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ABSTRACT

In this study the plane elastostatic problem fbr an infinite
orthotropic strip containing a crack located arbitrarily parallel
to the sides is considered. Fourier integral transformation
“technique is used to reduce the problem to two coupled singular
integral equations whiéh are subsequently ;o]ved numerically.
The stress intensity faéfors are calculated for various crack
geometries, crack locations and material parameters under various
loading conditions. 7

In addition to the crack problem, the problem of wedge-
1oading by a frictionless rigid wedge pressed into the crack is'“
considered. The resulting crack-contact prob]ém is formulated -
by modifying the integral equation which is obtained for the
crack problem. It is shown that for wedge lengths b less than
a critical value bcrthe continuous contact along thg wedge-crack
interface ishmaintaihed. However, for b > bcr the.crack surfaces
separate from the wedge along a certain finite region. The prdb-
Tem is formuIated and so1;ed for both cases and numerical results

for b distances determihing the separation area, contact

cr’
stresses, and stress intensity factors are given.



1. INTRODUCTION

In this study the linear fracture mechanics problem for an
infinite orthotropic strip containing a crack parallel to the
sides is cqnsidered. go‘assumption of symmetry about crack
location is made. The problem is formulated in terms of a sys-
tem of stngu]ar integral equations. In addition to this problem,
the crack-cohtaét»prob]em for a frictionless rigid wedge pressed
into crack is studied and the'resu1ting problem is solved for
both cases of continuous contact and 1nterface separat1on

In recent years the increasing use of multi-layered bonded
p]étes ih many engineering structures and especially in aero-
space 1ndustry, has brought up the need for more intensive
fracture analys1s of anisotropic materials. Physically, it is
obv1ous that any manufactur1ng f]aw that ex1sts would be either
in the bond1ng layer or, perhaps more 1ikely, on the interface.
Thys, this flaw may be considered as an interface crack problem.
The composite materials are combinations of various different
" materials and .are, in general, anisotropic and non-homogeneous.
However, mostly because of analytical expediency they are usually
assumed to be orthotropic and homogéneous. What makes'fiber
composite materials so important is that, during the process
of mandfactuting, they may be strehgthened in certain’directions,
which improves their structural resistance to:unétab1e crack

propagation. The practica] importance of the prob1em under

'-,; . ] - . ~2-



consideration 1lies in the fact that the results may be used in
experimental strength characterization as well as in structural
fracture studies. For example, the cracked infinite strip may
approximate é long beam or plate clamped at one -end and loaded
at the other end. The crack may grow due to effect of the shear
stress. The wedgevloading of elastic materials is also used in
practice mainly in certain fracture toughness characteriiatiqn
tests and iﬁ fracturing solids by wedge-splitting or cleaving.
In fracturing of solids, of course, ?he geometry is bounded in
both directién%. However, the éssumption of an infinitely long
strip would not affect the character of the results.
In b]anevprob]ems, for an infinite orthotropic medium con-

taining a 1iﬁe crack, it has been shown that (taking iimit.as
H]+¥ and H2+w, Fig. 1) the orthotropy does not affect the stress
intensity factors and the results are the'sqme as those 6btained
from the isotrapic case. However, for the bounded geomefry, the
stress intensity factors are highly dependent on the orthotropy
of the material. We may refer to é number of p%evious works to
study this-depEndenCe. For example, in [1] the problem of
beriodica]ly'arrangéd}orthotropic'strip containing cracks has
béen studied and in [2] an orthotropic strip containing an
internal or edge érack is inVeStigated for both material types
I and II. The stress intensfty factors are Calgulated and are

compared with isotropicrresu1ts. Recently the problem of an

-3-
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infinite orthotropic strip containing a crack normal to the
sides of the strip is considered in [3] and results are compared
with the isotropjc case,,,The inclined internal crack prob]em
for isotropic and orthoiropic strips was studied in [4] and
[5], respectively. The wedge ]oeding of a semi-infinite strip
with an edge crack is considered in [6]. It is formulated for
the isotropic case and results are obtained for various wedge
shapes. In formulating the prob]em under consideration; it is
assumed'that_both shear and normal stresses are applied on the
crack surfece. The results for other loading conditions may be
obtained by using ‘the superposifibn technique.  The results are
obtained for various crack geometries, crack locations and
material parameters, under various basic loading conditions.
The resu]ts are obtained for plane stress case. The formulation
of plane strain problem is 1dent1ca1 to p1ece stress if we rede-
fine the material parameters « and & (see appendix I).

In the second part of the study the problem of a fr1ct1on-
less r1g1d flat wedge pressed into crack is considered. It
is assumed that crack is located in the middle of the strip.
The resulting crack—contact.prob1em is formulated for both con-
tinuous contact and 1nterface separation cases by mod1fy1ng the
integral equat1on obta1ned for the crack prob]em The numerical
calculations for determination of critical wedge length, contact
'stresses, stress intensity factors and distances determining the

separation area are given.
. . . -4— .
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2. MATERIAL PARAMETERS AND VARIABLE TRANSFOﬁMATIONS
2.1 DEFINITION OF MATERIAL PARAMETERS
In the plane theory of elasticity the Hook's law for geh-

eralized plane stress and orthotropic materials can be expressed

as

e | -3 o] [&]

n) = —Z’_?L -El_—zz O % @1)..
P Lo o m]|%
where | ' ,

€= E(er 3E) 4 (Gd=0D), (2.9)

Let us define the fo]]bwing new constants [7]:
' : V2
Effective stiffness: £ = (& E2) ‘
Ya.
Effective Poisson's ratio: ¥ ==(ﬁ%2f9113

- £, Viz.
Stiffness ratio: vb" = -E-n: —\')';

’ 1 | \) v ' . )
Shear Parameter: K= - (E, Ezz)/'l < 2‘?1—%-) <2 3Q J) |

Using -(2.3a-d), equation (2.1) becomes

£, F s -y o |a |

Lo L .
L= Y S o g kY
€af | 0 O k0| |G,




2.2 VARIABLE TRANSFORMATIONS
The governing differential equation in the plane theory

of elasticity for an orthotropic material is given by [8]

E, o' S - o

/ E .
e, ot e, ”f?—)a Tsur T oxsT O @-5)

where ¢ = ¢(x],x2) is the airy stress function and stresses are

given in terms of ¢ as follows: .

O _ ¢ o o L0-C)
G =55 G ot G iy,  eed

The new variables x,y and components of the displacement vector

are defined as

)(-:.—\(_L~|~ J }j \/gxz )
U= U,_\/-g J \7: _V_‘é" . | (2,?&‘0{)

It follows from the equations (2.7a-d) that components of strains

in terms of the new variables can be expressed as

€y = '5— $€,
S _ 8V _ €
633: Bé./ = —S—%‘l .
u WV - | |
€xy= 5 ( gg Si)=Cn (2.8a-¢)

- The stresses in transformed and real planes can be related by

using equations (2.6) and (2.7a,b) as follows:



gy ©  dxt Z
Z . _
: SP .
G;g STy T % (2.9a-c)

' Substituting the equations (2.8) and (2.9) into (2.4), and
(2.3) and (2.7) into (2.5) we obtain

[ W - 1 _ Q O - "C'r n
Exx : , KX
el Y L O : 2. 10)
' ;541 i O O k?+iij j@%c
R T |
S T ta = Y (21
where

¢ = ¢(x,y) is the stress function. The equation (2.11) contains
just one material parameter which is k. In the isotropic case

k=1 and équation (2.11) reduces to the well known form.

3. FORMULATION OF THE PROBLEM
Consider the orthotropic strip shown in Fig. 1(a). The
problem may be fdrmU]&ted by expreséing the field guantities as
| the sum of those fgr a homogeneous strip without a crack and
those for an infinite plane with a crack and by satisfying all
the boundary conditions for the actual cracked strip.

