Order foundations for formal language theory.

Catherine L. Madden

Follow this and additional works at: http:/ / preserve.lehigh.edu/etd
Part of the Computer Sciences Commons

Recommended Citation

Madden, Catherine L., "Order foundations for formal language theory." (1979). Theses and Dissertations. Paper 1827.

ORDER FOUNDATIONS FOR FORMAL LANGUAGE THEORY

by
Catherine L. Madden

A Thesis
Presented to the Graduate Committee of Lehigh University in Candidacy for the Degree of Master of Science in
Computer Science

Lehigh University
1979

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest EP76099
Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

CERTIFICATE OF APPROVAL

Approved and recommended for acceptance as a thesis in partial fulfillment of the requirements for the degree of Master of Science.
$\frac{\text { Nov } 30,1979}{\text { (date) }}$

Professor in Charge
accepted Nov 30,1979

ACKNOWLEDGMENTS

This paper is the culmination of a sequence of seminars in Formal Language Theory offered by Professor Samuel L. Gulden. I wish to thank Professor Gulden for introducing me to this field which has such potential for future research, and for his gracious interest in my education throughout our association.

To my excellent typist and friend, Ms. Judy Arroyo, I am indebted and promise this to be my last thesis.

TABLE OF CONTENTS
Page
ABS TRACT 1

1. ALGEBRAIC PRELIMINARIES. 2
2. σ_{i}-COMPLETENESS AND σ_{i}-CONTINUITY 16
3. FIXED POINT THEORY 32
4. FORMAL LANGUAGES 39
BIBLIOGRAPHY 53
VITA 54

Abstract

The basis of this paper is the work of Blikle concerning the relationship of the productions of a formal grammar to their expression as equations. These equations are considered as the basis of the grammar. Their solutions are the elements of the associated formal language.

It is our intention to lay the mathematical foundation for considering a formal language as a subset of a Boolean semiring. To this end we introduce the concepts of σ_{i}-completeness of posets and of σ_{i}-continuity of functions between σ_{i}-complete posets.

It is our intention to use the power of this mathematical structure in future research to consider the relationship between normal forms of a context free grammars and matrix equations.

ALGEBRAIC PRELIMINARIES

1. Definition. A monoid, $(M, 0)$ is a system consisting of a set M and a binary operation 0 defined on M such that 0 is associative over M and there exists an identity element $1 \in M$; that is $0 \quad(m, 1)=m=0(1, m)$ for all $m \in M$.

Alternately we use the notations (m, n) and mn for \quad (m, n). The identity element of a monoid is unique. If there were two identity elements 1 and 1^{\prime}, we would have the immediate contradiction $1=11^{\prime}=1^{\prime}$.
2. Definition. For $m \in M$ and $r \in Z^{+}=\{p: p$ is a non-negative integer $\}$, we define $m^{0}=1$ and $m^{r+1}=m^{x}$.
3. Lemma. $\mathrm{m}^{\mathrm{p}+\mathrm{q}}=\mathrm{m}_{\mathrm{m}} \mathrm{q}$ for $\mathrm{m} \in \mathrm{M}$ and $\mathrm{p}, \mathrm{q} \in \mathrm{Z}^{+}$.

The proof of Lemma 3 is a standard application of the principle of mathematical induction.
4. Example. z^{+}under multiplication is a monoid with identity element 1.
5. Example. z^{+}under addition is a monoid with identity element 0 .
6. Definition. For $r \in Z^{+}$let $[r]=\left\{n \in Z^{+}: 0<n \leq r\right\}$. An r-sequence on a set X is a function $\alpha:[r] \rightarrow X$.

For $r>0$ and α an r-sequence on X we may identify α with the r-tuple $\alpha_{1}, \ldots, \alpha_{r}$ where $\alpha_{j}=\alpha(\mathbf{j})$ for $0<\mathbf{j} \leq \mathbf{r}$.
7. Definition. Let x be a set $x^{r}=\{\alpha: \alpha$ is an r-sequence on $X\}$. We identify X^{r} with the r-tuple $\mathrm{X} \times \ldots \times \mathrm{X}$. Observe if $\mathrm{r}=0$ then $[\mathrm{r}]=\varnothing$. Therefore $x^{0}=\{\varepsilon\}$ where ε is the empty set.
8. Definition. Let $\alpha \in X^{\mathbf{x}}$ and $\beta \in X^{s}$. Define $\gamma \in \mathrm{X}^{\mathrm{r}+\mathrm{s}}$ by

$$
\gamma(j)=\left\{\begin{array}{ll}
\gamma(j) & 0<j \leq r \\
\beta(j-r) & r<j \leq r+s
\end{array}\right\}
$$

We write $\gamma=\gamma \beta$.
9. Lemma. If $\alpha \in \dot{X}^{r}, \beta \in X^{s}$ and $\gamma \in X^{t}$ then $(\alpha \beta) \gamma=\alpha(\beta \gamma)$ and $\alpha \varepsilon=\alpha=\varepsilon \alpha$.

$$
\begin{aligned}
& {\left[\begin{array}{ll}
{[\text { i) }(\alpha \beta) \gamma(j)} & =\left\{\begin{array}{ll}
(\alpha \beta)(j) & 0<j \leq r+s \\
\gamma(j) & r+s<j \leq r+s+t
\end{array}\right\}, ~ f r l
\end{array}\right\}} \\
& =\left\{\begin{array}{ll}
\alpha(j) & 0<j \leq r \\
\beta(j-r) & r<j \leq r+s \\
\gamma(j-r-s) & r+s<j \leq r+s+t
\end{array}\right\} \\
& =\left\{\begin{array}{ll}
a(j) & 0<j \leq r \\
\beta \gamma(j) & r<j \leq r+s+t
\end{array}\right\} \\
& =\quad \alpha(\beta \gamma) j . \\
& \text { ii) } \\
& \varepsilon \alpha(j)=\left\{\begin{array}{ll}
\varepsilon(j) & 0<j \leq 0 \\
\alpha(j) & 0<j \leq r
\end{array}\right\} \\
& =\alpha(j) \\
& =\left\{\begin{array}{ll}
\alpha(j) & 0<j \leq r \\
\varepsilon(j-0) & r<j \leq r+0
\end{array}\right\} \\
& =\alpha \varepsilon(j) \text { I }
\end{aligned}
$$

10. Definition. $X^{+}=\underset{r>0}{U} X^{r}$ and $x *=\bigcup_{r \geq 0} X^{r}$.

We assume throughout that X^{+}and $X *$ have the binary operation of concatenation described in 8 defined on them. $X *$ under concatenation is a monoid with identity element ε [iLemma 9]. However X^{+}under concatenation is not a monoid since X^{+}does not have an identity
element. Observe if $x=\varnothing$ then, $x^{0}=\{\varepsilon\}$ but $x^{r}=\varnothing$ for $r>0$. Identifying x and X^{1} we may write $\alpha \in X^{+}=\bigcup_{r>0} X^{r}$ as $\alpha=\left(x_{1}, x_{2}, \ldots, x_{j}, \ldots\right)$ where $\alpha(j)=X_{j} \in X$.
11. Lemma. Let M be a monoid. For $A, B \subset M$. Define $A B=\{a b: a \in A$ and $b \in B\}$. The power set of $M, P(M)$, is a monoid under this product operation. Moreover, \varnothing is the zero element of $\mathbf{P}(M)$; that is $\phi \mathrm{A}=\varnothing=\mathrm{A} \varnothing$
[i) associativity: (AB) $C=\{x C: x \in A B$ and $c \in C\}=\{(a b) c: a \in A, b \in B$ and $c \in C\}=\{a(b c):$ $a \in A, b \in B$, and $c \in C\}=\{a y: a \in A$ and $y \in B C\}=$ $A(B C)$ since M is a monoid.
ii) $\{1\}$ in the identity: $A\{1\}=\{$ al : a $\in A\}$ $=\{a: a \in A\}=A=\{1 a: a \in A\}=\{1\} A$. If M is a monoid, we assume throughout that $\mathbb{P}(M)$ carries the associated monoid structure defined in Lemma 11.]
12. Definition. Let M be a monoid and $A \subset M$ define $A^{0}=\{1\}, A^{r+1}=A A^{r}, A^{+}=\bigcup_{r>0} A^{r}$, and $A *=\bigcup_{r \geq 0} A^{r}=A^{0}$ $+A^{+},\left(x \in Z^{+}\right)$.
13. Lemma. Let $A, B, C \in P(M)$ where M is monoid.

Then 1) $(A \cup B) \cup C=A C \cup B C$
2) $C(A \cup B)=C A \cup C B$
3) $(A \cap B) C \not \subset A C \cap B C$

Additionally if AC B then
4) $\mathrm{AC} C \mathrm{BC}$
5) $\mathrm{CA} \subset \mathrm{CB}$.
[The validity of $1,2,4,5$ and proper containment in 3 are standard set theoretic arguments. To show equality need not exist in 3 , let $x=\{a\}$, $A=\left\{a, a^{3}\right\}$, $B=\left\{a^{2}, a^{4}\right\}$ and $C=\left\{a, a^{2}\right\}$. Recall $X *$ is a monoid under concatenation [Lemma 9]. A, B and CC X*. Direct computation yields $A \cap B=\varnothing, A C=\left\{a^{2}, a^{3}, a^{4}, a^{5}\right\}$, $B C=\left\{a^{3}, a^{4}, a^{5}, a^{6}\right\}$ and $A C \cap B C=\left\{a^{3}, a^{4}, a^{5}\right\} \not \subset \varnothing=(A \cap B) C \square$.
14. Definition. Let X be a set and $\mathbb{P}(X)$ be the power set of X. Let $\mathbf{R}(X)=\mathbf{P}(X \times X)$. If $R, S \dot{\boldsymbol{E}}(X)$ define $R S=\{(x, y):$ there exists $z \in X$ with $(x, z) \in R$ and $(z, y) \in S\}$. This operation on $\mathbf{R}(X)$ is called the lexigraphic join as opposed to the usual functional join.
15. Lemma. $\mathbf{(X)}$ is a monoid under lexigraphic join.
[If $R, S, T \in R(X)$ then $(x, y) \in(R S) T$
if and only if $\exists \mathrm{p} \in \mathrm{X}$ such that $(\mathrm{x}, \mathrm{p}) \in \mathrm{RS}$ and $(p, y) \in T$
if and only if $\exists \mathrm{q} \in \mathrm{X}$ such that $(\mathrm{x}, \mathrm{q}) \in \mathrm{R}$, $(q, p) \in S$ and $(p, y) \in T$
if and only if $(x, q) \in R$ and $(q, y) \in S T$
if and only if $(x, y) \in R(S T)$.

That is lexigraphic join is associative over $\mathbb{P}(X)$. Now let $\Delta_{x}=\{(x, x): x \in X\}$. Clearly $\Delta_{x} \in \mathbb{R}(X)$. $(x, y) \in R \Delta_{x}$ if and only if $\exists z \in X$ such that $(x, z) \in R$ and $(z, y) \in \Delta_{x}$
if and only if $(x, z) \in R$ and $z=y$
if and only if $(x, y) \in R$
if and only if $(x, y) \in R$ and $(x, x) \in \Delta_{x}$
if and only if $(x, y) \in \Delta_{x} R$.
That is Δ_{x} is the identity element of $\mathbb{R}(X)$ under lexigraphic joint.

