. After

a sudden temperature change, if the vapor pressure is kept constant,
then the volume of the ambient air will change which affects Cf. Since
Ci is to be kept constant on the surface, the volume must also be a
constant. Making use of the ideal gas equation PV = NRT, vapor pres-
sure of moisture will increase, and consequently, the relative humid-

‘ T,

ity of the ambient air is also affected as follows:

4

NRT,
(40)

PwZV = NRT,
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By definition of relative humidity

RH percent = %g-x 100 percent . (41)
in which Pw is the vapor pressure and Pg is the saturate vapor pres-
sure at certain temperature. Thus
sz ‘ Pw] T2

RH percent = 5— x 100 percent = 5— x = x 100 percent (42)

Pg, P, " Ty

From equation (42), it is seen that when the moisture content of the
énvironment is kept constant, the relative humidity of the ambient air
will decrease with increasing temperature and vice versa. Hence, an

increase in the ambient temperature will cause desorption and a de-

crease of the temperature will lead to absorption of moisture.
I1.3.5 Numerical Examples

Referring to the boundary conditions prescribed by equa-
tions (14) and (31), the moisture concentrations at z = th/2 are to be
kept at Ci while the surface temperature will be increased from T1 to
Tf. Assuming that the mass of moisture contained in the voids per unit
volume of void space on the boundary is constant, the relative humidity
of the ambient air wi]l decrease as the temperature is raised. The op-
posite occurs when Tf is decreased. As it is to be expected, an in-
crease in the ambient temperature will cause moisture desorption, while
a decrease in the ambient temperathre leads to moisture absorption.

The results are summarized in graphical form for T300/5208 epoxy resin
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with the coupling constants u = 0.1, A = 0.5 and v = 0.5 as determined

earlier.

.S

Figure 7 gives a plot of m(t) as a function of 2z/h for

T1 = 21°C, (RH)i = 52'percent and T_. = 10°C. In this case, AT is nega-.

f
tive and the moisture level in the plate will increase with time until
the equilibrium condition is approached. Figures 8 and 9 display the
results for AT positive where Tf = 43°C and 63°C are all greater than
Ti = 21°C. ‘The opposite trend is observed, i.e., the moisture level

in the plate will now decrease with time until an equilibrium state is
reached. The influence of AT on m(t) can be best illustrated by piot-
ting m(t) versus v/t as shown in Figure 10. The curves for the six dif-

ferent values of Tf offer a quantitative assessment of moisture absorp-

'
tion and desorption as AT changes sign.

Tables 2 and 3 give a comparison of the moisture varia-
tion at 2z/h = - 1.0, - 0.66, - 0.33 and 0.0 for the symmetric and non-
§ymmetric* sudden temperature change from 21°C with (RH)i = 52 percent
to 10°C ‘and 43°C. For a sudden temperature drop, the difference be-
tween average moisture uptake is about 15 percent, while for a sudden

temperature rise, the difference may become as great as 70 percent.

I1.3.6 Influence of Coupling

.

An attempt is made in Figure 11 to illustrate the differ-

ence between the coupled solution obtained from equations (11) and the

x
Nonsymmetric boundary conditions are given by T(- gxt) = Tf, T(gat)
= Ti’ C(zh/2,t) = Ci for t>0. .
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uncoupled equation
) aC aC _
3—2'(05)-_3{-0 (43)

Note that for (RH)i = 52 percent, the dotted curves based on equation
(43) can differ significantly from a solid curve of the coupled theory.

The foregoing results reveal that the coupling of mois-
ture and heat is inherent in the study of sudden femperature change in
composites at a given moisture level. The extent to which coupling in-
fluences the mechanical beﬁavior of the composites can be evaluated by

calculating for the stress and/or strains.
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ITI. TRANSIENT STRESSES !

The mechanical behavior of composites may be altered when ex-
posed to high temperatqre and/or moisture environments. Their behav-
ior should be understood before the full potential of composit;s can
bé‘rea1ized. For. the resin-base composite treated earlier, moisture
is assumed to diffuse into the solid in much the same way as heat. It
tends to degrade the mechanical properties and introduce dimensional
changes of the composite similar to those caused by thermal changes.

Thus, for the most part, hygroelastic stress analysis is similar to

thermal stress analysis.
II1.1 Basic Equations
III1.1.1 Basic Equation for Symmetric Boundary Conditions

Let the plate in Figure 1 extend to infinity in both
x and y directions and be free from mechanical loads. The stresses
induced by mechanical loads can simply be added onto those due to mois-

ture and heat. The material of the plate isvassumed'tO'be isotropic

‘and homogeneous. Only hygrothermal stresses will be treated, for sym-

metric boundary conditions

044 = Ee. .

