
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1980

The crack and crack-contact problems for an
orthotropic strip.
Ali Cinar

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Cinar, Ali, "The crack and crack-contact problems for an orthotropic strip." (1980). Theses and Dissertations. Paper 1824.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228648948?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F1824&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1824&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1824&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=preserve.lehigh.edu%2Fetd%2F1824&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/1824?utm_source=preserve.lehigh.edu%2Fetd%2F1824&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


THE CRACK AND CRACK-CONTACT PROBLEMS 

FOR AN ORTHOTROPIC STRIP 

by 

ALI CINAR 

A Thesis 

Presented to the Graduate Committee 

of Lehigh University 

in Candidacy for the Degree of 

Master of Science 

in 

The Department of Mechanical Engineering and Mechanics 

Lehigh University 

1980 



ProQuest Number: EP76096 

All rights reserved 

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted. 

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion. 

uest 

ProQuest EP76096 

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author. 

All rights reserved. 
This work is protected against unauthorized copying under Title 17, United States Code 

Microform Edition © ProQuest LLC. 

ProQuest LLC. 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346 



This thesis is accepted and approved in partial fulfillment 

of the requirements for the degree of Master of Science in 

Applied Mechanics. 

(date) 

CC-- Professor in Charge 

Chairman of the Department 

n 



ACKNOWLEDGEMENTS 

I wish to thank Professor Fazil Erdogan, my thesis advisor, 

for his encouragement and advice. I also express my appreciation 

to Dr. Feridun Delale for his contributions. 

m 



TABLE OF CONTENTS 

Acknowledgements iii 

Abstract 1 

1. Introduction 2 

2. Material Parameters and Variable 
Transformations 5 

3. Formulation of the Problem 7 

3.1 Infinite Strip Without Crack            , 8 

-^          3.2 Infinite Plane with Crack 9 

3.3 Stress Function 9 

3.4 Boundary Conditions 15 

3.5 Singular Integral Equations 17 

3.6 Normalization 20 

3.7 Stress Intensity Factors 21 

4. The Problem of Continuous Contact 27 

5. The Problem of Interface Separation 30 

6. Results and Discussions 35 

References 

Appendix I 

Appendix II 

Appendix III 

Vita 

IV 



LIST OF TABLES 

Table 1: The effect of crack geometry and loading conditions 

on the stress intensity factors for H-, = H and K = 1.2895. 

Table 2: The effect of the shear parameter < on the stress 

intensity factors. 

b H 
Table 3: The critical values of — for various values of —, a a 

shear parameter K  = 2. 

Table 4: Pressure distribution for the wedge problem (Figures 

lb and 1c), K  = 2. 



LIST OF FIGURES 

Figure 1: Geometry of the crack and crack-contact problems. 

Figure 2; The effect of the crack location on the stress inten- 

sity factors for uniform surface pressure. H = 0.75a, 

6  = 1 = K for the isotropic materials and 5 = 1.1175, 

K  = 1.2895 for the orthotropic material (yellow birch). 

Figure 3: Same as .figure 2 ..for uniform shear- applied to jthe 

crack surface. 

Figure 4: Effect of the crack length on the stress intensity 

factor for a symmetrically located crack under uniform 

pressure, K =  1. 

Figure 5: Same as figure 4 for uniform shear applied to crack 

surface. 

Figure 6: The effect of sH/a on the stress intensity factors 

for a symmetrically located crack under uniform 

pressure or uniform shear, K = 1.2895. 

Figure 7: Separation length for the wedge problem, K = 2. 

Figure 8: Pressure distribution for the wedge problem, H = 0.6a, 

K  = 2. 

Figure 9: Crack tip stress intensity factor for the wedge prob- 

lem, K  = 2. 

Figure 10: Wedge tip "stress intensity factor for the crack con- 

tact problem, K  = 2. k 

'■„"'.".' vi 



ABSTRACT 

In this study the plane elastostatic problem for an infinite 

orthotropic strip containing a crack located arbitrarily parallel 

to the sides is considered. Fourier integral transformation 

technique is used to reduce the problem to two coupled singular 

integral equations which are subsequently solved numerically. 

The stress intensity factors are calculated for various crack 

geometries, crack locations and material parameters under various 

loading conditions. 

In addition to the crack problem, the problem.of wedge- 

loading by a frictionless rigid wedge pressed into the crack is 

considered. The resulting crack-contact problem is formulated 

by modifying the integral equation which is obtained for the 

crack problem. It is shown that for wedge lengths b less than 

a critical value b the continuous contact along the wedge-crack 

interface is maintained. However, for b > b  the crack surfaces 

separate from the wedge along a certain finite region. The prob- 

lem is formulated and solved for both cases and numerical results 

for bcr, distances determining the separation area, contact 

stresses, and stress intensity factors are given. 
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1.  INTRODUCTION 

In this study the linear fracture mechanics problem for an 

infinite orthotropic strip containing a crack parallel to the 

sides is considered. No assumption of symmetry about crack 

location is made. The problem is formulated in terms of a sys- 

tem of singular integral equations. In addition to this problem, 

the crack-contact problem for a frictionless rigid wedge pressed 

into crack is studied and the resulting problem is solved for 

both cases of continuous contact and interface separation. 

In recent years the increasing use of multi-layered bonded 

plates in many engineering structures and especially in aero- 

space industry, has brought up the need for more intensive 

fracture analysis of anisotropic materials. Physically, it is 

obvious that any manufacturing flaw that exists would be either 

in the bonding layer or, perhaps more likely, on the interface. 

Thus, this flaw may be considered as an interface crack problem. 

The composite materials are combinations of various different 

materials and are, in general, anisotropic and non-homogeneous. 

However, mostly because of analytical expediency they are usually 

assumed to be orthotropic and homogeneous. What makes fiber 

composite materials so important is that, during the process 

of manufacturing, they may be strengthened in certain directions, 

which improves their structural resistance to unstable crack 

propagation. The practical importance of the problem under 

'■-',• -2- 



consideration lies in the fact that the results may be used in 

experimental strength characterization as well as in structural 

fracture studies. For example, the cracked infinite strip may 

approximate a long beam or plate clamped at one end and loaded 

at the other end. The crack may grow due to effect of the shear 

stress. The wedge loading of elastic materials is also used in 

practice mainly in certain fracture toughness characterization 

tests and in fracturing solids by wedge-splitting or cleaving. 

