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NOMENCLATURE 

C  - concentration of water vapor 1n the air spaces 

C-  - Initial value of C 

C~  - final value of C 

C(t) - moisture content at time t 

C(t) - average moisture content 

D   - moisture diffusivity m 
Dh - thermal diffusivity 

D - moisture diffusion constant 

D - moisture diffusion coefficient 

V - thermal diffusion coefficient 

E - the energy required for one unit of mass to move into the solid 

E - Young's modulus 

f - the amount of moisture leaving a unit of volume of void space 

h   - thickness of the plate 
v 

k   - thermal conductivity 

M   - the amount of moisture absorbed by unit mass of solid 

M   - average amount of moisture absorbed by the solid 

m  - the mass of moisture contained in the volume of the composite 
per unit mass of solid 

in  - average amount of moisture abosrbed by the composite per unit 
mass of solid 

m(oo) - equilibrium moisture content 

N   - moles of the vapor 

Pw^ - vapor pressure of air at temperattrre T, 

Pw2 " vaP°r P^ssure of air at temperature T2 
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q   - heat flux out per unit area 

R  - gas constant 

RH  - relative humidity 

T . - absolute temperature 

t   - time in hours 

Tj  - initial temperature 

T(t) - temperature at time t 

T~  - final temperature 

T(t) - average temperature through the plate 

u  - D/V 

o    o 

V   - volume occupied by the void per unit volume 

w(t) - weight of specimen at time t 

w. - initial dry weight of the specimen 

z - axis in thickness direction 

a - coefficient of thermal expansion 

3 - coefficient of moisture expansion 

Ys - specific humidity 

£JJ - strains 

6 - dimensionless time 

X - constant 

v - constant 

v - Poisson's ratio 

£ - dimensionless space 

p - density of composite 
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Ps  - density of solid 

Pa  - density of air 

a   - constant 

o\jj - stresses ll 

w  - constant 

'.,'.'!.• 

o 
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ABSTRACT 

The Influence of coupled diffusion of heat and moisture on the 

transient moisture and stress distribution in a composite Is Investi- 

gated analytically. The moisture diffusion coefficient Is assumed to 

be temperature dependent while the thermal diffusion coefficient is 

kept constant. I 

A study of the coupled diffusion equations was made by application 

of the finite-difference scheme allowing time-dependent changes in the 

humidity and temperature of the environment. The appropriate tran- 

sient, moisture and/or temperature boundary conditions are specified on 

the surfaces of an infinite plate such that the problem is one-dimen- 

sional with changes occurring only in the thickness direction. 

Degradation of mechanical properties and dimensional changes due 

to moisture are analogous to those caused by thermal effects. For 

the most part, hygro-elastic stress analysis is similar to thermal 

stress analysis. In an epoxy system, the moisture diffusion process 

is several orders of magnitude slower than the thermal conduction pro- 

cess. With reference to the exposure time, thermal shock is consid- 

ered to be rare in practice whereas moisture shock is rather common. 
,   ' t 

Numerical calculations were carried out for the T300/5208 graphite 

fiber-reinforced epoxy matrix composite in which the nonuniformity of 

moisture and temperature is evaluated for sudden changes in the sur- 

face moisture and/or temperature. The coupling effect between tem- 

perature and moisture is found to be most significant when the plate 

V -1- 



undergoes a sudden change in surface temperature while the surface 

moisture concentration is held constant. For a sudden change in the 

surface temperature, the results Indicate that the stresses due to 

coupling can deviate from the uncoupled results anywhere, from 20 to 

80 percent depending on the surface temperature gradient. This sug- 

gests the need to perform additional experiments for evaluating the 

xoupled diffusion phenomenon and its influence on the mechanical be- 

havior of epoxy-resin-composites. 

-2- 



I. INTRODUCTION 

Owing to their favorable performance characteristics, composite 

materials have been gaining wide use in Industry because of their low 

weight and high strength characteristics. Absorption of moisture by 

composites causes dimensional changes through non-uniform expansion 

and/or contraction of material elements which, 1n turn, leads to Inter- 

nal stresses and strains. Therefore, 1n order to utilize the full po- 

tential of composite materials, their response to moist environments 

should be understood. 

Classical solutions assume that the moisture and temperature ef- 

fects are uncoupled. Refer to the studies of Shen and Springer, Pipes 

et al and Tenny [1-3]. Other solutions consider the time varying dlf- 

fusivity such as those by Weitsman and Harris et al [4,5]. 

However, little attention has been given to the coupling of mols- 
» 

ture and heat which, in turn, can affect the transient stresses and 

strains in the composite materials. The significant variables in such 

a study must, at least, involve time, relative humidity of the envi- 

ronment, temperature, relevant physical constants, etc. The governing 

equations for coupled moisture and temperature effects were studied 

by Henry [6] and Hartranft and Sih [7]. Five different physical models 

that led to the same type of governing equations were discussed by 

Hartranft and Sih [8]. The coefficients in these models are associated 

with the basic thermodynamic properties of the solid and can be related 

to one another. 
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The purpose of this investigation 1s to develop an analytical model 

and technique for calculating the nonunlform moisture, temperature and 

stresses in a composite system. 

The properties of the T300/5208 graphite/epoxy system were used In 

the numerical calculation as the diffusion data and the variation of 

the moisture diffusion coefficient with temperature for this material 

is readily available [9]. A finite difference computer program was de- 

veloped for solving the coupled diffusion equations with transient 

boundary conditions on moisture and/or temperature. 

Examples and numerical calculations are provided for moisture and/ 

or temperature diffusing into a plate from its surfaces. The plate 1s 

initially at a uniform temperature with a given moisture content dis- 

tributed uniformly throughout the plate. Suddenly, the temperature 

and/or moisture at the plate surfaces are changed and maintained con- 

stant thereafter. The corresponding stresses are also calculated as a 

function of time while the numerical results for other quantities of 

interest are displayed graphically. 
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II. MOISTURE CONTENT 

I1.1 Coupled Diffusion Equations of Moisture and Heat 

In this study, an element of the composite material will be 

modeled by a medium that is occupied partly by the solid and partly by 

air spaces or voids. Assume that the solid portion can always be con- 

sidered as in equilibrium with its immediate surroundings such that a 

linear dependence on both temperature and moisture can be taken: 

M = aC - toT + const    p (1) 

where C is the concentration of water vapor in the air spaces expressed 

+3 in g/cm , M is the amount of moisture absorbed by unit mass of solid, 

a and w are constant (may be functions of C and T), and T is the tem- 

perature. 