jj - AT - gAm) \ (44)

where E is the Young's modulus of elasticity, a the coefficient of

thermal expansion and B the coefficient of moisture expansion.. The

quantity, m, is defined by equation (23). Since the stress state is a
-24-



function of the thickness variable z only, shear stresses vanish every-
where and.oij and eij consist of normal components only. Hence, the

strain and stress relations may be written as

€ = %-[ox - vp(oy+oz)]

ey = ¢ Loy - vy(o,40,)] (45)
EZ = %- [UZ - Vp(O'x'RJy)] '

where p is the Poisson's ratio and o,

jsotropic and homogeneous material, the stresses induced by the

= 0 will be assumed. For the

-strains
o_ 0 _
€y = €y = - o4T - Am (46)
are given by
o._ o0 _ _ afAT  BEAm
Ox = % l-vp l-vp (47)

which prevails everywhere in the plate.

n

In order to free the plate edges from external
stresses, it is necesséry to apply stresses, equal in magnitude and op-
posite in direction, to those of equation (47). The following average

tensile stresses
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5 =3 LIS hfz d E- hfz dz] | (48)
o! =¢g' = E ATdz + B Amdz
Xy (|'Vp)5 > -h/2 -h72 :

are thus introduced. The results for a free edge plate are

h/2
aEAT  BEAm af
. =g = = - + — f ATdz
h/2
E
+ 11—5—75- Amdz (49)
“p -'hfz
or
o, = o, = 2 (T-T) + BE (F-m) (50)
X y l-vp l-vp

in which T and m are the temperature and moisture average through the

plate thickness.

Using equation (50), if the distribution of tempera-
' q
ture and moisture through the thickness of the plate are known, we can

calculate the hygrothermal stress within the plate.
I11.1.2 Basic Equation for Nonsymmetric Boundary Conditions

In the nonsymmetfic cases, the stresses induced by the
strains in equations (46) can still be expressed 6} equation (47).
In order to free the plate edges from external stresses, a set of com-
pressive stresses must be superimposed, equation, (47), together with

the uniform tensile stresses in equation (48), the bending stresses
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oy = o; = 202/h (51)

can be determined from the condition that the moment of the forces dis-

tributed over a cross section must be zero. Hence

h/2 h/2 _... h/2
EATz BEAmZ
| (20z/h)dz - T —dz- [ y—dz=0 (52)
-h/2 . -h;z “Vp -h72 ""Vp
from which
h/2 h/2
29 - 457 ( [ ofaTzdz + | gEAmzdz) (53)
p! -h/2 -h/2 |
It follows that
™ =37 lez__ h§2 EAT2d hfz BEAmZdz) (54)
o' = g" = aEAT2zdz + zdz
x "y H ("Vp) -h/2 -h/2

and the stresses that correspond to a plate with free edges are

, h/2
oEAT  BEAm ak
o, =0, = - 9o - =4 [ ATdz
x ~ y 1 Vo 1 Vp @] v;)h -h/2
h/2 h/2 -
BE 12aEz
* vk Amdz + TSR [ OTzdz
]-\’p _h;Z "*\)p h _h/2
h/2 |
128Ez
+ [ Amzdz (55)
““’p’Ii -h/2 .

II1.2 Hygrothermal Stresses for Sudden Moisture Change

Based on the diffusion results obtained earlier, equation (50)

" is applied to find the stresses fdr a sudden moisture change that oc-
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curs symmetrically. The following material properties for the T300/

5208 resin are used:

45 x 107 eam/am/oc (25 x 1078 em/em/oF)

a -
B = 2.68 x 1073 cm/cm/m(t) percent H,0

(56)
vp = 0.34

4
E = 3.45 6P_ (0.5 x 10® psi) at 21°¢C

The hygrothermal stress field induced by sudden moisture change is

s

oy = o = T-E%;(T'-T) +.T%%;g[ﬁlt) percent - m(t) percent] (57)

.
. Using f(&,0), g(&,8), m(t) as defined earlier, equation (57) can be

written as (Appendix 5)

L 1
0’x = O'y = 15—3‘ {[Ti + V(cf"ci) = %’ { g(gae)dg]
P : =
‘ B — m(t)-m
- [Ti + V(Cf-CI)g(E,G)]} + Tv_ {m(°°) x Tf'_m;_
p
- (=) IF(£,8) - hvg(£,0)]} i (58)

Carrying out the finite difference calculation as in equations (18),

(19) and (27), the stresses Oy» 0 Can be obtained by numerical means.

