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Abstract

This thesis 1is concerned with the utilization of a
real time operating systeh in the :1mp1ementation qta'a
hieraréﬁ}cal' manufacfurinq cell controller. The general
requifeﬁents for such a cell are discussed énd analvzed
in order .to define avgeneric system output re@uireménts
list, Structured design and proqramminq techniques are
then used to develop a general systém struéture, and the
functional relationship of the iRMX=-86 operating system
to the cell controller’s hierarchy 1Is discussedQ File
and database structures for the key’systém data elements
are specified, and a system event-schedulinqialgorithm is

defined,



érefate
: N

Onev of the current challenges in the area of
manufacturing engineerinr {is to develop {increasingly
sophisticated and capable controllers suitable for use in
the shop floor envi;qnment. As the number of
applications for which simple preprogrammed sequencé
control  is adeguate diminishes (due to the filling of
such requirements), the need for increasingly i{ntelligent
controllers | capable of interacting with  their
envlrdnments will become more apparent, Simultaneously,
the decreasing costs of hardware coupled with the
increases in the qualit? and quantity of software
development tools tends to supoo§z further expansion wof
the use of intelligent cohtrol;egg.

This thesis investigates the possibiiity of using
off-the-shelf compohents. particularly the {iRMX=86
real-time operating s?stem and multibus based hardware,
in the implementation of a hierarchical manufacturing
cell controller. In many cases the fabriéation of custom
components for industrial applications tends to make the
associated system prohibitively expensive, This {s true
for both hardware and software system components and

provides the motivation for emphasis on the use of stock

items,



1. The Manufacturing Cell |
At the ' outset of the project it was decided to
employ tﬁe‘proven structured technique of exaM1n1ng the
system output requirements in order to define the
necessary inputs. Since the emphasis of the exercise was
on defining a general structure for a cell controllerl
system, it bécame immeAdiatelv necessary to conduct the
sysfem anaylsis at the hiqhestAbossible level'and in the’
most generic terms, This resulted in a list of rather
general requirements for cell performance and a set of

general assumptions about the cell,

1,1 Cell Reguirements

The most basic stafement about the purpose of the
cell is that it should properly manufacture the specified
product in the correct configuration, In order to
achieve this objective, there are five basic functions
that must be performed, First, the system must‘ §dhtro1
the manufaéfuring,'process in a timely and accurate
fashidn. fimeliness and accuracy are priority
considerations since- they directiy effect the syste@
throughput and scrap rate, Second, the system must
control the transfer of materials from place to place in
the cell, As above, ¢timeliness and accuracy are

limportan: here, but in addition the controller must



ensure that materjial transfer deviées, such as robot
arms, do not collide with . QQher cell memberé or each
other. Third, the cell must be able to communicate, both
witn users and with other cell components., Additional
Eommunications, such as a link with a host, may be
desirable, Fourth, the cell must do a certain amount of
record keeping. Minimally, the cell will need to
maintain a record of the current status and location of
the cell components, In addition, there may well exist a
requirement for archival record_'keeping of the cell’s.
performance and activities, Finally, the cell should be
able to inspect the goods that it manufactures, If this
is- done, it should prove possible to adjust the process

control parameters to correct {in-process defects and

thereby lower scrap rates,

1.2 Assumptions About the Cell

In order to estimate the number and types of
functions reguired by the cell it was necessary to make a
few general assumptions ahout the <cell’s constituent
components, and possible additjons to the cell, These
assumptions are as follows:

- cell will contain both machine tools and
non=machining process stations

= cell will use proximity switches, and may
contain 3 camera for visual sensing

1



- cell may contain one or more manual operations
- cell'\wili‘ contain convevors and/orxrobot arms

for material handlina

The immediate resultﬁ of these assumptions 1is {in
recognition of the data types that need to be suppérted
in order to meet‘the implicit requirements of the above
assumptions. These aré, basicly, that thg cell can
download APT code‘ to the NC mabhine tools, and has
available the pfocessb parameté}s for non=machining
process‘ stations (such as uamp-hours for a plating
operation)., In 'additlon. the cell controller must
respond to external events shch as those that could be
detected by a proximity switch t?iggerlnq an 1nterru§t or
perhaps a more direct {interaction ‘such as that which
could be achieved through the use of a vision system;
Finally, the cell controller must be able to coérdinéte
the moveﬁbnt; of materfals through the system, This {s
not as difficult for the convevors anticipated, but the
issue becoﬁes more complex when the robotic devices are
considered, In this latter case, the}pontroller must be
aware of the locations of each of the robotic arm
members, and continuously check their position and
trajectory with reference to other solid objects in the
cell., This dictates that the céil controller have
extensive data concerning {its geometric environment, and

t;
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the capability of analyzing and acting on that data,



2, The Design Approach

A dedicated structured aproach to the cell design
was employed from the outset, The;é aré several reasons
for this. First, a structured approach facilitates the
system analysis since the system {s considered 1in ‘a
modular format, with each module being directly related
to that apo?e it in the hierarchy, Thi; was eminently’
compatible with the stated objective of organizing a
hiefarchlcai'system structure, 1In additioﬁ, the usé of
structured techniques allows ‘the analyst to tocus'ﬁia
attention on individual modules once the modules place in
the hierarchy has been defined, An 1hportant consequence.
of this Is that the number of "mind boggling"™ problems
that the anaiyst/designer must consider 1is quickly

reduced as the tasks are decomposed.

