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ABSTRACT

The basis of this paper is ﬁhe work of Blikle
concerning the relationship of the productions of a
formal grammar to their expression as equations. These
equations are considered as the basis of the grammar.
Their solutions are the elements of the associated
formal language. |

It is our intention to lay the mathematical fouﬁda-
tion for considering a_fofmal language as a subset of a
Boolean semirXing. To this end we introduce the concepts
of Oi-completeneés of posets and of di-céntinuity of
functions between oi-complete posets, |

It is our intention to use the power of this mathe-
matical structure in future research to consider the
relationship between normal forms of a context free

grammars and matrix equationms.



ALGEBRAIC PRELIMINARIES

1. Definition. A monoid, (M,°») 1is a system consisting

of a set M and a binary operation ¢ defined on M

such that ° is associative over M and there exists

an identity;element 1l ¢ M;”that is ° (m,1) = m = o(1,m)
for all m e M. |

Alternately we use the notations (m,n) and mn
for ° (m,n). The identity element of a monoid is unique.
If there were two identity elements 1 and 1', we would

have the immediate contradiction ‘1 = 11' =1°',

2. Definition., For m e M and r ¢ A {p : p 1is a

non-negative integef}, we define mo =] and’ mr+1 = mm®,

'

3. Lemma. 'mP+q = moPn? for m e M and P, 4 € Z+.

The proof of Lemma 3 is a standard application of the

principle of mathematical induction.

4. Example, z¥  under multiplication is a monoid with

identity element 1.

5. Example. 2Z' under addition is a monoid with identity

element O,



<+

6. Definition. For r e z' let [r] = {neZ+:0 <ng r}.

An r-sequence on a set X 1is a function a : [r]-X.

-For r >0 and a an r-sequence on X we may
identify o with the r-tuple Qyseees, where

a; = a(j) for 0 j (K r.

7. Definition. Let X be a set X' = {a : a is an
r-sequence on X}. We identify x* with the r-tuple
X X...Xx X. Observe if r = O then [r] = @. Therefore
XO - {8} }where- € 1is the empty set. | ‘ o

8. Definition. Let qa € x* and B € Xs. Define

Y € xr+s by

We write vy = vyB .

9. Lemma. If a € X%, B ¢ X° and ¥ ¢ X then
(aB)Y = a(BY) and Qf = o = £q .



(@B) (3) 0< jgrs 3

[ .i) @B)v(@(G) = {’xu‘,)} res<cj< pas+t

a(i) 0<j(<gr
= ¢ B(3-1) T < g
Y(j-r-s) r+s < j £ ris+t

_ {ﬂ(j) 0<j(gr
‘ BY(3) r < j 2 ris+t
= a(BY)j.
11) ga(j) = {e(j) 0<ig 0'}
. a(3) 0<j<Lr

= a(j)
_ {a(j) 0<ji<r }
e (3-0) r<jgreto J
=at(j) 1

10. Definition. X' = U X*¥ and Xx* = U XT. .
o0 >0

We assume throughout that xt and X* have the
binary operation of concatenation described in 8 defined
on them. X* under concatenation is a monoid with identity
element € [iLemma 9i. However xt under concatenation

is not a monoid since X+ does not have an identity



element, Observe if X = @ then, x0 = {E} but
Xx¥ =@ for r> 0. Identifying X and x1 we may

write a € x¥* = U x*¥ as a = (xl,xz,...,x.,...)
r>0 J

where a(j) = X5 € X.

11. Lemma. Let M  be a monoid. For A, B C M.
Define AB = {ab :a €A and b € B}. The power set
of M, P(M), is a monoid under this product operationm.

Moreover, @ is the zero element of P(M); that is

gA = 9 = AP

L | i) associativity: (AB)C = {xc': X € AB and

c € C} = {(ab)c :acA b eB and lc € C} - {a(bc) :

ae€elA, beB, and c € C} = {ay t:aceA and y ¢ BC} -
A(BC) since M 1is a monoid.

ii) {1} in the identity: -A{l} = {al : a ¢ A} |
-{a:'aeA}-A-{la:aeA}u{l}A,_. If M is a
monoid, we assume throughout that P(M) carries the

éésociated monoid structure defined in Lemma 11. ‘ﬂ

12. Definition. Let M be a monoid and A C M define

A0 = {1}, ATl 2 A AT AT = U AT, and A* = U AT = A°
>0 0
+ A+, (r € Z+) .



13, Lemma. Let A,B,C ¢ P(M) where M is monoid.
Then 1) (AUB)UC = ACUBC
' 2) C(AUB) = CAUCB
3) (ANB) C 79 ACNBC

Additionally if A C B then

4) AC C BC
5) CA CCB.

[The validity of 1, 2, 4, 5 and proper containment in 3
fare standard set theoretic arguments. To show equality

need not exist in 3, let X = {a}, A = {a,a3},

B = {az,aa} and C = {a,az}. Recéll X* {is a monoid
under concatenation |[Lemma 9j. A, B and C C X%,

Direct computation yields ANB = @, AC = {az a3 a4 5},
BC = { 3,a4,a5,a6} and ACNBC = { 3,a“,a5} ¢ 8 = (anB)cp.

14, Definition. Let X be a set and PX) be the
power set of X. Let R(X) = P(XxX). If R,S ¢ R(X)
define RS = {(x;y)‘: there exists 2z ¢ X with |
(x,2) ¢ R and (z,y) ¢ S}. This operation on R(X)
is called the lexigraphic join as opposed'to the usual

functional join.



15. ‘Lemma. R(X) is a monoid under lexigraphic join .
jIf R,S,T € R(X) then (x,y) € (RS)T
.if and only if 3 p € X ~such that (x,p) ¢ RS
and (p,y) €T
if and only if 3 q ¢ X such that (x,q) ¢ R,
(@,p) ¢S and (p,y) ¢ T
if and only if (x,q) € R and (4,y) € ST
if and only if’ (x,y) € R(ST).

That is lexigraphic join is associative over R(X). Now
let s, = {(x,x) T X € X}. Clearly b, € R(X).
(x,y) € RA.x if and only if 3 z ¢ X such that

(x,z) ¢e R and (z,y) € B

if and only if (x,z)

m
w

and z =y

m

if and only if (x,y)
if and only if (x,y) e R and (x,x) ¢ o,

if and only if (x,y) € A R.

That is A is the identity element of R(X) under
| lexigraphic joini.

For R ¢ R(X) we shall also use the notations
xRy and R(x,y) for . (x,y) ¢ R. Recall R ¢ R(X)
is symmetric if Rfl = {(x,y) : (¥,%x) € R} C R,
reflexive if A CR and transitive if (x,y) e R



and (y,vz.) € R, imply (x,z) ¢ R. Since R(X) 1is a

monoid we have R+ = U {Rn} and R* = |J {Rn}.
: n»0 n>0
0, 1o+ + 0
Observe R* = R'UR' = {AR}UR ; that is R" = A Also

g" =9 but "¢* - {Ax} .

16. Definitionm. R* is called the transitive closure
of R and R* 1is called reflexive transitive closure

of R.

2 ¢ R,

Inductively R™ C R, p(x,2) € R2i> 3 y ¢ X such that

17. Lemma. If R is a transitive relation then R

(x,y) e R and (y,z) € R. Since R 1is tramsitive
(x,z) e R.] Thus if R is transitive we have

Ro>U RY = K+, therefore, RT = R.

