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Title:  An Implementation Of A Coroutine Mechanism In A Block 
Structured Language 

Author: Allan R. Frank 

ABSTRACT 

The purpose of this paper is to document and discuss an 

implementation of a coroutine mechanism in a block-structured 

language. PASCAL-S was utilized as the language base. Though 

it is only a subset of the more powerful block-structured 

language, PASCAL, the PASCAL-S coroutine implementation effort 

was facilitated greatly by the relative simplicity of the com- 

piler structure while still providing a sufficiently powerful 

repertoire of features. 

Specifically, the implementation effort consisted of identify- 

ing, designing, implementing, and testing the syntactic and seman- 

tic constructs necessary to support a coroutine capability. The 

language additions/modifications encompassed five language ex- 

tentions; COLINK declaration, COPROC definition, RESUME state- 

ment, DETACH statement, and NEWIDP statement. 

The COLINK declaration is placed in a program following any 

appropriate CONST, TYPE, or VAR declarations. For example, just 

as a VAR declaration delineates those identifiers which re- 

present program variables, so a COLINK declaration delineates 

coroutines. 

The coroutines look much like standard PASCAL procedures ex- 

cept, instead of being identified by the keyword PROCEDURE, they 
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are preceeded by the word CQPROC. For purposes of the PASCAL-S 

implementation, any reference to OGPROC is synonomous with 

coroutine. 

There are, of course, very critical syntactic and semantic 

differences between a PROCEDURE and a CQPROC. These differences, 

as well as attendant similarities are discussed within the body 

of the paper. 

The remaining three control structures, RESUME, DETACH, and 

NEWIOP, are all statements added to the PASCAL-S repertoire. 

They apply specifically to manipulation and control of COPROC 

(coroutine) actions. The RESUME verb is very similar to a pro- 

cedure call except that it initiates the invocation of a COPROC 

from the body of another COPROC. This is the primary means of 

achieving coroutine logic flow. Here, instead of always entering 

at the top of its code, a COPROC, when invoked by a RESUME, will 

begin execution at the point of its last exit. 

The DETACH statement is an artificial means of transferring 

control from a coroutine cycle (COPROC) to the original calling 

procedure. This is much like a subroutine return in FORTRAN, or 

a natural exit from a called procedure in PASCAL except in this 

case, the DETACH allows an intermediate exit at any point in a 

COPROC. Transfer of control is not to the calling COPROC which 

may have issued the RESUME previously, but rather to the corou- 

tine procedure body which invoked the COPROC originally. 
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Finally, the NEWTQP statement allows the calling program to 

reset any particular OCPROC entry point back to the physical 

beginning of its code. In many cases, it may be desirable to 

ensure that a subsequent CQPRQC activation begins execution at 

the top of its program code (much like a call to a subroutine) 

rather than some indeterminate point. Upon issuing a DETACH from 

a COPROC, its new entry point is set to the point of the inter- 

mediate exit. Invoking a NEWTOP statement performs a selective 

reset of a COPROC entry point. 

- 3 - 



I.  INTRODUCTION 

The purpose of this paper is to document and discuss an 

implementation of a coroutine mechanism in a block-structured 

language. In order to facilitate the achievement of the 

implementation objectives, the choice was made to utilize a min- 

imal PASCAL subset embodied in the PASCAL-S interpreter C5J. This 

language subset includes many of the features of the larger com- 

piler, however it does not include such features as SETS, 

variant RECORDS, POINTERS, GOTOs, PACKED ARRAYs, and the like. 

In addition, PASCAL-S is limited to such data types as INTEGER, 

REAL, BOOLEAN, and CHARACTER. The major benefit of utilizing 

this PASCAL implementation is the simplicity of its compiling 

actions, P-machine pseudo-code generation and interpretation. 

The implementation effort consisted of identifying, design- 

ing, implementing, and testing the syntactic and semantic con- 

structs comprising the necessary elements of the coroutine 

mechanisms. This report serves to record the results of these 

efforts. For purposes of presentation, the following topical 

headings appear in subsequent sections of this paper: 
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II. OOBOOTINES — A GENERAL OVERVIEW - 

Here, a brief discussion of the nature of 

coroutine structures is given, with a 

specific focus on describing both its 

practical and theoretical qualities as 

they may relate to implementation on 

sequential automata. The description of 

coroutines will provide the basis of under- 

standing from which the remainder of the 

paper is based. 

III. OBJECTIVES OF IMPLEMENTATION - 

This section will delineate the specific 

objectives relative to the project to 

implement coroutine structures in 

PASCAL-S. These objectives or goals 

were formulated in order to provide a 

set of broad guidelines useful in the 

planning and design stages of the pro- 

ject. 

TV. SYNTAX AND SCOPE - 

This section provides a detailed description 

of each of the syntactic structures added 

to the PASCAL-S interpreter which were 

necessary to implement the coroutine mech- 

anism. In addition to a comprehensive 

explanation of language extensions, syntax, 

and use, the scope rules are also defined 
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in order to provide potential users with 

an indepth understanding of the nature and 

limitations of the new features. 

• V.  IMPLEMENTATION DESCRIPTION — PASCAL-S 
MODIFICATIONS -  

Following the comprehensive explanation of the 

necessary language extensions as presented in 

the previous Section IV, this section provides 

a detailed insight into the nature and extent of 

programmed changes/additions to the PASCAL-S 

interpreter. Here, an extensive description 

of the physical methods of achieving the corou- 

tine features, as presented, is given, and thus 

provides the necessary documentation from which 

future enhancements to the language structures 

can be made without disturbing the concepts and 

methods employed in this projecta 

• VI. POTENTIAL FOR EXPANSION - 

In this section a brief exposition is presented 

which discusses the practicality and applica^ 

bility of future enhancements to this present 

PASCAL-S coroutine implementation project. 

Special attention is given to the limitations 

of the coroutine extensions developed as a 

result of this project,'and insight is 

given into the nature of the effort required 

in order to further enhance these structures. 
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II. COROUTINES — A GENERAL OVERVIEW 

The notion of a coroutine has been generally attributed to 

the works of Conway QJ- Coroutines are modified subroutines with 

the capability of maintaining intermediate entry and exit points. 

Normally, a subroutine is a sequence of code which is called by the 

main program body. Entry to the subroutine always occurs at the 

top of its code (first line of code). Regardless of what point 

the subroutine exits and transfers control back to the calling pro- 

gram, subsequent calls to it will always cause re-entry to be made 

at its top of code. 

A^coroutine, on the other hand "remembers" the point at which 

it was last exited. Subsequent calls to a coroutine will cause 

re-entry to the code after the point it had last been exited. 

Thus, the first time a coroutine is called, it performs exactly 

like a subroutine; it begins execution at the top of its code. 

However, when it is exited, it records the place at which it should 

next resume execution. Should it again be invoked, transfer of 

control will proceed to the point at which it has recorded the 

previous intermediate exit. If, previously, the exit had been at 

its natural end point, a subsequent call to the coroutine would 

again cause execution to begin at the top of its code. 
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FIGURE 2.1 

Program Body Coroutine 

Figure 2.1 illustrates the coroutine actions described previously. 

The initial call to a coroutine (a) causes entry at the physical 

top of its code. Upon an intermediate exit (b) control is trans- 

ferred back to the point after the initial call. Finally, a sub- 

sequent call to the coroutine (c) causes re-entry to occur at the 

point after the last intermediate exit. 

As noted by Conway, the coroutine concept may be utilized for 

any program which can be shown to be separable. A discussion of 

separability is outside the scope of this project; however it is 

important to note that under this condition, separable program 

modules can be translated into coroutines. These coroutines then 

interact as if they are each the main program calling other sub- 

routines (coroutines). 

Developing further the coroutine concept in a block-structured 

environment, Wang and Dahl (2) pointed out that coroutines could 

be used to simulate parallel processes even though the mechanism 
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itself is implemented in a sequential program. Their discussion 

of the "quasi-parallel" Simula 67 language was the key to the 

development of the PASCAL-S implementation to be discussed sub- 

sequently . 

Coroutines can be considered to be sequential processes 

performed in parallel. This attribute brings with it several 

potential implications. First, if a program can be broken into 

a set of distinct coroutines, it could be implemented on a set of 

parallel processing computers, each executing a specific coroutine. 

A sufficiently comprehensive compiler could be developed to com- 

pile individual coroutine modules for the individual processors. 

Comnunication would be accomplished via a controlled data struc- 

ture which ensures the proper synchronization of the coroutine 

modules. 

