
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1984

The system structure for a hierarchical
manufacturing cell controller.
Albert Dawson Baker

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Industrial Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Baker, Albert Dawson, "The system structure for a hierarchical manufacturing cell controller." (1984). Theses and Dissertations. Paper
1842.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228649045?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F1842&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1842&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1842&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=preserve.lehigh.edu%2Fetd%2F1842&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/1842?utm_source=preserve.lehigh.edu%2Fetd%2F1842&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

$s>

THE SYSTEM STRUCTURE

FOR A HIERARCHICAL

MANUFACTURING CELL CONTROLLER

by

Albert Dawson Baker

A Thesis

Presented to the Graduate Committee

of Lehigh University

In Candidacy for the Degree of

Master of Science

in

Industrial Engineering

Lehigh University

1984

ProQuest Number: EP76114

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest

ProQuest EP76114

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

This thesis is accepted and approved in partial

fulfillment of the requirements for the degree of Master

of Science.

CdateT

Chairman of Department

11

Acknowledcrements

I would like to thank r»r. Louis J. Plebani for all

of the. personal instruction and advice given me in the

course of imy thesis work. T would also like to thank my

family for their support, encouragement, and inspiration

during this project.

til

Table of Contents

Abstract

Preface

1. The Manufacturing Cell

l..t Cell Requirements
1.2 assumptions About the rell

2. The Design Approach

2.1 ','se of structured techniques
2.2 I'TOC Pevle*

3. iRMX-86: The Operating System

3.1 iRMX-86 System components
3.2 The Mac Iens

3.2.1 Definition of 1PMY terms
3.2.2 Scheduling
3.2.3 Memory Management
3.2.4 Interprocess Communication
3.2.5 Response to Fxternal Events: Interrupts

3.3 The luter Layers
3.3.1 BITS—The Basic TnDut'Output .System
3.3.2 FT3S--The extended Tnnut/Output System
3.3.3^1: The Human Interface
3.3.4 The Application Loader

4. CMC--The Implementation ExamDle

4.1 Implementation Constraints and Conditions
4.2 Programming the CMC Svstem structure

4.2.1 ctlsiifI$CP1 1: A Soerific Example

5. Basic CMC System Operation

5.1 The Conrnani Table and the o^ta Base
5.1.1 The Data *ase ^^rnrds an1 Keys
5.1.2 Creating the Command Table

5.2 The C'-'C Scheduling Alanritpn -

6. Conclusions

6.1 areas for Future ' Ptu-lv

7. Bibliography

1

2

3

3
4

7
16

18

18
20
20
22
23
25
26
2R
98
29
29
30

31

31
33
35

41

42
42
45
46

48

50

52

1 v

Vita 54

List of Figures

Figure 2-1: Z^C System VTOC 9
Figure 3-1: IR^X-R6 System nraantzation 19

vl

Abstract

This thesis is concerned with the utilization of a

real time operating system in the implementation of a

hierarchical manufacturinq cell controller. The general

requirements for such a cell are discussed and analyzed

in order to define a generic system output requirements

list. Structured design and programming techniques are

then used to develop a general system structure, and the

functional relationship of the iRMX-86 operating system

to the cell controller's hierarchy is discussed. File

and database structures for the key system data elements

are specified, and a system event scheduling algorithm is

defined.

Preface

One of the current challenges In the area of

manufacturing engineering is to develop increasingly

sophisticated and capable controllers suitable for use in

the shop floor environment. As the number of

applications for which simple preprogrammed sequence

control is adequate diminishes (due to the filling of

such requirements), the need for increasingly intelligent

controllers capable of interacting with their

environments will become more apparent. Simultaneously,

the decreasing costs of hardware coupled with the

increases in the quality and quantity of software

development tools tends to support further expansion of

the use of intelligent controller^.

This thesis investigates the possibility of using

off-the-shelf components, particularly the iRMX-86

real-time operating system and multibus based hardware,

in the implementation of a hierarchical manufacturing

cell controller. In many eases the fabrication of custom

components for industrial applications tends to make the

associated system prohibitively expensive. This is true

for both hardware and software system components and

provides the motivation for emphasis on the use of stock

items.

1. The Manufacturing Cell

At the outset of the project it was decided to

employ the proven structured technique of examining the

system output requirements in order to define the

necessary inputs. Since the emDhasis of the exercise was

on defining a general structure for a cell controller

system, it became immediately necessary to conduct the

system anaylsis at the highest possible level and in the

most generic terms. This resulted in a list of rather

general requirements for cell performance and a set of

general assumptions about the cell.

1.1 Cell Requirements

The most basic statement about the^ purpose of the

cell is that it should properly manufacture the specified

product in the correct configuration. In order to

achieve this objective, there are five basic functions

that must be performed. First, the system must control

the manufacturing process in a timely and accurate

fashion. Timeliness and accuracy are priority

considerations since they directly effect the system

throughput and scrap rate. Second, the system must

control the transfer of materials from place to place in

the cell. As above, timeliness and accuracy are

important here, but in addition the controller must

ensure that material transfer devices, such as robot
7

arms, do not collide with other cell members or each

other. Third, the cell must be able to communicate, both

with users and with other cell components. Additional

communications, such as a link with a host, may be

desirable. Fourth, the cell must do a certain amount of

record Keeping. Minimally, the cell will need to

maintain a record of the current status and location of

the cell components. In addition, there may well exist a

requirement for archival record keeping of the cell's

performance and activities. Finally, the cell should be

able to inspect the goods that it manufactures. If this

is done, it should prove possible to adjust the process

control parameters to correct in-process defects and

thereby lower scrap rates.