2.1 Use of structured techniques.

A top dbun analysis of the controller was performed,
with thé focus of the effort on *the overall structure of
the systenm. As the analysfs"ias pe:formed, a Visual
Table of Contents (VTOC) was ébnstructed. This provided
a coﬁmon reference point, and provided a form of ongoing
documentation., As the system evolved through design
reviews, the VTDC was {immediately updated to show the

latest- changes, This ias an i{mportant consideration,

-

¢



since multiple programmers used the system structure
thart as a reference. A valid nmodularization of the
controller’s tasks was the next objective in designing
the system. In pursuit of this, the following rules of
thumb were considered:
- module function statements consisted of one
verb and one object; '
= modules were located in a left ¢to right
sequence on the VTOC, generally indicating the
data flow;
- modules were .constrained to fifty pseudocoded

statements or less to make them more managable
and understandable, v

Wwhen all the modules were entered in the VTOC, they were
numbered according to a scheme which uniquely defined the
location of each in the hierarchy, /f?y
‘Throughout the desian of the modules, every effort
was made to use only the three proper Structures:
sequence, selection, and {teration. This proved to be
important- later, dur;hg implementation, since this
}einforced the modularity of the system structure and the
application tasks., Figure 2-1 is & skeleton of the VTOC,
(The complete chart is on file with Dr, Louis J, Plebani,
Lehigh University Industrial Engineering Department,)

Figure 2=1 shows the system hierarchy by module number,

Note that. jobs are circled and descendant tasks listed,
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2.2 VTOC Review

When the <chart was complete and numbered, it was
reviewed for a variety of critical features, First,
module function statement verbs. were) checked for
consiétency. Where inconsistencies were fonnd, the verbs
vere changed to be compatable with the rest of the
1591ca1 structure, Fodules were then checked for
independence., One reliable way to perform this check 1§
to review the passing ‘of'contfol codes (not data) and
'ensufe that the codes are passed up the hierarchy, not
down the structure. An example is detection of an EDF,
which should be done by a 1low 1level read module then
passed up the hierarchy, Thg»lpcations of the modules in
the chart were checked again, this time to verify that
they were properly subordinated, This is to make sure
that all modules éte properly related to their calling
modules and they to theirs, and so on up through thé
hierarchy to the ¢top level module., Next, the control
span of each modulé was’revigyed to see 1f it was din
rea;onaéle limits, 1i.e., between two and nine, 1If any

module had less tgah twq~or more than nlne subordinate

“modules, it was considered to be a potential design flaw,

and reviewed for p%ssible breakup or relocation in the
system structure,

After the contents of the VTOC were satisfactorily

16



reviéwed, it was time to step back agﬁ review the overall
structure.  At‘ this point it s of prime importance to
check and-make sure that all functions required to pursde
the cells objectives are accounted for, Conversely, it
is: worthwhile to verify that all funéf*ons designed into
the system contribute to the cells objectives, Those
thﬁt did not make a contribution were considered good

candjidates for elimination,

o
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3, iIRMX=86: The Operating System
~ The wuse of iRMX=-86 in the implementation example fis
ihteresting from a variety of viewpoints, It is a real
time operating system orientéd towvards system
development, It is user confiaurable for a variety of
functions, and it supports wuser=written system=call
. routines, ﬁInhgédition, it 1s interrupt dfiven. Finally,

t is is intended to be included in OEM products.

3.1 {RMX=-86 System components
"An iRMX=86 system 1is typically composed of the

Nucleus, and a user selected assortment of service

subsystems which can include the Basic Input/Output

System (BIOS), the Extended Input/Output System (EIOQS),
tne'Application Loader (loader), ¢the Human Intertace
(HI), the Universal Development Interface (UDI), and the
application programs., (See Figure 3-1) It is the Nuéleus
that runs the system t;rouqh its control over access . to

the processor and memory resources,. Therefore, I will

discuss the Nucleus sepap?telv from its servitors,

18
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3.2 The Nucleus

The Nucleus 1is the core of any iRMX-86 systenm,
responsible for the executive operation of _the systenm,
As such, it has five majof “activities wunder 1its
jurisdiction. Not necessarily in order of {importance,

these are asrfollows:

= scheduling

= memory allocation

= inter=process commuﬁiéations
e response to external events: interrupts

- provision of basic building blocks to the

service subsystems, ‘ :

Before discussing any of the major functions, hovever; it
is: nécessary to define the terminology and function of

the basic building blocks mgntloned above,

3,2.1 Definition.of iRMX terms
These building blocks are referred to as "objects" ,

and consist of the following object types,

= Tasks

= Jobs

= Segments L=
- Mallboxes

= Semaphores

20



- Regions

Tasks are the active 6bjec£$ of the system, They do
the work of the system and can be considered as hévinq
two goals . Their primary goal is to do a specific plece
of work., 'The secondary goal is to obtain control of the
processor in order to achieve their primary goal,

Jobs are the environments in which tasks exist,
Jobs consist .qf tasks, task related objects, object
directories, and a memorv<pool. Every system includes a
job tree, starting with a root job ét the top. This root
job is typically created by the HI when a terminal s
activated, and system jobs are structured down from this
original job.