For $R \in \mathbb{R}(X)$ we shall also use the notations
$x R y$ and $R(x, y)$ for $(x, y) \in R$. Recall $R \in \mathbb{R}(X)$
is symmetric if $R^{-1}=\{(x, y):(y, x) \in R\} \subset R$, reflexive if $\Delta_{x} \subset R$ and transitive if $(x, y) \in R$
and $(y, z) \in R$, imply $(x, z) \in R$. Since $\mathbf{R}(X)$ is a monoid we have $R^{+}=U U_{n>0}\left\{R^{n}\right\}$ and $R^{*}=\bigcup_{n \geq 0}\left\{R^{n}\right\}$. Observe $R^{*}=R^{0} \cup R^{+}=\left\{\Delta_{x}\right\} \cup R^{+}$; that is $R^{0}=\Delta_{x}$. Also $\phi^{+}=\varnothing$ but $\phi^{*}=\left\{\Delta_{x}\right\}$.
16. Definition. R^{+}is called the transitive closure of R and R^{*} is called reflexive transitive closure of R.
17. Lemma. If R is a transitive relation then $R^{2} \subset R$. Inductively $R^{m} \subset R . \quad\left[i(x, z) \in R^{2} \Rightarrow \exists y \in X\right.$ such that $(x, y) \in R$ and $(y, z) \in R$. Since R is transitive $(x, z) \in R$.$] Thus if R$ is transitive we have $R \supset \underset{n>0}{\cup} R^{n}=R^{+}$, therefore, $R^{+}=R$.
18. Lemma. If R is a symmetric relation then $R^{-1}=R$. [Since R is symmetric, it sufficies to show $\left.R \subset R^{-1} . \quad(x, y) \in R \Rightarrow(y, x) \in R^{-1} \Rightarrow(x, y) \in R^{-1}\right]$
19. Lemma. i) $\left(R^{-1}\right)^{-1}=R$
ii) $(R S)^{-1}=S^{-1} R^{-1}$
[ii) $(x, y) \in\left(R^{-1}\right)^{-1}$ if and only if $(y, x) \in R^{-1}$ if and only if $(x, y) \in R$.
ii) $(x ; y) \in(R S)^{-1}$ if and only if $(y, x) \in R S$ if and only if there exists $z \in X$ such that $(y, z) \in R$ and $(z, x) \in S$ if and only if there exists $z \in X$ such that $(z, y) \in R^{-1}$ and $(x, z) \in S^{-1}$ if and only if $\left.(x, y) \in S^{-1} R^{-1}\right]$.
20. Definition. A simering, ($\mathrm{S} ; \mathbf{0},+$) is a system consisting of a set S and two binary operations defined on S such that $(S ;+)$ is a monoid with identity 0 , $(S ; 0)$ is a monoid with identity 1 , and such that for $a, b, c \in S$ we have

$$
\begin{aligned}
& \text { i) } a(b+c)=a b+a c \\
& \text { ii) }(a+b) c=a c+b c \\
& \text { iii) } a \circ 0=0=0 n a \\
& \text { iv) } a+b=b+a
\end{aligned}
$$

21. Example. $\left(Z^{+} ;+, 0\right)$ is a semiring.
22. Example. $(\mathbf{P}(\mathrm{M}) ;+, 0)$ is a semiring where M is a monoid, + is set union, and \quad is the concatenation operation described in Lemma 11. $\{1\}$ is the identity for concatenation and \varnothing is identity for set union.
23. Definition. A partial order on a set X is a relation $\leq \in \mathbf{R}(X)$ which is reflexive, transitive, and antisymmetric; that is $(x, y) \in \leq$ and $(y, x) \in \leq$ imply $\mathrm{x}=\mathrm{y}$.
24. Definition. A post is a pair ($\mathrm{X} ; \leq$) such that X is a set and \leq is a partial order defined on X.
25. Definition. Let X be a poset and $A \subset X$. $X \in X$ is an upper bound for A if $a \leq x$ for all $a \in \mathrm{~A}$.
26. Definition. Let X be a poser and $A \subset X . \quad X \in X$ is the supremum for A if x is an upper bound for A and $x \leq y$ for all upper bounds y of A.
27. Definition. A pose X is a semilattice if for any $x, y \in X \quad \sup \{x, y\}$ exists. Inductively if X is a semilattice and A is a finite subset of X then sup A exists.
28. Lemma. Let X be a post and $A \subset X$, if $a=\sup A$ then a is unique. [filet a_{1} and a_{2} equal sup A. Since a_{1} and a_{2} are upper bounds for $A, a_{1} \leq a_{2}$ and $a_{2} \leq a_{1}$. However \leq is antisymmetric, thus $a_{1}=a_{2}$.
29. Definition. Let X be a set and $f: X \rightarrow Y$. X_{0} is a fixed point of f if $f\left(x_{0}\right)=x_{0}$
30. Definition. Let X and Y be posets. A function $\mathrm{f}: X \rightarrow Y$ is an order morphism if for $u, v \in X$ with $u \leq v$ then $f(u) \leq f(v)$.
31. Definition. Let X be a poses. A floor for X is an element $\perp \in X$ such that $\perp \leq X$ for all $X \in X$. We assume throughout that all the posets which we discuss have a floor.
32. Definition. Let S be a semiring. S is called Boolean if for each $s \in S, s+s=s$.
33. Definition. Let S be a Boolean semiring. For $s_{1}, s_{2} \in S$ define $s_{1} \leq s_{2}$ if $s_{1}+s_{2}=s_{2}$.
34. Lemma. $\leq i s$ a partial order on a Boolean semiring S. [1 i) If $x+x=x$ then $x \leq x$; that is \leq is reflexive over S.
ii) If $x \leq y$ and $y \leq z$ then $x+z=x+(y+z)$ $=(x+y)+z=y+z=z$; that is, \leq is transitive over S.
iii) If $x \leq y$ and $y \leq x$ then $y=x+y=y+x$ $=\mathrm{x}$; that is \leq is antisymmetric over S. 1]
35. Lemma. Let S be a Boolean semiring and $a, b \in S$. If $a \leq b$ then $a c \leq b c$ and $c a \leq c b$ for $a l l a \in S$. [1) i) $b c=(a+b) c=a c+b c$; that is $a c \leq b c$ ii) $c b=c(a+b)=c a+c b ;$ that is $c a \leq c b i]$.
36. Corollary. Let S be a Boolean semiring, AC S and $s \in S$. If $a=\sup A$ then (as) is an upper bound for $A\{s\}=A s$. $[i b \leq a$ for $a l l \quad b \in A$. By Lemma 35 bs $\leq a s$; that is (as) is an upper bound for As. 1$]$
37. Definition. Let A_{1}, \ldots, A_{n} be posts. We define a partial order on $\prod_{i=1}^{n} A_{i}$ by $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \leq$ $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ if and only if $a_{i} \leq b_{i}$ for $1 \leq i \leq n$.
38. Lemma. Let A_{1}, \ldots, A_{n} be posts. If $C_{i} \subset A_{i}$ and $c_{i}=\sup C_{i}(1 \leq i \leq n)$ then $\left(c_{1}, c_{2}, \ldots, c_{n}\right)$
$=\sup \prod_{i=1}^{n} c_{i} . \quad\left[\right.$ Since $\quad c_{i}=\sup C_{i}, c=\left(c_{1}, \ldots, c_{n}\right)$
is an upper bound for $c=\prod_{i=1}^{n} c_{i}$. Let $w=\left(w_{1}, \ldots, w_{n}\right)$
be an upper bound for C. $c_{i} \leq w_{i}$ since $c_{i}=\sup C_{i}$. Hence $c \leq w . l]$
39. Lemma. Let S be a Boolean semiring. If $a, b \in S$ then $a+b=\sup \{a, b\}$. Inductively $\sum_{i=1}^{n} a_{i}=\sup \left\{\left(a_{i}\right)_{i=1}^{n}\right\} \cdot[$ Since $a+(a+b)=a+b$,
$\mathrm{a} \leq \mathrm{a}+\mathrm{b}$. Similarly $\mathrm{b} \leq \mathrm{a}+\mathrm{b}$ since + is commatative over a semiring. Thus $a+b$ is an upper bound of $\{a, b\}$. Let c be an upper bound of $\{a, b\}$. Thus $a+c=c$ and $b+c=c$. Hence $a+b+c=a+c=c$. That is $a+b \leq c$; therefore, $a+b=\sup \{a, b\}]$.
40. Lemma. Let A be a posit and ($A_{\alpha}: \alpha \in \Gamma$) be an indexed family of subsets $A_{\alpha} \subset A$. Let $a_{\alpha}=\sup A_{\alpha}$ and $a=\sup B$ where $B=U\left\{A_{\alpha}: \alpha \in \Gamma\right\}$. Then $a=$ $\sup \left\{a_{\alpha}: \alpha \in \Gamma\right\}$. $[b \leq a$ for each $b \in B$. Thus $a_{\alpha} \leq a$ for each $\alpha \in \Gamma$. Suppose y is an upper bound for $\left\{a_{\alpha}: \alpha \in \Gamma\right\}$ then y is an upper bound for B. Thus $a=\sup B \leq y$. Therefore $\left.a=\sup \left\{a_{\alpha}: \alpha \in \Gamma\right\}\right]$.
41. Lemma. Let S be a Boolean semiring with $x \leq y$ and $\mathrm{u} \leq \mathrm{v}$ then $\mathrm{x}+\mathrm{b} \leq \mathrm{y}+\mathrm{b}, \mathrm{x}+\mathrm{u} \leq \mathrm{y}+\mathrm{v}$ and $a x \leq a y$.
(I) i$) \mathrm{x}+\mathrm{y}=\mathrm{y} \Rightarrow \mathrm{x}+\mathrm{y}+\mathrm{b}+\mathrm{b}=\mathrm{y}+\mathrm{b}$. Since + is commutative over a semiring $x+b+y+b=y+b ;$ that is $\mathrm{x}+\mathrm{b} \leq \mathrm{y}+\mathrm{b}$.
ii) Sine $x+y=y$ and $u+v=v, x+y+u+v$ $=\mathrm{y}+\mathrm{v}$. By commutativity $\mathrm{x}+\mathrm{u}+\mathrm{y}+\mathrm{v}=\mathrm{y}+\mathrm{v}$; that is, $x+u \leq y+v$.

$$
\text { iii) Since } x+y=y, a(x+y)=a y=a x+a y \text {; }
$$

that is $a x \leq a y$.
42. Corollary. Let S be a Boolean semiring and $A C S$. If $y \in S$ and $a=\sup A$ then $\sup [A+y]=a+y$ where $A+\dot{y}=\{x+y: x \in A\}$. [For all $x \in A, x \leq a$; therefore $x+y \leq a+y$, that is, $a+y$ is an upper bound for $A+y$. Let w be an upper bound of $A+y$. If $u \in A$ then $u \leq u+y \leq w$. Hence $a \leq w . ~ S i m i l a r l y ~ y \leq w$. Hence $a+y \leq w+w=w ;$ that is, $a+y=\sup [A+y] \cdot 1]$
43. Lemma. Let S be a Boolean semiring and $A, B \subset S$. If $a=\sup A, b=\sup B$ then $a+b=\sup [A+B]$. [IFor $x \in A$ and $y \in B, x \leq a$, and $y \leq b$. Hence $x+y \leq a+b$ for $(x, y) \in A \times B$. Let w be an upper bound of $A+B$. For $u \in A$ and $v \in B, u \leq u+y \leq w$ and $v \leq v+x \leq w$. Hence $a \leq w$ and $b \leq w$. Therefore $a+b \leq w+w=w$; that is $a+b=\sup [A+B] \cdot 1]$
44. Lemma. Let $S_{1}, S_{2}, \ldots, S_{k}$ be Boolean semiring and $S=\prod_{i=1}^{k} S_{i}$. If S carries the inherited coordinatewise addition and multiplication operations then, S is a Boolean semiring.