1
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For the case of nonsymmetric moisture change, equation (55)

can be written as (Appendix 6) -

] i
oy = Oy = T%g; (LT + v(Ce-Cy) 7 _{ 95.0)de]

mf-m_‘

, [Ty + v(Ce-Cydg(E,0)1) + Tfﬁ—p tm(w) x

m(m)[f(g,e) - AVg(E’e)]} + 2(1-v_)
N P

X

1 — )
| sate0nde + %%%%%ﬁ?l [ [0 - ngle.o)lede  (59)

II1.2.1 Numerical Example

The hygrothermal stress distribution through the plate
thickness for a sudden moisture change (symmetric case) is shown in
i = T¢
= 21°C. Initially, both moisture and temperature are at the equilib-

Figur%(12 as RH:is changed from 0 percent to 75 percent with T

rium state and hence give rise to no stress. As the relative humidity
on the plate surfaces is altered, moisture absorptibn bégins. This
causes contraction or expansion of the material elements and leads to
hygrothermal stresses that vary as a function of z and t. It can be
easily‘seen from the graph that the stresses near the surface are com-
pressive and their magnitude decrease as the plate thickness is in-
creased. These stresses become tensile in the region close to the
center of the plate. ‘The stress at the cehte; increases in magnitude

reaching the maximum value at t = 1,571 hour and then begins to qe-
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crease settling at the zero equilibrium state. This trend is similar
to the results of the uncoupled theory [12] and is to be expected since
the influence of coupling due to diffusion was weak for the case of
sudden moistﬁrevchange. The variations of the stresses Oy (or °y) for
z=0 and th/2 with time are summarized in Figures 13 and 14, respective-
ly. Figure 13 shows clearly that the stresses at the midplane are ten-
sile. They rise quickfy to a peak and then decay. Their amplitude in-
creases with the relative humidity of the environment. The time vari-
ation of the compressive stresses at the plate surfaces is similar ex-
cept that the beaks are much more pronounced. Table 4 gives the per--
cent deviation of stresses in T300/520é for symmetric and nonsymmetric
conditions for sudden moisture change with T, = 21°C and (RH)1 = 0 per-
cent. The stresses for'nonsymmetri; cases at the midplane are exactly
50 percent smaller than those for the symmetric cases, while the devi-

ations at the surface is about 37.20 percent for t = 1961 hour.
III.3 Hygrothermal Stresses for Sudden Temperature Change

- Let the moisture concentration on the plate be a constant and
change the surface temperature which is initially kept at the-ambi-
ent condition. With T(t), m(t), as defined in equations (25), using
equations (32), it is found that

1 o . .
T(t) - T, = (Te-Ty) - % [ ale.0)de (60)

Equations (36) and (37) yield



me-m m(t)-m m
fi i iy
P X = + w;) x 100 percent (61)

m(t) percent

m, ' my me _
-v;x 100 - (W - -V_IT) x 100 x [9(;:9)

m(t) percent

f(£,0)] (62)

Substituting equations (60), (61) and (62) into equation (50), the

stress field for the symmetric case of a sudden temperature change is

found:

1
oy = 0, = T (14T} [ (.0 - 9(E.0)1)
P -

.- (t)-
u%ffxmmmme)-ﬂaw-mf UMy (e
p i

EB
+ T=-v

Using equation (38), Oy °y can be obtained numerically. The stress
field for the nonsymmetric case of a sudden temperature change can be

derived from equation (55). The result is (Appendix 7)

1

o, =0, = T—— UT-T) (3 { g(€,0)dE - g(£,8)1}
I _ m(t)-m
+ 1'vp {( 11 x 100)[g(g,8) - f(E,0) - -ﬁ;:ﬁ;—ﬂ}
3aEE(Te-T,) 1 e MM
TR | steioess oy «
x 100 { [9(&,6) - f(£,0)]ede (64)
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IIT.3.1 Numerical Examples

Figures 15 and 16 show the results of o, (or oy) plot-
ted:égainst 2z/h for a symmetric temperature change from T1 = 21°C and
(RH)i = 52 percent to T, = 10°C, 12.78°C. This corresponds to a tem-
perature drop. The tensile stresses in the interio; increase in mag-
nitude while the compressive stresses near the plate surface decrease
in magnitude. The peak tensile stress occurs at t = 1,961 hour. The
opposite trend is observed when the surface temperaturé is raised.
Figures 17 and 18 give the results for Tf = 43°C and 63°C. The
stresses at the center region now become compressive and those near
the surface are tensile. Maximum value of the compressive stress at

2=0 occurs at t = 791 and_402 hour.

The time-dependent character of the stresses is ex-
hibited in Figures 19 and 20 for z=0 and z = th/2. For z=0, g, (or
°y) increases in amplitude to a peak and then decreases for negative AT
while Oy (or oy) aptains an oscillatory character when AT is.positive.
On the surface wherg z = th/2, all the stresses, whether tensile or
cpmpressive, reach a peak and then reduce to the equilibrium condition
of zero stress. Table 5 gives the percent deviation of stress in T300/
5208 for symmetric and nonsymmetric conditions for sudden temperature
change with Ti = 21°C and (RH)i = 52 percent. 'The stresses at the
midplane of nonsymmetric.case are about 50 percent smaller than those
of the symmetric case fo# temperature drop, while for temperature rise,
the deviations vary from abqut 20 percent to more than 100 percent.