Segments are the medium used by tasks for data
storage and communication. Tasks requiring memory for
these purposes can ;equest a segment of the proper size

from the Nucleus.

Mailbo§es are objects which tasks reference in order

to send or receive other objécts « For example in order
for a task to sénd an object, the sending task sends a
token to a mailbox; the receiving task must then visit
the mailbox ani obtain fhe token thereby allowing the
receiving task to access the ohject,

Semaphores are used by tasks to signal other tasks,

21 p



The semaphore achieves this by dispensing abstract units
as requested by tasks and available to tﬁe semaphore,

| Regions are ‘used as> custodians of specific
collections of shared data, The$_salient feature of
regions is that a task with acce;s to a region cannot by

suspended or deleted until {t surrenders access to that

region. This 1s necessary to avoid the possibility of

data corruption or deadlock.
It {is now possible to discuss the other essential

functions of the Nucleus,

T e

3.2.2 Scheduling

Schedulinq is a critical. function and therefore
should be discussed next, Asﬁ is apparent from the
definition of the object “task" ébove, the application
tasks are in continual competition for control of the
processor. The Nucleus adiudicates allocation of the
processor according to twé task characteristics; the
task’s execution state and the task priority. Task
priority _15 an assigned integer value betﬁeen zero and
255, It is possible to assign the task priority using a
"Set Priority" Nucleus call, Hiah priority is‘defined as
zero and low priority as 255, The task’s executibn state
is. one of five possible conditions: running, ready,

asleep, suspended, or asleep=-suspended, A task i{s either

?2?



put to sleep for a’ specified amount of time, or else
antil a request has been granted. Tasks can be suspended
by another task, by awaiting an interrupt-or by itself,
, 1,
(There 1is an assoclated suspension depgh increased by
every *suspend;.call and decreased by "resume" calls,)
And of course a combination of the ‘two, the
asleep-suspended state, is possible, The running task is
defined as the ready task Qith the highest Drior;ty. In
cases where ready tasks have equivalent priority they are
scheduled on a FIFO basis; Thus the processor 1is
allocated by the Nucleus on the basis of task readiness
and priority. It is possible for a low priority task to’
have {its précessing:intérupted by a higher priority task
wvhich achieved the ready state after the low priority

task had started running.

3.2.3 Mehory MYanagement

| Memory allocation i{s directly related to the {ob
tree structure, When a Job or task is created the
Nucleus must obtain resources from the parent job. These
memory resources are assianed from the memory pogl of“ the
parent job according to the memory pool size paramenters
specified at the time of the object’s creation, The
memofy pool is defined as the memory available to a Jjob

and its descendants, This leads to a hierarchy of memory

23
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pools yith the same structure as the job tree, and in
fact, a structure very similar to. that of the cell
‘controller system, The memory pool size can be
“dvnamically controlled;b§ the tasks throuqh the system
calls which can be wused to exahine and set pool
attributes. Should a task requirevadditioﬁal memory, it
can request a memory segment of the Dropgr.size from the.
parent job. Should there be 1nadequa£e memory available
from the parent, the task can reguest resources from the
parent’s .parent, or indeed from ancestors further up the
job tree,

Memory allocated to a task is a collection of
segments where a segmfdt is defined as a contiguous
sequence of 16 byte paragraphs with a hase address evenly
divisible by 16, When a request for a segment is made
the Nucleus checks to verify that. enough memory 1s
available to fill the erquest. If so, the Nucleus
returns a token for the seament to the requesting task,
If not, the Nucleus indicates ¢this condition to the
requesting task, which handles the situation on an

individual basis,

24



3.2.4 Interprocess Communication

Inﬁerprocess communication s typically achieved .
through mailboxes and seméphores. Although ’regibns are
available, tﬁey are not {;commended for use in systenms
involving HI calls due to the possiblility of a systenm
lockup resulting. Mailboxes tend to support intertask
data communication, The Nucleus directs that tasks
wvaiting at a mailbox receive their objects as soon as
"~ they are available;“.rhis 1nvolves the use of two gueues,
The task queue, whiéh is either FIFD or priority based,
is where tasks walt for their obdjects. fhe objeqt queue,
FIFOD base; only, is where objects walt for tasks to
receive them. When an object 1is received, the task’s
execution‘ state chénges. A task which 1s asleep becqmes
feady: akfask which is asleep=suspended becomes merely
suspended. If theré is no object available at fhe
mailbox when the task visits {t, the task has two
options. Either it can wait according to a duration
parameter specified in the call, or {t can take an
exception code (ESTIME) and continue.