>0

18. Lemma. If R is a symmetric relation then

R°! =R, [Since R is symmetric, it sufficies to show
1

"R CR ", (x,¥y) ¢e R = (y,%) ¢ R-l = (X,y) € R-l']’
'19. Lemma. i) ‘®R 1"l =R
i1) (®S)™ ! = s~ 1r?
-1.-1 -1
fi) (x,y) ¢ (R ) if and only if (y,x) € R if
and only if (x,y) ¢ R.

R



i1) (x;y) € (RS)™! if and only if (y,x) ¢ RS 4if and
only if there exists z ¢ X such that (y,z) ¢ R and
(z,%X) € S if and only if there exists z ¢ X such

that (z,y) € R4 1

(x,y) € S’lRflﬂ.

and (x,z) ¢ 8~ if and only if

20. Definition. A simering, (S;o0,+) 1is a system
consisting of a set S and two binary operations defined
on S such that (S;+) 1is a monoid with identity O,
(S;9) 1is a monoid with identity 1, and such that for

a,b,c ¢ S we have

i) a(btc) = éb + ac
ii) (a+b)ec = ac + bc
1ii) a0 = O = O-a

iv) a+b =b + a
21. Example. (Z+;+,o) is a semiring.

22, Ekamplef (P(M);+,0) 1is a semiring where M is’
a monoid, + 1is set union, and ¢ 1is the concatenation
operation described in Lemma 11. {1} is the identity

for concatenation and @ 1is identity for set union.



~

23. Definition. A partial orxrder on a set X 1is a
relation { ¢ R(X) which is reflexive, transitive, and
antisymmetric; that is (x,y) € < and (y,x) ¢ < imply

X =y,

24, Definition. A poset is a pair (X;) such that

X 1is a set and ¢ 1is a partial order definmed on X.

'25. Definition. Let X be a poset and A C X.
X € X 1is an upper bound for A if a < x for all

a ¢ A,

26. Definition., Let X be a poset and A CX. x ¢ X
is the supremum for A if x 1is an upper bound for A

and x <y for all upper bounds y of A,

27. Definition. A poset X 1is a semilattice if for
any X,y € X sup{x,y} exists, Inductively if X 1is
a semilattice apd A is a finite subset of X then

sup A exists.

28. Lemma. Let X be a poset and A C X, if a = sup A
then a 1is unique. [iLet a, and a, equal sup A.
Since a; and a, are upper bounds for A, a, £ a,

and a, < a,. However < is antisymmetric, thus

a; = azﬂ.

10



29. Definition. lLet X be a set and f : X - Y. Xg

~is a fixed point of £ if f(xo) = Xg
30. Definition. Let X and 'Y be posets. A function
f: X Y 1is an order morphism if for u,v ¢ X with

u v then f£f(u) < £(v).

31. Definition. Let X be a posét. A floor for X
is an element L € X such that ) < x for all x ¢ X.
We assume throughout that all the posets which we discuss

ha§e a floor.

32, Definition. Let S be a semiring. S 1is called

Boolean if for each s ¢ S, s + 8 = s,

33. Definition. Let S be a Boolean semiring. . For

5158, € S define s) £ 8o 1f s, + 52 = S,.

34; }Lemma. £ is a partial order on a‘Bbolean semiring S,
P i) If =x+x =x then x ¢ x; that is ( 1is
reflexive over 8. |
1) If x <y and y <z then x +z =x + (y+z2)
= (x+y) + z =y + z = z; that is,'s is
transitive over S.
iii) If x g y and y X then y =x +y =y + x

= X; that is < is antisymmetric over S. 1]

11



35. Lemma. Let S be a Boolean semiring and a,b ¢ S.
If a<b them ac { bc and ca { cb for all c € S.
N i) bc = (atb)c = ac + bc; that is ac € be

ii) c¢b = c(atb) = ca + cb; that is ca ¢ cb .

36. Corollary. Let S be a Boolean semiring, A C S
and s ¢ S. If a =sup A then (as) 1is an upper
bound for A{s} =As. [bga for all b e A. By

Lemma 35 bs  as; that is (as) is an upper bound for

As.y

37. Definition. Let Al""’An' be posets, We define
n

a partial o?der on ;II A; by (al,az,...,an) <

(bl’bZ""?bn) if and only if ag Sjbi for 1 <1< n.

38. Lemma., Let Al"

and c¢; = sup C; (11 S.n) then (cl’CZ""’cn)

Q.,An be posets. If C; C A;

1

n : .
= sup ‘ITI C;. DSince cy =sup Cy, ¢ = (cy,...5¢))
n

is an upper bound for C = T] C;. Let w = (WyseeesW
{i=] .

be an upper bound for C. ¢y L wy since ¢, = sup Cy.

)

n

Hence c < w.li

39. Lemma. Let S be a Boolean semiriﬁg. If
a,b ¢ S then é + b = sup{a,b}. Inductively

a; = sup{(ai)gtl}.E'Since a + (atb) =a + b,
i=] .
’ 12



a < atb. Similarly b £ a+b since + 1is commatative
over a semiring. Thus a + b is an upper bound of
{a,b}. Let ¢ be an upper boﬁnd of {a,b}. Tﬂus
a+c=c and b+ c =c, Hence a+b+c =a+c =c.

That is a + b { c; therefore, a + b = sup {a,b}ﬂ.

40, Lemma. Let A be a poéet and (Aa t:o e T") be an
indexed family of subsets Aa CA. Let a, = sup Aa

and a = sup B where B=U{Aa T a e P}. Then a =

sup{aa T a e‘f} . (b a for each b € B, Thus

a, £ a for,each‘ a € I'. Suppose y is an upper

bound for {aa :.d € r} then y 1is an uppef"bound for

B. Thus a = sup B gAy. Therefore a = sup{aa ta € F}ﬂ.

41, Lemma. Let S be a Boolean semiring with x <y
and u v them x+by+b, x+uy+v and

ax < ay.

li) x+y=y=x+y+b+b=y+b., Since +
is commutative over a semiring x‘+,b +y+b=y + b;
that is x +b L y + b.

.ii) Sinc x +y=y and u+v=v, x+y+u+yv
=y + v. By commutativity x +u+y +v =y + v; |
that is, x +u y + v.

iii) Since x +y =y, a(x+y) = ay = ax + ay;
that is ax < ay.] ‘

13



42, Corollary. Let S be a Boolean semiring and A C S,
If yeS and a =sup A then sup[A+y] = a + y where
A+ y = {x+y P X € A}. [For all x € A, x £ a; therefore
x+y<a+y, that is, a + y 1is an upper bound for

A+ vy, Let w be an upper bound of A+ y. If ueA
then uu+yw. Hence a w. Similariy y £ w.

Hence a +y { w+ w =w; that is, a + y = sup[A+y].(]

43. Lemma. Let SA be a.Boolean semiring and A,B C S.
If a=supA ), b = sup B then a +b = sup[ A+B].

[For x € A and. y €eB, x {a and y < b. Hence
x+ya+b for (x,y) ¢ Ax B, Let w be an upper
bound of A+ B. For ueA and v e B, uu+y<w
.and Q £v+xw. Hence a L w and b < w. There-

fore a+ b w+w =w; that is a + b = sup[A+B]. |

44, Lemma. Let ,51’52’*°°’Sk be Boolean semiring and

k -
S =TT S;. If S carries the inherited coordinatewise
i=l - -

addition and multiplication operations then, S 1is a
Boolean semiring. _

'The validity of Lemma 44 is a consequence of
associativity and the existence of additive and multi-
plicative identities over S§. Similarly the distribu-
tive laws remain valid and all elements of S are

idempotent with respect to addition. O = {0,0,...,O}

14



is the zero element of S and 1 = {1,1,...,1} is
the identity for multiplication. The partial order on
S ié the standard product partial order.

