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Abstract 

The principal system parameters of a short range Lldar device 

for accurate distance measurements 1n the range of a few meters 

are theoretically and experimentally studied. The system oper- 

ates with a 4 GHz-CW-modulatlon and 1s Intended for dimensional 

measurements in Industrial production. 

After outlining the proposed system, some of Its basic com- 

ponents, such as modulators, are experimentally Investigated. 

A first working setup of the essential parts 1s reported and dis- 

cussed. Theoretical estimates are presented for the roundtrlp 

attenuation, expected accuracy and speed of measurement. 



Introduction 

Accurate measurements of distance may be accomplished opti- 

cally by techniques employing the comparison of phase between a 

carrier and Its echo. Although relative displacements of .1pm 

are measurable , this type of Interferometry requires that the 

reflected beam preserves Its coherent nature. For this purpose 

a retroreflector must normally be affixed to the target since 

light scattered from a diffuse surface will, generally, not be 

spatially coherent. In addition, lateral movements of the target 

surface will produce an effective loss of temporal coherence as 

well2. 

To circumvent this difficulty,modern ranging systems typl- 
3 

cally incorporate modulation of beam Intensity . While some sys- 

tems have been developed using light emitting diodes, certain ad- 

vantages result when the source is coherent. Distance Is deter- 

mined by measuring the phase shift in the modulation signal upon 

its return from the target. Such systems can operate without a 

retroreflector, however, maximum target range 1s restricted for 

low power beams. 

In this paper the feasibility of a short range system that 

will not require a retroreflector is Investigated. The arrange- 

ment employs as high a modulating frequency as posslb-le In order 

to maximize distance resolution. 4 GHz has been chosen as the 

highest frequency that can be handled with reasonable effort and 

2 



expense. 

i 

System Description 

Because the microwave modulation 1s not easily detected di- 

rectly, frequency translation 1s performed at the receiver by 

heterodyning with a second microwave signal of slightly different 

frequency. The phase remains unaffected by mixing and thus dis- 

tance Information 1s preserved. Our Initial setup, shown sche- 

matically 1n Figure 1A, uses a 2 mW linearly polarized He-Ne gas 

laser as the source. The beam was polarization modulated using 

the Pockels effect In LITaO-. A polarizer following the crystal, 

oriented crossed to that of the laser, provides overall Intensity 

modulation. The focusing lens represents an attempt to thread 

the beam through the modulator. 

The transmitted beam 1s focused to a spot on a target at ap- 

proximately 3 meters distance with the aid of a beam expander. Re- 

flecting tape, used for Initial measurements, was later replaced 

with a diffuse reflector. A telescope receiver 1s Indispensable as 

the returned beam will be severely attenuated. Also, the scattered 

light must be refocused through a second modulator for the purpose 

of demodulation. The final system will Incorporate an optical 

reference path to compensate the effects of added phase shifts 

due to temperature changes. This arrangement will require a 

double crystal modulator design so that two beams can be demodu- 

lated simultaneously. Our equipment, however, employed an elec- 

3 
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trlcal reference derived by direct mixing of the modulating and 

demodulating frequencies. 

Two stable microwave transistor oscillators were used for 

modulation and demodulation. Separate traveling wave tube ampli- 

fiers were able to provide 1 watt of power each at 4 GHz. One of 

the transistor oscillators was modified to provide frequency ad- 

justment by means of a tuning screw. IF frequencies as low as 

3 KHz were possible with this arrangement. Detection 1s accom- 

plished with a photomultlpHer tube, chosen for Its high sensi- 

tivity and low noise. The tube produces a current, at the IF fre- 

quency, proportional to the Incident light power. Distance Is 

calculated from the phase difference between this signal and the 

reference mentioned earlier. Feasible resolution Is a small frac- 

tion of the modulating wavelength. A photograph of an Initial 

laboratory setup 1s given 1n Figure IB. 