-7-



3.1 INFINITE STRIP WITHOUT CRACK |
Applying the complex fourier integra] transformation tech-

nique to solve the governing eqﬁaﬁion (2.11), the solution can

be expressed as » '

Sy -txXx

P(x.Y) = —j ZC e T dw (31)

where S,(j=1,4) are the roots of |
54—2_‘/(57‘*.—{--: Ot . | 38-2)
From (3.2) we can write ) |
S, =(k+VE=T)) S, =‘5~
Su=(k=VE=TV™, S, =

Examining the roots S1 and 52 it can be shown that they are

either real or cqmp]ex conjugates.

.Mater1a1 type It w>1.

since « > 1 thus S, and S, are real.

Material type II: k<1,

Case 1: - 1<k <1

Sp =Wy ¥ iwz > Sp = Wy - iw2

. Case 2: «k < -1

S = iw3 » Sy = iw4 ' ' . ;;“
where W1 w2, Wy and W, are real constants. In this stddy we
will assume that}the material is of txpe I. The results for
type II materials may be obtained with slight modification in

the analysis. =~ . . .
' -8-



3.2 INFINITE PLANE WITH CRACK
The solution of (2.11) satisfying the regularity conditions

aty = Jeas y >3 m, can be written as
Y = + +

| -~S'«l - (X
P (x)4) = —L—f ZA (=) 97 dec  For Y>o0,
: oo :%lu}y-Lxx :
HY) = 35 f Zﬁf"z‘)e , du  for y<o. (3,3a,5)

3.3 STRESS FUNCTION
The stress function ¢ is constructed in terms of 3 and ¢

obtained in the previous section as

PLoy)= 00Y)+ H 0 Y) -  (34)

The continuity conditions for the stress veétor at y = 0 may be

“ used to eliminate two of ﬁhé<constants. These conditions are

Ty % (x,-9) ) G (x,10)= G 1%,-0) (3.50- b)

and may be shown to be identical to

| ¢2(XJ+D): @(X)~b)

X,10)=

g, t0)= S hx,0) - (3
Using the equations (3.3a,b) and (3.6a,b) we obtain '
A+ Ay (x) = Ay (o) + A, ()

- (3.7)
S A () =S, Ay () = S Ay () + S, A (%)

So]v1ng A3(a) and A (¢) in terms of A](a) and Az(a) from (3.7)

we obta1n



Ag() = = Ay A () = A, A; (%)

A1) = AgA ) +Ag Ay (o) | (a-80-b)
where : ’ ,
_ 2 Sl ' _ 2 SQ_ - S +52 . -
5= 57, A= 575 5-S,° A= 5,-3, | (3.9a-¢)

Defining the auxiliary functions‘and their Fourier transforms by

F(X) -'a—)-([v(x)‘*o) Vi(x, - O:J )

F(x)= ’57 [U(x)+o)—u()<)—0_] ) | (3./0&—5)
- (e LKt

F,(o«)zjw V€ dt

Rea= | E ) € Gt v (3110~ k)

The functions A](g) and Az(a)'can be found in terms of ?](a)
and F,(a) in the following way. From the equation (2.10) we have

g = a~“- + (G~ YTy ) -
€= X=1(q ~ﬁo")
8 9oy E {4y xx ] )

_ QU LV _ (K .
26, ST T T E O  (3.12a-¢)

Differentiating the equation (3.12C) respect to x and (3.12a)

with respect to y and eliminating the terms ;;ay we obtain
5 3Gy Ok, , 3Ty
V L 2Vxy D Uxx
5x7. [Z(K Ay O X éy Y S oY

-10- .



or in terms of the stress function

a3¢. ;. 33?5 |
St El-20 555 - 5 Vaxlay] (513

Taking limiting values of the last equation as y + 3 0 and

'subtracting, we obtain
3 3
a 2]
EV(X)*O =V(X)- DJ = El__ 2 (kY C”‘zaj - 2y3

Y Sy x:’-a :”:CP(X)*O '91’(’(1 OJ . - (B14) |

Observing that

PPt a,,[cmxw» - (%, o] o (35)

IO:OJ’)'Z)"’

5:K1

and using (3. 6) we obtain
_[\/(x #0) V(% =0)] = - & 5——[<1>(x,+0 ~p(x- o:] (3.46)
From the equat1ons (3.3) and (3.8), it follows that,

m[v(xgﬂ? ~V(Xr0_—]: Tﬁfg [/\\Al(o( ) +A Az(a]o( l°(\€ d°<

integrating with respect to x from (3 17) we obtain
Lo ? |
T[wa x, O_] 37 EJDA(x +)\A(»<J(o<lo<\€ (3-*8)

where

NTU-2)SP 405 ST, A, =S XS (319)

-1-



Taking inverse transform and using the equations (3.10) and

(3.11) we obtain
L'ouoq[/\,A‘(oawx\lAl(&j = ff, (%) E. (3.20)

Expressing the equation (3.12a) in terms of ¢(x,y), it follows

‘that, .
VrYe _, 2P
%:%[‘597— Y AXzJ' B.2)

Similarly, we can show that
2.

h D . :
-aa_x_[(}(x, +0) -U (X, —Oﬂ:— [1__— @I[%(Xﬂm*g(xf@. (5'22)
using the equatiohs (3.3) and (3.8) we obtain

2 . ﬁZO(X ‘ .
%[U(X;-*D)'U(XJ‘Q}]: I;FEJ DAt +4 Ae0RET do (3.23)

- 00

where

-2 2. ' .'2_ 2 .
)\3:(/‘/'A7) S, ‘>\5 SJ_ ) A)\q '—‘ (I-)\; )52 -’-)\6 S, . (3.2_40.—1;)

Taking inverse transform of (3.23) and using the equations

(3.70b) and (3.11b) we obtain

T [AgA A, Ayl = ER) - - (3.25)

The solution of equations (3.20) and (3.25) is straightforward
and gives A](a) and Az(d) as - ' | e )

RTINS



F'(u) F(x)
A (x) = = EE/\” ;z l2_ °<'°<l :‘ J
) Ly B
Aot) = E [Ny B 0 G (3:260-b)

where

A= AN A A

)\|1=-~>\—— J .)_‘fz:-—/l&—) fa25)

Ay =

A
A y - Az,
3"7\,_))‘/

9 )\/D
Adding the equations (3.1) and»(3.3a), we obtain the stress
function ¢(x,y) which is valid in the domain y >0, |x|<w as

li LKX
Pix,y) = > j[zc & +2A e’ L d°<;5>0 (328
Coosd
subst1tut1on of the equations (3 8) in to (3.3b) gives
S, =1y SKWY
Sk
CP(X)%—ZFJE‘\;«\ & _—A e 9+A <c<<>\?€ )\e ]E doc,,

y<o. 39

The stress function ¢(x,y), in the domain y<0, | x| <=,. can be

obtained as

= SKY S KkIY SKIY  Smlyty Swex
B0ny)= L (ReprE =€ )-fAz(od()\?ez—)\éQ e du
- °°4 - 5 Sk |

o7
| -13-,



In the equations (3.28) and (3.30), Ai(“) and A,(a) are given

in terms of displacement derivatives by (3.26) and the only
unknown functions are Cj(a) (j=1,..1,4). They can be determined
from the homogeneous boundary conditions which will be dis-
cussed later. The relevant stress components are given in.

terms of the stress function as

2 2
J, = —-—-—-—a ¢, g g, =- =7 &
gy T 3xz 2 YT T Sy

which may be expressed for y>0 and y<0 as follows:

oo Sexy g -S|
, L & S J
= ZI.ITJEJZ‘:ICJ (O() _1. —l/?que

2 -L:XX

&
:]°<e de

y>o. » By
i€ S [
2 ) ah B e,
Ty =17 w%@' (o<)°<1§,'6.§ U i C:’“’[
. _ B ' | o
1S5 8 m g €5 8 e,
y <0 . | (3.32&-6)

-14- : s o



In the above eXpressions 53 = -S1 and 54 = -52 have been

used whenever needed.

