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Abstract 

This thesis is concerned with the utilization of a 

real time operating system in the implementation of a 

hierarchical manufacturinq cell controller. The general 

requirements for such a cell are discussed and analyzed 

in order to define a generic system output requirements 

list. Structured design and programming techniques are 

then used to develop a general system structure, and the 

functional relationship of the iRMX-86 operating system 

to the cell controller's hierarchy is discussed. File 

and database structures for the key system data elements 

are specified, and a system event scheduling algorithm is 

defined. 



Preface 

One of the current challenges In the area of 

manufacturing engineering is to develop increasingly 

sophisticated and capable controllers suitable for use in 

the shop floor environment. As the number of 

applications for which simple preprogrammed sequence 

control is adequate diminishes (due to the filling of 

such requirements), the need for increasingly intelligent 

controllers capable of interacting with their 

environments will become more apparent. Simultaneously, 

the decreasing costs of hardware coupled with the 

increases in the quality and quantity of software 

development tools tends to support further expansion of 

the use of intelligent controller^. 

This thesis investigates the possibility of using 

off-the-shelf components, particularly the iRMX-86 

real-time operating system and multibus based hardware, 

in the implementation of a hierarchical manufacturing 

cell controller. In many eases the fabrication of custom 

components for industrial applications tends to make the 

associated system prohibitively expensive. This is true 

for both hardware and software system components and 

provides the motivation for emphasis on the use of stock 

items. 



1. The Manufacturing Cell 

At the outset of the project it was decided to 

employ the proven structured technique of examining the 

system output requirements in order to define the 

necessary inputs. Since the emDhasis of the exercise was 

on defining a general structure for a cell controller 

system, it became immediately necessary to conduct the 

system anaylsis at the highest possible level and in the 

most generic terms. This resulted in a list of rather 

general requirements for cell performance and a set of 

general assumptions about the cell. 

1.1 Cell Requirements 

The most basic statement about the^ purpose of the 

cell is that it should properly manufacture the specified 

product in the correct configuration. In order to 

achieve this objective, there are five basic functions 

that must be performed. First, the system must control 

the manufacturing process in a timely and accurate 

fashion. Timeliness and accuracy are priority 

considerations since they directly effect the system 

throughput and scrap rate. Second, the system must 

control the transfer of materials from place to place in 

the cell. As above, timeliness and accuracy are 

important  here,  but  in  addition  the  controller must 



ensure that  material  transfer  devices,  such as robot 
7 

arms, do not collide with other cell members or each 

other. Third, the cell must be able to communicate, both 

with users and with other cell components. Additional 

communications, such as a link with a host, may be 

desirable. Fourth, the cell must do a certain amount of 

record Keeping. Minimally, the cell will need to 

maintain a record of the current status and location of 

the cell components. In addition, there may well exist a 

requirement for archival record keeping of the cell's 

performance and activities. Finally, the cell should be 

able to inspect the goods that it manufactures. If this 

is done, it should prove possible to adjust the process 

control parameters to correct in-process defects and 

thereby lower scrap rates. 

1.2 Assumptions About the Cell 

In order to estimate the number and types of 

functions required by the cell it was necessary to make a 

few general assumptions about the cell's constituent 

components, and possible additions to the cell. These 

assumptions are as follows: 

cell  will  contain both machine  tools  and 
non-machining process stations 

cell  will  use  proximity  switches,  and may 
contain a camera for visual sensing 



- cell may contain one or more manual operations 

- cell  will contain convevors and/or robot arms 
for material handlina 

The Immediate result of these assumptions is in 

recognition of the data types that need to be supported 

in order to meet the implicit requirements of the above 

assumptions. These are, baslcly, that the cell can 

download APT code to the MC machine tools, and has 

available the process parameters for non-machining 

process stations (such as amp-hours for a plating 

operation). In addition, the cell controller must 

respond to external events such as those that could be 

detected by a proximity switch triggering an interrupt or 

perhaps a more direct interaction such as that which 

could be achieved through the use of a vision system. 

Finally, the cell controller must be able to coordinate 

the movements of materials through the system. This is 

not as difficult for the conveyors anticipated, but the 

issue becomes more complex when the robotic devices are 

considered. In this latter case, the controller must be 

aware of the locations of each of the robotic arm 

members, and continuously chicle their position and 

trajectory with reference to other solid objects in the 

cell. This dictates that the cell controller have 

extensive data concerning its geometric environment,  and 

■5 



the capability of analyzing and acting on that data. 

/ 



2, The Design Approach 

A dedicated structured aDDroach to the cell design 

was employed from the outset. There are several reasons 

for this. First, a structured approach facilitates the 

system analysis since the system is considered in a 

modular format, with each module being directly related 

to that above it in the hierarchy. This was eminently 

compatible with the stated objective of organizing a 

hierarchical' system structure. In addition, the use of 

structured techniques allows kthe analyst to focus his. 

attention on individual modules once the modules place in 

the hierarchy has been defined. An important consequence 

of this is that the number of "mind boggling" problems 

that the analyst/designer must consider is quickly 

reduced as the tasks are decomposed. 

