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ABSTRACT 

Modula is a computer language developed at Stanford 

University. Professor Niklaus Wirth directed the language 

design and implementation group. The language was designed 

to be small in size, so that it would fit on small 

computers. In this sense the language design is minimal, 

while including all necessary features for concurrent 

programming and modern data structuring. It was anticipated 

that Modula would be used for the development of process 

control and other dedicated ""computer systems. In the future 

it is likely that Modula or one of its derivatives will be 

used as an implementation language for more general computer 

systems. 

Modula is a direct descendant of Pascal. As such, many 

of the basic control and data structures come directly from 

Pascal. Although Modula is neither a subset or a superset 

of Pascal, it is a language of approximately equivalent 

power and it is intended to facilitate programming 

concurrent processes. 

The compiler, which was developed, uses an LL(1) 

grammar.   This grammar  eliminates the use of parse tables 
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and allows the compilation process to proceed by recursive 

descent. This * technique is fast and efficient and will 

support error recovery in a clean manner. Details of the 

compilation process are presented along with the complete 

LL(1) grammar for the language. 
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I. DESIGN OF MODULA 

The intent of Modula[1 ,2,3] is to provide a high level 

language which will easily support concurrent processing. 

It should not be surprising to note that the bulk of the 

language consists of facilities that are typical of many 

sequential programming languages. The new technology which 

Modula contains is in the area of support for the 

programming of concurrent processes. The concurrent 

facilities deal with the creation and synchronization of 

these processes. 

Sequential Modula, at first glance, looks almost 

identical to Pascal[4]. The similarity is due in part to 

the fact that many of the data and control structures are 

copied in design, if not in form, from Pascal. The 

structure and type of most of the data structures is 

directly from Pascal. There are, however, additions and 

deletions. The design of the control structures comes from 

Pascal, although the form is modified. Modula has fewer 

control structures than Pascal, but they are generally more 

powerful. 

The basic data types: integer, char, and Boolean 

appear  in  Modula.  User defined scalar types are available 
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and are specified by enumeration. Data structuring is 

accomplished using the array and record concepts. Variant 

records are not supported. The new data type bits, a short 

Boolean array, are also introduced. It serves as a partial 

replacement for the set type. It is somewhat limited in its 

utility due to size restrictions. The number of entities 

addressable is restricted to the number of bits in the 

computer word. The primary use of bits is to facilitate 

easy modification of device registers. 

Modula has five basic control structures. They are: 

IF, CASE, WHILE, REPEAT, and LOOP statements. All control 

statements except REPEAT require an END to terminate the 

statement sequence. REPEAT uses an UNTIL in the same manner 

as Pascal. ELSE and ELSIF serve as interim terminators in 

the more complex IF statement. The syntax for each of the 

control structures is elaborated in Appendix 1. 

The IF statement is a refined extension of the Pascal 

IF statement. The intermediate clause "ELSIF <expression> 

then <statement sequence>" allows repeated testing of an 

expression(s), without the structural depth which a similar 

coding in Pascal would imply. There is no limit to the 

number of ELSIF clauses. 
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The CASE statement is similar to its Pascal 

counterpart. The only difference being a required BEGIN-END 

pair for each case. The WHILE statement and the REPEAT 

statement are the same as Pascal's, with the exception of 

the required END for a WHILE. 

The most unique control structure in Modula is the LOOP 

statement. The LOOP statement is the most general structure 

for support of the repeated execution of statements. 

REPEAT, WHILE, and Pascal's FOR statements are all special 

cases of the LOOP. The basic difficulty with the LOOP 

construct is that it will allow termination in the middle, 

as well as the beginning and the end of the construct. This 

makes program verification more difficult. Modula will also 

support multiple exits from a LOOP statement. 

Modula and Pascal have many similarities. It is where 

Modula diverges from Pascal that the true power of Modula 

becomes evident. The added power shows in both the data and 

code segments of the language. 

The critical addition to the data area is the data type 

bits. As previously mentioned, the data type bits allow the 

testing and setting of specific bits in a word. This 

ability,  along with the ability to declare a variable to be 
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at an address, allows a variable of type bits to function as 

a device status register. The device and buffer registers 

for a terminal with the base address of 175640(8) would be: 

var 

readbufferstatus[175640B]: bits; (*output buffer 
status*) 

readbuffer[1756M2B]: bits; (*output character buffer*) 

writebufferstatus[174644B]: bits; (*input buffer 
status*) 

writebufferC175646B]: bits; C*input character buffer*) 

To write a character to the terminal the transmit ready bit 

in the writestatusbuffer is checked. If the bit is set, the 

character to be output is placed in the writebuffer. The 

read operation will find a character in the readbuffer after 

an interrupt with a receiver interrupt enable bit set. 

The previous example is for a terminal -interface for a 

PDP-11. On a CDC 6000 series machine, a data structure, 

which represents the peripheral processor (PP) word in the 

task header, could be generated and set to the appropriate 

address.  This would allow user programs to make PP calls. 

An important addition to the control structures is not 

in functionality, but in form. Unlike Pascal where the IF 

construct is: 
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IF <expression> THEN <statement> 

The Modula equivalent is: 

IF <expression> THEN <statement sequence> END 

It is much easier to use the second form than the first. 

The second form allows the programmer to add or delete 

statements with impunity. To add an additional statement to 

the Pascal IF-statement requires the addition of not only 

the new statement but also a BEGIN-END pair to bracket the 

statement sequence. Modula requires a terminator for all 

control structures. The terminator is an END, except for 

the REPEAT which uses an UNTIL to terminate. 

Modula was designed as both a process control and 

systems implementation language. As such, it is necessary 

for Modula to support the creation and interprocess 

communication of concurrent processes. 

