
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1979

An implementation of a coroutine mechanism in a
block structured language.
Allan R. Frank

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Frank, Allan R., "An implementation of a coroutine mechanism in a block structured language." (1979). Theses and Dissertations. Paper
1864.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F1864&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1864&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1864&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=preserve.lehigh.edu%2Fetd%2F1864&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/1864?utm_source=preserve.lehigh.edu%2Fetd%2F1864&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

AN IMPLEMENTATION OF A CC8ROUTINE MECHANISM

IN A BLOCK STRUCTURED LANGUAGE

by

Allan R. Frank

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Computer Science

Lehigh University

1979

ProQuest Number: EP76136

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest

ProQuest EP76136

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

CERTIFICATE OF APPROVAL

This thesis is accepted and approved in partial fulfillment
of the requirements for the degree of Master of Science.

Oe.bi'.
(date)

Professor in Charge

Chairman of the Division

-11-

TABLE OF CONTENTS

SECTION DESCRIPTION PAGE

ABSTRACT 1

I. INTRODUCTION 4

II. COROUTINES — A GENERAL OVERVIEW 7

III. OBJECTIVES OF IMPLEMENTATION 11

IV. SYNTAX AND SCOPE 13

A. Syntax Overview
B. Colink
C. Coproc
D. Resume
E. Detach
F. Newtop

13
15
24
28
32
35

V. IMPLEMENTATION DESCRIPTION —
PASCAL-S MODIFICATIONS 39

A. PASCAL-S Overview 39

1. Symbol Table
2. Run-time Stack

41
44

B. Coroutine Implementation 46

1. Code Generation 46
2. Stack/Symbol Table Enhancements 51
3. P-Code Actions 61

VI. POTENTIAL FOR EXPANSION 67

LIST OF REFERENCES 73

APPENDIX A — PASCAL-S BIPLEMENTATION
SYNTAX DIAGRAMS 74

BIOGRAPHY OF AUTHOR 82

-iii-

Title: An Implementation Of A Coroutine Mechanism In A Block
Structured Language

Author: Allan R. Frank

ABSTRACT

The purpose of this paper is to document and discuss an

implementation of a coroutine mechanism in a block-structured

language. PASCAL-S was utilized as the language base. Though

it is only a subset of the more powerful block-structured

language, PASCAL, the PASCAL-S coroutine implementation effort

was facilitated greatly by the relative simplicity of the com-

piler structure while still providing a sufficiently powerful

repertoire of features.

Specifically, the implementation effort consisted of identify-

ing, designing, implementing, and testing the syntactic and seman-

tic constructs necessary to support a coroutine capability. The

language additions/modifications encompassed five language ex-

tentions; COLINK declaration, COPROC definition, RESUME state-

ment, DETACH statement, and NEWIDP statement.

The COLINK declaration is placed in a program following any

appropriate CONST, TYPE, or VAR declarations. For example, just

as a VAR declaration delineates those identifiers which re-

present program variables, so a COLINK declaration delineates

coroutines.

The coroutines look much like standard PASCAL procedures ex-

cept, instead of being identified by the keyword PROCEDURE, they

- 1 - '

are preceeded by the word CQPROC. For purposes of the PASCAL-S

implementation, any reference to OGPROC is synonomous with

coroutine.

There are, of course, very critical syntactic and semantic

differences between a PROCEDURE and a CQPROC. These differences,

as well as attendant similarities are discussed within the body

of the paper.

The remaining three control structures, RESUME, DETACH, and

NEWIOP, are all statements added to the PASCAL-S repertoire.

They apply specifically to manipulation and control of COPROC

(coroutine) actions. The RESUME verb is very similar to a pro-

cedure call except that it initiates the invocation of a COPROC

from the body of another COPROC. This is the primary means of

achieving coroutine logic flow. Here, instead of always entering

at the top of its code, a COPROC, when invoked by a RESUME, will

begin execution at the point of its last exit.

The DETACH statement is an artificial means of transferring

control from a coroutine cycle (COPROC) to the original calling

procedure. This is much like a subroutine return in FORTRAN, or

a natural exit from a called procedure in PASCAL except in this

case, the DETACH allows an intermediate exit at any point in a

COPROC. Transfer of control is not to the calling COPROC which

may have issued the RESUME previously, but rather to the corou-

tine procedure body which invoked the COPROC originally.

- 2 -

Finally, the NEWTQP statement allows the calling program to

reset any particular OCPROC entry point back to the physical

beginning of its code. In many cases, it may be desirable to

ensure that a subsequent CQPRQC activation begins execution at

the top of its program code (much like a call to a subroutine)

rather than some indeterminate point. Upon issuing a DETACH from

a COPROC, its new entry point is set to the point of the inter-

mediate exit. Invoking a NEWTOP statement performs a selective

reset of a COPROC entry point.

- 3 -

I. INTRODUCTION

The purpose of this paper is to document and discuss an

implementation of a coroutine mechanism in a block-structured

language. In order to facilitate the achievement of the

implementation objectives, the choice was made to utilize a min-

imal PASCAL subset embodied in the PASCAL-S interpreter C5J. This

language subset includes many of the features of the larger com-

piler, however it does not include such features as SETS,

variant RECORDS, POINTERS, GOTOs, PACKED ARRAYs, and the like.

In addition, PASCAL-S is limited to such data types as INTEGER,

REAL, BOOLEAN, and CHARACTER. The major benefit of utilizing

this PASCAL implementation is the simplicity of its compiling

actions, P-machine pseudo-code generation and interpretation.

The implementation effort consisted of identifying, design-

ing, implementing, and testing the syntactic and semantic con-

structs comprising the necessary elements of the coroutine

mechanisms. This report serves to record the results of these

efforts. For purposes of presentation, the following topical

headings appear in subsequent sections of this paper:

- 4 -

II. OOBOOTINES — A GENERAL OVERVIEW -

Here, a brief discussion of the nature of

coroutine structures is given, with a

specific focus on describing both its

practical and theoretical qualities as

they may relate to implementation on

sequential automata. The description of

coroutines will provide the basis of under-

standing from which the remainder of the

paper is based.

III. OBJECTIVES OF IMPLEMENTATION -

This section will delineate the specific

objectives relative to the project to

implement coroutine structures in

PASCAL-S. These objectives or goals

were formulated in order to provide a

set of broad guidelines useful in the

planning and design stages of the pro-

ject.

TV. SYNTAX AND SCOPE -

This section provides a detailed description

of each of the syntactic structures added

to the PASCAL-S interpreter which were

necessary to implement the coroutine mech-

anism. In addition to a comprehensive

explanation of language extensions, syntax,

and use, the scope rules are also defined

- 5 -

in order to provide potential users with

an indepth understanding of the nature and

limitations of the new features.

• V. IMPLEMENTATION DESCRIPTION — PASCAL-S
MODIFICATIONS -

Following the comprehensive explanation of the

necessary language extensions as presented in

the previous Section IV, this section provides

a detailed insight into the nature and extent of

programmed changes/additions to the PASCAL-S

interpreter. Here, an extensive description

of the physical methods of achieving the corou-

tine features, as presented, is given, and thus

provides the necessary documentation from which

future enhancements to the language structures

can be made without disturbing the concepts and

methods employed in this projecta

• VI. POTENTIAL FOR EXPANSION -

In this section a brief exposition is presented

which discusses the practicality and applica^

bility of future enhancements to this present

PASCAL-S coroutine implementation project.

Special attention is given to the limitations

of the coroutine extensions developed as a

result of this project,'and insight is

given into the nature of the effort required

in order to further enhance these structures.

- 6 -

II. COROUTINES — A GENERAL OVERVIEW

The notion of a coroutine has been generally attributed to

the works of Conway QJ- Coroutines are modified subroutines with

the capability of maintaining intermediate entry and exit points.

Normally, a subroutine is a sequence of code which is called by the

main program body. Entry to the subroutine always occurs at the

top of its code (first line of code). Regardless of what point

the subroutine exits and transfers control back to the calling pro-

gram, subsequent calls to it will always cause re-entry to be made

at its top of code.

A^coroutine, on the other hand "remembers" the point at which

it was last exited. Subsequent calls to a coroutine will cause

re-entry to the code after the point it had last been exited.

Thus, the first time a coroutine is called, it performs exactly

like a subroutine; it begins execution at the top of its code.

However, when it is exited, it records the place at which it should

next resume execution. Should it again be invoked, transfer of

control will proceed to the point at which it has recorded the

previous intermediate exit. If, previously, the exit had been at

its natural end point, a subsequent call to the coroutine would

again cause execution to begin at the top of its code.