2.1 Use of structured techniques 

A top down analysis of the controller was performed, 

with the focus of the effort on t-he overall structure of 

the system. As the analysis was performed, a Visual 

Table of Contents (VTOC) was constructed. This provided 

a common reference point, and provided a form of ongoing 

documentation. As the system evolved through design 

reviews, the VTOC was immediately updated to show the 

latest* changes.  This  was  an  Important  consideration, 



since multiple programmers used the system structure 

chart as a reference. A valid modularization of the 

controller's tasks was the next objective in designing 

the system. In pursuit of this, the following rules of 

thumb were considered: 

module function statements consisted of one 
verb and one object; 

modules were located in a left to right 
sequence on the VTOC, generally indicating the 
data flow; 

modules were -constrained to fifty pseudocoded 
statements or less to make them more managable 
and understandable. 

When all the modules were entered In the VTOC, they were 

numbered according to a scheme which uniquely defined the 

location of each in the hierarchy. /£ 

Throughout the design of the modules, every effort 

was made to use only the three proper structures: 

sequence, selection, and Iteration. This proved to be 

Important later, during implementation, since this 

reinforced the modularity of the system structure and the 

application tasks. Figure 2-1 is a;, skeleton of the VTOC. 

(The complete chart is on file with Dr. Louis J. Plebani, 

Lehigh University Industrial Engineering Department.) 

Figure 2-1 shows the system .hierarchy by module number. 

Note that jobs are circled and descendant tasks listed. 
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Figure 2-ii      C"C System VTOC 
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2.2 VTOC Review 

When the chart was comDiete and numbered, It was 

reviewed for a variety of critical features. First, 

module function statement verbs wereY checked for 

consistency. Where inconsistencies were found, the verbs 

were changed to be compatable with the rest of the 

logical structure. Modules were then checked for 

independence. One reliable way to perform this check is 

to review the passing of control codes (not data) and 

ensure that the codes are passed up the hierarchy, not 

down the structure. An example is' detection of an EOF, 

which should be done by a low level read module then 

passed up the hierarchy. The locations of the modules in 

the chart were checked again, this time to verify that 

they were properly subordinated. This is to make sure 

that all modules are properly related to their calling 

modules and they to theirs, and so on up through the 

hierarchy to the top level module. Next, the control 

span of each module was reviewed to see if it was in 

reasonable limits, i.e., between two and nine. If any 

module had less than two or more than nine subordinate 

/modules, it was considered to be a potential design flaw, 

and reviewed for possible breakup or relocation in the 

system structure. 

After the contents of the VTOC were satisfactorily 



reviewed, it was time to step back: ana review the, overall 

structure. At thijs point it is of prime importance to 

check: and make sure that all functions required to pursue 

the cells objectives are accounted for. Conversely, it 

is' worthwhile to verify that all functions designed into 

the system contribute to the cells objectives. Those 

that did not maJce a contribution were considered good 

candidates for elimination. 

17 



3. iRMX-86:  The Operatinq System 

The use of iRMX-86 In the implementation example is 

interesting from a variety of viewpoints....... It is a real 

time   operating   system  oriented  towards  system 

development.  It is user conficrurable for a variety of 

functions,   and it supDorts  user-written system-call 

w routines.  In addition* it is interrupt driven. Finally, 

t is is intended to be included in OEM products. 

3.1 iRMX-86 System components 

An iRMX-86 system is typically composed of the 

Nucleus, and a user selected assortment of service 

subsystems which can include the Basic Input/Output 

System (BIOS), the Extended Input/Output System (EIOS), 

the Application Loader (loader), the Human Interface 

(HI), the Universal Development Interface (UDI), and the 

application programs. (See Figure 3-D It is the Nucleus 

that runs the system through its control over access to 

the processor and memory resources. Therefore, I will 

discuss the Nucleus separately from its servitors. 

19 
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3.2 The Nucleus 

The Nucleus  Is  the core  of  any 1RMX-86 system, 

responsible for the executive operation of the system. 

As   such,   It  has  five  major ' activities  under  its » 

Jurisdiction.  Not necessarily in order  of  importance, 

these are as follows: 

- scheduling 

- memory allocation 

- inter-process communications 

- - response to external events:  interrupts 

- provision  of  basic  building blocks  to  the 
service subsystems. 

Before discussing any of the major functions, however, it 

is' necessary to define the terminology and function of 

the basic building blocks mentioned above. 

3.2,1 Definition of iRMX terms 

These building blocks are referred to as "objects" , 

and consist of the following object types. 

- Tasks 

- Jobs 

- Segments 

- Mailboxes 

- Semaphores 

?0 



- Regions 

Tasks are the active objects of the system. They do 

the work of the system and can be considered as having 

two goals . Their primary goal is to do a specific piece 

of work. The secondary goal is to obtain control of the 

processor in order to achieve their primary goal. 

Jobs are the environments in which tasks exist. 

