
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1979

An experimental implementation of the
programming language modula.
John William Iobst

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Iobst, John William, "An experimental implementation of the programming language modula." (1979). Theses and Dissertations. Paper
1865.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228649162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F1865&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1865&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1865&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=preserve.lehigh.edu%2Fetd%2F1865&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/1865?utm_source=preserve.lehigh.edu%2Fetd%2F1865&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

AN EXPERIMENTAL IMPLEMENTATION OF

THE PROGRAMMING LANGUAGE MODULA

by

John William Iobst

A Thesis

Presented to the Graduate Committee

• of Lehigh University

in Candidacy of the Degree of

Master of Science

in

Computer Science

Lehigh University

1979

ProQuest Number: EP76137

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest

ProQuest EP76137

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

This thesis is accepted and approved in partial

fulfillment of the requirements for the Master of Science.

(date)

Professor in Charge

Chairman of Department

- 11 -

ACKNOWLEDGEMENTS

The author wishes to thank Professor Samuel L. Gulden for

his leadership, support, and advice. His reading of this

thesis is also deeply appreciated.

I would like to give special thanks to Richard J. Cichelli

for all that he taught me about computing and for his help

in the preparation of this thesis.

Special thanks go to my parents, family, and friends,

especially Suzann Thomas, for all their help and

encouragement without which this project may never have been

completed. I am also indebted to Janice Ealer for typing

the manuscript.

- 111 -

TABLE OF CONTENTS

ABSTRACT 1

I. DESIGN OF MODULA 3

II. FUNCTION OF MODULA 9

III. BASIC MODULES OF THE COMPILER 15

IV. CODE GENERATION FOR MODULA 33

REFERENCES HO

APPENDIX 1 : BNF FOR MODULA *»2

APPENDIX 2: CODE INSTRUCTION MNEMONICS 48

APPENDIX 3: SAMPLE PROGRAM WITH GENERATED CODE 51

APPENDIX 4: VITA 57

FIGURE 1: Dependence Diagram For Modula 16

CODE SEGMENT 1: Module . 17

CODE SEGMENT 2: Block 20

CODE SEGMENT 3: Body 22

CODE SEGMENT 4: Statement 25

CODE SEGMENT 5: Call 27

CODE SEGMENT 6: Assignment 28

- iv -

ABSTRACT

Modula is a computer language developed at Stanford

University. Professor Niklaus Wirth directed the language

design and implementation group. The language was designed

to be small in size, so that it would fit on small

computers. In this sense the language design is minimal,

while including all necessary features for concurrent

programming and modern data structuring. It was anticipated

that Modula would be used for the development of process

control and other dedicated ""computer systems. In the future

it is likely that Modula or one of its derivatives will be

used as an implementation language for more general computer

systems.

Modula is a direct descendant of Pascal. As such, many

of the basic control and data structures come directly from

Pascal. Although Modula is neither a subset or a superset

of Pascal, it is a language of approximately equivalent

power and it is intended to facilitate programming

concurrent processes.

The compiler, which was developed, uses an LL(1)

grammar. This grammar eliminates the use of parse tables

- 1 -

and allows the compilation process to proceed by recursive

descent. This * technique is fast and efficient and will

support error recovery in a clean manner. Details of the

compilation process are presented along with the complete

LL(1) grammar for the language.

- 2 -

I. DESIGN OF MODULA

The intent of Modula[1 ,2,3] is to provide a high level

language which will easily support concurrent processing.

It should not be surprising to note that the bulk of the

language consists of facilities that are typical of many

sequential programming languages. The new technology which

Modula contains is in the area of support for the

programming of concurrent processes. The concurrent

facilities deal with the creation and synchronization of

these processes.

Sequential Modula, at first glance, looks almost

identical to Pascal[4]. The similarity is due in part to

the fact that many of the data and control structures are

copied in design, if not in form, from Pascal. The

structure and type of most of the data structures is

directly from Pascal. There are, however, additions and

deletions. The design of the control structures comes from

Pascal, although the form is modified. Modula has fewer

control structures than Pascal, but they are generally more

powerful.

The basic data types: integer, char, and Boolean

appear in Modula. User defined scalar types are available

- 3 -

and are specified by enumeration. Data structuring is

accomplished using the array and record concepts. Variant

records are not supported. The new data type bits, a short

Boolean array, are also introduced. It serves as a partial

replacement for the set type. It is somewhat limited in its

utility due to size restrictions. The number of entities

addressable is restricted to the number of bits in the

computer word. The primary use of bits is to facilitate

easy modification of device registers.

Modula has five basic control structures. They are:

IF, CASE, WHILE, REPEAT, and LOOP statements. All control

statements except REPEAT require an END to terminate the

statement sequence. REPEAT uses an UNTIL in the same manner

as Pascal. ELSE and ELSIF serve as interim terminators in

the more complex IF statement. The syntax for each of the

control structures is elaborated in Appendix 1.

The IF statement is a refined extension of the Pascal

IF statement. The intermediate clause "ELSIF <expression>

then <statement sequence>" allows repeated testing of an

expression(s), without the structural depth which a similar

coding in Pascal would imply. There is no limit to the

number of ELSIF clauses.

- 4 -

The CASE statement is similar to its Pascal

counterpart. The only difference being a required BEGIN-END

pair for each case. The WHILE statement and the REPEAT

statement are the same as Pascal's, with the exception of

the required END for a WHILE.

The most unique control structure in Modula is the LOOP

statement. The LOOP statement is the most general structure

for support of the repeated execution of statements.

REPEAT, WHILE, and Pascal's FOR statements are all special

cases of the LOOP. The basic difficulty with the LOOP

construct is that it will allow termination in the middle,

as well as the beginning and the end of the construct. This

makes program verification more difficult. Modula will also

support multiple exits from a LOOP statement.

Modula and Pascal have many similarities. It is where

Modula diverges from Pascal that the true power of Modula

becomes evident. The added power shows in both the data and

code segments of the language.