- 7 -

FIGURE 2.1

Program Body Coroutine

Figure 2.1 illustrates the coroutine actions described previously.

The initial call to a coroutine (a) causes entry at the physical

top of its code. Upon an intermediate exit (b) control is trans-

ferred back to the point after the initial call. Finally, a sub-

sequent call to the coroutine (c) causes re-entry to occur at the

point after the last intermediate exit.

As noted by Conway, the coroutine concept may be utilized for

any program which can be shown to be separable. A discussion of

separability is outside the scope of this project; however it is

important to note that under this condition, separable program

modules can be translated into coroutines. These coroutines then

interact as if they are each the main program calling other sub-

routines (coroutines).

Developing further the coroutine concept in a block-structured

environment, Wang and Dahl (2) pointed out that coroutines could

be used to simulate parallel processes even though the mechanism

- 8 -

itself is implemented in a sequential program. Their discussion

of the "quasi-parallel" Simula 67 language was the key to the

development of the PASCAL-S implementation to be discussed sub-

sequently .

Coroutines can be considered to be sequential processes

performed in parallel. This attribute brings with it several

potential implications. First, if a program can be broken into

a set of distinct coroutines, it could be implemented on a set of

parallel processing computers, each executing a specific coroutine.

A sufficiently comprehensive compiler could be developed to com-

pile individual coroutine modules for the individual processors.

Comnunication would be accomplished via a controlled data struc-

ture which ensures the proper synchronization of the coroutine

modules.

The second implication of the quasi-parallel nature of

coroutines is their ability to interact in such a way as to

facilitate the implementation of multi-pass programs using a

single-pass structure. This capability was amply demonstrated

by Conway in his design of a one-pass COBOL compiler which was

built around a number of coroutine segments.

The coroutine implementation developed in the block-struc-

tured language PASCAL-S contains the necessary constructs to per-

form coroutine actions. The design was based upon the Conway,

- 9 -

and Wang and Dahl works which describe in detail, the theory and

use of coroutine structures. Hopefully, subsequent experimenta-

tion with this new coroutine implementation will provide further

insights into the practicality of coroutines for a variety of

algorithmic designs.

- 10 -

III. OBJECTIVES OF IMPLEMENTATION

In order to study the applicability and practicality of

utilizing coroutine mechanisms in a block-structured language as

universally supported as PASCAL, this project was designed to

provide a relatively straight-forward and flexible means for

application experimentation. Specifically, the coroutine augmen-

tation of the PASCAL-S interepreter was intended to achieve the

following general objectives:

• Definition of appropriate syntactic structures

necessary for effective implementation

utilizing formats and language syntax com-

patable with that currently supported by the

PASCAL-S interpreter;

• Definition of appropriate procedural and data

scope necessary for effective implementation

while maintaining the scope rules currently

supported by the PASCAL-S interpreter;

• Support of all language facilities currently

implemented within the PASCAL-S interpreter:

• Use of implementation techniques (i.e. programm-

ing) which can be readily modified to facilitate

the future expansion of any coroutine features

implemented in this current version; and

- 11 -

Design of all program code'necessary to support

the coroutine features in a manner which ensures

that the aesthetic balance of current PASCAL-S

program code is not disturbed.

- 12 -

IV. SYNTAX AND SCOPE

A. Syntax Overview

The purpose of this section is to discuss in detail the

syntactic structure of the coroutine implementation performed upon

the PASCAL-S interpreter. This discussion will center on a

description of the various syntax enhancements/modifications made

to the translator. In addition, where appropriate, the scope rules

and limitations are identified. Appendix A details in an illustra-

tive format the syntax diagrams for this enhanced PASCAL-S language.

Specifically, this section documents the nature of the lan-

guage additions identified as follows:

• OOLINK

• COPROC

• RESUME

• DETACH

• NEWTOP

The OOLINK declaration is placed in a program following any .

appropriate CONST,TYPE, or VAR declarations. For example, just

as aVAR declaration delineates those identifiers which represent

program variables, so a OOLINK declaration delineates coroutines.

- 13 -

The coroutines look much like standard PASCAL procedures

except, instead of being identified by the keyword PROCEDURE,

they are preceded by the work COPROC. For purposes of the

PASCAL-S implementation, any reference to COPROC is synonomous

with coroutine.

There are, of course, very critical syntactic and semantic

defferences between a PROCEDURE and a COPROC. These differences,

as well as attendant similarities will be discussed in a latter

subsection.

The remaining three control structures, RESUME, DETACH, and

NEWTOP, are all statements added to the PASCAL-S repertoire. They

apply specifically to manipulation and control of COPROC

(coroutine) actions. The RESUME verb is very similar to a pro-

cedure call except that it initiates the invocation of a COPROC

from the body of another COPROC. This is the primary means of

achieving coroutine logic flow. Here, instead of always entering

at the top of its code, a COPROC, when invoked by a RESUME, will

begin execution at the point of its last exit.

The DETACH statement is an artificial means of transferring

control from a coroutine cycle (COPROC) to the original calling

procedure. This is much like a subroutine return in FORTRAN, or

a natural exit from a called procedure in PASCAL except in this

case, the DETACH allows an intermediate exit at any point in a

- 14 -

OQPROC. Transfer of control is not to the calling COPROC which

may have issued the RESUME previously, but rather to the coroutine

procedure body which invoked the OQPROC originally.

Finally, the NEWTOP statement allows the calling program

to reset any particular OQPROC entry point back to the physical

beginning of its code. This would be useful since upon issuing a

DETACH from a OQPROC, its new entry point is set to the point of

the intermediate exit. In many cases, it may be desirable to en-

sure that a subsequent OQPROC activation begins execution at the

top of its program code (much like a call to a subroutine) rather

than some indeterminate point. Invoking a NEWIOP statement per-

forms a selective reset of a OQPROC entry point.

The remainder of this section will describe in detail the

nature and limitations of the five previously cited syntactic

additions to the PASCAL-S interpreter. It is these five new-

declaration and control verbs which provide the necessary mech-

anisms to support a coroutine structure within PASCAL-S.

B. COLINK

As described briefly previously, the OOLINK declaration is

intended to identify a OQPROC prior to its formal declaration.

- 15 -

This is similar to declaring variables (VAR) prior to their use.

In the case of a OOPRDC, this requirement eliminates the need for

a complicated forward referencing mechanism which would have been

necessary to resolve addressing relative to a OOPROC referencing

a neighboring CQPROC further down in the program.

Syntactically, a OOLINK declaration identifies all OOPROC

bodies within the subsequent block activation level. This is

accomplished by inserting the following declaration for each OOPROC:

OOLINK coprocname-;

coprocnamep;

coprocname^;

Each coprocname is the symbolic identifier to be used for the

OOPROC declarations to follow. Appendix A contains the syntax

diagram for the OOLINK declaration.

The OOLINK declaration is contained in the declaration part

of the PASCAL-S program and/or within its constituent procedures

and coroutines. It would only be used if a OOPROC is to be

utilized. If none are to be used, the OOLINK declaration section

must not be included.

The standard PASCAL-S implementation has no forward referenc-

ing capability. This in itself impacts program development in

- 16-

only a few selective cases. Due to the one-pass nature of the

PASCAL-S interpreter's compiling actions, a procedure must have

been identified and catalogued in the appropriate symbol table(s)

prior to reference by a call to that procedure.

FIGURE 4.1

PROGRAM Test(output);

VAR
I: Integer;

(1) PROCEDURE Adder;

BEGIN
I: = I + 2;

END(*Adder*):

BEGIN

I: =10;

Writeln(^ here is a number f, I);

(2) Adder;

WritelnC?4 here is 2 + that number f, I);

END(*main*X

Figure 4.1 illustrates a normal PASCAL-S program where a procedure

"Adder" is subsequently referenced in the main body of the program.

PASCAL-S will have entered the procedure name (1) in its symbol

table prior to its compiling the reference to it (2). This is

possible due to the one-pass downward left-right direction of

compiling actions.

- 17 -

In the case of the OOPROC implementation, one OCPROC must

reference another at the same block level. This is illustrated

in Figure 4.2 below.

FIGURE 4.2

OOPROC A;

BEGIN

(1) RESUME(B);

END(*A*);

(2) OOPROC B;

BEGIN

RESUME(A);

END(*B*);

As indicated, within the body of OOPROC A, a reference (1) is

made to OOPROC B, before OOPROC B has been declared to the com-

piler (2). This type of forward referencing will always occur

when OOPROC to OOPROC communication is used.

To alleviate this, the COLINK declaration must be used to

explicitly identify any subsequent OOPROC to appear in the follow-

ing block activation level. Figure 4.3 illustrates the use of

this COLINK feature.