The second implication of the quasi-parallel nature of 

coroutines is their ability to interact in such a way as to 

facilitate the implementation of multi-pass programs using a 

single-pass structure. This capability was amply demonstrated 

by Conway in his design of a one-pass COBOL compiler which was 

built around a number of coroutine segments. 

The coroutine implementation developed in the block-struc- 

tured language PASCAL-S contains the necessary constructs to per- 

form coroutine actions. The design was based upon the Conway, 
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and Wang and Dahl works which describe in detail, the theory and 

use of coroutine structures. Hopefully, subsequent experimenta- 

tion with this new coroutine implementation will provide further 

insights into the practicality of coroutines for a variety of 

algorithmic designs. 
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III. OBJECTIVES OF IMPLEMENTATION 

In order to study the applicability and practicality of 

utilizing coroutine mechanisms in a block-structured language as 

universally supported as PASCAL, this project was designed to 

provide a relatively straight-forward and flexible means for 

application experimentation. Specifically, the coroutine augmen- 

tation of the PASCAL-S interepreter was intended to achieve the 

following general objectives: 

• Definition of appropriate syntactic structures 

necessary for effective implementation 

utilizing formats and language syntax com- 

patable with that currently supported by the 

PASCAL-S interpreter; 

• Definition of appropriate procedural and data 

scope necessary for effective implementation 

while maintaining the scope rules currently 

supported by the PASCAL-S interpreter; 

• Support of all language facilities currently 

implemented within the PASCAL-S interpreter: 

• Use of implementation techniques (i.e. programm- 

ing) which can be readily modified to facilitate 

the future expansion of any coroutine features 

implemented in this current version; and 
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Design of all program code'necessary to support 

the coroutine features in a manner which ensures 

that the aesthetic balance of current PASCAL-S 

program code is not disturbed. 
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IV.  SYNTAX AND SCOPE 

A. Syntax Overview 

The purpose of this section is to discuss in detail the 

syntactic structure of the coroutine implementation performed upon 

the PASCAL-S interpreter. This discussion will center on a 

description of the various syntax enhancements/modifications made 

to the translator. In addition, where appropriate, the scope rules 

and limitations are identified. Appendix A details in an illustra- 

tive format the syntax diagrams for this enhanced PASCAL-S language. 

Specifically, this section documents the nature of the lan- 

guage additions identified as follows: 

• OOLINK 

• COPROC 

• RESUME 

• DETACH 

• NEWTOP 

The OOLINK declaration is placed in a program following any . 

appropriate CONST,TYPE, or VAR declarations. For example, just 

as aVAR declaration delineates those identifiers which represent 

program variables, so a OOLINK declaration delineates coroutines. 
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The coroutines look much like standard PASCAL procedures 

except, instead of being identified by the keyword PROCEDURE, 

they are preceded by the work COPROC. For purposes of the 

PASCAL-S implementation, any reference to COPROC is synonomous 

with coroutine. 

There are, of course, very critical syntactic and semantic 

defferences between a PROCEDURE and a COPROC. These differences, 

as well as attendant similarities will be discussed in a latter 

subsection. 

The remaining three control structures, RESUME, DETACH, and 

NEWTOP, are all statements added to the PASCAL-S repertoire. They 

apply specifically to manipulation and control of COPROC 

(coroutine) actions. The RESUME verb is very similar to a pro- 

cedure call except that it initiates the invocation of a COPROC 

from the body of another COPROC. This is the primary means of 

achieving coroutine logic flow. Here, instead of always entering 

at the top of its code, a COPROC, when invoked by a RESUME, will 

begin execution at the point of its last exit. 

The DETACH statement is an artificial means of transferring 

control from a coroutine cycle (COPROC) to the original calling 

procedure. This is much like a subroutine return in FORTRAN, or 

a natural exit from a called procedure in PASCAL except in this 

case, the DETACH allows an intermediate exit at any point in a 
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OQPROC. Transfer of control is not to the calling COPROC which 

may have issued the RESUME previously, but rather to the coroutine 

procedure body which invoked the OQPROC originally. 

Finally, the NEWTOP statement allows the calling program 

to reset any particular OQPROC entry point back to the physical 

beginning of its code. This would be useful since upon issuing a 

DETACH from a OQPROC, its new entry point is set to the point of 

the intermediate exit. In many cases, it may be desirable to en- 

sure that a subsequent OQPROC activation begins execution at the 

top of its program code (much like a call to a subroutine) rather 

than some indeterminate point. Invoking a NEWIOP statement per- 

forms a selective reset of a OQPROC entry point. 

The remainder of this section will describe in detail the 

nature and limitations of the five previously cited syntactic 

additions to the PASCAL-S interpreter. It is these five new- 

declaration and control verbs which provide the necessary mech- 

anisms to support a coroutine structure within PASCAL-S. 

B. COLINK 

As described briefly previously, the OOLINK declaration is 

intended to identify a OQPROC prior to its formal declaration. 
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This is similar to declaring variables (VAR) prior to their use. 

In the case of a OOPRDC, this requirement eliminates the need for 

a complicated forward referencing mechanism which would have been 

necessary to resolve addressing relative to a OOPROC referencing 

a neighboring CQPROC further down in the program. 

Syntactically, a OOLINK declaration identifies all OOPROC 

bodies within the subsequent block activation level. This is 

accomplished by inserting the following declaration for each OOPROC: 

OOLINK   coprocname-; 

coprocnamep; 

coprocname^; 

Each coprocname is the symbolic identifier to be used for the 

OOPROC declarations to follow. Appendix A contains the syntax 

diagram for the OOLINK declaration. 

The OOLINK declaration is contained in the declaration part 

of the PASCAL-S program and/or within its constituent procedures 

and coroutines. It would only be used if a OOPROC is to be 

utilized. If none are to be used, the OOLINK declaration section 

must not be included. 

The standard PASCAL-S implementation has no forward referenc- 

ing capability. This in itself impacts program development in 
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only a few selective cases. Due to the one-pass nature of the 

PASCAL-S interpreter's compiling actions, a procedure must have 

been identified and catalogued in the appropriate symbol table(s) 

prior to reference by a call to that procedure. 

FIGURE 4.1 

PROGRAM Test(output); 

VAR 
I: Integer; 

(1) PROCEDURE Adder; 

BEGIN 
I: = I + 2; 

END(*Adder*): 

BEGIN 

I: =10; 

Writeln(^ here is a number f,  I); 

(2) Adder; 

WritelnC?4 here is 2 + that number f,  I); 

END(*main*X 

Figure 4.1 illustrates a normal PASCAL-S program where a procedure 

"Adder" is subsequently referenced in the main body of the program. 

PASCAL-S will have entered the procedure name (1) in its symbol 

table prior to its compiling the reference to it (2). This is 

possible due to the one-pass downward left-right direction of 

compiling actions. 
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In the case of the OOPROC implementation, one OCPROC must 

reference another at the same block level. This is illustrated 

in Figure 4.2 below. 

FIGURE 4.2 

OOPROC A; 

BEGIN 

(1) RESUME(B); 

END(*A*); 

(2) OOPROC B; 

BEGIN 

RESUME(A); 

END(*B*); 

As indicated, within the body of OOPROC A, a reference (1) is 

made to OOPROC B, before OOPROC B has been declared to the com- 

piler (2). This type of forward referencing will always occur 

when OOPROC to OOPROC communication is used. 

To alleviate this, the COLINK declaration must be used to 

explicitly identify any subsequent OOPROC to appear in the follow- 

ing block activation level. Figure 4.3 illustrates the use of 

this COLINK feature. 
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FIGURE 4.3 

PROGRAM Test; 

VAR 

I: Integer; 

COLINK 

A; 

B; 

OOPROC A; 

BEGIN 

RESUME(B); 
* 

END(*A*); 

OOPROC B; 

BEGIN 

RESUME(A); 

END(*B*); 

BEGIN(*MAIN*) 

A; 
* 

END(*MAIN*)- 

The COLINK declaration provides a simple mechanism to 

facilitate the forward referencing of OOPROC B (within OOPROC A), 

prior to the OOPROC declaration. 

The explicit definition of a OOPROC not only provides a 

means to jjiplement forward referencing, but it also facilitates 
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the validation of proper scope relations between a OQPROC and 

PROCEDURE body. As will be discussed in greater detail in the 

subsequent subsection on COPROC declarations, COPROC to COPROC 

communication is limited to direct interaction at the same block 

level. In other words, one COPROC cannot communicate as a corou- 

tine with another COPROC which is nested within the first. They 

must both be at the same activation level; whereas nesting would 

imply that the first coroutine would have a level lower than the 

second. 