1.2 Assumptions About the Cell

In order to estimate the number and types of

functions required by the cell it was necessary to make a

few general assumptions about the cell's constituent

components, and possible additions to the cell. These

assumptions are as follows:

cell will contain both machine tools and
non-machining process stations

cell will use proximity switches, and may
contain a camera for visual sensing

- cell may contain one or more manual operations

- cell will contain convevors and/or robot arms
for material handlina

The Immediate result of these assumptions is in

recognition of the data types that need to be supported

in order to meet the implicit requirements of the above

assumptions. These are, baslcly, that the cell can

download APT code to the MC machine tools, and has

available the process parameters for non-machining

process stations (such as amp-hours for a plating

operation). In addition, the cell controller must

respond to external events such as those that could be

detected by a proximity switch triggering an interrupt or

perhaps a more direct interaction such as that which

could be achieved through the use of a vision system.

Finally, the cell controller must be able to coordinate

the movements of materials through the system. This is

not as difficult for the conveyors anticipated, but the

issue becomes more complex when the robotic devices are

considered. In this latter case, the controller must be

aware of the locations of each of the robotic arm

members, and continuously chicle their position and

trajectory with reference to other solid objects in the

cell. This dictates that the cell controller have

extensive data concerning its geometric environment, and

■5

the capability of analyzing and acting on that data.

/

2, The Design Approach

A dedicated structured aDDroach to the cell design

was employed from the outset. There are several reasons

for this. First, a structured approach facilitates the

system analysis since the system is considered in a

modular format, with each module being directly related

to that above it in the hierarchy. This was eminently

compatible with the stated objective of organizing a

hierarchical' system structure. In addition, the use of

structured techniques allows kthe analyst to focus his.

attention on individual modules once the modules place in

the hierarchy has been defined. An important consequence

of this is that the number of "mind boggling" problems

that the analyst/designer must consider is quickly

reduced as the tasks are decomposed.

2.1 Use of structured techniques

A top down analysis of the controller was performed,

with the focus of the effort on t-he overall structure of

the system. As the analysis was performed, a Visual

Table of Contents (VTOC) was constructed. This provided

a common reference point, and provided a form of ongoing

documentation. As the system evolved through design

reviews, the VTOC was immediately updated to show the

latest* changes. This was an Important consideration,

since multiple programmers used the system structure

chart as a reference. A valid modularization of the

controller's tasks was the next objective in designing

the system. In pursuit of this, the following rules of

thumb were considered:

module function statements consisted of one
verb and one object;

modules were located in a left to right
sequence on the VTOC, generally indicating the
data flow;

modules were -constrained to fifty pseudocoded
statements or less to make them more managable
and understandable.

When all the modules were entered In the VTOC, they were

numbered according to a scheme which uniquely defined the

location of each in the hierarchy. /£

Throughout the design of the modules, every effort

was made to use only the three proper structures:

sequence, selection, and Iteration. This proved to be

Important later, during implementation, since this

reinforced the modularity of the system structure and the

application tasks. Figure 2-1 is a;, skeleton of the VTOC.

(The complete chart is on file with Dr. Louis J. Plebani,

Lehigh University Industrial Engineering Department.)

Figure 2-1 shows the system .hierarchy by module number.

Note that jobs are circled and descendant tasks listed.

m

8

Figure 2-ii C"C System VTOC

C

It

K)
I

(ooooj

2000^ /3000)

<
H
O n

o o o o
c\j n *t 10
lO LO lO LO

o o o o
CVJ ro ^t 10 o o o o

figure 2-1, continued

10

c

ro

ro
I

6

(9
a.

1020

1030

1040

1050

)

1520

1530

1540
1550

ooo
vO v£> vO
CVJCvJOJ

oooo

C\JC\JC\JC\I

O O O O O O Q
n "st 10 so h* CQ o*- ooooooo
C\J C\J CM C\J CM CM CM:

ooooo
rororororo
C\J CM CVJ CM CM

Figure 2-1, continued

11

c
n
f»

i

o
o
rr

e
a

2320
2330
2340
2350
2360

2030
2Q40
2050
2060
2070
2080
2090

2130
2140
2150
2160

2620
2630
2640

OlOOO
cvjojro ^
vD vO vO vD

ooo
rororo
rororo

oomoo
ooooo
rororororo

Figure 2-1, continued

12
V^

■y /

NJ

c

I

o

C

a

3020
3030
3035
3040
3050

3320
3330
3340

3620
3625
3630
3640

o \ OOO
— \ cviro^
K> / rororo
•* , / ^^^t

ooooo
ooooo

Figure 2-1 # continued

13

oooooo
oooooo
1010101010 in

Figure 2-1, continued

14

S 5010
5 5020
* 5030
I 5040

5050
§ 5060
r»
»-*

C
<* a

f

k,

oooo
— curort oooo
vO vOvO vO

Figure 2-1, concluded

15

c

I

tn

n
o
3
O
Y-
c
Q.
r»
a

6010
6020
6030
6040

2.2 VTOC Review

When the chart was comDiete and numbered, It was

reviewed for a variety of critical features. First,

module function statement verbs wereY checked for

consistency. Where inconsistencies were found, the verbs

were changed to be compatable with the rest of the

logical structure. Modules were then checked for

independence. One reliable way to perform this check is

to review the passing of control codes (not data) and

ensure that the codes are passed up the hierarchy, not

down the structure. An example is' detection of an EOF,

which should be done by a low level read module then

passed up the hierarchy. The locations of the modules in

the chart were checked again, this time to verify that

they were properly subordinated. This is to make sure

that all modules are properly related to their calling

modules and they to theirs, and so on up through the

hierarchy to the top level module. Next, the control

span of each module was reviewed to see if it was in

reasonable limits, i.e., between two and nine. If any

module had less than two or more than nine subordinate

/modules, it was considered to be a potential design flaw,

and reviewed for possible breakup or relocation in the

system structure.