Jobs consist of tasks,, task related objects, object 

directories, and a memorv pool. Every system includes a 

job tree, starting with a root job at the top. This root 

job is typically created by the HI when a terminal is 

activated, and system jobs are structured down from this 

original job. 

Segments are the medium used by tasks for data 

storage and communication. Tasks requiring memory for 

these purposes can request a segment of the proper size 

from the Nucleus. 

Mailboxes are objects which tasks reference in order 

to send or receive other objects . For example in order 

for a task to send an object, the sending task sends a 

token to a mailbox; the receiving task must then visit 

the mailbox and obtain the token thereby allowing the 

receiving task to access the object. 

Semaphores  are used by tasks to signal other tasks. 

21 
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The semaphore achieves this by dispensing abstract units 

as requested by tasks and available to the semaphore. 

Regions are used as custodians of specific 

collections of shared data. The salient feature of 

regions is that a task with access to a region cannot by 

suspended or deleted until it surrenders access to that 

region. This is necessary to avoid the possibility of 

data corruption or deadlock. 

It is now possible to discuss the other essential 

functions of the Nucleus. 

3.2.2 Scheduling 

Scheduling is a critical function and therefore 

should be discussed next. 4s is apparent from the 

definition of the object "task" above, the application 

tasks are in continual competition for control of the 

processor. The Nucleus adludicates allocation of the 

processor according to two task characteristics; the 

task's execution state and the task priority. Task 

priority is an assigned integer value between zero and 

255. It is possible to assign the task priority using a 

"Set Priority" Nucleus call. High priority is defined as 

zero and low priority as 2">5. The task's execution state 

is one of five possible conditions: running, ready, 

asleep, suspended, or asleep-susDended.  A task is either 

?? 



put to sleep for a' specified amount of time, or else 

\ 
until a request has been granted.  Tasks can be suspended 

by another task, by awaiting an interrupt ,or by  itself. 

(There  is  an associated  suspension depth increased by 

every "suspend" call and decreased by  "resume"  calls.) 

And  of   course  a  combination  of  the  two,  the 

asleep-suspended state, is possible.  The running task is 

defined as the ready task with the highest priority.  In 

cases where ready tasks have equivalent priority they are 

scheduled on a FIFO basis.   Thus the processor is 

allocated by the Nucleus on the basis of  task readiness 

and priority.  It is possible for a low priority task to 

have its processing interupted by a higher priority task 

which  achieved the ready state after the low priority 

task had started running. 

3.2.3 Memory Management 

Memory allocation is directly related to the job 

tree structure. When a job or task is created the 

Nucleus must obtain resources from the parent job. These 

memory resources are assiqned from the memory pool of the 

parent job according to the memory pool size paramenters 

specified at the time of the object's creation. The 

memory pool is defined as the memory available to a job 

and its descendants.  This leads to a hierarchy of memory 



pools with the same structure as the job tree, and in 

fact, a structure very similar to that of the cell 

controller system. The memory pool size can be 

dynamically controlled/by the tastes through the system 

calls which can be used to examine and set pool 

attributes. Should a task require additional memory, it 

can request a memory segment of the proper size from the 

parent job. Should there be inadequate memory available 

from the parent, the task can request resources from the 

parent's parent, or indeed from ancestors further up the 

job tree. 

Memory allocated to a task: is a collection of 

segments where a segment is defined as a contiguous 

sequence of 16 byte paragraphs with a base address evenly 

divisible by 16. When a request for a segment is made 

the Nucleus checks to verify that enough memory is 

available to fill the request. If so, the Nucleus 

returns a token for the seoment to the requesting task. 

If not, the Nucleus indicates this condition to the 

requesting task, which handles the situation on an 

individual basis. 

74 
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3.2.4 Iriterpto.ae.s,s Communication 

Interprocess communication is typically achieved 

through mailboxes and semaphores. Although regions are 

available, they are not recommended for use In systems 

involving HI calls due to the possiblility of a system 

lockup resulting. Mailboxes tend to support intertask 

data communication. The Nucleus directs that tasks 

waiting at a mailbox receive their objects as soon as 

they are available. This involves the use of two queues. 

The task queue, which is either FIFO, or priority based, 

is where tasks wait for their oblects. The object queue, 

FIFO based only, is where objects wait for tasks to 

receive them. When an object is received, the task's 

execution state changes. A task which is asleep becomes 

ready; a task which is asleep-suspended becomes merely 

suspended. If there is no object available at the 

mailbox when the task visits it, the task has two 

options. Either it can wait according to a duration 

parameter specified in the call, or it can take an 

exception code (E$TIME) and continue. 

Semaphores involve the sending and receiving of 

abstract units for purposes of mutual exclusion, 

synchronization, and resource allocation. Semaphores 

only have a task queue which can be FIFO or priority 

based.    The  semaphore  constantly  tries  to satisfy a 



request for units, by the task at the head of the queue. 

If enough units are available at the time of the request, 

the task remains ready. If there are not enough units 

available the task can elect to wait or receive an 

exception code as above. 