FIGURE 4.4 

T,PVPT ? PROCEDURE X; 

VAR 

JL I: Integer 

COLINK 

Y; 

Z; 
N + 1 COPROC Y; 

BEGIN 

END(*Y*); 

N + X COPROC Z; 

BEGIN 

BEGIN 
JL 

END(*X*); 
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Figure 4.4 illustrates a procedure which contains two OQPROC 

declarations. Notice that the OOLINK definition appears in the 

declaration body of the parent procedure (Level N), identifying 

those OQPROC bodies existing at level N+l. 

FIGURE 4.5 

level 

PROCEDURE X • (N) 

OQPROC Z (N+l') 

A tree diagram can be utilized to generalize the scope legality 

of OOLINK declarations. Figure 4.5 graphically depicts the scope 

relation of the program in Figure 4.4. The PROCEDURE X (parent 

node), contains two children nodes, each of which is a COPROC. 

Rule: The OOLINK declaration must appear within the declara- 

tion body of the parent node. 
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FIGURE 4.6 

PROCEDURE X 

COPROC Z 

Figure 4.6 illustrates a tree structure representing a 

hypothetical PROCEDURE X which contains four COPROC bodies 

(Y, Z, F, G). However, COPROC F and G are both contained in 

COPROC Y. In this case, applying the rule underlined previously, 

a COLINK declaration would be made in PROCEDURE X identifying 

COPROC Y and Z. Also, a COLINK declaration would be made in 

COPROC Y identifying COPROC F and G, (Y is the parent of F and G). 

Figure 4.7 is a program translation of the tree structure 

represented in Figure 4.6, and illustrates the proper application 

of COLINK declarations (see following page). 
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FIGURE 4.7 

PROCEDURE X; 

VAR 

I: Integer; 

COLINK Y; Z; 

OOPROC Y; 

COLINK F: G: 

OOPROC F; 

BEGIN 

END(*F*); 

OOPROC G; 

BEGIN 

END(*F*); 

BEGIN 

END(*Y*); 

OOPROC Z; 

BEGIN 

• 

Efc22(*Z*); 

BEGIN 

KNT)(*X*); 
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C. OOPROC 

The control structure which in itself represents the implemen- 

tation of coroutines in PASCAL-S is embodied in the variant proce- 

dure type OOPROC. A OQPROC is very similar to a standard PASCAL 

procedure, and in fact, takes very much the same syntactic format 

of a procedure with only a few very distinct exceptions. Appendix 

A contains the syntax diagram for a OOPROC declaration. Semanti- 

cally, a OOPROC differs greatly from a normal procedure with its 

ability to exit and re-enter at intermediate points within its 

procedure body. Normally, every call to a PASCAL procedure will 

always invoke execution of its code at the top of the procedure 

body and exit at its natural bottom. On the other hand, a corou- 

tine-like procedure (OOPROC) will begin execution at the top of 

its code only on its initial call. Subsequent calls to it 

(via a RESUME) will cause execution to begin at the line after 

its last point of exit. 

FIGURE 4.8 

OOPROC X; OOPROC Y; 

BEGIN (1)^ ̂~+ BEGIN 

RESUMECY); *" (2) RESUMEfX): 
■ <  

RESUMECY); — (3) EMX*Y*); 

END(*X*); 
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Figure 4.8 above provides an illustrative exanple of twD OQPROC 

bodies comnunicating with each other. The initial call by ODPROC 

X to OQPROC Y via the RESUME statement (1) invokes entry at the 

top of COPROC Y. The subsequent call to X from within Y (2) 

re-enters X at the last point of its intermediate exit (after 

the first RESUME). Finally, the subsequent RESUME of Y (3) will 

cause entry at the point of its last exit. 

An individual OQPROC has many of the same properties as a 

PROCEDURE including: 

• Nesting 

- A COPROC may be nested within a PROCEDURE 

- A COPROC may be nested within another COPROC 

- A COPROC may contain a PROCEDURE nested within it 

• Calling 

- A COPROC may call another COPROC (at same 

level via RESUME) 

- A COPROC may call a PROCEDURE (via normal 

procedure call) 

- A COPROC may be called by the PROCEDURE 

and/or COPROC which contains it (via 

normal procedure call) 
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• Statements 

- A OQPROC may contain any statement or 

combination of statements that could be 

found in PROCEDURE bodies. 

However, a COPROC differs from the standard PROCEDURE in that it 

does not allow the following constructs to be defined within it: 

• Parameter List 

• TYPE declaration 

• VAR declaration 

• CONST declaration 

• Recursive call 

In general, as should be evident from the exclusions noted above, 

the current COPROC implementation does not allow the definition 

of any type of local variables (however, this does not preclude 

a procedure nested within it from declaring variables local to 

it)  This restriction limits the interaction between COPROC 

procedure bodies to the manipulation of data elements defined 

globally (or within the procedure body containing them). 

This method of data addressing significantly reduces the 

overhead which would have been required if local variables had 

to be continually swapped on the run-time stack. The subsequent 

section discussing the specifics of the PASCAL-S implementation 
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provides further insight into the mechanism of run-time overhead. <• 

For purposes of explanation, it may be useful to further 

discuss the communication between a OOPROC and a calling PROCEDURE. 

Coroutine-like actions are invoked only between two or more 

neighboring CQPROC bodies. The communication between the group 

of inter-related CQPROC bodies can be conveniently called a "cycle", 

FIGURE 4.9 

COPROC CYCLE 

Figure 4.9 graphically illustrates a COPROC cycle. This cycle 

actually represents the inter-COPROC calls initiated via RESUME 

statements. 

In order to initiate a cycle, a COPROC must initially be 

called by the main program or by the PROCEDURE/COPROC/FUNCTION 

containing it. This initial call is performed like a standard 

procedure call; simply invoke the COPROC name. When any individual 

COPROC in the cycle reaches its natural exit point, END, transfer 

of control will be returned to the point after this initial call. 

- 27 - 



Thus, if only one OOPROC were defined in a cycle, it would func- 

tion exactly like a PROCEDURE when it is called using the stand- 

ard PASCAL procedure call syntax. 

D. RESUME 

The RESUME statement is the principle means of initiating 

coroutine actions. When invoked within a OOPROC it transfers 

control to the respective entry point of the selected OOPROC 

within the cycle. The statement immediately following the RESUME 

becomes the new entry point for that OOPROC. A subsequent call 

(RESUME) to it by another OOPROC will transfer control to this 

new entry point. Thus, OOPROC to OOPROC cannunication via the 

RESUME operation is the sole means of creating coroutine actions. 

Appendix A illustrates the syntax flow of a RESUME statement. 

In addition, the following rules apply to its use: 

1. The OOPROC object of a RESUME must 

have been declared by the same 

COLINK declaration as the OOPROC 

in which the RESUME resides. 

2. Only a OOPROC can be called via a 

RESUME statement; A PROCEDURE or 

FUNCTION is invoked using the 

standard PASCAL call. 
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Rule (1) further enforces the restriction that for OOPROC to 

OOPROC communication each OOPROC must be defined at the same 

block level. 

FIGURE 4.10 

Figure 4.10 illustrates a scope diagram which is useful in 

summarizing the legal scope relations of OOPROC and PROCEDURE/ 

FUNCTION interaction. Under one scenario, "a", "b", "c", and 

"f" are PROCEDURE definitions with "d", "e'\ ng", and "h" 

defined as OOPROC bodies. Since the above example includes 

nesting, the following chart summarizes the legal scope of 

inter-COPROC communication: 
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COPROC can RESUME CQPROC 

d e 

e d 

g h 

h g 

In addition, the OQPROC bodies can call the following procedures 

via the standard PASCAL call: 

COPROC can call PROCEDURE 

d a,b,c 

e a,b,c 

f a,b,c,f 

g a,b,c,f 

It should be pointed out that even though each of the COPROC 

definitions indicated above can call PROCEDURE bodies a,b, 

and c, such an occurrence could lead to recursion. This would 

be possible since the OQPROC bodies are nested within those 

procedures. Though the current implementation will allow a 

recursive call, anomolous results may result if it causes 

re-entry to a COPROC. This is because COPROC entry/exit points 

are not stored on a stack, but rather within a static symbol table 

entry. The subsequent section on the technical implementation 
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approach will shed further light on this limitation. 