After the contents of the VTOC were satisfactorily

reviewed, it was time to step back: ana review the, overall

structure. At thijs point it is of prime importance to

check: and make sure that all functions required to pursue

the cells objectives are accounted for. Conversely, it

is' worthwhile to verify that all functions designed into

the system contribute to the cells objectives. Those

that did not maJce a contribution were considered good

candidates for elimination.

17

3. iRMX-86: The Operatinq System

The use of iRMX-86 In the implementation example is

interesting from a variety of viewpoints....... It is a real

time operating system oriented towards system

development. It is user conficrurable for a variety of

functions, and it supDorts user-written system-call

w routines. In addition* it is interrupt driven. Finally,

t is is intended to be included in OEM products.

3.1 iRMX-86 System components

An iRMX-86 system is typically composed of the

Nucleus, and a user selected assortment of service

subsystems which can include the Basic Input/Output

System (BIOS), the Extended Input/Output System (EIOS),

the Application Loader (loader), the Human Interface

(HI), the Universal Development Interface (UDI), and the

application programs. (See Figure 3-D It is the Nucleus

that runs the system through its control over access to

the processor and memory resources. Therefore, I will

discuss the Nucleus separately from its servitors.

19

LOADER

USER
APPLICATIONS

Figure 3-1: irw-dfi Svste-n nrrranlzation

1 o

3.2 The Nucleus

The Nucleus Is the core of any 1RMX-86 system,

responsible for the executive operation of the system.

As such, It has five major ' activities under its »

Jurisdiction. Not necessarily in order of importance,

these are as follows:

- scheduling

- memory allocation

- inter-process communications

- - response to external events: interrupts

- provision of basic building blocks to the
service subsystems.

Before discussing any of the major functions, however, it

is' necessary to define the terminology and function of

the basic building blocks mentioned above.

3.2,1 Definition of iRMX terms

These building blocks are referred to as "objects" ,

and consist of the following object types.

- Tasks

- Jobs

- Segments

- Mailboxes

- Semaphores

?0

- Regions

Tasks are the active objects of the system. They do

the work of the system and can be considered as having

two goals . Their primary goal is to do a specific piece

of work. The secondary goal is to obtain control of the

processor in order to achieve their primary goal.

Jobs are the environments in which tasks exist.

Jobs consist of tasks,, task related objects, object

directories, and a memorv pool. Every system includes a

job tree, starting with a root job at the top. This root

job is typically created by the HI when a terminal is

activated, and system jobs are structured down from this

original job.

Segments are the medium used by tasks for data

storage and communication. Tasks requiring memory for

these purposes can request a segment of the proper size

from the Nucleus.

Mailboxes are objects which tasks reference in order

to send or receive other objects . For example in order

for a task to send an object, the sending task sends a

token to a mailbox; the receiving task must then visit

the mailbox and obtain the token thereby allowing the

receiving task to access the object.

Semaphores are used by tasks to signal other tasks.

21

X

The semaphore achieves this by dispensing abstract units

as requested by tasks and available to the semaphore.

Regions are used as custodians of specific

collections of shared data. The salient feature of

regions is that a task with access to a region cannot by

suspended or deleted until it surrenders access to that

region. This is necessary to avoid the possibility of

data corruption or deadlock.

It is now possible to discuss the other essential

functions of the Nucleus.

3.2.2 Scheduling

Scheduling is a critical function and therefore

should be discussed next. 4s is apparent from the

definition of the object "task" above, the application

tasks are in continual competition for control of the

processor. The Nucleus adludicates allocation of the

processor according to two task characteristics; the

task's execution state and the task priority. Task

priority is an assigned integer value between zero and

255. It is possible to assign the task priority using a

"Set Priority" Nucleus call. High priority is defined as

zero and low priority as 2">5. The task's execution state

is one of five possible conditions: running, ready,

asleep, suspended, or asleep-susDended. A task is either

??

put to sleep for a' specified amount of time, or else

\
until a request has been granted. Tasks can be suspended

by another task, by awaiting an interrupt ,or by itself.

(There is an associated suspension depth increased by

every "suspend" call and decreased by "resume" calls.)

And of course a combination of the two, the

asleep-suspended state, is possible. The running task is

defined as the ready task with the highest priority. In

cases where ready tasks have equivalent priority they are

scheduled on a FIFO basis. Thus the processor is

allocated by the Nucleus on the basis of task readiness

and priority. It is possible for a low priority task to

have its processing interupted by a higher priority task

which achieved the ready state after the low priority

task had started running.

3.2.3 Memory Management

Memory allocation is directly related to the job

tree structure. When a job or task is created the

Nucleus must obtain resources from the parent job. These

memory resources are assiqned from the memory pool of the

parent job according to the memory pool size paramenters

specified at the time of the object's creation. The

memory pool is defined as the memory available to a job

and its descendants. This leads to a hierarchy of memory

pools with the same structure as the job tree, and in

fact, a structure very similar to that of the cell

controller system. The memory pool size can be

dynamically controlled/by the tastes through the system

calls which can be used to examine and set pool

attributes. Should a task require additional memory, it

can request a memory segment of the proper size from the

parent job. Should there be inadequate memory available

from the parent, the task can request resources from the

parent's parent, or indeed from ancestors further up the

job tree.

Memory allocated to a task: is a collection of

segments where a segment is defined as a contiguous

sequence of 16 byte paragraphs with a base address evenly

divisible by 16. When a request for a segment is made

the Nucleus checks to verify that enough memory is

available to fill the request. If so, the Nucleus

returns a token for the seoment to the requesting task.

If not, the Nucleus indicates this condition to the

requesting task, which handles the situation on an

individual basis.

74

«.