Modulators 

A 
The Pockels effect in L1TaO~ has been used to affect polar- 

ization modulation of a coherent laser source. The properties of 

blrefrlngent crystals are such that, within the crystal, only two 

waves with mutually orthogonal directions of polarization are al- 

lowed In a given direction of propagation. The theory of polar- 
5 

ization modulation requires linearly polarized light to be Inci- 

dent on the crystal In a direction oriented 45 degrees from either 

of the internally allowed directions. 

5 
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FIGURE IB  A photograph of the Initial laboratory setup. 

Note the Lissajous pattern visible at the 

top, giving the phase In the scattered light. 



POLARIZER 

FIGURE 2  A transverse electrooptlc modulator using L1TaO~. 

The crystal 1s cut in such a way as to make the allowable direc- 

tions of polarization, with light propagating 1n the x direction. 

equal to the y and z axes as shown In Figure 2 (z Is the direction 

of the optic axis). If N represents the power of the Incident 

light wave whose polarization 1s along y , then the components of 

the electric field within the crystal can be written as 

1 Eya<TEy'and£z-£-h'*5T 

or Ey=< 

N 
?- J** and E. = z i2 

N !!?_ J(W£t + r) 0) 

v 

where to- represents the light frequency and r represents the phase 

difference between the two waves. This phase term 1s necessary 

because each wave, while Inside the crystal, propagates at a dif- 

ferent velocity dictated by the anlsotropy of the crystal struc- 

ture. This velocity difference gives rise to an Increasing phase 

difference as the two waves propagate through the crystal. The 

amount of phase shift accumulated can be altered by application 

7 



of an external electric field parallel to the optic axis. This Is 

known as the transverse electrooptlc effect because the modulatlnq 

field Is applied normal to the direction of propagation. For 

this reason a modulator making use of the transverse electrooptlc 

effect has the advantage of an unobstructed optical path. 

The two separate waves will recomblne upon leaving the crys- 

tal, producing a composite wave whose polarization will depend 

upon the phase index r. Thus, the polarization of the emerging 

beam can be modulated with the applied electric field. Modulation 

of the polarization can be transformed into Intensity modulation 

by placing a linear polarizer immediately following the crystal. 

Optimum performance is achieved when the preferred direction of 

the analyzer is 90 degrees from the laser's direction of polar- 

ization. From Figure 2, the analyzer output would be given by E , 

and after a suitable rotation of coordinates can be written as 

E,.- PW'tf _L_- FW^e^JL. 2    N2~     * n   w 'ir 

or     E .  = Jlsuet"*1    (1 - ejr) (2) z   jz~ 

If a transmission ratio S is defined as 

c - available output intensity /-» 
available input  intensity * ' 

then S represents a static modulation curve for the modulator and 

illustrates how changes in phase effects output Intensity. This 

ratio can be expressed as 

8 
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FIGURE 3  The static modulation curve for the 

electrooptic Intensity modulator. 

Referring to the static modulation curve plotted In Flaure 3, 

two new parameters will be defined. The first Is the operating 

point B, often called the natural birefringence of the crystal. 

This refers to the phase shift Induced when the applied electric 

field is zero. In practice, however, the operating point can be 

adjusted with the application of a dc field. The addition of an 

ac field will alternately aid and cancel the dc field and thus It 

9 



1s useful to define the quantity m as the peak deviation from the 

bias point B. In this way the phase Index r may be written as 

r = m sin ut + B (5) m 

where u> 1s the modulating frequency. Although modulation sensi- 
5 

tivlty Increases with crystal length, transit time effects  will 

degrade performance If the crystal 1s made too long. It Is Inter- 

esting to note, however, that transit time effects do not Influ- 

ence the shape of the static modulation curve, even though less 

modulation is achieved with a given voltage. A complete discus- 

sion of the principles of electrooptlc modulation can be found In 

the books of either Yariv  or Harvey , (see also [8]) 