The following summary depicts the legal PROCEDURE to OOPROC 

calls which are legal within the context of the previous example: 

PROCEDURE        can call        OOPROC 

a 

b 

c d,e 

f 

In this case,"c" is the only PROCEDURE allowed to access a 

OOPROC. This applies to a previously delineated rule which 

stated that only the parent procedure containing OOPROC(s) may 

invoke the cycle. In this case, OOPROC "d" and OOPROC "e" are 

the children of PROCEDURE "c". 

There are several OOLINK declarations which would appear 

if the previous Figure 4.10 were to be programmed. The follow- 

ing summary delineates the required declarations: 

in PROCEDURE/COPROC declare       OOLINK 

a 

b 

c d;e; 

d g;h; 

e 

f 

g 
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The above exanple may be beneficial in relating the previous 

sub-section describing the OOLINK declaration with the other 

PASCAL-S scope definitions. 

E. DETACH 

The DETACH statement is a mechanism included.in this 

PASCAL-S implementation which facilitates transfer of control 

from a COPROC cycle to the procedure body which invoked the 

initial call to that cycle. Its properties are quite similar 

to that of a natural COPROC exit. When aCOPROC in a cycle 

reaches its natural END, control transfers to the point in 

the procedure body which initiated the cycle. A DETACH can 

be placed anywhere within the body of a COPROC. Upon en- 

countering the DETACH, control is transferred to the point 

aftev the initial call in the applicable procedure body. 

As should be evident, the DETACH imitates the semantics 

of the final END in a COPROC. However, there is one important 

difference. When a COPROC reaches its natural END point, 

its re-entry point for a subsequent RESUME is reset back to 

the physical top of its code. On the other hand, a DETACH 

does not reset its re-entry point to the top, but rather to 

the statement after the DETACH. This is, in effect, similar 

to an intermediate exit. This feature may be useful in allowing 

a return to the controlling procedure body and re-entry into 
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the COPROC at the point of DETACH. Appendix A illustrates the 

rather straightforward syntax of a DETACH statement. As alluded 

to earlier, it may be placed anywhere within a COPROC procedure 

body. 

Care must be taken when using a DETACH especially if re- 

entry into the COPROC cycle is attempted. To further clarify 

this assertion requires a brief explanation of the technical 

implementation approach (a more detailed discussion will 

follow in Section V). In order to effectuate a coroutine mechanism 

it was necessary to expand the use of the run-time stack. Each 

time a COPROC is invoked via a RESUME, the COPROC issuing the 

RESUME has its current stack values frozen on the stack. Thus, 

if an intermediate exit is performed from within a FOR, REPEAT, 

or WHILE loop, their control variables, which are wholly stack 

dependent, are saved. When re-entry is invoked into the 

COPROC, those frozen stack values are restored onto the top of the 

stack again. When a DETACH or natural END is encountered, the 

stack values are deactivated for each COPROC in the cycle. Thus, 

if re-entry is attempted into a COPROC which previously issued a 

DETACH within a stack-dependent control loop (i.e. FOR, REPEAT, 

WHILE statements), catastrophic program failure will surely result. 
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FIGURE 4.11 

PROCEDURE control; 

COLINK 

A; 

COPROC A; 

 * BEGIN 

DETACH; 

END(*A*) 

BEGIN 

A; 

,END(*control*); 

Figure 4.11 outlines a program skeleton utilizing the DETACH. 

Though the flow lines do not indicate it, if "A" was again invoked 

in the main program as a consequence of the DETACH, control would 

transfer to the statement immediately after that DETACH, This 

allows a calling procedure to communicate with a single COPROC 

cycle maintaining the coroutine qualities of that COPROC, 
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FIGURE 4.12 

PROCEDURE control; 

BEGIN 

copROC A; 

BEGIN 

DETACH; 

EMX*A*); 

M>(*control*); 

Figure 4.12 further illustrates this capability by rearranging 

the previous example. The initial call to "A" (1) causes entry 

to the COPROC at its physical top. The subsequent DETACH (2) 

transfers control back to the point after the initial call in 

PROCEDURE "control". Finally, a subsequent call to "A" (3) 

re-enters the COPROC at the point after the DETACH. This parallels 

the intermediate entry which could have ensued if it had been 

invoked by a RESUME from another COPROC within the cycle. 

F. NEWIOP 

The NEWIOP statement provides the means to reset any COPROC 

entry point back to the physical top of its code. It may be 

usefully performed by the procedure block which initiates the 

COPROC cycle call in order to ensure that each COPROC is properly 
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initialized. Since a COPROC cycle can be exited if the natural 

END of any OOPROC in that cycle is reached or if a DETACH is 

performed, the programmer may find it desirable in some cases to 

issue* a NEWTOP for each COPROC in the cycle prior to re-calling 

that cycle. Otherwise, each COPROC in the cycle will have unde- 

fined entry points which were set by previous RESUME, DETACH, 

and/or END statements. Appendix A graphically depicts the syntax 

diagram of the NEWIOP statement. The COPROC identifiers which may 

be included within the NBVTOP verb must have been declared by a 

COLINK in the declaration section of the parent PROCEDURE. In 

general, the scope of a NEftTOP statement is identical to an initial 

call to a COPROC by the procedure body in which it is contained. 

If that particular procedure block can legally invoke a COPROC 

via the standard procedure call (see previous discussion on the 

COPROC definition), then it can also issue a NEWDOP for it. This 

will always be the parent PROCEDURE, FUNCTION, or COPROC in which 

the child COPROC referenced by the NEWTOP resides. 

Referring back to the previous discussion of the DETACH 

statement, it must again be stressed that care must be taken when 

performing an exit from inside a FOR, REPEAT, or WHILE loop with- 

in a COPROC. This is because all loop control variables stored 

on the run-time stack are lost upon exit. Thus, a mechanism must 

be provided to ensure that a subsequent call to7that COPROC will 
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not cause re-entry into the context of the previously defined 

control loop. To do so, would inevitably lead to anomalous 

program behavior. Issuing a NEWTQP to reset the entry points 

of each applicable OQPROC will ensure that re-entry will begin 

back at the top of the routines. Since a NEtfTQP verb affects 

the point of OQPROC entry, it must be used with care and its 

ramifications understood. This is especially critical in cases 

where the intermediate entry point to a given OQPROC has been 

modified from that which would have existed had the NEW.TOP not 

been invoked. 

FIGURE 4.13 

PROCEDURE Control; 

BEGIN (1) 

Acoroutine;"^   (2)_ 

NEWIOPC Acorout ine); 

(3) 

OQPROC Acoroutine; 

BEGIN «  

DETACH; 

END (*Acoroutine*); 

Acoroutine; 

END( *Control* ); 

In summary, Figure 4.13 illustrates the control flow of a 

parent PROCEDURE and its OQPROC. Initially Acoroutine is 

invoked (1) at the top of its code. Upon encountering a DETACH 
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(2), control is transferred to the point in the PROCEDURE after 

the initiating call. The NEWKP statement implicity resets the 

Acoroutine entry point to its top of code, and finally, a sub- 

sequent call to Acoroutine (3) transfers control to the top of 

code rather than to the prior intermediate exit point after the 

DETACH. 
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IMPLBIENTATION DESCRIPTION — 
PASCAL-S MODIFICATIONS- 

Whereas Section IV presented a detailed description of the 

syntactic and semantic characteristics of the various PASCAL-S 

additions which were necessary to implement the coroutine capa- 

bility, this section provides an explanation of the underlying 

program changes made to the interpreter to accomplish the capa- 

bility. An assumption is made that the reader has an understand- 

ing of the mechanics of implementing block-structured languages. 

References will be made to techniques and program structures 

which are based upon those utilized by Niklaus Wirth ($),  £0 

within his implementation of PASCAL and its related subset lan- 

guage PL-0. This includes the use of displays, dynamic and 

static links, and complicated stack-related data structures. As 

a preface to further discussions it may be useful to very briefly 

describe the current PASCAL-S compiler. 

A. PASCAL-S OVERVIEW 

PASCAL-S is written in the full CDC-60pp version of PASCAL 

and is based upon recursive descent parsing. Code generation is 

performed in one pass during the syntactic analysis of program 

source code statements. No code optimization is performed. 

Further simplifying the compiling actions is the P-machine 

- 39 - 



concept built into its design. The code emitted during com- 

pilation is not absolute machine code. Instead, it produces code 

for a hypothetical virtual machine; the P-machine. At the end 

of source code translation to P-code, the virtual machine proceeds 

to interpret the intermediate code into physical machine actions. 