Semaphores 1involve thé sending and receiving of
abstr@ct units for purposes of mutual exclusion,
synchronization, and resource allocation, Semaphdres
only have a task gueue which can be FIFO or vpriority
based, The semaphore constantly tries to satisfy a

A



- request for units by the task at the head of the queue,
If edougn units are available at the time of the request,
the task remains ready, If there are not enough units
avallable the task can elect to wait or receive an

exception code as above,

3.2.5 Response to External Events: Interrupts

The interrupt structhre of the system is what makes
it responsive to =masynchronous external events, Upon
receipt of an interrupt sianal, the interrupt processing
routine can take control of the processor, service the
request, and return control, There are three Kkey
concepts in the use of interrupts under iRMX=-86, These
are the {nterrupt vector table, the interrupt level, and
disabling interrupts,

The interrupt vector table i{s composed of vectors
numbered 0=255, Vectors 0=-55 are reserved for the
éystem, bgt 56 through 127 are reserved for external
interrupts. Numbers 128-183 are available to users, and
the balance (184-2§5) are reserved, An interrupt
triggers a call to fhe interrupt vector table, where the
call is redirected to the interrupt handler.

) Interrupt levels are related ;to the funnelling
procéss'of the 8259A PIC. Usina a master PIC and six

slaves, the system recognizes signals on a particular

26



line as being assocliated with the master (vectors 56=63)
or the slave 1evelsv(numbers>64—127). When the systenm
receives “an intérfupt at an enabled level, it transfers
control to the address in the {interrupt vector table
associated with the interrupt level;

Since a‘userAmay require that an interrupt does not
cause an immediate break in the task currently {in
processing, it can be necessary to disable the interrupt.
For example, the system an?lvst may deem it unwise to
interrupt a high priority task with a 1low priority
interrupt., Disabling the interrupt lines can be achieved
through system calls from ‘applicatioh tasks or by the
operating system supporting pre-emptive priority based
scheduling., - In the former case the task must explicitly
define the disabled levels, In the latter case, the
operating qsystem " disables levels according to the
priority of the running task, An example of this is for
a priority 20 task; herelthe slave levels 00=77 ang/g%t
maSter levels M2-M7 .are disabled,

When an interrupt is 'serviced, it is redirected to
its handler ﬁhrough the interruot vector table, 1In some
cases, the.hahdler can completely service the interfupt.
If, ‘hovever, the servicing requires substgntial amounts
of time, or system calls beyoﬁd. those available to
handlers, it 1is then necessary to invoke an interrupt

I
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‘task to complete the service., The interrupt handler can
share data with {ts associated task (through the

Enters$Interrupt call).

3.3 The Outer Layers

If the Ndcleus is the core of the system, then the
service subsystems (Bibs, EI0S, HI, and the Loader) and
the application programs are the outgr layers. Thesg 
outer layers provide services to the Nucleus by
facilitating its communications with and control of the
system, They also provide serviées to thé user by
simplifying the system célls necesséry to achieve a given

plece of work,

3.3.1 BIOS==The Basic Input/Output Sysﬁem

BIOS is a flexible and powerful system due to its
low level orientatién; “ It aives the usef complete
contfol over detalls, even to the extent of requiring the
user to specify his own buffering algorithm, Most
important, however, it deals with asynchronous system
calls., This capability is required in an interrupt

driven system,

79
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}3.3.5.EIOS--The éxtended Input/hutput System

"EIOS 1is an extension of BINS, requiring an extra 13
Kb of memory if included in the systeh. Althqdqh not as
flexible as the basic system, it {s much more convenient
from a system development point of view since it
automatically handles most I/0 details,

It provides automatic buffering, defeatable if need

®e. Its chief limitation 1s that 1t deals only 1in

- synchronous system calls, This precludes the application

thks fr%m achieving any work during communication

-

intervals,

3.3.3 HI: The Human Interface
- The HI creates a root 4ob for each . terminal
activated, This job is. called the interactive job, and
the HI assigns its membry pool 13%arameters according to
configuration specifications, The HI allows a terminal
~operator to load and execute certajn commands from the
keyboard, These are tvpically file management, disk
management, and general utility commands such as SUBMIT,
or DEBUG, The HI achleves this by starting the Command
Line Interpreter(CLI). The CLY reads the commands from
the terminal and invokes the system calls appropriate to
the terminal input. HI' calls are typlcally concerned

with command parsing and processing, I/70 and message

21



processing, and program control,

3.3.4 The Application Loader

The Application Loader loads tasks under direction
of the operating system, These include both application
tasks and operating system tasks, The Loader also
provides calls for loading programs from secondary
storaée into.main memory.

The Loader 1is capable of 1loading absolute code,
position independent code (PIC) and Load=-Time=Locatable
(LTL) code, Absolute code 1{s code that has been
procgssed by LOC 86 to ruﬁ at a specific address, PIC is
loaded by requesting memory segments from the job pool
and loads it there, LTL, similar to PIC, has the base
addresses of its pointers ad{usted by thg.Loader so that
the pointers are independent of the processors register
contents, This fixup allows LTL code to be used by tasks

a

having in excess of { code segment and 1 4data segment, .
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4, CMC=«The Imblemehtation Example

The implementation example was dire¢t§d | at
establishing a flexible, generic hierarchical ceéll
controllef structure, This developmental structure was
strictly intended to be a framework for future work and
was not intended to operate a cell in this format,
Before further discussing the arplementation example , it

is necessary to specify the constraints and conditions

‘regarding it.