3.4 BOUNDARY COMDITIONS

Referring to Fig. 1 and equation (2.7), the boundary con-

ditions in the transformed plane can be written .as

O\HB(X_)hA:O J . ;X‘<<>a/
(Ry(x)h)=0~i IX]<e2,

ng LX)'*Pb) :().J [X)< e,

Gy=h)=0 o Ixi<e= - ' (3.330~d)
Cyy (X,0) = =Ry 5 Ixi<d, 4
| o 3-34)
V(X,+0)=V(X,~0)=O , IxI>d. | |
Uy (%, 0 0)= =g x) , IxI<d-
| | | (3.35)
U(xﬁo) ux,-o)= 0O, Ix]>d. |
where ' | .
’% _ a .
h, L o Dy = FH )ol—f\/g-: | (3,34)

Using the first four homogeneous cond1t1ons we may eva]uate c (a)

(j=1 .»4) in terms of the displacement der1vat1ves ~ The last
' | . -15- |



e
two mixed conditions give a pair of singular integral equations
to .solve the displacement derivatives. The homogeneous boundary .
conditions give the following four Tinear algebraic equations
for cj(j=1,...,4):

5P<h, s,xh, - Sh, -5, % h,

€ Cly+ € C,(e)+ € c3u><\+e 4,(94)
>3 1l ke, ' |

+€' A () + ezl'h‘A o<3=0/

| =S « h
e' SC(xH—e SCM e |

()= % C (%)

's
24
. Stk
~ - TS A x) — J;Le 5 A, m
=S,¢h -S xh S.xh
S 2C<o<)+eZ K (o<)+e' hzc zc><>+ez @)

% ~Sl»dh =5 Ixth, =S kih
{6 aA 24 1o 0T A =0,

S,e¢h,

- Sxh Sp¢ Sech
5,€ ZC.L«HS 71,45, 67 o) - 5.8 C(x)
S, lalth,
+ ()\ s, @7 |

| -8, Mlhy, o -
1°<1<)\ s,6 z)\é Swlh)A €=0. (ng_d)

Using the equation (3.26) ahd solving Cj(a) (j=1,....4) from the |

deh>

= )\ S, e /4,(0<)

above expressions, after some lengthy manipulations we obtain

-16-



Clw= EE)‘” M (A )‘lsmn("‘\] Fz("‘\ [/\; MyolX) By 1260 F )

My (x) Mg () Il
o~ A mm('(\-f)\lsmm(o( F("( )\llmlé(d)_*‘)\’am@(oﬂ i;,[o()
C)=£[-~u Py (E]; My ) X«

Ay () %,30’),3/& F(x) [;Azz n(“)'i')‘/aml?,(xj _E(i)__

C'B@(;:E[ Mg (=) Mg () X |

"l E Feo g
MMy ()4 AsMgEVE () A M=)t Ay Mzt 3.38a-)
Cb():E[ u'’ie /Y)gl(o(') ]%;'HE[: My () J X || (

where the functions mj(a) are defined in the appendix II. It

can be shown that cj(a) + 0 (j=1,...,4) as a +~ § o.

3.5 SINGULAR INTEGRAL EQUATIONS
Substituting the stress expressions into (3.34) and (3.35),
after some lengthy manipulations we obtain the integral equa-

tions in the following form (see Appendix III for derivation):

j (—FZ‘i’-fZ K, (f)()F(f)clf —%———— P (x)
, 12, /4\
Jd el 7 | 39)
n_(
i E= +d§_/< () )Q/{__ T 5>‘:3)P< )

Two additional conditions expressing the continuity of the dis-

placements dutside_thg crack are expressed as

d - d '
[Rewdt=0, [HH)dE=0- (34024
J ‘ o |

-17-



The kernels Kij(t,x) (i, = 1,2) are defined in Appendix II.
The integral equations in the real plane may be obtained by

changing the variables in (3.39) as follows

X, =X,V . é?uéhi—C)

. -tl
X= ) t=—F7=)
Ve’ /s 3
where X, ¥, t are in the transformed plane and X715 Xos t] are

in the real plane. Similarly

G, (%) = fx (U (x,y¥0) = U (x,,—oD

Gz(xl):' B%‘I(U|(X))+D)‘U|(XI)-O)) (3.’42&16)
Using the équations (2.7a-d) and (3.10é,b) it can be shown that

R=6&) , Fx)= 6§6,0) (3.432,1)
Using (3.41) and (3.43), the integral equations in the real

plane become

a , 1 J‘_[, .
6 —_—
j ( &L 2.6 Kjtux) %(f,))o'f == 18 p(xy

=0 | | J:'



P(x,):—O;_ZLX;)W ) |
q(x)) = - qz(x,)D) ) | (3.4éa—ci)
K(-J ({'l,j ,) = \/~—- J (-f X) (L.J J‘:/J 2) . (3'47)

and 2a is the crack length in the real plane. The expressions
of K..(t x) (i,3=1,2) are of the following form (see Appendix

II
F0< FLO( (\30( )Sln O((f X)Ao(

/<(fx fH( €€, €7 ) cos

Using the equat1ons (3.41) and (3.48), (3.47) becomes |
£0< Rt R Sin
'(' o? 3 /Q°‘ X e
M) \Ff < | 7) Cos vE R
where : (3.49)
R, :~(S:+Sz >H Vs, ’Qz:(S/'Sz}Hl VS )
(3.500«—44)
R, S (5,4S,)H, VS, R,u=(S=5,)H, V8-

Replacing /‘i by a, the equat1on (3 49) becomes

X Hox T« %\ Sin
L'J' (ffx‘) j 7] (6, e, e’ )Cos X))

where N . | (3‘ 5,)
:(S,"‘Sz)H,SH;) E:'(SFS&)HIS) . .

- _ (3. 520d)

3 =515)h8 ) =15, -S,)HS -
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From the equat1on (3.48) and (3.51), we can conclude that
Kij(t],x]) and K (t x) (i,j=1,2) have the same expressions if
r],...,r4 are rep]aced by rl,...,r4. If Xy = 0 is a plane of
“symmetry, then R]z(t],x]) =0 = k21(t]’x]) and system of integral

equations reduce to two uncoupled integral equations.

3.6 NORMALIZATION .

Changing the variables as

tz=ar , -A Lt L, -«

. | (3.53)
X =0S , ~A<Lx <A , ~[<S5<]
After normalization integral equations take the form
JY +kﬂﬁﬁguﬁmnh§§kowsg(rér—— f*g)
 (3.540)
=z tk, N Shg T + )< (5 3) {r)olr- /- *(5)
55( g, f 3 ex,
jguw = o, jgjzgr 0. (3.550, k)
where ;
3(rr"6(f), QﬂnsL-K Fﬁﬁg)(§1=bﬂ)
P¥ (s) = PIXY | | ~(3.56)

q*(s\=9(xl) ' _
Since the crack has: integrable singularities at both ends, the

so]utiéh will be sought in the form o :
-1 ,
g(r\ 4>*(r (/ ) /2} J=1 2) o (3.57) H

+ ~20-



where ¢¥(r) and ¢;(r) are Holder-continuous in the interval
~T<r=<1. | -

The singular integral equétions'(3.54a,b) subject to single-
va]uednéés conditions (3.556,b) are solved by using Gauss-
Chebyshev integration formulas. Thus, equations (3.54a,b).

and (3.55a,b) are, respectively, replaced by [10]

Z[ r_5+ k(505 E¥(5) 16 ko (5, S)q?*(gﬂwj =-ILS p¥(s))

'Aﬁ
n
T T
z[F—E+L21<S-»S¢))<P<5)5+ k5,508 G = E};f‘m")
J=!
LR, | N % = J.n’ (3'58@6)
SN0, jz___j%(m%—o - (359, k)
where
J=1 \ -
57 = CoS(Tr—n*:T) y J=1.n , - (3;60)
S(. = COS(T{ ,Q;)L-I’ ), (= 1y, N1 (3'é/)
W= Wz e W= I, =2, 0 (3-62)

The equations (3.58a,b) and (3.59a,b) provide 2n equations to

solve the unknown fdnctions.¢T(rj) and ¢;(rj)”at 2n discrete

points.