. k
45. Let U be a countable subset of S =T S; where
i=]1

S5 is a Boolean sémiring. Let Uy be the ith pro-
jection of U. If wu; = sup Uy then u = (ui,...,uk)
= sup U. [iThe pfoduct partial order assures that u
is an upper bound for U. If w = (wl,...,wﬁ) is an
upper bound for U then wy; > sup U;, (1 < i k).

Therefore w; 2 u; and hense, u < w; that is

u = sup U.|

46. Definition, Let X be a poset. A CX 1is
directed if for each pair x,y ¢ A there exists

zZ € A such that: x {z and y < z.

15



II1. oi-COMPLETENESS AND o-CONTINUITY

1. Definition. Let X be a poset and A e X.
i) 1If sup'A exists whenever A 1is countable

then X 1is oo-complete.

ii)‘ If sup A exists whenever A 1is countable and .
directed then X 1is ol-complete.

iii) 1If sup[{an}:‘l] exists for'eve:y montone
increasing sequence then X 1is cz-complete.

iv) If sup A exists whenever A 1is directed then

X is 03-comp1ete.

Clearly, % implies cl-complete, oy implies

0y-complete, and o, implies clvcomplete.

2. Lemma. o,-complete implies cl-complete. pfLet X
be a cz-complete.poset and S CX be countable and
directed, S = {bn P n e Z+}. Let cy = bl' There
exists ¢, € S such that c¢; (¢, and b, < ¢,, since
S 1is directed. Iteratively choose Crt1 € S such
that b, ., <"cpyy and ¢ < Cr41r C = {cn :n e Z+}
is a monotone increasing sequence with bk = Cp for all
k. Since X 1is cz-complete, there exists ¢ ¢ X such
that ¢ = sup C. Clearly c¢ is an upper bound of S.
Let y be an upper bound for S. vy 2 Cp for all k
since C € S. Thus c¢ < y; that is, ¢ = sup Si |

16



3. Lemma. If X is a 0g-complete poset then, X 1is
a semilattice. [iLet A be a two element subset of X.

Since X 1is oy-complete, sup [A] exists.i)

4, Leﬁ@a. Every Boolean semiring S 1is a semilattice.
[[Let A = {x,y}vc S. x+y=x+x+y and y + x =

"y +y+ x. Therefore x { x+y and y<y+x =x + y;
that is x + y is an upper bound of A, Let 2z be

an upper bound for A, Now x {z and y < z imply

x+y<2z+z=2. [Lemma 1.4)], That is x + y =

wopfe, ).

5. Lemma, If X 1is a semilattice then. Gg» 07 and
cz-completeness aré'equivalent. It suffices to show
cl-complete implies co-complete. Let A = {an :n > O}.
For m > 0 1let .bm»‘ sup {an : 0<n(g m}. Notice b
exists since X 1is a semilattice. Moreover

B = {bo,bl,...,bj...} is countable and directed for

bo S-bl < "'bj"' . Let b = sup B. <Clearly b > aj

for all j; that is, b 1is an upper boupd for A, Let

z be an upper bound for A, b; <z for j > O. Hence
b < z; that is b = sup A.|]

17



6. Definition. Let S be a Boolean semiring. S is

oi-complete (0ig3) if

i) as a poset (8;K) 1is o4-complete
ii) £ : SXS ~ S defined by £(x,y) = xy satisfies
f[sup[AXB]] = sup[ £f[AxB]] for all countable A,B C S,

7. Corollary: If S 1is a Boolean semiring ﬁhen

Og» Oy and cz-completeness are equivalent.

8. Definition. Let §S' be a Boolean semiring. If

a € S and sup{an :n 2.0} exists then -a* =
n . ‘

n
: oy .
sgp{a é > }
9. Corollary. If S 1is a ci-complete Boolean semi-

ring then a* exists for all a e S, (i=0,...,2).

bci-complete are equivalent in a Boolean semiringi.

10. Corollary. If S is a ci-complete Boolean semi-

ring and a € S then

i) 0F =1 o

ii) if a> 1 then a* > 1
iii) 1f a <1 then a* =1
iv) 1 ( a*

18



[L1) 0% = sup«{On :n > 0} - sup[l,sup{on :n > 1}]
n n

\F sug{o,l} =1

ii) 1 <a= 1<aga“"= 1l¢aga“<...<a

hence a*> 1l =a : '

iii) a1 = a“ (a(
hence a* =1 = a®.

iv) follows from ii and Lii. i

11. Definition. A Boolean semiring is regular if a*

exists for all a € S.

12. Corollary. A ci-complete.Boolean semiring is

regular, (1 = 0,...,2) ﬁCorollary 9 j.

13. Definition. Let X,‘Y be co-complete posets and
f : X ~+Y be an order morphism, £ 1is o-preservingv
if given a countable subset, A C X with a = sup A
then £f(a) = sup[f(A)].

14, Theorem. (Tarsky). If X is a floéred‘ og-complete
poset and £ : X - X is c-presérving then f; has a
least fixed point X3 that is, Xg = f(xo) and if

y = £(y) then X5 < Y.

19



Proof. Let | be the floor of X. Let x, =

sup[{;} U {fn(l) :n>> O}]. Since f 1is o-preserving,

Pl

f(xo) - sup[{fcl)} U {fn(l) tn>D 1}]
- sup[{f“(_b : n> o}
=xo [ 1 1is the floor of Xi.

Thus x5 is a fixed point of f. If y is.a fixed
point of f then, £(l) < £(y) =y since f 1is an
order morphism. Inductively £ () < y. Therefore

g &Y. //

15, Lemma. Let 'S be a oi-complete Boolean semiring.

Define £, : § +§ and r,: S5 -5 by Lx(y) = Xy and

rx(y) = yx. Let Vl’VZ C S be countable with u, =
sup V1 and u, = sup V2. If Lx and r, are
. o-preserving then sup{tx(y) : y € VZ} =T, (x) and

sup{rx(y) 1y € VZ} = Luz(x) for x € S.

Esup{tx(y) : y € VZ} = lx(uz) =X u, = ruzx and

sup{rx(y) Ty e'VZ} = rx(uz) = u2#1= zuz(x)l]

20



16. Lemma. Let S be a g,-complete Boolean semiring.

The following statements are equivalent.

. i) £ : SXS + S defined by £f(x,y)= xy is o-pre-
serving where SXS carries fhe standard product
structure,.

ii) For each x € S the functioms zx and T,
are o-preserving,

[ri = ii Let B C S be countable with b = sup B
Lx(sup B) = zx(b) =x b = f[sgp(xxB)] sup[ £(xxB)] ="
sup[xB] = sup[zx(B)].

ii = 1 Let V C SXS be countable with u = (ul,ﬁz)
= sup V. If V1 and V2 are the coordinate projections

of V then u; = sup V1 and u, = sup V,. For
a e V1 ~define B, = {b € V2 : (a,b) € V}, sup{f(V)}
= sup{sup f(a,Ba)} = sup{sup za(Ba)} = sup La(uz)
= sup[auz] = sup[ruz(a)] - ruz(ul) = uju, = f(ul,uz)]

= f{sup V]. i]

17. Definition. Let S be a oi-complete Boolean

- semiring. For a € S 1let a%* = sup{an :n > 0} .