To support the processes, the concept of a module was 

created. The basic module is similar to Hansens process 

[6,7]. An interface module will act to exclude two or more 

co-operating processes from operating on a common data 

item(s)  at  the  same  time.   It  accomplishes  this  by 
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restricting access to the data to the requesting process 

with the highest priority. Tasks of equal priority receive 

access on a first come, first serve basis. A higher 

priority task will interrupt a task of lower priority for 

access to common data. When a process has been completed, 

the highest priority process requesting access will be 

initiated. An interface module is similar to Hansen's [6,73 

and Hoare's monitor [8]. 

A process in Modula is similar to a procedure. The 

difference is that, while a procedure executes to the 

exclusion of its calling program, a process executes 

concurrently with its calling program. A process may be 

synchronized with its parent program and other processes by 

means of signals. Signals are declared like variables but 

may have no value.  They may only be sent or waited upon. 
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II. FUNCTION OF MODULA 

Modula is designed to be equally functional as either a 

sequential or a concurrent processing language. The 

sequential aspect of Modula is much like Pascal. The 

concurrent processing portion of Modula is where the true 

power of the language becomes apparent. 

The basic building block for a concurrent process is a 

module. A module definition serves as an encapsulation. 

This allows the control of access to names, items, and the 

existence of variables when their scope of definition is not 

active. The interface module is a special type of module 

which controls simultaneous access to common objects from 

more than one process. If two processes attempt to access 

an interface module at the same time, the second is delayed 

until the first is completed or is waiting on an event. 

A second building block for concurrent execution is the 

process. A process is a sequential algorithm which is to 

execute concurrently with other processes. The only 

requirement for process speed is that it must be greater 

than zero. 
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A standard means of communication is established by the 

use of signals. A process is allowed to wait on a signal or 

a number of them. Signals may also be sent to processes 

which may be waiting for them. A process which is in an 

interface module and is waiting for a signal may release the 

module for access by other processes. If the original 

process is reactivated while another process is in the 

interface module, the first process regains control of the 

interface module even though the current process is not 

complete. 

Modules, processes, and signals are all intricately 

entwined to allow Modula to support concurrent processing. 

Modules and processes provide a means to implement the 

algorithms used for concurrent processing. Signals provide 

a means of communication and synchronization between 

concurrent processes. 

In order to make concurrent execution possible, it is 

necessary for procedures to have controlled access to data 

and possibly code that is owned by a different procedure. 

Access is granted or requested by the name definition 

concepts of use and define. Use allows the names of data 

and  code items to be available to a routine other than that 
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which owns them. Define serves the opposite function by 

allowing only those names which are contained in the define 

list to be made available to a non-name owning routine. 

Modula requires strict checking of the data and program' 

names  which are imported via the use list.  The checking is 

strict to the extreme  that only  imported  procedures may 

operate on imported data. 

Example: 

Two co-operating routines - one is a producer of data, 

the other is a consumer. The two routines communicate 

through the procedures p and c respectively. The flow of 

the data is from the producing routine, produce, through the 

interface procedures p.and q, via the data buffer buff, to 

the consuming routine consume. 

produce -> p -> buff -> c -> consume 

interface module passbuffer; 

define p, q, buff; 

type 
buff = record 

size : 1..bufflen; 
data : array[1..bufflen] of dataitem 
end; 

var 
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fillbuffer, bufferfull : signal; 

procedure p(var buffer : buff); 
begin 

wait (fillbuffer); 
send (bufferfull) 

end p; 

procedure c(var buffer : buff); 
begin 

wait (bufferfull); 
if buffer.size > 0 then send (fillbuffer) 
end 

end c; 

procedure cinit(var buffer : buff); 
begin 

send (fillbuffer) 
end cinit; 

begin 
end passbuffer; 

process produce; 

use p, buff; 

var 
complete : boolean; 

begin 
complete := false; 
while not complete do 

generate data (buff); 
p (buff) 

end;" 
buff.size := 0; 
p (buff) 

end produce; 

process consume; 

use c, cinit, buff; 

var 
moredata : boolean; 
buffi, buff2 : buff; 

- 12 - 



begin 
cinit (buffi); 
c (buffi); 
moredata := buffi.size > 0; 
while moredata do 

processdata (buffi); 
c (buff2); 
moredata := buff2.size > 0; 
if moredata then 

processdata (buff2) 
end 

end 
end consume; 

This example shows two routines which pass data through 

an interface module. The producing routine uses a single 

buffer while the consuming routine is double buffered. This 

scheme may be used to even out speed differences between the 

two routines. 

The consume routine has initial control of the data 

transfer. The call to cinit initiates the passage of data 

from p to c. The first call to c returns the first buffer 

of data in the variable buffi. Succeeding buffers of data 

are returned in buff2 then buffi until all of the data has 

been transferred. Procedure c will always try to get a new 

buffer transferred until an empty buffer is sent. 

The produce routine calls p when it has produced a 

buffer  full of data.  The routine then remains idle until a 
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fillbuffer signal is received. If p is waiting with a 

buffer full of data, the data is transferred when the signal 

fillbuffer is sent. If p is not active, i.e. waiting on a 

signal, then c remains active but waiting until p is 

activated. 