3.2.4 Iriterpto.ae.s,s Communication

Interprocess communication is typically achieved

through mailboxes and semaphores. Although regions are

available, they are not recommended for use In systems

involving HI calls due to the possiblility of a system

lockup resulting. Mailboxes tend to support intertask

data communication. The Nucleus directs that tasks

waiting at a mailbox receive their objects as soon as

they are available. This involves the use of two queues.

The task queue, which is either FIFO, or priority based,

is where tasks wait for their oblects. The object queue,

FIFO based only, is where objects wait for tasks to

receive them. When an object is received, the task's

execution state changes. A task which is asleep becomes

ready; a task which is asleep-suspended becomes merely

suspended. If there is no object available at the

mailbox when the task visits it, the task has two

options. Either it can wait according to a duration

parameter specified in the call, or it can take an

exception code (E$TIME) and continue.

Semaphores involve the sending and receiving of

abstract units for purposes of mutual exclusion,

synchronization, and resource allocation. Semaphores

only have a task queue which can be FIFO or priority

based. The semaphore constantly tries to satisfy a

request for units, by the task at the head of the queue.

If enough units are available at the time of the request,

the task remains ready. If there are not enough units

available the task can elect to wait or receive an

exception code as above.

3.2.5 Response to External Events: Interrupts

The interrupt structure of the system is what makes

it responsive to ^asynchronous external events. Upon

receipt of an interrupt signal, the interrupt processing

routine can take control of the processor, service the

request, and return control. There are three key

concepts in the use of interrupts under iRMX-86. These

are the interrupt vector table, the interrupt level, and

disabling interrupts.

The interrupt vector table is composed of vectors

numbered 0-255. Vectors 0-55 are reserved for the

system, but 56 through 127 are reserved for external

interrupts. Numbers 128-183 are available to users, and

the balance (184-255) are reserved. An interrupt

triggers a call to the interrupt vector table, where the

call is redirected to the Interrupt handler.

Interrupt levels are related to the funnelling

process of the B259A PIC. Usina a master PIC and six

slaves, the system recognizes signals on a particular

?6

line as being associated with the master (vectors 56-63)

or the slave levels (numbers 64-127). When the system

receives an interrupt at an enabled level, it transfers

control to the address in the interrupt vector table

associated with the interrupt level.

Since a user may require that an interrupt does not

cause an immediate break in the task currently in

processing, it can be necessary to disable the interrupt.

For example, the system analyst may deem it unwise to

interrupt a high priority task with a low priority

interrupt. Disabling the interrupt lines can be achieved

through system calls from application tasks or by the

operating system supporting pre-emptive priority based

scheduling. In the former case the task must explicitly

define the disabled levels. In the latter case, the

operating system disables levels according to the

priority of the running task. An example of this is for

a priority 20 task; here the slave levels 00-77 and^the

master levels M2-M7 are disabled.

When an interrupt is serviced, it is redirected to

it's handler through the interruot vector table. In some

cases, the handler can completely service the interrupt.

If, however, the servicing requires substantial amounts

of time, or system calls beyond those available to

handlers, it is then necessary to invoke an interrupt

77 .

taslc to complete the service. The interrupt handler can

share data with its associated taste (through the

EnterSInterrupt call).

3.3 The Outer Layers

If the Nucleus is the core of the system, then the

service subsystems (BIOS, EIOS, HI, and the Loader) and

the application programs are the outer layers. These

outer layers provide services to the Nucleus by

facilitating its communications with and control of the

system. They also provide services to the user by

simplifying the system calls necessary to achieve a given

piece of worlc.

3.3.1 BIOS--The Basic Input/Output System

BIOS is a flexible and powerful system due to its

low level orientation. It ctives the user complete

control over details, even to the extent of requiring the

user to specify his own buffering algorithm. Most

Important, however, it deals with asynchronous system

calls. This capability is required in an interrupt

driven system.

?q

3.3.2 EIOS--The extended Input/Dutput System

s EIOS is an extension of Bins, requiring an extra 13

Kb of memory if included in the system. Although not as

flexible as the basic system, it is much more convenient

from a system development point of view since it

automatically handles most I/O details.

It provides automatic buffering, defeatable if need

Its chief limitation is that it deals only in

Synchronous system calls. This precludes the application

tasks fram achieving any work during communication

Intervals.

3.3.3 HI: The Human Interface

The HI creates a root 1ob for each terminal

activated. This job is called the interactive Job, and

the HI assigns its memory pool parameters according to

configuration specifications. The HI allows a terminal

operator to load and execute certain commands from the

keyboard. These are typically file management, disk

management, and general utility commands such as SUBMIT,

or DEBUG. The HI achieves this by starting the Command

Line Interpreter(CLI). The CLT reads the commands from

the terminal and invokes the system calls appropriate to

the terminal input. HI calls are typically concerned

with command parsing and processing, I/O and message

?/>

processing, ahj program control.

3.3.4 The Application Loader

The Application Loader loads tasks under direction

of the operating system. These include both application

tasks and operating system tastes. The Loader also

provides calls for loading programs from secondary

storage into.main memory.

The Loader is capable of loading absolute code,

position independent code (PIC) and Load-Tlme-Locatable

(LTD code. Absolute code is code that has been

processed by LOC 86 to run at a specific address. PIC is

loaded by reguesting memory segments from the job pool

and loads it there. LTL, similar to PIC, has the base

addresses of its pointers adlusted by the Loader so that

the pointers are independent of the processors register

contents. This fixup allows LTL code to be used by tasks

having in excess of 1 code segment and 1 data segment.

^n

V

4. CMC--The Implementation Example

The Implementation example was directed at

establishing a flexible, generic hierarchical ce^ll

controller structure. This developmental structure was

strictly intended to be a framework for future work and

was not intended to operate a cell in this format.