In fracturing of solids, of course, the geometry is bounded in 

both directions. However, the assumption of an infinitely long 

strip would not affect the character of the results. 

In plane problems, for an infinite orthotropic medium con- 

taining a line crack, it has been shown that (taking limit as 

H-j-*" and H2-*»> Fig. 1) the orthotropy does not affect the stress 

intensity factors and the results are the same as those obtained 

from the isotropic case. However, for the bounded geometry, the 

stress intensity factors are highly dependent on the orthotropy 

of the material. We may refer to a number of previous works to 

study this dependence. For example, in [1] the problem of 

periodically arranged orthotropic strip containing cracks has 

been studied and in [2] an orthotropic strip containing an 

internal or edge crack is investigated for both material types 

I and II. The stress intensity factors are calculated and are 

compared with isotropic results. Recently the problem of an 
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infinite orthotropic strip containing a crack normal to the 

sides of the strip is considered in [3] and results are compared 

with the isotropic case. . The inclined internal crack problem 

for isotropic and orthotropic strips was studied in [4] and 

[5], respectively. The wedge loading of a semi-infinite strip 

with an edge crack is considered in [6]. It is formulated for 

the isotropic case and results are obtained for various wedge 

shapes. In formulating the problem under consideration-, it is 

assumed that both shear and normal stresses are applied on the 

crack surface. The results for other loading conditions may be 

obtained by using the superposition technique. The results are 

obtained for various crack geometries, crack locations and 

material parameters, under various basic loading conditions. 

The results are obtained for plane stress case. The formulation 

of plane strain problem is identical to plane stress if we rede- 

fine the material parameters <  and 6  (see appendix I). 

In the second part of the study the problem of a friction- 

less rigid flat wedge pressed into crack is considered. It 

is assumed that crack is located in the middle of the strip. 

The resulting crack-contact problem is formulated for both con- 

tinuous contact and interface separation cases by modifying the 

integral .equation obtained for the crack problem. The numerical 

calculations for determination of critical wedge length, contact 

stresses, stress intensity factors and distances determining the 

separation area are given. 

-4- 



2.  MATERIAL PARAMETERS AND VARIABLE TRANSFORMATIONS 

2.1 DEFINITION OF MATERIAL PARAMETERS 

In the plane theory of elasticity the Hook's law for gen- 

eralized plane stress and orthotropic materials can be expressed 

as 

21 
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where 

Let us define the following new constants [7]: 
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2.2 VARIABLE TRANSFORMATIONS 

The governing differential equation in the plane theory 

of elasticity for an orthotropic material is given by [8] 

where <j> = 4>(x-| ,Xo) is the airy stress function and stresses are 

given in terms of (f> as follows: 

rr--&£ , G:  = -^* > (r = -i%-       &£a-c). 

The new variables x,y and components of the .displacement vector 

are defined as 

>■--■■$>■ ->-y- ^§x2 > 

u = y,^s ,   v= -#■ • (2.?tt-j) 

It follows from the equations (2.7a-d) that components of strains 

in terms of the new variables can be expressed as 

P    -    ^u -   ££ 

c ■  J^l - 6^ 
hi~ *y ~    S 

The stresses in transformed and real planes can be related by 

using equations (2.6) and (2.7a,b) as follows: 

cr  - jt?t-   -SZL 
** ~ d^ ~ S 
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% = 4£ = * °^ bxi- 

(l^GL-C) 

Substituting the equations (2.8) and (2.9) into (2.4), and 

(2.3) and (2.7) into (2.5) we obtain 

'XX 

% 

z*3 

&<fi 

-i 

O 

^ 0 V 

1 o 
% 

o £+S> S 

(2./0) 

+ 2/C 
aV +-£?-o ■dx^2-    dy* M 

where 

4> = <{>(x>y) is the stress function. The equation (2.11) contains 

just one material parameter which is K. In the isotropic case 

K = 1 and equation (2.11) reduces to the well known form. 

3.  FORMULATION OF THE PROBLEM 

Consider the orthotropic strip shown in Fig. 1(a). The 

problem may be formulated by expressing the field quantities as 

the sum of those for a homogeneous strip without a crack and 

those for an infinite plane with a crack and by satisfying all 

the boundary conditions for the actual cracked strip. 

-7- 



3.1 INFINITE STRIP WITHOUT CRACK 

Applying the complex fourier integral transformation tech- 

nique to solve the governing equation (2.11), the solution can 

be expressed as 

<ft^) = TB=L^MeJ     ^       (3-0 
where S-(j=l,4) are the roots of 

From (3.2) we can write 

Examining the roots S-, and S2 it can be shown that they are 

either real or complex conjugates. 

Material type I: K >_ 1 . 

since < >_ 1 thus S-, and S2 are real. 

Material type II: K < 1 . 

Case 1: - 1 < < < 1 

S-| .= w-j + iw2 , S2 = w, - iw2 

Case 2: K <_'-! 

S-, = iw3 , S2 = iw4 

where w,, w2, w3 and w« are real constants. In this study we 

will assume that the material is of type I. The results for 

type II materials may be obtained with slight modification in 

the analysis.  ' .'-..... 
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3.2 INFINITE PLANE WITH CRACK 

The solution of (2.11) satisfying the regularity conditions 

at y = + °° as y ■*■ + », can be written as 

3.3 STRESS FUNCTION 

The stress function <}> is constructed in terms of <h and <j>2 

obtained in the previous section as 

<*>(*jy)- ^ixj^-f^hH) • (3-4) 

The continuity conditions for the stress vector at y = 0 may be 

used to eliminate two of the constants. These conditions are 

and may be shown to be identical to 

Using the equations (3.3a,b) and (3.6a,b) we obtain 

-5>/!,(«)-5^*0 = S(/\3<«)i-52>y*)- 
(3.7) 

Solving A3(a) and A4(a) in terms of A-j(a) and A^a) from (3.7) 

we obtain 
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A3^)r - A?>V«) " \4l^ 

where 

^tt^--f%, V-|^-      (3-9a-c) 