The swing factor m is an appropriate indicator of modulator 

performance for two reasons. First, m is linearly related to the 

electric field strength within the crystal. This relationship can 

serve as a procedural check by plotting measured values of m 

against modulating voltage. Secondly, m is a direct measure of 

the modulation depth achieved and becomes helpful when making 

relative comparisons between modulators. The crystal is usually 

biased at-ir/2 to provide the most linear modulation and for this 

case alone it is convenient to define a modulation Index u. Con- 

sider the equation for the Instantaneous amplitude of a general 

linear AM carrier, given by 

A(t) = Ac[l + p fn(t)j (6) 

10 



where fn(t) 1s the normalized modulating signal and A 1s the car- 

rier amplitude. From (4) and (5) 1t follows that the normalized 

instantaneous power transmitted by the modulator can be expressed 

as 

S = s1n2(!s1n(o)mt) +§-) (7) 

For a bias at v/2 equation (7) can be expressed in the form of (6) 

yielding 

S = 1/2 h + s1n(m sin «mt)) (8) 

or for values of m « 1 

S = 1/2 ( 1 + m sin cu^t ) (9) 

Under these restrictions the swing factor and the modulation Index 

are interchangeable. If the condition m « 1 is not fulfilled, an 

approximate expression for p can be obtained by expanding 

sin(m sin u t) as 

sin(m sin u t) = 2 J,(m) sin w t + m      l      m 

2 J3(m) sin 3umt + 2 Jg(m) sin 5umt + ••• 

Neglecting harmonic terms, equation (8) becomes 

S = 1/2 ( 1 + 2 J^m) sin ^t )       "      (10) 

The modulation index is now given by 

11 
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u = 2 J^m) (ID 

\ 

It Is felt that by this approach, u best reflects the saturation 

effects of the static modulation curve. 

When the modulator 1s biased at zero, the variation In car- 

rier Intensity will occur at twice the modulating frequency.    The 

advantage of this mode of operation 1s the potential to Increase 

the system resolution.    Unfortunately, the amplitude of the vari- 

ation in carrier Intensity suffers, and 1n general, this mode of 

operation will require more modulating power.    Because performance 

data are not available for this case, the analysis will be re- 

stricted to the linear mode of operation (I.e. bias at n/Z). 

The arrangement of Figure 4 was used to measure the swing 

factor m. 

LENS POLARIZER 

LASER 

1 

MOD PM 
TUBE -Q 

MICROWAVE  POWER 

FIGURE 4 The detector Is placed immediately following 

the transmitter so that modulator 

performance can be determined. 
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Unfortunately, a photomultlpller tube cannot respond to Intensity 

variations more rapid than about 400 MHz. Therefore, m must be 

assessed indirectly by notinq average changes 1n carrier Intensity. 

If Q denotes the photodetector output, then 

tf 
S dt (12) 

'0 

where T is the period of S. Substituting (7) Into (12) and sim- 

plifying yields 

Q = 1/2 < 1 - $2^*. I   cos(m sin u>mt) dt 

s in_B rT \ T J    sin(m sin a^t) dt > (13) 

For any integer number of cycles the second integral will be zero 

because the sin is an odd function. The first integral over the 

same period is identically the zeroth order Bessel function of m. 

Thus, the final expression for Q becomes 

Q = 1/2 (l - cos fe-J0(m) J (14) 

The curves of Figure 5 represent how the detector output will 

change with bias point for various levels of applied modulating 

power. Thus, verification of the static modulation curve can be 

accomplished by measuring the photomultiplier current at various 

bias points while the microwave power is off. By repeating this 

procedure when the microwave power 1s on, estimation of m Is 

possible from (14). It was found that when modulatinq power 1s 

13 
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applied, the bias point shifts appreciably and this can be attri- 

buted to the thermal sensitivity of the natural birefringence of 

LiTaO,. TaJ>le I shows the detector output measured at various 

bias points while pulsing the microwave power; a 10-percent duty 

cycle adequately avoided heating of the crystal. With this tech- 

nique, the modulation curve and the swing factor can be measured 

simultaneously. 