Before further discussing the Implementation example , it

Is necessary to specify the constraints and conditions

regarding it.

4.1 Implementation Constraints and Conditions

Two immediate constraints in the implementation

process involved the hardware and software components of

the system. Specifically this involved using the systems

available In the Industrial Engineering Microcomputer

Lab. This Included the following hardware items.

- Intel 86/380 development system

- 35Mb Priam Winchester drive

- 2 Memory boards yielding 512 Kb

- Disk controller board

- 86/30 processor board (8086 based)

- Televideo 925 terminals

- 8 inch floppy drive

*1

\

Software available to run on the system Included:

- iRMX-86 with libraries and utilities

- PL/M-86 compiler with libraries and utilities

- ASM-86 compiler with libraries and utilities

- FORTRAN compiler with libraries and utilities

- PASCAL compiler with libraries and utilities

Several factors had a considerable impact on the

programming of the system. First, the manufacturer

suggests that EIOS be used as a development tool to avoid

programming overhead associated with BIOS. Further, the

structured approach we assumed for programming required

heavy use of program stubs. This allows feedback to be

generated from the stubs, particularly given the utility

and ease of generating such using a high level language

(such as PASCAL) to return messages to the terminal

screen upon successful execution of the trivial stub.

This had two fundamental implications. First that EIOS

would be included in CMC, the name given the controller,

and second that for development purposes all jobs in the

structure would be I/O jobs. Since only I/O jobs can

successfully use all the EIOS system calls, these two

items are mutually supportive.

^?

4.2 Programming the CMC System structure

It was at this point>that the full benefits of a

structured approach were realized. Since the system

programming language (PLM-86) is highly structured, and

since the CMC system structure chart (or VTOC) is

similarly structured, it was possible to directly

translate the top levels of the VTOC into the top level

jobs of the CMC system. This taslc was further simplified

by the system constraints, specifically that all jobs

would be I/O jobs and that program stubs would be used.

Further, since the parametric requirements for each job

were unclear at this stage of the development, it was

dcecided to use a generic parameter selection for all.

The upshot of this was that it was possible to

create three generic dummy- modules: a job creation

module, a task creation module, and a trivial task:

module. These modules were then cloned, and the module

names (job names and task: names) were taken from the

chart. The source code files for each module were given

a number as a name, where the number was taken directly

from the chart. Thus the entire system structure was

created, degugged and linked.

This scheme provided several advantages. The use of

I/O jobs supported the anticipated feedback generation

scheme. The modularity of the system supported top down

31

coding and testing, so that as modules were added to the

system, bugs could be more readily identified and

resolved. After the first three dummy modules were coded

and debugged, creation of the entire system structure was

rapid. Once the entire CMC structure was intact and

linked, it was possible to pursue implementation of

applications tasks to replace the stubs used at

inception.

The limitations of the approach are that as job

requirements become clearer, it would be desirable if not

necessary to refine the Job creation parameters. This is

particularly true with regard to such items as priority

and memory pool. In addition, full Implementation of the'

controller would require refinement of the I/O Jobs,

since sensor activated interrupts would require the

asynchronous system calls of Bios. The latter could

require extensive work, so the drawbacks are not to be

minimized. However, given the developmental nature of

the system, it was felt that, despite the drawbacks, the

approach taken was satisfactory.

11

4.2.1 ctlmfgcell: A Specific Example

The top level lob In the system Is named
IT

ctlmfgcell. The name was taken from the VTOC,

shortened and delimited bv "$" to meet PLM requirements,

and used as the name of the top module. (This Is the

origin of "CMC", the name used for the controller.) The

VTOC reference number is O000--denoting the top level

module--therefore Its source and object code files were

named 0000.SRC and 0000.OBJ respectively. A view of the

general procedure in pseudocoded statements is useful for

further discussion.

CO.NTROL MANUFACTURING CELL JOB

INCLUDE LIBRARY FILES

DECLARE NEXT LEVEL JOBS AS EXTERNAL PROCEDURES

DECLARE DATA TYPES

DECLARE JOB CREATION PROCEDURE

SET JOB' PARAMETERS

CREATE THE NEXT LEVEL JOB

CATALOG THE OBJECT FOR THE NEW JOB

END THE PROCEDURE

Repeat declarations for the rest of the Jobs.

Call the job creation procedures in turn.

END

T=;

The job begins with a statement of its name, then

causes the library files appropriate to Its system calls

to be linked in. The next level jobs (termSjob,

matShdlSjob, processSjob, eiSsenseSjob, and dbScntlsjob)

are declared to be external procedures since they are not

defined in this module. Then any data, pointer or

parameter names have their tYPes (such as WORD or BYTE)

declared. Then a procedure for creating the next level

job is declared, parameters set, and the job creation

call is made. The object for that job is then cataloged,

and the creation procedure is ended. Similar procedures

are declared for the "rest of the next level jobs, and the

calls are made to invoke the procedures previously

declared.

It is apparent that the real work of the procedure

is done by the job creation system call and the "catalog
0

object" system call. The "catalog object" call does just

that; it catalogs the token for the next level job

(returned by the job creation call) along with a name for

that object in the job's oblect directory. In the

current case, the names used were the module numbers from

the VTDC. This allows other oblects to access the token

simply by knowing the name. However, It is the

"CREATESI/OSJDB" call where the work of defining the new

job's environment is achieved, so a detailed examination

3 ft

of"It is in order. This call has the format: .

ioSJob = RQSCREATEsmsJOB(pool$min, poolSmax,

exceptShandler, jobSflags, tasfcSpriority, startsaddress,

dataSseg, stacfcSptr, staefcSsize, taslcSf lags, msgSmbox,

exceptsptr)

A discussion of the parameters and how they were set

in the CMC system demonstrates how the job tree and task:

environments are defined.