3. 7 STRESS INTENSITY FACTORS

The stress intensity factors at the crack tips are defined

as
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"= L ,(Iiiéx (ﬁ .
R e R (@0

072 <Xl)0)

kg G2, (%,,0)
= Lim 2 (X ~4) 22 ) 8'6319
}(2& XI%G\ ! OTQ(X‘)O\ ( )
Let us consider the following sectionally holomorphic function
E(z)= —j ° Pt (2. 64)

o t—Z )
B P i

1= 9 (b-t]1¢-0) = gear-b) (4-) €

where g(t) is Holder-continuous function in the interval a<t<b
and -1 <Re(a) <0 41-<Re(8)'< 0. Examination of the singular
behavior of F(z) around.the end points was investigated by
Muskhe1ishvi1i [9] and was shown to be in the fo]Towing form

geysafe™ e gub-a

PR = -5 e (Z-a)"+ S,WF

( b3 G (z)

L —(3.e5)
The function G(z) is bounded everywhere except poss1b1y at the

ends a, b where it may have the following behavior

)612\[<‘————-!§_a‘,0 ;P <-Re(p)

}6(2))< 128;,| ) »'r<—R€(o<)

Us1ng the equations (3. 64) and (3.65), the singular behavior of

.stresses around the crack tips can be expressed as

2



E Mg 2 —a-X,  /X-a
2, $FE0 0 ¥
(x,,0)  (aa)?/ F 1 _ 4l
G L ),

Substitution of (3.66a,b) into (3.63a,b) gives the stress inten-

sity factors as

kp=-Ea vagtu) 5 ks £ 2E ¢7),
(3:¢7a,b)

- * — 5% *0).
ky o=~ 8 VT 1), kyy= BN, S VI
In the system of linear equations, the kernels may be evaluated

SHy SH2
3 and 3

factors can be found without replacing the value ofna by load-

for given . -In this case, the stress intensity
ing normal and shear stresses separately on the crack surface.
The proof is given as follows: |
- CASE I: Nd SHEAR STRESS ON THE CRACK SURFACE

( P*(s)# 0, q*s)=0)
Since g*(s) = 0 and; the kernels can be evaluated for}given §H]/a
and 6H2/a. From the equations (3.58a,b) and (3:593,b) we can
solve ¢;(rj)/6 and ¢;(rj) (3=1,n). " Théh, using the equations
(3.67a,b), it may be seen that for given fixed values of Egl-and
‘6H2/a; kj does:not depend on & explicitly and k2 is proportional
to a.v | |
CASE Iii NO PRESSURE ON THE CRACK SURFACE

(P*s)=0 , q*(s)# O)
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Similarly, for a given 5H1/a and 8H,/a, the ¢f(rj) and 6¢;(rj)
can .be solved from the system of Tinear equations. Using equa-
tions (3.67a,b), it may again be shown that k1 is inversely pro-
portionalltd § and k2 does not depend on § explicitly. If Hy =
H2 = H, then k2 = 0 for case I and k] = 0 for case II, therefore,
k] and k2 depend on & only through the combination &H/a and not
explicitly. From the definition of stress fntensity factors,

the stresses at the crack end may be expressed as

k; ' N

.G;?_(x,,O):‘*-———m) » o ke>a),
Gy(x,0)= —Ka_ , (x>a). Boeza,)
n(%,0)= o) » (X ) | ( | &a,kb)

Using the equations (3.673,5)

G?ﬁé(')z— L (d’(a)ﬁ-O(a X))

A V—_ X—=a
- o (490, b)
—_— _ T X\ .
%)= m ’—'m (C’z’(a.‘>+0(“‘x'))j%<,<a.
since "

47*(53 = QI(S)V/~52 ) %%(5\:@2(5)\/1—252,

S= 3(5 :6,()(,) ) 92(5):'6;<Xl.)

and Gl(xl)’ Gz(x1) are displacement derivatives, they can be

expressed as

. -24-
il



& 0 o (D)

) Via+x)o-x)

o B4

Via+x,)(a-x,)
where Xy < a.

GZ(X,) = (3.70&,b)

Using equations (3.69a,b), (3.70a,b) become

6ty =~ Sk T Da~x}
o EXs .ZMJJT ( '))&<a‘

(5'7laJ b)
!
“alh)= - ;5/\,6[ Terce R PR

Using equations (3.42a,b) and (3.71a,b), we obtain

o
U, (% , #0)~U, (X, ,~0) = iin X
- s “x VZ2(4-%)

(3.720.i1) -

. Qa
. — l<7_ dx
U,()(,)'I'D)—U, (X,J"O) -
After evaluating the integrals, we get

0, (%) +0)-0, (x,,-0) = LI8

— V2 @-x), x<o

15 .
(3.7300,b)

U'| (Xl')+0)‘01(x| JJ'O):‘ kz‘ 2 (&—X, J"X‘ £ CL
| ESX, |

Now let the crack front advance parallel to ifse]f by -an amount

da. The externally added (au) and intérna]]y released energy

. -25-



(aV) per unit crack front may then be expressed as
A+da

AU-AV = j 5103, (%),0)(Uy (x-dla, +0)- U, (x,-da. “0»

%(X|')O)<U‘(%l"‘c10~) +0)-U, (x~da, ——o)}:}o\ X, - (3.74)

Substitution of (3.68a,b) and (3.73a,b) into (3.74) gives
atdo

, 2 ke % .
AU-AV = i_-éi&. __;__.‘( Jo.+da-y,
or .
P sk ks

Since u-v is a "potent1a]“*and a is a "distance", consequently

65 = L)"\/> | S
Qwv — | | (3:76)
has the dimension of "force" which is also known as the "crack

extension force". From (3.75) and (3.76), we get

sk, L4 |

The stress intensity factors are calculated for various crack

&= =

gedmetriés under various loading conditions. Thérefore from
equatioh (3.77) G can be found. For isotropic cases (plane
stress and p]ane strain) «=1=§, S1=1=Sz. For this case, the
------------- o .value of M5 and A16 may be obtained as A]Sé%=x16. From egua--
tion (3.77) G becomes , : '
S 2 2y :
6:,,—217;::(‘@ + k) | (3.38)
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4. THE PROBLEM OF CONTINUOUS CONTACT

Referring to Figure 1(b), the problem of the frictionless
full contact, can be solved with a slight modification in the
integral equation (3.44a). 1In this study we will consider the
symmetric problem (i.e. X1=0 and x,=0 are planes of symmetry),
" the equations (3.5a,b) imply that X,=0 has to be a plane of
- symmetry (i.e. crackIMust be Iocated in the middle of the strip)
- but x;=0 may not be a plane of symmetry.