The critical addition to the data area is the data type

bits. As previously mentioned, the data type bits allow the

testing and setting of specific bits in a word. This

ability, along with the ability to declare a variable to be

- 5 -

at an address, allows a variable of type bits to function as

a device status register. The device and buffer registers

for a terminal with the base address of 175640(8) would be:

var

readbufferstatus[175640B]: bits; (*output buffer
status*)

readbuffer[1756M2B]: bits; (*output character buffer*)

writebufferstatus[174644B]: bits; (*input buffer
status*)

writebufferC175646B]: bits; C*input character buffer*)

To write a character to the terminal the transmit ready bit

in the writestatusbuffer is checked. If the bit is set, the

character to be output is placed in the writebuffer. The

read operation will find a character in the readbuffer after

an interrupt with a receiver interrupt enable bit set.

The previous example is for a terminal -interface for a

PDP-11. On a CDC 6000 series machine, a data structure,

which represents the peripheral processor (PP) word in the

task header, could be generated and set to the appropriate

address. This would allow user programs to make PP calls.

An important addition to the control structures is not

in functionality, but in form. Unlike Pascal where the IF

construct is:

- 6 -

IF <expression> THEN <statement>

The Modula equivalent is:

IF <expression> THEN <statement sequence> END

It is much easier to use the second form than the first.

The second form allows the programmer to add or delete

statements with impunity. To add an additional statement to

the Pascal IF-statement requires the addition of not only

the new statement but also a BEGIN-END pair to bracket the

statement sequence. Modula requires a terminator for all

control structures. The terminator is an END, except for

the REPEAT which uses an UNTIL to terminate.

Modula was designed as both a process control and

systems implementation language. As such, it is necessary

for Modula to support the creation and interprocess

communication of concurrent processes.

To support the processes, the concept of a module was

created. The basic module is similar to Hansens process

[6,7]. An interface module will act to exclude two or more

co-operating processes from operating on a common data

item(s) at the same time. It accomplishes this by

- 7 -

restricting access to the data to the requesting process

with the highest priority. Tasks of equal priority receive

access on a first come, first serve basis. A higher

priority task will interrupt a task of lower priority for

access to common data. When a process has been completed,

the highest priority process requesting access will be

initiated. An interface module is similar to Hansen's [6,73

and Hoare's monitor [8].

A process in Modula is similar to a procedure. The

difference is that, while a procedure executes to the

exclusion of its calling program, a process executes

concurrently with its calling program. A process may be

synchronized with its parent program and other processes by

means of signals. Signals are declared like variables but

may have no value. They may only be sent or waited upon.

- 8 -

II. FUNCTION OF MODULA

Modula is designed to be equally functional as either a

sequential or a concurrent processing language. The

sequential aspect of Modula is much like Pascal. The

concurrent processing portion of Modula is where the true

power of the language becomes apparent.

The basic building block for a concurrent process is a

module. A module definition serves as an encapsulation.

This allows the control of access to names, items, and the

existence of variables when their scope of definition is not

active. The interface module is a special type of module

which controls simultaneous access to common objects from

more than one process. If two processes attempt to access

an interface module at the same time, the second is delayed

until the first is completed or is waiting on an event.

A second building block for concurrent execution is the

process. A process is a sequential algorithm which is to

execute concurrently with other processes. The only

requirement for process speed is that it must be greater

than zero.

- 9 -

A standard means of communication is established by the

use of signals. A process is allowed to wait on a signal or

a number of them. Signals may also be sent to processes

which may be waiting for them. A process which is in an

interface module and is waiting for a signal may release the

module for access by other processes. If the original

process is reactivated while another process is in the

interface module, the first process regains control of the

interface module even though the current process is not

complete.

Modules, processes, and signals are all intricately

entwined to allow Modula to support concurrent processing.

Modules and processes provide a means to implement the

algorithms used for concurrent processing. Signals provide

a means of communication and synchronization between

concurrent processes.

In order to make concurrent execution possible, it is

necessary for procedures to have controlled access to data

and possibly code that is owned by a different procedure.

Access is granted or requested by the name definition

concepts of use and define. Use allows the names of data

and code items to be available to a routine other than that

- 10 -

which owns them. Define serves the opposite function by

allowing only those names which are contained in the define

list to be made available to a non-name owning routine.

Modula requires strict checking of the data and program'

names which are imported via the use list. The checking is

strict to the extreme that only imported procedures may

operate on imported data.

Example:

Two co-operating routines - one is a producer of data,

the other is a consumer. The two routines communicate

through the procedures p and c respectively. The flow of

the data is from the producing routine, produce, through the

interface procedures p.and q, via the data buffer buff, to

the consuming routine consume.

produce -> p -> buff -> c -> consume

interface module passbuffer;

define p, q, buff;

type
buff = record

size : 1..bufflen;
data : array[1..bufflen] of dataitem
end;

var

- 11 -

fillbuffer, bufferfull : signal;

procedure p(var buffer : buff);
begin

wait (fillbuffer);
send (bufferfull)

end p;

procedure c(var buffer : buff);
begin

wait (bufferfull);
if buffer.size > 0 then send (fillbuffer)
end

end c;

procedure cinit(var buffer : buff);
begin

send (fillbuffer)
end cinit;

begin
end passbuffer;

process produce;

use p, buff;

var
complete : boolean;

begin
complete := false;
while not complete do

generate data (buff);
p (buff)

end;"
buff.size := 0;
p (buff)

end produce;

process consume;

use c, cinit, buff;

var
moredata : boolean;
buffi, buff2 : buff;

- 12 -

begin
cinit (buffi);
c (buffi);
moredata := buffi.size > 0;
while moredata do

processdata (buffi);
c (buff2);
moredata := buff2.size > 0;
if moredata then

processdata (buff2)
end

end
end consume;

This example shows two routines which pass data through

an interface module. The producing routine uses a single

buffer while the consuming routine is double buffered. This

scheme may be used to even out speed differences between the

two routines.