— in — 



III. BASIC MODULES OF THE COMPILER 

The technique of parsing by recursive descent is used 

as the basic form for the compiler. The grammar for the 

language Modula is LL(1). Recursive descent[5] is one of 

the simplest and most effective ways of parsing a grammar of 

this type. The flow of the compiler, as it parses a 

program, follows the syntax diagram for the language. Each 

node in the syntax is a new procedure in the compiler. The 

dependence graph for Modula appears in Figure 1. 
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Dependence Graph For Modula 
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procedure module(fsys: setofsys); 

var 
lcp, nxt: ctp; 
progname: alfa; 
definechain, usechain, chainentry: chainvar; 
modulehead: boolean; 
oldlev: 0 .. maxlevel; 
oldtop: disprange; 
labname: integer; 
lie: addrrange; 

begin (*module*) 
modulehead := true;   lie := lc;   dp := true; 
lc := lcaftermarkstack;   oldlev := level; 
oldtop := top; 
if level < maxlevel  then level := level + 1 
else error(251); 
if top < displimit 
then 

begin 
top := top + 1; 
with display[top] do 

begin 
fname := nil;   flabel := nil;   occur := blck 

end 
end 

else error(250); 
new(usechain); 
with usechain do 

begin name := ' •;   nextvar := nil end; 
usechain .level := level;   new(definechain); 
with definechain  do 

begin name := ' •;   nextvar := nil end; 
definechain .level := level; 
if not (sy in [interfacesy, modulesy, devicesy]) 
then begin error(6);   skip(fsys) end 
else 

begin 
if sy in [interfacesy, modulesy] 
then 

begin 
if sy = interfacesy  then begin insymbol; end; 
if sy <> modulesy  then error(3) 
else 

begin 
insymbol; 
if sy <> ident 
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then 
begin 

progname := • ' ;   error(2); 
end 

else progname := id; 
insymbol; 
-if sy <> semicolon  then error(1^) 

end 
end 

else 
begin (*device module*) 

insymbol; 
if sy <> modulesy  then error(3) 
else 

begin 
insymbol; 
if sy <> ident 
then 

begin 
progname := • ';  error(2) 

end 
else progname := id; 
insymbol; 
if sy <> lbrack  then error(11) 
else 

begin 
searchsection(display[top].fname, lcp); 
new(lcpf mods, declared, actual); 
with lcp  do 

begin 
name := id;   accessway := all; 
idtype := nil;  pflev := level; 
genlabel(labname); 
pfdeckind := declared; 
pfkind := actual;   pfpri := 0; 
pfname := labname 

end; 
with lcp do 

begin 
if inchain(name, definechain) 
then accessway := define; 
if inchain(name, usechain) then 

if accessway = all 
then accessway := use 
else error(101) 

end; 
if lcp .accessway = all 
then enterid(lcp); 
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if lcp .accessway = define 
then enterdef inedcp, def inechain) ; 
insymbol; 
if sy <> intconst  then error(15) 
else 

begin 
insymbol; 
if sy <> rbrack  then error(12) 
else 

begin 
insymbol; 
if sy <> semicolon 
then error(14) 

end 
end 

end 
end 

end 
end; 

repeat 
insymbol; 
if sy = definesy 
then 
(* set up for exportable names *) 
definename; 

if sy = usesy 
then 
(* set up for imported names *) 
usename; 

until not (sy in [definesy, usesy, semicolon, comma]); 
if top = 1   then dummyproc; 
repeat block(fsys, period, nil, progname) 
until (sy = period) or (id = progname); 
level := oldlev;   top := oldtop;   lc := lie 

end (*module*); 

Code Segment 1:  Module 

Following the initialization phase of the compiler, the 

first routine that is called is MODULE. This routine is 

shown in Code Segment 1 and has two functions.  The first is 
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to ascertain the type of module which is being processed. 

The types of modules being: interface, device, or others. 

The interface module defines a program section which 

encapsulates routines which handle critical sections of a 

program, i.e. those areas which require critical exclusion 

of processes. A device module is a portion of a program 

which contains one or more machine dependent sections of 

code. The third type of module, designated "other", is used 

for program definition and as a means of controlling access 

to named elements. The definition of a module creates a 

"fence" around its data and procedures. The creation of 

this fence is the second function of a module. The 

operators Use and Define serve as paths through which 

objects may be passed into or out of a fenced area. This 

allows compile time checking of object accessability, along 

with the potential of objects continuing to exist even after 

the termination of their scope of definition. 

procedure block(fsys: setofsys; fsy: symbol; fprocp: ctp; 
endid: alfa); 

var 
lsy: symbol; 

begin (*block*) 
repeat 

if sy = constsy 
then begin insymbol;   constdeclaration end; 
if sy = typesy 
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then begin insymbol;   typedeclaration end; 
if sy = varsy 
then begin insymbol;   vardeclaration end; 
while sy in [interfacesy, modulesy, devicesy] do 

begin 
,        module(fsys); 

if sy <> semicolon then 
begin error(6);   skip(fsys + [semicolon]) end; 

insymbol 
end; 

while sy in [proceduresy, processsy] do 
begin 

lsy := sy;   insymbol; 
proceduredeclaration(lsy); 

end 
until sy in (statbegsys + [valuesy]); 
if not (sy in [beginsy, valuesy]) 
then begin error(6);   error(17);   skip(fsys) end; 
if sy = valuesy 
then begin insymbol;   initialvalues end; 
testl(beginsy, 17); 
repeat 

body(fsys + [casesy]); 
if (sy <> fsy) and (id <> endid) 
then begin error(6);   skip(fsys) end 

until (sy = fsy) or (sy in blockbegsys) or (id = endid); 
end (*block*); 

Code Segment 2:  Block 

After the module heading is processed, the next routine 

which is called is BLOCK and is shown in Code Segment 2. 