The stress deviations at the surface of nonsymmetric case vary from
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0 percent to about 35 percent for temperature drop; for temperature
rise, the deviations can be larger than 100 percent and the signs

even change from negative to positive.
I11.3.2 Comparison With Uncoupled Theory

The stress results for the hncoup]ed theory are also
observed éuch that a comparison with the coupled theory can be made.
Figdres 21 to 24 for the uncoupled case correspond, respectively, to
. the results in Figures 15 to 18 for the coupled case. Although the
general trend of the curves may be similar, there are noticeable dif-
ferences in the stress amplitudes. In order to be more specific,
Tdb]e 6 gives a comparison of the stresses at z=ﬁ and z = th/2 for 6
diffefent va]ueé of the final temperature. The percent of deviation
between the results of the coupled and uncoupled theory %s calculated
for e]apsed time t = 11.7 hr., 402 hr. and 1961 hr. The largest de-
viation occurs at t = 1961 hr. Note that for positive AT, i.e., tem-
perature increase, the coupling of moisture and heat can alter the
stress anywhere from 40 to 80 percent depending on AT. In such cases,
the stresses predicted from the uncoupled theory may not adequately

model the physical problem.
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IV. CONCLUSIONS

For the T300/5208 epoxy resin composite material treated in this
study, it is seen that the interaction of moisture and heat can sig-
nificantly alter the stress distribution in the composite. Although
thermal and moisture diffusion do not péak simultaneously because of
the wide margin of difference between the coefficients a and B, the
way in which moisture and heat interact in a solid is complicated and
cannot be disposed on intuitive grounds. In particular, when a com-
posite is subjected to a sudden temperature change on its surface, the
transient stresses predicted from the coupled and uncoup]edlfheory can

differ appreciably.

In this preliminary analysis, material isotropy and homogeneity
have been assumed. These simplifications should be further investi-
gated by.incorporating the real structure of the composite. What lies
ahead is the formulation of a finite difference or finite element
_method that treats three independent variables: two in space (x,y)
and one in time (t). This will permit an evaluation on the effect of
material anisotropy, the presence of cavities and nofi~uniform tempera-
ture and/or moisture boundary conditions. These additional influences
will also interact with moisture and heat and should be assessed quan-
titatively such that their individual contribution on the overall me-

chanical behavior of the composite can be understood.

-34-



TABLE 1 - PERCENT DEVIATION OF MOISTURE VARIATION IN T300/5208 FOR SYMMETRIC
AND NONSYMMETRIC SUDDEN MOISTURE CHANGE AT 21°C FROM (RH), = 0 PER-
CENT TO 75 PERCENT

V3 m(t) m (t) my(t) “/awE . m, (t)
 (he)1/2 average 22/h = -1.0 22/h = -0.66 2z/h = -0.33 22/h = 0.0

sym. 0.069 1.162 0.000 0.000 0.000

3.42 nonsym. 0.034 1.162 ~0.000 0.000 0.000
dev. % 50 , 0 , 0 0 0

v sym. 0.232 1.162 0.211 0.015 0.002

20.04 nonsym. 0.116 1.162 0.211 0.015 0.001
dev. % 50 0 0 0 0

Sym. 0.323 1.162 0.387 0.070 0.015

28.13 nonsym. 0.161 1.162 0.387 ©0.069 0.008
dev. % 50 0 0 1.43 50

sym. 0.393 1.162 0.497 0.140 0.049

34.37 nonsym. 0.197 1.162 0.497 0.136 0.025
dev. % 50 0 0 2.86 50

sym. 0.453  1.162 0.573 0.209  0.100

39.64 nonsym. 0.226 1.162 0.571 0.200 0.050
dev. % 50 0 0.17 4.3 50

sym. . 0.505 1.162 0.629 0.275 0.158

44.28 nonsym. 0.253 1.162 0.625 0.256 0.079
dev. % 50 0 - | 0.64 6.91 50
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TABLE 2 - PERCENT DEVIATION OF MOISTURE VARIATION IN T300/5208 FOR SYMMETRIC
AND NONSYMMETRIC SUDDEN TEMPERATURE CHANGE FROM 21°C, Azzv*.- 52
PERCENT TO 10°C

/t _ m(t) 53 swE smE ais
(hr)!/2 average  2z/h=-1.0  2z/h=-0.66  22/h = -0.33  22/h = 0.0
sym. 0.852 1.518 < 0.807 0.806 0.806
3.42 nonsym. 0.829 1.518 0.807 0.806 0.806
dev. % 2.70 0 0 0 0
 sym. 0.972 1.518 0.954 0.869 0.858
20.04 nonsym. 0.891 1.518 0.950 _ 0.857 0.832
dev. % 8.33 0 0.40 1.38 3.03
sym. 1.026 1.518 1.032 0.908 0.893
28.13 nonsym. 0.919 1.518 1.024 0.887 0.85]
dev. % 10.43 0 0.78 2.30 4.70 -
sym. 1.059 1.518 1.084 ©0.934 0.910
34.37 nonsym. 0.938 1.518 1.076 0911 0.862
dev. % 1.43 0 0.74 2.46 5.27
sym. 1.083 1.518° 1.123 0.955 0.921
39.64 - 0.953 1.518 1.115 0.933 0.872
dev. % 12.00 0 0.71 2.30 5.38
sym. 1.103 1.518 1.152 " 0.973 0.932
44.28 nonsym. 0.965 1.518 1.185 0.954 0.882

dev. % 12.51 o - 0.61 1.95 5.36
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(hr)1/2
3.42
-20.04
28.13
34.37
39.64