TABLE I 

Bias Voltage DETECTOR OUTPUT IN ARBITRARY UNITS 

Referred to Microwave power Peak microwave 

B = 0 Off Power « .94 watts 

0 0 4 

50 3 6 

100 7 10 

150 15 16 

200 25 23 

250 34 30 

300 37 34 

350 40 36 

The data of Table I are shown graphically in Figure 6 to allow 

comparison with the predicted curves of Figure (5). -The swing 

factor is found to be .92 rad or 82-percent Intensity modulation 

for a power input of .94 watts. This shows an efficiency compar- 

. 15 
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able with the previous results of Kaminov and Sharpless . A simil- 

ar reentrant microwave cavity was employed In which the UTaO- Is 

supported in a way that maximizes the electric field within the 

crystal. However, the cavity design precludes application of a 

dc field and thus a separate crystal is required to provide bias 

adjustment. While two crystals can be arranged so that tempera- 

ture effects are minimized, Increased beam attenuation 1s unavoid- 

able. Clearly, a modulator design using only one crystal is more 

desirable. 

Demodulation 

The purpose of modulating the received light with a second 

microwave signal 1s to produce a low frequency component. It 

follows from the modulation theorem that the spectrum of the 

photomultiplier current will contain a component at the differ- 

ence frequency. If N-i/N- represents the normalized instantaneous 

light power incident on the photocathode, then from (10) it fol- 

lows that 

^i = ^t (1 + u sin o),t)-(l + ii sin <o9t) (15) 
N   4 ' c ■ 

where the subscripts refer to the modulating and demodulating 

frequencies and A. is the transmission attenuation. Here, the 

same modulation index v  is assumed in both modulators. If the 

photomultiplier and associated circuitry 1s assumed to act as 

a low pass filter with a  bandwidth « u, or w^, tnen °y ex_ 

17 



panding (15) and retaining those terms within the passband, the 

normalized Instantaneous power available for detection can be 

written as 

N.   A«. /    2 \ 

FT  B   r* ( 1 + 2~ cos h " u2) t J (16) "i 
ro 

where an IF modulation index can be considered as 

v IF  M '2 A, (17) 

The swing factor m was measured at various power levels using the 

technique previously described. The factors p and vrc*  obtained 

from (11) and (17) respectively, are shown In Figure 7 plotted 

against microwave power. The IF modulation index will approx- 

imately be linearly related to the modulating power since the 

swing factor is directly proportional to voltage. With 100-per- 

cent modulation in each modulator, the IF index is 50-percent. 

Round Trip Attenuation 

Beam scattering at the target and depth focus limitations 

are the two considerations most responsible for degrading the re- 

ceived signal to noise ratio. The two LITaO- crystals within each 

modulator are arranged as shown in Figure 8. 

18 
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CRYSTALS 

LIGHT 

FIGURE 8 The crystals are arranged 1n series with the 

ac and dc fields applied Independently. 

The dimensions of each crystal are .5 by .5 by 4.2 mm and they are 

centered .5 inches apart. Although thin crystals are desirable to 

maximize modulating efficiency, a limit is imposed by the size of 

the laser spot image behind the telescope. The crystal's height 

and width have been chosen as a compromise and no problem arises 

at the first modulator. While this paper was in preparation, a 

modulator capable of handling two beams simultaneously has been 

8 
constructed by Eberhardt . The design does not require separate 

biasing and modulating crystals thus easing the problem of ray 

limitation. The analysis will address this case because It 1s of 

most interest at this time. 

The telescope employed 1s a Maksutov design and may be regard- 
Q 

ed as an improved Cassegrain system . The design features reduced 

overall length and the nearly complete absense of chromatic aber- 

20 



ations. Figure 9 Is a schematic representation of this lens ar- 

ranaement. 

EFFECTIVE FOCAL LENGTH 

FIGURE 9  Maksutov telesope. 

The effective 1 meter focal length can be obtained by extending 

rays FA" and FB as shown, and accordingly, the telescope may be 

analyzed approximately as a simple lens with that focal distance. 