The consume routine has initial control of the data

transfer. The call to cinit initiates the passage of data

from p to c. The first call to c returns the first buffer

of data in the variable buffi. Succeeding buffers of data

are returned in buff2 then buffi until all of the data has

been transferred. Procedure c will always try to get a new

buffer transferred until an empty buffer is sent.

The produce routine calls p when it has produced a

buffer full of data. The routine then remains idle until a

- 13 -

fillbuffer signal is received. If p is waiting with a

buffer full of data, the data is transferred when the signal

fillbuffer is sent. If p is not active, i.e. waiting on a

signal, then c remains active but waiting until p is

activated.

— in —

III. BASIC MODULES OF THE COMPILER

The technique of parsing by recursive descent is used

as the basic form for the compiler. The grammar for the

language Modula is LL(1). Recursive descent[5] is one of

the simplest and most effective ways of parsing a grammar of

this type. The flow of the compiler, as it parses a

program, follows the syntax diagram for the language. Each

node in the syntax is a new procedure in the compiler. The

dependence graph for Modula appears in Figure 1.

- 15 -

Dependence Graph For Modula

module

v v

block !

i i
i
i —i

statement sequence

■> ! expression!

i

v

! term j

ifactor |

Figure 1

- 16 -

procedure module(fsys: setofsys);

var
lcp, nxt: ctp;
progname: alfa;
definechain, usechain, chainentry: chainvar;
modulehead: boolean;
oldlev: 0 .. maxlevel;
oldtop: disprange;
labname: integer;
lie: addrrange;

begin (*module*)
modulehead := true; lie := lc; dp := true;
lc := lcaftermarkstack; oldlev := level;
oldtop := top;
if level < maxlevel then level := level + 1
else error(251);
if top < displimit
then

begin
top := top + 1;
with display[top] do

begin
fname := nil; flabel := nil; occur := blck

end
end

else error(250);
new(usechain);
with usechain do

begin name := ' •; nextvar := nil end;
usechain .level := level; new(definechain);
with definechain do

begin name := ' •; nextvar := nil end;
definechain .level := level;
if not (sy in [interfacesy, modulesy, devicesy])
then begin error(6); skip(fsys) end
else

begin
if sy in [interfacesy, modulesy]
then

begin
if sy = interfacesy then begin insymbol; end;
if sy <> modulesy then error(3)
else

begin
insymbol;
if sy <> ident

- 17 -

\

then
begin

progname := • ' ; error(2);
end

else progname := id;
insymbol;
-if sy <> semicolon then error(1^)

end
end

else
begin (*device module*)

insymbol;
if sy <> modulesy then error(3)
else

begin
insymbol;
if sy <> ident
then

begin
progname := • '; error(2)

end
else progname := id;
insymbol;
if sy <> lbrack then error(11)
else

begin
searchsection(display[top].fname, lcp);
new(lcpf mods, declared, actual);
with lcp do

begin
name := id; accessway := all;
idtype := nil; pflev := level;
genlabel(labname);
pfdeckind := declared;
pfkind := actual; pfpri := 0;
pfname := labname

end;
with lcp do

begin
if inchain(name, definechain)
then accessway := define;
if inchain(name, usechain) then

if accessway = all
then accessway := use
else error(101)

end;
if lcp .accessway = all
then enterid(lcp);

- 18 -

if lcp .accessway = define
then enterdef inedcp, def inechain) ;
insymbol;
if sy <> intconst then error(15)
else

begin
insymbol;
if sy <> rbrack then error(12)
else

begin
insymbol;
if sy <> semicolon
then error(14)

end
end

end
end

end
end;

repeat
insymbol;
if sy = definesy
then
(* set up for exportable names *)
definename;

if sy = usesy
then
(* set up for imported names *)
usename;

until not (sy in [definesy, usesy, semicolon, comma]);
if top = 1 then dummyproc;
repeat block(fsys, period, nil, progname)
until (sy = period) or (id = progname);
level := oldlev; top := oldtop; lc := lie

end (*module*);

Code Segment 1: Module

Following the initialization phase of the compiler, the

first routine that is called is MODULE. This routine is

shown in Code Segment 1 and has two functions. The first is

- 19 -

to ascertain the type of module which is being processed.

The types of modules being: interface, device, or others.

The interface module defines a program section which

encapsulates routines which handle critical sections of a

program, i.e. those areas which require critical exclusion

of processes. A device module is a portion of a program

which contains one or more machine dependent sections of

code. The third type of module, designated "other", is used

for program definition and as a means of controlling access

to named elements. The definition of a module creates a

"fence" around its data and procedures. The creation of

this fence is the second function of a module. The

operators Use and Define serve as paths through which

objects may be passed into or out of a fenced area. This

allows compile time checking of object accessability, along

with the potential of objects continuing to exist even after

the termination of their scope of definition.

procedure block(fsys: setofsys; fsy: symbol; fprocp: ctp;
endid: alfa);

var
lsy: symbol;

begin (*block*)
repeat

if sy = constsy
then begin insymbol; constdeclaration end;
if sy = typesy

- 20 -

then begin insymbol; typedeclaration end;
if sy = varsy
then begin insymbol; vardeclaration end;
while sy in [interfacesy, modulesy, devicesy] do

begin
, module(fsys);

if sy <> semicolon then
begin error(6); skip(fsys + [semicolon]) end;

insymbol
end;

while sy in [proceduresy, processsy] do
begin

lsy := sy; insymbol;
proceduredeclaration(lsy);

end
until sy in (statbegsys + [valuesy]);
if not (sy in [beginsy, valuesy])
then begin error(6); error(17); skip(fsys) end;
if sy = valuesy
then begin insymbol; initialvalues end;
testl(beginsy, 17);
repeat

body(fsys + [casesy]);
if (sy <> fsy) and (id <> endid)
then begin error(6); skip(fsys) end

until (sy = fsy) or (sy in blockbegsys) or (id = endid);
end (*block*);

Code Segment 2: Block

After the module heading is processed, the next routine

which is called is BLOCK and is shown in Code Segment 2.