For symmetric problem R12(t],x]) = 0, the integral equation
(3. 44a) becomes '

S
j (25! “*“““)6:“"”1‘ =T, G-

Noting that p(x]) =0 for b < |x1| < a and assuming a flat

wedge (1 e., G](x]) = 0 for |x1| < b) (4 1) becomes

b
f (3= K',(f,»x,\)éuutquj(f o R »X))G(f)( (\;
4.2

which, by using the conditions of symmetry with respect to

= 0 plane, may be reduced to

j(fx o+ Riltox)6, thidt = o o (43)

where
ﬁz|(f|)xt):: ;E”(fjxxl) ”< (- fl,X ) s b<x <o,

Also, the pressure distribution along the contact area can be
expressed as

- =27~



a.v
~18 poy= [ (4t f+x+/<(t,)x )6 itiat
EMs CRR -b<xzb (4 L)
In this problem if we assume that G1(x]) = -G1(-x1) the single-

valuedness condition is automatically satisfied and, from the

physics of the problem the additional condition may be expressed

j@ )t == Vo (- 5)
where Vo is the total thickness of the wedge.

To simplify the numerical analysis, the following dimension-

less quantities are introduced

Fo ZU_QtE | _yorsl, b<t<Q,

a-b a-b
5= % - i’:‘; ) 12 S,<1, bexca,
_ X3 - S. < -bdxz b .
53— " ) |4 3 IJ 3 (4.6&_—C>

After normalization, the equations (4. 3), (4 5) and (4 4) are,

respect1ve1y, rep]aced by

1
| ! dr =0
_j}(r—s t = +/<(r,s))g(r) )

| ) .
G¥yde = — 2V 7q,b
:S‘lq‘n (r)df o- b - o (4 ’ )
_Ts P* L l
(s) j + +J< (rs))g(r)ch
E)\ p_ 2): G+b 2 b +b
B e ey gt

-28- (48))



where

¥ - -
M= &ty P¥s) = px) )

[N
—

kyrsi) = K (X)) k(hSs) = Kiltx)
and since the variables $1 and S5 vary between -1 and +1, the

subscripts have been deleted.

o
e

Noting that the index of the singular integral equation

(4.7a) is +1, its solution may be expressed as

¥ (r)

% ‘ P

ry — ———— —i1 L Ll

I = =T (44:10)
.The equations (4.7a,b) may then be replaced by

n ————— ’

[ | .. ) * ~

J‘Z|<5—SL'+ [T.,I.S(,_rz__(gi}z)-'r }<I(5)S‘,>)w)¢(5)_o)
= - + 2k

Z:/)") n_} .
Z‘P*( Jw, == e L (4110 b)

where rJ, Si». and Wy are’ respect1ve1y given by equations (3.60),

(3.61) and (3.62).

The unknowns g(rj) (j=1-,n) are .determined from thévsystem
of equations (4.11), using the ¢(rj) and (4.8); the pressufe at

the various points can be evaluated as

“I8 pis)= > | oY a:b / a4k
= e = - +
EXg T NG “2rS; + 5= - JF al St

'+/<2(5)5L'))J¢}'(5'\ e r'v_"'(4.12)'

It should be observed that the integral equation is valid

R T



provided‘the contact stresses obtained from (4.12) is compress-
jve everywhere, i.e. for Oéx]<b. To investigate the separation
on the interface we need to know b, which can be determined
from the condition that the contact pressure be zero at x,=0.
The value of bcr may be found for a given crack geometry by

iterating equations (4.11) and (4.12).

5. THE PROBLEM OF INTERFACE SEPARATION b > b .

Since the gqntact stress may be tensile, for b > bcr there
would be separatibn in the neighborhood of x1=0 on both sides
‘of the wedée. Let the separation area be described by -C<Xq<C
(see Fig. 1(c)), where ¢ is unknown and is a funétion.of 2,-5.
and materfa] parameters. '

In this case, foo, the problem can be solved by slightly

modifying the integral equation (4.1). In this problem we have

. Y 0 Lotica

() =

: ) ? ) O tgr’ (51a)
R (1) —cetece

blt)=-@ (1), Lot ca 1y

PxY= 0, (X<, baixlco. - [5aic)

Using equations (5.1a), the equation (4.1) becomes

t

- =30-



/ % )— C
# — + K, (T X 1
\j Jj ) i- ¥ I)L‘P(l‘,)dt,-t-—jc(fl_xl
-rs :
E/\ P(X) C(lX,l<]é
(52)
O, IX\<C, b<ix| L.
Using equation (5.1b5, then (5.2) can be modified as

o, - —_ C
(G K\(f\,x.})cgul)aa—rfc(}—"f;

. 0, b<xea (5.3)

R X)B I = - EA P) , C<x<b  (5.4)
o, -c<x,<C  (55)
where '
k:l(f] ,X,):: Li (1,%)= K, (—f,,x,)-
The equ¢t1on (4.5) may be replaced by .
j P (t - (5]
Introducing the following dimensionless quantities as

r- 2%t _ a+b
' a--  a-p

bt <, —1<T <

m= 3L, -c <t <a, -1< <

- | 7 A -31-



) bLX LA, -1<s,¢)

N , (5.7)
S37 2 ) =0 < %34 ¢ =1<S55<

L-C b~C

After horma]ization, the equations (5.3), .(5.5), (5.6) and’

(5.4) respectively become
| .

, | : N
J( r‘\s—r rt 5+ 2(6+E) +hl(r:53)3(r)clr
- b n
|
/ —
+j ( F-‘- a'hs_ CL*H; qhztri 5))3 (FYdr =0
- Zc”T T 2

!
I : |
j(r‘ 2C g4+ 4tb ‘+r+ 2C S+ a+b+h(r5)g(r

(5.8)

il a-k a -~ a-b a-b
BN | _ '
1 = 5.
o fFmrThins)gedr =0 -
- J ZV‘ 5.10)
- - e : 10
glﬁltr) r oL (
'( | . [
JAry &b b-C o prc T hlpdb L beC L. bEC
, S ogo s BS rradh bt RTEStaL
J
. — ' [
+h5<r,s)"r}dr—;— .(r— L-C c_ picC ‘H’] (n s))gcr)dr
rs ; IJ_C W :
=T EAL PRs)
where = 15 ('H



U= RN §(3)=Bl) , PHs, = Pix,)

hl(rl)sl) = /Zj (t’)X',) J {7'_7_(6)5!):/?1]&3’)(') /
e | _ 5,12

hﬁ(rl’slf) = E(f:)xq)) /76(%)54)= /Z,,(?L3 ) Xq)'
and since the vadriables ris 3s Sps S35 Sy a11'Vary between -1
and +1, the subscripts have been deleted.
To éo]ve the system of integral equations, in this problem
it is more convenient to assume thét (5.9) as well as (5.8)

-has an index +1 and let

.g#r) = jiggg_ﬁ ; —1gr«
. NIEGE _ ,
» | (5:13)
g(r)= Lp—f—a—(r) e
7 L VI-rt

To insure. smooth contact at the -end points of the separation

area we then impose the following conditions on s
\%("'):DJ k’)z(l):O' (544&)/3)

Using now the Gauss-Chebyshev intégration formula (5.8),

(5.9) and (5.10) become

| | |
Z(S“Sc T [ +S.+ 2(&tb) +h,(5)5¢'))bg-‘4f(5)+
| S D -
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C t =
“b (=g 0l
Zﬂ( ! + |
[-2¢ o 4y Atk " 2¢ atb
J= J [L—I,S‘+ a-bL T TIOS(+ -1
B¢
n .
+ha(0,5: W) + > (T Thy G oS )W W (5) = 0
g= Y
Z:IJ' v ) f)—l
4 \ 2.V -
| L A |
ZLP,(Q)‘A()/— == - (5.47)
J:l : ' .

where ry> Sy and Wy are respectively given byﬁequations (3.60),
(3.61) and (3.62). Thus (5.14)-(5.17) give 2n+1 algebraic equa-
tions to determine 2n+1 unknown§ w1(rj), w?(rj) i=1,nandc.
The system is nonlinear. However, the problem may be somewhat
simplified by assuming that c is given. Thus,‘the‘linear system
consisting of (5.14a,b), (5.15), (5.17) and n-2 equations from
(5.16)>mayibe solved for various values of ¢ and the correct
value of ¢ may be determined from the last équation in (5.16)

by using an iteration technique to satisfy that equation. It
should be noted that from (5.11), the pressure distribution on

 the contact region may éasi]y be evaluated as
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2124 5C 5 4 btC

I
T Ark b e Thys JSL')>V3-‘4{(5')
J b a-bt T w-p

(5.18)

z | +h, (15)S,) f:
*Z(f; b-C g, - btC Nty ‘)%L’{‘J)

iz o c :

J= 2C 2c P =1 -
From the system of 1linear equation (5.14)-(5.17), we can deter-

mine w1(rj), wz(rj) and c. Substitution of these into (5.18)

“gives the value of pressures at various points.