-18 -

FIGURE 4.3

PROGRAM Test;

VAR

I: Integer;

COLINK

A;

B;

OOPROC A;

BEGIN

RESUME(B);
*

END(*A*);

OOPROC B;

BEGIN

RESUME(A);

END(*B*);

BEGIN(*MAIN*)

A;
*

END(*MAIN*)-

The COLINK declaration provides a simple mechanism to

facilitate the forward referencing of OOPROC B (within OOPROC A),

prior to the OOPROC declaration.

The explicit definition of a OOPROC not only provides a

means to jjiplement forward referencing, but it also facilitates

- 19 -

the validation of proper scope relations between a OQPROC and

PROCEDURE body. As will be discussed in greater detail in the

subsequent subsection on COPROC declarations, COPROC to COPROC

communication is limited to direct interaction at the same block

level. In other words, one COPROC cannot communicate as a corou-

tine with another COPROC which is nested within the first. They

must both be at the same activation level; whereas nesting would

imply that the first coroutine would have a level lower than the

second.

FIGURE 4.4

T,PVPT ? PROCEDURE X;

VAR

JL I: Integer

COLINK

Y;

Z;
N + 1 COPROC Y;

BEGIN

END(*Y*);

N + X COPROC Z;

BEGIN

BEGIN
JL

END(*X*);

- 20 -

Figure 4.4 illustrates a procedure which contains two OQPROC

declarations. Notice that the OOLINK definition appears in the

declaration body of the parent procedure (Level N), identifying

those OQPROC bodies existing at level N+l.

FIGURE 4.5

level

PROCEDURE X • (N)

OQPROC Z (N+l')

A tree diagram can be utilized to generalize the scope legality

of OOLINK declarations. Figure 4.5 graphically depicts the scope

relation of the program in Figure 4.4. The PROCEDURE X (parent

node), contains two children nodes, each of which is a COPROC.

Rule: The OOLINK declaration must appear within the declara-

tion body of the parent node.

- 21 -

FIGURE 4.6

PROCEDURE X

COPROC Z

Figure 4.6 illustrates a tree structure representing a

hypothetical PROCEDURE X which contains four COPROC bodies

(Y, Z, F, G). However, COPROC F and G are both contained in

COPROC Y. In this case, applying the rule underlined previously,

a COLINK declaration would be made in PROCEDURE X identifying

COPROC Y and Z. Also, a COLINK declaration would be made in

COPROC Y identifying COPROC F and G, (Y is the parent of F and G).

Figure 4.7 is a program translation of the tree structure

represented in Figure 4.6, and illustrates the proper application

of COLINK declarations (see following page).

- 22 -

FIGURE 4.7

PROCEDURE X;

VAR

I: Integer;

COLINK Y; Z;

OOPROC Y;

COLINK F: G:

OOPROC F;

BEGIN

END(*F*);

OOPROC G;

BEGIN

END(*F*);

BEGIN

END(*Y*);

OOPROC Z;

BEGIN

•

Efc22(*Z*);

BEGIN

KNT)(*X*);

- 23 -

C. OOPROC

The control structure which in itself represents the implemen-

tation of coroutines in PASCAL-S is embodied in the variant proce-

dure type OOPROC. A OQPROC is very similar to a standard PASCAL

procedure, and in fact, takes very much the same syntactic format

of a procedure with only a few very distinct exceptions. Appendix

A contains the syntax diagram for a OOPROC declaration. Semanti-

cally, a OOPROC differs greatly from a normal procedure with its

ability to exit and re-enter at intermediate points within its

procedure body. Normally, every call to a PASCAL procedure will

always invoke execution of its code at the top of the procedure

body and exit at its natural bottom. On the other hand, a corou-

tine-like procedure (OOPROC) will begin execution at the top of

its code only on its initial call. Subsequent calls to it

(via a RESUME) will cause execution to begin at the line after

its last point of exit.

FIGURE 4.8

OOPROC X; OOPROC Y;

BEGIN (1)^ ̂~+ BEGIN

RESUMECY); *" (2) RESUMEfX):
■ <

RESUMECY); — (3) EMX*Y*);

END(*X*);

- 24 -

Figure 4.8 above provides an illustrative exanple of twD OQPROC

bodies comnunicating with each other. The initial call by ODPROC

X to OQPROC Y via the RESUME statement (1) invokes entry at the

top of COPROC Y. The subsequent call to X from within Y (2)

re-enters X at the last point of its intermediate exit (after

the first RESUME). Finally, the subsequent RESUME of Y (3) will

cause entry at the point of its last exit.

An individual OQPROC has many of the same properties as a

PROCEDURE including:

• Nesting

- A COPROC may be nested within a PROCEDURE

- A COPROC may be nested within another COPROC

- A COPROC may contain a PROCEDURE nested within it

• Calling

- A COPROC may call another COPROC (at same

level via RESUME)

- A COPROC may call a PROCEDURE (via normal

procedure call)

- A COPROC may be called by the PROCEDURE

and/or COPROC which contains it (via

normal procedure call)

- 25 -

• Statements

- A OQPROC may contain any statement or

combination of statements that could be

found in PROCEDURE bodies.

However, a COPROC differs from the standard PROCEDURE in that it

does not allow the following constructs to be defined within it:

• Parameter List

• TYPE declaration

• VAR declaration

• CONST declaration

• Recursive call

In general, as should be evident from the exclusions noted above,

the current COPROC implementation does not allow the definition

of any type of local variables (however, this does not preclude

a procedure nested within it from declaring variables local to

it) This restriction limits the interaction between COPROC

procedure bodies to the manipulation of data elements defined

globally (or within the procedure body containing them).

This method of data addressing significantly reduces the

overhead which would have been required if local variables had

to be continually swapped on the run-time stack. The subsequent

section discussing the specifics of the PASCAL-S implementation

- 26 -

provides further insight into the mechanism of run-time overhead. <•

For purposes of explanation, it may be useful to further

discuss the communication between a OOPROC and a calling PROCEDURE.

Coroutine-like actions are invoked only between two or more

neighboring CQPROC bodies. The communication between the group

of inter-related CQPROC bodies can be conveniently called a "cycle",

FIGURE 4.9

COPROC CYCLE

Figure 4.9 graphically illustrates a COPROC cycle. This cycle

actually represents the inter-COPROC calls initiated via RESUME

statements.

In order to initiate a cycle, a COPROC must initially be

called by the main program or by the PROCEDURE/COPROC/FUNCTION

containing it. This initial call is performed like a standard

procedure call; simply invoke the COPROC name. When any individual

COPROC in the cycle reaches its natural exit point, END, transfer

of control will be returned to the point after this initial call.

- 27 -

Thus, if only one OOPROC were defined in a cycle, it would func-

tion exactly like a PROCEDURE when it is called using the stand-

ard PASCAL procedure call syntax.

D. RESUME

The RESUME statement is the principle means of initiating

coroutine actions. When invoked within a OOPROC it transfers

control to the respective entry point of the selected OOPROC

within the cycle. The statement immediately following the RESUME

becomes the new entry point for that OOPROC. A subsequent call

(RESUME) to it by another OOPROC will transfer control to this

new entry point. Thus, OOPROC to OOPROC cannunication via the

RESUME operation is the sole means of creating coroutine actions.

Appendix A illustrates the syntax flow of a RESUME statement.

In addition, the following rules apply to its use:

1. The OOPROC object of a RESUME must

have been declared by the same

COLINK declaration as the OOPROC

in which the RESUME resides.

2. Only a OOPROC can be called via a

RESUME statement; A PROCEDURE or

FUNCTION is invoked using the

standard PASCAL call.

- 28 -

Rule (1) further enforces the restriction that for OOPROC to

OOPROC communication each OOPROC must be defined at the same

block level.

FIGURE 4.10

Figure 4.10 illustrates a scope diagram which is useful in

summarizing the legal scope relations of OOPROC and PROCEDURE/

FUNCTION interaction. Under one scenario, "a", "b", "c", and

"f" are PROCEDURE definitions with "d", "e'\ ng", and "h"

defined as OOPROC bodies. Since the above example includes

nesting, the following chart summarizes the legal scope of

inter-COPROC communication:

- 29 -

COPROC can RESUME CQPROC

d e

e d

g h

h g

In addition, the OQPROC bodies can call the following procedures

via the standard PASCAL call:

COPROC can call PROCEDURE

d a,b,c

e a,b,c

f a,b,c,f

g a,b,c,f

It should be pointed out that even though each of the COPROC

definitions indicated above can call PROCEDURE bodies a,b,

and c, such an occurrence could lead to recursion. This would

be possible since the OQPROC bodies are nested within those

procedures. Though the current implementation will allow a

recursive call, anomolous results may result if it causes

re-entry to a COPROC. This is because COPROC entry/exit points

are not stored on a stack, but rather within a static symbol table

entry. The subsequent section on the technical implementation

- 30 -

approach will shed further light on this limitation.