3.2.5 Response to External Events:  Interrupts 

The interrupt structure of the system is what makes 

it responsive to ^asynchronous external events. Upon 

receipt of an interrupt signal, the interrupt processing 

routine can take control of the processor, service the 

request, and return control. There are three key 

concepts in the use of interrupts under iRMX-86. These 

are the interrupt vector table, the interrupt level, and 

disabling interrupts. 

The interrupt vector table is composed of vectors 

numbered 0-255. Vectors 0-55 are reserved for the 

system, but 56 through 127 are reserved for external 

interrupts. Numbers 128-183 are available to users, and 

the balance (184-255) are reserved. An interrupt 

triggers a call to the interrupt vector table, where the 

call is redirected to the Interrupt handler. 

Interrupt levels are related to the funnelling 

process of the B259A PIC. Usina a master PIC and six 

slaves,  the  system recognizes  signals on a particular 

?6 



line as being associated with the master (vectors 56-63) 

or the slave levels (numbers 64-127). When the system 

receives an interrupt at an enabled level, it transfers 

control to the address in the interrupt vector table 

associated with the interrupt level. 

Since a user may require that an interrupt does not 

cause an immediate break in the task currently in 

processing, it can be necessary to disable the interrupt. 

For example, the system analyst may deem it unwise to 

interrupt a high priority task with a low priority 

interrupt. Disabling the interrupt lines can be achieved 

through system calls from application tasks or by the 

operating system supporting pre-emptive priority based 

scheduling. In the former case the task must explicitly 

define the disabled levels. In the latter case, the 

operating system disables levels according to the 

priority of the running task. An example of this is for 

a priority 20 task; here the slave levels 00-77 and^the 

master levels M2-M7 are disabled. 

When an interrupt is serviced, it is redirected to 

it's handler through the interruot vector table. In some 

cases, the handler can completely service the interrupt. 

If, however, the servicing requires substantial amounts 

of time, or system calls beyond those available to 

handlers,  it  is  then necessary to invoke an interrupt 

77 . 



taslc to complete the service. The interrupt handler can 

share data with its associated taste (through the 

EnterSInterrupt call). 

3.3 The Outer Layers 

If the Nucleus is the core of the system, then the 

service subsystems (BIOS, EIOS, HI, and the Loader) and 

the application programs are the outer layers. These 

outer layers provide services to the Nucleus by 

facilitating its communications with and control of the 

system. They also provide services to the user by 

simplifying the system calls necessary to achieve a given 

piece of worlc. 

3.3.1 BIOS--The Basic Input/Output System 

BIOS is a flexible and powerful system due to its 

low level orientation. It ctives the user complete 

control over details, even to the extent of requiring the 

user to specify his own buffering algorithm. Most 

Important, however, it deals with asynchronous system 

calls. This capability is required in an interrupt 

driven system. 

?q 



3.3.2 EIOS--The extended Input/Dutput System 

s EIOS is an extension of Bins, requiring an extra 13 

Kb of memory if included in the system. Although not as 

flexible as the basic system, it is much more convenient 

from a system development point of view since it 

automatically handles most I/O details. 

It  provides automatic buffering, defeatable if need 

Its chief limitation is that it deals only in 

Synchronous system calls. This precludes the application 

tasks fram achieving any work during communication 

Intervals. 

3.3.3 HI:  The Human Interface 

The HI creates a root 1ob for each terminal 

activated. This job is called the interactive Job, and 

the HI assigns its memory pool parameters according to 

configuration specifications. The HI allows a terminal 

operator to load and execute certain commands from the 

keyboard. These are typically file management, disk 

management, and general utility commands such as SUBMIT, 

or DEBUG. The HI achieves this by starting the Command 

Line Interpreter(CLI). The CLT reads the commands from 

the terminal and invokes the system calls appropriate to 

the terminal input. HI calls are typically concerned 

with command parsing and  processing,  I/O and message 

?/> 



processing, ahj program control. 

3.3.4 The Application Loader 

The Application Loader loads tasks under direction 

of the operating system. These include both application 

tasks and operating system tastes. The Loader also 

provides calls for loading programs from secondary 

storage into.main memory. 

The Loader is capable of loading absolute code, 

position independent code (PIC) and Load-Tlme-Locatable 

(LTD code. Absolute code is code that has been 

processed by LOC 86 to run at a specific address. PIC is 

loaded by reguesting memory segments from the job pool 

and loads it there. LTL, similar to PIC, has the base 

addresses of its pointers adlusted by the Loader so that 

the pointers are independent of the processors register 

contents. This fixup allows LTL code to be used by tasks 

having in excess of 1 code segment and 1 data segment. 

^n 
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4. CMC--The Implementation Example 

The Implementation example was directed at 

establishing a flexible, generic hierarchical ce^ll 

controller structure. This developmental structure was 

strictly intended to be a framework for future work and 

was not intended to operate a cell in this format. 

Before further discussing the Implementation example , it 

Is necessary to specify the constraints and conditions 

regarding it. 