Henry [6], altered the classic uncoupled equations for diffusion 

of heat and moisture to incorporate effects due to porosity and thermo- 

dynamics. The heat conduction equation is given by 

\ 

v.9. - -  pC- £ ♦ Pn f (2) 

where 

q = - kVT (3) 

-5- 



Here, q Is heat flux out per unit area, k 1s thermal conductivity, 

and p 1s the density of the composite. The unit of space consists of 

void space, occupying volume V, and the solid occupies the volume 1-V. 

The density for the solid is p : . , 

Ps = P/O-V) (4) 

and the thermal diffusivity is 

Dh = V^PCp).. (5) 

while n is the heat lost by the solid when it absorbs a unit mass of 

moisture. 

The amount of moisture leaving a unit of volume of void space 1s 

v I    9t  V 3t K*} 

where 

f = - gDmVC (7) 

and g is a correction factor accounting for the intricacy of the paths 

through the void space. D is the moisture diffusivity. When both D. 

and D are constants, M may be eliminated from equations (2) and (6). 

With the aid of equations (3) and (7), the following system of coupled 
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equations are obtained [7]: 

2r _ 9 r \U-AI;   -  u 

(8) 

DV2C - 1^- (C-XT) = 0 

PV2T - |^ (T-vC) = 0 

where 

D = gDm/[l + pa/V] 

P= D./[l.+ nai/C] 
n P (g) 

v = a/[a> + C /n] 

X = a)/[a + V/p] 

and V2 is the Laplacian operator in the space variables.    The diffusion 

coefficients D and V have units of area per unit time.    The parameters 

X and v have units of mass per unit volume per unit temperature and the 

reciprocal, respectively.    These equations are relatively easy to solve 
« 

when the coefficients are constant and boundary values of temperature 

and moisture content are held constant [7]. 

It has been noted experimentally that the moisture diffusion co- 

efficient, D, depends on temperature by a relation of the form [10] 

D = DQ exp(-EQ/RT) (10) 

1n which E    is the energy required for one unit of mass to move Into 

-7- 



the solid, R is the gas constant and T 1s the absolute temperature. 

The form of D 1n equation (10) can be Incorporated Into the coupled 

theory giving 

V • (DVC) - -j^- (C-AT) = 0 

PV2T - 1^'tT-vC) = 0 

(11) 

where V is constant throughout this study. When D 1s a function of 

temperature, equations (11) are nonlinear and a numerical scheme for 

solving equations (11) is required. 

For the problem at hand, only the moisture and temperature 

changes in the plate thickness or z direction is considered, Figure 1, 

and hence V2 = 32/3z2. It is expedient to introduce the dimensionless 

space and time variables 

97 
4Dnt 

1n which h stands for the plate thickness. Equations (11) can thus be 

expressed in terms of £ and 6 as (Appendix 1) 

(13) 

af*  ov3e v 3e; 

-8- 



In what follows, two types of transient boundary conditions will be 

treated, namely sudden change 1n moisture and temperature. 

II.2 Sudden Change In Moisture 

II.2.1 Diffusion Equations 

Consider the problem of diffusion into an Infinite plate 

as shown in Figure 1. The temperature and moisture concentration are 

Initially uniform at the values T. and C., respectively. At time t=0, 

the moisture at both surfaces z = ±h/2 are suddenly changed to C^, and 

maintained constant thereafter. The surface temperature of the plate 

is always kept at T.. These conditions may be stated as 

T(z,o) = T., C(z,o) = C. (14) 

and 

T(±h/2,t) = Tif C(±h/2,t) = Cf for t>0 (15) 

In terms of the nondimensional variables £ and 9 in equations (12), the 

solution for moisture and temperature may be expressed in the forms 

C(t) = C. + (Cf-C.)f(5,e) 

06) 

T(t) = T1 + v^-C^gU.e) 

-9- 



in which f(S,e) and g(£,0) are functions to be determined from the 

conditions in equations (14) and (15). Substituting equations (16) In- 

to equations (13) yields (Appendix 2) 

3f _ 1  r\v  3*g . rr3
2f ,   AB  3f Sq-i, 

36 " T^v ^W     hL3f*"     (1+Bg)2  3£ 3£J 

,-       3g_ _    1  rl     32q ,   r-32f ^        AB      3f 3gn g 
30 " T^J {u~ 3F + F|--3p- + (l+flg)*  35 3fJ ' 

(17) 

o 

where 

F " exP<- Ag} 

EQ _ v(CfC.) 

II.2.2   Finite Difference Method 

Since equations (17) cannot be solved analytically, 1t 

is necessary to resort to approximate numerical methods.    The method 

of finite difference is adopted to replace the governing partial dif- 

ferential equations.    This then reduces the problem to a set of slmul- 

taneous algebraic equations which can be easily solved.    Referring to 

the space and time interval  in Figure 2, the first of equations (17) 

may be written in difference form as 

-10- 



m,n+l~ mtn _    1  ,Av /9m+1 ,n~ ^m^n^m-l ,n% 
AS " 'TAV V  l (ASK ' 

f         -2f     +f .  c/_ _\r ni+1 ,n     m,n   m-1,n  , AB + F(m,n)[ ^ «- ♦ (l4ft        w x 

( m+1,n" m,n)(
9m+1,n"V,n)]} (18) 

while the second of equations (17) becomes 

gm,n+l~gm,n _    1  ,1_ ,gm+l ,n~ gm,n^m-l ,n\ 
A8 " T-kv \ K TATT2 ' 

j. et \r m+1 ,n~   m,n* m-1   ,  AB 
+ F(m,n)[ j^ + TTfBgm^F X 

x ( mf1,n-|n,n)(Vlyn-9m,n)]} (w) 

In order to achieve acceptable accuracy in the finite difference cal- 

culations, the grid size in space, A£, and time, A8, must be suffi- 

ciently small  and satisfy the stability requirement that 

At <%^-exp(EQ/RT) (20) 
o 

The boundary conditions in equations (14) and (15) may then be written 

in terms of f(£,8) and g(£,6). They become 

f(€,o) = 0, g(c,o) = 0 (21) 

and 

-11- 



f(±l.e) = 1, g(±i,e) = o (22) 
/ 

for 6>0. 

A computer program was developed to solve equations (18) 

through (22) for the functions f(€,8) and g(?,6) from which the mois- 

ture and temperature throughout the solid can be determined. 