Defining the auxiliary functions and their Fourier transforms by 

-CO 

Lc*f 

The functions A, (a) and A«(a) can be found in terms of F-,(a) 

and FgCa) in the following way. From the equation (2.10) we have 

Differentiating the equation (3.12C) respect to x and (3.12a) 

with respect to y and eliminating the terms j-~ we obtain 
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or in terms of the stress function 

|V-M^(*^4^-|!C^5#1    (3-/3) 
Taking limiting values of the last equation as y + + 0 and 

subtracting, we obtain 

Observing that 

and using (3.6) we obtain 

,2 

a" 
From the equations (3.3) and (3.8), it follows that, 

 rWx,+o)-WX,-0)l~ T~Z 

integrating with respect to x from (3.17) we obtain 
00 -i«X 

where 

\ - M?)Sf+A5s; , A, ~-ti+tySZ-\S? . (3. ,S) 

-n- 



Taking inverse transform and using the equations (3.10) and 

(3.11) we obtain 

CoL^^A^-f \zAz(a)} =  FJ(o<)F. (3.20) 

Expressing the equation (3.12a) in terms of <j>(x,y), it follows 

that, 

Similarly, we can show that 

£ 

using the equations (3.3) and (3.8) we obtain 

a Qwv+oJ-Mj-oj-JL J" [A^^HA^^^^Joc (3.23) 

where 

.z 

Taking inverse transform of (3.23) and using the equations 

(3.10b) and (3.11b) we obtain 
■r 

The solution of equations (3.20) and (3.25) is straightforward 

and gives A-j(a) and A2(a) as 
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Fa-'*)  _L / A       ^f*) 

A2(*) , E [A/3^r t L \ -^T,] (5.26a.-h) 

where 

\---% ->    V = -^ 
VO 'VO 

Ai     .     \   _  A3 

(3.2?) 

A,^-^- J    A, -- 

Adding the equations (3.1) and (3.3a), we obtain the stress 

function <j>(x,y) which is valid in the domain y > 0, |x|<~ as 

substitution of the equations (3.8) in to (3.3b) gives 

The stress function <j>(x,y), in the domain y<0, |x|<»,. can be 

obtained as 

^)^[^4x/-x^ j^^(A?e -^e yjje ^ 

: f .£QW o! o<, y < a-    (3.30) 

27T^ 
"^■00 

+ 117" 
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In the equations (3.28) and (3.30), A-j(a) and Ap(a) are given 

in terms of displacement derivatives by (3.26) and the only 

unknown functions are c(a) (j=l,...,4). They can be determined 

from the homogeneous boundary conditions which will be dis- 

cussed later. The relevant stress components are given in. 

terms of the stress function as 

which may be expressed for y>0 and y<0 as follows: 

■ oa 

l«, 

3JT 

* j 

4*13.   ■S.lxly \A%Wj    SMj.-i-tW 
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In the above expressions S3 = -S-, and S* = -S2 have been 

used whenever needed. 

3.4 BOUNDARY CONDITIONS 

Referring to Fig. 1 and equation (2.7), the boundary con- 

ditions in the transformed plane can be written as 

V(Xji-o)-y(Xj-o)=.Oj   )xi>ol..' 

where 

(3:34) 

(3.35J 

b^.vT",; h^^sR, , d - -fe. ■ (3.36) 

Using the first four homogeneous conditions we may evaluate c(a) 
J 

(j=1>...,4) in terms of the displacement derivatives. The last 
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two mixed conditions give a pair of singular integral equations 

to.solve the displacement derivatives. The homogeneous boundary 

conditions give the following four linear algebraic equations 

for c.(j=l,...,4): 

§f*h. sa«h/ -S,A -sz«k, 

Using the equation (3.26) and solving c.(a) (j=l,...,4) from the i 

above expressions, after some lengthy manipulations we obtain 
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n w 
c*]o<| 

where the functions m.(a) are defined in the appendix II. It 

can be shown that c.(a) ->• 0 (j=l,...,4) as a + + ». 

3.5 SINGULAR INTEGRAL EQUATIONS 

Substituting the stress expressions into (3.34) and (3.35), 

after some lengthy manipulations we obtain the integral equa- 

tions in the following form (see Appendix III for derivation): 

Two additional conditions expressing the continuity of the dis- 

placements outside the crack are expressed as 

J-J ' -ol 
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The kernels K. .(t,x) (i,j = 1,2) are defined in Appendix II. 

The integral equations in the real plane may be obtained by 

changing the variables in (3.39) as follows 

where x, y, t are in the transformed plane and x,, Xp» t, are 

in the real plane. Similarly 

G,(x,) = ^(U2(hj^)"u2^u"0) 

Ga(x,)=. ^-(rOl(x,j+o)-t;I^/J-o)j      (3.42^) 

Using the equations (2.7a-d) and (3.10a,b) it can be shown that 

.F[(x)= 6,6*,) j  Fz(x)~  6 62W .     (3^3ftjfc) 

Using (3.41) and (3.43), the integral equations in the real 

plane become 

<f u no- where 

Ai5rV^j\-5iVs,)/3 i 

-18- 



pcx,) = -a; U,JP) , 

and 2a is the crack length in the real plane. The expressions 

of K-.;(t,x) (i,j=l,2) are of the following form (see Appendix 

II)- 

Using the equations (3.41) and (3.48), (3.47) becomes 

where (-3'43J 

fi.l=Ys,tSj)7/,/?;«l = ^s,-si)Hlvg'; 

Replacing ^by a, the equation (3.49) becomes 

-°°  ' ^ X,* ft*  £,*\ Sio 

where (3' 5/) 

. r; = (s,+S2)H,S., f2 = (s,-SJH,S, 

Cj = (vy^j ^ ts,-sa)/ts.. 
-19- 



From the equation (3.48) and (3.51), we can conclude that 

K-.(t-,,x-|) and K..(t,x) (i,j=l,2) have the same expressions if 

r-,,...,r. are replaced by r-|,...,r\. If x« = 0 is a plane of 

symmetry, then K-^U-i >x-|) = 0 - TCnUpX,) and system of integral 

equations reduce to two uncoupled integral equations. 

3.6 NORMALIZATION 

Changing the variables as 

^,~ar ; -a. <£■*,<&. .    -/<rr^/     .  . 
\ [3-53) 

After normalization integral equations take the form 

/ / 

where 

Since the crack has integrable singularities at both ends, the 

solution will be sought in the form 

-20- 



where <h(r) and (J>2(r) are Holder-continuous in the interval 

l-l £ r £ 1. 