The poolSmln and poolSmax parameters define the

allowable memory pool size for the job in 16 byte

paragraphs. The minimum allowable under EIOS is 32.

However, if the Nucleus is allowed to define the

staclc$ptr parameter (see below), then poolSmin should

equal 32 plus the number of paragraphs needed for the

stacic. This was estimated at 32, so poolSmin was set at

64. PoolSmax was set at 256 to prevent excessive memory

acquisition by a single job. ExceptShandler is a pointer

to an exception handler, which was defaulted to the

system handler. JobSflags contains Nucleus information

about the job. TasfcSpriority defines the priority for

the first taste of the created lob. This was set at an

1
1R-4X-36 3ELFHSE 5 FYTP»jnrn T/O SYSTEM REFERENCE

MVKMT,, T'JTET, Corp.,- Santa Clara, ZA , 19<n, Paae 7-4

^7

artificially" high "0" to ensure that each job's first

task runs once before resetting its priority. The

startSaddress parameter points to the first instruction

of the new job's initial task, which was specified in CMC

as a string NEXT-LEVEL-JOBNAME, where the jobname was

the PL/M-86 job name from the next lower level of the

VTOC. DataSseg was set to 0 to indicate that the new job

would request segments as needed. StackSptr was set to

zero, thus allowing the Nucleus k.6 define the pointer

value, stacicsize, implicitly deterilented by the poolSmin

assignment, is confirmed as 512 bytes. The Nucleus is

advised if the job should run immediately, or wait for a

start I/O job call and if R087 instructions are contained

vin the new job's Initial task by the value^of taskSflags.

Ex$ptr is a pointer to a word where the exception code

associated with the call will be returned by the system.

The only other return is io$job, a token for the new job.

Thus the environment for the new job is assigned.

The second level then creates jobs or tasks according to

the VTOC. Where additional jobs are created, the process

is Identical. Where the jobs begin creating tasks, the

procedure looks the same, except that the job creation

call is replaced by the task creation call.

?q

task » RQsCP.EATE$TASK(Driority,,, startsaddress,
2

data$seg, stack$pointer, stack$slze, taskSflaqs, ex$ptr)

The parameters have the same definition as the

equivalently named job creation Darameters except for the

terms ^"priority" and "task". Here, "priority" is the

priority of the tasic being created unless set to zero.

In that case, the tasic assumes the maximum allowable

priority as defined by the Job. (Basically, a descendant

cannot have a higher priority than any of its ancestors.)

"Task" is the token returned by the system for the new

task, and is cataloged for future access.

Thus the top level 1ob creates the second level

jobs. Some second level Jobs create application tasks,

the rest create other Jobs at the third level. These in

turn create more application tasks and it is the

application tasks that do the system's work. Although

the specifics of the application tasks are beyond the

scope of this thesis (see "The Application Software

Structure for a Hierarchical Industrial Controller

System" by J.E. Dorney, Master's Thesis, Lehigh

?
iRvX-86 ';i'"LE!TS RFFFPF.*'CF >-'A"UA[, , Intel cr>rp., Santa

Clara r», 1<»R2, Parje 12-.T*

"*9

University, 1984), it is useful to discuss the basic

operation of the cell, and define the essential- output

control algorithm. I can then define some basic elements

required in the database to support cell operations.

%

40

5. Basic CMC System Operation

A description and discussion of the conceptual

operation of the cell controller is' now in order. At

power-up, the system boots itself. As soon as a terminal

Is activated, HI creates the interactive job for that

terminal. The user can then loa on and invoke CMC. CMC

responds by requesting a system mode specification:

program (which allows the user to access and update the

data base), report (which causes statistics to be copied

to the terminal or filed on the 8 inch floppy), and run

(which causes the system to inquire about the part number

to be manufactured and the quantity). This last mode is

the one I will discuss. When the required information is

provided, the system formats a command table based on the

user supplied information. The system then reads the

command table sequentially, issuing calls to device and

process modules in response to the codes in the command

table. As workpieces move throuqh the system, fresh ones

are Introduced, triggered by the evacuation of the

fixture In front of the waiting workpiece. The system

counts the number of units , Drocessed and stops the

Introduction of parts into the system when the number

required plus the number scrapped has been reached.

After production Is stopped, the system awaits a new

command. The command table and output scheduling

4 1.

■ /

algorithm are central Issues In this process. However,

when discussing the command table it will necessarily

define its basic resource, the data base.

5.1 The Command Table and the Data Base

Creating the command table presumes that two types

of information are available. - First is what might be

described as a "routing sheet" which contains a list of

parts reguired, assembly specifications, and process

specifications. In addition, the controller will need to

Know the locations (and appropriate gripper orientations

where a robotic device is concerned) of various critical

points in the cell. Typically these would be such items

as part feeders or fixtures/load points, and would be

referenced to the cell's base coordinate frame. The

availability of this data presumes that a graphic model

of the cell has been created and analyzed.

5.1.1 The Data Base Records and Keys

The data base will thus need to contain at least two

types of data, what I have defined as "routing sheet"

data and what is essentially location and orientation

information, hereafter the "location table". The keys

and fields of these two data bases are largely defined by

the considerations above. First, the routing sheet.

This entity must use the user supplied part number as the

A?

T'-i

Key, This enables the svstem to locate the appropriate

routing sheet and access the data. The routing sheet

must contain the data mentioned above, plus some extra

fields specific to the cell. These extra fields are user

supplied information., which support the cell's decision

processes. They are the transaction type code and the

transfer device code. These are defined--as are £he

other fields--below.