A beam expander v/as used to focus the laser to a spot on the tar- 

get a distance Z. away. From the fundamental Gaussian beam solu- 

tion of the Maxwell equations , the minimum spot diameter 2u 1s 

given by 

2u> = 4A Z. 
o   J 

*d (18) 

where d is the diameter of the beam at the expander (12 mm) and X 

is the laser wavelength (.632pm). 

21 
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K 

CRYSTAL 

FIGURE 10  A diagram of the focusing problem with the 

Maksutov telescope replaced by a simple lens. 

Referring to Figure 10, it is assumed that the system 1s Initially 

set up with the crystal centered at point B where C 1s given by the 

formula 

c = fzi zrf (19) 

and f is the focal length of the telescope. The spot's image, 

produced by the telescope at point B, will be reduced in size by 

the ratio C/Z.. The image diameter 2u>', obtained by combining 

(18) and (19), becomes 

, . . 4H Z. 
0 ^dizpt) (20) 

For a target distance of 8 ft this diameter 1s .11 mm and thus, 

focusing attenuation will be determined only by the rate at which 

the beam diverges from this minimum. Since the Image location 1s 

22 
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a function of Z-, optimum positioning of the crystal cannot be 
s) 

maintained.    Consider the case when the Image moves an amount AC 

closer to the lens as Illustrated In Figure 11. 

PLANE OF LIMITING APERATURE 

 A AC  U— 

±   ,   _, 

H END VIEW 

FIGURE 11  A shift in the position of the spot Image 

causes the beam to escape from the crystal. 

The limiting aperature, for this case, is the trailing face of the 

crystal normally referred to as the exit pupil. When the Image 

moves away from the lens, the leading face (entrance pupil) be- 

comes the limiting aperature. The attenuation due to pupil re- 

strictions a, is defined as 

</ 

a, = area of limiting aperature 
area of beam cross section 

Once the plane of limiting aperature is known,the attenuation a, 

can be determined. In this case, a. Is given by 

23 



a,  ■ D (21) 

where the radius of the cone base r, is written in general as 

r » a ( \+ |AC|) 

2 (C - AC) (22) 

The attenuation can be expressed in terms of target displacement 

by differentiating (19) and combining with (21) and (22) yielding 

al 4D 
[FT 

l(zrf) fZj - r a. ) 
(23) 

where bl.  positive indicates increasing target distance. Natural- 

ly, for values of a, > 1, the attenuation is taken as 0 dB. 

The target will not carry a retroreflector and therefore, the 

beam will scatter upon reflection. Following the suggestion of 

Gould and Jacobs , a Lambert1an distribution was assumed for the 

reflected light intensity. Accordingly, If N denotes the inci- 

dent 

TARGET i 

y 

©T 

Jii—-— —-—- ■ 

ri 

i zi 
* 

FIGURE 12  A coordinate system defining the variables 

needed to describe the Lambertlan distribution. 
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power at point j on the target, as shown In Flqure 12, the power 

density S^ at some point 1 away from the target can be written as 

Si = H* cos e (24) 

where r.. is the distance between points j and 1, e 1s the plane 

angle formed by the vectors r^ and the tarqet normal, and N 

represents a constant of proportionality. This constant may be 

determined knowing that the total reflected power must be yN. 

where Y represents the surface reflection coefficient. Hence 

•4, ^o 

(S.) ^ dr d* = Y NQ (25) 

which represents the total reflected power expressed In polar 

coordinates. Integration yields 

N' " 1% (26) 
2n 

and the reflected power density becomes 

S„. = Y N„  cos 0 

r. • 
Ji 

By integrating this power density over the receiver aperature, the 

total received power may be determined. The telescope employed 

utilizes multiple internal reflections to minimize physical size. 

25 



To accomplish this the aperature has an unavoidable blind spot 

that must be accounted for. 

TELESCOPE 

TARGET 

FIGURE 13  Geometry of the telescope aperature 

showing the effect of the blind spot. 