The following summary depicts the legal PROCEDURE to OOPROC

calls which are legal within the context of the previous example:

PROCEDURE can call OOPROC

a

b

c d,e

f

In this case,"c" is the only PROCEDURE allowed to access a

OOPROC. This applies to a previously delineated rule which

stated that only the parent procedure containing OOPROC(s) may

invoke the cycle. In this case, OOPROC "d" and OOPROC "e" are

the children of PROCEDURE "c".

There are several OOLINK declarations which would appear

if the previous Figure 4.10 were to be programmed. The follow-

ing summary delineates the required declarations:

in PROCEDURE/COPROC declare OOLINK

a

b

c d;e;

d g;h;

e

f

g
- 31 -

The above exanple may be beneficial in relating the previous

sub-section describing the OOLINK declaration with the other

PASCAL-S scope definitions.

E. DETACH

The DETACH statement is a mechanism included.in this

PASCAL-S implementation which facilitates transfer of control

from a COPROC cycle to the procedure body which invoked the

initial call to that cycle. Its properties are quite similar

to that of a natural COPROC exit. When aCOPROC in a cycle

reaches its natural END, control transfers to the point in

the procedure body which initiated the cycle. A DETACH can

be placed anywhere within the body of a COPROC. Upon en-

countering the DETACH, control is transferred to the point

aftev the initial call in the applicable procedure body.

As should be evident, the DETACH imitates the semantics

of the final END in a COPROC. However, there is one important

difference. When a COPROC reaches its natural END point,

its re-entry point for a subsequent RESUME is reset back to

the physical top of its code. On the other hand, a DETACH

does not reset its re-entry point to the top, but rather to

the statement after the DETACH. This is, in effect, similar

to an intermediate exit. This feature may be useful in allowing

a return to the controlling procedure body and re-entry into

- 32 -

the COPROC at the point of DETACH. Appendix A illustrates the

rather straightforward syntax of a DETACH statement. As alluded

to earlier, it may be placed anywhere within a COPROC procedure

body.

Care must be taken when using a DETACH especially if re-

entry into the COPROC cycle is attempted. To further clarify

this assertion requires a brief explanation of the technical

implementation approach (a more detailed discussion will

follow in Section V). In order to effectuate a coroutine mechanism

it was necessary to expand the use of the run-time stack. Each

time a COPROC is invoked via a RESUME, the COPROC issuing the

RESUME has its current stack values frozen on the stack. Thus,

if an intermediate exit is performed from within a FOR, REPEAT,

or WHILE loop, their control variables, which are wholly stack

dependent, are saved. When re-entry is invoked into the

COPROC, those frozen stack values are restored onto the top of the

stack again. When a DETACH or natural END is encountered, the

stack values are deactivated for each COPROC in the cycle. Thus,

if re-entry is attempted into a COPROC which previously issued a

DETACH within a stack-dependent control loop (i.e. FOR, REPEAT,

WHILE statements), catastrophic program failure will surely result.

- 33 -

FIGURE 4.11

PROCEDURE control;

COLINK

A;

COPROC A;

 * BEGIN

DETACH;

END(*A*)

BEGIN

A;

,END(*control*);

Figure 4.11 outlines a program skeleton utilizing the DETACH.

Though the flow lines do not indicate it, if "A" was again invoked

in the main program as a consequence of the DETACH, control would

transfer to the statement immediately after that DETACH, This

allows a calling procedure to communicate with a single COPROC

cycle maintaining the coroutine qualities of that COPROC,

- 34 -

FIGURE 4.12

PROCEDURE control;

BEGIN

copROC A;

BEGIN

DETACH;

EMX*A*);

M>(*control*);

Figure 4.12 further illustrates this capability by rearranging

the previous example. The initial call to "A" (1) causes entry

to the COPROC at its physical top. The subsequent DETACH (2)

transfers control back to the point after the initial call in

PROCEDURE "control". Finally, a subsequent call to "A" (3)

re-enters the COPROC at the point after the DETACH. This parallels

the intermediate entry which could have ensued if it had been

invoked by a RESUME from another COPROC within the cycle.

F. NEWIOP

The NEWIOP statement provides the means to reset any COPROC

entry point back to the physical top of its code. It may be

usefully performed by the procedure block which initiates the

COPROC cycle call in order to ensure that each COPROC is properly

- 35 -

initialized. Since a COPROC cycle can be exited if the natural

END of any OOPROC in that cycle is reached or if a DETACH is

performed, the programmer may find it desirable in some cases to

issue* a NEWTOP for each COPROC in the cycle prior to re-calling

that cycle. Otherwise, each COPROC in the cycle will have unde-

fined entry points which were set by previous RESUME, DETACH,

and/or END statements. Appendix A graphically depicts the syntax

diagram of the NEWIOP statement. The COPROC identifiers which may

be included within the NBVTOP verb must have been declared by a

COLINK in the declaration section of the parent PROCEDURE. In

general, the scope of a NEftTOP statement is identical to an initial

call to a COPROC by the procedure body in which it is contained.

If that particular procedure block can legally invoke a COPROC

via the standard procedure call (see previous discussion on the

COPROC definition), then it can also issue a NEWDOP for it. This

will always be the parent PROCEDURE, FUNCTION, or COPROC in which

the child COPROC referenced by the NEWTOP resides.

Referring back to the previous discussion of the DETACH

statement, it must again be stressed that care must be taken when

performing an exit from inside a FOR, REPEAT, or WHILE loop with-

in a COPROC. This is because all loop control variables stored

on the run-time stack are lost upon exit. Thus, a mechanism must

be provided to ensure that a subsequent call to7that COPROC will

- 36 -

not cause re-entry into the context of the previously defined

control loop. To do so, would inevitably lead to anomalous

program behavior. Issuing a NEWTQP to reset the entry points

of each applicable OQPROC will ensure that re-entry will begin

back at the top of the routines. Since a NEtfTQP verb affects

the point of OQPROC entry, it must be used with care and its

ramifications understood. This is especially critical in cases

where the intermediate entry point to a given OQPROC has been

modified from that which would have existed had the NEW.TOP not

been invoked.

FIGURE 4.13

PROCEDURE Control;

BEGIN (1)

Acoroutine;"^ (2)_

NEWIOPC Acorout ine);

(3)

OQPROC Acoroutine;

BEGIN «

DETACH;

END (*Acoroutine*);

Acoroutine;

END(*Control*);

In summary, Figure 4.13 illustrates the control flow of a

parent PROCEDURE and its OQPROC. Initially Acoroutine is

invoked (1) at the top of its code. Upon encountering a DETACH

- 37 -

(2), control is transferred to the point in the PROCEDURE after

the initiating call. The NEWKP statement implicity resets the

Acoroutine entry point to its top of code, and finally, a sub-

sequent call to Acoroutine (3) transfers control to the top of

code rather than to the prior intermediate exit point after the

DETACH.

- 38 -

IMPLBIENTATION DESCRIPTION —
PASCAL-S MODIFICATIONS-

Whereas Section IV presented a detailed description of the

syntactic and semantic characteristics of the various PASCAL-S

additions which were necessary to implement the coroutine capa-

bility, this section provides an explanation of the underlying

program changes made to the interpreter to accomplish the capa-

bility. An assumption is made that the reader has an understand-

ing of the mechanics of implementing block-structured languages.

References will be made to techniques and program structures

which are based upon those utilized by Niklaus Wirth ($), £0

within his implementation of PASCAL and its related subset lan-

guage PL-0. This includes the use of displays, dynamic and

static links, and complicated stack-related data structures. As

a preface to further discussions it may be useful to very briefly

describe the current PASCAL-S compiler.

A. PASCAL-S OVERVIEW

PASCAL-S is written in the full CDC-60pp version of PASCAL

and is based upon recursive descent parsing. Code generation is

performed in one pass during the syntactic analysis of program

source code statements. No code optimization is performed.

Further simplifying the compiling actions is the P-machine

- 39 -

concept built into its design. The code emitted during com-

pilation is not absolute machine code. Instead, it produces code

for a hypothetical virtual machine; the P-machine. At the end

of source code translation to P-code, the virtual machine proceeds

to interpret the intermediate code into physical machine actions.

This interpretation step is, in fact, the process of "executing"

the user program.