BLOCK processes all of the declarations which are local to

one section of a program. Unlike Pascal, where the order of

declarations is defined as one pass, the declaration section

for Modula is cyclic in nature. This allows, for example,

constants to be declared after types, and variables to be

- 21 -

declared before types. The only requirement is that the

declaration of an object must occur before its use. When

the declaration processing is complete, BLOCK calls BODY.

procedure body(fsys: setofsys);

const
cixmax = 1000;
cstoccmax = 65;

type
oprange = 0 .. 63;

var
cstptr: array [1 .. cstoccmax] of csp;
cstptrix: 0 .. cstoccmax;
lcmax, ldisp, lid: addrrange;
i, entname, segsize: integer;
stacktop, topnew, topmax: integer;
lcp: ctp;
lip: lbp;

begin (*body») ,_,
dp := false;
if fprocp <> nil then entname := fprocp .pfname
else genlabel(entname);
cstptrix := 0; topnew := lcaftermarkstack;
topmax := lcaftermarkstack; putlabel(entname);
genlabel(segsize); genlabel(stacktop);
gencupent(32, 1, segsize); gencupent(32, 2, stacktop);
if fprocp <> nil
then (* copy multiple values into local cells*)
begin
lid := lcaftermarkstack; lcp := fprocp .next;
while lcp <> nil do
with lcp do
begin
align(parmptr, lid);
if klass = vars
then
if idtype <> nil
then
if idtype .form > subrange

- 22-

then
begin
if vkind = actual then
begin
gen2(50 (»lda»), 0, vaddr);
gen2t(54 (*lod«), 0, lid, nilptr);
gert1(40 (*mov*), idtype .size);

end;
lid : i lid + ptrsize

end
else lid := lid + idtype .size;

lcp := lcp .next
end;

end;
lcmax := lc;
repeat (*loop until sy <> semicolon*)
statement(fsys + [semicolon, endsy]);
if sy in statbegsys then error(HI)

until not (sy in statbegsys);
while sy =jsemicolon do
begin
insymbol;
repeat
statement(fsys + [semicolon, endsy]);
if sy in statbegsys then error(14)

until not (sy in statbegsys)
end

13);
nil

test 1(endsy,
if fprocp <>
then
begin
gen0t(42 (*ret*), fprocp .idtype)
align(parmptr, lcmax);
writeln(prr, '1', segsize: 4, i -1

4,

segsize: 4,
stacktop: 4,

• _ t

lcmax -

, topmax)

(

leaftermarkstack);
writeln(prr, '1', stacktop:

end
else
begin
gen1(42 (*ret*), 0); align(parmptr, lcmax);
writeln(prr, 'l*
writeln(prr, '1'
writeln(prr, 'q'); ic := 0;

* generate call of main program;
must be loaded at absolute

genl(41 (*mst»), 0);
gencupent(M6 (*cup*),
writeln(prr, 'q');

i _ i
- i
t _ i

lcmax);
, topmax);

dp := true;
note that this call
address zero *)

entname); gen0(29 (*stp*));

- 23 -

end
end (*body*);

Code Segment 3: Body

The procedure BODY is the first routine in the

compilation process which will generate code. The code for

this routine is shown in Code Segment 3. The first code

which BODY generates is the code necessary for the entry

point to the routine and the generation of the new stack

frame. After the new stack frame is generated, a copy of

any parameter values is placed into local cells. At this

point, the procedure STATEMENT is called repeatedly until

the current symbol is no longer in the set of statement

begin symbols. This concludes the statement processing

within the routine BODY. All that is left for BODY at this

point is to generate the code for a routine termination and

to re-align the stack.

- 24 -

procedure statement(fsys: setofsys);

label
1;

var
lastsy: symbol;
lcp: ctp;

begin (*statement*)
if not (sy in fsys + [ident])
then begin error(6); skip(fsys) end;
if sy in statbegsys + [ident]
then

begin
lastsy := sy;
if sy = ident
then

begin
searchid([vars, field, proc, mods], lcp);
testaccess(usechain, lcp); insymbol;
if lcp .klass in [proc, pros, mods]
then calKfsys, lcp)
else assignment(lcp)

end
else

begin
insymbol;
case lastsy of

beginsy: compoundstatement(fsys);
ifsy: ifstatement;
casesy: casestatement;
whilesy: whilestatement;
repeatsy: repeatstatement;
loopsy: loopstatement;
withsy: withstatement

end (*case*)
end;

test2(fsys, 6, []);
end;

end (*statement*);

Code Segment.2*: Statement

- 25 -

The procedure STATEMENT processes all of the

information having to do with statements, as defined in the

syntax for the language. The code for STATEMENT appears in

Code Segment 4. If the current symbol is an identifier, the

symbol table is searched to determine the class which is

associated with the identifier. At this time, the

accessability of the identifier is also checked. An error

will be recorded if the identifier is not accessable to this

module. If the class of the identifier is procedure,

process, or module, then the routine CALL is executed. If

the symbol is not an identifier, then a case statement is

executed and the appropriate control statement is determined

and processed. The control statements are: a compound

statement which is defined by the symbol BEGIN, an if

statement which is defined by the symbol IF, a case

statement which is defined by the symbol CASE, a while

statement which is defined by the symbol WHILE, -a repeat

statement which is defined by the symbol REPEAT, a loop

statement which is defined by the symbol LOOP, and a with

symbol which is defined by the symbol WITH.