11.2.3 'Average Moisture Quantities 

Referring to equation (1), the mass of moisture contained 
it 

in the volume of the composite per unit mass of solid m, is given by 

m = - C + M = u)(£ - T) + constant (23) 

The average values of these moisture content quantities are defined as 

Z = | f  CdV, M = Y I MdV, m = -J- / mdV (24) 

The total moisture in the voids, solid and composite are, respectively, 

vVC", pVff, and pVm. Now, let the average values of T, C, and m be de- 

fined by the integrals 

T(t) = I     / T(z,t)dz 
n -h/2 

T h/2 
IT(t) = I     j   C(z,t)dz (25) 

n -h/2 

1 K2 
m(t) = £  / m(z,t)dz 

n -h/2 
-12- 



In terms of f(5,8) and g(£,8), equations (25) become 

1 
T(t) - Ji  = £(Cf-C.) I g(£,6)dC 

!       1 
<T(t) - C1 = ^(C^) | f(5,9)dC (26) 

1 
m(t) - mi = ^ (C^C^ | [f(£,e) - Avg(C,e)]d5 

In view of equations (14) and (15), the third of equa- 

tions (26) may be put into the dlmensionless form [m(t) - m.]/(m*-m.) 

which, when approximated by Simpson's rule for a fixed time 8Q, gives 

0 

m(t)-m 
i _ 1 

m.e-m.j 
= \ (^{[fd.e ) + 4f(2,e0) + 2f(3,eQ) 

+ ... + 4f(n-l,0o) + f(n,e0)] - Xv[g(l,90) 

+ 4g(2,60) + ... + 4g(n-l,eQ) + g(n,60)]}        (27) 

J 

II.2.4 Numerical Examples 

Numerical calculations are made for a T300/5208 epoxy 

resin plate with thickness h = 0.2 cm. The constants D^ = 1.53 x 103 r o 

cm2/hr and E = 1.25-x 101* cal/g-mole are obtained from [9]. For the^ 

coupled diffusion problem, the particular values of u = 0.1, X  = 0.5 

and v = 0.5 are chosen by comparing the analytical prediction of the 

percent moisture content as a function of ft with the experimental da- 

ta 1n [9]. Note that u = D/V should be distinguished from u In equa- 

-13- 



tlon (17). The constants A and B in equation (17) are determined from 

an Initial temperature of T. = 21°C = 294°K, C1 = 0 and a gas constant 

of R = 1.986. Hence 

A " ITTJ" 1.986(294) " 21'41 

vC*  0.5 Cf , 
B =T

±= "291TX= 1-7 x 10  Cf 

1n which C-, the equilibrium moisture concentration, can be obtained 

from 

Cf = %£ (28) 

for different relative humidity of the environment. In equation (28), 

Ys is the specific humidity measured in grams of water per lb of dry 

air and pa is the density of the ambient air in units of g/cm
3. An- 

a 

other important quantity in the diffusion analysis is the relationship 

between equilibrium moisture content m(») of the composite and RH of 

the environment. For the post-cured T300/5208 epoxy resin, the rela- 

tion [9] 

m(~) =0.0155 (RIJ) " '  (29) 

may be used in which RH is expressed in percent. There remains the 

appropriate selection of the time and space interval before carrying 
i ; 

out the finite difference calculations.    For example, if the plate In 

-14- 



the z-d1rect1on is divided into seven segments and hence Az ■ h/7 while 

At must satisfy the stability condition In equation (20). Results are 

expressed 1n terms of percent moisture content m(t) as manifested by 

the weight gain of the composite: - 

/ w(t)-w.j 
m(t) = —rr-L x 100 (30) 

1 

where w(t) is the weight of the specimen at time t and w. 1s the ini- 

tial dry weight of the specimen. 

Figure 3 gives a plot of m(t) versus /t for different 

relative humidities of RH = 13, 33, 52, 75 and 100 percent at T^ 

= 21°C. The moisture diffusion coefficient D is assumed to be tempera- 

ture dependent. The dotted curves represent solutions for the uncou- 

pled theory in which X = w = B = 0, Av = 0 and u can be arbitrary. 

They differ very little from the curves for the coupled theory. Simi- 

lar results can also be obtained for T. = 43°C, 63°C and 82°C. Fig- 

ures 4 and 5 show the variations of moisture content m(t) with the 

normalized thickness coordinate 2z/h for RH = 13, 33. Initially, i.e., 

for small time t, only the region close to the plate surface experi- 

ences moisture while the center region of the plate is not affected. 

As time increases, moisture is penetrated into all the material ele- 

ments with the minimum influence at z=0. The difference of m(t) be- 

tween z=0 and z = ±h/2 increases with increasing RH. 

The effect of initial temperature on the penetration of 

moisture is shown in Figure 6 for a sudden change of RH from 0 per- 

-15- 



cent to 100 percent. Coupling 1s neglected and D Is taken to be a con- 

stant. The time at which the plate reaches moisture equilibrium 1s 

seen to decrease as T^ is increased for a fixed value of h = 0.2 an. 

Table 1 g1ve>,vthe comparison of the moisture variation at 2z/h = - 1.0, 
* 

ves- 

- 0.66, - 0133 and 0.0, for symmetric and nonsymmetric sudden moisture 

change at 21°C from (RH). = 0 percent to 75 percent. The average mois- 

ture gain for nonsymmetric case is half of that for symmetric case. 

The moisture gain at z = - -5- for both cases are equal while at 2z/h 

= 0, the deviation is about 50 percent. 

II.3 Sudden Change in Temperature 

II.3.1 Diffusion Equations 

Suppose that the surface temperature on the plate in 

Figure 1 is changed from an initial value of T. to a final value T~ 

and the moisture concentrations at z = ±h/2 are kept constant at all 

time. Then, in addition to equations (14), the following conditions 

must also prevail: 

T(±h/2,t) = Tf, C(±h/2,t) = C.      | (31) 

The form of the solution expressed in terms of the variables £ and 6 

defined in equations (12) is 

4.' 

Nonsymmetric boundary conditions are given by T(± 5-,t) = T., C(- *-,t) 

= Cf, C(Jj-,t) = Ci for t>0. 
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C(t) = ^ + xdf-T^fCc.e) 

(32) 

T(t) = ^ + (T^JgC^.e) 

Substituting equations (32) Into equations (13) yield (Appendix 3) 

if. - _F r3
2f .  AB  9f 33.1 + J_ ifq 

38 ~ T^Av ld^r     TT+gP" 35 3?   u0 3^" 

3g_ _ 1+Av 32q   Av Fr3
2f .   AB  3f 3g_-i 

38 " Un 3I2"  T^Av rL3|7r  "n+BgT2" 35 35J 

(33) 

where 

Using equations (32), the conditions in equations (31) may be written 

as 

f(±l,e) = o, g(±l,e) = l for e > o 

As in the previous example, equations (33) will be solved numerically 

by the finite difference method. 