The singular integral equations (3.54a,b) subject to single- 

valuedness conditions (3.55a,b) are solved by using Gauss- 

Chebyshev integration formulas. Thus, equations (3.54a,b) 

and (3.55a,b) are, respectively, replaced by [10] 

J = l 15 

J-l j=/ 
where 

S(. = cos(n^0-), i = i,--, o-/      ,.  (3.*;) 

The equations (3.58a,b) and (3.59a,b) provide 2n equations to 

solve the unknown functions ^(r-) and <j>£(r.) at 2n discrete 

points. 

3.7 STRESS INTENSITY FACTORS 

The stress intensity factors at the crack tips are defined 

as 

-21- 



Let us consider the following sectionally holomorphic function 

*-H 

where g(t) is Holder-continuous function in the interval a_<t£b 

and -1 < R6(a) <0  -1 < Re(.3) < 0. Examination of the singular 

behavior of F(z) around, the end points was investigated by 

Muskhelishvili [9] and was shown to be in the following form 

The function G(z) is bounded everywhere except possibly at the 

ends a, b where it may have the following behavior 

Using the equations (3.64) and (3.65), the singular behavior of 

stresses around the crack tips can be expressed as 

-22- 



//i/d>*>-i\   ^* 

07,^,0)   fag)"2/ €<-'»' - _fe ,a>.,,~,_ ^giL-f,^— - -77====/   (s.^a;fc) 

Substitution of (3.66a,b) into (3.63a,b) gives the stress inten- 

sity factors as 

In the system of linear equations, the kernels may be evaluated 
SHi   6H? 

for given ——and —— . In this case, the stress intensity a     a 

factors can be found without replacing the value of 6  by load- 

ing normal and shear stresses separately on the crack surface. 

The proof is given as follows: 

CASE I: NO SHEAR STRESS ON THE CRACK SURFACE 

( P*(S) 4  O'j    Cp{s)= O) 

Since q*(s) = 0 and, the kernels can be evaluated for given SH-,/a 

and 6Hp/a. From the equations (3.58a,b) and (3.59a,b) we can 

solve <j>t(r-)/S and $t(r.)  (j=l,n). Then, using the equations 
\ «Hi 

(3.67a,b), it may be seen that for given fixed values of —~ and a 

6^/8, k, does not depend on 6 explicitly and k~ is proportional 

to 5. 

CASE II: NO PRESSURE ON THE CRACK SURFACE 

-23- 



Similarly, for a given 6H-j/a and aHg/a, the <j>-,(r.) and 6<j>2(r.) 

can be solved from the system of linear equations. Using equa- 

tions (3.67a,b), it may again be shown that k, is inversely pro- 

portional to 6 and kp does not depend on 6 explicitly. If H-, = 

Ho = H, then k2 = 0 for case I and k-, = 0 for case II, therefore, 

k-, and kp depend on 6 only through the combination 6H/a and not 

explicitly. From the definition of stress intensity factors, 

the stresses at the crack end may be expressed as 

^"0,~ vfeyJ  (x'>a)'       &^a>y 
Using the equations (3.67a,b) 

'    (3.69a, fc>)' 

^')=vAr^--H^a^^)fO^--x,)jjA/<a. 
since 

«."^/«-\ - a ic\J /_ <2T       A%, 

s~- "a  '  £,(s' = eA> ;S^5)=6>,J 
and G^(x-j), G2(x-|) are displacement derivatives, they can be 

expressed as 

. -24- 



e/<M = 

G2lx,)- (B.7O0Lih) 

Using equations (3.69a,b), (3.70a,b) become 

where x1 < a. 

Using equations (3.42a,b) and (3.71a,b), we obtain 

£Alr. J 
dx, 

•3- -*, v^^-x.T 
.a (S.TZ&jb) 

.A. 

uIM/,to)-[;1(xl>-o)= ^-_T v57^- 

After evaluating the integrals, we get 

u1(xj;to)-c»2(xl;-o)= €k_ \/T^n^ x,o 

Now let the crack front advance parallel to itself by an amount 

da. The externally added (AU) and internally released energy 

-25- 



(AV) per unit crack front may then be expressed as 

Substitution of (3.68a,b) and (3.73a,b) into (3.74) gives 

or 
2-    I 2. 

Since u-v is a "potential" and a is a "distance", consequently 

6=£(U-V) (3.7,) 
has the dimension of "force" which is also known as the "crack 

extension force". From C3.75) and (3.76), we get 

The stress intensity factors are calculated for various crack 

geometries under various loading conditions. Therefore from 

equation (3.77) G can be found. For isotropic cases (plane 

stress and plane strain) K=1=5, S-,=1=S2• For this case, the 

value of x-|5 and x^ may be obtained as A-|5=2=^-i6« From equa- 

tion (3.77) G becomes 

-26- 



4.  THE PROBLEM OF CONTINUOUS CONTACT 

Referring to Figure 1(b), the problem of the frictionless 

full contact, can be solved with a slight modification in the 

integral equation (3.44a). In this study we will consider the 

symmetric problem (i.e. x-i=0 and Xo=0 are planes of symmetry), 

the equations (3.5a,b) imply that x2=0 has to be a plane of 

symmetry (i.e. crack must be located in the middle of the strip) 

but x-,=0 may not be a plane of symmetry. 

For symmetric problem K-j^t-, ,x-.) = 0, the integral equation 

(3.44a) becomes 

j7^+ W^jsw.Wt, - - ff-w-   (4-0 
Noting that p(x-j) = 0 for b < |x-j| < a and assuming a flat 

wedge (i.e., G-J(X-J) = 0 for |x-j| < b) (4.1) becomes 

which, by using the conditions of symmetry with respect to 

X-, = 0 plane, may be reduced to 

where 

1 

Also, the pressure distribution along the contact area can be 

expressed as 

-27- 



a. 
_/rS 

**'*      J±       ' ] ~b<Xtib (£+.1+) 
In this problem if we assume that G,(x-,) = -G-,(-x-|) the single- 

valuedness condition is automatically satisfied and, from the 

physics of the problem the additional condition may be expressed 

as a. 

where v is the total thickness of the wedge. 

To simplify the numerical analysis, the following dimension- 

less quantities are introduced 

After normalization, the equations (4.3), (4.5) and (4.4) are, 

respectively, replaced by 

■' a-y ... 

J, •  ■ '   a- b 
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where 

.k,cr,s,j = Z'ttux,)  ,  ^r,s3) = ^AjAj) 
and since the variables s, and s3 vary between -1 and +1, the 

subscripts have been deleted. 