The validity of Lemma 44 is a consequence of associativity and the existence of additive and multiplicative identities over S_{i}. Similarly the distributive laws remain valid and all elements of S are idempotent with respect to addition. $0=\{0,0, \ldots, 0\}$
is the zero element of S and $I=\{1,1, \ldots, 1\}$ is the identity for multiplication. The partial order on S is the standard product partial order.
45. Let U be a countable subset of $S=\prod_{i=1}^{k} S_{i}$ where S_{i} is a Boolean semiring. Let U_{i} be the fth projection of U. If $u_{i}=\sup U_{i}$ then $u=\left(u_{1}, \ldots, u_{k}\right)$ - sup U. [lIThe product partial order assures that u is an upper bound for U. If $w=\left(w_{1}, \ldots, w_{n}\right)$ is an upper bound for U then $w_{i} \geq \sup U_{i},(1 \leq i \leq k)$. Therefore $w_{i} \geq u_{i}$ and hence $u \leq w$; that is $u=\sup U . \mathbb{U}$
46. Definition. Let X be a post. $A \subset X$ is directed if for each pair $x, y \in A$ there exists $z \in A$ such that $x \leq z$ and $y \leq z$.

II. σ_{i}-COMPLETENESS AND σ-CONTINUITY

1. Definition. Let X be a post and $A \in X$.
i) If sup A exists whenever A is countable then X is σ_{0}-complete.
ii) If sup A exists whenever A is countable and directed then X is σ_{1}-complete.
iii) If $\sup \left[\left\{a_{n}\right\}_{n=1}^{\infty}\right]$ exists for every montane increasing sequence then X is σ_{2}-complete.
iv) If sup A exists whenever A is directed then x is σ_{3}-complete.

Clearly, σ_{0} implies σ_{1}-complete, σ_{1} implies σ_{2}-complete, and σ_{3} implies σ_{1}-complete.
2. Lemma. σ_{2}-complete implies σ_{1}-complete. [fiLet X be a σ_{2}-complete post and $S \subset X$ be countable and directed, $s=\left\{b_{n}: n \in Z^{+}\right\}$. Let $c_{1}=b_{1}$. There exists $c_{2} \in S$ such that $c_{1} \leq c_{2}$ and $b_{2} \leq c_{2}$, since S is directed. Iteratively choose $c_{k+1} \in S$ such that $b_{k+1} \leq c_{k+1}$ and $c_{k} \leq c_{k+1} \quad c=\left\{c_{n}: n \in Z^{+}\right\}$ is a monotone increasing sequence with $b_{k}=c_{k}$ for all k. Since X is σ_{2}-complete, there exists $C \in X$ such that $c=s u p C$ Clearly c is an upper bound of S. Let y be an upper bound for $s . \quad y \geq c_{k}$ for all k since $C \subset S$. Thus $c \leq y$; that is, $c=\sup S i]$
3. Lemma. If X is a σ_{0}-complete post then, X is a semilattice. [inlet A be a two element subset of X. Since X is σ_{0}-complete, sup [A] exists.1]
4. Lemma. Every Boolean semiring S is a semilattice. $[$ Let $A=\{x, y\}$ CS. $x+y=x+x+y$ and $y+x=$ $y+y+x$. Therefore $x \leq x+y$ and $y \leq y+x=x+y ;$ that is $x+y$ is an upper bound of A. Let z be an upper bound for A. Now $x \leq z$ and $y \leq z$ imply $x+y \leq z+z=z$. [Lemma 1.41]. That is $x+y=$ $\sup \{x, y\}$. $]$
5. Lemma. If X is a semilattice then σ_{0}, σ_{1} and σ_{2}-completeness are equivalent. [It suffices to show σ_{1}-complete implies σ_{0}-complete. Let $A=\left\{a_{n}: n \geq 0\right\}$. For $m \geq 0$ let $b_{m}=\sup \left\{a_{n}: 0 \leq n \leq m\right\}$. Notice b_{m} exists since X is a semilattice. Moreover $B=\left\{b_{0}, b_{1}, \ldots, b_{j} \ldots\right\}$ is countable and directed for $\mathrm{b}_{\mathrm{o}} \leq \mathrm{b}_{1} \leq \ldots \mathrm{b}_{\mathrm{j}} \ldots$. Let $\mathrm{b}=\sup$ B. Clearly $\mathrm{b} \geq \mathrm{a}_{\mathrm{j}}$ for $a 11 \mathrm{j}$; that is, b is an upper bound for A. Let z be an upper bound for $A, b_{j} \leq z$ for $j \geq 0$. Hence $b \leq z$; that is $b=\sup A .1]$
6. Definition. Let S be a Boolean semiring. S is σ_{i}-complete $(0 \leq i \leq 3)$ if
i) as a poset $(S ; \leq)$ is σ_{i}-complete
ii) $f: S X S \rightarrow S$ defined by $f(x, y)=x y$ satisfies $f[\sup [A \times B]]=\sup [f[A \times B]]$ for all countable $A, B C S$.
7. Corollary: If S is a Boolean semiring then σ_{0}, σ_{1} and σ_{2}-completeness are equivalent.
8. Definition. Let S be a Boolean semiring. If $a \in S$ and $\sup _{n}\left\{a^{n}: n \geq 0\right\}$ exists then $a *=$ $\sup _{n}\left\{a^{n}: n \geq 0\right\}$.
9. Corollary. If S is a σ_{i}-complete Boolean semiring then $a *$ exists for all $a \in S$, ($i=0, \ldots, 2$). $\left[1 \sigma_{i}\right.$-complete are equivalent in a Boolean semiringl].
10. Corollary. If S is a σ_{i}-complete Boolean semiring and $a \in S$ then
i) $0^{*}=1$
ii) if $a \geq 1$ then $a * \geq 1$
iii) if $a \leq 1$ then $a *=1$
iv) $1 \leq a *$
$\left[1\right.$ i) $0 *=\sup _{n}\left\{0^{n}: n \geq 0\right\}=\sup \left[1, \sup _{n}\left\{0^{n}: n \geq 1\right\}\right]$ $\sup \{0,1\}=1$
ii) $1 \leq a \Rightarrow 1 \leq a \leq a^{2} \Rightarrow 1 \leq a \leq a^{2} \leq \ldots<a^{n}$ hence $a^{\star} \geq 1=a^{0}$
iii) $a \leq 1 \Rightarrow a^{2} \leq a \leq 1 \Rightarrow a^{n} \leq a^{n-1} \leq \ldots \leq a \leq 1$ hence $a *=1=a^{0}$.
iv) follows from ii and iii.]
11. Definition. A Boolean semiring is regular if a* exists for all $a \in S$.
12. Corollary. A σ_{i}-complete Boolean semiring is regular, $(i=0, \ldots, 2)$ Corollary 9 i].
13. Definition. Let X, Y be σ_{0}-complete posts and $\mathrm{f}: X \rightarrow Y$ be an order morphisin. f is σ-preserving if given a countable subset, $A \subset X$ with $a=\sup A$ then $f(a)=\sup [f(A)]$.
14. Theorem. (Tarsky). If X is a floored σ_{0}-complete post and $f: X \rightarrow X$ is σ-preserving then f has a least fixed point x_{0}; that is, $x_{0}=f\left(x_{0}\right)$ and if $y=f(y)$ then $x_{0} \leq y$.

Proof. Let \perp be the floor of x. Let $x_{0}=$ $\sup \left[\left\{\frac{1}{-}\right\} \cup\left\{f^{n}(1): n>0\right\}\right]$. Since f is σ-preserving,

$$
\begin{aligned}
f\left(x_{0}\right) & =\sup \left[\{f(\perp)\} \cup\left\{f^{n}(\perp): n>1\right\}\right] \\
& =\sup \left[\left\{f^{n}(1): n>0\right\}\right.
\end{aligned}
$$

$=x_{0}\left[11\right.$ is the floor of $\left.X_{1}\right]$.

Thus x_{0} is a fixed point of f. If y is a fixed point of f then, $f(\perp) \leq f(y)=y$ since f is an order morphism. Inductively $f^{n}(1) \leq y$. Therefore $\mathbf{x}_{0} \leq \mathrm{y} . \quad / /$
15. Lemma. Let S be a σ_{i}-complete Boolean semiring. Define $\ell_{X}: S \rightarrow S$ and $r_{x}: S \rightarrow S$ by $\ell_{X}(y)=x y$ and $r_{x}(y)=y x$. Let $V_{1}, V_{2} C S$ be countable with $u_{1}=$ $\sup V_{1}$ and $u_{2}=\sup V_{2}$. If ℓ_{x} and r_{x} are σ-preserving then $\sup \left\{\ell_{x}(y): y \in V_{2}\right\}=r_{u_{2}}(x)$ and $\sup \left\{r_{x}(y): y \in V_{2}\right\}=\ell_{u_{2}}(x)$ for $x \in S$.
$\left[!\sup \left\{\ell_{x}(y): y \in V_{2}\right\}=\ell_{x}\left(u_{2}\right)=x u_{2}=r_{u_{2}} x\right.$ and
$\left.\sup \left\{r_{x}(y): y \in V_{2}\right\}=r_{x}\left(u_{2}\right)=u_{2} x=\ell_{u_{2}}(x) 1\right]$
16. Lemma. Let S be a σ_{i}-complete Boolean semiring. The following statements are equivalent.
i) $f: S X S \rightarrow S$ defined by $f(x, y)=x y$ is o-preserving where $S \times S$ carries the standard product structure.
ii) For each $x \in S$ the functions ℓ_{x} and r_{x} are σ-preserving.
$[1 \Rightarrow i i$ Let $B C S$ be countable with $b=\sup B$ $\ell_{X}(\sup B)=\ell_{X}(b)=x b=f[\sup (x \times B)] \quad \sup [f(x \times B)]=$ $\sup [x B]=\sup \left[\ell_{x}(B)\right]$.
ii \Rightarrow i Let $V\left(S \times S\right.$ be countable with $u=\left(u_{1}, u_{2}\right)$
$=\sup V$. If V_{1} and V_{2} are the coordinate projections of V then $u_{1}=\sup V_{1}$ and $u_{2}=\sup V_{2}$. For
$a \in V_{1}$ define $B_{a}=\left\{b \in V_{2}:(a, b) \in V\right\}$. $\sup \{f(V)\}$
$=\sup \left\{\sup f\left(a, B_{a}\right)\right\}=\sup \left\{\sup \ell_{a}\left(B_{a}\right)\right\}=\sup \ell_{a}\left(u_{2}\right)$
$\left.=\sup \left[a u_{2}\right]=\sup \left[r_{u_{2}}(a)\right]=r_{u_{2}}\left(u_{1}\right)=u_{1} u_{2}=f\left(u_{1}, u_{2}\right)\right]$
$=f[\sup V]$. $]$
17. Definition. Let S be a σ_{1}-complete Boolean semiring. For $a \in S$ let $a *=\sup \left\{a^{n}: n \geq 0\right\}$.
18. Lemma. Let S be a σ_{i}-complete Boolean semiring. Define $f: S \rightarrow S$ by $f(x)=x a+b$ where $a, b \in S$. f is σ-preserving and the least fixed point of f is $\mathrm{ba*}$.