II.3.2 Finite Difference Equations 

Equations (33) will now be cast Into the finite differ- 

ence form. With the nondimensional time and space interval as chosen 

-17- 



<3 

In Figure 2, the following expressions are obtained 

m,n+l~ m,n _ F(m,n)  r m+1"   m,n   m-1 ,n AB 
A6 " "PMT L (#)' + (1+Bg^J* 

x / m+l,n~ m,nw9m+l,n~9m,nx-i      1_ x       ■ 
.AC v A£       ;J     u 

x [Vl'"~(Ig)!:*Vl'"3 04) 

and 

9m,n+1"9m,n      1+Xv r
9m+l .n" 9m,n^m-l ,nn   .    Av    c#      » 

A6        - IT- [ CSIP   ] + T^ F(m'n) 

f -Zf      +f r m+l,n     m,n   m-1,n  , AB 
[        (Ad2    xrag—F 

/ m+ljn" m,nw9m+1,n"gm,nyi ,^5) 

The stability requirement for selecting the relative size of At and 

Az in the numerical calculation is the same as that state in equation 

(20). 

II.3.3   Moisture Content 

Following the definitions of the various moisture param- 

eters as discussed earlier, the average moisture content in the com- 

posite per unit mass of solid is 

m(t) - m. = £ (Tf-T.)    | [f(c,8) - g(C,e)]d£ (36) 
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From equation (23), it can be shown that (Appendix 4) 

m f - m^ = - u(Tf-Tj) (37) 

which when substituted into equation (36) yields 

m(t)-m. 
-^T'=J^)  t[g(l.e0) + 4g(2,e0) + ... + g(n,e)] 

- Cf(l,eo) + 4f(2,e0) + ... + f(n,6)]} (38) 

Here, Simpson's rule has been applied for evaluating the integral in 

equation (36) at 6 = 6 . 

II.3.4 Physical Meaning of Sudden Temperature Change 

From equation (1) 

M = aC - aiT + const 

and equation (23) 

m = 1 c + M = u(Ji - T) + const 

where 

_ 8M „  3M 
W " 3T» a ~ 8C 
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Equations (11) read as 

V * (DVC) - |^ (C-XT) = 0 

P72T - 1^ (T-vC) = 0 

For uncoupling case, we required X=0, v=0 since X=0, for m to be fi- 

nite, we have to require 

(o = f£=0 (39) 

Note that the classical theory cannot address the Influence of temper-, 

ature change on the moisture content in the medium. Thus, for sudden 

surface temperature change, it is necessary to use coupled theory. 

For the coupling cases, assume X, v are constants. After 

a sudden temperature change, if the vapor pressure is kept constant, 

then the volume of the ambient air will change which affects C-. Since 

C. is to be kept constant on the surface, the volume must also be a 

constant. Making use of the ideal gas equation PV = NRT, vapor pres- 

sure of moisture will increase, and consequently, the relative humid- 

ity of the ambient air is also affected as follows: 

Pw^ = NRT] 

Pw2V = NRT2 

(40) 

-20- 



By definition of relative humidity 

RH percent = p*- x 100 percent -       (41) 

in which Pw is the vapor pressure and Pg is the saturate vapor pres- 

sure at certain temperature. Thus 

Pw? Pw,  T? 
RH percent = ^ x 100 percent = „-*- x ^ x 100 percent   (42) 

From equation (42), it is seen that when the moisture content of the 

environment is kept constant, the relative humidity of the ambient air 

will decrease with increasing temperature and vice versa. Hence, an 

increase in the ambient temperature will cause desorption and a de- 

crease of the temperature will lead to absorption of moisture. 

II.3.5 Numerical Examples 

Referring to the boundary conditions prescribed by equa- 

tions (14) and (31), the moisture concentrations at z = ±h/2 are to be 

kept at C. while the surface temperature will be increased from T. to 

T-. Assuming that the mass of moisture contained in the voids per unit 

volume of void space on the boundary is constant, the relative humidity 

of the ambient air will decrease as the temperature is raised. The op- 

posite occurs when T^ is decreased. As it is to be expected, an In- 

crease in the ambient temperature will cause moisture desorption, while 

a decrease 1n the ambient temperature leads to moisture absorption. 

The results are summarized in graphical form for T300/5208 epoxy resin 
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with the coupling constants u = 0.1, X = 0.5 and v = 0.5 as determined 

earlier. 

Figure 7 gives a plot of m(t) as a function^of 2z/h for 

T| = 21°C, (RH)^ = 52 percent and Tf = 10°C. In this case, AT Is nega- 

tive and the moisture level in the plate will Increase with time until 

the equilibrium condition is approached. Figures 8 and 9 display the 

results for AT positive where Tf = 43°C and 63°C are all greater than 

Tj = 21°C. The opposite trend is observed, I.e., the moisture level 

1n the plate will now decrease with time until an equilibrium state Is 

reached. The influence of AT on m(t) can be best illustrated by plot- 

ting m(t) versus Jt as shown in Figure 10. The curves for the six dif- 

ferent values of T^ offer a quantitative assessment of moisture absorp- 

tion and desorption as AT changes sign. 

Tables 2 and 3 give a comparison of the moisture varia- 

tion at 2z/h = - 1.0, - 0.66, - 0.33 and 0.0 for the symmetric and non- 

symmetric sudden temperature change from 21°C with (RH). = 52 percent 

to 10°C and 43°C. For a sudden temperature drop, the difference be- 

tween average moisture uptake is about 15 percent, while for a sudden 

temperature rise, the difference may become as great as 70 percent. 

II.3.6 Influence of Coupling 

An attempt is made in Figure 11 to illustrate the differ- 

ence between the coupled solution obtained from equations (11) and the 
f  

Nonsymmetric boundary condit 

= T^, C(±h/2,t) = Ci for t>0. 

Nonsymmetric boundary conditions are given by T(- 5-,t) = T^, T(x-,t) 
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uncoupled equation 

3        /r%    dL\ 8C    _ 
lz<Dl7»-|r=0 <43> 

Note that for (RH). = 52 percent, the dotted curves based on equation 

(43) can differ significantly from a solid curve of the coupled theory. 