Noting that the index of the singular integral equation 

(4.7a) is +1, its solution may be expressed as 

The equations (4.7a,b) may then be replaced by 

where r., s., and w. are respectively given by equations (3.60), 

(3.61) and (.3.62). 

The unknowns <f>(r,-) (j=l>n) are determined from the system 
J 

of equations (4.11), using the $(r.) and (4.8); the pressure at 

the various points can be evaluated as 

It should be observed that the integral equation is valid 
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provided the contact stresses obtained from (4.12) is compress- 

ive everywhere, i.e. for 0<x-,<b. To investigate the separation 

on the interface we need to know bcr which can be determined 

from the condition that the contact pressure be zero at x-,=0. 

The value of b  may be found for a given crack geometry by 

iterating equations (4.11) and (4.12). 

5.  THE PROBLEM OF INTERFACE SEPARATION b > bcr 

Since the contact stress may be tensile, for b > b^ there cr 

would be separation in the neighborhood of x-,=0 on both sides 

of the wedge. Let the separation area be described by -c<x-,<c 

H b (see Fig. 1(c)), where c is unknown and is a function of £, — a a ■ 
and material parameters. 

In this case, too, the problem can be solved by slightly 

modifying the integral equation (4.1). In this problem we have 

c <L lf,i<f (51 a) 
C £+£ C 

FM-Oj   /A,|<C j   ±><|X,|^0L. (5.\c) 

Using equations (5.1a), the equation (4.1) becomes 
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-b G- 

( L * I ){T* +^WK+Jifa 

-I-K^.M <#+.)«", 
-gfp<.x,).c<\x,\<l, 

(5-2) 
0j Ix^Cj b^iXjUa. 

Using equation (5.1b), then (5.2) can be modified as 

-C 

Oj    k>.<xt<a.       (53) 

-   J-.TTS 

0 , -C<*,<C   (5-5) 

where 

The equation (4.5) may be replaced by 

Introducing the following dimensionless quantities as 

M 

_  2-t,    CL+i r - ±JJ_ _ 

'3 

, . ID^{ <CLJ   -(<cr, < i 

-c <£.<&; - /<T l^<l 
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s3-   -££■  )     -c<*z<c}   -/<S3<.) 

*      k-c b-c * * 

After normalization, the equations (5.3), (5.5), (5.6) and 

(5.4) respectively become 

/ 

—— -t ~— 
r~-5     r-ts-tzMi 

i 

-i        a-w      a-Jo a-L a-b 

^(7Z-s+^^S))^rWr,0 (5.9) 

.j'foiJr,-^. (5. to) 

(-'/___!_  i  

where fcA/5 ^  ^ (5. //J 
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II,(IMS,^ ^(t,,xt);b2(r3)s,) = ^/f3)x,); 

and since the vaYiables r-,, r3, s,, s3, s, all vary between -1 

and +1, the subscripts have been deleted. 

To solve the system of integral equations, in this problem 

it is more convenient to assume that (5,9) as well as (.5.8) 

has an index +1 and let 

cwr) = -Si===r   j    -i<rO 

4i<r) 
S/r>= - i ^.r< i 

To insure, smooth contact at the end points of the separation 

area we then impose the following conditions on ^2 

Using now the Gauss-Chebyshev integration formula (5.8), 

(5.9) and (5.10) become 

f) 

r.-s, ^FTTTTT^M +^^)%.) MJW1J) + Jr,^;-^  r t.s .t-joiii J " a.-b 
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0 

n , , 

zM r- 2c_5 , a±k_ +c -f zc c._, a±b ■5/+^T       '• +^r s,.+ 

n 

j='° 
( r /, . • ■ j   0- 

where r., s. and w. are respectively given by equations (.3.60), 

(3.61) and (3.62). Thus (5.14)-(5.17) give 2n+l algebraic equa- 

tions to determine 2n+l unknowns ^-i(ri), ^(r,-) 1 = 1 ,n and c. 

The system is nonlinear. However, the problem may be somewhat 

simplified by assuming that c is given. Thus, the linear system 

consisting of (5.14a,b), (5.15), (5.17) and n-2 equations from 

(5.16) may be solved for various values of c and the correct 

value of c may be determined from the last equation in (5.16) 

by using an iteration technique to satisfy that equation. It 

should be noted that from (5.11), the pressure distribution on 

the contact region may easily be evaluated as 
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^ P*(SA=  f ( —  ex./   ^ i Z- 1 r. + tek. - kz^s - h'tC- 

(5-18) 

> J   ic '   2c       i_- p., 

From the system of linear equation (5.14)-(5.17), we can deter- 

mine i|»-i(r.)» <l>o(r-) and c. Substitution of these into (5.18) 

gives the value of pressures at various points. 

6.  RESULTS AND DISCUSSIONS 

The singular integral equations (3.44a,b) and (3.45a,b) 

were solved numerically by first normalizing the interval (-a,a) 

to (-1,1) and then using the procedure outlined in part 3.6 
Hi 

for the middle locations of the crack. For values of rr- close H2 
to one, no difficulty of convergence was encountered. However, 

H2 
for 77- » 1, especially for large relative crack lengths, more 

collocation points had to be used to improve the accuracy. 

The stress intensity factors are usually calculated without 

choosing the value of 6, by specifying ^-  , and by loading through a 

normal and shear stresses separately on the crack surface.. The 
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variation of the stress intensity factors with material para- 

meters (i.e. stiffness ratio and shear parameter) and geometry 

of the crack under various loading conditions are then studied. 

Figures 2 and 3 compare the stress intensity factors for 

orthotropic (birch, yellow) and isotropic materials subjected 

to uniform normal and shear tractions on the crack surface where 

H H •^ has been kept constant (— = 0.75) and crack location H,/H 
a a I 

has been changed. An interesting result can be seen for the 

unit shear stress case which is that k« goes through a minimum 

for a certain value of H, in 0<H-,/H<l rather than for H-,=H as 

one might have expected. 

Figures 4 and 5 give the variation of the stress intensity 

H 1 factors with —, for various stiffness ratios <5=(o-,l,3) or a J 
hi-i    I 

E— = ^8T >^'8^ which covers almost the entire practical range 

for the orthotropic materials. The external loads are again uni- 

form normal and shear tractions on the crack surface. 