Any program coded in the PASCAL-S language can be compiled

on the full PASCAL compiler. The reverse is not true. The

following PASCAL constructs are not implemented in the PASCAL-S

compiler:

• String constants or variables

• File, set, pointer, scalar, or packed

variables

• Variant record structures

• Function or procedure names in a

parameter list

• Label declarations

Appendix A details the syntax diagrams of the PASCAL-S language

with the coroutine additions explicitly indicated.

From the standpoint of compiling and execution, there are

two data structures contained in the compiler which are key to

maintaining the block-structured nature of the language.

- 40 -

These two elements, symbol table and stack, are also key to the

coroutine implementation. Therefore, a brief discussion of their

design may be in order.

Unlike most conventional static compilers, PASCAL-S utilizes

the symbol table heavily at run-time. The stack is the most

important data structure to PASCAL-S (as it is to PASCAL), and

is the mechanism which coordinates the run-time interaction of

procedure bodies and data elements.

1. Symbol Table

The symbol table is used to store various attributes about

each identifier fcund in the source program. At compile time

these attributes are utilized to verify legal scope, syntax,

and type relations with other program elements. At run-time,

the symbol table is accessed to identify such variable or con-

stant attributes as type, value, and level.

Identifiers are entered into the symbol table in order of

appearence, yet the given scope relation must also be maintained.

To accomplish this, the entries for each block level are linked

together. Thus, the table can be scanned two ways; sequentially

from newest to oldest entry regardless of level, or searched

for entries in a given level (with entry indicated by a display).

- 41 -

Specifically, each symbol table entry contains the following

mnemonic attributes:

• NAME

• LINK

• OBJ

• TYP

• KEF

• NORMAL

• LEV

• ADR

NAME refers to the identifier name as identified by the lexical

scanner. LINK is a pointer to the last (prior) symbol table

entry made for an identifier in a given block level. OBJ indicates

the nature of the entry as a constant, variable, type, procedure,

or function identifier. TYP indicates the type of the constant or

variable identified as an integer, real, boolean, character, array,

or record. REF is used for procedure identifier entries to point

to the block activation record in the block table. For array

variables it used to point to the proper array table entry. NORMAL

is a flag used for parameterlist items to indicate whether they are

value or variable parameters. LEV specifies the block level where

the identifier was scanned. Finally, ADR contains the address

of the physical top of the code generated for a particular pro-

cedure or function. For variables, it specifies the relative

displacement from the beginning of the activation record. For

- 42 -

a type identifier, it contains the size of the data structure.

Display

FIGURE 5.1

Entry P Table Entry Block Level

Figure 5.1 illustrates the symbol table structure. The entries

are allocated sequentially. However, all identifiers in a given
/

block are linked together. The display is continually updated to

indicate the last entry for each block in the table. As indicated,

identifier attribute LINK is used as the block linking mechanism,

ultimately pointing to a null entry #0.

The coroutine implementation to be discussed subsequently

required additional attributes to be assigned and maintained in

the symbol table. Currently, symbol table attributes are not

modified at run-time. This is not the case with the coroutine

implementation.

- 43 -

2. Run-time Stack

The run-time stack is clearly the most significant data

structure in the PASCAL-S system. It is the stack where activation

records and their attendant local data elements are manipulated

by the P-code interpreter. As with the symbol table, a discussion

of the current PASCAL-S stack structure is useful since'the

coroutine implementation significantly affects the operation of the

run-time stack.

Each time a procedure/function call is invoked, an activa-

tion record is created at the end of the stack for the procedure/

function being called. An activation record consists of reserved

space for the data values declared local to that procedure

body. In addition, the record contains five control fields which

are used to implement calls, returns, and function value storage.

When a procedure/function is called, the applicable static block

table entry (created at compile time) is interrogated to determine

the proper total displacement to be reserved for local data values,

and four of the five fields are initialized. With space reserved

for the five fields and local data values, the remaining stack

space can be I'sed for run-time use.

- 44 -

FIGURE 5.2 — ACTIVATION RECORD

: PRIOR ACTIVATION

+0 FUNCTION RESULT (FCT)

+1 RETURN ADDRESS (RET)

+2 STATIC LINK (SLNK)

+3 DYNAMIC LINK (DLNK)

+4 TABLE INDEX (TINX)

+5 . - DISPLACEMENT FOR
! LOCAL VARIABLES

I - OPEN STACK SPACE

Figure 5.2 illustrates an activation record as it may appear

on a stack. To the right of each entry a short mnemonic is

parenthically enclosed. These abbreviations are used throughout

subsequent discussions when addressing these fields.

Note: These names are not actually used in the compiler,

but are used here to facilitate explanation.

At the very base of the record (FCT) a FUNCTION would store

its value upon existing back to the calling point. RET, the

Return Address (base +1), is the relative location containing

the address of the code just after the point of the originating

call. The Static Link (SLNK) is a pointer to the block

activation record which maintains the scope relation of pro-

cedure blocks defined at compile time. This is necessary to

access appropriate data values outside the block. The Dynamic

- 45 -

Link (DLNK) points to the base of the activation record placed

previously on the stack and still active. This is necessary for

valid transfer of control upon exit from a given procedure/

function body. Finally, the Table Index (TINX) is a pointer to

the static symbol table entry of the called procedure/function

identifier. This is needed to access its static level for sub-

sequent use in non-local variable manipulation. In effect, the

stack contains block activation records for procedures/functions

still in process. They are linked together in two ways. One way

(dynamic link) provides a history of prior procedure activations.

The second way (static link) maintains the variable scope rela-

tionship for data access of non-local data elements in other

activation instances.

As stated earlier, the coroutine implementation requires

that the stack activation record concept be modified as well as

the static symbol table. The remainder of this section describes

these and other modifications.

B. COROUTINE IMPLEMENTATION

1. Code Generation

In order to develop a run-time coroutine capability it was

necessary to augment the P-machine with four additional primitive

P-codes. Various combinations of these codes are generated to

implement the DETACH, RESUME, NEWTOP, and COPROC natural exit.

- 46 -

In addition, the P-code (19) which had already existed to perform

a standard procedure/function call was modified to also handle

the initial call to a OOPROC cycle from an external procedure

body.

TABLE 5.1

P-MACHINE ADDITIONS

P-CODE FUNCTION P OF OPERANDS

64 RESUME 2

65 OOPROC EXIT 0

66
SET ENTRY TO
TOP OF OOPROC 1

67
SET ENTRY TO

INTERMEDIATE PT. 1

The P-code additions summarized in Table 5.1 are combined,

as cited previously, to implement the various language additions.

However, the COLINK declaration simply initiates entry of a

COPROC identifier into the symbol table and requires no explicit,

code generation.

Upon encountering a RESUME, Procedure "resumestatement"

is invoked. This procedure performs the following actions:

1. Verifies that the RESUME is contained

inside the body of a COPROC;

- 47 -

2. Searches in the symbol table for the

OOPROC identifier which is the object

of the RESUME and makes sure it is the

same block level as the containing

OOPROC;

3. Emits P-code (64, x, y) where x points

to the symbol table entry of the

OOPROC in which the RESUME statement

resides, and y points to the symbol

table entry of the OOPROC object of

the RESUME;

4. If the static block level of the OOPROC

object of the RESUME is less than the

level of the block containing the RESUME

statement then it emits P-code (3, x,

y) where x = object level and y = con-

taining OOPROC level.

Upon encountering a OOPROC declaration, Procedure "koproc-

declaration" is invoked. This procedure performs the following

actions:

1. Verifies that the OOPROC identifier already

exists in the symbol table (via proceeding

COLINK declaration);

2. Calls Procedure block recursively to compile

the procedure body;

- 48 -

3. On return from "block", code is emitted

for a OOPROC natural exit. It emits

P-code (66, x) where x is a pointer to

the symbol table entry of the OOPROC

identifier. This instruction resets the

OCPROC entry point to the physical top of

its code.

4. Emits P-code (65) which performs a general

OOPROC deactivation/exit.

Upon encountering a DETACH statement Procedure "detachstatement"

is invoked. This procedure performs the following actions:

1. Verifies that the DETACH statement is

contained within the body of a OOPROC;

2. Emits P-code (67, x), where x is a pointer

to the symbol table entry of the OOPROC

in which the DETACH statement resides;

3. Emits P-code (65) which performs a general

OOPROC deactivation/exit.

Upon encountering a NEWKP statement Procedure "newtop-

statement" is invoked. This procedure performs the following

functions for each OOPROC identifier specified:

1. Verifies that the OOPROC object is in

the symbol table with a level indicating

that it is a OOPROC which is nested

(contained) within the procedure body where

the NEOTOP statement resides;

- 49 -

2. Emits P-code (66, x) where x is a

pointer to the symbol table entry

of the ODPROC object named in the

NEWTQP statement. This instruction

sets that object's entry point to the

physical top of its code.