44.28

TABLE 3 - PERCENT om¢~>a~oz OF MOISTURE VARIATION IN T300/5208 FOR SYMMETRIC

Sym.
nonsym.
dev. %

sym.
nonsym.
dev. %

sym.
nonsym.
dev. %

sym.
nonsym.
dev. %

sym.
nonsym.
dev. %

sym.
nonsym.
dev. %

AND NONSYMMETRIC SUDDEN TEMPERATURE CHANGE FROM 21°C, AxxV* = 52

~

PERCENT TO 43°C

m(t) my (t) ma(t) me(t) m,(t) -
average 2z/h = -1.0 2z/h = -0.66 2z/h = 0,33 2z/h = 0.0

0.769 0 0.237 0.805 © 0.806 0.806

0.788 0.237 0.805 0.806 0.806

2.47 0 0 0 0

0.612 0.237 0.567 0.749 0.779

0.713 0.237 0.573 0.760 0.793

16.5 0 1.05 1.47 1.80 .
o™

0.527 0.237" 0.465 0.640 0.670 _

0.677 0.237 0.477 0.675 0.771

28.46 0 2.58 5.47 15.07

0.459 0.237 0.409 0.544 0.593

0.652 0.237 - 0.433 0.614 1 0.735

42.04 0 5.87 12.87 C 23.95

0.404 0.237 0.367 0.467 0.503

0.632 0.237 0.408 0.572 0.700

56.44. 0 N7 22.48 39.17

0.362 0.237 0.334 0.408 0.435

0.616 0.237 0.391 0.543 0.672

70.17 0 17.07 33.10 54.48



> TABLE 4 - PERCENT DEVIATION OF STRESSES IN T300/5208 FOR SYMMETRIC AND NONSYMMETRIC °
CONDITIONS FOR SUDDEN MOISTURE CHANGE WITH T, = 21°C AND szv* = 0 PERCENT

Stress at Surface (psi) Stress at Midplane (psi)

Final  Time Symmetric Nonsymmetric Dev. % Symmetric Nonsymmetric Dev. %
Relative (hrs)
Humidity .
11.70 - 384.92 - 361.09 - 6.20 24.19 12.09 -50.0
13% 402 - 327.63 - 266.20 -18.75 80.72 40.36 -50.0
1961 - 231.25 - 145.23 - 37.20 122.13 61.07 -50.0
. 11.70 - 977.09 - 916.62 - 6.20 61.41 30.70 -50.0
33% 402 - 831.68 - 675.73 - 18.75 204.91 102.46 -50.0
1961 - 587.03 - 368.66 - 37.20 310.03 155.02 -50.0 .
11.70 -1539.66 -1444.36 - 6.20 96.76 48.38 -50.0
52% 402 -1310.52 -1064.78 - 18.75 322.89 161.45 -50.0
1961 - 925.01 - 580.92 - 37.20 488.53 244.27 -50.0
11.70 -2220.67 -2083.22 - 6.20 139.56 69.78 -50.0
75% 402 -1890.17 -1535.74 - 18.75 465.71 232.85 -50.0
1961 -1334.16 - 837.87 - 37.20 704.61 352.31 -50.0
11.70 -2901.67 -2722.08 - 6.20 182.36 91.18 -50.0
98% 402 -2469.83 ">2006.70 - 18.75 608.52 304.26 . -50.0
1961 -1743.30 -1094.82 - 37.20 920.68 460.35 -50.0
11.70 -2960.89 -2777.63 - 6.20 186.08 93.04 -50.0
1002 402 -2520.23 -2047.65 - 18.75 620.94 310.47 -50.0
1961 -1778.87 -1117.16 - 37.20 939.48 469.74 -50.0
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TABLE 5 - PERCENT DEVIATION OF STRESSES IN T300/5208 FOR SYMMETRIC AND NONSYMMETRIC
CONDITIONS FOR SUDDEN TEMPERATURE CHANGE WITH T s 21°C AND Ax:v* a 52 PER-