6. RESULTS AND DISCUSSIONS

" The singular integral equations (3.44a,b) and (3.45a,b’
Were solved numerically by first normalizing the intefvaT (-a,a)
to (-1,1) and then using the procedure\out1ined in part 3.6
for the middle ]océtipns of the crack. For values of g%-c105e
to one, no difficulty of convergence was encountered. However,
for ﬁ%->> 1, especially for large relative crack lengths, more

collocation points had to be used to improve thé accuracy.

The -stress intensity factors are usually ca]culatéd without
SH
. a
normal and shear stresses separately on the crack surface. The

choosing the value of &, by specifying » and by loading thrdugh‘
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variation of the stress intensity factors with material para-
meters (i.e. stiffness ratio and shear parameter) and geometry
of the crack under various loading conditions are then studied.
Figures 2 and 3 compare the stress intensity factors for
orthotropic (birch, yellow) and isotropic materials subjected
to uniform normal and shear tfactions on the crack surface Where
'g-haé been kept constant (g-= 0.75) and crack location H]/H
has been changed. An interesting result can be seen for the
unit shear stress case which is that k2 gpeé‘through a minimum
‘for.a certain value of H] in 0<H1/H<1 rather than for H1=H as
one might havelexpécted.
Figures 4 and 5 give the variation of the stress intensity
factors with 23 for various stiffness ratios 6=(%31;3) or
;i% =-(é%—,j,81) which covers aTmost the entire practica] range
for the orthotropic materials. The external loads are again uni-
form normal and shear tractions on the crack surface.
Téb]e 1 shows the effect of the crack geometry on the stress
ihtensity factors for.various loading conditions. The consid-

ered crack locations and loads are

}-) %. :-J.J O-'—?J 0. 4" 2') .P(‘X,): I X ) Xlz) 6()(/)} Cf(/\’/]:OJ

and - P(X)=0, Q(X,):/) Xi ) X%
For every case, the'gedmetrylgf the crack varied as %¥-= 1.5,
0.6, 0.4, 0.25, 0.15, 0.10. The results for various combina-
fions of the 1oadihgs.may be obtained by using the superposition
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technique. In Table 1, the results are obtained for birch

yellow which has shear parameter x = 1.2895. Eartia] results

giving the k] and‘k2 for unfform normal and Qﬁéar crack sur-

%ace tractions are also displayed in Figure 6. Table 2 shows

. the effect of the material parameters on the stress intensity

factors. The cases considered are:

1-) shear parameter effect: 1in this case two crack 1ocations

are considered 2%—= 1, 0.4 and p(x;) = 1, 8(x7)s alxq) =1

are app]iéd separately, on the crack surface. The shear para-

- meter is varied as « = 1,2,4,8;12.} N |

2-) stiffness ratio effect: the symmetrié case is considered

and»the'same stresses are applied on the crack surface. The

stiffness ratio has been varied as § = 0.3, 6.4, 0.6, 0.8, 1.2,

1.5, 1.8, 2, 3, 10. From Table 2 we can conclude that stress

intensipy factors are slightly varying with shear parameter but

they are high]y dependenf on the stiffness»ratio such that the

kernels go to zero as &+ and become divergent as 6+0 (i.e.

ffom the equations (3.52a-d)_it can be shown that 6+~ and 6+0

arel respectively, identical to H1+m, H2+m and H]+0, H2+0 for

a fixed 6); consequently k]aﬂ, k2+1.as &+~ and £]+«, k2+w7as 6;0.
wThe problem of full contact is solved by modifying the

integral equation obtained for. the crack problem. For a given

SH

3 if we increase Py the pressure will decrease and becomes
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zero on the midd]evof the wédgé for b=b... Table 3 gives the

critical values of g-for various %?-; To simp]ify the numerical

analysis the stress intensity factors and pressure are normalized

Ev
with respect to —39 » where v_ is the thickness of the wedge.

)
The integral equation obtained in part 4 is no longer valid

if b > bcr. In this case the interface separation problem has
been solved by modifying the integral equation as outlined in
part 5. The separation area is defined by 2c which is calcula-

ted by iteration. Figure 7 shows the variation of %—with %
for %F-= 0.6, 0.4, 0.2. The pressure distributions, when bﬁbcr

and bgbcr can be seen in Figure 8 for %¥-= 0.6 and g-= 0.2,

0.293, 0.33, 0.40, where §-= 0.293, is critical value. For

H b

various values of - and =, the pressure may be obtained from

Table 4.
Fina11y, in Figures 9 and 10 the variation of the stress

intensity factors With g-may be seen at the crack and wedge

tips for-%? = 0.2, 0.4, 0.6. For all the crack contact prob-

1eﬁs, it is assumed that x = 2.

-~ -38-



Table 1 a. The effect of crack geometry and loading conditions
on the stress intensity factors for Hy = H and

« = 1.2895.

022 = P(Xi)s o12 = 0 o22 = 0, 012 = q(x;)
p(x1)=pxy | p(x1)=pxZ | p(x1)=ps(x1) [[q(x1)=ax1 [a(x;1)=qx%
k1a=ks | Ka™ke | KAk kon="kzg | k2n™kos

s | fs |t LI (T T )
a pv/a - p/a p/a .| ava qva
1.5 0.535 0.603 0.613 0.516 .| 0.548
11.0 0.597 | 0.693 0.880 0.542 0.582
0.6 0.773 0.902 | = 1.517 0.605 0.648
0.4 | 1.049 1.205 2.470 0.685 | 0.725
0.25 | 1.646 1.837 4.514 0.813 | 0.848
0.15 | 2.955 3.180 9.091 1.008 1.030
0.10 | 4.923 | 5.197 | 16.177 || 1.210 | 1.222
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Table 1c. Same as Table 1a, H]=0.7H, 022=0, c]2=-d(x])

qlxq) =q q(xq) =ax, q(xq) =qx$
s |F15 | FaaTkap | K1a71B | *2a™*opl| K1a7K1p | K2a7*op
qva qQv/a qva qv/a qva ava
“11.5 | 0.102 1.190 || -0.021 | 0.522 0.021 | 0.546
1.0 | 0.178 1.310 || -0.032 | 0.553 0.035 0.576
0.6 | 0.306 1.526 || -0.048 | 0.622 || 0.055 0.635
0.4 | 0.433 | 1.757 || -0.063 | 0.706 || 0.075 0.703
0.25 | 0.612 | 2.106 || -0.083 | 0.843 0.103 | 0.814
0.15 | 0.857 2.612 || -0.111 | 1.046 0.141 0.983
0.10 { 1.095 3.127 || -0.120° | 1.250 0.179 ’].161
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Table le. Same as Table la, Hy=0.4H, 0,,=0, o15=-a(xy)
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q(xy) = q q(x7) = axq q(xq) = qx%
s |F1A kB | aaTkam| K1a7*i8 | k2ak2s || *1a™ 18 | KonT*es
@ | kg | kg i g | K || g | ke
qv/a qv/a qva av/a - qQva Qv/a
1.5 | 0.260 | 1.166 || -0.055 | 0.556 | 0.049 | 0.544
1.0 | 0.390 | 1.239 || -0.080 | 0.603 | 0.068 | 0.570
p.6 | 0.580 | 1.384 | -0.116 | 0.695 0.002 | 0.623
p.4 | 0.757 | 1.553 || -0.151 | 0.802 | 0.114 | o0.688
0.25"| 0.991 |- 1.824 | -0.196 | 0.966 || 0.140 | 0.798
0.15 | 1.320 | 2.234 | -0.164 | 1.143 || 0.183 | 0.970
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Table 2c. Effect of the stiffness parameter 6
‘ on the stress intensity factors,