4.1 Implementation Constraints and Conditions

Two immediate constraints in the implementation
process involved the hardware and software comppnents of
the system, Specifically this 1nvoived using the systems
avajilable {n the Industrial Engiheerinq Microcomputer

Lab,: This included the following hardware {tems,

-lIntel 867380 development svsteﬁ

- 35Mb Priah'winchester drive

= 2 Memory boards-yielding 512 Kb

= Disk controller board

- 86/30 processor board (8086 based)

= Televideo 925 terminals

8 inch floppy drive
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Software available to run on the system included:

- 1IRMX-86 with libraries and utilities

- PL/M=86 compilef with libraries and utilities
~ ASM-86 compiler ‘with libraries and utilities
- FORTRAN compiler with 1ibraries and utilities

« PASCAL compiler with libraries and utilities

" Several factors had a considerable impact on the
programming of the system, B First, the manufacturer
suggests that EIOS be used as a development tool to avoid
programming overhead associated with BIOS, Further, the
.structured approach we assumed for programming required
heavy use of program stubs. This allows feedback to be
generated from the stubs, rarticularly given the utility
" and ease of generating such using a high level language
(such as PASCAL) to return messages to the terminal
screen upon successful execution of the trivial stub,
This had two £undamenta% imﬁlications. First that EIOS
would be included in CMC, the name given the controller,
and second that for development purposes all jobs in the
struéture would be I/0 Jobs, Since only I1/0 jobs can
" successfully use all the FINS system calls, these two

items-are mutually supportive,

32



hl

Sah

4,2 Prograﬁminq the CMC Systemxstructure

It was at this pointﬁthat the full benefits of a
Structured approach vere realized, Since the system
programming language (PLM=86) is highly structured, and
Qince the CMC system structure chart (or VTOC) fis
similarly structured, it ;as posiéb}ev to directly
translate’the top leveis of the VTOC into the top ievel
jobs of the TMC system, This task was further simplified

by the system constraints, specifically that all jobs

would be I/0 jobs and,that program stubs would be used,
Further, since the parametric requirements for each job

were udtlea; at this stage of the development, it was

dcecided to use a generic parameter selection for all,

The upshot of this was that it was possible to
create three generic dummy. modules: a job creation
module, a task creatidn module, and a trivial task
module, These modules were then cloned, and the module
names (job names and task names) ;ere taken froﬁnthe‘
chart. The source code files for each module vere given
a number as a name, where the number was taken directly
from the chart, Thus the entire system structure was
created, degugged and linked,

This scheme provided several advantages, The use of
I/0 Jjobs -supported the anticipated feedback qeneraiion
scheme, The modularity of the system supported top down
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coding and testing, so that as modules were added to the
system, bugs could be more readily identified and
fesolved. _After‘the first three .dummy modules vere coded
and debugged, creation of the entire system structure was
rapid, Once the entire CMC structure was intact and
linked, it was possible to pursue implementation of
applications  tasks to replace the stubs used at
inception, .

| Theblimitations of the approach are that as job
requirements become clearer, it would be desirable if not
necessary to refine the job creation parameters, This is
particularly true with regard to such items as priority
and memory pool. In addition, full implemeétation of the’
controller would require refinement of the I/0 jobs,
since sensor activated interrupts would require the;
asynchronous system calls of BIOs;_ The 'latter could
require extensive work, so the drawbacks are ﬁot to be
minimized, However, given the developmental nature of
the system, it was felt that, despite the drawbacks, the

approach taken was satisfactory.

T 4
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4,2,1°ctismfgscell: A Specific Example

Iheh- top level - {ob in the system ais named
ctismfgscell, The name was taken> from the vTac,
sho;téhed and delimited by "$" to meet PLM requirements,
and used as the name of the tdp_module. iThis is the
origin of "CMC", the name used for the controller.) The
VIOC reference number is 0000=-denoting the top level
module==-therefore 1its source and object code files were
named 0000,SRC and 0000,0BJ respectivel&. A view of the
general brocedure in pseudocoded statements is useful for

further discussion,

CONTROL. MANUFACTURING CELL JOB
INCLUDE LIBRARY FILES )
DECLARE NEXT LEVEL JOBS AS EXTERNAL PROCEDURES
DECLARE DATA TYPES
'DECLARE. JOB CREATION PROCEDURE
SET JOB'PARAMETERS
CREATE IHE NEXT LEVEL J0B
CATALOG THE OBJECT FDR THF NEW JOB
END THE PROCEDURE
Repeat declarations for the rest of the jobs,
Call the job creation procedures {n turn.

END

15



The Jjob begins with a statement of fts name, then
\causes the }1brary tile; appropriate to its system cqlls
vto be 1linked in, The next level jobs (termsjob,
matshdlsjob, processsjob, eissensesjob, and dbscntlsjob)
are declared to be external procedures since they are not
defined in this module.  Then any data,.pointer or
parameter names -have their types (such as WORD 6r BYTE)
declared, Then a procedure for creating the next level
job is declared, parameter# set, and the job creation
call is made, The object for that job is theﬁ cataloged,
and the creation procedure is ended, Similar procedures
are declared for thé ?ést of the néxt level jobs, and the .
calls are made to 1invoke the p:ocedures previously
declared,