18, Lemma., Let S be a ci-complete Boolean semiring.
Define £ : S -S by f(x) =xa +b where a,b e‘S.

f 1is o-preserving and the least fixed point of f

is ba*, |
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Proof: f 1is an order morphism [Lemma 1.35, 41]. Let
Y be a countable subset of S and y = sup Y. For

X € Y, X <y implies £(x) _g f(y); that is, f(y) 1is
an upper bound of £[Y]. If w is an upper bound of
f{Y] then =xa { xa + b { w. Now ya = sup [Ya) since
g(x,y) = xy 1is o-preserving because S is oi-vcomplete
_ seuiiring. Thus ya £ w. Mor.e‘over b<ya+bw.
Hence ya +b {w+ w =w. That is, f(y) =ya + b

= sup[ £(y)]. Therefore f 1is o-preserving., Recall
] is the zero element of the semiring‘. £() =

=x| +b =b. Iteratively f£2(|) = £(b) = ba + b,
£3(]) =ba? + ba + b,..., () = ba™ ! + ba™2 4. +ba
+ b. That is £7(]) = sup{bak : 0< k< n-l} = b

sup{ak © 0< k < n-1{. 1If X, 1s the least fixed point
of £ then x4, = sup{fnu_) :n > 0} [ Theorem 14].

Therefore Xg = sup{bak s k> 0}. Since multiplication

is o-preserving x5 = b sup{a,lc : k> O} = ba*, = //

A similar .argumeht\yi{elds the least fixed point

of g(x) =ax +b is a*b,
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; n
19. Lemma. Let {Si} be a sequence of ci-complete
i=1
n
Boolean semirings, If S =T S; then S is a oy-
i=1

copplete Boolean semiring. {S is a Boolean semiring

[Lemma 1.44y. To demonstrate that S is o;-complete,

let {SJ} be a countable family in S. Let
j=1

Pn(GJ) 631 Since {6%} is countable subset of S_
qu {5%} exists, Let s?p{ﬁg} = 5, and § = {Gn},
6 1s an upper bound of S by construction. Let w

be any upper bound of S. Then Wn Is an vypper

Bound o f {Si},hencd SpdwW, and &= wd

20, Definition. Let S be a ci-cbmplete Boolean p

g(ktn) _ ok

semiring and F : be o-preserving =n > 1.

For each a ¢ S(n), —6!-%& is the least fixed of

- sk

i=0,...,2). -

- gk such that ga(x) = F(x,a) (x ¢ Sk,

ox
= by* where gy(x) = xy + b~ pTheorem 144].

21. Exémple. Let F(x,y) = xy + b. SEE,y) - ||8'y||
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22. Definition. Let X and Y be o;-complete posets
(i =0,...,3) and S C X be countable and directed.
If sup[£(S)] exists and sup[£f(S)] = £[sup(S)] then
f is ci-continuous. |

As with oi-cémpleteness we have o,-continuous
implies gl-continuous, cl-continuous is equivalent

to cz-cqntinuous, and 03-continuous implies 0q

continuous.
23, Lemma. Let f : X - Y be ci-continuous. If
x <y then f£(x) < £(y). |

E{x,y} is countable and directed. Since £ is
ci-continuous, f(x) < sup{f(x),f(y)} = f{sup{i,y}]
= f(y). Thus £ being oj-continuous implies f 1is

~an order mdrphism.ﬂ

24, Corollary. If f : X -X 1is o,-continuous then
f has a least fixed point.

B{l,f(l),fz(l)...fn(l)...} is a monotone increasing
sequence in X. Let x, = sup[{l}U{fn(l)}.:.n'> 0}]..As_
in T&rsky'é Theorem x, 1s a fixed point of f£. 1If
y 1is a fixed point of £, £°(]) { y for all n.
Therefore x5 < yi.
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25. Lemma. The oi-continuous image of a directed set
is directed.

flet £ : X Y be o;-continuous where X and
Y are o;-complete. Let S CX be directed. If
{yl,yz} C £(S) there exists {xl,xz} C S such that

f(xl) = y1,~f(x2) = y,. Since S 1is directed there
exists x5 € § with x; { x5 and x, { x3. Therefore
¥y, = f(xl) < f(x3) and Yo = f(xz) < f(x3) [Lemma 237];
that is £[S] is directed.

26. Lemma. Let X,Yl,...,Yk by ci-complete posets
(i =0,...,3). Define £ : X -»Y1><...><Yk by £(x)

= (fl(x),...,fk(x)).Pis» o;-continuous if and oniy if
each fj is oi-continuous ( =1,...,k). [ = Let
f be o;-continuous and § C X be countable and
directed withl s = sup S. By definition of 04
continuity we also have y = (yl,...,yk) = gsup[ £(S)]
exists, Therefore y = sup[£f(S)] = f[sup(S)] = £(s).
Moreover fj(S) is countable and directed since the
projection mappings are Ui-continuous. Thus zj

= sup fj[S] exists. Therefore .fj(x) g_zj for all
Xx € S. That is f£f(x) =,(f1(x),..;,fk(x))‘s (zl,;..,zk)
for all x e‘S. Since y = sup[£(S)], Y3 < z;

(3 =1,...,k). Clearly yj 2.fj(x) for all x € S.
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Therefore Yj.Z zj G =1,...,k); that is ‘yj = zj.
Thus F“?(fj(s) =2y =y; = fj(s) = fj[sup S]; that

is fj' is oi-continuous.

<= Conversely suppose fj is ci-continuous
(j =1,...,k). Let S CX be countable and directed

with s = sup S and yy = fj(s). Since fj is oy
continuous, vy = fj(s) - sup[fj(S)]; that is y =
(yl,...,yk) is an upper bound for £[S]. Now £ is
order preserving since each fj is order preserving.
Hence £[S] 1is directed. Let u = (ul,...,uk)

= sup[ £(S8)]. Thus u, is an upper bound for fj(S).
Therefore yj < uj (j =1,...,k). Thus y = u, That
is f[sup(S)]) = £(s) =y =U = sup[£[S]] 4

27. Lemma. Let X, Y, Z be o ;-complete posets
(i=0,...,3). If £ :X Y and g : Y -+ Z are
oifcontinuous then feg : X =2 is Ui-continuous,
Blet S C X be countable and directed. £[S] and

gl £[S]] ére countable and directed Btemma 25i). Since
f and g are o;-continuous sup{fg(S)] = sup[g(fS)]

= g[sup £(S)] = g[£(sup S)] = £g(sup S)| .

28. Definition. A poset X 1is complete if each subset

of X has a sup.