This interpretation step is, in fact, the process of "executing" 

the user program. 

Any program coded in the PASCAL-S language can be compiled 

on the full PASCAL compiler. The reverse is not true. The 

following PASCAL constructs are not implemented in the PASCAL-S 

compiler: 

• String constants or variables 

• File, set, pointer, scalar, or packed 

variables 

• Variant record structures 

• Function or procedure names in a 

parameter list 

• Label declarations 

Appendix A details the syntax diagrams of the PASCAL-S language 

with the coroutine additions explicitly indicated. 

From the standpoint of compiling and execution, there are 

two data structures contained in the compiler which are key to 

maintaining the block-structured nature of the language. 

- 40 - 



These two elements, symbol table and stack, are also key to the 

coroutine implementation. Therefore, a brief discussion of their 

design may be in order. 

Unlike most conventional static compilers, PASCAL-S utilizes 

the symbol table heavily at run-time. The stack is the most 

important data structure to PASCAL-S (as it is to PASCAL), and 

is the mechanism which coordinates the run-time interaction of 

procedure bodies and data elements. 

1. Symbol Table 

The symbol table is used to store various attributes about 

each identifier fcund in the source program. At compile time 

these attributes are utilized to verify legal scope, syntax, 

and type relations with other program elements. At run-time, 

the symbol table is accessed to identify such variable or con- 

stant attributes as type, value, and level. 

Identifiers are entered into the symbol table in order of 

appearence, yet the given scope relation must also be maintained. 

To accomplish this, the entries for each block level are linked 

together. Thus, the table can be scanned two ways; sequentially 

from newest to oldest entry regardless of level, or searched 

for entries in a given level (with entry indicated by a display). 
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Specifically, each symbol table entry contains the following 

mnemonic attributes: 

• NAME 

• LINK 

• OBJ 

• TYP 

• KEF 

• NORMAL 

• LEV 

• ADR 

NAME refers to the identifier name as identified by the lexical 

scanner. LINK is a pointer to the last (prior) symbol table 

entry made for an identifier in a given block level. OBJ indicates 

the nature of the entry as a constant, variable, type, procedure, 

or function identifier. TYP indicates the type of the constant or 

variable identified as an integer, real, boolean, character, array, 

or record. REF is used for procedure identifier entries to point 

to the block activation record in the block table. For array 

variables it used to point to the proper array table entry. NORMAL 

is a flag used for parameterlist items to indicate whether they are 

value or variable parameters. LEV specifies the block level where 

the identifier was scanned. Finally, ADR contains the address 

of the physical top of the code generated for a particular pro- 

cedure or function. For variables, it specifies the relative 

displacement from the beginning of the activation record. For 
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a type identifier, it contains the size of the data structure. 

Display 

FIGURE 5.1 

Entry P   Table Entry Block Level 

Figure 5.1 illustrates the symbol table structure. The entries 

are allocated sequentially. However, all identifiers in a given 
/ 

block are linked together. The display is continually updated to 

indicate the last entry for each block in the table. As indicated, 

identifier attribute LINK is used as the block linking mechanism, 

ultimately pointing to a null entry #0. 

The coroutine implementation to be discussed subsequently 

required additional attributes to be assigned and maintained in 

the symbol table. Currently, symbol table attributes are not 

modified at run-time. This is not the case with the coroutine 

implementation. 
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2. Run-time Stack 

The run-time stack is clearly the most significant data 

structure in the PASCAL-S system. It is the stack where activation 

records and their attendant local data elements are manipulated 

by the P-code interpreter. As with the symbol table, a discussion 

of the current PASCAL-S stack structure is useful since'the 

coroutine implementation significantly affects the operation of the 

run-time stack. 

Each time a procedure/function call is invoked, an activa- 

tion record is created at the end of the stack for the procedure/ 

function being called. An activation record consists of reserved 

space for the data values declared local to that procedure 

body. In addition, the record contains five control fields which 

are used to implement calls, returns, and function value storage. 

When a procedure/function is called, the applicable static block 

table entry (created at compile time) is interrogated to determine 

the proper total displacement to be reserved for local data values, 

and four of the five fields are initialized. With space reserved 

for the five fields and local data values, the remaining stack 

space can be I'sed for run-time use. 
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FIGURE 5.2 — ACTIVATION RECORD 

: PRIOR ACTIVATION 

+0 FUNCTION RESULT (FCT) 

+1 RETURN ADDRESS (RET) 

+2 STATIC LINK (SLNK) 

+3 DYNAMIC LINK (DLNK) 

+4 TABLE INDEX (TINX) 

+5 . - DISPLACEMENT FOR 
!     LOCAL VARIABLES 

I - OPEN STACK SPACE 

Figure 5.2 illustrates an activation record as it may appear 

on a stack. To the right of each entry a short mnemonic is 

parenthically enclosed. These abbreviations are used throughout 

subsequent discussions when addressing these fields. 

Note: These names are not actually used in the compiler, 

but are used here to facilitate explanation. 

At the very base of the record (FCT) a FUNCTION would store 

its value upon existing back to the calling point. RET, the 

Return Address (base +1), is the relative location containing 

the address of the code just after the point of the originating 

call. The Static Link (SLNK) is a pointer to the block 

activation record which maintains the scope relation of pro- 

cedure blocks defined at compile time. This is necessary to 

access appropriate data values outside the block. The Dynamic 
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Link (DLNK) points to the base of the activation record placed 

previously on the stack and still active. This is necessary for 

valid transfer of control upon exit from a given procedure/ 

function body. Finally, the Table Index (TINX) is a pointer to 

the static symbol table entry of the called procedure/function 

identifier. This is needed to access its static level for sub- 

sequent use in non-local variable manipulation. In effect, the 

stack contains block activation records for procedures/functions 

still in process. They are linked together in two ways. One way 

(dynamic link) provides a history of prior procedure activations. 

The second way (static link) maintains the variable scope rela- 

tionship for data access of non-local data elements in other 

activation instances. 

As stated earlier, the coroutine implementation requires 

that the stack activation record concept be modified as well as 

the static symbol table. The remainder of this section describes 

these and other modifications. 

B. COROUTINE IMPLEMENTATION 

1. Code Generation 

In order to develop a run-time coroutine capability it was 

necessary to augment the P-machine with four additional primitive 

P-codes. Various combinations of these codes are generated to 

implement the DETACH, RESUME, NEWTOP, and COPROC natural exit. 
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In addition, the P-code (19) which had already existed to perform 

a standard procedure/function call was modified to also handle 

the initial call to a OOPROC cycle from an external procedure 

body. 

TABLE 5.1 

P-MACHINE ADDITIONS 

P-CODE FUNCTION P OF OPERANDS 

64 RESUME 2 

65 OOPROC EXIT 0 

66 
SET ENTRY TO 
TOP OF OOPROC 1 

67 
SET ENTRY TO 

INTERMEDIATE PT. 1 

The P-code additions summarized in Table 5.1 are combined, 

as cited previously, to implement the various language additions. 

However, the COLINK declaration simply initiates entry of a 

COPROC identifier into the symbol table and requires no explicit, 

code generation. 

Upon encountering a RESUME, Procedure "resumestatement" 

is invoked. This procedure performs the following actions: 

1. Verifies that the RESUME is contained 

inside the body of a COPROC; 
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2. Searches in the symbol table for the 

OOPROC identifier which is the object 

of the RESUME and makes sure it is the 

same block level as the containing 

OOPROC; 

3. Emits P-code (64, x, y) where x points 

to the symbol table entry of the 

OOPROC in which the RESUME statement 

resides, and y points to the symbol 

table entry of the OOPROC object of 

the RESUME; 

4. If the static block level of the OOPROC 

object of the RESUME is less than the 

level of the block containing the RESUME 

statement then it emits P-code (3, x, 

y) where x = object level and y = con- 

taining OOPROC level. 

Upon encountering a OOPROC declaration, Procedure "koproc- 

declaration" is invoked. This procedure performs the following 

actions: 

1. Verifies that the OOPROC identifier already 

exists in the symbol table (via proceeding 

COLINK declaration); 

2. Calls Procedure block recursively to compile 

the procedure body; 
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3. On return from "block", code is emitted 

for a OOPROC natural exit. It emits 

P-code (66, x) where x is a pointer to 

the symbol table entry of the OOPROC 

identifier. This instruction resets the 

OCPROC entry point to the physical top of 

its code. 

4. Emits P-code (65) which performs a general 

OOPROC deactivation/exit. 