Proof: f is an order morphism [Lemma 1.35, 41]. Let Y be a countable subset of S and $y=\sup Y$. For $x \in Y, X \leq y$ implies $f(x) \leq f(y)$; that is, $f(y)$ is an upper bound of $\mathrm{f}[\mathrm{Y}]$. If w is an upper bound of $f[Y]$ then $x a \leq x a+b \leq w$. Now $y a=\sup [Y a]$ since $g(x, y)=x y$ is σ-preserving because S is σ_{i}-complete semiring. Thus ya $\leq w$. Moreover $\mathrm{b} \leq \mathrm{ya}+\mathrm{b} \leq \mathrm{w}$. Hence $y a+b \leq w+w=w$. That is, $f(y)=y a+b$ $=\sup [f(y)]$. Therefore f. is σ-preserving. Recall
\perp is the zero element of the semiring. $f(\perp)=$ $=x \perp+b=b$. Iteratively $f^{2}(\perp)=f(b)=b a+b$, $f^{3}(1)=b a^{2}+b a+b, \ldots, f^{n}(1)=b a^{n-1}+b a^{n-2}+\ldots+b a$ $+b$. That is $f^{n}(\perp)=\sup \left\{b a^{k}: 0 \leq k \leq n-1\right\}=b$ $\sup \left\{a^{k}: 0 \leq k \leq n-1\right\}$. If x_{0} is the least fixed point of f then $x_{0}=\sup \left\{f^{n}(1): n \geq 0\right\} \quad[$ Theorem 14]. Therefore $x_{0}=\sup \left\{b a^{k}: k \geq 0\right\}$. Since multiplication is σ-preserving $x_{0}=b \sup \left\{a^{k}: k \geq 0\right\}=b a *$. //

A similar argument yields the least fixed point of $g(x)=a x+b$ is $a * b$.
19. Lemma. Let $\left\{S_{i}\right\}_{i=1}^{n}$ be a sequence of σ_{i}-complete Boolean semirings. If $S=\prod_{i=1}^{n} S_{i}$ then S is a $\sigma_{i}-$ complete Boolean semiring. $\llbracket S$ is a Boolean semiring [uLema 1.44]. To demonstrate that S is σ_{i}-complete, let $\left\{\boldsymbol{j}^{\mathfrak{j}}\right\}_{j=1}^{\infty}$ be a countable family in S. Let $P_{n}\left(\delta^{\dot{j}}\right)=\delta_{n}^{j}$. Since $\left\{\sigma_{n}^{j}\right\}$ is countable subset of S_{n} $\sup _{j}\left\{\delta_{n}^{j}\right\}$ exists. Let $\sup _{j}\left\{\delta_{n}^{j}\right\}=\delta_{n}$ and $\delta=\left\{\delta_{n}\right\}$. δ is an upper bound of S by construction. Let w be any upper bound of S. Then w_{n} is a n upper bound of $\left\{\delta_{m}^{j}\right\}$, hence $\delta_{n} \leq w_{n}$ and $\delta \leq w$. J.
20. Definition. Let S be a σ_{i}-complete Boolean semiring and $F: S^{(k+n)} \rightarrow S^{k}$ be σ-preserving $n \geq 1$.
For each $a \in S^{(n)}, \frac{\delta F(x, a)}{\delta x}$ is the least fixed of $g_{a}: S^{k} \rightarrow S^{k}$ such that $g_{a}(x)=F(x, a)\left(x \in S^{k}\right.$, $i=0, \ldots, 2)$.
21. Example. Let $F(x, y)=x y+b$. $\frac{\delta F(x, y)}{\delta x}=\|g\|^{\|}$
$=$ by* where $g_{y}(x)=x y+b$ [Theorem 141].
22. Definition. Let X and Y be σ_{i}-complete posts ($i=0, \ldots, 3$) and $S C X$ be countable and directed. If $\sup [f(S)]$ exists and $\sup [f(S)]=f[\sup (S)]$ then f is σ_{i}-continuous.

As with σ_{i}-completeness we have σ_{0}-continuous
implies σ_{1}-continuous, σ_{1}-continuous is equivalent to σ_{2}-continuous, and σ_{3}-continuous implies $\sigma_{1}{ }^{-}$ continuous.
23. Lemma. Let $f: X \rightarrow Y$ be σ_{i}-continuous. If $x \leq y$ then $f(x) \leq f(y)$.
$[\{x, y\}$ is countable and directed. Since f is σ_{i}-continuous, $f(x) \leq \sup \{f(x), f(y)\}=f[\sup \{x, y\}]$ $=f(y)$. Thus f being σ_{i}-continuous implies f is an order morphism.l]
24. Corollary. If $f: X \rightarrow X$ is σ_{2}-continuous then f has a least fixed point.

$$
\left[\square\left\{\perp, f(1), f^{2}(\perp) \ldots f^{n}(\perp) \ldots\right\}\right. \text { is a monotone increasing }
$$ sequence in x. Let $\left.x_{0}=\sup \left[\{\perp\} \cup\left\{f^{n}(1)\right\}: n>0\right\}\right]$. As in Tarsky's Theorem x_{0} is a fixed point of f. If y is a fixed point of $f, f^{n}(1) \leq y$ for all n. Therefore $\left.x_{0} \leq y\right]$.

25. Lemma. The σ_{i}-continuous image of a directed set is directed.
[fiLet $f: X \rightarrow Y$ be σ_{i}-continuous where X and Y are σ_{i}-complete. Let $S \subset X$ be directed. If $\left\{y_{1}, y_{2}\right\} \subset f(S)$ there exists $\left\{x_{1}, x_{2}\right\} \subset S$ such that $f\left(x_{1}\right)=y_{1}, f\left(x_{2}\right)=y_{2}$. Since S is directed there exists $x_{3} \in S$ with $x_{1} \leq x_{3}$ and $x_{2} \leq x_{3}$. Therefore $y_{1}=f\left(x_{1}\right) \leq f\left(x_{3}\right)$ and $y_{2}=f\left(x_{2}\right) \leq f\left(x_{3}\right) \quad$ [Lemma 23]; that is $f[S]$ is directed.
26. Lemma. Let X, Y_{1}, \ldots, Y_{k} by σ_{i}-complete poses $(i=0, \ldots, 3)$ Define $f: X \rightarrow Y_{1} \times \ldots \times Y_{k}$ by $f(x)$ $=\left(f_{1}(x), \ldots, f_{k}(x)\right)$. $P_{\text {is }} \sigma_{i}$-continuous if and only if each f_{j} is σ_{i}-continuous $(j=1, \ldots, k) .[i \Rightarrow$ Let f be σ_{i}-continuous and $S \subset X$ be countable and directed with $s=\sup S$. By definition of $\sigma_{i}{ }^{-}$ continuity we also have $y=\left(y_{1}, \ldots, y_{k}\right)=\sup [f(S)]$ exists. Therefore $y=\sup [f(S)]=f[\sup (S)]=f(s)$. Moreover $f_{j}(S)$ is countable and directed since the projection mappings are σ_{i}-continuous. Thus $\mathbf{z}_{\mathbf{j}}$ $=\sup f_{j}[S]$ exists. Therefore $f_{j}(x) \leq z_{j}$ for all $x \in S$. That is $f(x)=\left(f_{1}(x), \ldots, f_{k}(x)\right) \leq\left(z_{1}, \ldots, z_{k}\right)$ for all $x \in S$. Since $y=\sup [f(S)], y_{j} \leq z_{j}$ $(j=1, \ldots, k) . \quad$ Clearly $y_{j} \geq f_{j}(x)$ for all $x \in S$.

Therefore $y_{j} \geq z_{j}(j=1, \ldots, k)$; that is $y_{j}=z_{j}$. Thus $\sup \left[f_{j}(S)\right]=z_{j}=y_{j}=f_{j}(s)=f_{j}[$ sup $S]$; that is $\mathbf{f}_{\mathbf{j}}$ is $\sigma_{\mathbf{i}}$-continuous.
<= Conversely suppose f_{j} is σ_{i}-continuous ($\mathbf{j}=1, \ldots, k$). Let $S \subset X$ be countable and directed with $s=\sup S$ and $y_{j}=f_{j}(s)$. Since f_{j} is $\sigma_{i^{-}}$ continuous, $y_{j}=f_{j}(s)=\sup \left[f_{j}(S)\right]$; that is $y=$ $\left(y_{1}, \ldots, y_{k}\right)$ is an upper bound for $f[S]$. Now f is order preserving since each $\mathbf{f}_{\mathbf{j}}$ is order preserving. Hence $f[S]$ is directed. Let $u=\left(u_{1}, \ldots, u_{k}\right)$ $=\sup [f(S)]$. Thus u_{j} is an upper bound for $f_{j}(S)$. Therefore $y_{j} \leq u_{j}(j=1, \ldots, k)$. Thus $y=u$. That is $f[\sup (S)]=f(s)=y=u=\sup [f[S]] i]$
27. Lemma. Let X, Y, Z be σ_{i}-complete posits $(i=0, \ldots, 3)$. If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are σ_{i}-continuous then $f \circ g: X \rightarrow Z$ is σ_{i}-continuous, [Let S C X be countable and directed. $f[S]$ and $g[f[S]]$ are countable and directed [Lemma 251]. Since f and g are σ_{i}-continuous $\sup [f g(S)]=\sup [g(f S)]$ $=g[\sup f(S)]=g[f(\sup S)]=f g(\sup S) i]$.
28. Definition. A post X is complete if each subset of X has a sup.
29. Lemma. Let X be a complete posit. If $A \subset X$ then $\inf [A]$ exists.
[Observe $z=\inf A$ if $z \leq a$ for all $a \in A$ and if y is a lower bound for A then $z \geq y_{1}$. Let $B=\{x: x$ is a lower bound for $A\}$. B is not empty since all posts are assumed to have a floor. Let $b=\sup B . \quad x \leq a \quad$ for $a l l a \in A, x \in B$, therefore $b \leq a$ for all $a \in A$. That is b is a lower bound for A. By definition $x \leq b$ for all $x \in B$, hence $b=\inf A l$.
30. Lemma. Let X be a complete post and $f: X \rightarrow X$ be an order morphism. If $Q=\{x: f(x) \leq x\}$ and $y=\inf Q$ then $f(y)=y$ and y is the least fixed point of f.
$[y \leq x$ for each $x \in Q$. Hence $f(y) \leq f(x) \leq x$. Thus $f(y)$ is a lower bound for Q, hence $f(y) \leq y$, and $y \in Q$. For $x \in Q, f(x) \leq x$. Since f is an order morphism $f[f(x)] \leq f(x)$; therefore $f(x) \in Q$ whenever $x \in Q$. In particular $f(y) \in Q$. Since $y=\inf Q$ $y \leq f(y)$; therefore $y=f(y)$ and y is a fixed point of f. Since all fixed points of f are in Q, y is the least fixed point of fol]
31. Corollary. Let X be a complete post and $f: X \rightarrow X$ be an order morphism. If $R=\{x: x \leq f(x)$ and $z=\sup R$ then $f(z)=z$ and z is the greatest fixed point of f.
32. Lemma. Let X be a complete post, and $x, y \in X$ with $x \leq y$. If $[x, y]=\{z \in X: x \leq z \leq y\}$ then [$\mathrm{x}, \mathrm{y}]$ is a complete post.
[let $A \subset[x, y]$. Let $a=\sup _{X}[A]$. a $\in[x y]$ since y is an upper bound of A. Thus $\left.a=\sup _{A}[x, y]\right]$ 33. Lemma. Let X be a complete post and $f: X \rightarrow X$ be an order morphism. If P is the set of fixed points of f then P is a complete posit.