Upon encountering an initial call to a OOPROC cycle from

inside a PROCEDURE, Procedure "call" is invoked as it would be for

and PROCEDURE or FUNCTION call. This procedure performs the fol-

lowing functions as they relate to a OOPROC call:

1. Emits P-code (18, x), where x is a

pointer to the symbol table entry of

the OOPROC being called. This in-

struction marks the stack for the

subsequent call instruction;

2. Emits P-code (19, x), where x is the

size of a parameterlist (not used

for OOPROC). This instruction

performs the call;

3. If the level of OOPROC being called is

less than the block level where the call

resides, then it emits P-code (3, x,y),

where x is the level of the current

block, and y is the level of the con-

taining OOPROC.

- 50 -

2. Stack/Symbol Table Enhancements

In order to implement the capability of OOPROC to OCPROC

communication, it was necessary to consider the effect repeated

calls would have on the run-time stack. Normally, each time a

PROCEDURE or FUNCTION is called from within a procedure body,

its activation record is placed on the stack on top of the cur-

rent record. If this PROCEDURE/FUNCTION was again called

(recursively), another activation record would be placed on the

stack on top of the current record. Until a procedure body

finally reaches its natural exit point, its activation record

remains on the stack. By definition, when a OCPROC issues a

RESUME to another OOPROC in a cycle, its actions must be

temporarily suspended (along with any temporary values on the

stack). That OOPROC just called may, in addition, issue its

own RESUME to the OOPROC that just called it. Though this is

considered recursion in the normal sense, under a coroutine

philosophy, this is simply two-way communication. If OOPROC to

OOPROC communication were implemented exactly as a PROCEDURE or

FUNCTION, each time a RESUME occured, a new activation record

would be placed on the stack for the OOPROC being re-entered.

Under most circumstances, this would lead to the same limitation

of implementing deeply nested recursive algorithms. That is,

running out of memory to store the activation records on the

\^

Realizing that implementing a quasi-recursive coroutine

structure in a block-structured language must be performed without

utilizing the conventional technique of stacking activation records,

a data structure was designed which allowed the present PASCAL-S

stack to be utilized, while re-defining the concept of a block

activation for COPROC cycles. Thus, the stack enhancements imple-

mented are transparent to normal PROCEDURE of FUNCTION activations.

Only the RESUME of a given COPROC within a cycle causes the new

stack definitions to be used.

Specifically, the maintenance of COPROC activations on the

stack redefines the conventional notion of activation records.

Now, instead of creating an activation record for each call

(RESUME), the block activation occurs only at the time of the

initial call to the COPROC cycle.

A subsequent RESUME of a COPROC within the cycle does not

cause the creation of a completely new activation record. Instead,

the same activation record is maintained. The stack area of the

COPROC to be reactivated is preserved within the record, and a

new stack area is initialized for the called COPROC.

Since the COPROC object of a RESUME may have been previously

active, and thus preserved on the stack, the initialization process

may consist of swapping pieces of'the activation record's stack

area (stack segments). In this case, the stack segment attributed

- 52 -

to the OOPROC being reactivated (the object of a RESUME) would be

moved to the end of the stack to enable its activity to continue

utilizing the stack for storing temporary values and evaluating

expressions.

The displacement of stack segments requires a considerable

amount of overhead to properly implement a RESUME. This is due

to the amount of internal "bookkeeping" required to maintain

the boundaries of the stack segment for each OOPROC which has

been activated within a cycle. In addition, preserved stack

segments must be continually swapped in order to place the

segment of the OOPROC to be reactivated into position at the end

of the stack. Any stack area freed by the displacement of this

segment is re-used by shifting segments back into its former

location.

FIGURE 5.3

(1)

control
fields

B

» open
» stack
• area
I

(2)
CYCLE ACTIVATION RECORD

t (3)

control
fields

i

open r

[open [
, stack i
i area »

I

control
fields

B

i
- . - -»

open I
stack •

t
I

ar^a

- 53 -

?

Figure 5.3 illustrates the generalized four step sequence

which occurs to re-activate (RESUME) a OQPROC previously pre-

served on the stack. The block activation record consists of

the same five control fields (function result, return address,

static link, dynamic link, and table index) as a normal PROCEDURE

or FUNCTION. In addition, a stack segment is maintained for each

OOPROC previously activated (and requiring stack preservation).

In illustration (1), OOPROC A and OOPROC B have been previously

activated and require stack preservation (temporary storage of

local control variables). If the statement RESUME(A) were execut-

ed within the body of B, it would be necessary to reactivate A.

Here, the stack segment preserved for A would be moved to

temporary storage (2). The segment currently in use by B at the

end of the stack area would be preserved and shifted into the

unused space within the activation record left by swapping out

A's stack segment (3). Finally, the stack segment previously

saved for A would be returned to the activation record (4).

Now, however, it is placed at the open end of the stack area.

Reactivation of OOPROC A can now proceed since its stack segment

is in place for potential expansion.

In order to implement the cycle activation record stack

segmentation structure, the PASCAL-S static symbol table

("TAB") was augmented to include a field, STK, for each

identified entry (in addition to NAME, LINK, OBJ, TYP, REF,

- 54 -

NORMAL, LEV, ADR). This field, really applicable only to a

00PROC identifier, is used at run-time as a display into the

active stack segments. In addition, it serves to indicate the

status (active/inactive) of a particular 00PROC. If a OOPROC

has yet to be activated (via RESUME) within a cycle, TAB.STK

would contain a value of zero indicating no stack segment is

active for that OOPROC.

Note: STK is reset to zero when the OOPROC is

deactivated via a DETACH or natural exit.

Coproc Activation
Record

FIGURE 5.4

FCT
RET

SLNK

DLNK

TINX

segment
A

segment
B

Symbol Table
(TAB)

TAB.STK

- 55 -

As illustrated in Figure 5.4, the additional field STK in

the symbol table entries for OQPROC A and OOPROC B acts as a

display into the stack segments of a currently activated OQPROC

block, pointing to the location of each segment on the stack.

It should be pointed out that, though not indicated, several

of the control fields take on a different meaning for a OOPROC

than for a PROCEDURE or FUNCTION. For a OOPROC activation, the

RET field will contain the address of code immediately after the

point of the initial call into the cycle. This field will remain

constant regardless of subsequent RESUME statements. Its con-

tents will be utilized only upon the issuance of a DETACH or

encounter of a natural end within a COPROC. In order to store

the intermediate (return address) entry/exit point for a given

OOPROC, another field within its symbol table (TAB) entry has

been implemented (in addition to STK). This new field, TOP,

always contains the address of the entry point applicable to

the OOPROC at any given time. Initially, a COPROC would have its

TOP set to the physical top of its code. However, a subsequent

intermediate exit to another OOPROC (via a RESUME) would cause

its TOP to be set to the point in the code immediately after this

exit point.

The control field TINX (which previously contained a

pointer to the symbol table entry of the particular block's

PROCEDURE/FUNCTION identifier) now contains a pointer to the

- 56 -

symbol table entry of the GQPROC whose stack segment resides at

the open end of the stack. Referring back to Figure 5.4, TINX

would contain a pointer to the symbol table entry for OOPROC

identifier B. When stack segments are shifted and swapped, TINX

is updated to reflect the change.

FIGURE 5.5

REVISED SYMBOL TABLE ENTRY (TAB)

NAME

LINK

OBJ

TYP
REF

NORMAL

LEV

ADR

TOP

STK

Figure 5.5 suirmarizes the augmented symbol table format

which has been implemented to accommodate the coroutine capa-

bility. As indicated, TOP and STK are applicable to a

OOPROC identifier. TOP always points to the entry point into

its code. Initially it is the physical top. Subsequently, it

is updated for intermediate entries and exits. STK is a display

pointer into the active stack segment for that OOPROC. It is .

zero if no stack segment is active.

- 57 -

Note: ADR always points the physical top of

code for a OOPROC. This is iden-

tical to a PROCEDURE or FUNCTION, where

ADR points to the entry point of the

procedure body (which in the case of

Procedures or Functions is always the

physical top of the code). In order

to maintain logical programming flow,

ADR is no longer used to perform entry

into a PROCEDURE/FUNCTION. Instead,

TOP is used (since it never changes

for them).

In order to facilitate manipulation of individual stack segments,

a data structure was implemented within each segment which serves

to effectively link themApgether, and in turn, to the static

control fields at the begfflming of the COPROC cycle activation

record. At the beginning of each stack segment, two fields are

defined upon initial activation of a given COPROC. The first

field, LEN, contains the length of succeeding stack elements.