Upon encountering a DETACH statement Procedure "detachstatement" 

is invoked. This procedure performs the following actions: 

1. Verifies that the DETACH statement is 

contained within the body of a OOPROC; 

2. Emits P-code (67, x), where x is a pointer 

to the symbol table entry of the OOPROC 

in which the DETACH statement resides; 

3. Emits P-code (65) which performs a general 

OOPROC deactivation/exit. 

Upon encountering a NEWKP statement Procedure "newtop- 

statement" is invoked. This procedure performs the following 

functions for each OOPROC identifier specified: 

1. Verifies that the OOPROC object is in 

the symbol table with a level indicating 

that it is a OOPROC which is nested 

(contained) within the procedure body where 

the NEOTOP statement resides; 
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2. Emits P-code (66, x) where x is a 

pointer to the symbol table entry 

of the ODPROC object named in the 

NEWTQP statement. This instruction 

sets that object's entry point to the 

physical top of its code. 

Upon encountering an initial call to a OOPROC cycle from 

inside a PROCEDURE, Procedure "call" is invoked as it would be for 

and PROCEDURE or FUNCTION call. This procedure performs the fol- 

lowing functions as they relate to a OOPROC call: 

1. Emits P-code (18, x), where x is a 

pointer to the symbol table entry of 

the OOPROC being called. This in- 

struction marks the stack for the 

subsequent call instruction; 

2. Emits P-code (19, x), where x is the 

size of a parameterlist (not used 

for OOPROC). This instruction 

performs the call; 

3. If the level of OOPROC being called is 

less than the block level where the call 

resides, then it emits P-code (3, x,y), 

where x is the level of the current 

block, and y is the level of the con- 

taining OOPROC. 
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2. Stack/Symbol Table Enhancements 

In order to implement the capability of OOPROC to OCPROC 

communication, it was necessary to consider the effect repeated 

calls would have on the run-time stack. Normally, each time a 

PROCEDURE or FUNCTION is called from within a procedure body, 

its activation record is placed on the stack on top of the cur- 

rent record. If this PROCEDURE/FUNCTION was again called 

(recursively), another activation record would be placed on the 

stack on top of the current record. Until a procedure body 

finally reaches its natural exit point, its activation record 

remains on the stack. By definition, when a OCPROC issues a 

RESUME to another OOPROC in a cycle, its actions must be 

temporarily suspended (along with any temporary values on the 

stack). That OOPROC just called may, in addition, issue its 

own RESUME to the OOPROC that just called it. Though this is 

considered recursion in the normal sense, under a coroutine 

philosophy, this is simply two-way communication. If OOPROC to 

OOPROC communication were implemented exactly as a PROCEDURE or 

FUNCTION, each time a RESUME occured, a new activation record 

would be placed on the stack for the OOPROC being re-entered. 

Under most circumstances, this would lead to the same limitation 

of implementing deeply nested recursive algorithms. That is, 

running out of memory to store the activation records on the 



\^ 

Realizing that implementing a quasi-recursive coroutine 

structure in a block-structured language must be performed without 

utilizing the conventional technique of stacking activation records, 

a data structure was designed which allowed the present PASCAL-S 

stack to be utilized, while re-defining the concept of a block 

activation for COPROC cycles. Thus, the stack enhancements imple- 

mented are transparent to normal PROCEDURE of FUNCTION activations. 

Only the RESUME of a given COPROC within a cycle causes the new 

stack definitions to be used. 

Specifically, the maintenance of COPROC activations on the 

stack redefines the conventional notion of activation records. 

Now, instead of creating an activation record for each call 

(RESUME), the block activation occurs only at the time of the 

initial call to the COPROC cycle. 

A subsequent RESUME of a COPROC within the cycle does not 

cause the creation of a completely new activation record. Instead, 

the same activation record is maintained. The stack area of the 

COPROC to be reactivated is preserved within the record, and a 

new stack area is initialized for the called COPROC. 

Since the COPROC object of a RESUME may have been previously 

active, and thus preserved on the stack, the initialization process 

may consist of swapping pieces of'the activation record's stack 

area (stack segments). In this case, the stack segment attributed 
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to the OOPROC being reactivated (the object of a RESUME) would be 

moved to the end of the stack to enable its activity to continue 

utilizing the stack for storing temporary values and evaluating 

expressions. 

The displacement of stack segments requires a considerable 

amount of overhead to properly implement a RESUME. This is due 

to the amount of internal "bookkeeping" required to maintain 

the boundaries of the stack segment for each OOPROC which has 

been activated within a cycle. In addition, preserved stack 

segments must be continually swapped in order to place the 

segment of the OOPROC to be reactivated into position at the end 

of the stack. Any stack area freed by the displacement of this 

segment is re-used by shifting segments back into its former 

location. 

FIGURE 5.3 
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Figure 5.3 illustrates the generalized four step sequence 

which occurs to re-activate (RESUME) a OQPROC previously pre- 

served on the stack. The block activation record consists of 

the same five control fields (function result, return address, 

static link, dynamic link, and table index) as a normal PROCEDURE 

or FUNCTION. In addition, a stack segment is maintained for each 

OOPROC previously activated (and requiring stack preservation). 

In illustration (1), OOPROC A and OOPROC B have been previously 

activated and require stack preservation (temporary storage of 

local control variables). If the statement RESUME(A) were execut- 

ed within the body of B, it would be necessary to reactivate A. 

Here, the stack segment preserved for A would be moved to 

temporary storage (2). The segment currently in use by B at the 

end of the stack area would be preserved and shifted into the 

unused space within the activation record left by swapping out 

A's stack segment (3). Finally, the stack segment previously 

saved for A would be returned to the activation record (4). 

Now, however, it is placed at the open end of the stack area. 

Reactivation of OOPROC A can now proceed since its stack segment 

is in place for potential expansion. 

In order to implement the cycle activation record stack 

segmentation structure, the PASCAL-S static symbol table 

("TAB") was augmented to include a field, STK, for each 

identified entry (in addition to NAME, LINK, OBJ, TYP, REF, 
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NORMAL, LEV, ADR).    This field, really applicable only to a 

00PROC identifier, is used at run-time as a display into the 

active stack segments. In addition, it serves to indicate the 

status (active/inactive) of a particular 00PROC. If a OOPROC 

has yet to be activated (via RESUME) within a cycle, TAB.STK 

would contain a value of zero indicating no stack segment is 

active for that OOPROC. 

Note: STK is reset to zero when the OOPROC is 

deactivated via a DETACH or natural exit. 

Coproc Activation 
Record 

FIGURE 5.4 

FCT 
RET 

SLNK 

DLNK 

TINX 

segment 
A 

segment 
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Symbol Table 
(TAB) 

TAB.STK 
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As illustrated in Figure 5.4, the additional field STK in 

the symbol table entries for OQPROC A and OOPROC B acts as a 

display into the stack segments of a currently activated OQPROC 

block, pointing to the location of each segment on the stack. 

It should be pointed out that, though not indicated, several 

of the control fields take on a different meaning for a OOPROC 

than for a PROCEDURE or FUNCTION. For a OOPROC activation, the 

RET field will contain the address of code immediately after the 

point of the initial call into the cycle. This field will remain 

constant regardless of subsequent RESUME statements. Its con- 

tents will be utilized only upon the issuance of a DETACH or 

encounter of a natural end within a COPROC. In order to store 

the intermediate (return address) entry/exit point for a given 

OOPROC, another field within its symbol table (TAB) entry has 

been implemented (in addition to STK). This new field, TOP, 

always contains the address of the entry point applicable to 

the OOPROC at any given time. Initially, a COPROC would have its 

TOP set to the physical top of its code. However, a subsequent 

intermediate exit to another OOPROC (via a RESUME) would cause 

its TOP to be set to the point in the code immediately after this 

exit point. 

The control field TINX (which previously contained a 

pointer to the symbol table entry of the particular block's 

PROCEDURE/FUNCTION identifier) now contains a pointer to the 
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symbol table entry of the GQPROC whose stack segment resides at 

the open end of the stack. Referring back to Figure 5.4, TINX 

would contain a pointer to the symbol table entry for OOPROC 

identifier B. When stack segments are shifted and swapped, TINX 

is updated to reflect the change. 