BLOCK processes all of the declarations which are local to 

one section of a program. Unlike Pascal, where the order of 

declarations is defined as one pass, the declaration section 

for Modula is cyclic in nature. This allows, for example, 

constants to be declared after types, and  variables  to  be 
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declared before types. The only requirement is that the 

declaration of an object must occur before its use. When 

the declaration processing is complete, BLOCK calls BODY. 

procedure body(fsys: setofsys); 

const 
cixmax = 1000; 
cstoccmax = 65; 

type 
oprange = 0 .. 63; 

var 
cstptr: array [1 .. cstoccmax] of csp; 
cstptrix: 0 .. cstoccmax; 
lcmax, ldisp, lid: addrrange; 
i, entname, segsize: integer; 
stacktop, topnew, topmax: integer; 
lcp: ctp; 
lip: lbp; 

begin (*body») ,_, 
dp := false; 
if fprocp <> nil   then entname := fprocp .pfname 
else genlabel(entname); 
cstptrix := 0;   topnew := lcaftermarkstack; 
topmax := lcaftermarkstack;   putlabel(entname); 
genlabel(segsize);   genlabel(stacktop); 
gencupent(32, 1, segsize);   gencupent(32, 2, stacktop); 
if fprocp <> nil 
then (* copy multiple values into local cells*) 
begin 
lid := lcaftermarkstack;   lcp := fprocp .next; 
while lcp <> nil do 
with lcp  do 
begin 
align(parmptr, lid); 
if klass = vars 
then 
if idtype <> nil 
then 
if idtype .form > subrange 
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then 
begin 
if vkind = actual then 
begin 
gen2(50 (»lda»), 0, vaddr); 
gen2t(54 (*lod«), 0, lid, nilptr); 
gert1(40 (*mov*), idtype .size); 

end; 
lid : i lid + ptrsize 

end 
else lid := lid + idtype .size; 

lcp := lcp .next 
end; 

end; 
lcmax := lc; 
repeat (*loop until sy <> semicolon*) 
statement(fsys + [semicolon, endsy]); 
if sy in statbegsys  then error(HI) 

until not (sy in statbegsys); 
while sy =jsemicolon do 
begin 
insymbol; 
repeat 
statement(fsys + [semicolon, endsy]); 
if sy in statbegsys   then error(14) 

until not (sy in statbegsys) 
end 

13); 
nil 

test 1(endsy, 
if fprocp <> 
then 
begin 
gen0t(42 (*ret*), fprocp .idtype) 
align(parmptr, lcmax); 
writeln(prr, '1', segsize: 4, i -1 

4, 

segsize: 4, 
stacktop: 4, 

• _ t 

lcmax - 

, topmax) 

( 

leaftermarkstack); 
writeln(prr, '1', stacktop: 

end 
else 
begin 
gen1(42 (*ret*), 0);   align(parmptr, lcmax); 
writeln(prr, 'l* 
writeln(prr, '1' 
writeln(prr, 'q');   ic := 0; 

* generate call of main program; 
must be loaded at absolute 

genl(41 (*mst»), 0); 
gencupent(M6 (*cup*), 
writeln(prr, 'q'); 

i _ i 
- i 
t _ i 

lcmax); 
, topmax); 

dp := true; 
note that this call 
address zero *) 

entname);   gen0(29 (*stp*)); 
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end 
end (*body*); 

Code Segment 3:  Body 

The procedure BODY is the first routine in the 

compilation process which will generate code. The code for 

this routine is shown in Code Segment 3. The first code 

which BODY generates is the code necessary for the entry 

point to the routine and the generation of the new stack 

frame. After the new stack frame is generated, a copy of 

any parameter values is placed into local cells. At this 

point, the procedure STATEMENT is called repeatedly until 

the current symbol is no longer in the set of statement 

begin symbols. This concludes the statement processing 

within the routine BODY. All that is left for BODY at this 

point is to generate the code for a routine termination and 

to re-align the stack. 
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procedure statement(fsys: setofsys); 

label 
1; 

var 
lastsy: symbol; 
lcp: ctp; 

begin (*statement*) 
if not (sy in fsys + [ident]) 
then begin error(6);   skip(fsys) end; 
if sy in statbegsys + [ident] 
then 

begin 
lastsy := sy; 
if sy = ident 
then 

begin 
searchid([vars, field, proc, mods], lcp); 
testaccess(usechain, lcp);   insymbol; 
if lcp .klass in [proc, pros, mods] 
then calKfsys, lcp) 
else assignment(lcp) 

end 
else 

begin 
insymbol; 
case lastsy of 

beginsy: compoundstatement(fsys); 
ifsy: ifstatement; 
casesy: casestatement; 
whilesy: whilestatement; 
repeatsy: repeatstatement; 
loopsy: loopstatement; 
withsy: withstatement 

end (*case*) 
end; 

test2(fsys, 6, []); 
end; 

end (*statement*); 

Code Segment.2*:  Statement 
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The procedure STATEMENT processes all of the 

information having to do with statements, as defined in the 

syntax for the language. The code for STATEMENT appears in 

Code Segment 4. If the current symbol is an identifier, the 

symbol table is searched to determine the class which is 

associated with the identifier. At this time, the 

accessability of the identifier is also checked. An error 

will be recorded if the identifier is not accessable to this 

module. If the class of the identifier is procedure, 

process, or module, then the routine CALL is executed. If 

the symbol is not an identifier, then a case statement is 

executed and the appropriate control statement is determined 

and processed. The control statements are: a compound 

statement which is defined by the symbol BEGIN, an if 

statement which is defined by the symbol IF, a case 

statement which is defined by the symbol CASE, a while 

statement which is defined by the symbol WHILE, -a repeat 

statement which is defined by the symbol REPEAT, a loop 

statement which is defined by the symbol LOOP, and a with 

symbol which is defined by the symbol WITH. 
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procedure  calKfsys:   setofsys;   fcp:   ctp); 

var 
lkey: 1 .. 25; 
access: accesstype; 
uselevel: disprange; 

begin (*call*) 
access := fcp .accessway; 
if inchain(fcp .name, usechain) 
then getuselevel(fcp .name, usechain, uselevel); 
if fcp .pfdeckind = standard 
then 

begin 
lkey := fcp .key; 
if fcp .klass = proc 
then 

if lkey <> 3 
then 

begin (*standard procedures*) 
testl(lparen, 9) ; 
case lkey of 

1 : inc; 
2: dec; 
4: wait; 
5: send; 
6: awaited 

end; 
testl(rparen, 4) 

end 
else halt 

else 
begin (*standard functions*) 

test 1(lparen, 9);  expression(fsys + [rparen]); 
load; 
case lkey of 

7: off; 
8: among; 
9: low; 
10: high; 1 
12: size; 
13: ordf; 
14: chr 

end; 
testl(rparen, 

end 
end * 

else 

adr; 