Referring to Figure 13, the total power S received through the 

donut shaped aperature is given by 

S = Y N 1J> o . cos e p, dr d* 

rJ1 

(28) 

where a and b represent the aperature and blind spot diameters 

respectively. Performing the integration and solving for the at- 

tenuation a2 expressed as the ratio of the received power to the 

transmitted power yields 

26 



a. ° Y Z, / 1 1 \      (29) 
2     Uiz/^W4 " <zJ**.W/*J 

where Z. Is the distance from the target.    For target distances 

much greater than the aperature size 

a2 - x U2 - b2) 1 (30) 

Unfortunately, the received power Sr represents unpolarized light 

due to scattering occur!ng at the target surface.    Because the 

details of modulator operation require linearly polarized light, 

an additional polarizer placed immediately before the second mod- 

ulator is necessary, resulting 1n an additional 3 db loss in power. 

This loss can be absorbed in the attenuation factor now written as 

Q2=T6 ^    ' b )_T (31) 

Zj 

The total attenuation At 1s given by the product of a, and a„ 

which, from (23) and (31), becomes 

At = 4 P2 6 (a2 - b2)  (32) 

/(Zj -f>?+f2lAZjl\2 

16na2(Zj + AZ.)2   <  (Zj -f)fZj-f
2

AzJ 

Since a^ is not meaningful for values greater than 1, equation (32) 

applies only to the case where the crystals represent the llmltlnq 

27 



aperature. Due to practical considerations, the crystals dimen- 

sions must be chosen to minimize the microwave power necessary to 

achieve liqht modulation. Therefore, the telescope's focal length 

and objective size should be chosen to reduce the attenuation and 

Its dependence upon target movement. Because a, and <*« represent 

opposing considerations, some experimentation with (32) 1s nec- 

essary. Figure 14 shows the total attenuation (normalized with 

respect to y) plotted against target displacement about an initial 

setup distance of 8 ft. Three different objective sizes have been 

assumed, all with 1 meter focal length. The actual objective size 

used was 4 In. If the Initial setup distance 1s Increased to 20 

ft, as shown in Figure 15, the dependence upon target distance can 

be eliminated for larger displacements. Over this interval, the 

telescope's objective represents the limiting aperature and the 

attenuation is determined by (31) alone. 

The available light power incident on the photomultlplier N., 

may be expressed as 

N. = (rate of photon arrival) • (energy per photon) 

or     N. = n(t) he. (33) 
X 

where n(t)   represents the rate of photon arrival and h is Planks 

constant.    Solving for n(t) yields 

n(t) = Nj A (34) 
Hc~ 
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FIGURE 15 Normalized attenuation verses displacement 

about a center distance of 20 ft. 
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and if Q(A) 1S the quantum efficiency of the cathode defined as 

the number of electrons released from the photocathode per Inci- 

dent photon, then the cathode current L can be written as 

Ik = n(t) Q(x) e (35) 

where e is the electronic charge. From (16) and (34) 1t follows 

that 

/      2 
Ik = AtNQ Q(x) \  e   C  1 + / cos(Wl - u2)t ^  (36) 

She       ^    2 

This induced current is amplified by secondary emission multipli- 

cation. The frequency response of the photomultlpHer has been 

accounted for by (16) and therefore, the anode current I., becomes 

IA • 6 Ik (37) 

where G is the gain of the tube. An RCA 4463 photomultlplier was 

employed as the detector, and the quantum efficiency of Its S-20 

response at the laser's wavelength is 5-percent . Assuming a 

laser power of 2 mW and a tube gain of 10 the rms anode current 

becomes 

IA = At • (3.03 amp) (38) 
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Table III 1s a 11st of representative data taken for three differ- 

ent target surfaces at approximately 8 ft distance. 