1. Part Number (PN) - this is the key field, and
Is one of the assemblies appropriate to the
cell.

2. Sub Assembly Part Number (SAPN) - the part
number of the sub assembly or piece part.

3. Sub Assembly Part Number Quantity (SAPNQ)
•*""the number required.

4. Transaction Type code (TTC) - Move or Process..

5. Process Parameters (PP) - parameters for
non-machining processes, pointer to NC code
for download to machine tools.

6. Process or fixture required (PF) - code for
process or fixture number.

7. Transfer Device Code (ThC) - specifies which
device is to handle the workpiece next.

The requirements for the location table are

straightforward, however the oraanizatlon is not. The

complicating factor is that more than one top assembly

(thVPN) may use the same sub assembly, and that more

than one sub assembly with the same SAPN may be required

in one top assembly. Therefore the table roust be keyed

so that the correct geometric data Is associated with

each part. This compels the use of a concatenated Key

based on the part number, the sub assembly part number,

and the number of SAPN required. Thus the record format

is as follows:

1. PN*SAPN*N : concatenated key, where N Is a
number from one to the number of SAPN
requlred(SAPWQ).

2. SAPN feed location (SAFL) : defines
coordinates and the dripper approach vector
for part feeding mechanism, (and a safe point
near It if no vision processing is available).

3. PF location (PFL) : the coordinates and
gripper approach vector for the process or
fixture pointed to by PF (and coordinates for
a "safe point" near It , as above).

4. SAPN assembley index (SAI) : the Index from
the fixture point specified by PFL to the
assembley area.

5. SAPN orient (SAO) : the orientation and
approach vectors for the oripper for assembly.

6. SA final (SAF) : the final location of the
gripper when assembly is complete.

Although this is not in third normal form due to the

redundancy In the PFL and SAFL fields, I feel that the

reduced access time associated with reading only one

record justifies this conceptual error.

S

44

5.1.2 Creating the Command Table

When the user enters the PN and quantity flarameters,

the system accesses the data base and writes the contents

of the "routing sheet" into a new file called the command

table. When multiple SAPN's are required, the new table

is formatted to repeat that entry a number of times equal

to the quantity required, and enumerate the SAPN field to

SAPN*N. Two additional fields are added, the "taq" and

the "index". The tag is a counter issued by the system,

and is initially set to zero, it is incremented by one

each time a new part is introduced into the system. The

index is initialized to one, and a new index equal to one.

is issued each time a new Dart is introduced into the

system. The index is incremented by one each time an

associated command table line has completed its output.

The tag uniquely identifies each .part in the system, and

is also used for bookkeeping purposes. The index tracks

the progress of each tag in the command table, thereby

providing a unique reference to each assembly. The

system then accesses the location table and merges it

into the command table on the key PN*SAPN*N.

^

5.2 The CMC Scheduling Algorithm

The CMC event scheduling algorithm is simply stated,

and., works hand i,n hand with the command table. First,
■ • . i ■•

the system checks to see if the initial FP is empty. If

it is, and if the number of tags issued is less than or

equal to the number of assemblies specified by the user

plus scrap incurred to this point, the system increments
i

the tag and issues it. Whenever a tag is Issued, it also

has an index appended and initialized to one. Next the

system reads all command table lines currently having a

PN*TAG*INDEX entry and if the index has changed,

processes those with new indices from the bottom of the

table to the top. (This allows fixtures to be cleared

starting from the output end of the cell and working

back.) This processing involves issuing calls to the

necessary tasks as defined by the command line

parameters. The tasks then perform the necessary

calculations, gather the aporopriate data, and format the

output. The output tasks are then put to sleep to await

a signal that the last command line (on a per tag basis)

execution is comlete. Where movement to a new FP is

indicated in the next command line, the output tasks will

also await a signal that the new fixture is clear. When

the appropriate signals are deceived, the output is

transmitted and the index of the pointer PN*TAG*INDEX is

is

incremented by one. This procedure repeats until the

command table is empty, i.e., the correct number of parts

have been introduced into and exited from the system.

This proposed algorithm is tailored to use the

Strengths of the real time „ operating system. For

example, taslc calls are issued only when required, rather

than periodicly. This directs the processor resource to

the best advantage of the system. Further, processing

the next command line while the current line is still in

the execution phase is effecient, since it reduces the

time spent waiting for output parameters when the next

line becomes the current line. As is mentioned above,

the systems moves items from the output end first so as

to sequentially clear prior fixtures. This enhances cell

throughput by promoting workpiece moves as soon as a FP

is cleared.

47

6. Conclusions

Contrary to some of the literature encountered, I

found that the use of a real time operating system

presented many positive aspects in Implementing a

hierarchical uanufacturing cell controller. First, the

structured nature of the system programming language

supported and enhanced the use of structured design and

analysis techniques. This is Important in system

development since It supports the use of modules and

program stubs, which are of great assistance for

debugging and integration purposes. In addition, and

perhaps most importantly, the highly modular nature of a

CMC-like system supports the writing of N tasks for N

events, a much more direct effort than writing large,

intricate, comprehensive programs.

Perhaps the most distinct advantage accrued in using

the real time operating system centers around the fact

that in systems such as a cell controller, most

operations are event driven and event oriented. The

interrupt service structure of a system such as iRMX-86

Is specifically tailored to operate Tn an event oriented

environment. Through the use of a scheduling entity such

as the. CMC command table, the event oriented system can

always be looking ahead and planning" its output before it

is reguired. In this fashion, the system immediately

4R

®L

responds to a cell event bv sending output which causes

the next event. This is *ri*arlv advantageous in an event

oriented system. lRMX-86's pre-emptive priority based

scheduling scheme supports thl/is ' overall structure by

ensuring that low priority interrupts do not impede more

^critical activities, and by ensuring that the most;

critical events are serviced first.

The area posing the greatest challenge was in the

definition of data communication inside the system.