2}-= g? = 0.35, k = 2.
|
022(x1,0)=p - 022(x1,0)=p5(x]) 012(x1,0)=q
s |

pva p/a 1 o

0.3 20.350 14.218 3.231
0.4 13.880 9.426 2.829
0.6 8.348 5.436 2.353
0.8 - 5.954 3.732 2.075
1.2 3.851 2.261 1.755
1.5 3.103 . |. 1.745 1.610
1.8 2.637 o t.e2r 1.507
2 2.415 o 1.279 1 1.453
3. 1.797 ' 0.858 1.282
10 ERRIF 0.393 1.043
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Table 3: The critical values of %-for
various values of H/a, shear para-

meter ¢ = 2.

- b sa XA sa K18

UL Y B, = | =

a cr 0 Ya 0 Ja
1.5 0.961 4.761x10" ] ~4.568x10" "
1.0 0.665 1.569x107 ~1.476x107]
0.60 0.293 8.544x10™2 -6.792x10™2
0.40 | 0.161 5.836x1072 -3.874x1072
0.20 .| 0.059 | 2.801x1072 | -1.188x1072
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Table 4. Pressure distribution for the wedge problem
(Figures 1b and lc), «
and (c,b) normalized to (-1,1).

2 (The intervals (-b,b)

sH _
(a) e 0.6
' da
b o4 _Lda (S)
Full 8'g42 1.313x10""
0.1 | Contact | 0.643 | 7.229x10” -5.559x10"2 | 1.453x107)
0.866 1.959x107
3.379x10"
.990 6.253x10™2
.756 7.987x1072
- -1
0.5 0.688 282 1 9 099x107! | -9.961x107 | 1-267x10
-282 2.253x10
756 4.707x107' |-
-990 3.542
.990 8.653x10™2
.756 . 1.070x10”]
| -1
0.6 | 0.738 282 |y 2gg07T | <1.208x707 | 1-624X10° 1
‘ .282 -1 2.797x10
-756 5.734x10"]
.990 3.998
1.218x107
1.504x107]
' -1
0.8 | 0.766 2.016x10" ~1.931x10" 2.288x10-1
3.978x10
.8.279x10" !
4.863




Table 4: (cont.)’

S

sH _
0) =0
b sa 1A sa kg 8 ey
3 S; EVy /A Evy /3 Evg i
0.0 | 1.416x10 !
0.342 o | | 1.571x107!
0.866 | 3.601x107! |
=2
0.0 4.940x10
0.32 | o | 6.663x1072
0.866 2.604x107"
0.0 8.550x10™3
. . -2
6| 939 ygema0! | -13isxaon! | 299310
0.643 A 1.002x107"
0.866 2.611%107"
0.0 0.0
-2
665 | 0-3%2 1y seox107! | -1.478x107! | 2-268X10
0.643 9.785x10
0.866 2.708x107"
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Table 4 (cont.)

N SH o oe
(C) 'E— = 1.5
K K
- 8a 1A sa 1B 8a
b ' = p(s;)
a S_i EV0 /a— EVO /é- EVO 1‘_
0.0 1.536x107]
- -1
0.3 | 9392 | 304300077 | -1.088x1077 | 1-691x10
0.643 2.249x10
0.866 3.750x107"
0.0 6,900x1072
» : ‘ -2
0.6 | 93 | 15707 | -1.38sx107 | B-681x10
0.643 1.479x10
0.866 3,002x10”
0.0 | 4.147x10-2_
0.8 | 939 | 2.072¢107" | -2.0m1x7071 | 6-303x10
0.643 1.377x10
0.866 3.307x10"
0.0 0.0 |
o 2
0.961 | 9-3% 1 4 75101071+ | -4.550x1077 | 1-920%10
0.643 | 9.572x10
0.866 3.633x10”)
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(c)

Figure 1: Geometry of the crack and crack-contact problems.
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The effect of the crack location on the stress inten-
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Figure 3: Same as figure 2 for Uniform}shear applied to the .

crack surface.
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Figure 5: Same as figure 4 for uniform shear applied to crack

surface.
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' Figure 7: Separation length for the wedge problem, x = 2,
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tact problem, k = 2.
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APPENDIX I .
DEFINITION OF THE MATERIAL CONSTANTS

, = @5 E, \/2

V= (2,9,2)"

- 8[1: E-”' - \)IL
’ Eoq ﬁ)?_: '
_ /2 '
K,—'.‘T I zz)‘( G " 2\27‘)

/l

S = (l<+\/27-_'-l—>y2 )  53'2-5-

I

. Y
S, = (k=VET) , §,=-

A = 2 9
5A S, - 52
A= 222
¢ 5-5,
A= 2*+Ss
i “5-S,

= S %)+/\5523
| lAZ:'SZS (_I-r/\?),_)‘ésfg
As= S0y )= ), S,
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4" i
55,
)\3 - 25,
-
/\9 T A
| )\:o = )\4 )‘;")‘2./\3
)\“ = - _2‘..7—_
Mo
)\,7_* - __/li_
Mo
M= .fil_
13 Mo
A= s
& Ao -
)\,5 = /\'Z‘f‘ )\Mf : :

The.problem is solved for plane stress. The results for plane

- strain case can be obtained by redefining material parametefs
k and & as

s B 1=Ya3 Vi
E’Z.'L )"\),3\)3‘

k=L (E g V2 |

N Z( ;,zz\ <(|—\),5V31)(\-\?23])32\>
_ Mgt Va3 Vs ) o
E)

i, |
/2( by Va5 Wy,

TR : .
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APPENDIX I1I
© THE FREDHOLM KERNELS

0= (5+ S:,_) )’)l
5= (5,-5,)h
r3: (S, ‘f‘Sz) h?_
F=1(5-S)h,

|| b x>0
Z= g = {

' -1, ®<D
Myl = S2-5, sh (5,57

252. o 1‘)\5‘,?
L D2t32 h(5,-52)x |
Y773, € |

5 =S htz)® S, h, (1-2

M, = S e Ay 3 €

N S, +5z2 ehz (Sz—s,i)u .
e | o

; 2 -G [o
My (= A (€ - e )

| o e She
LMyl = >\8(€4 ~_€z )

. -64-



2-1 S.h (1+2)xX S, - 52 —”1 (Dz-,-J 2)

!':‘)?(x)\ /\6 = e —+ ) ____3___
S, +5z h (S =S, 2)x
z.S @ , S
2 —Szh;,_(wzw S,-5z eh (5,+S2)x

h(l
—+ H‘Z LZ

Mg ) = ’?”1‘“’””5‘*‘,‘ (<)M, (<) |
Mp{x) = My () M, (o¢) = Moz () My ()
m,,(x‘) :m?(x)m,(x)__ Myl ”75 W)

Mz (<) = M), () mé(o(\—/r)g(a)mz(x)
m;s ("() = n’)g(o(\m, (°<) - ml*(“, /)25(0()