CENT
Stress at Surface m Stress at Midplane
Final Time Symmetric Nonsymmetric Dev. ¥  Symmetric Nonsymmetric | Dev. %
4maumnmﬁcwm (hrs) psi psi
o
: 11.70 -1622.81 -1534.50 - 5.40 85.46 42.85 - 49.86
0 402 ~1685.47 -1495.76 - 11.26 196.41 106.41 - 45,82
1961 -1566.77 -1170.50 - 25.30 436.03 220.50 . - 49.43
11.70 -1015.07 - 057.92 - 5.63 56.13 28.10 - 49,94
10 402 - 989,52 - 847.23 - 14.38 166.18 86.67 - 47.85
. 1961 - 837.88 - 570.30 - 31.94 345.44 166.84 - 51.70
11.70 - 608.12 - 575.31 - 5.40 31.77 15.90 - 49,95
12.78 402 - 607.79 - 519.45 - 14.53 .107.10 55.35 - 48.32
1961 - 509.24 - 337.42 - 33.74 229.71 110.43 - 51.93
‘ 11.70 402.05 | 395.85 - 1.5 - 0.964 - 0.404 - 58.10
43 402 513.22 - 416.85 .- 18.78 -203.48 ->96.15 - 52.75
1961 226.98 149.56 - 34.10 --133.22 -106.70 - 19.90
11.70 51.81 87.42 + 68.73 46.97 23.71 - 49,52
63 . 402 358.09 292.84 - 18.22 -238.40 -123.84 - 48.05
1961 47.36 57.91 + 22.28 - 28.15 - 56.43 +100.46
11.70 - 465.34 - 376.78 - 19.03 106.22 53.53 - 49.60
83 .~ 402 64.35 85.49 + 32.85 -138.60 -106.20 - 23.38

1961 . = 5.28 0.129 +102.44 2.82 - 8.78 +411.34
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TABLE 6 - PERCENT DEVIATION OF STRESSES IN T300/5208 FOR CQUPLED AND UNCOUPLED THEORY

Final

Temperature

°C

10

12.78

43

63

83

WITH q*.- 21°C AND szv* = 52 PERCENT

Time
(hrs)

11.70
401.5
1961

11.70
401.5
1961

11.70
401.5
1961

11.70
401.5
1961

11.70
401.5
1961

11.70
401.5
1961

Stress at Surface (psi)

Coupled

-1622.82
~-1685.47
-1566.77

-1015.07
989.52
837.88

608.12
607.79
509.24

402.05
513.22
226.98

51.81
358.10-
47.35

- 465.37
64.35

- 5.28

‘Uncoupled

-1637.52
-1931.90
-1966.08

-1024.26
-1134.84
-1060.13

- 613.64
- 696.35
- 646.47

405.88
586.51
317.31

52.78
420.71
67.25

- 468.67
113.84
- Oomh

Dev. %

~
}

0.91
14.63
25.49

0.91
14.69
26.53

0.91
14.57
26.95

0.95
14.28
39.8

1.87
17.48
42.03

0.71

.76.9

84.1

Stress at Midplane (psi)

Coupled

85.46
196.41
436.03

56.13
166.18
345.44

31.77

107.10

229.7

- 0.96
-203.48
-133.22

46.97
-238.39
- 28.15

106.22
-138.60
2.82

Uncoupled

70.75
137.76
536.38

46.94
139.11
427.36

26.25
89.68
285.67

2.87
-192.23
-184.71

47.94
-252.0]
- 39,39

102.92
-190.21
0.299

Dev. %

17.2
29.9
23.0

16.37
16.29
23.7

17.37
16.26
24.36

5.53
38.65

2.06
5.71
39.92

3.11
37.24
89.40
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Figure 1 - Diffusion of moisture and/or. temperature in an 1nf1n1te
plate with finite thickness
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Figure 2 - Finite difference mesh in dimensionless space
and time variables
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Figure 3 - Variations of moisture content with time caused by
sudden change in moisture for 7300/5208
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Figure 4 - Sudden moisture change from RH = 0% to 13% at 21°C
for T300/5208
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Figure 5 - Sudden moisture change from RH = 0% to 33% at 21°C
for T300/5208 e
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Figure 6 - Moisture absorption speed for T3€0/5208 in RH = 100%
air with different temperature based on uncoupled theory
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Figure '7'- Sudden temperature change from 21°C (RH = 52%)
to 10°C for T300/5208
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Figure 8 - Sudden temperature change from 21°C (RH = 52%)
to 43°C for T300/5208
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Figure 9 - Sudden temperature change from 21°C (RH
to 63°C for 7300/5208
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Figure 10 - Moisture absorption and desorpticn speed for different
temperature gradients at ambient ccndition of 21°C and

RH = 52% (7200/5208)
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Figure 11 - Comparison of coupled and uncoupled resulits for maisture
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Figure 12 - Stress variations for (_F_!H)f = 75%
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Let

DIMENSIONLESS

v - (0%C) - & (C-AT)

d

v (ovT) -5 (T-vC)

D'= D0 exp(-EO/RT)

APPENDIX 1

EQUATIONS OF DIFFUSION
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Substituting into equation (11)
9 | oC -9 ‘_.
3z [Do exp(-Eo/RT) 523 - 5E-(C-AT) =0
D exp(-E /RT) 551 + D0 az
9 -
- —E-(C-AT) =0
- Es aC
D exp( E /RT)[sgr + 5T7 RT ( )( )] - (55 -