Thus, a given segment always has a total length of LEN+1.

This field is updated when a stack segment must be preserved.

At this time it is updated to include any stack element (temporary

control variables) which must be saved. The second field, TPTR,

- 58 -

is a pointer to the symbol table entry of the COPROC identifier

representing this stack segment. Upon initial activation, a

stack segment has its LEN set to 1. Its total length is always

LEN+1 (= 2) which is in this initial case, only the two control

fields LEN and TPTR. If a OOPROC issues a RESUME within the body

of a FOR, REPEAT, or WHILE statement, the stack segment would

also contain the associated control loop variables. These

values would be preserved if necessary, and LEN would reflect

the total segment size.

Note: The mnemonic LEN and TPTR are used to

facilitate discussion and are not the

variable names found within the compiler.

There, these fields are always addressed

only as offsets from the base of the

activation record.

- 59 -

FIGURE 5.6

OOPROC CYCLE ACTIVATION RECORD

Segment)
A

x

JL.
Segment p~
B '

L_JL

control
fields

LEN

Symbol Table
(TAB)

TPTR

stack
variables

LEN
TPTR
stack

variables

open
stack •
area

Figure 5.6 illustrates a familiar OOPROC cycle activation

record containing two stack segments preserved for OOPROC A and

OOPROC B. LEN for segment A contains a value x which is equal

to the number of stack variables in that stack + 1 (this is TPTR),

TPTR points to the appropriate symbol table entry. Likewise for

segment B. The P-inachine code (64) implementing a RESUME

utilitizes these fields for segment maintenance. This will be

described in detail subsequently. However, to put it simply

for now, it is possible to travel down the stack segment chain

merely by knowing the length of each segment. The first

- 60 -

segment (SI) always starts after the five activation control

fields (base + 5). From there, the next segment(S2) (if any)

would start at the point S1+LEN(S1)+1, and so on down the

chain of segments. Here, SI = base + 5, LEN(Sl) = contents of

location SI. Since LEN is the first field in any stack segment

it can be addressed in the first case by interrogating SI.

3. P-Code Actions

This sub-section serves to document the specific actions

performed by the newly implemented P-codes (64, 65, 66, 67) as

summarized earlier in Table 5.1. In addition, it will be

necessary to "describe the change made to the previously exist- \

ing P-code (19) which has existed to implement normal PROCEDURE

or FUNCTION calls. It was modified to also perform an initial

call to a COPROC cycle.

Upon encountering the P-code (19) generated to perform

the initial call to a COPROC cycle, the following actions are

invoked by the new PASCAL-S P-Kachine, assuming that the previous

code executed was a P-code 18, "mark stack", (.normally invoked

prior to any type of call in order to allocate space for a new-

activation record):

1. Initialize the Activation Record

control fields as follows:

- 61 -

- TINX:=Syrabol table pointer to the

CCPROC object

- RET:=Address of code after initial

call

- SLINK:=Base address of the last

activation record residing at the

same static level as this CCPROC

identifier

- DLINK:=Base address of the last

activation record accessed

- PCT let undefined;

2. Initialize base address pointer (B) to

beginning of activation record;

3. Initialize stack pointer to beginning of

open stack area (after control fields);

4. Set the Program Counter to the entry point

of the CCPROC as specified in TCP contained

in its static symbol table entry;

5. Increment the stack pointed by 2 in order to

reserve space for the initial stack seg-

ment fields LEN and TP1H;

6. Initialize LEN to zero and TPTR to the

location of the CCPROC symbol table

entry;

7. Update the CCPROC stack segment display

(STK) contained in its static symbol

table entry to point to the beginning

of this segment (address of LEN).

- 62 -

It is interesting to note that the first four of the seven

activities delineated above are also used in the call of a normal

PROCEDURE or FUNCTION. The remaining three steps are performed

only if the call is to a OCPROC (thus initiating a cycle).

Upon encountering the P-Code (64) generated to perform a

RESUME, the following actions are invoked by the PASCAL-S

P-Machine:

1. The TOP of the COPROC being exited is

updated to the point where subsequent

intermediate entry must occur (im-

mediately after the RESUME),

2. The cycle activation record control

field TINX is updated to point to

the symbol table entry of the COPROC

object of the RESUME,

3. The Program counter is set to the

intermediate entry point (TOP)

of the COPROC object of the

RESUME.

4. If any temporary variables have been

stored on the stack by the COPROC

being deactivated, the LEN of its

stack segment is updated to preserve

this space. Otherwise, the stack

need not be preserved. In this case,

- 63 -

the stack pointer is decremented by

2 to relinquish the stack segment

space and the OOPROC is formally

deactivated by setting its STK (in

its symbol table entry) to zero.

5. The symbol table entry of the OOPROC object

of the RESUME (callee) is interrogated

to see if it has an active stack (STX f <f>).

- If the segment is now at the end of the

stack then the stack pointer will already

be placed to resume operation (to TPTR).

- If the segment is not at the end of the

stack area (in the middle of the pre-

served stack segment space for that cycle)

then, 1) the entire segment is moved into

a temporary area (OOEOLD), 2) any other

stack segments residing at a point after

the moved segment are pushed up into the

fragmented space created by the move
operation (garbage collection), and 3)

the stack segment copied into COHOID is

moved back into the activation area,

This time, to the end of the stack. The

segment is now activated.

6. If the OOPROC object is inactive and thus has

no preserved stack segment (STK = 0), then

the stack pointer is incremented by 2 to

allocate space for a new stack segment (LEN

and TPTR). Len is initialized to zero, and

TPTR to the table entry (same as TINX).

- 64 -

Note: The temporary area COHOLD is the name

of the actual data structure implemented

in the new compiler.

Upon encountering the P-Code (65) generated to perform a

generalized OOPROC exit, the following actions are invoked by

the PASCAL-S P-Machine;

1. Each OOPROC in the cycle is deactivated

by setting its STK (in its symbol table

entry) field to zero. This is accomp-

lished by following the chain of stack

segments and utilizing each TPTR entry

to gain access to the proper symbol

table location.

2. The stack pointer is decremented to the

point just before the current OOPROC

cycle activation record. This will

effectively erase the record from the

stack.

3. The Program Counter is set to the address

contained in the activation record control

field RET. This will transfer control to

the point just after the initial call to

the OOPROC cycle in the calling procedure

body.

- 65 -

4. The base address pointer (B) is set to the

address contained in the 00PROC activation

record control field DLINK. This is the

dynamic link back to the activation record

location on the stack of the calling pro-

cedure body.

Upon encountering the P-Code (66) generated to perform a

reset of a OOPROC entry point to the physical top of its code,

the following action is invoked by the PASCAL-S P-Machine:

1. The particular OOPROC static symbol table

entry field TOP is set equal to its

field ADR. ADR always contains the

address of the physical TOP of its code.

TOP is the field used upon a RESUME do

determine where to re-enter the OOPROC.

Upon encountering the P-Code (67) generated to perform an

update of a OOPROC intermediate entry point, the following action

is invoked by the PASCAL-S P-Machine:

1. The particular OOPROC static symbol table

entry field TOP is set equal to the

current value of the Program Counter +

1. The + 1 value assumes that the next

instruction to be performed will be P-Code

(65), OOPROC Exit. Thus, the intermediate

re-entry point must be set to the point

after this P-Code. TOP will be used upon

issuance of a RESUME to determine where to

re-enter the OOPROC.

- 66 -

VI. POTENTIAL FOR EXPANSION

The coroutine implementation as presently devised was intended

to serve as a solid foundation from which future enhancements can

be based. In order to facilitate construction of the initial

PASCAL-S coroutine implementation, the trade-offs between simpli-

city and power were considered. The main thrust of this current

effort was to develop the instruction formats and control struc-

tures which can produce coroutine actions. As a result, the

PASCAL-S language has been augumented with a whole new reper-

toire of extensions (COLINK, COPROC, RESUME, DETACH, NEWTOP).

Each of these elements contribute to the implementation of the

specific coroutine actions. However, in this language version

little effort has been expended to implement explicit definition

and control of the data structures through which coroutines com-

municate among themselves.

Referring back to Section TV, Syntax and Scope, it was

stressed that coroutines, as implemented in COPROC procedure

bodies, can contain no local variables (through procedures con-

tained within them may). Thus,COPROC actions can affect any

variable data global to it. This limitation creates the potential

hazard of unintentionally affecting data values. The whole purpose

of normally implementing the definition of local variables is to

- 67 -

explicitly delineate their scope. This in turn provides the pro-

granmer with a convenient tool for controlling data manipulation.