R T )+ 528 (S
)4, (%) :)é,ez M) +Age M, () + isz Smpeg e
| | - =S, (1+2)x
l:,7(o<\ )\ /z“" V+ g m f)+ S Mylx\ € 5

(°<)~/§3€ /7 ol +/\ g’ m &)= 52*5,25"(5{5:2)"‘

235, - M
fix =13 & S,h (1-2)«
f\i"z,?(xi=/\9€,m,zt°<)+xgezm,9(«) ZEe T N

Mig ()= My, (=) +my () + M5 () * My (K)
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Mhgh= M) +m), () + My, (¢) 1), ()
Mo Y =N, ) =My ()

Moy (%)= My (x) = Mz (%)

Mgy (%) =) 1\ =), ()

/)’)2_3( x) = T Myl = My (<)
Ay, Mg (x) + M2 M o) |

H (a\
m_g(ﬂ\

B = 2aMigd + A Mg ()
2 . ,-),)g(y) |

SN, M )+ S A M, (x)~ _

= T T S - e
mg(o()

H e - S/\,gmwcst /\,3ml,<o<)u5 A,V o(x)— S, >&”m )
Kylt, )= 5— j H () Sin ot ~X) o o

K:ZH) X..) = - L j H,Z(x)‘_C'osN(f—x)Jx
' o
Kz: (t, x) f Hy, (x)Cos «><({ ~-Xx)d'x

Koy (£, x)= - ‘A",‘é j szax-)s,‘nx(f—x)_dx_'
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The kernels Rij(t],x]) and Kij(t’x) (3,3 -= 1,2) if r],...,r4.
‘are replaced by F],...,F4 given by

ﬁ:(S,ﬂ'SZ)HlS , f_‘é: (S,fSZ)H\S
@:J(S'TSZ)IHZ_S ) -fz :((SI_Sz_)st
in the numerical integration o > 0 or z = 1 some of the mj(a)

become

-, &
5<«\—/\ +/\ e'“ A€

*\ﬁ

-fm,m: /\QMéA e
, : o
m?(x\:—k;/\ge W
mgw)— - A, )\ g%
(<) = %6 AN |
My, m o) F g &""m (0 +Age’ myi)
m,5 () = Ag e?‘m,zcx\ + Xy &M )
0<\" )‘\ge /Y) (°<)+/\ € /)’7, (!X)-/L)\ 5 /)’)(x)

| -r>< -
m;y(«\_)€ m,2<x)+>\ 17’)/3("‘)—/)’)5(0()-
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e APPENDIX III
DERIVATION OF INTEGRAL EQUATIONS

| ® b S ~S. 1«19y 2 (xx.
Oyyt%)9) = - o Jf( ZCJ( ZA g )o<€ oo
-0 J:’l
(ke s & Y Em '5"“'9)”3
_ =S XA & o
O\Xg( )‘:ﬂ-zﬁ_h&\j:ld(x\\) J-Z=,>< J(M)Sd

Using the mixed boundary conditions

. _ . Y=(xx
-_-pl(x):_z'_ iC/x)o{ eL:Jo(——"‘L’m<_’ ”“ed d:x)

oo J=t
" | Co . =S, %1yt
o ~(®X = A
- : e’ L Lim ( (x)x x| €° ax)
| ) ::zé‘ﬁjusz%(“\%'“ € det=75 ysp '—J;of'_ Jd |

Substitution of ( 3.26 a,b ) and ( 3.38 a-d ) into

o o

_ fix) | ) e 6% .
——[::—- = - ZL;T ‘joo/_,;z (N) “;(x)\e o —é.LTT .‘ofnlx)F(o() Io(le ol
SSIY Sy = -
. J_ Lim ~§~ A ! .9) (XX
2r 3’%0-00( n© A AL H) *
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- b =2Lj zzmm)e o A ﬁ 2 Fee” I

-0

Co | My =Sy oy =
fwoj (52 rsone )R
-H(S./\,ze S eZ""“f’);-me %o

where

H ) = Mg (0T A, My

i

) = M M
Mg («)
« _SAM, o)+ S, A, M, (<) = S,/\,Zmzztxksz_%,zmubd
M | )= ‘ Myl ) |
] M,_5,,\,3m20zx)+52A,Bml,(x>—5,/\,,:‘wnc°<\-sg,‘,ngcx).
22807

My ()

using equations (3.11a,b) and continuity of displacements .

outside crack and changing the order of integration we obtain

d .
_Puxy o | t S E
T j ["7“%1’(*4"”"1@ Gm({,xﬁgn(t,x)ﬁ(é)

+ g,zu,x),g@ja&
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P (x)
=

d |
= Jjamezz (t,5)dt + | F16,Lx)dt
) J, RIS

- d
jg(tx qu»jg L3 )¢

where

0w s (t-X)
6,,(z‘,><):_-%r§H”(o<\%€ do
S “oP
WX (4~ X) i
Cpltyn)= - e H,?_()E T
| | LN(fTX)
6, (t,x) = j ()2 doc
| . co((f X)
622 (4,x) = ;ﬁf Hyr)e | dw
-0
o oo —Sld\éj -S dly (M(‘f-x)
.%#@X3:~zﬁlun JAOQQ —#A(Z %;e olw

| Sy -S wy m({ -X
,?{f‘)X)“'-‘-— ):J”I;C \Sbb(/\" +/\ ) )clol
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‘ x':" = it
szlf,x)': er j(, ; E )ME d’;

we know that
o) 1 oo B
j Fx¢Ydot = j[? (%) + F‘(~z><ﬂolb<
— o0 0 ~ |

t(t=x)  —(x (t~X)

—+ E-- | = 2 CIbS FK Cf“'X)
e (f'X)_v X)L 20 Sine (t-x)
. : [)D~:j | '
.Lg’ﬁo j 6 Smo(({ “x)dx = —_

C | --t-5)§

~ Lim je Cosex (=X} d = O
Y0 o |

‘Using the above expressions we can show that

82'(1‘,X): _O = lelf,X) /

S hathe  SA+SA
x'(' = _':?- '4 \- Lyt _ i /] 2’3
A e TR VL Rt
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In the same way we can simplify Gy (t x) (i,j = 1,2) as
Yo

~ - L (eld-x) ~(ot (£ =X)
G, (t,x) = 4= (HL H (- € )

-

5 - (X (-X) ~ X (¢=X)
CaltX)== 35 [ (A€ e ol
L | ) ,
‘. O ot ~% ) - (X (£-X)
Gyt X = = 5 O(Hl,me — ()€ ) de |
) - (o4 (£-X)
2ztx)~——-—f € H, (0 )

Us1ng the def1n1t1ons of H, (a) (i,3=1,2) -and mj(a) (i=1,23)

we can show that

~FM(u): H,(-x)'

H,l'@<\ = Ff 5 (= )

Hz; (x)= = Hz, (‘N )

sz(o(): 7‘ Hz?_ (\«X)

y;ﬁ72_



These conditions‘can be used to simplify the Gij(t,x)

(i,§ = 1,2) in the following form

G,, (t, x) = IF 5 H, () Sinx (t~x)d s

Gy [+, %) = '7,_rjo Hyp (x) Cosa (£- %) dx

Gz,(fx = 7/._}/7' (x) Cos <(=Xx)d
Gaa lt, ) """:FS“[ZZ"‘ Sin o (¢ xwx

Finally integra] equations become

_mﬁp‘x J[F” + Ky (8 X) R () + K (2 X)F(f}Jf

[F?J;f;-rkzzéz‘ 3B +Ky [t 0F L

—J
where
K,J(t,x):__/\ffgeu (#,x)

T (t 4X) =/, 2
/<2’J(2L))()_ _)\T;-QZJ( / /(J )
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