The foregoing results reveal that the coupling of mois- 

ture and heat is Inherent in the study of sudden temperature change 1n 

composites at a given moisture level. The extent to which coupling In- 

fluences the mechanical behavior of the composites can be evaluated by 

calculating for the stress and/or strains. 

V/ 
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III. TRANSIENT STRESSES 

The mechanical behavior of composites may be altered when ex- 

posed to high temperature and/or moisture environments. Their behav- 

ior should be understood before the full potential of composites can 

be realized. For. the resin-base composite treated earlier, moisture 

1s assumed to diffuse into the solid in much the same way as heat. It 

tends to degrade the mechanical properties and introduce dimensional 

changes of the composite similar to those caused by thermal changes. 

Thus, for the most part, hygroelastic stress analysis 1s similar to 

thermal stress analysis. 

III.l Basic Equations 

III.1.1 Basic Equation for Symmetric Boundary Conditions 

Let the plate in Figure 1 extend to infinity in both 

x and y directions and be free from mechanical loads. The stresses 

induced by mechanical loads can simply be added onto those due to mois- 

ture and heat. The material of the plate is assumed to be Isotropic 

and homogeneous. Only hygrothermal stresses will be treated, for sym- 

metric boundary conditions 

a1j = E^eij ' aAT " eAm) (**) 

where E is the Young's modulus of elasticity, a the coefficient of 

thermal expansion and & the coefficient of moisture expansion.    The 

quantity, m, is defined by equation (23).    Since the stress state 1s a i 
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function of the thickness variable z only, shear stresses vanish every- 

where and a.. and e^ consist of normal components only. Hence, the 

strain and stress relations may be written as 

ex ■ r Cax" VV°z)] 

e„ = T [o\, " v> +aj] (45) "y ~ T LOy " V'VV 

:   =-p-f"a   - v (a +o )1 2     t L z       p1 x   y/J 

where v is the Polsson's ratio and a   = 0 will be assumed. For the 

isotropic and homogeneous material, the stresses induced by the 

strains 

e°= e° = - oAT - SAm (46) 
*  y 

are given by 

o o _  ctEAT  BE Am /-7% ax " ay " * TCP " T^T (47> 
P    P 

which prevails everywhere in the plate. 

In order to free the plate edges from external 

stresses, it is necessary to apply stresses, equal in magnitude and op- 

posite in direction, to those of equation (47). The following average 

tensile stresses 
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> 

l      h/2        h/2 

x   y  ^-Vn    -h/2        -h/2 

are thus introduced. The results for a free edge plate are 

„ - „ -  ctEAT  BEAm .   gE   h(2 AT. 

u V -h/2 

or 

ax " av = T?§- (T"T) + T3T" (•»-"') <M> 
.  P P 

in which T and in are the temperature and moisture average through the 

plate thickness. 

Using equation (50), if the distribution of tempera- 

ture and moisture through the thickness of the plate are known, we can 

calculate the hygrothermal stress within the plate. 

III.1.2 Basic Equation for Nonsymmetric Boundary Conditions 

In the nonsymmetric cases, the stresses induced by the 

strains in equations (46) can still be expressed by equation (47). 

In order to free the plate edges from external stresses, a set of com- 

pressive stresses must be superimposed, equation, (47), together with 

the uniform tensile stresses in equation (48), the bending stresses 
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oj; = 5J = 2az/h (51) 

can be determined from the condition that the moment of the forces dis- 

tributed over a cross section must be zero. Hence 

h/2 h/2 CA-     h/2 QCAm, 
/ (2az/h)dz -  } flgDL dz -  / f^E. dz - 0 

-h/2 -h/2 '~vp     -h/2 ,_vp 
(52) 

from which 

?n i?    h/2        n/2 

FT = hH 1M 1 < / aEATzdz +  / BEAmzdz) (53) n   n U~V -h/2        -h/2 

It follows that 

1?7 h/2 h/2 
?y = < = M 1 M t <    /   "EATzdz +     /    BEAmzdz) (54) x      y     n u-vp;    _h/2 _h/2 

and the stresses that correspond to a plate with free edges are 

' _ „    _      ctEAT      6EAm  .        ctE       h/
r
2 ATH, 

+ J^fc X *2dz (55) 

III.2 Hygrothermal Stresses for Sudden Moisture Change 

Based on the diffusion results obtained earlier, equation (50) 

is applied to find the stresses for a sudden moisture change that oc- 
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curs symmetrically. The following material properties for the T300/ 

5208 resin are used: 

a = 45 x 10"6 cm/cm/°C (25 x 10"6 cm/cm/°F) 

(56) 
3 = 2.68 x 10  cm/cm/m(t) percent H20 

v = 0.34 

E = 3.45 GPa (0.5 x 10
6 psi) at 21°C 

a 

The hygrothermal stress field induced by sudden moisture change is 

ax = ay = T^~ (T'T) + W~■®-t) Percent " mM  Percent] (57) 
P        P 

Using f(?,9), g(5,6), m(t) as defined earlier, equation (57) can be 

written as (Appendix 5) 

ax = ay = T^T {[Ti + V(cf-Ci} - \   I 9<5,e)dC] 

co     _    m(t)-m. 
- [T, + tfC^JgU.O)]} + T&- {■{-) x ——L 

P f   1 

- m(-)[f(5.e) - Xvg(C.e)]} (58) 

Carrying out the finite difference calculation as in equations (18), 

(19) and (27), the stresses a  , a can be obtained by numerical means, 
* y 
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For the case of nonsymmetrlc moisture change, equation (55) 

can be written as (Appendix 6) 

ax = ay = T^T {[T1 + v(Cf"C1) \   { 9(5.e>d£l 

F m(t)-m, 
,       - [T, * v(crc1)g(5.e)]} + $- {■(-) x ^5-jJ. 