Proof: Let $x_{*}=\inf _{X} P, x_{*}$ exists by Tarsky Theorem. Let $x^{*}=\sup _{X} P, x^{*}$ exists for X is a complete poser. Let $\perp=\inf X$ and $T=\sup X$. Choose AC P such that $A \neq \varnothing$. Let $a=\sup _{X} A . \quad[a, T]$ is a complete post. If $x \in A$ then $x \leq a$. Hence $x=f(x) \leq f(a)$. Since $a=\sup _{X}[A], a \leq f(a)$. Thus $a \leq f(a) \leq T$. Let $g=f_{1[a, T]}$. In particular $g:[a, T] \rightarrow[a, T]$ and g is an order orphism since f is. Since [as] is a complete post g has a least fixed point $w \in[a, T]$ [Lemma 30]. Therefore $w \in P$. Let v be
an upper bound of A and $v \in P$. Therefore $a \leq v$, and $v \in[a, T]$. Thus $g(v)=v$. Since w is least fixed point of $g, w \leq v$. Hence $w=\sup _{P}[A]$ and therefore P is complete.
34. Corollary. If X is a complete post and $\mathrm{f}: X \rightarrow X$ is an order morphism then P, the set of fixed points of f, is a lattice.
35. Lemma. Let X be a σ_{i}-complete post and $\left\{x_{n}: n \geq 0\right\}$ be a sequence of elements in x such that. $x_{j} \leq x_{j+1}$ for all j. Let $\left\{i_{n}: n \geq 1\right\}$ be a sequence of integers such that $0<i_{k}<i_{k+1}$ for all k. If $u=\sup \left\{x_{n}\right\}$ then $u=\sup \left\{x_{i_{k}}: k \geq 1\right\}$.

Proof: Since $i_{k}<i_{k+1}$ we have $\mathbf{x}_{i_{k}} \leq x_{i_{k+1}}$. Let $\mathrm{v}=\sup \left\{\mathrm{x}_{\mathrm{i}_{k}}: \mathrm{k} \geq 1\right\}$. Observe $\mathrm{i}_{\ell} \geq \ell$ for all ℓ. Hence $\mathrm{x}_{\ell} \leq \mathrm{x}_{\mathrm{i}_{\ell}} \leq \mathrm{v}$ and $\mathrm{u} \leq \mathrm{v}$. However $\mathrm{u}=\sup \left\{\mathrm{x}_{\mathrm{n}}\right\}$ implies $v \leq u$. Therefore $u=v$.

Observe if S is a σ_{i}-complete Boolean semiring
($i=0, \ldots, 3$) and $f: S \times S \rightarrow S$ is defined by $f(x, y)$
$=x y$ then f is σ_{i}-continuous by Definition 1.6.
Also we have shown $g: S x S \rightarrow S$ defined by $g(x, y)$
$=x+y$ is σ_{i}-continuous in Lemma 1.43.
36. Lemma. Let S be a σ_{i}-complete Boolean semiring and $A=\left\{a_{j}: j \geq 0\right\}$ then $\sup (b A)=b \sup A$. [multiplication is σ_{i}-continuous].
37. Lemma. Let S be a σ_{i}-complete Beeolean semiring. $(a *)^{n}=a *$ for $n \geq 1$.
$\left[1(a *)^{n+1}=a *\left(a^{*}\right)^{n}\right.$. Hence it is sufficient to establish $\left(a^{*}\right)^{n}=a *$ for $n=2$ and apply mathermetical induction. Since $a^{0}=1,1 \leq a^{*}$ hence $a * \leq a * a *=(a *)^{2}$. Moreover $a a^{*}=a \sup \left\{a^{j}: j \geq 0\right\}$ $=\sup \left\{a a^{j}: j \geq 0\right\}$, hence $a a^{*}=\sup \left\{a^{j}: j \geq 1\right\} \leq$ $\sup \left\{a^{j}: j \geq 0\right\}=a *$. That is $a a^{*} \leq a *$. Therefore $a^{2} a *=a\left(a a^{*}\right) \leq a a^{*} \leq a *$. Inductively, $a^{n} a^{*} \leq a *$ for $n \geq 0$. Thus $a * a *=\sup \left\{a^{j}: j \geq 0\right\} a *=\sup \left\{a^{j} a *: j \geq 0\right\}$ $\leq a^{*}$. Therefore $\left(a^{*}\right)^{2}=a^{*}$ and inductively $\left(a^{*}\right)^{n}=a^{*}$ for $n \geq 1$.
38. Corollary. Let S be a σ_{i}-complete Boolean semiring and $a \in S$. $(a *) *=a *$

$$
\left[(a *) *=\sup _{n}\left\{(a *)^{n}: n \geq 0\right\}=\sup \{1, a *\}=a * .1\right]
$$

39. Corollary. Let S be a σ_{i}-complete Boolean semiring and $a \in S, b \in S$. $(a+b) *=a * b *$

$$
\begin{aligned}
& {\left[(a+b) *=\sup _{n}\left\{(a+b)^{n}\right\}=\sup _{n} \sum_{j=0}^{n} a^{j_{b} n-j}=\sum_{\substack{p=0 \\
q=0}}^{\infty} a^{p} b^{q}\right.} \\
= & \left.\left(\sum_{p=0}^{\infty} a^{p}\right)\left(\sum_{q=0}^{\infty} b^{q}\right)=\left(\sup _{p}\left\{a^{p}\right\}\right)\left(\sup _{q}\left\{b^{q}\right\}\right)=a * b *\right]
\end{aligned}
$$

40. Corollary. Let S be a σ_{i}-complete Boolean semiring and $a \in S$. ($a+1$)* $=a *$.

$$
[1(a+1) *=a * 1 *=a * 1=a * i]
$$

41. Corollary. Let S be a σ_{i}-complete Boolean semiring and $a \in S$. $a^{*}=\left(1+a{ }^{*}\right)$.

$$
\left[!a^{*}=\sum_{n=0}^{\infty} a^{n}=1+\sum_{n=1}^{\infty} a^{n}=1+a \sum_{n=0}^{\infty} a^{n}=1+a a *_{]}\right.
$$

III. FIXED POINT THEORY

1. Definition. Let X and Y be σ_{i}-complete posts $(i=0, \ldots, 3) . \quad F_{i}(X, Y)$ is the set of $\sigma_{i}-$ continuous functions $f: X \rightarrow Y$.
2. Definition. Let $f, g \in F_{i}(X, Y) . f \leq g$ if $f(x) \leq g(x)$ for all $x \in X$.

Under this definition $F_{i}(X, Y)$ is a post whose floor is the constant function L_{Y}.
3. Definition. Let $X=Y$ and define $\left\|\|: F_{i}(X, X) \rightarrow X\right.$ by $\|f\|=\sup \left\{f^{n}(\perp): n \geq 0\right\}$.

Recall f being σ_{i}-continuous implies f is monotonic [Lemma 2.23]. Therefore $\perp \leq f(1) \leq \ldots \leq f^{n}(1)$ and $\|f\|$ is the least fixed point of f [Theorem 2.24]
4. Lemma. Let X and Y be σ_{i}-complete posts ($i=0, \ldots, 3$). If $F: X \times Y \rightarrow X$ is σ_{i}-continuous then $F_{y}: X \rightarrow X$ is σ_{i}-continuous where $F_{y}(x)$ $=F(x, y)$. [let S be a countable directed subset of X. $\quad F_{y}(S)=F[S x\{y\}]$. Since F is. σ_{i}-continuous $\left.\sup [F(S x\{y\})]=\sup \left[F_{y}(S)\right]=F[\sup (S x\{y\})]=F_{y}[\sup (S)] i\right]$ As the σ_{i}-continuous image of directed set is directed, of a countable set is countable, of a
monotone sequence is a monotone sequence, we shall limit our proofs to a single case. Other cases may be derived in a similar fashion.
5. Lemma. Let X and Y be σ_{2}-complete posts and let $\left\{f_{n}: n \geq 1\right\}$ be a monotonic increasing sequence of functions in $F_{2}(X, Y)$. If $g(x)=\sup \left\{f_{n}(x): n \geq 1\right\}$ then g is σ_{2}-continuous.

Proof: Let $\left\{x_{n}: n \geq 1\right\}$ be a monotonic increasing sequence in X with $x^{*}=\sup \left\{x_{n}\right\}$. Consider the following relationships:

$$
\begin{aligned}
& f_{1}\left(x_{1}\right) \leq f_{2}\left(x_{1}\right) \leq \cdots \leq f_{n}\left(x_{1}\right) \leq \cdots \leq g\left(x_{1}\right) \\
& f_{1}\left(x_{2}\right) \leq f_{2}\left(x_{2}\right) \leq \cdots \leq f_{n}\left(x_{2}\right) \leq \cdots \leq g\left(x_{2}\right) \\
& \vdots \\
& f_{1}\left(x^{*}\right) \leq f_{2}(x *) \leq \cdots \leq f_{n}\left(x^{*}\right) \leq \cdots \leq g\left(x^{*}\right),
\end{aligned}
$$

g is monotonic. [Let $x \leq y$. For each $n f_{n}(y)$ $\leq g(y)$. Since $\left\{f_{n}\right\}$. is monotonic $f_{n}(x) \leq f_{n}(y)$ $\leq g(y)$. However $g(x)=\sup \left\{f_{n}(x): n \geq 1\right\}$; therefore, $g(x) \leq g(y)]$. Since g is monotonic increasing $g\left(x^{*}\right)=\sup \left\{g\left(x_{n}\right): n \geq 1\right\}$; that is, g is σ_{2}-continuous.//
6. Definition. $\frac{\delta F(x, y)}{\sigma x}=\left\|F_{y}\right\|$ is the least fixed point of $\mathrm{F}_{\mathrm{y}}: \mathrm{X} \rightarrow \mathrm{X}$ such that $\mathrm{F}_{\mathrm{y}}(\mathrm{x})=\mathrm{F}(\mathrm{x}, \mathrm{y})$.
7. Example. Let $F: X \rightarrow X$ be defined by $F(x)=x$ $\frac{\delta F(x)}{\delta x}=\perp$.
8. Example. Let $F: X \rightarrow X$ where $F(x)=a$. As a is the unique fixed point of $F, \frac{\delta F(x)}{\delta x}=a$.
9. Example. Let $F: X \rightarrow X$ where $F(x)=x^{2}+a$. Let
y be any fixed point of F. Since $\perp \leq y$ and F is σ_{i}-continuous $F^{k}(\perp) \leq F^{k}(y)$ for all k. Now $F(\perp)=a$,
$\mathrm{F}^{2}(\mathbb{1})=\mathrm{a}^{2}+\mathrm{a}, \mathrm{F}^{3}(\perp)=\mathrm{a}^{4}+\mathrm{a}^{3}+\mathrm{a}^{2}+\mathrm{a}, \ldots, \mathrm{F}^{\mathrm{n}}(\perp)$
$=\sum_{j=1}^{2^{n}} a^{j}$. Thus $\left.a^{+}=\sup _{n}\left\{a^{n}: n>0\right\}=\frac{\delta F(x)}{\delta x}\right]$.
We shall primarily be interested in the case where S_{1} and S_{2} are σ_{i}-complete Boolean semirings ${ }^{\text { }}$ of the form $S_{1}=S^{n}$ and $S_{2}=S^{m}$ and $F: S_{1} \times S_{2} \rightarrow S_{1}$ is σ_{i}-continuous. Notice if $u=\left\|F_{y}\right\|$ then u $=F_{y}(u)$; that is, u is a solution of $x=F(x, y)$.
10. Theorem. Let X and Y be σ_{i}-complete posts ($i=0, \ldots, 3$) and $F: X \times Y \rightarrow X$ be σ_{i}-continuous. If $g: Y \rightarrow X$ is defined by $g(y)=\frac{\delta F(x, y)}{\delta x}$ then g is σ_{i}-continuous.