FIGURE 5.5 

REVISED SYMBOL TABLE ENTRY (TAB) 

NAME 

LINK 

OBJ 

TYP 
REF 

NORMAL 

LEV 

ADR 

TOP 

STK 

Figure 5.5 suirmarizes the augmented symbol table format 

which has been implemented to accommodate the coroutine capa- 

bility. As indicated, TOP and STK are applicable to a 

OOPROC identifier. TOP always points to the entry point into 

its code. Initially it is the physical top. Subsequently, it 

is updated for intermediate entries and exits. STK is a display 

pointer into the active stack segment for that OOPROC. It is . 

zero if no stack segment is active. 
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Note: ADR always points the physical top of 

code for a OOPROC. This is iden- 

tical to a PROCEDURE or FUNCTION, where 

ADR points to the entry point of the 

procedure body (which in the case of 

Procedures or Functions is always the 

physical top of the code). In order 

to maintain logical programming flow, 

ADR is no longer used to perform entry 

into a PROCEDURE/FUNCTION. Instead, 

TOP is used (since it never changes 

for them). 

In order to facilitate manipulation of individual stack segments, 

a data structure was implemented within each segment which serves 

to effectively link themApgether, and in turn, to the static 

control fields at the begfflming of the COPROC cycle activation 

record. At the beginning of each stack segment, two fields are 

defined upon initial activation of a given COPROC. The first 

field, LEN, contains the length of succeeding stack elements. 

Thus, a given segment always has a total length of LEN+1. 

This field is updated when a stack segment must be preserved. 

At this time it is updated to include any stack element (temporary 

control variables) which must be saved. The second field, TPTR, 
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is a pointer to the symbol table entry of the COPROC identifier 

representing this stack segment. Upon initial activation, a 

stack segment has its LEN set to 1. Its total length is always 

LEN+1 (= 2) which is in this initial case, only the two control 

fields LEN and TPTR. If a OOPROC issues a RESUME within the body 

of a FOR, REPEAT, or WHILE statement, the stack segment would 

also contain the associated control loop variables. These 

values would be preserved if necessary, and LEN would reflect 

the total segment size. 

Note: The mnemonic LEN and TPTR are used to 

facilitate discussion and are not the 

variable names found within the compiler. 

There, these fields are always addressed 

only as offsets from the base of the 

activation record. 
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FIGURE 5.6 

OOPROC CYCLE ACTIVATION RECORD 

Segment ) 
A 

x 

JL. 
Segment p~ 
B    ' 

L_JL 

control 
fields 

LEN 

Symbol Table 
(TAB) 

TPTR 

stack 
variables 

LEN 
TPTR 
stack 

variables 

open 
stack • 
area 

Figure 5.6 illustrates a familiar OOPROC cycle activation 

record containing two stack segments preserved for OOPROC A and 

OOPROC B. LEN for segment A contains a value x which is equal 

to the number of stack variables in that stack + 1 (this is TPTR), 

TPTR points to the appropriate symbol table entry. Likewise for 

segment B. The P-inachine code (64) implementing a RESUME 

utilitizes these fields for segment maintenance. This will be 

described in detail subsequently. However, to put it simply 

for now, it is possible to travel down the stack segment chain 

merely by knowing the length of each segment. The first 
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segment (SI) always starts after the five activation control 

fields (base + 5). From there, the next segment(S2) (if any) 

would start at the point S1+LEN(S1)+1, and so on down the 

chain of segments. Here, SI = base + 5, LEN(Sl) = contents of 

location SI. Since LEN is the first field in any stack segment 

it can be addressed in the first case by interrogating SI. 

3. P-Code Actions 

This sub-section serves to document the specific actions 

performed by the newly implemented P-codes (64, 65, 66, 67) as 

summarized earlier in Table 5.1. In addition, it will be 

necessary to "describe the change made to the previously exist-   \ 

ing P-code (19) which has existed to implement normal PROCEDURE 

or FUNCTION calls. It was modified to also perform an initial 

call to a COPROC cycle. 

Upon encountering the P-code (19) generated to perform 

the initial call to a COPROC cycle, the following actions are 

invoked by the new PASCAL-S P-Kachine, assuming that the previous 

code executed was a P-code 18, "mark stack", (.normally invoked 

prior to any type of call in order to allocate space for a new- 

activation record): 

1. Initialize the Activation Record 

control fields as follows: 
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- TINX:=Syrabol table pointer to the 

CCPROC object 

- RET:=Address of code after initial 

call 

- SLINK:=Base address of the last 

activation record residing at the 

same static level as this CCPROC 

identifier 

- DLINK:=Base address of the last 

activation record accessed 

- PCT let undefined; 

2. Initialize base address pointer (B) to 

beginning of activation record; 

3. Initialize stack pointer to beginning of 

open stack area (after control fields); 

4. Set the Program Counter to the entry point 

of the CCPROC as specified in TCP contained 

in its static symbol table entry; 

5. Increment the stack pointed by 2 in order to 

reserve space for the initial stack seg- 

ment fields LEN and TP1H; 

6. Initialize LEN to zero and TPTR to the 

location of the CCPROC symbol table 

entry; 

7. Update the CCPROC stack segment display 

(STK) contained in its static symbol 

table entry to point to the beginning 

of this segment (address of LEN). 
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It is interesting to note that the first four of the seven 

activities delineated above are also used in the call of a normal 

PROCEDURE or FUNCTION. The remaining three steps are performed 

only if the call is to a OCPROC (thus initiating a cycle). 

Upon encountering the P-Code (64) generated to perform a 

RESUME, the following actions are invoked by the PASCAL-S 

P-Machine: 

1. The TOP of the COPROC being exited is 

updated to the point where subsequent 

intermediate entry must occur (im- 

mediately after the RESUME), 

2. The cycle activation record control 

field TINX is updated to point to 

the symbol table entry of the COPROC 

object of the RESUME, 

3. The Program counter is set to the 

intermediate entry point (TOP) 

of the COPROC object of the 

RESUME. 

4. If any temporary variables have been 

stored on the stack by the COPROC 

being deactivated, the LEN of its 

stack segment is updated to preserve 

this space. Otherwise, the stack 

need not be preserved. In this case, 
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the stack pointer is decremented by 

2 to relinquish the stack segment 

space and the OOPROC is formally 

deactivated by setting its STK (in 

its symbol table entry) to zero. 

5. The symbol table entry of the OOPROC object 

of the RESUME (callee) is interrogated 

to see if it has  an active stack (STX f <f>). 

- If the segment is now at the end of the 

stack then the stack pointer will already 

be placed to resume operation (to TPTR). 

- If the segment is not at the end of the 

stack area (in the middle of the pre- 

served stack segment space for that cycle) 

then, 1) the entire segment is moved into 

a temporary area (OOEOLD), 2) any other 

stack segments residing at a point after 

the moved segment are pushed up into the 

fragmented space created by the move 
operation (garbage collection), and 3) 

the stack segment copied into COHOID is 

moved back into the activation area, 

This time, to the end of the stack. The 

segment is now activated. 

6. If the OOPROC object is inactive and thus has 

no preserved stack segment (STK = 0), then 

the stack pointer is incremented by 2 to 

allocate space for a new stack segment (LEN 

and TPTR). Len is initialized to zero, and 

TPTR to the table entry (same as TINX). 
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Note: The temporary area COHOLD is the name 

of the actual data structure implemented 

in the new compiler. 

Upon encountering the P-Code (65) generated to perform a 

generalized OOPROC exit, the following actions are invoked by 

the PASCAL-S P-Machine; 

1. Each OOPROC in the cycle is deactivated 

by setting its STK (in its symbol table 

entry) field to zero. This is accomp- 

lished by following the chain of stack 

segments and utilizing each TPTR entry 

to gain access to the proper symbol 

table location. 

2. The stack pointer is decremented to the 

point just before the current OOPROC 

cycle activation record. This will 

effectively erase the record from the 

stack. 

3. The Program Counter is set to the address 

contained in the activation record control 

field RET. This will transfer control to 

the point just after the initial call to 

the OOPROC cycle in the calling procedure 

body. 

- 65 - 



4. The base address pointer (B) is set to the 

address contained in the 00PROC activation 

record control field DLINK. This is the 

dynamic link back to the activation record 

location on the stack of the calling pro- 

cedure body. 

Upon encountering the P-Code (66) generated to perform a 

reset of a OOPROC entry point to the physical top of its code, 

the following action is invoked by the PASCAL-S P-Machine: 

1. The particular OOPROC static symbol table 

entry field TOP is set equal to its 

field ADR. ADR always contains the 

address of the physical TOP of its code. 

TOP is the field used upon a RESUME do 

determine where to re-enter the OOPROC. 