35aEv(Cf-CJ 
- m(«)[f(5,e) - Xvg(C.e)]} +     2(].v ) 

*   / cg(e.e)d5 + fff^y1  / Cf(C.e) - xvg(c,e)]5dc        (59) 

III.2.1    Numerical  Example 

The hygrothermal stress distribution through the plate 

thickness for a sudden moisture change (symmetric case) is shown in 

Figure/12 as RH<is changed from 0 percent to 75 percent with T* = T- 

= 21°C.    Initially, both moisture and temperature are at the equilib- 

rium state and hence give rise to no stress.    As the relative humidity 

on the plate surfaces is altered, moisture absorption begins.    This 

causes contraction or expansion of the material  elements and leads to 

hygrothermal stresses that vary as a function of z and t.    It can be 

easily seen from the graph that the stresses near the surface are com- 

pressive and their magnitude decrease as the plate thickness is In- 

creased.    These stresses become tensile in the region close to the 

center of the plate.    The stress at the center increases in magnitude 

reaching the maximum value at t = 1,571 hour and then begins to de- 
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crease settling at the zero equilibrium state. This trend Is similar 

to the results of the uncoupled theory [12] and 1s to be expected since 

the Influence of coupling due to diffusion was weak for the case of 

sudden moisture change. The variations of the stresses a    (or o ) for 
A    y 

2=0 and ±h/2 with time are summarized in Figures 13 and 14, respective- 

ly. Figure 13 shows clearly that the stresses at the midplane are ten- 

sile. They rise quickly to a peak and then decay. Their amplitude In- 

creases with the relative humidity of the environment. The time vari- 

ation of the compressive stresses at the plate surfaces is similar ex- 

cept that the peaks are much more pronounced. Table 4 gives the per- 

cent deviation of stresses in T300/5208 for symmetric and nonsymmetrlc 

conditions for sudden moisture change with T. = 21°C and (RH). = 0 per- 

cent. The stresses for nonsymmetric cases at the midplane are exactly 

50 percent smaller than those for the symmetric cases, while the devi- 

ations at the surface is about 37.20 percent for t = 1961 hour. 

III.3 Hygrothermal Stresses for Sudden Temperature Change 

Let the moisture concentration on the plate be a constant and 

change the surface temperature which is Initially kept at the ambi- 

ent condition. With T(t), m(t), as defined in equations (25), using 

equations (32), it is found that 

1 1   •  - T(t) - Ji  = (T^) - ±   I g(S,e)d£ (60) 

Equations (36) and (37) yield 
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_ nix-nij     m(t)-n).     m* 
m(t) percent = (-£—- x + -p-) x 100 percent .       , ..  .„ r  (61) 

m(t) percent = -1 x 100 - (-1 - -^) x 100 x [g(£,e) 
w1 w1     w1 

- f(C.e)] (62) 

Substituting equations (60), (61) and (62) into equation (50), the 

stress field for the symmetric case of a sudden temperature change is 

found: 

ax = ay = T^T {(VTi)[? ( 9U,e)^  - g(?,9)]} 

+ TCT U^r1 x ioo>Cg(?,e) - f(ce) - -^-4}    (63) i vp  wi mf-mi 

Using equation (38), a  , a can be obtained numerically. The stress x  y 

field for the nonsymmetric case of a sudden temperature change can be 

derived from equation (55). The result is (Appendix 7) 

ax = ay = T^T <(WC7  / 9(5.e)d5 - g(c.e)]} 

FR       m.-mf m(t)-m. 
+ T% <(_^ X ,00)Cg(5'0) " f(C-e) " TvST]} 

1 
x loo   f [g(5,e) - f(?,e)]cdc (64) 
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III.3.1 Numerical Examples 

Figures 15 and 16 show the results of o (or a )  plot- 
y 

ted against 2z/h for a symmetric temperature change from T. = 21°C and 

(RH). = 52 percent to Tf  = 10°C, 12.78°C. This corresponds to a tern- 

perature drop. The tensile stresses in the interior increase in mag- 

nitude while the compressive stresses near the plate surface decrease 

1n magnitude. The peak tensile stress occurs at t = 1,961 hour. The 

opposite trend is observed when the surface temperature is raised. 

Figures 17 and 18 give the results for Tf = 43°C and 63°C. The 

stresses at the center region now become compressive and those near 

the surface are tensile. Maximum value of the compressive stress at 

z=0 occurs at t = 791 and 402 hour. 

The time-dependent character of the stresses is ex- 

hibited in Figures 19 and 20 for z=0 and z = ±h/2. For z=0, ax (or 

a ) increases in amplitude to a peak and then decreases for negative AT 

while a (or a ) attains an oscillatory character when AT is positive. x    y, 

On the surface where z = ±h/2, all the stresses, whether tensile or 

compressive, reach a peak and then reduce to the equilibrium condition 

of zero stress. Table 5 gives the percent deviation of stress in T300/ 

5208 for symmetric and nonsymmetric conditions for sudden temperature^ 

change with T. = 21°C and (RH). = 52 percent. The stresses at the 

midplane of nonsymmetric case are about 50 percent smaller than those 
i 

of the symmetric case for temperature drop, while for temperature rise, 

the deviations vary from about 20 percent to more than 100 percent. 

The stress deviations at the surface of nonsymmetric case vary from 
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0 percent to about 35 percent for temperature drop; for temperature 

rise, the deviations can be larger than 100 percent and the signs 

even change from negative to positive. 

III.3.2 Comparison With Uncoupled Theory 

The stress results for the uncoupled theory are also 

observed such that a comparison with the coupled theory can be made. 

Figures 21 to 24, for the uncoupled case correspond, respectively, to 

the results in Figures 15 to 18 for the coupled case. Although the 

general trend of the curves may be similar, there are noticeable dif- 

ferences in the stress amplitudes. In order to be more specific, 

Table 6 gives a comparison of the stresses at z=0 and z = ±h/2 for 6 

different values of the final temperature. The percent of deviation 

between the results of the coupled and uncoupled theory is calculated 

for elapsed time t = 11.7 hr., 402 hr. and 1961 hr. The largest de- 

viation occurs at t = 1961 hr. Note that for positive AT, i.e., tem- 

perature increase, the coupling of moisture and heat can alter the 

stress anywhere from 40 to 80 percent depending on AT. In such cases, 

the stresses predicted from the uncoupled theory may not adequately 

model the physical problem. 
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IV. CONCLUSIONS 

For the T300/5208 epoxy resin composite material treated In this 

study, 1t is seen that the interaction of moisture and heat can sig- 

nificantly alter the stress distribution in the composite. Although 

thermal and moisture diffusion do not peak simultaneously because of 

the wide margin of difference between the coefficients a and B, the 

way in which moisture and heat interact in a solid is complicated and 

cannot be disposed on intuitive grounds. In particular, when a com- 

posite is subjected to a sudden temperature change on its surface, the 

transient stresses predicted from the coupled and uncoupled theory can 

differ appreciably. 