Similarly, we éan get

2T oT aCy _
D—a—e-—[- Do('se—- Vﬁ) =

-61-

o
exp( E,/RT) - n%%;

Ty _
Azg) =0



APPENDIX 2
DERIVATION OF EQUATIONS (17)

From equations (13)

E Eo
(28 + 22 CHEDT exn(- ) - -2 Ty - 0

(13)
32T oT ac, .
0357'- Do(ﬁ- \)gé-) =0
the solution for moisture and temperature are
Ip¥
C(t) = Ci + (Cf'ci)f(goe)
(16)
T(t) = T, + v(CC,)g(€,0)
a—c» = _al = - 2.9. 7
58 = (CeCy D 3 aa’ 5g = V(CeCy) 5¢

aT -c.) &9
= (e 35, 2= wicecy) 28

Let

| E,/R
F = expl- 1 +v(C -C, I .

then the first equation of equation (13) becomes

-62-



R of 3 f .
o V(CeCy)? 5 3%

(o]
}
R R 2
[E Ti + E v(Cf -C.)g]

F{(C, cp) Zf 4

£
- L(ce-Cy) 55 - wlCe-cy) 31 = 0

R ) of 3g
32§ l'o"’(c ¢i) 3¢ 3¢ of
Figer + ¢ b - (3w ) -
[E_'Ti + E—-v(cf-ci)g]2
o )
Let \
A = ._E.g_, B = -————-\’(cf-ci)
RT T
then
F = exp(- 1+Bg)
SO we may have
AB__ of 3g. of 39y
F[agz * {T¥Bg)7 3¢ o8] - Gg - W 3g) = 0 (R)

and similarly, the second equation of equation (13) becomes

- D .

azg __0 439 _ ofy _

Y3 7] (ae"ﬁ) 0
Let

-63-



or

Substituting (A) into (B), we can have

af _ 1 v 32 32f AB  of 3
5 = T G 3e2 * Flagr * TTomg)” 3¢ 51

-64-
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} Thq

and

APPENDIX 3

DERIVATION OF EQUATIONS (33)

(226 4 20 (B expl- 2) - -2 -0
227 . o€
D 3gz = Dolag = v 39) = O

assumed solution for moisture and temperature are

~

C(t) = C; + MTe-T,)f(€,0)

T(t) =‘Ti + (Tf:Ti)g(g’e)

aC _ of 32C _ 22f B
'a_a"‘”f‘”_a 3et = MTeTy) 5z

oT _ 4 2 92T _ 3?2

3= (TeTy) 52 > 5e7 = (T Ty) 52

o _ Of BT . (r .7y 20

56 = MTeT3) 550 39 = (Te~T3) 36

_ o (13)

(32)

Substituting the above equatiohs into the first equation of equations

(13)

3f 3g

2 E
DMTeT3) 328+ 192 M(TT) (1p-Tp) 3F 297 exp(- m,)
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of | -T.) 99 -
- IMTeTy) 5 - AT Ty) 551 = ©

Thus

3%f . ~o af 3 0 of _ 39y . o
[3e7 * /7 (Te-T5) 53-3%3 exp(- z7) - [55- 333 = O (R)

.S

and the second equation of equations (13) becomes

32 3 oy ofq
D(Te-Ts) a_gg - D [(T¢T;) £3 - Au(Te-T,) £21 = 0

829 _ o r3q _ ,. afq _ |
va_g‘g Dolag - W 5gd =0 | (8)
A ’
Let
D
. o'— )
7 "%

Equation (B) becomes
32 g afy =
32 - Uol5e - W 55l = 0
or

gg.::.‘.—.az 8_'f. | '
55 S Ut t WV 5 | (c)
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Substituting (C) into (A), equation (A) becomes

E 2
af -1 a2f af 3g: + 1.3
1=Av [ E RTZ (Tf 1) 36 35] exP( "T’) U szg' (D)
Let
‘ E /R .
F = expl- 1 +(Tf-T‘7g
Then equation (D) becomes
of F 92f B;'(Tf-T') af.a 1 32
EY- Y T {zzz + —'_g‘} + —'—'g' (E)
o
Let
E Te-T,
_ 0 S
Ao B
i i 0
then

F = exp(- ]+Bg)

and equation (E) becomes |

Equation (C) becomes
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3g _ 1+Av Av af 3g

92 % f
3® U, 5E3'+ T-3v F[EET (1+Bg)2 3 35]

. -68-



APPENDIX 4
DERIVATION OF EQUATIONS (36) AND (37)