TABLE III 

rms anode target surface reflection 

current material coefficient 6 

1.6yA reflective tape* — 

11 nA computer card .20 

1 nA cold black steel .05 

Substituting the above data Into (38) Indicates the actual attenu- 

ation constant is approximately -80 db after normalizing. This Is 

within reasonable agreement with (32) assuming the target was dis- 

placed from center when the measurements were made. Also, sepa- 

rate bias and modulating crystals were still needed at that time, 

making the off center attenuation even larger. Since A* repre- 

sents a power ratio it is, of course, possible to Increase the 

total received power by merely increasing the transmitted power 

* Data for this case are given only for reference purposes since 
the analysis assumes the target Is a Lambert reflector. 
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Noise 

Light returned from the target is converted by the photo- 

multiplier to a signal whose phase is proportional to displacement. 

The difficulties in measuring phase accurately stem from the pres- 

ence of noise in this signal. The degree of noisiness 1s tradi- 

tionally characterized by the sianal to noise power ratio, S/N, 

defined as 

S _ available signal power 
N ~ available noise power 

This ratio can be determined for the output of the photomultlpller 

by considering the statistical properties of light. 

The arrival of photons from a laser may be thought of as a 

series of impulses randomly distributed according to the Polsson 

distribution function. 

i 

FIGURE 16  Impulses randomly distributed in time. 
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The probability of observing an event (arriving photon) Is an 

12 
Interval {t,, t, + dt} 1s given by odt  where o denotes the 

average number of events In this Interval and Is given by 

I  n(t) dr (39) 

The weight of each Impulse 1s simply the energy carried by each 

photon, and for a monochromatic beam this would be he/A. Photo- 

electrons released from the photocathode by the Incident light 

13 
carry the same statistical properties as the arriving photons . 

Using the process shown plctorally 1n Figure 16 to also represent 

14 
the anode current, it may be shown  that Its power density spec- 

trum, denoted by S(u), 1s given by 

S(w) = | a Q(X) (Ge)
2 + Sn(u) (Q(X) Ge)

2j       (40) 

where a 1s the time average of n(t) and S («) 1s the spectral 

power density of n(t). From this approach, one can view the cur- 

rent as consisting of a signal component and a shot noise compo- 

nent. Since the photomultlplier has such a large gain, the shot 

noise in the anode current is much larger than any thermally 

15 
generated noise in the load circuit . Thus, one may safely ap- 

proximate the S/N ratio of the anode current to be 
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(Q(A) 6e)2J Sn(u) • H(u) d«o 
S -00 _= _ ^ 

aQ(A) (6e)2J H(u) da> 

where H(u>) refers to the frequency response of the Instrument used 

to measure the current. If a bandpass filter of bandwidth Af 1s 

used to select the difference frequency term, 

.CD 

I SnU) H(o)) du     =   ^At NQ X p2| 

-09 YaVThT J 
(42) 

and (41) reduces to 

S . AtNQ Q(A) A „
4 (43) 

N    64hc Af 

|5iJn _ ,„,_ i"o^x) A^ f ] dB = 10 log I J 64hc Af 
4, • + 10 log (Atu
H)    (44) 

where 10 log (A.u ) can be considered a degradation factor and 1t 

represents the loss In dB due to transmission attenuation and In- 

complete modulation. The measured S/N ratio, however, will be 

slightly lower for several reasons. Probably the most significant 

is that the analysis assumes any received light not passing 

through the demodulating crystal will not strike the photomultl- 

plier. This extra light, If allowed to strike the photocathode, 
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will Increase the shot noise, yet will not contribute to the IF 

amplitude. Secondary emmlsslon noise In the dynode chain of the 

multiplier tube can reduce predicted S/N ratios by as much as 10- 

percent as well. Also, thermionic emission from the cathode will 

result 1n an additional noise contribution, normally referred to 

as dark current. According to Engstrom , these latter effects 

will not be significant for the levels of light Intensity con- 

sidered here. 

For a filter bandwidth of 200 Hz, the S/N ratio given by 

(44) becomes 104 dB for 100-percent modulation and no roundtrlp 

attenuation. Given only 50-percent modulation 1n each modulator, 

and an attenuation factor of 10" , this figure drops to 22 dB. 

Plots of this S/N ratio verses filter bandwidth Af, are given in 

Figure 17. Various values of the degradation factor have been 

assumed to emphasize Its effect. 