26




29, Lemma. Let X be a complete poset. If A CX
then inf[A] exists. |

| fObserve 2z = inf A if z ( a for all a ¢ A
and if y is a lower bound for A then z > y,. Let
B = {x : x is a lower bound for A}. B is not empty
since all posets are assumed to have a floor. Let
b =sup B. x << a for all a € A, x € B, therefore
b<a for all a ¢ A, That is b 1is a lower bound
for A. By definition x ¢ b for all x € B,}hence
b = inf Af. . |

30. Lemma. Let X be a complete poset and £ : X ~ X
be an order morphism., If Q = {x : £(x) < x} and
y = inf Q then f(y) =y and y 1is the least fixed
poinﬁ of f..

iy < x for each x ¢ Q. Hénce f(y) < £(x) < X.
Thus f£(y) is a lower Bound for Q, hence f£(y) <y,
and y € Q. For x e Q,f(x) < x. Since f 1is an order
morphism £f[£(x)] < £(x); therefgge f(x) € Q whenever -
x € Q. In particular f(y)'e Q. Sinée- y = inf Q
y < £(y); therefore y = f(y) and y 1is a fixed point
of f. Since all fixed points of £ are in Q, y 1is
the least fixed point of £.4)
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31. Corollary. Let X be a complete poset and
f: X +-X be an order morphism. If R = {x : x £ £(x)
and z = sup R then . £f(z) =2 and z 1is the greatest

fixed point of f£.

32, Lemma. Let X be a complete poset, and x,y € X
with x <y. If [x,y] = {z eX : x<z S.y} then
[x,y] 1is a complete poset.

fiLet A C [x,y]. Let a = supx[Aj. a e [xy]

since y 1is an upper bound of A. Thus a = sup,[x, ¥y}

33. Lemma. Let X be a complete poset and f : X =X
be an order morphism. If P 1is the set of fixed points

of £ then P 1is a complete poset,

Proof: Let x, = inﬁxP, X, exists by Tarsky Theoremn
Let x* = supxP, x* exists for X 1s a complete

poset. Let | = inf X and T = sup X. Choose A C P
such that A f p. Let a =supyA. [a,]] is a complete
poset., If x € A then x < a. Hénce x = £(x) < £(a).
Since a = supy[A], a < £(a). Thus a ¢ £(a) < T

Let g = flLa,T]' In particular g : [a, ] = [a, ]

and g is an order morphism since f 1is. Since

[a,T] is a complete poset g has a least fixed point
w € [a,[] [Lemma 30]. Therefore w ¢ P. Let v be
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an upper bound of A and v e¢ P. Therefore a (v,
and v € [a,T]. Thus g(v) = v. Since w 1is least
fixed point .of g, w { v. Hence w = supP[A] and

therefore P is complete.  //

34, Coroilary. If X is a complete poset and
f: X ~+X .is an order morphism then P, the set of

fixed points of £, is a lattice.

35. Lemma., Let X be a oj-complete poset and
{xn :n 2_0} be a sequence of elements in X such
that X5 < xj41 for all j. Let {in :n > 1} be

a sequence of integers such that O < i <ik_"_1 for

all k., If u= sup{xn} then u = sup{x : k> 1} .

1y

Proof: Since ik‘< ik+1 we have x5 Let

< X .
| B e %
v = sup{xik t k 2_1}. Observe i, > £ for all ¢.

-'Hence X, £ Xy

i, v and u v. However u = sup{xn}

implies v < u. Therefore u=v.  //

Observe if S is a o;-complete Boolean semiring
(i =0,...,3) and £ : SxS ~ S 1is defined by £(x,y)
= xy then £ is oi-continuous by Definition 1.6.
Also we have shown g : SxS - S defined by g(x,y)

= x+y 1is o;-continuous in Lemma 1.43,
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36. Lemma. Let S be a os-complete Boolean semiring
and A ='{aj t 3 2_0} then sup(bA) = b sup A.

fmultiplication is oi-continuousﬂ.

37. Lemma. Let S be a ci-complete Beeolean semiring.
(a*)? = a* for n > 1.

|'_|(a*)n+1 = a*(d‘)n. Hence it is sufficient to °
establish (a*)" = a* for n =2 and apply mathe-
matical induction. Since a° =1, 1 < a* hence
a* < a*a* =_(a*)2. Moreover aa* = a Sup{aj tJ 2_0}
= sup{aaj 3> 0}, hence aa* = sup{aj P> 1} <
sup{aj | 2.0}-= a*, That is aa* ¢ a*., Therefore
aa* = a(aa*) < aa* <-a*, Inductively, aPa* < a* for
n > 0, Thus aka* = sup{aj : j > O}a* = sup{aja*:j > O}
£ a*. Therefore (a*)2 = a* and inductively _(a*)n = a*

for n > 1.1

38. Corollary. Let S be a ci-complete Boolean

semiring and a ¢ S. (a*)* = a¥%

. f(a*)* = Sgp{(a*)n . n 2_0} = sué{l,a*} = a¥ g

39. Corollary. Let S be a o;-complete Boolean

semiring and a € S, b € S, (a+b)* = a*b*
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o]

n
...... S [(a+b)* - sgp{(a*‘b)n} = sgp .Z ajbn'j = Z apbq

j=0 p=0
| . q=0,
= () () D = eupfaP] sup bq}> - akb*]
p=0 q=0 P q

40. Corollary. Let S be a oi-complete Boolean

semiring and a € S. (atl)* = a%*,
D(a-’-l)* = gk]l% = g%] = a*‘]

41. Corollary. Let S be a o;-complete Boolean

semiring and a € S. a* = (l+aa¥%),

00 - o0 oo

lax = y an=1+Z a” =1+ a y an=1+aa*|]

n=0 n=l n=0
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" III. FIXED POINT THEORY

1. Definition. Let X and Y be o;-complete
" posets (i = 0,...,3). EE(X,Y) is the set of o4~

continuous functions f : X = Y.

2. Definition. Let £,g € Fi(X,Y). f<g 1if
f(x) ¢ g(x) for all x e X.

R4

Under this definition F,(X,Y) 1is a poset whose

floor is the constant function |y .

3. Definition. Let X =Y and define | || : F, (X,X)~+X
by £ = sup{fn(l) :n> O}.
Recall f being o;-continuous implies f is

monotonic [Lemma 2.23]. Therefore | < £(]) <...< £2()
and |[£]| is the least fixed point of £ [Theorem 2.24]

4, Lemma. Let X and Y be 0;-complete posets

(i =0,...,3). If P : XxXY¥ X is ci-continuous_
then Fy : X X 1is o -continuous where Fy(x)

= F(x,y). [Let S be a countable directed subset of

X. Fy(S) = F[Sx{y}]. Since. F is. ai-continuous

SuP[F(Sx{Y})] = sup[F (S)] = F[SUP(SX{Y})] = Fylsup(8) 11
As the o,;-continuous image of directed set is

directed, of a countable set is countable, of a
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monotone sequence is a monotone sequence, we shall
limit our proofs to a single case. Other cases may be

derived in a similar fashion.

5. Lemma. Let X and Y be cz-complete posets and

[

let {fn tn > 1} be a monotonic increasing sequence
of functions in FZ(X',Y). If gx) = sup{fn(x) :n > l}

then g 1s o,-continuous.