4) 

- 27 - 



begin (*nonstandard procedures and functions*) 
callnonstandard 

end 
end ("call*); 

Code Segment 5:  Call 

The procedure CALL processes all subprogram calls. If 

the subprogram to be executed is a standard procedure or 

function, the appropriate standard call is made. Code 

Segment 5 contains the code for CALL. All other procedures 

and functions go through the procedure CALLNONSTANDARD, 

which checks to assure the appropriate parameters are 

specified. If it is a function call, space is allocated on 

the stack for the return value of the function. 

procedure assignment(fcp: ctp); 

var 
lattr: attr; 
lcixl, lcix2: integer; 

begin 
selector(fsys + [becomes], fcp); 
if sy = becomes 
then 

begin 
if gattr.typtr <> nil then 

if (gattr.access <> drct) or (gattr.typtr .form > 
subrange) 

then loadaddress; 
lattr := gattr; 

(* save attributes of storage point *) 
insymbol;  expression(fsys); 
if gattr.typtr <> nil then 
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if gattr.typtr .form <= subrange  then load 
else loadaddress; 

if (lattr.typtr <> nil) and (gattr.typtr <> nil) 
then 

begin 
if comptypesOattr . typtr , gattr.typtr) 
then 

case lattr.typtr .form of 
scalar, subrange: 

begin 
if debug  then checkbndsdattr . typtr); 
if lattr.typtr = bitptr 
then 

begin 
genlabel(lcixl);   genf jpdcixl) ; 
gen0(68 (*sbt«));   genlabel(lcix2); 
genujpxjp(57 (*ujp*), lcix2); 
putlabel(lcixl);  gen0(67 (*cbt*)); 
putlabel(lcix2) 

end; store(lattr) 
end; 

arrays, records: 
gen1(40 (*mov*), lattr.typtr .size) 

end 
else error(129) 

end 
end (*sy = becomes*) 

else error(51); 
end (*assignment*); 

Code Segment 6:  Assignment 

The procedure ASSIGNMENT processes all of the 

assignment statements in a Modula program. Assignment is 

shown in Code Segment 6. ASSIGNMENT calls SELECTOR to 

generate the list of attributes about the target variable. 

The attributes vary depending on whether the variable is a 

simple  type,  an  array,  a  field,  or  a  function.   The 
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necessary code is generated to load the address of the 

target of the assignment, if that target is not directly 

addressable, or if its form is not simple. At this point, 

the procedure EXPRESSION is executed to process the right 

side of the assignment. When EXPRESSION is complete, the 

value on the top of the stack is stored in the target of the 

assignment. 

EXPRESSION leaves the result of its evaluation on the 

top of the stack. The appropriate code is then generated to 

store the result and, if desired, range checking is 

performed. EXPRESSION analysis in Modula uses the same 

precedence order as Pascal. The first operation is to 

process a simple expression. The simple expression consists 

of that part of an expression which is only divisible by 

relational operators. If a relational operator is 

encountered after the simple expression is processed, the 

appropriate code is indicated for the relation and a second 

simple expression is processed. 

The procedure SIMPLEEXPRESSION, in conjunction with its 

local procedures TERM and FACTOR, processes all of the 

arithmetic operations inr an expression, along with the 

Boolean  operations AND, OR, and NOT.  SIMPLEEXPRESSION also 
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enforces the arithmetic precedence rules for expression 

evaluation. At each level, the variables to be operated on 

are loaded onto the stack. The appropriate operation is 

performed and the result left on top of the stack. Once all 

of the operations are performed, which are required to 

evaluate the expression, the final result of the expression 

is left on top of the stack. This is true whether the 

expression is to be used in an assignment or if the 

expression is used as part of a relational operator. 

The routine COMPOUNDSTATEMENT is a special case of a 

routine STATEMENT. It groups a series of statements 

together as one logical entity which is surrounded by a 

BEGIN END in the simple case or one of the reserved words in 

a controlled structure in the general case. 

The control structures for Modula are the IF statement, 

CASE statement, REPEAT statement, WHILE statement, and the 

LOOP statement. Each of these is processed by its own 

special routine which generates the appropriate jumps and 

calls to COMPOUNDSTATEMENT. It is interesting to note in 

the IF statement, that the construct ELSIF is supported. 

This addition tends to minimize the level of nesting of IF 

statements.   The  REPEAT statement and the WHILE statement 
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are identical to those which are used in Pascal, with the 

exception that the WHILE statement does not require a BEGIN 

after the DO to indicate a compound statement. A WHILE 

statement always terminates with an END symbol. Modula has 

replaced the FOR statement from Pascal with LOOP statement 

which is the general case for all iterative statements. The 

LOOP statement could, in fact, be used as a replacement both 

for the REPEAT and WHILE statements, as they are special 

cases. 
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IV. CODE GENERATION FOR MODULA 

The basic form of the code-which the Modula compiler 

generates comes from the Pascal P compiler system [9]. The 

code is called P-code. A list of the available instructions 

appears in Appendix 2. The generated code is for a 

hypothetical stack machine with no registers. 

All operations are performed with reference to the data 

stack. Therefore, only two types of instructions, LOAD and 

STORE, are necessary to reference memory locations. 

Suitable derivatives of the instructions are provided to 

cover all necessary memory addressing, including the 

immediate loading of constants and memory addresses. 

Two more basic types of instructions are needed. These 

instructions are classed as stack operations and program 

counter operations. Stack operators manipulate the top 

value or top two values of the data stack. A stack 

operation always leaves a value on the stack. A jump 

instruction modifies the value of the program counter. The 

jump instruction may use the value on top of the stack 

(TOS), a boolean value, for a conditional jump. 