- 26 -

procedure calKfsys: setofsys; fcp: ctp);

var
lkey: 1 .. 25;
access: accesstype;
uselevel: disprange;

begin (*call*)
access := fcp .accessway;
if inchain(fcp .name, usechain)
then getuselevel(fcp .name, usechain, uselevel);
if fcp .pfdeckind = standard
then

begin
lkey := fcp .key;
if fcp .klass = proc
then

if lkey <> 3
then

begin (*standard procedures*)
testl(lparen, 9) ;
case lkey of

1 : inc;
2: dec;
4: wait;
5: send;
6: awaited

end;
testl(rparen, 4)

end
else halt

else
begin (*standard functions*)

test 1(lparen, 9); expression(fsys + [rparen]);
load;
case lkey of

7: off;
8: among;
9: low;
10: high; 1
12: size;
13: ordf;
14: chr

end;
testl(rparen,

end
end *

else

adr;

4)

- 27 -

begin (*nonstandard procedures and functions*)
callnonstandard

end
end ("call*);

Code Segment 5: Call

The procedure CALL processes all subprogram calls. If

the subprogram to be executed is a standard procedure or

function, the appropriate standard call is made. Code

Segment 5 contains the code for CALL. All other procedures

and functions go through the procedure CALLNONSTANDARD,

which checks to assure the appropriate parameters are

specified. If it is a function call, space is allocated on

the stack for the return value of the function.

procedure assignment(fcp: ctp);

var
lattr: attr;
lcixl, lcix2: integer;

begin
selector(fsys + [becomes], fcp);
if sy = becomes
then

begin
if gattr.typtr <> nil then

if (gattr.access <> drct) or (gattr.typtr .form >
subrange)

then loadaddress;
lattr := gattr;

(* save attributes of storage point *)
insymbol; expression(fsys);
if gattr.typtr <> nil then

- 28 -

if gattr.typtr .form <= subrange then load
else loadaddress;

if (lattr.typtr <> nil) and (gattr.typtr <> nil)
then

begin
if comptypesOattr . typtr , gattr.typtr)
then

case lattr.typtr .form of
scalar, subrange:

begin
if debug then checkbndsdattr . typtr);
if lattr.typtr = bitptr
then

begin
genlabel(lcixl); genf jpdcixl) ;
gen0(68 (*sbt«)); genlabel(lcix2);
genujpxjp(57 (*ujp*), lcix2);
putlabel(lcixl); gen0(67 (*cbt*));
putlabel(lcix2)

end; store(lattr)
end;

arrays, records:
gen1(40 (*mov*), lattr.typtr .size)

end
else error(129)

end
end (*sy = becomes*)

else error(51);
end (*assignment*);

Code Segment 6: Assignment

The procedure ASSIGNMENT processes all of the

assignment statements in a Modula program. Assignment is

shown in Code Segment 6. ASSIGNMENT calls SELECTOR to

generate the list of attributes about the target variable.

The attributes vary depending on whether the variable is a

simple type, an array, a field, or a function. The

- 29 -

necessary code is generated to load the address of the

target of the assignment, if that target is not directly

addressable, or if its form is not simple. At this point,

the procedure EXPRESSION is executed to process the right

side of the assignment. When EXPRESSION is complete, the

value on the top of the stack is stored in the target of the

assignment.

EXPRESSION leaves the result of its evaluation on the

top of the stack. The appropriate code is then generated to

store the result and, if desired, range checking is

performed. EXPRESSION analysis in Modula uses the same

precedence order as Pascal. The first operation is to

process a simple expression. The simple expression consists

of that part of an expression which is only divisible by

relational operators. If a relational operator is

encountered after the simple expression is processed, the

appropriate code is indicated for the relation and a second

simple expression is processed.

The procedure SIMPLEEXPRESSION, in conjunction with its

local procedures TERM and FACTOR, processes all of the

arithmetic operations inr an expression, along with the

Boolean operations AND, OR, and NOT. SIMPLEEXPRESSION also

- 30 -

enforces the arithmetic precedence rules for expression

evaluation. At each level, the variables to be operated on

are loaded onto the stack. The appropriate operation is

performed and the result left on top of the stack. Once all

of the operations are performed, which are required to

evaluate the expression, the final result of the expression

is left on top of the stack. This is true whether the

expression is to be used in an assignment or if the

expression is used as part of a relational operator.

The routine COMPOUNDSTATEMENT is a special case of a

routine STATEMENT. It groups a series of statements

together as one logical entity which is surrounded by a

BEGIN END in the simple case or one of the reserved words in

a controlled structure in the general case.

The control structures for Modula are the IF statement,

CASE statement, REPEAT statement, WHILE statement, and the

LOOP statement. Each of these is processed by its own

special routine which generates the appropriate jumps and

calls to COMPOUNDSTATEMENT. It is interesting to note in

the IF statement, that the construct ELSIF is supported.

This addition tends to minimize the level of nesting of IF

statements. The REPEAT statement and the WHILE statement

- 31 -

are identical to those which are used in Pascal, with the

exception that the WHILE statement does not require a BEGIN

after the DO to indicate a compound statement. A WHILE

statement always terminates with an END symbol. Modula has

replaced the FOR statement from Pascal with LOOP statement

which is the general case for all iterative statements. The

LOOP statement could, in fact, be used as a replacement both

for the REPEAT and WHILE statements, as they are special

cases.

- 32 -

IV. CODE GENERATION FOR MODULA

The basic form of the code-which the Modula compiler

generates comes from the Pascal P compiler system [9]. The

code is called P-code. A list of the available instructions

appears in Appendix 2. The generated code is for a

hypothetical stack machine with no registers.

All operations are performed with reference to the data

stack. Therefore, only two types of instructions, LOAD and

STORE, are necessary to reference memory locations.

Suitable derivatives of the instructions are provided to

cover all necessary memory addressing, including the

immediate loading of constants and memory addresses.

Two more basic types of instructions are needed. These

instructions are classed as stack operations and program

counter operations. Stack operators manipulate the top

value or top two values of the data stack. A stack

operation always leaves a value on the stack. A jump

instruction modifies the value of the program counter. The

jump instruction may use the value on top of the stack

(TOS), a boolean value, for a conditional jump.

Unconditional jumps leave the stack unchanged. A special

-.-- 33 -

case of the jump instruction is the procedure call.