Proof: Let {xn :n > 1} be a monotonic increasing
' sequence in X with x* = sup{xn}. Consider the
following relationships:

£1(x)) < £5(x9) Lovo g £ (%) L4005 8(%9)

£1(xy) < fz(xz) LK £ () LK g(xz)

fl(g*) < fz(x*) [N fn(x*) oo X B(x%) ,

g is monotonic. fLlet x { y. For each n f‘h (y)

< g(y). Since {fn} is monotonic f_(x) < £ _(y)

£ 8(y). However g(x) = sup{fn‘(x) :n D> 1}; therefore,

g(x) < g(y)}. Since g is monotonic increasing

glx*) = sup{g(xn) :n > 1}; that is, g is Acz-continuous.//
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6. Definition. -E-F—g%ll = ||Fy|| is the least fixed

point of F_ : X - X such that Fy(x) = F(x,y).

y

7. Example., Let F : X ~X be defined by F(x) = x
EG) - ‘
B .

8. Example. Let F : X -~X where F(x) =a. As a
is the unique fixed point of F, j%{g}—c)- = a,

9. Example. Let F : X =X where F(x) = xz + a. Let
y be any fixed point of F. Since | 'y and F is
0;-continuous Fk(_[) < Fk(y) for all k. Now F() = a,

F2(]) =a? + a, F3() =a® + a3 +a% +a,...,F(])
-1 .
zn

-z aj. Thus a¥ = sup{an I + 0} ‘%ﬁ‘].
i= "
We shall primarily be interested in the case
where Sq and 82 are o;-complete Boolean semirings’
~ ch - o 7 . :
of the form S1 S and S2 S and F : Sl X S2 - S1
is o;-continuous. Notice if u = lleIl then u

= Fy(u’); that is, u is a solution of x = F(x,y).

10. Theorem. Let X and Y be oi-complete posets

(i =0,...,3) and F : XXY =+ X be o;-continuous.

If g : Y »X 1is defined by g(y) =i%-1-ﬂ then

g is ¢;-cont inuous.
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Proof: gi(y) -_M = lFgl= sup{F @) :n> o}

Gx
[Theorem 2.14]. As usual we need only consider the

case i = 2. Notice rf,q_) = FIF (D] = FIF(L)]
=F(F(,y),y]. This process is iterative. Let

{yn :n > 1} be a monotonic increasing sequence and

let y* = sup{ :n > 1} We show first that F;(O)

is cz-contlnuous. We' know this is true for n =0

on n =1, Suppose F?  is cz-continuous for n = k.
F§+1(l) = Fy[F?(i)] - F[Ft(l),y}.‘ Since y* = sup{yn} |
and F 1is o,-continuous, sup{F( i_,yn) :n > 1}
=F(,y*). Let v =F(l,y,) then sup[F[F(,y_ ),y,]
= sup[F(v_,y )] = F[F(|,y*),y*] = sup{Fz L :n> 0}

= Fy*(l) since F(v >Yn ) is a monotonic 1ncreasing
sequence. Let w_ = Fy‘(l)- By the induction hypo-

theses {wn :n> 1lt is monotonic increasing. Thus

éup{wn': n > 1} = sup{F?n(l) : n‘; 1} = Fg*(l) = wk,

Now {(wn,yn) tn > 1} is monotonic increasing sequence

in XxY and sup{(wn,yn) :n 2.1} = (w¥*,y*). Therefore
k+1 - k - .

sup[Fy ] suv[F[Fy.n A)»y,11 = sup[F(w ,y,)]

= F(wk,y*) = F[Fg*(l),y*] = F?Il(l). Therefore E?(l)

is oz-continuous and {F;(l)} is monotonic increasing
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hence g(y*) = sup[g(yn)];‘that is g 1is o0,-continuous
[Lemma 57. |

11. Theorem (Lezczylowski). Let X and Y be
oj-complete posets (i1 =0,...,3) and F : XXY =~ XxY
be o;-continuous. Let (x°,y°) = ||F||, the least

_ fixed point of F. Let g(y) = —=(x,y) (y € ¥).

Define G : XXY -+ XXY by G(x,y) = (g(y),FZ(g(y),y))
where F(x,y) = (F;(x,y),F,(x,y)). Then 1) |G| = |IF|,
ii) and if h(y) =F,(g(y),y) then |h| =y° and

iii) g(y°) = x,.

Proof: i) Let (xl,yl) = |G}, in particular we have
exlyh) = hyh = @h, Fz(g(yl),yl)). Therefore

x' = g(y") and y = Fz(g(yl),yl) = Fz(xl,yl). Since
g(y) is least fixed point of F; for all vy, F,(g(y),y)
Legh =, yh = rahyh.
~ Consequently F (xl,yl) = (Fl(il,yl), Fz(xl,yl)) =
xlyh). since (%39 = IFl, %y < 1, yh); that
is |F|l < l6|l. cConversely, F(x°,y°) = (x°,y°). Hence

= g(y). Therefore x

Fl(xo,yo) = x© and -Fé(xo,yo) = yo. Now x° is a
fixed point of F . thus g(yo) g x°. Therefore
¢(x%y%) = @G, FEG?,37)) = G, F,&x°%,y%)
< (x%,5%. since Uy 1y < &%, ¢(x>1y) <
G(x%y°). Inductively Gn(lx»iy).ﬁ (x°,y%; that is
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Il < x°y°) = |F|l. Thus |G| = |F|. 1i) Define
h:Y-Y by h(y) =F,(g(y),y). Observe Fz(g(yl),yl)
= yl: Hence ||| Sryl. Let y2 = {h|| and x% = g(yz).
662,57 = (D), Fo@D,yD) = GyD) since y?

is the least fixed point of h. Therefore (xl,yl)

< (xz,yz) ~and yl < y2 = |h| hence y° < y2 which
implies y° = y* = [h|. iii) Finally g(y°) =

gyh) =x! =x% y/

12. Theorem. Let X be a oi-complete poset and
f,g : X - X be ci-continuous. Define h : XXX .- XxX
by h(x,y) = (g(y),£(x)), then [h|| = (lIfgl, gfl) and

h 1is oi-continuous.

Proof: Let {(xn,yn) :n D> O} be a monotone non-

decreasing sequence in XxX. If (u,v) = sup{(xn,yn)
then u = sup{xn} and v = sup{yn}, Now

Sﬁp{h(xn,yn) = sup{s(yn),f(xn)}

= sup{a(yn,f(xn)}
= (sup{s(yn)}, sup{f(xn>})

= (S(Sup{yn}), f(sup{#n}))
(8(v), £(w) = h(u,v) = nLsup{ (e v }1;
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that is h is o;-continuous. Recall fg(x) = g[£(x)]

and _|hf = sup{hn(lhl) s n D> 0} and h°(,]) = (LD).
Straightforward calculations yield hzn(lhl) = ((E)7 (),
@O™(D) and v = (DD, EDPEUD).

Since composition of oi-continuous functions is
continuous l.s»(fg)(l)'s...g_(fg)n(l) and |

.LS G <...< (yr)n(;]_).,. [Lemma 2.27]. COnsia,ering
only the even powers of h with the first aﬁd second

coordinates, Lemma 24 yields |[h| = (|\fg], lig€ll). //

13. Lemma. Let S be a .co-complete Boolean semiring
with a,b € S. The least u satisfying au+ b <u

is a%*b,. ‘ "

| [Let g(x) = (a+l)x + b. We know Jgj = (a+l)*b
(Lemma 2.18]. Let c = (a+l)*. Then (a+l)c + b =

ac + ¢ +b =c. Hence ac + b £ c¢. Choose u such

that au + b { u., Equivalently au + u+ b = u,
Apblying the distributive law we have (a+l)u + b = u.
Hence u 1is a fixed point of g. Therefore c¢ < u.
 Thus cb = (a+l)*b is least point satisfying au + b < u.