It 1is apparent that the real work of the procedure
is done‘by the job creation systemvcall and the "catalog
obJect" system‘éall. The "catalog ogject" call does just
thét: it catalogs the token for the next level job
(returned by the Job creation call)valonq with a name for
that object in the Job°‘s ob1ect directory. In' the
current case, the names used were the modulevnumbers from
the VTOC, This allows other objects to access the~token
simply by knowing the name, However, it {is the
"CREATES$I/0$J0B" call where the work of defining the new
job’s environment is achieved, so a detailed examination
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of it is in order., This call has the format:“ 
1o83job = RQSCREATESINSJOB(poolsSmin, pools$max,
exceptsnandier, jobsflags, taskspriority, startSaddress,
”dataSseg, stacks$ptr, stackSsizé, tasksflags, msgSmbox;
.fexceptsﬁtr)T
A discussion of the parameters and how they were set
in the CMC system demonstrates how the job tree and task
‘environments are defined.
The poolsmin and poolsmax parameters define the
77777 K/all wable memory pool size for the 3Jjob iIn 16 byte
paragraphs, The minimum allowable under EI0S is 32,
However, the Nucleus 18 allowed ¢to define the
stacksptr parameter (see below), then boolSmin should
equél 32 plus the number of paragraphs needed for the
stack, This was estimated at 32, so pools$min was set at
64, ;PoolsmaX'was}set at 256 to prevent excessive memory
atqdisition by a éingle job, . Fxceptshandler is a pointer
to an exception handler, which was defaulted to the
system handler, Jobsflags contains Nucleus information
about the Jjob, Task$priority defines the priorfty for

the first task of the created job, This was set at an

_______________ "

{R4X=86 RELEASE 5 F"YW}_MPD T/D SYSTEM REFERENCE
MRTAT, TUTEDL Corp., Santa Clara, CA , 19813, Page 7<4

&
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artificially high "0" to ensure that each job’s first
task runs once before resetting 1its priority. The
startsaddress parameter points to the £irst instruction
of the new job’s initial task, which was spécitied in. CMC
as'é string NEXT-LEVEL=-JOBNAME, where the 1obn;ﬁe was
the PL/M=-86 Job name from the next lower level of the
VT0C, Datasseg was set to 0 to indicate\that the new job
would request segments as'ﬁéeded. StackSptr was set to
zero, thus allowing the Nucleuszd define the pointer
e

value, Stacksize, implicitly determented by the poolsmin

~J
assignment, is confirmed as 512 bytes, The Nucleus s
advised 1{f the jbb should run immediately, or wait for a
start I/0 job call and if RO87 {nstructions are contained
in the new job’s initial task by the valgéiof tasksflags,
Exs$ptr is a pointer to a word where the exception code
associated with the call will be returned by the system,
The only other return i1s if{o$job, a token for the new job.

Thus the environment for the new 3Job 1s assigned.
The second level then creates jobs or tasks according to
the VTOC, Where additional jobs are created, the process
{s identical, Where the jobs beain creating tasks, the

procedure 1looks the same, except that the job creation

call is replaced by the task creation call,
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task = RQéChEATESTlSK(oriority,, startsaddress,
: ' 2
datasseg, stackSpointer, stack$size, tasksflags, exsptr)

The parameters have the same definition as the
equivalently named job creation parameters except for the
terms ,"priority" and "task". Here, "priority" is the
prjority of the taskbbeiﬁq created'unless set to zero.
In that case, the taék assumes the maximum allowable
priority as defined by the job, (Basiéally, a descendant
cannot have a higher priority than any of its ancestdrs.)
"Task"™ i{s the token”retdrned by the system  for the new
task, and 1s cataloged for future access.

Thus the top level dob éreates the second level
jobs, Somé second level jobs create application tasks,
the rest create other jobs at the third level, These in
turn create more application tasks and it {s the
application tasks that do the system’s work, Although
the specifics of the application tasks are beyond the
scope of this thesis (see "The Application Software
Structure for a Hierarchiéal Industrial Cbntroller

System” by J.E. Dorney, Master’s Theslis, Lehigh'

2 .
IRMX =86 NIIZTLEUS RFFERENCFE MAMITAL, Intel corp., Santa
Zlara T3, 1982, Page 1272=137
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University, 1984), it s useful ‘to discuss the basic
: operation of the cell, énd define the essential- output
control algorithm. I can then define some basic elements

required in the‘database to support cell operations.
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5. Basic CMC System Operation

A description and discussion of the conceptual
operation of the cell controller is now in order, At
power=up, the system boots itself, As soon as a terminal
{s: activated, HI creates the interactive job for that
terminal, The user can then loa on and invoke CMC. CMC
responds by fequesting a system mode specification:
program (which allows the user to access and update the
data base), report (which causes étﬁtistics to bé copied
to the terminal or filed on the 8 inch floppy), and run.
(which causes the system to inquire about the part number
to be manufactured and the nuantity). This last mode {is
the one I will discuss, When the required information is
provided, the system formats a command table based on the
user supplied information., The system then reads the
qomman& table sequentially, issuing calls to device and
process modules in response to the codes in the command
table. As workpleces move through the system, fresh ones
are introduced, triggered by the evacuation of the
fixture in front of the waiting workplece, The system
counts the ﬁumber of wunits K processed and stops the
introduction of parts into fhé system when the number
required plus the number scrapped has been reached,
After production i{s stopped, the system awaits a new
command, The command table and output scheduling
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algorithm are central issues in this process, However,
wvhen discussing the command table it will necessarily