The following describes the style of the code generated

for the statements used in MODULA. A detailed example of a

working program is presented in Appendix 3«

The code which would be generated for the assignment,

A := B + C, would be of the form:

LOAD B on stack

LOAD C on stack

ADD B + C

STORE A from stack

The code generated for a REPEAT-UNTIL construct such as

REPEAT <statement sequence> UNTIL <expression> would be:

L1: ■

code for <statement sequence>

code for <expression>

JUMP to L1 if TOS is false

The value on the top of the stack after the expression

is evaluated is always the result of the evaluation. This

- 34 -

allows the use of a jump-false instruction which may be used

after the evaluation of an expression in any of the control

structures.

The code generated for the WHILE-DO statement of the

type:

WHILE <expression> DO

<statement sequence>

END

would be:

L1:

code for <expression>

JUMP to L2 if TOS is false

code for <statement sequence>

JUMP unconditional to L1

L2:

J
This construct uses the same jump-false instruction as the

REPEAT.

The code generated for an IF-THEN statement such as:

- 35 -

IF <expression>(1) THEN

<statement sequenceXD

ELSIF <expression>(2) THEN

<statement sequence>(2)

ELSE

<statement sequence>(3)

END

would be:

code for <expression>(1)

JUMP to L1 if TOS is false

code for <statement sequenceXD

. N JUMP unconditional to L3

- L1 :

code for <expression>(2)

JUMP to L2 if TOS is false

code for <statement sequence>(2)

JUMP unconditional to L3

L2:

code for <statement sequence>(3)

L3:

The code for a LOOP statement such as:

LOOP

<statement sequenceX1)

- 36 -

WHEN <expression>

DO <statement sequence>(2)

EXIT

<statement sequence>(3)

END

would be:

L2:

L1 :

code for <statement sequenceX1)

codeyfor <expression>

JUMP to L2 if TOS is false

coae for <statement sequence>(2)

JUMP unconditional to L3

(_>

code for <statement sequence>(3)

JUMP unconditional to LI .

L3:

The last control structure is the case statement. The

generated code for a case statement is different from all of

the other control structures. The efficient implementation

of a case statement requires the use of a jump table to

generate the appropriate section of code for execution. In

order to create this table, the compiler must maintain a

- 37 -

list of all of the case labels encountered and their

locations in the code stream. After the contents of the

case statement have been processed the case table is

generated. There is one entry in the table for each case

label, with any missing labels being replaced by jumps to a

run-time error report. Neither the "else" nor "otherwise"

construct is supported. The code for the case statement:

CASE I of

1:

BEGIN

<statement sequenceXD

END;

-2:

BEGIN

^statement sequence>(2)

END;

4:

BEGIN

<statement sequence>(4)

END

-*'■ END

would be:

- 38 -

JUMP to case table L5

L1 :

code for <statement sequenceXD

JUMP Unconditional to L6

L2:

code for <statement sequence>(2)

JUMP Unconditional to L6

m:

code for <statement SequenceXD)

JUMP Unconditional to L6

L5:

JUMP Indexed based on ordinal
of case variable

JUMP to L1 for 1=1

JUMP to L2 for 1=2

JUMP to ERROR for 1=3

JUMP to m for 1 = 4

L6:

- 39 -

REFERENCES

1. N. Wirth, "Modular A Language for Modular Multiprogramming",

Software - Practice and Experience, 7, No. 1, Pgs 3-35, (1977).

2. N. Wirth, "The Use of Modula", Software-Practice and

Experience, 7, No. 1, Pgs 37-65, (1977).

3. N. Wirth, "Design and Implementation of Modula",

Software-Practice and Experience, 7, No. 1, Pgs 67-84, (1977).

4. K. Jensen and N. Wirth, "PASCAL - User Manual and Report",

Springer-Verlag, New York, (1978).

5. D. Gries, "Compiler Construction for Digital Computers", John

Wiley and Sons, Inc., New York, (1971).

6. P. Brinch Hansen, "Operating System Principles",

Prentice-Hall, Englewood Cliffs, N.J., (1973). >

7. P. Brinch Hansen, "The Architecture of Concurrent Programs",

Prentice-Hall, Englewood Cliffs, N.J., (1977).

- 40 -

8. C. A. R. Hoare, "Monitors: An Operating System Structuring

Concept", Comm. ACM, 17, 10, Pgs 549-557, (1974).

9. K. V. Nori, et al., "The PASCAL P Compiler: Implementation

Notes", Institute fur Informatik, Eidgenossische Technische

Hochschule, Zurich, Switzerland, (December 1974).

- 41 -

APPENDIX 1

BNF stands for Backus-Naur Form. This notation allows

a simple, uniform method of specifying the syntax of MODULA.

The special symbols {} and | are used. {B} indicates

that the symbol B is used zero or more times. A|B indicates

that either A or B is the symbol to be used.

BNF for MODULA

<program> ::= <module>.

<module> ::= <module heading> <define list> <use list>
<block> <indent>

<module heading> ::= interface module <ident>; |
module <ident>; |
device module <ident> <priority>;

<define list> ::= define <ident list>; | <empty>

<use list> ::= use <ident list>; i <empty>

<block> ::= {<declaration part>} <initialization part>
<statement part> end

<declaration part> ::= const <constant declaration>;
{<constant declaration>;} j
type <type declaration^

{<type declaration^} |
var <variable declaration>;

{<variable declaration^} |
<module>; |
<procedure declaration>

- i\2 -

; i <process declaration>;

<ident list> ::= <ident> {, <ident>}

<constant declaration> ::r <ldent> = <constant>

<type declaration> ::= <ident> = <type>

<ident> ::= <letter> {<letter or digit>}

<letter or digit> ::= <letter> ! <digit>

<constant> ::= <unsigned constant> | <sign> <integer>

<unsigned constant> ::= <ident> i <integer> !
'<character>
{<character>}'
{octal digitjC
{,<constant>}]
{,<subrange>}]