Proof: $\quad g(y)=\frac{\sigma F(x, y)}{\delta x}=\left\|F_{y}\right\|=\sup \left\{F_{y}^{n}(1): n \geq 0\right\}$ [Theorem 2.14]. As usual we need only consider the case $i=2$. Notice $F_{y}^{2}(1)=F_{y}\left[F_{y}(1)\right]=F_{y}[F(1, y)]$ $=F(F(1, y), y]$. This process is iterative. Let $\left\{y_{n}: n \geq 1\right\}$ be a monotonic increasing sequence and let $y^{*}=\sup \left\{y_{n}: n \geq 1\right\}$. We show first that $F_{y}^{n}(0)$ is σ_{2}-continuous. We know this is true for $n=0$ on $n=1$. Suppose F_{y}^{n} is σ_{2}-continuous for $n=k$. $F_{y}^{k+1}(\perp)=F_{y}\left[F_{y}^{k}(\perp)\right]=F\left[F_{y}^{k}(\perp), y\right]$. Since $y^{*}=\sup \left\{y_{n}\right\}$ and F is σ_{2}-continuous, $\sup \left\{F\left(\perp, y_{n}\right): n \geq 1\right\}$ $=F(1, y *)$. Let $v_{n}=F\left(1, y_{n}\right)$ then $\sup \left[F\left[F\left(1, y_{n}\right), y_{n}\right]\right.$
$=\sup \left[F\left(v_{n}, y_{n}\right)\right]=F\left[F\left(1, y^{*}\right), y^{*}\right]=\sup \left\{F_{y_{n}}^{2}(\perp): n \geq 0\right\}$ $=F_{y^{*}}^{2}(1)$ since $F\left(v_{n}, y_{n}\right)$ is a monotonic increasing sequence. Let $w_{n}=F_{y_{n}}^{k}(\perp)$. By the induction hypotheses $\left\{w_{n}: n \geq 1\right\}$ is monotonic increasing. Thus $\sup \left\{w_{n}: n \geq 1\right\}=\sup \left\{F_{y_{n}}^{k}(\perp): n \geq 1\right\}=F_{y^{*}}^{k}(\perp)=w^{*}$. Now $\left\{\left(w_{n}, y_{n}\right): n \geq 1\right\}$ is monotonic increasing sequence in $X \times Y$ and $\sup \left\{\left(w_{n}, y_{n}\right): n \geq 1\right\}=\left(w^{*}, y^{*}\right)$. Therefore $\sup \left[F_{y_{n}}^{k+1}(1)\right]=\sup \left[F\left[F_{y_{n}}^{k}(1), y_{n}\right]\right]=\sup \left[F\left(w_{n}, y_{n}\right)\right]$
$=F\left(w^{*}, y^{*}\right)=F\left[F_{y *}^{k}(\perp), y^{*}\right]=F_{y *}^{k+1}(\perp)$. Therefore $F_{y}^{n}(\perp)$
is σ_{2}-continuous and $\left\{F_{y}^{n}(1)\right\}$ is monotonic increasing
hence $g(y *)=\sup \left[g\left(y_{n}\right)\right]$; that is g is σ_{2}-continuous [Lemma 5].
11. Theorem (Lezczylowski). Let X and Y be σ_{i}-complete posts $(i=0, \ldots, 3)$ and $F: X \times Y \rightarrow X \times Y$ be σ_{i}-continuous. Let $\left(x^{0}, y^{0}\right)=\|F\|$, the least fixed point of F. Let $g(y)=\frac{6 F_{1}}{5 x}(x, y)(y \in Y)$. Define $G: X \times Y \rightarrow X \times Y$ by $G(x, y)=\left(g(y), F_{2}(g(y), y)\right)$ where $F(x, y)=\left(F_{1}(x, y), F_{2}(x, y)\right)$. Then i) $\|G\|=\|F\|$, ii) and if $h(y)=F_{2}(g(y), y)$ then $\|h\|=y^{0}$ and iii) $g\left(y^{0}\right)=x_{0}$.

Proof: i) Let $\left(x^{1}, y^{1}\right)=\|G\|$, in particular we have $G\left(x^{1}, y^{1}\right)=\left(x^{1}, y^{1}\right)=\left(g\left(y^{1}\right), F_{2}\left(g\left(y^{1}\right), y^{1}\right)\right)$. Therefore $x^{1}=g\left(y^{1}\right)$ and $y^{1}=F_{2}\left(g\left(y^{1}\right), y^{1}\right)=F_{2}\left(x^{1}, y^{1}\right)$. Since $g(y)$ is least fixed point of F_{1} for all $y, F_{1}(g(y), y)$ $=g(y)$. Therefore $x^{1}=g\left(y^{1}\right)=F_{1}\left(g\left(y^{1}\right), y^{1}\right)=F_{1}\left(x^{1}, y^{1}\right)$. Consequently $F\left(x^{1}, y^{1}\right)=\left(F_{1}\left(x^{1}, y^{1}\right), F_{2}\left(x^{1}, y^{1}\right)\right)=$ $\left(x^{1}, y^{1}\right)$. Since $\left(x^{0}, y^{0}\right)=\|F\|,\left(x^{0}, y^{0}\right) \leq\left(x^{1}, y^{1}\right)$; that is $\|F\| \leq\|G\|$. Conversely, $F\left(x^{0}, y^{0}\right)=\left(x^{0}, y^{0}\right)$. Hence $F_{1}\left(x^{0}, y^{0}\right)=x^{0}$ and $F_{2}\left(x^{0}, y^{0}\right)=y^{0}$. Now x^{0} is a fixed point of F^{0} thus $\mathrm{g}\left(\mathrm{y}^{0}\right) \leq \mathrm{x}^{0}$. Therefore $G\left(x^{0}, y^{0}\right)=\left(g\left(y^{0}\right), F_{2}\left(g\left(y^{0}\right), y^{0}\right)\right)=\left(g\left(y^{0}\right), F_{2}\left(x^{0}, y^{0}\right)\right)$ $\leq\left(x^{0}, y^{0}\right)$. since $\left(L_{X}, \perp_{Y}\right) \leq\left(x^{0}, y^{0}\right), G\left(L_{X}, \perp_{Y}\right) \leq$ $G\left(x^{0}, y^{0}\right)$. Inductively $G^{n}\left(\perp_{X}, \perp_{Y}\right) \leq\left(x^{0}, y^{0}\right.$; that is
$\|G\| \leq\left(x^{0}, y^{0}\right)=\|F\|$. Thus $\|G\|=\|F\|$. ii) Define $h: Y \rightarrow Y$ by $h(y)=F_{2}(g(y), y)$. Observe $F_{2}\left(g\left(y^{1}\right), y^{1}\right)$
$=y^{1}$. Hence $\|h\| \leq y^{1}$. Let $y^{2}=\|h\|$ and $x^{2}=g\left(y^{2}\right)$. $G\left(x^{2}, y^{2}\right)=\left(g\left(y^{2}\right), F_{2}\left(g\left(y^{2}\right), y^{2}\right)=\left(x^{2}, y^{2}\right)\right.$ since y^{2} is the least fixed point of h. Therefore (x^{1}, y^{1}) $\leq\left(x^{2}, y^{2}\right)$ and $y^{1} \leq y^{2}=\|n\|$ hence $y^{0} \leq y^{2}$ which implies $y^{0}=y^{1}=\|h\|$. iii) Finally $g\left(y^{0}\right)=$ $g\left(y^{1}\right)=x^{1}=x^{0}$.
12. Theorem. Let X be a σ_{i}-complete posit and $\mathrm{f}, \mathrm{g}: \mathrm{X} \rightarrow \mathrm{X}$ be σ_{i}-continuous. Define $\mathrm{h}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{X} \times \mathrm{X}$ by $h(x, y)=(g(y), f(x))$, then $\|h\|=(\|f g\|,\|g f\|)$ and h is σ_{i}-continuous.
Proof: Let $\left\{\left(x_{n}, y_{n}\right): n \geq 0\right\}$ be a monotone nondecreasing sequence in $x \times x$. If $(u, v)=\sup \left\{\left(x_{n}, y_{n}\right)\right\}$ then $u=\sup \left\{x_{n}\right\}$ and $v=\sup \left\{y_{n}\right\}$. Now

$$
\begin{aligned}
& \sup \left\{h\left(x_{n}, y_{n}\right)=\sup \left\{g\left(y_{n}\right), f\left(x_{n}\right)\right\}\right. \\
&=\sup \left\{g\left(y_{n}, f\left(x_{n}\right)\right\}\right. \\
&=\left(\sup \left\{g\left(y_{n}\right)\right\}, \sup \left\{f\left(x_{n}\right)\right\}\right) \\
&=\left(g\left(\sup \left\{y_{n}\right\}\right), f\left(\sup \left\{x_{n}\right\}\right)\right) \\
&=(g(v), f(u))=h(u, v)=h\left[\sup \left\{\left(x_{n}, y_{n}\right)\right\}\right] ;
\end{aligned}
$$

that is h is σ_{i}-continuous. Recall $f g(x)=g[f(x)]$ and $\|h\|=\sup \left\{h^{n}(1,1): n \geq 0\right\}$ and $h^{\circ}(1,1)=(1,1)$. Straightforward calculations yield $h^{2 n}(1, \perp)=\left((f g)^{n}(\perp)\right.$, $\left.(g f)^{n}(\perp)\right)$ and $h^{2 n+1}(1, \perp)=\left((g f)^{n} g(1),(f g)^{n_{f}}(1)\right)$.
Since composition of σ_{i}-continuous functions is continuous $\perp \leq(f g)(\perp) \leq \cdots \leq(f g)^{n}(1)$ and $1 \leq(g f)(1) \leq \ldots \leq(g f)^{n}(\perp) \ldots$ [Lemma 2.27]. Considering only the even powers of h with the first and second coordinates, Leman 24 yields $\|h\|=(\|f g\|,\|g f\|)$.
13. Lemma. Let S be a σ_{0}-complete Boolean semiring with $a, b \in S$. The least u satisfying $a u+b \leq u$ is $\mathrm{a} * \mathrm{~b}$.
[Let $g(x)=(a+1) x+b$. We know $\|g\|=(a+1) * b$ [Lemma 2.18]. Let $c=(a+1) *$. Then $(a+1) c+b=$ $a c+c+b=c$. Hence $a c+b \leq c$. Choose u such that $a u+b \leq u$. Equivalently $a u+u+b=u$. Applying the distributive law we have $(a+1) u+b=u$. Hence u is a fixed point of g. Therefore $c \leq u$. This $\mathrm{cb}=(\mathrm{a}+1) * \mathrm{~b}$ is least point satisfying $\mathrm{au}+\mathrm{b} \leq \mathrm{u}$. However $(a+1) *=a *$ Lemma 2.39] $]$.

IV. FORMAL LANGUAGES

1. Definition. Let X be a set. A formal language on X is any subset of $X *=\underset{r \geq 0}{U}\left\{X^{r}\right\}$.

Recall $X *$ under concatenation is the free monoid, $M_{F}(X)$, [Definition 1.10]. Moreover if $X=\varnothing$ then $X^{0}=\{\varepsilon\}$ but $X^{r}=\emptyset$ for $r>0 . \quad X$ is the alphabet of the formal language $\mathscr{\mathcal { L }}(\mathrm{X}) \subset X *$. In an attempt to abstract the essence of natural language in order to make their study applicable to computer technology, N. Chomsky developed a theory of phrase structured or generative grammars (1963-1968). ALGOL was the first computer language developed using this theory of formal language.
2. Definition. A phrase structured grammar, P.S.G., consists of
i) a nonempty set V, the vocabulary, such that $\mathrm{V}=\mathrm{V}_{\mathrm{N}} \cup \mathrm{V}_{\mathrm{T}}, \mathrm{V}_{\mathrm{N}} \cap \mathrm{V}_{\mathrm{T}}=\varnothing, \mathrm{V}_{\mathrm{N}} \neq \varnothing, \mathrm{V}_{\mathrm{T}} \neq \varnothing . \quad \mathrm{V}_{\mathrm{N}}$ is called the nonterminal set and V_{T} the terminal set.
ii) a finite sequence of ordered pairs (μ, v) in $V * \times V^{*}$ called productions such that $\mu \in \mathrm{V}^{+} \sim \mathrm{V}_{\mathrm{T}}^{\star}$; that is at least one element of V_{N} is embedded in μ.
iii) There exists $S \in V_{N}$ designated as the initial or start symbol.