Internal communications are necessarily comprehensive

since different data types and segment lengths need to be

exchanged between the tasks. Therefore, it is necessary

to completely define the necessary data characteristics

and exchange methods during system design. The heavy

reliance on a structured approach thus extended to the

data exchange framework as well. Indeed, this framework

appeared very straightforward on the original VTOC. In

general, the original VTOC showed all modules updating

the System Status block, and external tasks requesting

updates from the block. However, as specific

requirements for certain tvpes of tasks were identified,

modules were refined and any necessary data exchange

fixups were made. This tended to cumulatively degrade

the modularity of the exchange scheme, and complicate the

issue. The operating system alleviated this to a certain

extent through the use of taslc and object queues in

mailboxes. This allows a task to queue a request for an

object, then wait for it. However, to ensure smooth

operation of the system it is necessary to anticipate

this request and design the system so that the module

generating the object required runs at the proper time.

This can be done by setting the priority of the object

task to a high enough level, but the designer must

anticipate such a circumstance and ensure that the object

taslc does not run at the expense of a more critical (in

system terms) module. Certainly it appears that in the

balance, the advantages of the real time operating system

based hierarchical cell controller outweigh the

disadvantages, and should be Investigated further.

6.1 Areas for Future Study

The issue of real time data exchange in a

hierarchical structure is identified as an area for

future study, based on the observations above. In

addition the issue of tracking and directing cell

components using transformation matrices as opposed to

the use of sensory Interactive feedback arose, and should

be investigated. Thus, a minimally developed cell

controller implementation should be attempted using a

real time operating system such as 1RMX-86. Only

Implementation down to the device level can address the

Issues, probably reveallner new ones in the process.

Therefore I recommend that a model consisting of the

controller, a robot, a conveyor, and some dummy targets

be constructed for research purposes.

The purpose of such an effort should be to address

the two issues above, a synerglstlc effort since they are

Interrelated. In addition, a vision system should be

Included 'for comparison with the effectiveness of the

mathematical model In defining cell member boundaries and

trajectories. During this orocess, the data exchange

requirements and methods should be cataloged and examined

for similarities in structure and processing. In this

way it may be possible to develop an algorithm for .the

specification of data exchange requirements for a real

time system.

M

7. Bibliography

Barbera, J.J., J.S. Albus and M,L. Fitzgerald,
"Hierarchical Control of Robots Using Microcomputers",
PROC. 9th INT. SYMP. ON INDUS. ROBOTS,
Match 13-15; 1979, pp. 405-422.

Barbera, A.J., J.S. Albus, M.L. Fitzgerald and
Marilyn Nashman, "Sensory Interactive Robots",
National Bureau of Standards, Washington, D.C.

Barbera, A.J., J.S. Albus, M.L.F Fitzgerald, "Programming
a Hierarchical Robot Control System", National
Bureau of Standards, Washington! D.C.

Leeson, Marlorie, SYSTEMS ANALYSIS^AND DESIGN, Science
Research Associates Inc., Chicago^ yl981. /

Miller, William E., DISTRIBUTED COMPUTER CONTROL
SYSTEMS 1981, Pergamon Press, New York, 1982.

Paul, Richard P, ROBOT MANIPULATORS: MATHEMATICS,
PROGRAMMING AND CONTROL, MIT oress, Cambridge, Mass. ,

Private meetings with Professor L. J. Plebani, Department
of Industrial Engineering, Lehigh University,
on the following dates: October, 1983 through
May, 1984.

Classroonm discussion and private conversation with
Professor N. Odrey, Department of Industrial Engr.,
Lehigh University, November and December, 1983.

Report: "Design of a Microprocessor Based Hierarchical
Control System", submitted by A.D. Baker and
J.E. Dorney as part of Lenicrh University Tnd. Engr.
course #433, December 12, 1983.

Intel IRMX-86 USER GUIDE, Intel Corp., 3065 Bowers
Avenue, Santa Clara, CA 95051, 1982.

Intel iRMX-86 Human Interface Reference Manual,
Order No. 9803202-03, Intel Corp., 3065 Bowers
Avenue, Santa Clara, CA 95051, 1982.

Intel IRMX-86 Loader Reference Manual, Order
No. 143318-002, Intel Corp., 3065 Bowers Avenue,
Santa Clara, CA 95051, 1982.

Intel . iRMX-86 Nucleus Reference Manual, Order
No. 98031?2-04, Intel Corp., 3065 Bowers
Avenue, Sfahta Clara, CA 95051, 1982.

Intel IRMX-86 Programming Techniques', Order
No. 142982-003, Intel Corp., 3065 Bowers
Avenue, Santa Clara, CA 95051, 1982.

Intel iRMX-86 Release 5, Basic Input/Output
System Reference Manual, Order No.
172766-001, Intel Corp., 3065 Bowers
Avenue, Santa Clara, CA 95051, 1982.

Intel IRMX-86 Release 5, Extended Input/Output,
System Reference Manual?, Order No.
172767-001 , Intel Corp., 3065 Bowers
Avenue, Santa Clara, CA 95951, 1982*

53

vita

Albert Dawson Baker was born In Buffalo, New York on

11/1/51, the son of Milton Joseph Baker and Dorothy

Dawson Baker. He attended Hobart College where he was

awarded a Bachelor of Arts degree in. 1974, then studied

electrical engineering at Lehigh University and was

awarded a Bachelor of Science degree in 1978., After four

years with the Bendix Corporation, Al returned to Lehigh

where he is attaining a Master of Science degree in

Industrial Engineering. He will be pursuing a career in

industrial automation development with the General

Electric Company.

54

	Lehigh University
	Lehigh Preserve
	1-1-1984

	The system structure for a hierarchical manufacturing cell controller.
	Albert Dawson Baker
	Recommended Citation

	tmp.1451580486.pdf.l2jwF