<octal digit>
[<constant>
[<subrange>

<sign> ::= + | -

<integer> ::= <digit> {<digit>} ! <octal digit>
{<octal digit>}B

<subrange> ::= <constant> : <co^nstant>

<type> ::= <ident> ! [<ident> {,<ident>}] i
array <subrange> {,<subrange>} of type |
record <fieldlist> end

<fieldlist> ::= <record section> {;<record section>}

<record section> ::= <ident> {,<ident>} : <type> !
<empty>

<variable declaration> ::= <ident> {,<ident>} : <type>

<procedure declaration> ::= <procedure heading> <block>
<ident>

<procedure heading> ::= procedure <ident>; !
procedure <ident>
<formal parameters>; !
procedure <ident> : <ident>; i
procedure <ident>
<formal parameters> :

- 13 -

<ident>;
procedure <ident> ; <uselist>
procedure <ident>
<formal parameters>;
<uselist> i
procedure <ident> : <ident>;
<uselist> !
procedure <ident>
<formal parameters> :
<ident>; <uselist>

<formal parameters> ::= <section> {;<section>}

<section> ::= <parameter group> !
var <parameter group>
const <parameter group>

<parameter group> ::= <ident> {,<ident>} :
<formal type>

<formal type> ::= <ident> I array <indextypes> of
<ident>

<index types> ::= <ident list>

<process declaration> ::= <process heading>
<uselist> <block> <ident>

<process heading> ::= process <ident>; !
process <ident>
<formal parameters>; |
process <ident> <intvector>; i
process <ident>
<formal parameters>
<intvector>;

<intvector> ::= [<integer>]

<initialization part> ::= value <ident> =
<initial value>
{<ident> = <initial value>}

<initial value> : :,= <constant> i [<repetition>]
<initial value> i
(<initial value>
{,<initial value>})

<repetition> ::= <integer> ! <ident>

- HH -

<statement part> ::= begin <statement sequence>

<statement sequence> ::= <statement> {;<statement>}

<statement> ::= <assignment> | <procedure call> !
<process statement> ! <if statement> !
<case statement> i <while statements i
<repeat statement> i <loop statement> i
<with statement>

<assignment> ::= <variable> := <expression>

<procedure call> ::= <ident> | <ident> <parameter list>

<parameter list> ::= (<parameter> {,<parameter>})

<parameter> ::= <expression> ! <variable>

<process statement> ::= <ident> j <ident>
<parameter list>

<if statement> ::= if <expression> then
<statement sequence>
<elsif part> <else part> end

<elsif part> ::= elsif <expression> then
<statement sequence>
<elsif part> |
<empty>

<else part> ::= else <statement sequence> i <empty>

<case statement> ::= case <expression> of
<case list element>
{; <case list element>} end

<case list element> ::= <constant> {,<constant>}
: begin
<statement sequence> end

<while statement> ::= while <expression> do
<statement sequence>
end

<repeat statement> ::= repeat <statement sequence>
until <expression>

- M5 -

<loop statements ::= loop <statement sequence>
<when part> end

<when part> := when <expression> exit
<statement sequence>
<when part> ! when <expression> do
<statement sequence> exit
<statement sequence>
<when part> ! <empty>

<with statement> ::= with <variable> do
<statement sequence>
end

<variable> ::= <entire variable> I <component variable>

<entire variable> ::= <ident>

<component variable> ::= <indexed variable> 1
<field designator>

<indexed variable> ::= <array variable> [<expression>
{,<expression>] i <bit variable>
[<expression>]

<array variable> ::= <variable>

<bit variable> ::= <variable>

<field designator> ::= <record variable> .
<field identifiers

<record variable> ::= <variable>

<field identifier> ::= <ident>

<expression> ::= <simple expression> !
<simple expression>
<relational operator>
<simple expression>

<relational operator> ::== j <> j <={<}> j >=

<simple expression> ::= <term> j <sign> <term> |
<simple expression>
<adding operator>
<term>

- 46 -

<adding operator> ::= + | - | or | xor

<term> ::= <factor> | <term> <multiplying operator>
<factor>

<multiplying operator> ::= * | / | div | mod | and

<factor> ::= <unsigned constant> ! <variable> i
<function designator> | (<expression>)
I not <factor>

<function designator> ::= <ident> | <ident>
<parameter list>

- 47 -

APPENDIX 2

P-Code Instruction Mnemonics

MNEMONIC FUNCTION

ABI produce absolute value of integer

ADI produce sum of integers

ADR address of variable passed

AMG bit specified true

AND perform Boolean 'and'

AWT waiting on signal

CBT clear bit specified

CHK check that the top of'stack is in range

CHR convert integer to character

CSP • call standard procedure

CUP call user procedure

DEC decrement top of stack by amount

DVI integer divide

ENT enter block

EQU test for equality

FJP jump if stack top false to label

GEQ test for greater than or equal to

CRT test for greater than

HGH high index bound of array passed

- 118 -

INC increment top of stack by amount

IND indexed fetch

IOR perform Boolean 'inclusive or'

IXA compute indexed address

LAO load base-level address

LCA load address of constant

LLA load address

LDC load constant

LDO load contents of base-level
address (global variable)

LEQ test for less than or equal to

LES test for less than

LOD load contents of address

LOW low index bound of array passed

MOD modulus

MOV moves the number of storage units
given

MPI multiply integers

NEQ test for not equal

NGI negate integer

NOT perform Boolean not

OFF bit set empty

ODD test for odd

ORD convert to integer

RET return from block

- 219 -

SBI

SBT

SGS

SQI

SRO

STO

STP

STR

TBT

UJC

UJP

UNI

XJP

perform integer subtraction

set bit specified

generate singleton set

square integer

store at base-level address

store indirect

stop

store

test bit specified

error in case statement-abort

unconditional jump to label
given by Q

perform union of sets

indexed jump; jump to offset
+ top of stack

- 50 -

APPENDIX 3

Sample Program

MODULE LINEINPUT;
DEFINE READ, NEWLINE, NEWFILE, EOLN, EOF, LNO;
USE INCHR, OUTCHR;
CONST LF = 12C; CR = 15C; FS = 34C;
VAR