The sequence of production $\left\{(\mu, v)_{n}\right\}_{n=1}^{k}$ is often designated by $\mathbf{P}=\left\{P_{1}, \ldots, P_{k}\right\} . \quad \mu$ is said to produce v if there exists $P \in \mathbb{P}$ with $P \equiv(\mu, v)$. This is. also written in a functional notation as $P: \mu \rightarrow v$. The phrase structured grammar, G, may then be identified as the ordered quadtriple $\left\{\mathrm{V}_{\mathrm{N}}, \mathrm{V}_{\mathrm{T}}, \mathbb{P}, \mathrm{S}\right\}$.
3. Example. $V_{N}=\{a, b\}, V_{T}=\{A, B\}, S=b$ and $P_{1}: a \rightarrow A, P_{2}: S \rightarrow B, P_{3}: S \rightarrow a S$ and $P_{4}: S \rightarrow B$. G then generates $\left\{A^{n_{B}}: n \geq 0\right\}$.

For G a phrase structured grammar, the language generated by G is defined to be $L(G)=\left\{\beta: \beta \in V_{T}^{*}\right.$, $S \rightarrow \beta\}$.
4. Definition. Let X be a set and (μ, v) $\in X * \times X *$ such that $\mu \neq \varepsilon$. Define $P_{(\mu, \nu)} \in \mathbb{R}_{\mathbb{P}}(X *)$ by (α, β) $\in P_{(\mu, v)}$ of there exist $\left(\alpha_{1}, \alpha_{2}\right) \in X * \times X *$ such that $\alpha=\alpha_{1} \mu \alpha_{2}$ and $\beta=\alpha_{1} \vee \alpha_{2} . P_{(\mu, v)}$ is the producetion determined by (μ, v).

Alternately we use the notation $\alpha P_{(\mu, v)}{ }^{\beta}$ for $(\alpha, \beta) \in P_{(\mu, v)}$ and $\mu \rightarrow \nu$ for the pair (μ, v). Recall
ε is the null or empty sequence. With respect to $\mathbf{R}_{\mathbf{P}}^{*}$ we have $(\mu, v) \in \mathbf{R}_{\mathbf{P}}^{*}$ if $\mu \rightarrow * v$.
5. Definition. Let $P=\left\{P_{(\mu, v)_{1}}, \ldots, P_{(\mu, v)_{k}}\right\}$ be a finite set of productions on X. (X, \mathbb{F}) is a generalized grammar on X determined by P.
6. Definition. Let $(x, y) \in X * \times X *$. x derives y if there exists $P \in \mathbb{P}^{*}$ such that $x P y$; that is there

ϵX^{*} such that

$$
\begin{aligned}
& x^{P}{ }_{(\mu, v)_{i_{1}}}{ }^{x_{1}} \\
& x_{1}{ }^{P(\mu, v)_{i_{2}} x_{2}} \\
& \vdots \\
& x_{r-1} P(\mu, v)_{i_{r}} y .
\end{aligned}
$$

7. Definition. Let $R \subset A \times B$ be a relation. For $A^{\prime} C A$ define $R\left[A^{\prime}\right]=\left\{b:\right.$ there exists $a \in A^{\prime}$ with $(a, b) \in R\}$.
8. Definition. The language generated by a formal grammar G is defined to be $\left.\mathcal{Z}(G)=\mathbb{R}_{\mathbb{H}}\{S\}\right] \cap T^{*} \subseteq T^{*}$.
9. Definition. Let G and G^{\prime} be formal grammars with the same set of terminal elements $X_{1}=N_{1} \cup T$ $G=\left(N_{1}, T, P_{1}, S_{1}\right)$ and $X_{2}=N_{2} U T, G^{\prime}=\left(N_{2}, T, P_{2}, S_{2}\right)$ G and G^{\prime} are equivalent grammars if $\mathcal{L}(G)=\mathcal{L}\left(G^{\prime}\right)$.
10. Definition. Let $\alpha \in X^{*}$ define the cardinality of α as

$$
|\alpha|=\left\{\begin{array}{ll}
n & \text { if } \alpha=x_{1}, \ldots, x_{n}\left(x_{i} \in X\right) \\
0 & \text { if } \alpha=\varepsilon
\end{array}\right\}
$$

11. Definition. G is a contextfree grammar, CFG, if and only if for each production $(\alpha, \beta) \in \mathbb{P}=\mathbb{R}_{\mathbf{P}}\left(X^{*}\right)$ $\operatorname{card}(\alpha)=1$. This assures that α is a single element of V_{N}.
12. A language $L \subset T^{*}$ is called contextfree if there exists a contextfree grammar G such that $L=\mathcal{L}(G)$.
13. Theorem. Given a contextfree grammar $G=(N, T, P, S)$, there exists an equivalent context $G^{\prime}=\left(N^{\prime}, T, P^{\prime}, S\right)$ such that for each $(\alpha, \beta) \in \mathbb{P}^{\prime}$ either $\beta \in \mathbb{N}^{\prime *}$ or $|\beta|=1$ and $\beta \in T$.

Proof: Let $N_{T}=\{N\} \times T . \quad$ Clearly $\quad N_{T} \cap N=\emptyset=N_{T} \cap T$. For each $a \in T$ let $x_{a}=(N, a)$. Let $N^{\prime}=N U N_{T}$. On a free monoid a homomorphism defined only on the
generators may be generalized to the entire monoid through concatenation. Define a homomorphism $h:(N U T) * \rightarrow N{ }^{\prime}$ * by $h(x)=\{x$: if $x \in N\}$ and $h(a)=x_{a}=(N, a)$ for $a \in T$. Define P^{\prime} by $\mathbf{P}^{\prime}=\{\alpha \rightarrow h(B): \alpha \rightarrow \beta \in \mathbf{P}\}$ $U\left\{x_{a} \rightarrow a: a \in T\right\}$. The equivalence of G and G^{\prime} may be accomplished by replacing every terminal a by x_{a}. Thus every production in G will also be a producelion in G^{\prime}, since the last step will be a string of terminals. Moreover if $(\alpha, \beta) \in \mathbb{P}^{\prime}$ is in \mathbb{P} then $\beta \in\left(N U N_{T}\right) *=N^{\prime *}$; otherwise $(\alpha, \beta)=\left(x_{a}, a\right)$ and $|B|=1$ and $\beta=a \in$ T. $/ /$
14. Theorem (Shelion-Grenbach). Given G a context free grammar $G=(N, T, \mathbb{P}, S)$ there exists an equivalent context free grammar $G^{\prime}=\left(N^{\prime}, T, P^{\prime}, S\right)$ such that for each $(\alpha, \beta) \in \mathbf{P}^{\prime}$ either $\beta=a \beta^{\prime}$ where $a \in T$ and $\beta^{\prime} \in N^{\prime *}$ or $\beta \in T$ or $\beta=\varepsilon$.

Theorems of this type are used in parsing a language.
15. Example. Let $T=\{1\}, N=\{S\}, P=\{S \rightarrow S 11$, $S \rightarrow 11\} L(G)=\left\{\gamma: \gamma \in T^{*}\right.$ and $\left.S \rightarrow * \gamma\right\}$ consists of strings containing pairs of ones.
16. Definition. Let S be a Boolean semiring. A binary relation θ on S is admissible if θ is an equivalence relation on S and for $x, y, u, v \in S$ if $x \theta u$ and $y \theta v$ then $x+y \theta u+v$ and $x y \theta u v$.
17. Definition. $[x]_{\theta}=\{y: x \theta y\}$ and $s / \theta=$ $\left\{[x]_{\theta}: x \in S\right\}$.

As usual we define $[x]_{\theta}+[y]_{\theta}=[x+y]_{\theta}$ and $[x]_{\theta}{ }^{\bullet}[y]_{\theta}=[x y]_{\theta}$. With respect to formal languages we identify the multiplicative identity $1 w, t h\{\xi\}$ and the additive identity 0 with 0 .
18. Theorem. S / θ is a Boolean semiring [Observe $[x]_{\theta}+[0]_{\theta}=[x+0]_{\theta}=[x+0]_{\theta}=[x]_{\theta}=[0+x]_{\theta}=[0]_{\theta}$ $+[\mathrm{x}]_{\theta}$; that is $[0]_{\theta}$ is the additive identity. Similar calculations yield that $[1]_{\theta}$ is the multiplicative identity. That + and . are associative over S / θ is a direct consequence of the associativity of + and . over S. Since S is a Boolean semiring $[a]_{\theta}+[a]_{\theta}=[a+a]_{\theta}=[a]_{\theta}$. The remaining requirement [Definition 1-20] for S / θ to be a semiring are straightforward using the fact that S is a Boolean semiring.1]
19. Definition. Let S be σ_{2}-complete Boolean semiring and θ an admissible relation on S. θ is σ_{2}-compatible if given monotonic sequences $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}(n \geq 1)$ in S with $x_{n} \theta u_{n}$ for all n then $x \theta u$ where $x=\sup \left\{x_{n}\right\}$ and $\mu=\sup \left\{u_{n}\right\}$.
20. Lemma. Let S be a Boolean semiring and θ an admissible relation on S. If $x \leq y$ then $[x]_{\theta} \leq[y]_{\theta}$ $[1 x \leq y$ if and on dy if $x+y=y]$. Since θ is admissible $[x+y]_{\theta}=[y]_{\theta}=[x]_{\theta}+[y]_{\theta}$. Therefore $[\mathrm{x}]_{\theta} \leq[\mathrm{y}]_{\theta} \cdot \mathrm{B}$
21. Definition. Let S be a Boolean semiring. $G^{n}(S)$ is the set of $n \times n$ matrices with entries in $S . G^{n}(S)$ has the standard matrix operations of addition and multiplication.

The usual computations, based on S being a Boolean semiring, show that $G^{n}(S)$ is also a semiring. Since $a+a=a$ for $a l l a \in S, A+A=A$ for $a l l$ $A \in G^{n}(S)$. Thus we have
22. Lemma. If S is a Boolean semiring then $G^{n}(S)$ is a Boolean semiring.
23. Definition. For $A, B \in G^{n}(S), A \leq B$ if $a_{i, j} \leq b_{i, j}$ $(1 \leq i, j \leq n)$.
24. Theorem. If S is a σ_{i}-complete Boolean semiring then $G^{n}(S)$ is σ_{i}-complete $(i=0, \ldots, 3)$.
[Let A^{k} be a countable subset of $G^{n}(S)$. $A^{k}=\left(a_{i j}^{k}\right)$. For each pair $p, q\left\{a_{p, q}^{k}\right\}$ is a countable subset of s. Let $a_{p, q}=\sup _{k}\left\{\begin{array}{l}k \\ p, q\end{array}\right\}$. Then $A=\left(a_{p, q}\right)$ is an upper bound for $\left\{A^{k}\right\}$. Let B be an upper bound of A^{k} then $b_{p, q}$ is an upper bound for $\left\{A^{k}\right\}$. Let B be an upper bound for A^{k} then b, q is an upper bound for $\left\{a_{p, q}^{k}\right\}$. Since $a_{p, q}=\sup _{k}^{k}\left\{a_{p, q}^{k}\right\}, a_{p, q} \leq$ $b_{p, q^{*}}$ Thus $A S B$ and $A=\sup _{k}\left\{A^{k}\right\}$. ${ }^{0}$
25. Lemma. Let $F: G^{n}(S) \rightarrow G^{n}(S)$ be defined by $F(X)=A(X)+C$ then $\|F\|=A * C$.
[This is a special case of Lemma 2.18H Recall if S is σ_{i}-complete Boolean semiring then + and - are σ_{i}-continuous over S. Hence matrix multiplicalion and matrix addition are σ_{i}-continuous over $\left.G^{n}(S)\right]$
26. Definition. Let $\mathcal{L}^{\mathrm{p}, \mathrm{q}}(\mathrm{S})$ be the set of matrices with entries in S. In particular $G^{n}(S)=\mathscr{L}^{\mathrm{nn}}(S)$.