However (a+l)* = a* [Lemma 2.39]j.
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IV. FORMAL LANGUAGES

1. Definition. Let X be a set, A formal language

on X is any subset of X* = U {Xr} .
r>0

Recall X* under concatenation is the free monoid,
Mp(X), [Definition 1.10]. Moreover if X =@ then
x0 = {e} but X* =@ for r > 0. X is the alphabet
of the formal language J((X) C.X*. In an attémpt to
abstract the essence of natural language in order to
make—their study applicable to computer technology,
N. Chomsky developed a theory of phrase structured or
generative grammaré (1963-1968). ALGOL was the first
computer 1anguage developed using this theory of formal

language.

2. Definition.. A phrase structured grammar, P.S.G.,
consists of

i) a nonempty set V, the vocabulary, such that
Vo=Vy UVg, Vg N vy =g, VN;é;o, Ve # 0. Vg is

called the nonterminal set and V the terminal set.

T
ii) a finite sequence of ordered pairs (W, V)

in V¥ x V* cailed productions such that u € vt~ V%;

that is at least one element of VN is embedded in .
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'iii) There exists S e V) designated as the
initial or start symbol. ‘
k

The sequence of production {(u,v)n} is often
n=l

designated by P = {Pl""’Pk}‘ ) is said to producé

v if there exists P e P with P = (u,v). This is
also written in a functional notation as P : p ~ v.

The phrése structured grammar, G, may then be identified

as the ordered quadtriple {VN,VT,EKS}.'

3. Example, Vy = {a,b},'VT - {A,B}, S =b and
Pp:a=A P):S~+B, Py: S ~aS and PA_’: S ~ B.
G ‘then generates {AnB :n D> O}.

For G a phrase structured grammar, the language
generated by G 1s defined to be L(G) = {B:B e V%,
S - a}. | |
4. Definition. Let X be a set and l(u,v) € X*xX*
such that u # €. Define P(u,v) € K&(X*) by (a,B)
€ P(u,v) of there existv (al,az) € X*xX* such that
a =a) ka, and B = a; ¥ oa,. P(u,v) is the produc-
tion determined by .(u,v).

Alternately we use the notation gP v)B for

(s
(a,B) € P and p -+ v for the pair (g,v). Recall

('"b v)

40



€ 1is the null or empty sequence. With respect to R;
we have (u,v) € R; if p ~»%

5. DEflnition. Let = {P(u" v)l, e ooy P('J-, v)k} be a

finite set of productions on X. (X,P) 1is a generalized

grammar on X determined by P.

6. Definition. Let (x,y) € X*X*, x derives y if

there exists P e P* such that xPy; that is there
-exists {P(u;V)i e P: j= 1,...,r} and {xl""’xr-l}
| k|

€ X* such that
x P(usv)i xl
1

X1 P(N:Y)izxz

' xr-lP(“’ V)iry .

7. Definition. Let R C AX B be a relation. For
A' C A define R[A'] = {b : there exists a ¢ A' with
(a,b) € R}.

8. Definition. The language generated by a formal.
grammar G 1is defined to be J[(G) = IE{{S}] N T* C T*.
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9. Definition. Let G and G' be formal grammars
wiéh the same.set of terminal elements X1 = N1 UrT
G and G' are equivalent grammars if L (G) = L(G').

10. Definition., Let a € X* define the cardinality

ol n if a =Xp,...,% (%; € X) ~;
als .
O 1if g = ¢ ‘

11. Definition. G 1is a contextfree grammar, CFG,

of o as

if and only if for each production (a,B) € P = BRy(X¥)
card(a) = 1. This assures that o is a single element

of VN'

12. A language L C T* is called contextfree if there

exists'a contextfree grammar G such that L = oL (G).

A

13. Theorem. Given a contextfree grammar G = (N,T,P,S),

there exists an equivalent context G' = (N',T,P',S)
such that for each (a,B) € P' either B ¢ N'* or

Bl =1 and B € T.

Proof: Let Np = {N} X T. Clearly Np NN=@= Ny n T.
For each a € T 1let x, = (N,a). Let N' =NU No.

On a free monoid a homomorphism defined only on the
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generators may be generalized to the entire monoid through
concatenation. Define a homomorphism h : (NUTy* — N'*
‘by h(x) = {x f if x o N} and‘ h(a) =x_, = v, a) |
for a € T. Define P' by P' = {a ~h(B) : o« ~B € P}
U {xa ~a : ae€ T}. The equivalence of G aod G'

may be accomplished by replacing every terminal a by
X,- Thus every production in G ‘will also be a produc-
tion in G', since the last step will be a string of
terminals. Moreover if (a,B) € P is in P then

B e (NURp)* = N'*; otherwise (a,B) = (x,,a) and

Bl =1 and B =a e T. //

14. Theorem (Shelion-Grembach). Given G a context
free grémmar G = (N,T,P,S) there exists an equivalent
context free grammar G' = (N',T,P',S) such that for
éach (a,p) € P' either p = ap' where a € T and

B! e N'* or B eT or B =¢,.
- Theorems of this type are used in parsing a language.

15. Example. Let T = {1}, N = {s}, P = {s ~s11,

S ~ 11} L(G) = {v : Y € T and S ~* ?} consists of

strings containing pairs of ones.
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16. Definition. Let S be a Boolean semiring. A
binary relation 8 on S 1is admissible if 9 is an
equivalence relation on S and for x,y,u,v ¢ § 1if

X6u and y6v then x + ybu + v and xyb uv,

17. Definition. [x]e = {y-: xey} and S/6 =

{[x]e P X € S} .

As usual we define [x]e + [y]6 = [x+y]e and
[x]GO[y]e = [xy]e. With respect to formal languages

we identify the multiplicative identity } with {3
awd the additive 1dentity 6 with @.

18. Theorem. S/6 1is a Boolean semiring [tObserve’
[x]g + [0], = [x+0], = [x+0], = [x], = [O+x], = [0],

+ [x]e;that is [O]e is the additive identity.
‘Similar calculations yield that [1], 1is the multi-
plicative identity. That + 'and . are associative
over S/6 1is a direct consequence of the aséoéiativity
of + and . over S. Since S 1is a Boolean semi-
fing [aly, + [aly = [a+a]e = [a]e. The remaining
reﬁuifementv[Definition 1-20] for"S/e to be a semi-
ring are straightforward using the fact that S 1is a

Boolean semiring.f]
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19. Definition. Let S be cz-complete Boolean

semiring and 6 an admissible relation on S. @6 1is
cz-compatible_if given monotonic sequences {xn} and
{un} (n>1) in S with x 6 u, for all n then

X 6 u where x = sup{xn} and pu = sup{un},

20. Lemma. Let S be a Boolean semiring and 6 an
admissible relation on S.’AIf X<y then [x],< [yTg
fx <y 1f and only if x + y = y]. Since 6 1is
admissible [x+y]e = [y]e = [x]9 + [y]e. Therefore

[x]y < [¥1g- B

21. Definition. Let S be a Boolean éemiring. G"(s)
is the set of nxn matrices with entries in S. GP(S)
has the standard matrix operations of addition and

multiplication.

The usual computations, based on S being a
Boolean semiring, éhow that G%(S) 1is also a semiring. -
~Since a + a =a for all a e S, A+ A=A for all
A e Gn(S). Thus we have

22. Lemma. If S 1is a Boolean semiring them GU(S)

is a Boolean semiring.
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23. Definition. For A,B e G"(S), A KB 1if a;
s’
(1gi, jgn).