In this preliminary analysis, material isotropy and homogeneity 

have been assumed. These simplifications should be further investi- 

gated by incorporating the real structure of the composite. What lies 

ahead is the formulation of a finite difference or finite element 

method that treats three independent variables: two in space (x,y) 

and one in time (t). This will permit an evaluation on the effect of 

material anisotropy, the presence of cavities and non-uniform tempera- 

ture and/or moisture boundary conditions. These additional influences 

will also interact with moisture and heat and should be assessed quan- 

titatively such that their individual contribution on the overall me- 

chanical behavior of the composite can be understood. 
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Diffusion of moisture and/or temperature in an infinite 
plate with finite thickness 
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Figure 2 - Finite difference mesh in dimension!ess space 
and time variables 
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Figure 4 - Sudden moisture change from RH = OS to 13% at 21°C 
for T300/5208 

0.4 

0.2 - 

m(co) 
■ 

t= 5240 hr      - 

— )\ 

^   ""■——.  

^^—-^^.3695 

"^^^••^^^2714 

I3\ 
■ 

^5 
1 

"^^1883   - 
"^675 
^T I 

-1.0   -0.8  -0.6   -0.4  -0.2     0 
2z/h 

Figure 5 - Sudden moisture change from RH =02 to 33S at 21°C 
for T300/5208 ^ 
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Figure 6- Tfoisture absorption speed for T3C0/5203 in RH = 100* 
air with different temperature based on uncoupled theory 
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Figure   7 - Sudden temperature change from 21°C (RH = 52%) 
to 10°C for T300/5208 
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Figure &  - Sudden temperature change from 21°C (RH = 52S) 
to 43°C for T300/5208 
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Figure 10 - Moisture absorption and desorption speed for different 
temperature gradients at ambient condition of 21 °C and 
RH = 522 (T300/5203) 
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Figure II - Coirparison of coupled end uncoualed results for ralsture 
absorption and cesorction sp»efl with ar.blent condition of 
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Ftgure 14- Stress on plate surface as a function of ttee 
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Figure f7- Stress variations for temperature Increase with Tj. ■ 43*C 
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F1gur«_IB - Stress variations for temperature Increase with T, • 63'C 
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Figure 19- Tin* dependent stress at the nidplane due to different 
tenpereture gradients 
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Figure 20- T1r.e dependent stresses on plate surface due to different 
temperature gradients 
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Figure 22- Uncoupled stress solution for AT « -8.22*C 
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Figure 23- Uncoupled stress solution for AT ■ 22*C 
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Figure 24" Uncoupled stress solution for iT » 42*C 
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APPENDIX 1 

DIMENSIONLESS EQUATIONS OF DIFFUSION 

V • (DVC) - |f (C-XT) = 0 

V * (PVT) - |t (T-vC) = 0 ^ 

D = DQ exp(-E0/RT) 

Let 

r _ 2z A _  o 

3C _ 3C 3£ = 2 3C 
3z  3£ 3z  F 3£ 

32C _ ,2*2 32C 
3F" ~ W aT" 

3T _ 2 3T 
3z " F 35 

32T  4 32T 
3p" = iFsf7" 

3C  3C 39 _ 3C 4D0 
3t  39 3t " 36 W 

31.31  4Do 
3t ~ 39 " W 

(ID 
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1 

Substituting into equation (11) 

fj- [D0 exp(-E0/RT) §§] -^ (C-XT) = 0 

D0 exp(-E0/RT) 0 ♦ D0 f exp(-E0/RT) • J* fl 

- ^ (C-XT) = 0 

D0 exp(-Eo/RT)[0 + ^ (||)(fl>] - (f - X f) - 0 

Similarly, we can get 

0 0 - Do<I ■'§)■» 
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APPENDIX 2 

DERIVATION OF EQUATIONS (17) 

From equations (13) 

V  -2-Jr - D (— - v —) = 0 U M?      V30  v 30;  u 

i 

the solution for moisture and temperature are 

cr? 

c(t) = c. + (cf-c.)f(5,e) 

T(t) = T. + v(cf-c.)g(e,e) 

E = [r.-r.A ££_ 21 = ^rr...r.l || 
3? ~ (Cf_Ci^ 3£' 3? = v(Cf'Ci^ 

3C _ /p c  \  3f 3T   /r r \ dQ 
36 " ^f~V 39' 30  VVUf_L-i; 39 

Let 

ED/R 
F = expC" Vv(Cf-C.)g

] 

then the first equation of equation (13) becomes 

(13) 

(16) 

-62- 



3,f .%«W%% 
f   i   35      [f-Tj +f-v(cf-c.)g]2 

0 0 

f-v(C-C.)|i|f 
F[3

2f +        EQ        f    1     9C 9g      j  .  (If . Xv ii) s o 

Let 

Eo v(Cf-C.) 
M      Riy  B Ti 

then 

F - e*p<- rag) 

so we may have 

*!£ ♦ 1*11 & - <& - *v $ - o (fl) 

and similarly, the second equation of equation (13) becomes 

92q  _o /3£  3fx _ n 

Let 
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£="o 

then 

af* V39 3ey u 

or 

ia = (J_ l!a.) + 91 (B) 39  vu M?'       39 v ' 
0 

Substituting (A) into (B), we can have 

3f _ 1  rXv 32q A cr3
2f .   AB  3f 3( 3T _  I  rAV jrq  pr9 t ,    AB   3t 3£-.-i 

39 " FXv lu 3£*  "-SC2"  TT+BgP" 85 3?J 

3g _    1  A    3*0 . pr3
2f .       AB     3f 3g-n 

39 " T^M7 {ITy3T"    FL3T"    TT+BgT" 31" afJ} 

-64- 

(17) 



APPENDIX 3 

DERIVATION OF EQUATIONS (33) 

£0 + W* <f '<!?» exO(- KT » " <!§ " * W' = ° 

p0-Do(I-^l§»=0 

The assumed solution for moisture and temperature are 

c(t) = c. + xCr^JfCs.e) 

T(t) = T. + (Tf-T.)g(c,e) 

and 

— = \(T  -T ^ — 9 9 = ifT -T ^ 9 f 
/ft 

(13) 

^ 
(32) 

8T _ /T T \ 3g  32T _ fT    T x 3*q 
35 " Uf"'i; 3£ » W " Uf~V If* 

36 = X(W 36' 39 = (Tf""V 39 

Substituting the above equations into the first equation of equations 

(13) 

[A(Tf-V 0 + ^x(VTi)(TrT1) |f ||] exp(- %) 
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- wvTi>fS-x<VTi>&-° 

Thus 

C0 + ^(VTl)||l!3exp(-^).[|f-||] = O        (A) 

and the second equation of equations (13) becomes 

p<VTi> 0 - Do«Tf-Ti> If - *»<Tf-Ti') $- ° 

Vp-°J&-*$-<> (B) 