Unconditional jumps leave the stack  unchanged.   A  special 
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case of the jump instruction is the procedure call. 

The following describes the style of the code generated 

for the statements used in MODULA. A detailed example of a 

working program is presented in Appendix 3« 

The code which would be generated for the assignment, 

A := B + C, would be of the form: 

LOAD B on stack 

LOAD C on stack 

ADD B + C 

STORE A from stack 

The code generated for a REPEAT-UNTIL construct such as 

REPEAT <statement sequence> UNTIL <expression> would be: 

L1:   ■ 

code for <statement sequence> 

code for <expression> 

JUMP to L1 if TOS is false 

The value on the top of the stack after the expression 

is  evaluated  is always the result of the evaluation.  This 
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allows the use of a jump-false instruction which may be used 

after the evaluation of an expression in any of the control 

structures. 

The code generated for the WHILE-DO  statement of the 

type: 

WHILE <expression> DO 

<statement sequence> 

END 

would be: 

L1: 

code for <expression> 

JUMP to L2 if TOS is false 

code for <statement sequence> 

JUMP unconditional to L1 

L2: 

J 
This construct uses the same jump-false instruction  as  the 

REPEAT. 

The code generated for an IF-THEN statement such as: 
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IF <expression>(1) THEN 

<statement sequenceXD 

ELSIF <expression>(2) THEN 

<statement sequence>(2) 

ELSE 

<statement sequence>(3) 

END 

would be: 

code for <expression>( 1) 

JUMP to L1 if TOS is false 

code for <statement sequenceXD 

. N      JUMP unconditional to L3 

- L1 : 

code for <expression>(2) 

JUMP to L2 if TOS is false 

code for <statement sequence>(2) 

JUMP unconditional to L3 

L2: 

code for <statement sequence>(3) 

L3: 

The code for a LOOP statement such as: 

LOOP 

<statement sequenceX1) 
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WHEN <expression> 

DO <statement sequence>(2) 

EXIT 

<statement sequence>(3) 

END 

would be: 

L2: 

L1 : 

code for <statement sequenceX1) 

codeyfor <expression> 

JUMP to L2 if TOS is false 

coae for <statement sequence>(2) 

JUMP unconditional to L3 

(_> 

code for <statement sequence>(3) 

JUMP unconditional to LI . 

L3: 

The last control structure is the case statement. The 

generated code for a case statement is different from all of 

the other control structures. The efficient implementation 

of a case statement requires the use of a jump table to 

generate the appropriate section of code for execution. In 

order  to  create  this  table, the compiler must maintain a 
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list of all of the case labels encountered and their 

locations in the code stream. After the contents of the 

case statement have been processed the case table is 

generated. There is one entry in the table for each case 

label, with any missing labels being replaced by jumps to a 

run-time error report. Neither the "else" nor "otherwise" 

construct is supported.  The code for the case statement: 

CASE I of 

1: 

BEGIN 

<statement sequenceXD 

END; 

-2: 

BEGIN 

^statement sequence>(2) 

END; 

4: 

BEGIN 

<statement sequence>(4) 

END 

-*'■  END 

would be: 
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JUMP to case table L5 

L1 : 

code for <statement sequenceXD 

JUMP Unconditional to L6 

L2: 

code for <statement sequence>(2) 

JUMP Unconditional to L6 

m: 

code for <statement SequenceXD) 

JUMP Unconditional to L6 

L5: 

JUMP Indexed based on ordinal 
of case variable 

JUMP to L1 for 1=1 

JUMP to L2 for 1=2 

JUMP to ERROR for 1=3 

JUMP to m   for 1 = 4 

L6: 
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APPENDIX 1 

BNF stands for Backus-Naur Form. This notation allows 

a simple, uniform method of specifying the syntax of MODULA. 

The special symbols {} and | are used. {B} indicates 

that the symbol B is used zero or more times. A|B indicates 

that either A or B is the symbol to be used. 

BNF for MODULA 

<program> ::= <module>. 

<module>  ::= <module heading> <define list> <use list> 
<block> <indent> 

<module heading> ::= interface module <ident>; | 
module <ident>; | 
device module <ident> <priority>; 

<define list> ::= define <ident list>; | <empty> 

<use list> ::= use <ident list>; i <empty> 

<block> ::= {<declaration part>} <initialization part> 
<statement part> end 

<declaration part> ::= const <constant declaration>; 
{<constant declaration>;} j 
type <type declaration^ 

{<type declaration^} | 
var <variable declaration>; 

{<variable declaration^} | 
<module>; | 
<procedure declaration> 
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; i <process declaration>; 

<ident list> ::= <ident> {, <ident>} 

<constant declaration> ::r <ldent> = <constant> 

<type declaration> ::= <ident> = <type> 

<ident> ::= <letter> {<letter or digit>} 

<letter or digit> ::= <letter> ! <digit> 

<constant> ::= <unsigned constant> | <sign> <integer> 

<unsigned constant> ::= <ident> i <integer> ! 
'<character> 
{<character>}' 
{octal digitjC 
{,<constant>}] 
{,<subrange>}] 

<octal digit> 
[<constant> 
[<subrange> 

<sign> ::= + | - 

<integer> ::= <digit> {<digit>} ! <octal digit> 
{<octal digit>}B 

<subrange> ::= <constant> : <co^nstant> 

<type> ::= <ident> ! [<ident> {,<ident>}] i 
array <subrange> {,<subrange>} of type | 
record <fieldlist> end 