Accuracy 

For the purpose of establishing system accuracy, 1t is con- 

venient to consider the detector output as a carrier, phase modu- 

lated with the desired distance information. Using principles 

from communication theory, the problem becomes that of designing 

a receiver capable of delivering some estimate of this phase. 

Estimation theory, as applied to communication system design, 

deals with the derivation of optimum procedures for obtaining at- 

tributes of signals within noise. The meaning of optimum must be 
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clearly defined, and for the case of estimating a continuous ran- 

dom variable, the accepted measure of performance has become the 

mean square error between the desired signal and the receiver out- 

put. 

Under conditions appropriate to our case, 1t can be shown17 

that the optimum receiver 1s one that considers all allowable 

values of phase <j> and chooses an estimate <j> from among them in 

such a v/ay that the probability of $ equalling $ 1s greater than 

the probability of <f> equalling any other allowable value. In 

other words, this receiver assigns $ the most likely value of * 

for the given observed Input, and hence 1s known as a maximum 

likelihood receiver. The criterion used most often to judge how 

well a particular receiver will perform Is the variance of the 

estimated parameter. An explicit solution for the variance of ♦ 

is difficult to obtain in this case, due to the nonlinear depen- 
* 18 19 20 

dence of <f> on the input. However, Gagllardl  and others ' 

have shown that a lower bound on this variance 1s given by the N/S 

ratio at the receiver's input. Since standard deviation Is a 

measure of uncertainty , the term YN/S*   can be used as an 

indication of the relative accuracy of ♦. Thus, the S/N ratio has 

meaning as a reciprocal distortion figure. 

The accuracy of the phase measurement, and therefore the 

resolution of the system, can be improved by increasing the S/N 

ratio of the photomultiplier output. One way this can be accom- 

plished is by decreasing the bandwidth of the filter used to se- 
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lect the IF frequency. Unfortunately* using this approach, the 

Improvement In accuracy comes at the expense of measurement speed. 

As an example, assume that the phase of the photomultlpHer output 

suddenly changes in response to a jump 1n target position. Clear- 

ly, the phase of the filtered signal cannot Immediately reflect 

this change. Any estimate ♦ produced by the receiver will be in- 

valid until the filter reaches Its steady state. To a first ap- 

22 -1 
proximation, Ziemer  has estimated this delay to be (Af) . Re- 

23 
cursive receiver structures have been Investigated by Synder  and 

24 
Clark  which produce continuously 1n time the best estimate $ 

based on the input up to that time. It 1s reasonable to assume, 

therefore, that the overall system speed will be limited by the 

filter only. Plots of the maximum achievable accuracy vs filter 

delay are shown in Figure 18. Again various values of the degra- 

dation factor have been assumed. For applications where the speed 

of measurement is Important, improvements in accuracy must be 

achieved without excessive filtering. For instance, one may seek 

a photomultiplier with a higher quantum efficiency at the present 

laser frequency, or equivalently, employ a different laser such 

that the quantum efficiency using the present phototube 1s higher. 

It should be emphasized that approaches to reducing the trans- 

mission attenuation factor A. are not necessarily obvious. Prob- 

ably the most efficient solution, once the trade offs have been 

made, is to increase the transmitted (laser) power N . 
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Conclusions 

At this time, a full Investigation of alternative receiver 

designs has not been completed. However, In order to demonstrate 

consistency with expected results, the filtered photomultlpller 

signal was fed, along with the reference signal to an oscllll- 

scope to form a Llssajous pattern (see Figure IB). A 360 degree 

phase change was observed for a target displacement of 3.8 cm. 

If 1t is assumed that the phase receiver measures shifts of up to 

± 180 degrees, then to maintain a resolution of 25ym phase must 

be measured with an accuracy of .13-percent. This requires that 

the S/N ratio of the input to the phase receiver be at least 58 dB. 

If measurement speed Is not critical, this level of performance 

can be approached by decreasing the filter bandwidth as discussed 

previously, or by averaging the estimates $ 
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