4.1 Implementation Constraints and Conditions 

Two immediate constraints in the implementation 

process involved the hardware and software components of 

the system. Specifically this involved using the systems 

available In the Industrial Engineering Microcomputer 

Lab.  This Included the following hardware items. 

- Intel 86/380 development system 

- 35Mb Priam Winchester drive 

- 2 Memory boards yielding 512 Kb 

- Disk controller board 

- 86/30 processor board (8086 based) 

- Televideo 925 terminals 

- 8 inch floppy drive 
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Software available to run on the system Included: 

- iRMX-86 with libraries and utilities 

- PL/M-86 compiler with libraries and utilities 

- ASM-86 compiler with libraries and utilities 

- FORTRAN compiler with libraries and utilities 

- PASCAL compiler with libraries and utilities 

Several factors had a considerable impact on the 

programming of the system. First, the manufacturer 

suggests that EIOS be used as a development tool to avoid 

programming overhead associated with BIOS. Further, the 

structured approach we assumed for programming required 

heavy use of program stubs. This allows feedback to be 

generated from the stubs, particularly given the utility 

and ease of generating such using a high level language 

(such as PASCAL) to return messages to the terminal 

screen upon successful execution of the trivial stub. 

This had two fundamental implications. First that EIOS 

would be included in CMC, the name given the controller, 

and second that for development purposes all jobs in the 

structure would be I/O jobs. Since only I/O jobs can 

successfully use all the EIOS system calls, these two 

items are mutually supportive. 
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4.2 Programming the CMC System structure 

It was at this point>that the full benefits of a 

structured approach were realized. Since the system 

programming language (PLM-86) is highly structured, and 

since the CMC system structure chart (or VTOC) is 

similarly structured, it was possible to directly 

translate the top levels of the VTOC into the top level 

jobs of the CMC system. This taslc was further simplified 

by the system constraints, specifically that all jobs 

would be I/O jobs and that program stubs would be used. 

Further, since the parametric requirements for each job 

were unclear at this stage of the development, it was 

dcecided to use a generic parameter selection for all. 

The upshot of this was that it was possible to 

create three generic dummy- modules: a job creation 

module, a task creation module, and a trivial task: 

module. These modules were then cloned, and the module 

names (job names and task: names) were taken from the 

chart. The source code files for each module were given 

a number as a name, where the number was taken directly 

from the chart. Thus the entire system structure was 

created, degugged and linked. 

This scheme provided several advantages. The use of 

I/O jobs supported the anticipated feedback generation 

scheme.  The modularity of the system supported top  down 
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coding and testing, so that as modules were added to the 

system, bugs could be more readily identified and 

resolved. After the first three dummy modules were coded 

and debugged, creation of the entire system structure was 

rapid. Once the entire CMC structure was intact and 

linked, it was possible to pursue implementation of 

applications tasks to replace the stubs used at 

inception. 

The limitations of the approach are that as job 

requirements become clearer, it would be desirable if not 

necessary to refine the Job creation parameters. This is 

particularly true with regard to such items as priority 

and memory pool. In addition, full Implementation of the' 

controller would require refinement of the I/O Jobs, 

since sensor activated interrupts would require the 

asynchronous system calls of Bios. The latter could 

require extensive work, so the drawbacks are not to be 

minimized. However, given the developmental nature of 

the system, it was felt that, despite the drawbacks, the 

approach taken was satisfactory. 
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4.2.1 ctl$mfg$cell:  A Specific Example 

The  top  level  lob  In the system Is named 
IT 

ctl$mfg$cell. The name was taken from the VTOC, 

shortened and delimited bv "$" to meet PLM requirements, 

and used as the name of the top module. (This Is the 

origin of "CMC", the name used for the controller.) The 

VTOC reference number is O000--denoting the top level 

module--therefore Its source and object code files were 

named 0000.SRC and 0000.OBJ respectively. A view of the 

general procedure in pseudocoded statements is useful for 

further discussion. 

CO.NTROL MANUFACTURING CELL JOB 

INCLUDE LIBRARY FILES 

DECLARE NEXT LEVEL JOBS AS EXTERNAL PROCEDURES 

DECLARE DATA TYPES 

DECLARE JOB CREATION PROCEDURE 

SET JOB' PARAMETERS 

CREATE THE NEXT LEVEL JOB 

CATALOG THE OBJECT FOR THE NEW JOB 

END THE PROCEDURE 

Repeat declarations for the rest of the Jobs. 

Call the job creation procedures in turn. 

END 

T=; 



The job begins with a statement of its name, then 

causes the library files appropriate to Its system calls 

to be linked in. The next level jobs (termSjob, 

matShdlSjob, processSjob, eiSsenseSjob, and dbScntlsjob) 

are declared to be external procedures since they are not 

defined in this module. Then any data, pointer or 

parameter names have their tYPes (such as WORD or BYTE) 

declared. Then a procedure for creating the next level 

job is declared, parameters set, and the job creation 

call is made. The object for that job is then cataloged, 

and the creation procedure is ended. Similar procedures 

are declared for the "rest of the next level jobs, and the 

calls are made to invoke the procedures previously 

declared. 