<fieldlist> ::= <record section> {;<record section>} 

<record section> ::= <ident> {,<ident>} : <type> ! 
<empty> 

<variable declaration> ::= <ident> {,<ident>} : <type> 

<procedure declaration> ::= <procedure heading> <block> 
<ident> 

<procedure heading> ::= procedure <ident>; ! 
procedure <ident> 
<formal parameters>; ! 
procedure <ident> : <ident>; i 
procedure <ident> 
<formal parameters> : 
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<ident>; 
procedure <ident> ; <uselist> 
procedure <ident> 
<formal parameters>; 
<uselist> i 
procedure <ident> : <ident>; 
<uselist> ! 
procedure <ident> 
<formal parameters> : 
<ident>; <uselist> 

<formal parameters> ::= <section> {;<section>} 

<section> ::=  <parameter group> ! 
var <parameter group> 
const <parameter group> 

<parameter group> ::= <ident> {,<ident>} : 
<formal type> 

<formal type> ::=  <ident> I array <indextypes> of 
<ident> 

<index types> ::= <ident list> 

<process declaration> ::= <process heading> 
<uselist> <block> <ident> 

<process heading> ::= process <ident>; ! 
process <ident> 
<formal parameters>; | 
process <ident> <intvector>; i 
process <ident> 
<formal parameters> 
<intvector>; 

<intvector> ::= [<integer>] 

<initialization part> ::= value <ident> = 
<initial value> 
{<ident> = <initial value>} 

<initial value> : :,= <constant> i [<repetition>] 
<initial value> i 
( <initial value> 
{,<initial value>}) 

<repetition> ::= <integer> ! <ident> 
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<statement part> ::= begin <statement sequence> 

<statement sequence> ::= <statement> {;<statement>} 

<statement> ::= <assignment> | <procedure call> ! 
<process statement> ! <if statement> ! 
<case statement> i <while statements i 
<repeat statement> i <loop statement> i 
<with statement> 

<assignment> ::= <variable> := <expression> 

<procedure call> ::= <ident> | <ident> <parameter list> 

<parameter list> ::= (<parameter> {,<parameter>}) 

<parameter> ::= <expression> ! <variable> 

<process statement> ::= <ident> j <ident> 
<parameter list> 

<if statement> ::= if <expression> then 
<statement sequence> 
<elsif part> <else part> end 

<elsif part> ::= elsif <expression> then 
<statement sequence> 
<elsif part> | 
<empty> 

<else part> ::= else <statement sequence> i <empty> 

<case statement> ::= case <expression> of 
<case list element> 
{; <case list element>} end 

<case list element> ::= <constant> {,<constant>} 
: begin 
<statement sequence> end 

<while statement> ::= while <expression> do 
<statement sequence> 
end 

<repeat statement> ::= repeat <statement sequence> 
until <expression> 
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<loop statements ::= loop <statement sequence> 
<when part> end 

<when part> := when <expression> exit 
<statement sequence> 
<when part> ! when <expression> do 
<statement sequence> exit 
<statement sequence> 
<when part> ! <empty> 

<with statement> ::= with <variable> do 
<statement sequence> 
end 

<variable> ::= <entire variable> I <component variable> 

<entire variable> ::= <ident> 

<component variable> ::= <indexed variable> 1 
<field designator> 

<indexed variable> ::= <array variable> [<expression> 
{,<expression>] i <bit variable> 
[<expression>] 

<array variable> ::= <variable> 

<bit variable> ::= <variable> 

<field designator> ::= <record variable> . 
<field identifiers 

<record variable> ::= <variable> 

<field identifier> ::= <ident> 

<expression> ::= <simple expression> ! 
<simple expression> 
<relational operator> 
<simple expression> 

<relational operator> ::== j <> j <={<}> j >= 

<simple expression> ::= <term> j <sign> <term> | 
<simple expression> 
<adding operator> 
<term> 
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<adding operator> ::= + | - | or | xor 

<term> ::= <factor> | <term> <multiplying operator> 
<factor> 

<multiplying operator> ::= * | / | div | mod | and 

<factor> ::= <unsigned constant> ! <variable> i 
<function designator> | (<expression>) 
I not <factor> 

<function designator> ::= <ident> | <ident> 
<parameter list> 
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APPENDIX 2 

P-Code Instruction Mnemonics 

MNEMONIC FUNCTION 

ABI produce absolute value of integer 

ADI produce sum of integers 

ADR address of variable passed 

AMG bit specified true 

AND perform Boolean 'and' 

AWT waiting on signal 

CBT clear bit specified 

CHK check that the top of'stack is in range 

CHR convert integer to character 

CSP • call standard procedure 

CUP call user procedure 

DEC decrement top of stack by amount 

DVI integer divide 

ENT enter block 

EQU test for equality 

FJP jump if stack top false to label 

GEQ test for greater than or equal to 

CRT test for greater than 

HGH high index bound of array passed 
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INC increment top of stack by amount 

IND indexed fetch 

IOR perform Boolean 'inclusive or' 

IXA compute indexed address 

LAO load base-level address 

LCA load address of constant 

LLA load address 

LDC load constant 

LDO load contents of base-level 
address (global variable) 

LEQ test for less than or equal to 

LES test for less than 

LOD load contents of address 

LOW low index bound of array passed 

MOD modulus 

MOV moves the number of storage units 
given 

MPI multiply integers 

NEQ test for not equal 

NGI negate integer 

NOT perform Boolean not 

OFF bit set empty 

ODD test for odd 

ORD convert to integer 

RET return from block 
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SBI 

SBT 

SGS 

SQI 

SRO 

STO 

STP 

STR 

TBT 

UJC 

UJP 

UNI 

XJP 

perform integer subtraction 

set bit specified 

generate singleton set 

square integer 

store at base-level address 

store indirect 

stop 

store 

test bit specified 

error in case statement-abort 

unconditional jump to label 
given by Q 

perform union of sets 

indexed jump; jump to offset 
+ top of stack 
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APPENDIX 3 

Sample Program 

MODULE LINEINPUT; 
DEFINE READ, NEWLINE, NEWFILE, EOLN, EOF, LNO; 
USE INCHR, OUTCHR; 
CONST LF = 12C; CR = 15C; FS = 34C; 
VAR 