Upon encountering the P-Code (67) generated to perform an 

update of a OOPROC intermediate entry point, the following action 

is invoked by the PASCAL-S P-Machine: 

1. The particular OOPROC static symbol table 

entry field TOP is set equal to the 

current value of the Program Counter + 

1. The + 1 value assumes that the next 

instruction to be performed will be P-Code 

(65), OOPROC Exit. Thus, the intermediate 

re-entry point must be set to the point 

after this P-Code. TOP will be used upon 

issuance of a RESUME to determine where to 

re-enter the OOPROC. 
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VI. POTENTIAL FOR EXPANSION 

The coroutine implementation as presently devised was intended 

to serve as a solid foundation from which future enhancements can 

be based. In order to facilitate construction of the initial 

PASCAL-S coroutine implementation, the trade-offs between simpli- 

city and power were considered. The main thrust of this current 

effort was to develop the instruction formats and control struc- 

tures which can produce coroutine actions. As a result, the 

PASCAL-S language has been augumented with a whole new reper- 

toire of extensions (COLINK, COPROC, RESUME, DETACH, NEWTOP). 

Each of these elements contribute to the implementation of the 

specific coroutine actions. However, in this language version 

little effort has been expended to implement explicit definition 

and control of the data structures through which coroutines com- 

municate among themselves. 

Referring back to Section TV, Syntax and Scope, it was 

stressed that coroutines, as implemented in COPROC procedure 

bodies, can contain no local variables (through procedures con- 

tained within them may). Thus,COPROC actions can affect any 

variable data global to it. This limitation creates the potential 

hazard of unintentionally affecting data values. The whole purpose 

of normally implementing the definition of local variables is to 
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explicitly delineate their scope. This in turn provides the pro- 

granmer with a convenient tool for controlling data manipulation. 

Since the current coroutine implementation does not allow for the 

definition of local variables within a CGPROC body, unintentional 

and uncontrolled data manipulation may result. 

In terms of expansion possibilities, any future enhancements 

to this PASCAL-S coroutine implementation should primarily center 

on providing local variable definition within OOPROC bodies. It 

should be pointed out that the current implementation was de- 

signed with this thought in mind. Therefore, the ability to 

define local variables will not require extraordinary modifica- 

tions to the new PASCAL-S compiler.  * 

Specifically, the following steps provide a generalized 

outline of the tasks which would be required to implement the 

definition of local variables within a OOPROC: 

«. Within the main body of procedure "Block", 

eliminate the code segment which dis- 

allows the calls to procedures "Constants 

declaration", "Typedeclaration", and 

"Variabledeclaration", 

• Modify P-Code (64) which performs the 

RESUME actions to allocate space on the 

run-time stack for the displacement of 

local variables contained in a given 

OOPROC. 

- 68 - 



Of the modifications outlined above, only the last (P-Code (64)) 

enhancement may require non-trivial consideration. This is due 

to the current implementation of stack segments for CQPROC to 

OOPROC communication (see Section V-B.2, Stack/Symbol Table 

Enhancements). Variables cannot be allocated via a simple dis- 

placement constant relative to the beginning of the activation 

record. Instead, displacement must occur from the beginning of 

a stack segment. Since each stack segment starts with two con- 

trol fields (LEN and TPTR), local variable allocation must begin 

immediately after these fields. It should be recognized that the 

introduction of local variables within a stack segment will 

generate increased overhead on a RESUME since more elements must 

be swapped and moved on the stack. 

In addition to the implementation of local variables within 

a OOPROC, significant thought must be given to the support of 

parameterlists for initial cycle activation and/or OOPROC to 

OOPROC communication. Specifically, the use of a parameterlist 

may be implemented in the initial call of a OOPROC cycle, or as an 

extension of the RESUME process from within a OOPROC. Unfortun- 

ately, the implementation of both these concepts requires signifi- 

cant planning. The parameters needed may differ for inter-CORPOC 

communication than for OOPROC to maintain procedure communication. 
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Since a OQPROC body can, by definition, only ccmnunicate with 

another ODPROC within its cycle, the extent of data comnunication 

can be well defined. Therefore, it may be appropriate to eliminate 

the use of a parameterlist within a OOPROC declaration to define 

those variables to be used for inter-OOPROC communication. In- 

stead, the attendant OOLINK declaration could be augumented to 

include the declaration of variables local to the whole cycle 

(not just an individual OOPROC). These variables may be used 

for inter-OOPROC comnunication. This approach may be preferable 

to maintaining local parameter values in the dynamic stack segment 

since it eliminates much of the overhead needed to maintain (£wap) 

additional segment elements. Also, a pre-declaration (via 

OOLINK) of variables local to the cycle, would allow them to be 

easily maintained in the static region of the cycle activation 

record; just as local variables are maintained in a normal 

PROCEDURE or FUNCTION environment. 

Even if no parameterlists are maintained within 

individual OQPROC declarations, a means must still be devised to 

support the passing of parameters from the initial calling proce- 

dure body to the OOPROC cycle. Since, syntactically, a normal 

call to a OOPROC is used to initiate the cycle, it is only natural 

to append a parameterlist to the call. However, the individual 

OOPROC would not include a similar parameterlist. Instead, it 
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again may be useful to declare such parameters within the OOLINK 

declaration of the cycle. These values are to be used for OCPROC 

to main program controlled communication. Implementation of 

such an approach would allow use of the static region of the 

cycle activation record for parameter displacement. 

Hypothetically, the OOLINK enhancements could syntactically 

look like this: 

OOLINK 

COROUTINES = COPROC.., 00PR0Co,..., OOPROC : 
1      2 n 

BUFFER  = (parameterlist-); 

CHANNEL = (parameterlist2); 

Here, each OOPROC to be defined within the cycle would be con- 

tained in the COROUTINES sub-declaration. The variables local 

to the cycle for inter-COPROC comnunication would be delineated 

in the BUFFER sub-declaration. Finally, the parameterlist to be 

used for corrmunication to the initial calling procedure body would 

be declared in the CHANNEL sub-declaration. These variables, like 

those of the BUFFER sub-declaration are considered local to the 

entire cycle. This means they are unaffected by any individual 

COPROC activation. 
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These enhancements may or may not be optimally constructed. 

However, they do appear to be easily implementable, and indeed, 

do provide a convenient means to support local variables within 

a OQPROC, controlled variable declarations for conmunication 

within a OQPROC cycle, and controlled variable declaration for 

conmunication between a OQPROC cycle and its initiating procedure 

body. Further efforts in this area may provide insights into a 

more practical means of implementing these constructs. 
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PASCAL-S IMPLEMENTATION 
SYNTAX DIAGRAMS 

identifier A letter V. 
C letter )—:: 

K «»" r 
unsigned integer 

r-( ""    > 

unsigned 
number rOi 

unsign.  int. jkDfQED]Vo[g unsign.  int. 

oonstant 
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(sinple) 

£-    constant 
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constant 

type 

naXEH type 

< 
W       E® 

field list 

/  

1 identifier 

o 
■©■ type 

variable 

c var.  ident. 

field ident. >■*©■ T expression o 
<E>- 

*<3> field ident. 
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factor 

unsign.const. x-*- 
variable 

func.ident. expression 

o 
))—► 

-H( expression H ► 

-for) ► factor 

term 

siiqple expression 

-►1      term 
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simple 
express. 

parameter list 

- 77 - 



APPENDIX A 
Page 5 of 8 

statement 

U 
variable 

func.ident. 

<£> expression 

proc.ident. *<TJ—L* 

-►^    BEGIN       j   i    ►     statement     —V~*\     ^ /" 

I—/ru— <D 

■♦/WHILE    ^—►) egression    —*V») * 

< 
Jj^   statement      -WiraLJ—► 

t_<r)J 
var. ident. expression 

►f DO\TCTO 

-L-WroV 

yro J^ 

G expression DO statement 

(CONTINUED ON NEXT PAGE) 
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("STATEMENT" CONTINUED) 

( RESUME      )—+(T) ► coproc ident 
<>> 

(DETACH      j- 

< 
►f      NEKTOP J     ►((   J 1       ooproc ident 

& 

O 
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block 

f OOLINK       \__ identifier 

o 
o block o 

< 
M   PROCEDURE identifier param. list 

■►/'roNcriaA—► 
L. 
identifier param. list type ident. 

f   OOPROCV. coproc ident 

•^ BEGIN  \ ■ ► statement 

t TV O 
GE_> 

•Not applicable if "block" is entered as a OGPROC. 
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program 

(   PROGRAM J identifier —T(/T- identifier T—f) J~f: J~"    block   Cm J 
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