In general $\mathcal{L}^{\mathrm{p}, \mathrm{q}}(\mathrm{S})$ is not a semiring for matrix multiplication need not be defined unless $p=q$. . However $\mathcal{L}^{\mathrm{p}, \mathrm{q}}(\mathrm{S})$ can be embedded in a minimal semiring $G^{n}(S)$ where $n=\max (p, q)$.
27. Definition. Let $A \in \mathcal{L}^{p, q}(S)$ and $n=\max (p, q)$. Let

$$
\hat{A}=\left(\hat{a}_{j k}\right)= \begin{cases}a_{j k} & \text { if } j, k \leq n \\ 0 & \text { otherwise }\end{cases}
$$

\widehat{A} is the extension of A to $G^{n}(S)$ and we may identify. A and \hat{A}.
28. Definition. Let X and Y be poses and $f: X \rightarrow Y$. f is σ_{i}-continuous if
i) there exists σ_{i}-complete Boolean semiring S_{1} and S_{2} such that X is embedded in S_{1} and Y is embedded in S_{2}.
ii) there exists a σ_{i}-continuous function
$\mathbf{F}: S_{1} \rightarrow S_{2}$ such that $\mathbf{F}_{\mathfrak{X}}=\mathbf{f}$.
29. Lemma: Let S be a σ_{i}-complete Boolean semiring.

Let $\mathbf{f}: \mathscr{L}^{\mathrm{p}, \mathrm{q}}(\mathrm{S}) \times \mathscr{L}^{\mathrm{q}, \mathrm{r}}(\mathrm{S}) \rightarrow \mathcal{L}^{\mathrm{pr}}(\mathrm{S})$ be defined by $f(A, B)=A B$ then f is σ_{i}-continuous. [Let $n=\max (p, q, r)$ and $S_{1}=G^{n}(S) \times G^{n}(S)$ and $S_{2}=G^{n}(S)$.
$F: S_{1} \rightarrow S_{2}$ is σ_{i}-continuous as matrix multiplication and addition are σ_{i}-continuous over $G^{n}(S) . F(\hat{A}, \hat{B})$ $=\mathbf{f}(A, B)]$
30. Lemma: Let $A \in G^{n}(S)$ and $X, C \in \mathcal{X}^{n, 1}(S)$ and $f: \mathcal{L}^{n, 1} \rightarrow \mathcal{L}^{n, 1}$ be defined by $f(X)=A X+C$ then f is σ_{i}-continuous.
$\left[\right.$ Let $S_{1}=S_{2}=G^{n}(S)$ and $F(\hat{X})=A \hat{X}+\hat{C}$ for X and $\quad C \in \mathcal{L}^{n, 1}$.
F is σ_{i}-continuous as the composition of σ_{i}-continuous function and $F \mid \mathscr{L}^{n-1}(S)=f$ since $\hat{X} \equiv \mathrm{x}]$.
31. Corollary. Let $f: \mathcal{X}^{n, 1}(S) \rightarrow n^{1}(S)$ be defined by $f(X)=A X+C$ for $X, C \in \mathscr{L}^{n, 1}(S)$ and $A \in G^{n}(S)$, then $\|f\|=A * C$.
[Extend f to $F: G^{n}(S) \rightarrow G^{n}(S)$ in the usual manner $f(X)=A X+C=A \hat{X}+\hat{C}=F(\hat{X}) . \quad\|F\|=A * C$. [Lemma 25i]. Thus $\|f\|=A * C$ as \hat{C} is identifiable with C.1]
32. Example. Let S be a σ_{i}-complete Boolean semiring $(i=0, \ldots, 2)$ and $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G^{2}(S)$ then

$$
\left.\begin{array}{rl}
A *=B= & (a * b(c a * b+d) * \\
d * c(a+b d * c) * & (c a * b+d) *
\end{array}\right), \begin{gathered}
(a+b d * c) * \\
{\left[A *=I+A A * \quad \text { Let } \quad\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)=A *\right.} \\
\left(\begin{array}{ll}
e & g \\
g & h
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)
\end{gathered}
$$

Thus

$$
\begin{array}{ll}
e=1+a c+b g & f=a f+b h \\
g=c e+d g & h=1+c f+d h
\end{array}
$$

Recall the least fixed point of $x \rightarrow a x+b=a * b$ and the least fixed point of $x \rightarrow x a+b=b a *$. Also + is commutative. Therefore
i) $a \star b h \leq f$
ii) $\quad \mathrm{d}$ *es $\leq g$.

Using i we obtain

$$
e=1+a e+b g \geq 1+a e+b(d * c e)
$$

Thus

$$
e \geq 1+(a+b d * c) e
$$

by distributivity and

$$
e \geq(a+b d * c) *
$$

Using ii we obtain

$$
g \geq d * c e \geq d * c\left(a+b d *_{c}\right) *
$$

equivalently

$$
d * c(a+b d * c) * \leq g
$$

Similarly since $h=1+c f+d h$ and substituting for f we obtain $h \geq 1+c a * b h+d h=1+(c a * b+d) h$. By fixed point theory $h \geq(c a * b+d) *$ and therefore $a * b(c a * b+d) * \leq a * b h \leq f$. Hence $A * \geq B$. Consider equation $I+A B$

$$
\begin{aligned}
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
(a+b d * c) * & a * b\left(\begin{array}{ll}
c a * b+d) * \\
d * c(a+b d * c) * & (c a * b+d) *
\end{array}\right) \\
=\left(\begin{array}{ll}
1+a(a+b d * c) *+b d * c(a+b d * a) * & a a * b(c a * b+d) *+b(c a * b+a) * \\
c(a+b d * c) *+d d * c(a+b d * c) * & 1 * c a * b(c a * b+d) *+d(c a * b+d) *
\end{array}\right) \\
=\left(\begin{array}{ll}
1+(a+b d * c)(a+b d * c) * & (a a *+1) b(c a * b+d) * \\
(1+d d *) c(a+b d * c) * & 1+(c a * b+d)(c a * b+d) *
\end{array}\right)
\end{array} .\right.
\end{aligned}
$$

Since $u^{*}=1+u^{*} *$ this reduces to

$$
\begin{aligned}
& \left(\begin{array}{ll}
(a+b d * c) * & a * b(c a * b+d) * \\
d * c(a+b d * c) * & (c a * b+d) *
\end{array}\right) \\
& =\text { B. }
\end{aligned}
$$

Thus B is in fixed point hence we must have $B \geq A *$. Hence $\quad A *=B$.
33. Definition. Let S be a Boolean semiring. For $\mathrm{n} \geq 1, \mathrm{~F}^{\mathrm{n}}(\mathrm{S})=\left\{\mathrm{g}: \mathrm{g}: \mathrm{S}^{\mathrm{n}} \rightarrow \mathrm{S}\right\}$.
34. Definition. $R_{o}^{n}=\left\{g: g \in F^{n}(S)\right.$ such that g is constant. For $m \geq 0 R_{m+1}^{n}=\left\{f: f=g_{1}+g_{2}, f=g_{1} g_{2}\right.$, $f=g_{1}^{*}$ where $\left.g_{1}, g_{2} \in R_{m}^{n}\right\} g_{1}^{*}\left(x_{1}, \ldots, x_{n}\right)=g_{1}\left(x_{1}, \ldots, x_{n}\right) *$ Observe $\quad R_{m}^{n}<R_{m+1}^{n} \quad(m \geq 0)$.
35. Definition. $R^{n}(S)=U\left\{R_{m}^{n}(S): m>0\right\}$.
36. Definition. Let S be a σ_{i}-complete Boolean semiring ($i=0, \ldots, 3$), A CS and a $\in S$. a is regular over A of these exists an $n \geq 1$ and an $f \in R^{n}$, $b_{1}, \ldots, b_{n} \in A$ such that $a=f\left(b_{1}, \ldots, b_{n}\right)$.
37. Definition. $A^{R}=\{a: a$ is regular over $A\}$. Notice $A^{R} \subseteq$ S.
38. Definition. A is a regular base for S if $A^{R}=S$.
39. Lemma. If S is a σ_{i}-complete Boolean semiring then A^{R} is a σ_{i}-complete subsemiring of S.
[Notice if $f \in R^{n}$ then $F: S^{n+k} \rightarrow S$ defined by $F\left(b_{1}, \ldots, b_{n}, b_{n+1}, \ldots, b_{n+k}\right)=f\left(b_{1}, \ldots, b_{n}\right) \in R^{n+k}$. For a_{1} and $a_{2} \in A^{R}$ there exist $f \in R^{n}$ and $g \in R^{k}$ such that

$$
\begin{aligned}
a_{1}+a_{2}= & f\left(b_{1}, \ldots, b_{n}\right)+g\left(c_{1}, \ldots, c_{k}\right) \\
= & F\left(b_{1}, \ldots, b_{n}, b_{n+1}, \ldots, b_{n+k}\right) \\
& +G\left(c_{1}, \ldots, c_{k}, c_{k+1}, \ldots, c_{k+n}\right) \\
= & H\left(d_{1}, \ldots, d_{n+k}\right)
\end{aligned}
$$

since R^{n+k} is closed under + . Thus A^{R} is closed under addition. A semilar argument shows A^{R} to be closed under multiplication. The remaining properties of A^{R} be a semiring follow from S being a semiring. To show completeness let k be countable subset of A^{R}. Since S is σ_{i}-complete there exists $a k \in S$ such that $k=\sup _{S} K$. Hence $g_{1}^{*}(K)=g_{1}(K *)=g_{1}(k)$ hence $k \in A^{R}$.]

BIBLIOGRAPHY

1. A. Blikle, Equations in a space language. CCPAS Reports 43, Computation Center, Polish Academy of Sciences, Warsaw, 1971.

2. A. Blikle, Equational languages. Computation Center, Polish Academy of Sciences, Warsaw, 1972.
3. D. Rosenkrantz, Matrix equations and normal forms for context-free grammars. Journal of Association for Computing Machinery, vol 14.3, 1967.
4. A. Salomad, Formal languages. Academic Press, 1973.

VITA

Catherine L. Madden, daughter of Mrs. Catherine Madden, was born in Philadelphia, Pennsylvania on July 25, 1944. She received a Bachelor of Arts degree in mathematics from D'Youville College, Buffalo, New York, 1966.

A Master of Arts in mathematics from Villanova University, Villanova, Pennsylvania was conferred in 1970 and a Doctor of Philosophy in mathematics from Lehigh University was conferred in 1978.

Currently she is a member of the Technical Staff of Bell Telephone Laboratory, Piscataway, New Jersey.