Since the current coroutine implementation does not allow for the

definition of local variables within a CGPROC body, unintentional

and uncontrolled data manipulation may result.

In terms of expansion possibilities, any future enhancements

to this PASCAL-S coroutine implementation should primarily center

on providing local variable definition within OOPROC bodies. It

should be pointed out that the current implementation was de-

signed with this thought in mind. Therefore, the ability to

define local variables will not require extraordinary modifica-

tions to the new PASCAL-S compiler. *

Specifically, the following steps provide a generalized

outline of the tasks which would be required to implement the

definition of local variables within a OOPROC:

«. Within the main body of procedure "Block",

eliminate the code segment which dis-

allows the calls to procedures "Constants

declaration", "Typedeclaration", and

"Variabledeclaration",

• Modify P-Code (64) which performs the

RESUME actions to allocate space on the

run-time stack for the displacement of

local variables contained in a given

OOPROC.

- 68 -

Of the modifications outlined above, only the last (P-Code (64))

enhancement may require non-trivial consideration. This is due

to the current implementation of stack segments for CQPROC to

OOPROC communication (see Section V-B.2, Stack/Symbol Table

Enhancements). Variables cannot be allocated via a simple dis-

placement constant relative to the beginning of the activation

record. Instead, displacement must occur from the beginning of

a stack segment. Since each stack segment starts with two con-

trol fields (LEN and TPTR), local variable allocation must begin

immediately after these fields. It should be recognized that the

introduction of local variables within a stack segment will

generate increased overhead on a RESUME since more elements must

be swapped and moved on the stack.

In addition to the implementation of local variables within

a OOPROC, significant thought must be given to the support of

parameterlists for initial cycle activation and/or OOPROC to

OOPROC communication. Specifically, the use of a parameterlist

may be implemented in the initial call of a OOPROC cycle, or as an

extension of the RESUME process from within a OOPROC. Unfortun-

ately, the implementation of both these concepts requires signifi-

cant planning. The parameters needed may differ for inter-CORPOC

communication than for OOPROC to maintain procedure communication.

- 69 -

Since a OQPROC body can, by definition, only ccmnunicate with

another ODPROC within its cycle, the extent of data comnunication

can be well defined. Therefore, it may be appropriate to eliminate

the use of a parameterlist within a OOPROC declaration to define

those variables to be used for inter-OOPROC communication. In-

stead, the attendant OOLINK declaration could be augumented to

include the declaration of variables local to the whole cycle

(not just an individual OOPROC). These variables may be used

for inter-OOPROC comnunication. This approach may be preferable

to maintaining local parameter values in the dynamic stack segment

since it eliminates much of the overhead needed to maintain (£wap)

additional segment elements. Also, a pre-declaration (via

OOLINK) of variables local to the cycle, would allow them to be

easily maintained in the static region of the cycle activation

record; just as local variables are maintained in a normal

PROCEDURE or FUNCTION environment.

Even if no parameterlists are maintained within

individual OQPROC declarations, a means must still be devised to

support the passing of parameters from the initial calling proce-

dure body to the OOPROC cycle. Since, syntactically, a normal

call to a OOPROC is used to initiate the cycle, it is only natural

to append a parameterlist to the call. However, the individual

OOPROC would not include a similar parameterlist. Instead, it

- 70 -

again may be useful to declare such parameters within the OOLINK

declaration of the cycle. These values are to be used for OCPROC

to main program controlled communication. Implementation of

such an approach would allow use of the static region of the

cycle activation record for parameter displacement.

Hypothetically, the OOLINK enhancements could syntactically

look like this:

OOLINK

COROUTINES = COPROC.., 00PR0Co,..., OOPROC :
1 2 n

BUFFER = (parameterlist-);

CHANNEL = (parameterlist2);

Here, each OOPROC to be defined within the cycle would be con-

tained in the COROUTINES sub-declaration. The variables local

to the cycle for inter-COPROC comnunication would be delineated

in the BUFFER sub-declaration. Finally, the parameterlist to be

used for corrmunication to the initial calling procedure body would

be declared in the CHANNEL sub-declaration. These variables, like

those of the BUFFER sub-declaration are considered local to the

entire cycle. This means they are unaffected by any individual

COPROC activation.

- 71 -

These enhancements may or may not be optimally constructed.

However, they do appear to be easily implementable, and indeed,

do provide a convenient means to support local variables within

a OQPROC, controlled variable declarations for conmunication

within a OQPROC cycle, and controlled variable declaration for

conmunication between a OQPROC cycle and its initiating procedure

body. Further efforts in this area may provide insights into a

more practical means of implementing these constructs.

- 72 -

LIST OF REFERENCES

1. Conway, Melvin E., "Design of a Separable Transition-Diagram
Conpiler", Comn. ACM 6(July 1963), pp. 396-408.

2. Wang, Arne, and Dahl, Ole-Johan, "Coroutine Sequencing in a
Block Structured Environment", BIT 11(1971), pp. 425-449.

3. Wirth, Niklaus, Algorithms + Data Structures = Programs,
Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1976.

4. Jensen, Kathleen, and Wirth, Niklaus, Pascal User, Manual and
Report, Berlin Heidelberg New York: Springer-Verlag, 1974.

5. Wirth, Niklaus,Pascal-S Compiler, E.T.H. Zurich, Switzerland,
January 3, 1976.

Note: A copy of the Pascal-S coroutine implementation
source program is on file in the Division of
Computing Science, Lehigh University, 1979.

-73-

APPENDIX A
Page 1 of 8

PASCAL-S IMPLEMENTATION
SYNTAX DIAGRAMS

identifier A letter V.
C letter)—::

K «»" r
unsigned integer

r-("" >

unsigned
number rOi

unsign. int. jkDfQED]Vo[g unsign. int.

oonstant

- 74 -

APPENDIX A
Page 2 of 8

array type
(sinple)

£- constant
<=>

constant

type

naXEH type

<
W E®

field list

/

1 identifier

o
■©■ type

variable

c var. ident.

field ident. >■*©■ T expression o
<E>-

*<3> field ident.

- 75 -

APPENDIX A
Page 3 of 8

factor

unsign.const. x-*-
variable

func.ident. expression

o
))—►

-H(expression H ►

-for) ► factor

term

siiqple expression

-►1 term

- 76 -

APPENDIX A
Page 4 of 8

expression

simple
express.

}(?\{)(£) &
simple
express.

parameter list

- 77 -

APPENDIX A
Page 5 of 8

statement

U
variable

func.ident.

<£> expression

proc.ident. *<TJ—L*

-►^ BEGIN j i ► statement —V~*\ ^ /"

I—/ru— <D

■♦/WHILE ^—►) egression —*V») *

<
Jj^ statement -WiraLJ—►

t_<r)J
var. ident. expression

►f DO\TCTO

-L-WroV

yro J^

G expression DO statement

(CONTINUED ON NEXT PAGE)

- 78 -

APPENDIX A
Page 6 of 8

("STATEMENT" CONTINUED)

(RESUME)—+(T) ► coproc ident
<>>

(DETACH j-

<
►f NEKTOP J ►((J 1 ooproc ident

&

O

- 79 -

APPENDIX A
Page 7 of 8

block

f OOLINK __ identifier

o
o block o

<
M PROCEDURE identifier param. list

■►/'roNcriaA—►
L.
identifier param. list type ident.

f OOPROCV. coproc ident

•^ BEGIN \ ■ ► statement

t TV O
GE_>

•Not applicable if "block" is entered as a OGPROC.

- 80 -

APPENDIX A
Page 8 of 8

program

(PROGRAM J identifier —T(/T- identifier T—f) J~f: J~" block Cm J

- 81 -

BIOGRAPHY OF AUTHOR

Allan R. Frank was born on January 16, 1955 in Allentown,

Pennsylvania. His parents, Bernard and Muriel Frank still reside

there. Mr. Frank received a B.S. in Accounting, cum laude (1976),

and M.B.A. in Finance (1978) from Lehigh University. He is

currently completing the requirements for the M.S. in Information

Science from the same institution. Mr. Frank is employed by

Arthur Young & Company, Philadelphia, as a management consultant

in the Information Systems/EDP practice area. Mr. Frank is in

the process of completing the requirements to become a Certified

Public Accountant in Pennsylvania, and has had prior professional

experience as an auditor with the same firm. In addition, he

has had professional experience as a programmer/analyst for a

major east coast retailing chain.

-82-

	Lehigh University
	Lehigh Preserve
	1-1-1979

	An implementation of a coroutine mechanism in a block structured language.
	Allan R. Frank
	Recommended Citation

	tmp.1451580486.pdf.S5sZX