It is apparent that the real work of the procedure 

is done by the job creation system call and the  "catalog 
0 

object" system call. The "catalog object" call does just 

that; it catalogs the token for the next level job 

(returned by the job creation call) along with a name for 

that object in the job's oblect directory. In the 

current case, the names used were the module numbers from 

the VTDC. This allows other oblects to access the token 

simply by knowing the name. However, It is the 

"CREATESI/OSJDB" call where the work of defining the new 

job's environment is achieved, so a detailed  examination 
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of"It is in order.  This call has the format: . 

ioSJob = RQSCREATEsmsJOB(pool$min, poolSmax, 

exceptShandler, jobSflags, tasfcSpriority, startsaddress, 

dataSseg, stacfcSptr, staefcSsize, taslcSf lags, msgSmbox, 

exceptsptr) 

A discussion of the parameters and how they were set 

in the CMC system demonstrates how the job tree and task: 

environments are defined. 

The poolSmln and poolSmax parameters define the 

allowable memory pool size for the job in 16 byte 

paragraphs. The minimum allowable under EIOS is 32. 

However, if the Nucleus is allowed to define the 

staclc$ptr parameter (see below), then poolSmin should 

equal 32 plus the number of paragraphs needed for the 

stacic. This was estimated at 32, so poolSmin was set at 

64. PoolSmax was set at 256 to prevent excessive memory 

acquisition by a single job. ExceptShandler is a pointer 

to an exception handler, which was defaulted to the 

system handler. JobSflags contains Nucleus information 

about the job. TasfcSpriority defines the priority for 

the first taste of the created lob.  This was  set  at  an 

1 
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artificially" high "0" to ensure that each job's first 

task runs once before resetting its priority. The 

startSaddress parameter points to the first instruction 

of the new job's initial task, which was specified in CMC 

as a string NEXT-LEVEL-JOBNAME, where the jobname was 

the PL/M-86 job name from the next lower level of the 

VTOC. DataSseg was set to 0 to indicate that the new job 

would request segments as needed. StackSptr was set to 

zero, thus allowing the Nucleus k.6 define the pointer 

value, stacicsize, implicitly deterilented by the poolSmin 

assignment, is confirmed as 512 bytes. The Nucleus is 

advised if the job should run immediately, or wait for a 

start I/O job call and if R087 instructions are contained 

vin the new job's Initial task by the value^of taskSflags. 

Ex$ptr is a pointer to a word where the exception code 

associated with the call will be returned by the system. 

The only other return is io$job, a token for the new job. 

Thus the environment for the new job is assigned. 

The second level then creates jobs or tasks according to 

the VTOC. Where additional jobs are created, the process 

is Identical. Where the jobs begin creating tasks, the 

procedure looks the same, except that the job creation 

call is replaced by the task creation call. 

?q 



task  »  RQsCP.EATE$TASK(Driority,,,  startsaddress, 
2 

data$seg, stack$pointer, stack$slze, taskSflaqs, ex$ptr) 

The parameters have the same definition as the 

equivalently named job creation Darameters except for the 

terms ^"priority" and "task". Here, "priority" is the 

priority of the tasic being created unless set to zero. 

In that case, the tasic assumes the maximum allowable 

priority as defined by the Job. (Basically, a descendant 

cannot have a higher priority than any of its ancestors.) 

"Task" is the token returned by the system for the new 

task, and is cataloged for future access. 

Thus the top level 1ob creates the second level 

jobs. Some second level Jobs create application tasks, 

the rest create other Jobs at the third level. These in 

turn create more application tasks and it is the 

application tasks that do the system's work. Although 

the specifics of the application tasks are beyond the 

scope of this thesis (see "The Application Software 

Structure for a Hierarchical Industrial Controller 

System"   by  J.E.   Dorney,   Master's  Thesis,  Lehigh 

? 
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University, 1984), it is useful to discuss the basic 

operation of the cell, and define the essential- output 

control algorithm. I can then define some basic elements 

required in the database to support cell operations. 

% 
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5. Basic CMC System Operation 

A description and discussion of the conceptual 

operation of the cell controller is' now in order. At 

power-up, the system boots itself. As soon as a terminal 

Is activated, HI creates the interactive job for that 

terminal. The user can then loa on and invoke CMC. CMC 

responds by requesting a system mode specification: 

program (which allows the user to access and update the 

data base), report (which causes statistics to be copied 

to the terminal or filed on the 8 inch floppy), and run 

(which causes the system to inquire about the part number 

to be manufactured and the quantity). This last mode is 

the one I will discuss. When the required information is 

provided, the system formats a command table based on the 

user supplied information. The system then reads the 

command table sequentially, issuing calls to device and 

process modules in response to the codes in the command 

table. As workpieces move throuqh the system, fresh ones 

are Introduced, triggered by the evacuation of the 

fixture In front of the waiting workpiece. The system 

counts the number of units , Drocessed and stops the 

Introduction of parts into the system when the number 

required plus the number scrapped has been reached. 

