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Abstract 

The statistical technique of sequential analysis 

was presented with a historical and theoretical intro- 

duction.  Its economy of sampling and ability to con- 
» 

trol the power of a statistical test were shown to be 

advantages for the scientific researcher despite the 

necessity to specify the critical size of the effect to 

be detected.  The actual procedures were then detailed 

for the sequential sign test and two approximations of 

the sequential t-test. 

To demonstrate this technique's usefulness in 

psychological research, a verbal learning experiment 

was replicated.  This previous experiment's design was 

an attempt to control the serial position effect in 

paired-associate learning that may minimize any differ- 

ence between the experimental and control groups.  The 

finding of no difference was replicated. 
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In this paper I intend to present the technique 

of sequential analysis and show its application to 

scientific research, and in particular, psychological 

research.  I will give a brief description and history 

of this technique, explain its theory (in part) and 

finally, show its practical use by means of a demonstra- 

tion within psychology. 

A Description 

Sequential analysis is a procedure for testing 

statistical hypotheses.  It is similar to the tradi- 

tional statistical techniques, especially in the types 

of hypotheses tested and some of the theoretical concepts 

involved.  It does, however, have some characteristics 

which make it superior to the tests used at present. 

Briefly, a test procedure is sequential when the 

test is performed as each observation is taken within 

an experiment.  The experimental manipulations may be 

stopped after any particular observation, depending on 

which of three decisions is made: 

1) accept the null hypothesis; 

2) reject the null hypothesis (accept the 

alternative hypothesis); 

3) take another observation. 
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Barnard put it another way. 

It is at this point that sequential 
analysis poses the question in a 
more natural manner than the clas- 
sical theory of testing hypotheses. 
In the classical approach, the ques- 
tion is put: Which of the two hypo- 
theses, H or H*, should we adopt, 
on the basis of the data R? As if 
we were always compelled to choose 
one or the other of these two alter- 
natives.  Sequential analysis, on 
the other hand, poses the question: 
Are the data R sufficient ground 
for adopting H, or for adopting H', 
or are the data insufficient? 

(Barnard, 1947, p.660) 

Thus, in sequential analysis the sample size is not 

predetermined.  Instead, the experimenter continues to 

collect data until a decision can be reached within 

predetermined limits. 

The advantages of the sequential procedure are 

twofold.  First, the experimenter not only specifies a 

level of significance, o^, but also specifies the power 

of the test procedure.  This specification of power is 

otherwise unavailable to the statistician except in 

special cases.  Second, all things being equal, the 

sequential procedure when compared with the traditional 

test shows a savings of 50 per cent in the number of 

observations needed to reach a decision.  The economics 

of time and money make this a significant reason to 

consider this new (?) procedure.  More consideration 

will be given to the above ideas later, but first let 
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me explain "new (?)" with a bit of history. 

History 

The formal theory of sequential analysis was de- 

veloped as part of the war effort in 1943 when the 

principal author, Abraham Wald, was" part of the Statis- 

tical Research Group of Columbia University.  It was 

declassified in 1945, and previous publications were 

reprinted in Wald's book Sequential Analysis.  Research 

into furthering the theory has been widespread since 

then. 

Applications of sequential analysis have not been 

as advanced, probably because most people are satisfied 

with traditional procedures. The first uses of sequen- 

tial analysis were in industry where the assembly line 

allowed for sequential quality inspection (see Davies, 

1954). The sequential procedure's economy of sampling 

made its use all the more advantageous. 

Other early users were test constructors and ad- 

ministrators in education who used sequential techniques 

for purposes of item selection (Schmid, 1952; Anastasi, 

1953) and grading (Cowden, 1946; Moonan, 1950).  After 

disappearing for some time in this area, it resurfaced 

in connection with computer-assisted instruction (Olivier, 

1973). 
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The mid-fifties showed its introduction into 

medical research. 