LNO: INTEGER; (*LINE NUMBER*)
CH: CHAR; ("LAST CHARACTER READ*)
EOF, EOLN: BOOLEAN;

PROCEDURE NEWFILE;
BEGIN

IF NOT EOF THEN
REPEAT INCHR(CH) UNTIL CH = FS;

END;
EOF := FALSE; LNO := 0

END NEWFILE;

PROCEDURE NEWLINE;
BEGIN

IF NOT EOLN THEN
REPEAT INCHR(CH) UNTIL CH = LF;
OUTCHR(CH);OUTCHR(LF)

END;
EOLN := FALSE; LNO := LNO + 1

END NEWLINE;

.PROCEDURE READ(VAR X: CHAR);
BEGIN

LOOP INCHR(CH);OUTCHR(CH);
WHEN CH >= • • DO X := CH EXIT
WHEN CH r LF DO X := ' •; EOLN := TRUE EXIT
WHEN CH = FS DO X := ' •; EOLN := TRUE; EOF := TRUE

EXIT
END

END READ;
BEGIN

EOF := TRUE; EOLN := TRUE
END LINEINPUT.

- 51 -

Generated Code for Sample Program

(•entry to Ne'wfile*) L5

ENT 1 L6

ENT 2 L7

LDOB 8

NOT

FJP

T Q

L8

LAO 6

CUP 1 L3

LDOC 6

LDCC •FS'

EQUC

FJP L9

L8

LDCB " 0
v

SROB 8 ■

LDCI 0

SROI 5

RET

L6 0

L7 8

(*load value in EOF«)

(•negate TOS*)

(•jump if TOS false*)

(•load address of ch*)

(•call Inchr*)

(•load contents of ch*)

(•load constant 'FS'*)

(•test top 2 values on
stack for equality*)

(*jump if TOS false*)

(*load boolean constant
'false'*)

(•store boolean TOS EOF*)

(*load integer constant 0*)

(*store integer TOS at LNO*)

(•return*)

(•segment and stack maximum size*)

- 52 -

L10

ENT 1 L11

ENT 2 L12

LDOB 7

NOT

FJP L13

Llfl

LAO 6

CUP 1 L3

LDOC 6

LDCC »CR'

EQUC

FJP L11

LAO 6

CUP 1 L4

LDCC »CR»

CUP 1 m

L13

LDCB 0

SROB 7

LDOI 5

LDCI 1

ADI

(•entry to Newline*)

(*load value in EOLN*)

(•negate TOS*)

(•jump if TOS false*)

(•load address of ch*)

(•call Inchr*)

(•load value in CH*)

(•load constant 'CR'*)

(•test top 2 values on
stack for equality*)

(•jump if TOS false*)

(*load address of CH*)

(•call Oi3tchr»)

(•load constant 'CR1*)

(•call Outchr*)

(•load constant 'false'*)

(*store boolean TOS in
EOLN*)

(*load value of LNO*)

(*load constant 1*)

(*integer add of top 2
values on stack*)

- 53 -

SROI 5 ("store integer TOS in LNO")

RET ("return")

L11 = 0 ("segment and stack maximum size*)

L12 = 10

L15 ("entry to Read")

ENT 1 L16"

ENT 2 L17

L18

LAO 6 ("load address of CH")

CUP 1 L3 ("call Inchr")

LAO 6 ("load address of CH")

CUP 1 m ("call Outchr")

LDOC 6 ("load value of CH")

LDCC ' » ("load constant • •«)

GEQC ("test top 2 values on
stack for greater than or equal")

FJP L20 ("jump if TOS false")

LODA 0 5 ("load address of X")

LDOC 6 ("load vaue of CH")

STOC ' ("store TOS in X")

UJP L19 ("jump to label")

L20

LDOC 6 ("load value of CH")

LDCC 'LF' ("load constant •LF'")

- 54 -

EQUC (*test top 2 values of
stack for equality*)

(•jump if TOS false*)

(*load address of X*)

(*load constant ' •*)

(*store TOS in X*)

(*load boolean constant 'true'*)

(*store TOS in EOLN*)

(*jump to label*)

(*load value of CH*)

(*load constant 'FS1*)

(*test top 2 values on
stack for equality*)

(*jump if TOS false*)

(*load address of X*)

(*load constant • '*)

(*store TOS in X*)

(*load boolean constant 'true'*)

(*store TOS in EOLN*)

(*load boolean constant 'true'*)

(*store TOS in EOF*)

(*jump to label*)

L18 (*jump to label*)

FJP L21

LODA 0 5

LDCC • -1

STOC

LDCB 1

SROB 7

UJP L19

L21

LDOC 6

LDCC •FS'

EQUC

FJP L22

LODA 0 5

LDCC » i

STOC

LDCB 1

SROB 7

LDCB 1

SROB 8

UJP L19

L22

UJP L18

- 55 -

L19

RET

LI 6 = 1

L17 19

L23

ENT 1 L24

ENT 2 . L25

LDCB 1

SROB 8

LDCB 1

SROB 7

RET 0

STP

(*return*)

(•segment and stack maximum size*)

(*load boolean constant 'true'*)

(*store TOS in EOF*)

(*load boolean constant 'true'*)

(*store TOS in EOLN*)

(*return to monitor*)

(*stop*)

- 56 -

VIXA

John William Iobst was born in Allentown, Pennsylvania to Ralph

William and Grace Marie (Baugh) Iobst on December 31, 1953• He

grew up in Emmaus, Pennsylvania and attended Emmaus High School.

A Bachelor of Science degree in Chemistry was earned from

Moravian College in Bethlehem, Pennsylvania in 1975.

- 57 -

	Lehigh University
	Lehigh Preserve
	1-1-1979

	An experimental implementation of the programming language modula.
	John William Iobst
	Recommended Citation

	tmp.1451580486.pdf.Jk8TI