define its basic resource, the data base,

5.1 The Command Table and the Data Base

Creating the command table presumes that two types
of information are avallable, - First {s what might be
described as a "routing sheet®™ which contains a list of
parﬁs required, assemblvy specifications, -and process
specifications. In addition, the controller will need to
know the locations (and appropriate gripper orientations
where a robotic device is concerned) of various critical
points in the cell., Typically these would be such items
as part feeders or fixtures/load points, and would be
referenced to the cell’s base coordinate frame, The
availability of this data nresumes that'a graphic model

of the cell has been created and analyzed,

5.1.1 The Data Base Records and Keys:

The data base will thus need to contain at least two
types of data, what I have defined as "routing sheet”
‘data and what is éssentiallv location and orientation
information, hereafter the "location table", The keys
and fields of these two data bases are largely defined by

the considerations above, First, the routing sheet,

This entity must use the user supplied part number as the
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Key, This enables the svstem to locate the appropriate
routing sheet and access the data, The routing sheet
nust contain the data mentioned above, plus some extra
fiélds sbecific to the cell., These extra fields are user
supplied information which subpor; the cell’s decision
processes, They are the transaction type code and the
transfer device code., These are defined--as are the
other fields--below¢~ . »
1. Part Number (PN) = ;hIS‘is the key field, and
is one of the assemblies appropriate to the

cell,

2., Sub Assembly Part Number (SAPN) = the part
number of the sub assembly or plece part.

3. Sub Assembly PRart Number Quantity (SAPNQ)
«“ the number required, g

4, Transaction Type code (TTC) -\Move or Process,

5. Process Parameters (PP) =« parameters for
non=machining processes, pointer to NC code
for download to machine tools.

6. Process or fixture required (PF) =~ code for
process or fixture number,

7. Transferwoevice Code (TNC) = specifies which
device is to handle the workpiece next,
The requirements for the 1location table are
straightforward, however the orasanization is not, The
compli;cating factor 11s that mofe than one top assembly
(the”PN) may use the same sub assembly, and that more
than one sub assembly wiﬁh the same SAPN may be required

13



in one top assembly. Therefore the table must‘be Keyed
so that the correct geometric data 1is assoclated with
each pért. This compels the use of a concatenated key
based on the part number, the sub assembly part number,
and the number of SAPN required, Thus the record format

is as follows:

1. PN¥*SAPN*¥N : concatenated key, where N s a
number from one to the number of SAPN
required(SAPNQ),

2. SAPN feed 1location (SAFL) H defines
coordinates and the aripper approach vector
for part feeding mechanism, (and a safe point
near it {f no vision processing is avajlable),

3, PF location (PFL) the coordinates and
gripper approgach vector for the process or
fixture pointed to by PF (and coordinates for
a "safe point"™ near it , as above), ’

4, SAPN assembley index (SAI) : the 1index from
the fixture point specified by PFL to the
assembley area,

5. SAPN orient (SAD) : the orientation and
approach vectors for the aoripper for assembly,

6. SA final' (SAF) : the final location of the
gripper when assembly is complete,
Although this is not in third normal form due -to the
redundancy in the PFL and SAFL flelds, I feel that the
reduced access time associated with reading only one

record justifies this conceptual error,
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5‘1.2 Creating the Command Table

When the user enters the PN and quantityﬂnargmeters,
the system accesses the data base and writes the contents
of the "routing sheet" into a new file called the command
table, When multiple SAPN’s are required, the new table
"1s formatted to repeat that entry a number of times egqual
to the guantity required, and enumerate the SAPN field to
SAPN*¥N, Two additional flelds are added,wéﬁe "tag" and
the "index". The tag is a counter issued by the systenm,
and is initially set to zero, It is incremented by one
each tlme‘a new part is 1ntr§duced into the system, The
index is initialized to one, and a'nev.index equal to oné
i{s 1ssued each time a new part {s introduced into the
system, The 1index 1is incremented by one each ;ime an
associated éommand table line has completgd its output,
The tag uniqﬁely {dentifies each.part in the system, and
is also used for bookkeeping purposes. The index tracks
the' progress of each tag in the command table, thereby
providing a unique reference to each assembly, The
system then accesses the‘ locatiop table and merges it

<

into the command table on the key PN*SAPNx*N,

“
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5.2 The CTMC Scheduling Algorithm