Table 1 shows the effect of the crack geometry on the stress 

intensity factors for various loading conditions. The consid- 

ered crack locations and loads are 

and />(*,) = <?, ^x,) = /; *i )  *f" 

For every case, the geometry of the crack varied as ~ =  1.5, 
) a 

0.6,0.4, 0.25, 0.15, 0.10. The results for various combina- 

tions of the loadings may be obtained by using the superposition 
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technique. In Table 1, the results are obtained for birch 

yellow which has shear parameter K  = 1.2895. Partial results 

giving the k, and k2 for uniform normal and shear crack sur- 

face tractions are also displayed in Figure 6. Table 2 shows 

the effect of the material parameters on the stress intensity 

factors. The cases considered are: 

1-) shear parameter effect: in this case two crack locations 
Hi 

are considered -n- = 1, 0.4 and p(x-j) = 1, S(x-j), q(x-j) = 1 

are applied separately, on the crack surface. The shear para- 

meter is varied as K = 1,2,4,8,12. 

2-) stiffness ratio effect: the symmetric case is considered 

and the same stresses are applied on the crack surface. The 

stiffness ratio has been varied as S =  0.3, 0.4, 0.6, 0.8, 1.2, 

1.5, 1.8, 2, 3, 10. From Table 2 we can conclude that stress 

intensify factors are slightly varying with shear parameter but 

they are highly dependent on the stiffness ratio such that the 

kernels go to zero as 6-*» and become divergent as 6-K) (i.e. 

from the equations (3.52a-d) it can be shown that 6-+°° and 6->0 
i 

are', respectively, identical to H-|-*», H2-*» and H-,-^0, H2-K) for 
, •      . i      ■   ' 

a fixed 6); consequently k-j->-l, k2-*-l as 6-*» and k,-*», k2-*» as 6-*0. 

The problem of full contact is solved by modifying the 

integral equation obtained for.the crack problem. For a given 
<SH b 
— , if we increase —, the pressure will decrease and becomes 
a a 
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zero on the middle of the wedge for b=b . Table 3 gives the 

b <5H 
critical values of — for various — . To simplify the numerical a a 

analysis the stress intensity factors and pressure are normalized 

with respect to ——- , where vft is the thickness of the wedge. a        o 

The integral equation obtained in part 4 is no longer valid 

if b > b . In this case the interface separation problem has 

been solved by modifying the integral equation as outlined in 

part 5. The separation area is defined by 2c which is calcula- 

c    b 
ted by iteration. Figure 7 shows the variation of r- with — 

<$H 
for — = 0.6, 0.4, 0.2. The pressure distributions, when b^,,^ a — cr 

and b>b_ can be seen in Figure 8 for — = 0.6 and — = 0.2, — cr as 

0.293, 0.33, 0.40, where -= 0.293, is critical value. For a 

various values of — and —, the pressure may be obtained from 
a    a 

Table 4. 

Finally, in Figures 9 and 10 the variation of the stress 

intensity factors with — may be seen at the crack and wedge 

tips for■-£■ = 0.2, 0.4, 0.6. For all the crack contact prob- 

lems, it is assumed that K = 2. 
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Table 1 a. The effect of crack geometry and loading conditions 
on the stress intensity factors for Hn = H and 
tc = 1.2895. 

6H 
a 

cr22  =  PUl),   0"12  =  0 CT22  =  0,   Oi2  = q (xx) 

P(XI)=PX! P(xi)=px£ P(*i)=P6(xi) q(xi)=qxi q(xi)=qx£ 

klA=~k1B klA=klB klA=klB k2A='k2B k2A=k2B 

klB 

pv'a 

klB 

pv^a 

klB 

p/a 

k2B 

q/a 

k2B 

q/a 

1.5 

1.0 

0.6 

0.4 

0.25 

0.15 

0.10 

0.535 

0.597 

0.773 

1.049 

1.646 

2.955 

.' 4.923 

0.603 

0.693 

0.902 

1.205 

1.837 

3.180 

5.197 

0.613 

0.880 

1.517 

2.470 

4.514 

9.091 

.16.177 

0.516 

0.542 

0.605 

0.685 

0.813 

1.008 

1.210 

0.548 

0.582 

0.648 

0.725 

0.848 

1.030 

1.222 

-39- 



Q. 
I 

II 
CM 
CM o 

o 
II 

CM 

o 
II 

ac" 

re 
r— 

CD 
r— 
.Q 

CD 

00 

CD 

CO 
CM 

.itf «d" r>- CM CT> f>. CT) CTl 
,»■—•* 1 CO 

CM 
^ 

O o 1^. ID 1^. in in 
r— II r— CM «* CO l-» CO o 

X <c Q. 
^^s CM «o o o O o r— CO r«* 
<o .5^ 1 i | 1 1 i i 
Q. 
II 

*■—». CO c ^— r— r— CO f-. in *tf- CM CO 
X -2«S CO o ID en «tf- CM en 

II CO L* <£> o i^» CO CO CO o 
o. ■< 1— 

^<: Q. O r— i— CM in O en 
J*J r~ r— 

CO 
CM CO in in CO r*» in 1-^ 

-*J CM in CM CO r«». CO r— 
1 

II CO ^ 
O • CD • "~. CM • • o cn 

• 
«=C CM Q. o o o o o t— r— 
CM »o 1 i 1 1 i i 1 

CM r- _^ 
X 
Q. 
II CO 

*-~^* r— 
r— J* en in CO r— <T> i— r-> 

X II CO L* CM CO CO <3- CO CTl r^- 
SM/ ec r— tr> i^-. cn co O UD o 
Q. r— ^i Q. 

-^ o o o r~ CM CO in 

CO 
CM CO o in r— r*» «* r»« -^ 

CO [* i— r— CM O CT> t^ CO 
It o O o f— CM r^ in 
•a: CM Q. 

r— CM *o o o o o O o t— 

X ^ i 1 I i i 
Q. 