After production Is stopped, the system awaits a new 

command.    The  command  table and output  scheduling 

4 1. 



■ / 

algorithm are central Issues In this process. However, 

when discussing the command table it will necessarily 

define its basic resource, the data base. 

5.1 The Command Table and the Data Base 

Creating the command table presumes that two types 

of information are available. - First is what might be 

described as a "routing sheet" which contains a list of 

parts reguired, assembly specifications, and process 

specifications. In addition, the controller will need to 

Know the locations (and appropriate gripper orientations 

where a robotic device is concerned) of various critical 

points in the cell. Typically these would be such items 

as part feeders or fixtures/load points, and would be 

referenced to the cell's base coordinate frame. The 

availability of this data presumes that a graphic model 

of the cell has been created and analyzed. 

5.1.1 The Data Base Records and Keys 

The data base will thus need to contain at least two 

types of data, what I have defined as "routing sheet" 

data and what is essentially location and orientation 

information, hereafter the "location table". The keys 

and fields of these two data bases are largely defined by 

the considerations above. First, the routing sheet. 

This entity must use the user supplied part number as the 

A? 



T'-i 

Key, This enables the svstem to locate the appropriate 

routing sheet and access the data. The routing sheet 

must contain the data mentioned above, plus some extra 

fields specific to the cell. These extra fields are user 

supplied information., which support the cell's decision 

processes. They are the transaction type code and the 

transfer device code. These are defined--as are £he 

other fields--below. 

1. Part Number (PN) - this is the key field, and 
Is one of the assemblies appropriate to the 
cell. 

2. Sub Assembly Part Number (SAPN) - the part 
number of the sub assembly or piece part. 

3. Sub Assembly Part Number Quantity (SAPNQ) 
•*""the number required. 

4. Transaction Type code (TTC) - Move or Process.. 

5. Process Parameters (PP) - parameters for 
non-machining processes, pointer to NC code 
for download to machine tools. 

6. Process or fixture required (PF) - code for 
process or fixture number. 

7. Transfer Device Code (ThC) - specifies which 
device is to handle the workpiece next. 

The requirements for the location table are 

straightforward, however the oraanizatlon is not. The 

complicating factor is that more than one top assembly 

(thVPN) may use the same sub assembly, and that more 

than  one sub assembly with the same SAPN may be required 



in one top assembly. Therefore the table roust be keyed 

so that the correct geometric data Is associated with 

each part. This compels the use of a concatenated Key 

based on the part number, the sub assembly part number, 

and the number of SAPN required. Thus the record format 

is as follows: 

1. PN*SAPN*N : concatenated key, where N Is a 
number from one to the number of SAPN 
requlred(SAPWQ). 

2. SAPN feed location (SAFL) : defines 
coordinates and the dripper approach vector 
for part feeding mechanism, (and a safe point 
near It if no vision processing is available). 

3. PF location (PFL) : the coordinates and 
gripper approach vector for the process or 
fixture pointed to by PF (and coordinates for 
a "safe point" near It , as above). 

4. SAPN assembley index (SAI) : the Index from 
the fixture point specified by PFL to the 
assembley area. 

5. SAPN orient (SAO) : the orientation and 
approach vectors for the oripper for assembly. 

6. SA final (SAF) : the final location of the 
gripper when assembly is complete. 

Although this is not in third normal form due to the 

redundancy In the PFL and SAFL fields, I feel that the 

reduced access time associated with reading only one 

record justifies this conceptual error. 

S 
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5.1.2 Creating the Command Table 

When the user enters the PN and quantity flarameters, 

the system accesses the data base and writes the contents 

of the "routing sheet" into a new file called the command 

table. When multiple SAPN's are required, the new table 

is formatted to repeat that entry a number of times equal 

to the quantity required, and enumerate the SAPN field to 

SAPN*N. Two additional fields are added, the "taq" and 

the "index". The tag is a counter issued by the system, 

and is initially set to zero, it is incremented by one 

each time a new part is introduced into the system. The 

index is initialized to one, and a new index equal to one. 

is issued each time a new Dart is introduced into the 

system. The index is incremented by one each time an 

associated command table line has completed its output. 

The tag uniquely identifies each .part in the system, and 

is also used for bookkeeping purposes. The index tracks 

the progress of each tag in the command table, thereby 

providing a unique reference to each assembly. The 

system then accesses the location table and merges it 

into the command table on the key PN*SAPN*N. 
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5.2 The CMC Scheduling Algorithm 

The CMC event scheduling algorithm is simply stated, 

and., works  hand i,n hand with the command table.  First, 
■ •   .     i ■• 

the system checks to see if the initial FP is empty. If 

it is, and if the number of tags issued is less than or 

equal to the number of assemblies specified by the user 

plus  scrap incurred to this point, the system increments 
i 

the tag and issues it. Whenever a tag is Issued, it also 

has an index appended and initialized to one. Next the 

system reads all command table lines currently having a 

PN*TAG*INDEX entry and if the index has changed, 

processes those with new indices from the bottom of the 

table to the top. (This allows fixtures to be cleared 

starting from the output end of the cell and working 

back.) This processing involves issuing calls to the 

necessary tasks as defined by the command line 

parameters. The tasks then perform the necessary 

calculations, gather the aporopriate data, and format the 

output. The output tasks are then put to sleep to await 

a signal that the last command line (on a per tag basis) 

execution is comlete. Where movement to a new FP is 

indicated in the next command line, the output tasks will 

also await a signal that the new fixture is clear. When 

the appropriate signals are deceived, the output is 

transmitted and the index of the pointer PN*TAG*INDEX  is 

is 



incremented by one. This procedure repeats until the 

command table is empty, i.e., the correct number of parts 

have been introduced into and exited from the system. 