The CMC event schedulinq alqorithm,1§ simply stated,
and;uworké hand in hand with the command table, First,
the systenm 5hecks*to see 1f the initial FP is empty. It
it is,l-anﬁ“fE the number of tags issued is less than or
eqnal'io the number of assemhlies specified by the user
plus scrap incurred to this point, the fystem increments
the tag and issues it, Whenever a tag {s issued, it also
has an index appended and initialized to one, ' Next the
system reads all command table lines currently having a
PN*TAG*INDEX entry and {f the 4{index has changed,
processes those with new indices from the bottom of the
table to the top. (This allows fixtures to be cleared
starting from the output end of the cell and working
back.) This processing involves {ssuing calls to the
necessary tasks as defined by the command 1line
parameters, The tasks then perform the neéessary
calculations,“gather the appropriate data, and format the
outout. The output tasks are then put to sleep to await
a’ signal that the last command line (on a per tag basis)
execution 1is comlete, Where movement ﬁo a new FP {s’
indicated in the next cdmmand line, the output tasks will
also await a signal that the new fixture i{s clear, When
théA appropriate signals are ~feceived, the output 1is

transmitted and the index of the pointer PNXTAGX*INDEX 1is
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incremented by one, This procedure repeats until the
-~ command table is empty, i.e., the correct number of parts
have been introduced into and exited from the systenm.
| This pioposed algorithm is tailored to use the
dtrengths of the real time. operating systém. For
example, task calls are issued only when required{ rather
than periodicly. This directs the processor resource to
the» best advéntage of the system, Further, processing
the next command line while the current line is still in
the execution phase {is effecient, since it reduces the
time spent waiting for output parameters when the next
line becomes the current line, As is mentioned above, .
the systems moves items from the output end first so as
to sequentially clear prior fi#tures. This enhances éell
throughput by promoting workpiece moves as soon as a FP

1s cleared. N

¢
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6. Conclusions
Contrary to some of the literature encountered, I
found that the use of a real time operating sfstem
presented many positive aspects in 1mb1ement1ng a
hiprarchical manufacturing cell controller, First, the
structu}ed nature of the system programming language
supported and énhanced the use of structured design and
analysis techniques, This s important in system
development since it éupports thé Qse‘ ofb modules and
program  stubs, which are of great assistan;;h’for
debu3gging and integration purposes, - In addition, and
perhaps most importantly, the hiéhly modular nature of a
CMC-1ike system supports the'writing of N fasks for N
events, a much more direct effort than writing large,
intricate, comprehensive programs, |
| Perhaps the most distinct advantage accrued in using
the real time operating svystem centers around the fact
that 16 systems such as a cell controller, most
operations afe event driven and event oriented, The
interrupt service structure of a system such as iRMX=86
is specifically tailored to ovperate in an event oriented
environment. Through the use of a scheduling entity such
as the. CMC command table, the event oriented system can
always be looking ahead and planning its output before it
is required, 1In this fashion, the system immediately
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“responds to a cell event bv sending output which causes
the next eveht. This 1is Tiearly advantageous in an eveﬁt
'oriented_system. {RMX=86"s bre-emptive priorit} based
scheduling scheme supports thié’-overall structﬁre by
ensuring that low priority interrupts do not impede more
;éritical Léctivities; and by *:nsurinq. that the most
critical evgnts are serviced first, |
The area posing the greatest challenge was {n the
definition of data communication inside the system,
Internal communications are 'necessarily comprehensive
since different‘data types and segment lengths need to be
exchanged betweehwfﬁe tasks., Therefore, it is necessary
to completely define the necessary data characteristics
and exchénge methods during system design, The heavy
reliance on a structured aoproach thus extended to the
data exchange framewﬁrk as well, Indeed, this framework
appeared very straightforﬁard on the original VTOC, In
general, the otiginai VTOC showed all modules updating
the System Status block, and external tasks requesting
updates from the block, However, s; specific
requirements for certaln tvpes of tasks were identified,
modules were refined and any necessary data exchange
fixups were made. This tended ¢to cumulatively degrade
the modularity of the exchange scheme, and complicate the

issue, The operating system alleviated this to a certain
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extent through the use of task and,pﬁjéct queues in
mailboxes, tThis alikows a task to queue a request for an
objec;. then wait for 1It, Howevef, to ensure sﬁooth
operation of the system it 1is neceséary - to antlcipate
this request and design fhe system so that the module
"generating the object required runs at the proper time,
This can be done by settiéq the priority of the object
task to a high edough level, but the designer musf
anticipate such a circumstance and ensure that the object
task does not run at the expense of a more critical (in
system terms) mbdule. Certainly it appears that inA the
" palance, the advantages of the real time gperating system
based hierarchical cell controller ~ outweigh the

disadvantages, and should be investigated further.

6.1 Areas for Future Study

The 1issue of real time data exchange in a
hierarchical' structure {s identiffed as an area for
future study, based on the observatibns above, In
addition the 1issue of tracking ahd directing cell
components using transformation matrices as opposed to
the use of sensory interactive feedback ‘arose, and should
be investigated. Thus; a minimally developed cell
controller implementation should be attempted using q\

real time operating system such as i{RMX=86, Only
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implementation down to the device level can address.the
1ssués. probably revealina new ones 1in 'the process,
Therefore I recommend that a model cpnsistinq_of the
controller, a robot, a convevyor, and some dummy targets
be constructéd for research purposes,

The purpose of such an effort should be to address
the two 1ssues above, a synerqlst1c~e£fort since they are
interrelated., 1In addition, a vision system should be

included “for comparison with the effectiveness of the

mathematical model in definina cell member boundaries and

trajectories., During this bprocess, the data exchangeﬁ
requirements and methods should be cataloged and examined
for similarities 1in structure and brocessinq. In this
vay it may be possible to develop an algorithm for .the
specification of data exchange requirements for a real

time system,
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