II CO 
r— 

^~% -i^ r-> r— in co r— «d- r— 
r— 1 in «* in o "* CM CO 

X 
"< 

CO l£ LO ID CO CM cn in cn 
Q. J^ O. o O o i— rm~ CO in 

CO 
CM CM CO CM O r~ in «d- 

^<£ CO r<» CM lO r»» in 00 

II CO 
CM 

1* * CM in • • CO • • 
Q. <c o. o CD CD r— CM in cn 

CM *o 1 1 1 1 | i i 
II J* 

r— CO 
X r- in CT> in r*. in «* CD 

^■^ .i£ «3- O o r— in o in 
CL II CO I* in CD •"" r>- i— r». o 

r— -i»r" Q. r— CM CO •* CO m t^. ^. 1 •— CM 

- 
in in o 

5g|« in CD in <* CM n— f— 
• • • • • • • 

r— r— CD CD o O o 

-40- 



Table 1c.    Same as Table la, H1=0.7H) a22=0, a12=-q(x1) 

M 
a 

q(x-j) = q q(x-|) = qx] q(x-,) = qx^ 

klA=~klB k2A k2B klA~klB k2A="k2B klA 'klB k2A=k2B 

6klB 

q/a 

k2B 

q/a 

6klB 

q/a 

k2B 

q/a" 

6klB 

qVa 

k2B 

q/a" 

1.5 

1.0 

0.6 

0.4 

0.25 

0.15 

0.10 

0.102 

0.178 

0.306 

0.433 

0.612 

0.857 

1.095 

1.190 

1.310 

1.526 

1.757 

.   2.106 

2.612 

3.127 

-0.021 

-0.032 

-0.048 

-0.063 

-0.083 

-0.111 

-0.120 

0.522 

0.553 

0.622 

0.706 

0.843 

1.046 

1.250 

0.021 

0.035 

0.055 

0.075 

0.103 

0.141 

0.179 

0.546 

0.576 

0.635 

0.703 

0.814 

0.983 

1.161 
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Table le. Same as Table la, H-|=0.4H, a22
=0» cr-i?"^*!) 

a 

q(X]) = q q(x-j) = qx-, qCx-,) = «4    ' 
k    =-k K1A    K1B k2A=k2B 

k    =k K1A K1B k2A="k2B 
k     =-k K1A    K1B k2A=k2B 

5k1B k2B 6klB k2B 6klB k2B 

q /a q/a q /a q/a q /a q^a 

1.5 0.260 1.166. -0.055 0.556 0.049 0.544 

1.0 0.390 1.239 -0.080 0.603 0.068 0.570 

0.6 0.580 1.384 -0.116 0.695 0.092 0.623 

0.4 0.757 1.553 -0.151 0.802 0.114 0.688 

0.25' 0.991 1.824 -0.196 0.966 0.140 0.798 

0.15 1.320 2.234 -0.164 1.149 0.183 0.970 
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Table 2c. Effect of the stiffness parameter 6 
on the stress intensity factors, 
Hl  H2 
— = -=- = 0.35, K  = 2. 

6 

a22(x-|,0)=p a22(x1,0)=p6(x1) a-|2(x-|,0)=q 

klB klB k2B 

p/a~ p/i" q/a 

0.3 20.350 14.218 3.231 

0.4 13.880 9.426 2.829 

0.6 8.348 5.436 2.353 

0.8 5.954 3.732 2.075 

1.2 3.851 2.261 1.755 

1.5 3.103 1.745 1.610 

1.8 2.637 1.427 1.507 

2 2.415 1.279 1.453 

3 1.797 0.858 1.282 

10 1.112 0.393 1.043 
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Table 3: The critical values of — for a 
various values of H/a, shear para- 

meter K  = 2. 

6H 
a cr 

6a       klA 
Evo      /a" 

6a       klB 
Evo      /a" 

1.5 0.961 4.761xl0_1 -4.568X10"1 

1.0 0.665 1.569X10"1 -1.476X10"1 

0.60 0.293 8.544xl0"2 -6.792xl0"2 

0.40 0.161 5.836xl0'2 -3.874xl0~2 

0.20 0.059 2.801xl0"2 -1.188xl0"2 
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Table 4. Pressure distribution for the wedge problem 
(Figures lb and lc), K  = 2 (The intervals (-b,b) 
and (c,b) normalized to (-1,1). 

(a) ^=0.6 

b 
a 

c 
b 

Si 
5a  klA 
Evo Ji 

5a  klB 
Evo /a ^p(si' 

0.1 

Full 

Contact 

0.0 
0.342 
0.643 
0.866 

7.229xl0"2 -5.559xlO""2 
1.313X10'1 

1.453X10"1 

1.959X10"1 

3.379xl0_1 

0.5 0.688 

-0.990 

-0.756 

-0.282 

0.282 

0.756 

0.990 

1.099x10"1 -9.961xl0'2 

6.253xl0"2 

7.987x10"2 

1.267X10"1 

2.253X10"1 

4.707X10"1 

3.542 

0.6 0.738 

-0.990 

-0.756 

-0.282 

0.282 

0.756 

0.990 

1.288xl0_1 -1.208X10"1 

8.653x10'2 

1.070X10"1 

1.624X10"1 

2.797X10"1 

5.734xl0_1 

3.998 

0.8 0.766 

.. 

2.016xl0_1 -1.931X10"1 

1.218xl0_1 

1.504X10"1 

2.288x10"1 

3.978xl0_1 

8.279X10'1 

4.863 

\ 
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Table 4:   (cont.) 

(b)   f= 1.0 

b 
a si 

6a     klA 
Evo    /K 

6a     klB 
Evo    G ^p(si) 

0.0 1.416x10 1 

0.2 
0.342 

0.643 9.322xl0~2 -8.580xl0~2 
1.571X10"1 

2.124X10"1 

0.866 .-*• 3.601xl0_1 

0.0 4.940x10'2 

0.4 
0.342 

0.643 

0.866 

1.131X10'1 -9.833xl0"2 
6.653xl0"2 

1.238x10"1 

2.604x10""1 

0.0 ■ 
8.550xl0"3 

0.6 0.342 

0.643 

0.866 

1.425x10"1 -1.315xl0_1 2.993x10"2 

1.002x1O"1 

2.611X10"1 

0.0 0.0 

0.665 0.342 

0.643 

0.866 

1.569X10"1 -1.475xl0_1 2.268x10"2 

9.785xl0'2 

2.708x1O"1 
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Table 4 (cont.) 