LNO: INTEGER; (*LINE NUMBER*) 
CH: CHAR; ("LAST CHARACTER READ*) 
EOF, EOLN: BOOLEAN; 

PROCEDURE NEWFILE; 
BEGIN 

IF NOT EOF THEN 
REPEAT INCHR(CH) UNTIL CH = FS; 

END; 
EOF := FALSE; LNO := 0 

END NEWFILE; 

PROCEDURE NEWLINE; 
BEGIN 

IF NOT EOLN THEN 
REPEAT INCHR(CH) UNTIL CH = LF; 
OUTCHR(CH);OUTCHR(LF) 

END; 
EOLN := FALSE; LNO := LNO + 1 

END NEWLINE; 

.PROCEDURE READ(VAR X: CHAR); 
BEGIN 

LOOP INCHR(CH);OUTCHR(CH); 
WHEN CH >= • • DO X := CH EXIT 
WHEN CH r LF DO X := ' •; EOLN := TRUE EXIT 
WHEN CH = FS DO X := ' •; EOLN := TRUE; EOF := TRUE 

EXIT 
END 

END READ; 
BEGIN 

EOF := TRUE; EOLN := TRUE 
END LINEINPUT. 
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Generated Code for Sample Program 

(•entry to Ne'wfile*) L5 

ENT 1 L6 

ENT 2 L7 

LDOB 8 

NOT 

FJP 

T Q 

L8 

LAO 6 

CUP 1 L3 

LDOC 6 

LDCC •FS' 

EQUC 

FJP L9 

L8 

LDCB " 0 
v 

SROB 8 ■ 

LDCI 0 

SROI 5 

RET 

L6 0 

L7 8 

(*load value in EOF«) 

(•negate TOS*) 

(•jump if TOS false*) 

(•load address of ch*) 

(•call Inchr*) 

(•load contents of ch*) 

(•load constant 'FS'*) 

(•test top 2 values on 
stack for equality*) 

(*jump if TOS false*) 

(*load boolean constant 
'false'*) 

(•store boolean TOS EOF*) 

(*load integer constant 0*) 

(*store integer TOS at LNO*) 

(•return*) 

(•segment and stack maximum size*) 
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L10 

ENT    1 L11 

ENT    2 L12 

LDOB 7 

NOT 

FJP L13 

Llfl 

LAO 6 

CUP    1 L3 

LDOC 6 

LDCC »CR' 

EQUC 

FJP L11 

LAO 6 

CUP    1 L4 

LDCC »CR» 

CUP    1 m 

L13 

LDCB 0 

SROB 7 

LDOI 5 

LDCI 1 

ADI 

(•entry to Newline*) 

(*load value in EOLN*) 

(•negate TOS*) 

(•jump if TOS false*) 

(•load address of ch*) 

(•call Inchr*) 

(•load value in CH*) 

(•load constant 'CR'*) 

(•test top 2 values on 
stack for equality*) 

(•jump if TOS false*) 

(*load address of CH*) 

(•call Oi3tchr») 

(•load constant 'CR1*) 

(•call Outchr*) 

(•load constant 'false'*) 

(*store boolean TOS in 
EOLN*) 

(*load value of LNO*) 

(*load constant 1*) 

(*integer add of top 2 
values on stack*) 
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SROI 5 ("store integer TOS in LNO") 

RET ("return") 

L11 =    0 ("segment and stack maximum size*) 

L12 =     10 

L15 ("entry to Read") 

ENT 1    L16" 

ENT 2    L17 

L18 

LAO 6 ("load address of CH") 

CUP 1    L3 ("call Inchr") 

LAO 6 ("load address of CH") 

CUP 1   m ("call Outchr") 

LDOC 6 ("load value of CH") 

LDCC ' »    ("load constant • •«) 

GEQC ("test top 2 values on 
stack for greater than or equal") 

FJP L20 ("jump if TOS false") 

LODA 0   5 ("load address of X") 

LDOC 6 ("load vaue of CH") 

STOC ' ("store TOS in X") 

UJP L19 ("jump to label") 

L20 

LDOC 6 ("load value of CH") 

LDCC 'LF' ("load constant •LF'") 
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EQUC (*test top 2 values of 
stack for equality*) 

(•jump if TOS false*) 

(*load address of X*) 

(*load constant ' •*) 

(*store TOS in X*) 

(*load boolean constant 'true'*) 

(*store TOS in EOLN*) 

(*jump to label*) 

(*load value of CH*) 

(*load constant 'FS1*) 

(*test top 2 values on 
stack for equality*) 

(*jump if TOS false*) 

(*load address of X*) 

(*load constant • '*) 

(*store TOS in X*) 

(*load boolean constant 'true'*) 

(*store TOS in EOLN*) 

(*load boolean constant 'true'*) 

(*store TOS in EOF*) 

(*jump to label*) 

L18   (*jump to label*) 

FJP L21 

LODA 0    5 

LDCC   • -1 

STOC 

LDCB 1 

SROB 7 

UJP L19 

L21 

LDOC 6 

LDCC •FS' 

EQUC 

FJP L22 

LODA 0    5 

LDCC   » i 

STOC 

LDCB 1 

SROB 7 

LDCB 1 

SROB 8 

UJP L19 

L22 

UJP L18 
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L19 

RET 

LI 6     = 1 

L17 19 

L23 

ENT    1 L24 

ENT   2 . L25 

LDCB 1 

SROB 8 

LDCB 1 

SROB 7 

RET 0 

STP 

(*return*) 

(•segment and stack maximum size*) 

(*load boolean constant 'true'*) 

(*store TOS in EOF*) 

(*load boolean constant 'true'*) 

(*store TOS in EOLN*) 

(*return to monitor*) 

(*stop*) 
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