From equation (23)

m=%C +M=w(-§—; T) + constant
_ ; b2 T
m(t) = m -h{Z [7 (C-AT) + const]dlz =5 -{ X {[Ci + A(Tf-Ti) x
t .
x £(£,0)1 - ALT; + (Te=T,)g(£,0)1}dE = & [§ teyry)
 MTET)IF(ES) - gl£,0)Thde
Thus
N ] |
m(t) - m; =3 (T-T,) ;{ [f(g,0) - g(£,8)1de (36)
and

me - m, = [%-(CffATf) + const] - [%-(Ci-ATi) + const]

= %-[—ATf - AT,] for C; = Ce = = w(Te-T,) - (37)



APPENDIX 5 .
DERIVATION OF EQUATION (58)

Using €, 6 as defined in equation (12), the boundary conditions
in equations (14), (15), T(t) m(t) in equat1on (26), dimensionless
moisture uptake, [m(t) - m, ]/(mf-m ) in equat1on)(27), and

. | A %’,ﬁa . |
m(t) = m + % (Ce-C)F(E,8) - Avg(£,6)] N O

For m, = o, Ci =0

Ve

m(t) = £ (C4C;)IF(E,0) - hvg(£,0)] = ﬁ‘f’ff(g'eg' /
- Wa(£,0)] ' | 7w
and .%//
=04y = A m(t)-m
t = o0 X ——— ) ‘ C
" " me=m; ()

and equation (50) can be written as '

]

. 1 '
- = 1
O'X = O"y i o “C.i) = f { g(&,e)d&;] = [Ti +‘v(Cf-C1.)
B — m(t)-m .
x g(£,0)]} + ]-Vp {m(=) x —ﬁ;:ﬁ:— - m(“)[f(».e)
RN o (s8)
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APPENDIX 6
DERIVATION OF EQUATION (59)

Using equations (57) and (58), equation (55)‘be§omes

Oy = 0y, = T%%; (T-T) +A]Esp [m(t) percent.F m(f) percent]
h/2 h/2 _ : :
1220E 1228E - :
FRTT Ly TR ROT L, A - W

@ /
where

-gg-'(T;T) + -EB [m(t) percent - m(t) percent]
1-vp 1-vp

was given by equation (58) and using &, 6 as defined before

h/2 1
12zaE _ _12&aE )
B -0] gy 87242 2oy | v(CeCyale.0eds
3€qEv(Cf-Ci) 1 :
T _{ £g(g,0)dE - (B)

h/2 1
1228E 12¢6E W (o
Rli-voy ), Am2d iv1§:3;7 X €CpCylece.0)

3£BE"w(Ce-C;)

- Avg(£,6)]EdE = 2(T-v )X

p
C

3EBE (e
x f(£,0) - A 8 d
FGRERTIC )Jede - —%T—\,ﬁ,l
| . ,

x { [f(£,8) - Avg(£,0)]ede y (c)
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Thus, (A) becomes

1
G0 ™ Oy = Toum LTy +9(CeCy) - [ 9(E.0)de]
p -

_ m(t)-m,
- [Ti+ \)(Cf'ci)g(gte)]} + 1_5_?)-; {m(m) x m :

£y

_ : 3gaEv(Ce-Cy)
- m(=)[f(£,8) - Avg(£,8)]} + 2(1-\)p) )

b e ovae o SEEER(=) b
x { £9(£,8)dE + Sy { [f(.8) - Avg(€,0)]Ede
- ‘ p -
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APPENDIX 7
DERIVATION OF EQUATION (64)

: /
“As in Appendix 6, equation (55) can be written as

x = Oy = T%%— (T-T) + ]Es [m(t) percent = m(t) percent]

p P

h/2 h/2
12zak [ ATzdz + E}%Eﬁﬁ_y [ amzdz (A)

]'“p -h/2 1-vp) _hr2

when expressed as a function of £, ©

. IZZaE _ 3aE . - .
h*(T-v,] -h;z ATzdz = 511:;?7 _{ (Te Tj)g(E.e)EdE
30EE(Te-Ty) 1 |
= g9(&,0)ede (B)
2~y
N h/2 ‘ 1 me-m,
1228E - 3aEE £
- Amzdz = ( x 100)[g(£,6
v -h;2 2(1-v,) _{ o )[9( )
__3afE MMy .
= f(E,e)]ng = 2(1_\)p) x w-i x 100
.l D
% { [g(e,0) - f(£,0)]EdE (c)

>

Thus, (A) becomes

N LY

. _ Ex B8~
oy = Oy = T:%;-(T-T) + T§%; [m(t) percent - m(t) percent]

-73-



3°EE(Tf'Ti) 1
+ Z(I-vp) _{ g(&,0)edg

o
me-m 1 o,
+7%%5x%}ixwo{[uaw-fumnme (9)

i -

Using equation (63), (D) becomes

oy = T (TeTy [ 9(ew0)de - 9(£,0)])
A i

E8 i m(t)-m,
+ - {( x ]00)[9(5*»6) = f(gae) = ]}
1 \)p W_i | : mf.-m‘i
. 3aEE(Te-T.) 1 sger | MM
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