L by

3 sJ

24. Theorem. .If S 1is a o;-complete Boolean semiring
then Gn(S) is oi-complete (1 =0,...,3)>

k

tLet A< be a countable subset of G"(S).

.Ak = (agj). For each pair p,a{aﬁ;q} is a countable

subset of S. Let

= sup{ak }. Then A = ( )

%p,a = *kP1%psq psq
is an upper bound for {Ak}. Let B be an upper bound

of A¥X then b, o 1is an upper bound for {Ak}. Let
' 3
B be an upper bound for ak then bp q is an upper
?
k _ - k )
bound for {ap,q}' Since ap,q sup{ap,q} R ap’q <
. A d A= AT L. ~
bp,q Thus. < B an sgp{ |

25. Lemma. Let F : G"(S) ~G"(S) be defined by
F(X) = A(X) + C then |F| = A*C,

This is a special case of Lemma 2.18)] Recall
if S 1is qi-comblete Boolean semiring then + and
are oi-continuous over S. Hence matrix multiplica-

tion and matrix addition are ci—continuous over Gn(S)]

26. Definition. Let J P>9(S) be: the set of matrices

with entries in S. In particular G7(S) = L£.™7(S).
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In general 2 p’q(S) is not a semiring for matrix -
multiplication need not be defined unless p = q.
However 2L p’q(S) can be embedded in a minimal semi-

ring Gn(S) where n = max (p,q).

27. Definition. Let A ¢ xP°9(S) and n = max(p,q).
Let
A a, if j,k<n
= (8.,) = { JK =
=@ {

0 otherwise

”
A is the extension of A to G"(S) and we may identify

A and 2.

28. Definition. Let X and Y be posets and f : X ~ Y.

f is oi-continuous if

i) there exists 0;-complete Boolean semiring S1
and S, such that X is embedded in S; and Y is
embedded in S,. " |
ii).there exists a oi-continuous function
' \

F : S1 —vSZ such that th = f,

29, Lemma: Let S be a oi-complete Boolean semiring.
Let £ : L) x LPT(S) - LPY(S) be defined by
£f(A,B) = AB then f 1is 'oi-continuous. [Let

n = max(p,q,r) and S = G7(S) x G™(S) and S, = G"(S).

2
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F:8, 5, is oj-continuous as matrix multiplication
and addition are o -continuous over G (s). F(R,ﬁ)
= £(A,B)]

30. Lemma: Let A ¢ G°(S) and X,C ¢ L ™1(S) and
£:q™1 ~3™1 be defined by £(X) =AX + C then £
is ci-continuous.
- n A ’ B - .
[iLet S1 = S2 = G (S) and FX) = AX + C for X
and C e &n,l' ‘
F is ci-continuous as the composition of

ci-continuous function and Fl n'l(S) = f since
R =xq.
31. Corollary. Let £ :J ™I¢s) »~ ™1(s) be

defined by £(X) = AX + C for X,C ¢ ;L“ 1(s) and
A ¢ GU(S), then |f| = A*C . |

- pExtend f to F : G"(S) ~G"(S) in the usual
' A
manner £(X) =AX + C =AX + C = F(X). |F| = A*C

fLemma 25]. Thus [£|| = A*C as C is identifiable
with C.i

32. Example. Let S be a ci-complete Boolean semi-

ring (1 =0,...,2) and A = (2 3) ¢ G2(S) then

48



(a+bd¥c)* a*b (ca*b+d)*
A* = B =
| d*c(atbd¥c)*  (ca*b+d)*

BA* = T + AA*, Let (5 5) = ax

g h -
0 b f
CH=GD+¢ DE D
Thus
e =1 + ac + bg f = af + bh
g = ce + dg h=1+cf+ dh .

Recall the least fixed point of x - ax + b = a*b and
the least fixed point of x -+ xa + b = ba*, Also +

is commutative. Therefore

i) a*bh ¢ £
ii) d*ce < g .
Using 1 we obtain
e =1+ ae +bg > 1+ ae + b(a*ce)
Thus _
e >1+ (at+bd*c)e
by distributivity and

e > (atbd*c)*,
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l-‘simg ii we obtain
g > d¥*ce > d*c(a+bd*c)*
equivalently
d*c (a+bd*c)* < g .

Similarly since h =1 + cf + dh and substituting for
f we obtain h > 1 + ca*bh + dh = 1 + (ca*b+d)h. By
fixed point theoxry h > (ca*b+d)* and thefefére
a*b(ca*b+d)* < a*bh ¢ £f. Hence A* > B. Consider
equation I + AB

- '”(1 Oy 4 (@ byfatbd*e)* a*b(ca*b+d)*)
0O 1 ¢ d/ \d*c(a+bd*c)* (ca*b+d) *

1+a (a+bd*c)*+bd*c (a+bd*a)*  aa*b(ca*b+d)*+b(ca*b+a)*
c (a+bd*c) *+dd*c (a+bd*c)*  1l*ca*b (ca*b+d)*+d(ca*b+d)*

1+ (a+bd*c) (a+bd*c) * (aa*+1)b (ca*b+d) *
((1+dd*) c (atbd¥c)* 1+(ca*b+d) (ca*b+d)*

Since u* =1 + uu*‘ this reduces to

((a+bd*c)* a*b (ca*b+d) *
d*c (a+bd*c)* (ca*b+d)*
=B .
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Thus B 1is in fixed point hence we must have B Z.A*;

Hence A* = B,

33. Definition. Let S be a Boolean semiring. For

n> 1, Fn(S) = {g RN - s? -S} .

‘34, Definition. Rg = {g : g € F(S) such that g is

constant. For m > O R3+1 = {f : £ = gl+gz, f = 81895

f = g¥ where e R *x X ) = g. (% X _)*
1 YR £1°82 € Bpp- B1WXpse- ¥y T B3 Xy en¥y

0 ,
Observe Rg <R g (m>0).

35. Definition. R"(S) = U {RE(S) : m > o} .

36. Definition. Let S be a oi-completé Boolean
semiring (i = O,.;.,3), ACS and a € S. a 1is regular
over A of these exists an n > 1 and an £ ¢ RD,
bl""’bn é A such’that a=f (bl""’bn)'

37. Definition. AR = {a : a 1is regular over A}.

Notice aR C s.

38. Definition. A 1is a regular base for S if AB =S,

39. Lemma. If S 1is a ci-complete Boolean semiring

then AR is a g;-complete subsemiring of S.
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[Notice if £ ¢ R® then F : S L5 defined
+k

there exist f ¢ R® and g « rE

L]

by F (by,...ob b i1s..05b 0 ) = £(by,...,b ) € R"
For a; and a, € AB

such that

a; +a, = f(b1’°“’bn) + g(cl,...,ck)

~

- F(bl, v 0. ,bn’bn+1’ ¢ o 0 ,bn+k)

+‘G(c1""’ck’ck+1”"’ck+n)

-~ H(dl""’dn+k)

since Rn+k'

is closed under +. Thus 'AR is closed
under addition. A semilar argument shows AR to be
closed under multiplication. The remaining properties

R

of A" be a semiring follow from S being a semiring.

To show completeness let k be a countable subset of
AR, Ssince s 1is o;-complete there exists a k ¢ S
such that k = supgK. Hence gf(K) - gl(K*) = gl(k)

hence k € AB.]
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