Let 

£-. 
Equation (B) becomes 

$* - ".CH - * & - 0 

or 

f^tr^ff (c) 
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Substituting (C) into (A), equation (A) becomes 

^•T^C0 + ^(VV^||]«P(-^*1-0     (D) 

Let 

VR 
F
 = exp[- rlt(Tf-Ti)9 J 

Then equation (D) becomes 

— (T -T-) 
af - F  f3

2f ,    Eo f 1     3f 3g} + 1 a2g     (E) 

39 TOJ tar. C|_ T + R_ (Tf-T.)g]
2 **'"*? 

0      0 

Let 

then 

F = exP(" TfBg> 

and equation (E) becomes 

3f _ F  r3
2f    AB  3f 8g_-|  1  32q 

36 ~ 1-Xv L3CZ"  "n+gT2" 3C 3CJ  Urt 3C* 

Equation (C) becomes 
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3£ _ HAv 32g        Xv    cr3^ +        AB      3f 83.1 
36 "    uQ    3?     1-Xv    L3|T     TT+BgP* 9£ 3S 
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APPENDIX 4 

DERIVATION OF EQUATIONS (36) AND (37) 

From equation (23) 

V       r 
m = - C + M = w(v- - T) + constant 

p A 

, h/2 ,1 
m(t) = £ I    if (C-AT) + const]dz = W f ^C1 + ^VV * 

-h/2 -1 

* f(C,e)] - x[T. + (Tf-T.)g(5,e)]}d5 = ]• f f {(^-AT^ 

+ x^-T^Eftce) - g(s,e)]}ds 

Thus 

i(t) - m. = | (T^) / [f(C,6) - g(5,e)M (36) 

and 

mf - mi = [^ (Cf-ATf) + const] - tj (Ci-ATi) + const] 

= f E-ATf - AT.] for C. = Cf = - u)(Tf-T.) (37) 
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APPENDIX 5 ','.■'■ 

DERIVATION OF EQUATION (58) 

Using £, 6 as defined in equation (12), the boundary conditions 

1n equations (14), (15), T(t), m(t) in equation (26), dimensionless 

moisture uptake, [m(t) - m.]/(m^-m.) in equation((27), and 
1        .        ^ 

m(t) = m. + £ (Cf-C.)[f(C,e) - Xvg(?,e)]     - (A) 

For rn. = 0, C^ = 0 

m(t) = f (Cf-C.)[f(5,e) - Xvg(5,0)] = mH[f(?,9| 

- Avg(5,6)] '..(B) 

and ./ 

m(t)-m^ 
m^  = m(-) * ITTHT1 (C) 

and equation (50) can be written as 

^  Ea  rr-T  J. ../r  r \   1 ax = CTy = T^- {[Ti + V(cf-Ci} " I   / 9(C.e)dc3 - [T. + v(Cf-C.) 

FR  _    m(t)-m. 
x g(C.e)]} + ^s- {B(.) x    T - m(.)[f(s.e) 

p        f i 

' - Avg(C.e)]}- (58) 
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APPENDIX 6 

DERIVATION OF EQUATION (59) 

Using equations (57) and (58), equation (55) becomes 

ax = ay = T^T (T_T) + W~ ^(t) Percent " mM  Percent] 
P        P 

4. 12zaE   h/r2 AT^, 4. 12zgE   h/f
2 .m,., • m + J^ri^pT. J2 

ATzd2 + n^n^ry.J2 ^^ (A> 

where „ 

1~7" (T~T) + T~^T W*) Percent - m(t) percent] 
" P       " P 

was given by equation (58) and using £, 6 as defined before 

*^% X ATZAZ=^% i ,(cfci)9(5,9,w 

3CaEv(C.-C.)    1 
=      2(1-v ) / ?9^'e)d? <B) 

12ZBE        h/
f
2 A     ., =    12£BE        1 .M TPff^pT .J2 ^

ZdZ = Pft^T .{ X (VC, )Cf(C,6) 

3C3E'u)(Cf-C.) 
- xvg(5,e)]cd? =      2(1.v

t
)x

1 

*} cf(?,e) - xvg(c,e)Kd? = 3^:;y 

1 . y 
x    / [f(C.e.) - Avg(5,e)]CdS (C) -{ -71- 



5V 

Thus, (A) becomes 

x ■ ay ■ T^T {[Ti + V(crci) - I  I 9(5,e)d5] 

- [Ty* v(Cf-C.)g(C,e)]} ■+ y^f- (m(.) x -ir-^ 
'p       mf-,n1 

3?aEv(Cf-C.) 
- m(»)[f(?,8) - Avg(S,e)]} + ^(]-v )        x 

/ £g(£,e)ds + Iffr^j1  / Cf(e.e) - xvg(ce)Kd5 (59) 
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APPENDIX 7 

DERIVATION OF EQUATION (64) 

As in Appendix 6, equation (55) can be written as 

ax = ay = T^v~ (T"T) + l^v~ foW Percent -* m(t) percent] 
P " P 

+ Tpff?h-   h/2 ATzdz + FTl^T   ^ mzdz n
  ll   VD;  -h/2 n  u   vn>  -h/2 V  -h/2 'p'  -h/2 

(A) 

when expressed as a function of 5, e 

12zaE h/2 3ctEg 
H^tf^y .h//2 *™* - Jif^y _{-<VTi We-9>«« 

3aE5(Tf-T.)    1 

io,oc        h/2 o^rr      1    mx-m. 

(B) 

3aEr    v    f l 
- f (5.e)]«5 = zrf^T xYxl 

l 
x   / [gte.e) - f(c.e)Kdc 

00 

(c) 

Thus, (A) becomes 

C-y   CO _ 

ax = ay = T^v- ^T"T^ + T^v~ [*"(*) Percent - m(t) percent] 
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3aE5(Tf-T.) 1 
+ 3(i-v ) _( g(C,e)cdf; 

a 
+ zu^jx -ir1 x 10° / Cg(e.e) - f(c,e)]wc 
PI    -i 

Using equation (63), (D) becomes 

1 ax = a
y 

= T^ {(TrTi)[l- { 9(C.e)d5 - g(c.e)]> 

. s 
,f 

(D) 

FA   
rni"m-F m(t)-m. + T% {(V^x 100)Cg(€-e)"f(5>e)" T^T1" 

3aE?(Tf-T.) 1 - __  mf-m. 
+ ^(1-Vp)1 .{ ^.ekds + ^y x JL-L x ioo 

1 
* / Cg(5.e) - f(c.e)]W5 (64) 

-l 
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