(c) a       l,D 

b 
a si 

Sa       klA 6a       klB 
Evo      Sa 

£>•> 

0.3 

0.0 

0.342 

0.643 

0.866 

1.043x10"1 -1.088X10*1 

1.536x1O"1 

1.691X10"1 

2.249x1O"1 

3.750x1O"1 

0.6 

0.0 

0.342 

0.643 

0.866 

1.457X10"1 -1.385X10"1 

6.900x10"2 

8.681xl0~2 

1.479X10"1 

3,002x1O"1 

0.8 

0.0 

0.342 

0.643 

0.866 

2.072xlO_1 .-2.011X10"1 

4.147xl0"2 

6.303x10"2 

1.377X10"1 

3.307x1O"1 

0.961 

0.0 

0.342 

0.643 

0.866 

4.751xl0"] -4.550x10"'1 

0.0 

1.920xl0"2 

9.572x10"2 

3.633X10"1 
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Figure 1:    Geometry of the crack and crack-contact problems, 
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Orthotropic  /c = 1.2895 
8=1.1175 

Figure 2: The effect of the crack location on the stress inten- 
sity factors for uniform surface pressure. H = 0.75a, 
6=1= K  for the isotropic materials and 6 = 1.1175, 
K  = 1.2895 for the orthotropic material (yellow birch). 
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Orthotrbpic,  K = 1.2895 
8=1.1175 

— Isotropic * = | 

8 = 1 

0.4 — 

Figure 3: Same as figure 2 for uniform shear applied to the 

crack surface. 
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H/a 

Figure 4: Effect of the crack length on the stress intensity 
factor for a symmetrically located crack under uniform 
pressure, < = 1, 
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-/a" 

4 6 
H/a 

Figure 5:    Same as figure 4 for uniform shear applied to crack 

surface. 
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SH/Q 
Figure 6: The effect of 6H/a on the stress intensity factors " 

for a symmetrically located crack under uniform 

pressure or uniform shear, K  =1.2895. 
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Figure 7: Separation length for the wedge problem, K = 2. 
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Figure 8: Pressure distribution for the wedge problem, H = 0.6a, 

K  = 2. 
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Figure 9: Crack tip stress intensity factor for the wedge prob- 

lem, K  = 2. 
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Figure 10: Wedge tip stress intensity factor for the crack con- 

tact problem, K = 2. .. 
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APPENDIX I i 

DEFINITION OF THE MATERIAL CONSTANTS 

  1/2 

? s,-sz 
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X     ^ S'fS2 

-A     -    -    J*2L. 

ID 

A, 
A>3 =  IT 

The .problem is solved for plane stress.    The results for plane 

strain case can be obtained by redefining material parameters 

K and 6 as 
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APPENDIX II 

THE FREDHOLM KERNELS 

^ - 1 >     °< < D 

2S., e     -hAj'^ie 

*^" r     2. 

v 7 M "l0^ 
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-t" 
S^S,*   K(.S2-%■£)« 

2-S. e 

rn l9 

fvy *) = no^od /7)5(>0 - /??, (* )/?y*) 

%(«) r 

mlhw 

™lltM 

°V^ 

°V*) 

fl^ M m^ M - ms(oi)wz c*) 

r,« 
= A,el.<v>t\,c' ^'^^f^** 

D*,.        . -r«c :V /r^n^e'/y^w * X" MBL«\ a 
Szb/l.f2).o< 

(*      .       -r,< 
^y 

r,« 

"V*! -^,zM-+ml^Hm/$Mtm/?(<) 
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o<)~    : ; 2 I   IZ  2j 2-iZ   2$  ' %( 

QD 

15.    o 

^2,^x)r-4-J  HZlL<)Cosoiti-*)<l-« 
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The kernels K..(t-j,Xi) and K..(t,x) (i,o = 1,2) if r-|,...,r4 

are replaced by r-|,...,r. given by 

f; = (s, + Sj.) H, S ,   q = (S, -Sj.)H,S 

in the numerical integration a > 0 or z = 1 some of the m.(a) 

become 

"V>0 = .^e1 mlffL«) + X3e
r,'<mllM+)ige.';"m3(«) 

iY),5 («\ - Ap e  />y^ + X3 e ' n\% (x) 
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APPENDIX III 

DERIVATION OF INTEGRAL EQUATIONS 

<&<**>=- h f< ?*'-»$*'+ M w ^k vrt; 
• oo  i ri J- J = » 

c/ 

o° 

■v.»n J = l 

Using the mixed boundary conditions 

oQ A P° 2. 

/ 
loo J-l 

we-3* ,L^fx^v^x 
i/^°V 

2*2. ■-SiMy-ux. 

Substitution of  ( 3.26 a,b )  and  ( 3.38 a-d ) into 

above equations gives 

_ P, <x) 

-CO 

d<X 
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= i j>^ f ^" *~ irj H2,M f: if^d* 

;here      ^Pi^  ^^\e  J)p^)]e o!< 

12      ~ m3&) 

Hz,^) - 
^^^^HS^^/^-S,^^^)^^^) 

IV*) 

H 0,v.S,A,3^2i^)^SaAo/r)a,(x)-Sf\m2^^A>^(K). 

using equations (3.11a,b) and continuity of displacements 

outside crack and changing the order of integration we obtain 

P d 

o 

+ ^Uy^TJdf 
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d d 
t J 3<V)^0df -t J 3 Ct^)P2«)df 

-d   ' -d      _ 

where 

-oo 

u^>-ir%ij^s%/-kv)<r'<->>J * 
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oo 

^W 

we know that 

L/no  J 6 X^o5 °< Li- x) Ju = 0 

Using the above expressions we can show that 
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In the same way we can simplify Gij(t,x) (i,j =1,2) as 

bO 

<V^*)--^ i.fH^r^l/iMf )J* 

bO 
~ 11/ MLi-x) -u*L{-x), 

0 

DO 
^tf-*) 

s2/V^-rr W°°e   ~AMe 
-LXtf-X) 

o )d &C 

'11   -^ ' r'7^-^)C Jj* 

Using the definitions of H.,(<x) (i ,j=l ,2) and m,.(a) (j=l ,23) 

we can show that 

H„(«)= H(l(-*) 

Hn>^ = Hlx(^ 

Wu(«)= ~H,A-*) 2-1 

Hz («): - %(-*) 
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These conditions can be used to simplify the G..(t,x) 

(i,j = 1,2) in the following form 
c>o 

Gjt,*)^ -L j HhU)Sin*Li~x)<l* 

ao 

S,z(t)X),-ijo HaLx)Cos«(i-*)J« 

I'      .-> 

CO 

G2z(i^)=.-^ ) lhi^)Sinocti-x)c)o( 

Finally integral equations become 

.  '5 rg 

l\ 

vohere 

jL_e,.(^A);/j-/A) 
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