This proposed algorithm is tailored to use the 

Strengths of the real time „ operating system. For 

example, taslc calls are issued only when required, rather 

than periodicly. This directs the processor resource to 

the best advantage of the system. Further, processing 

the next command line while the current line is still in 

the execution phase is effecient, since it reduces the 

time spent waiting for output parameters when the next 

line becomes the current line. As is mentioned above, 

the systems moves items from the output end first so as 

to sequentially clear prior fixtures. This enhances cell 

throughput by promoting workpiece moves as soon as a FP 

is cleared. 
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6. Conclusions 

Contrary to some of the literature encountered, I 

found that the use of a real time operating system 

presented many positive aspects in Implementing a 

hierarchical uanufacturing cell controller. First, the 

structured nature of the system programming language 

supported and enhanced the use of structured design and 

analysis techniques. This is Important in system 

development since It supports the use of modules and 

program stubs, which are of great assistance for 

debugging and integration purposes. In addition, and 

perhaps most importantly, the highly modular nature of a 

CMC-like system supports the writing of N tasks for N 

events, a much more direct effort than writing large, 

intricate, comprehensive programs. 

Perhaps the most distinct advantage accrued in using 

the real time operating system centers around the fact 

that in systems such as a cell controller, most 

operations are event driven and event oriented. The 

interrupt service structure of a system such as iRMX-86 

Is specifically tailored to operate Tn an event oriented 

environment. Through the use of a scheduling entity such 

as the. CMC command table, the event oriented system can 

always be looking ahead and planning" its output before it 

is reguired.  In this  fashion,  the  system  immediately 
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responds to a cell event bv sending output which causes 

the next event. This is *ri*arlv advantageous in an event 

oriented system. lRMX-86's pre-emptive priority based 

scheduling scheme supports thl/is ' overall structure by 

ensuring that low priority interrupts do not impede more 

^critical activities, and by ensuring that the most; 

critical events are serviced first. 

The area posing the greatest challenge was in the 

definition of data communication inside the system. 

Internal communications are necessarily comprehensive 

since different data types and segment lengths need to be 

exchanged between the tasks. Therefore, it is necessary 

to completely define the necessary data characteristics 

and exchange methods during system design. The heavy 

reliance on a structured approach thus extended to the 

data exchange framework as well. Indeed, this framework 

appeared very straightforward on the original VTOC. In 

general, the original VTOC showed all modules updating 

the System Status block, and external tasks requesting 

updates from the block. However, as specific 

requirements for certain tvpes of tasks were identified, 

modules were refined and any necessary data exchange 

fixups were made. This tended to cumulatively degrade 

the modularity of the exchange scheme, and complicate the 

issue.  The operating system alleviated this to a certain 



extent through the use of taslc and object queues in 

mailboxes. This allows a task to queue a request for an 

object, then wait for it. However, to ensure smooth 

operation of the system it is necessary to anticipate 

this request and design the system so that the module 

generating the object required runs at the proper time. 

This can be done by setting the priority of the object 

task to a high enough level, but the designer must 

anticipate such a circumstance and ensure that the object 

taslc does not run at the expense of a more critical (in 

system terms) module. Certainly it appears that in the 

balance, the advantages of the real time operating system 

based hierarchical cell controller outweigh the 

disadvantages, and should be Investigated further. 

6.1 Areas for Future Study 

The issue of real time data exchange in a 

hierarchical structure is identified as an area for 

future study, based on the observations above. In 

addition the issue of tracking and directing cell 

components using transformation matrices as opposed to 

the use of sensory Interactive feedback arose, and should 

be investigated. Thus, a minimally developed cell 

controller implementation should be attempted using a 

real  time  operating system such as  1RMX-86.   Only 



Implementation down to the device level can address the 

Issues, probably reveallner new ones in the process. 

Therefore I recommend that a model consisting of the 

controller, a robot, a conveyor, and some dummy targets 

be constructed for research purposes. 

The purpose of such an effort should be to address 

the two issues above, a synerglstlc effort since they are 

Interrelated. In addition, a vision system should be 

Included 'for comparison with the effectiveness of the 

mathematical model In defining cell member boundaries and 

trajectories. During this orocess, the data exchange 

requirements and methods should be cataloged and examined 

for similarities in structure and processing. In this 

way it may be possible to develop an algorithm for .the 

specification of data exchange requirements for a real 

time system. 
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