This investigation used, for the 
first time in clinical research, 
the statistical technique of sequen- 
tial analysis, which enables clear- 
cut conclusions to be reached with, 
on the average, the smallest num- 
ber of experimental subjects. 

(Kilpatrick &,01dhan, 1954, p.1391) 
i 

Its continued use (Armitage, 1954; Sainsbury & Lucas, 

1959; Hajnal, 1960) was fostered by the medical ethics 

of not using a test drug that was not helpful and pos- 

sibly harmful.  The advantage of sequential analysis 

was highlighted here. 

The ability of the pharmaceutical 
chemists to synthesize compounds of 
potential therapeutic value in 
psychiatry is not matched by a cor- 
responding ingenuity in the methods 
for their clinical evaluation... 
A need has therefore arisen to de- 
velop methods of clinical trial 
which are rapid and which use sim- 
ple but reliable criteria of thera- 
peutic effect... 

We therefore had two comple- 
mentary purposes in undertaking a 
clinical trial of a new tranquillizer. 
The first was to see if the statis- 
tical method of sequential analysis 
could be successfully used in a 
psychiatric drug trial of this 
Kind; if so, the advantages of sim- 
plicity in design and of economy in 
time and numbers of patients treated 
might be considerable. 

(Sainsbury & Lucas, 1959, p.737) 

Sequential analysis grew even closer to psychology 

as fields related on all sides took up its use (in 
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small doses).  Physiology used it in radiation studies 

(Kimball et al., 1957; Garb, 1961j Doubravsky et al., 

1964); sociology used it in its survey techniques (Peel 

& Skipwort, 1970); and even psychiatry used it to de- 

termine the direction of a patient's progress (Stroebel 

& Glueck, 1970). 

Actually, the first reference to sequential tech- 

niques in the psychological literature came early in 

a paper entitled "Sequential analysis in psychological 

research" (Fiske & Jones, 1954).  The authors of this 

paper expressed optimism about the procedure. 

Sequential analysis is not presented 
adequately in the statistical tests 
most commonly consulted by psychol- 
ogists and has rarely been used in 
psychological research.  Yet it is 
a statistical method that has the 
important advantage that it mini- 
mizes the average number of obser- 
vations required to reach a specific 
statistical decision... 

(Fiske & Jones, p.264) 

However, little if any psychological research has used 

the techniques presented by Fiske and Jones.  The only 

use of sequential analysis in psychology of which I am 

aware was a discrimination experiment involving rats 

(Chisum, 1965).  In fact, Fiske and Jones did not even 

mention the sequential t-test. 

Theory 

Before discussing the sequential procedure, let us 
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look at the theory of the general test procedure pre- 

sently used.  The principal sources for this presen- 

tation are Wald (1947), Johnson (1961), and Wetherill 

(1966). 

The General Test Procedure 

In order to test a statistical" hypothesis we sample 

a fixed number of observations, n, and apply a parti- 

cular test procedure.  This procedure is a rule which 

states whether the hypothesis should be accepted or 

rejected for each possible set of samples.  This rule 

defines a "critical region" of rejection of the hypo- 

thesis.  For example, given that we want to test the 

hypothesis that the mean of a population equals some 

fixed value A>, the test procedure tells us to reject if 

| X - /Jo | ^ c 

and accept if 

where X is the sample mean and c is some suitably 

chosen numerical constant. 

The choice of a critical region should be guided 

by the following considerations.  Once a critical region 

is fixed, the probability of Type I error (c<) and the 

probability of Type II error (3) are uniquely determined. 

A Type I error is rejecting a true null hypothesis. 
A Type II error is accepting a false null hypothesis. 
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However, it is impossible to make both c< and C3 arbi- 

trarily small for some fixed value of n.  So, by tradi- 

tion, we choose the sample size n and a level of sig- 

nificance si •  We then want that critical region which 

makes \P  a minimum in order to maximize the "power" of 

the test procedure.  Neyman and Pearson (1936) have 

shown that a most powerful region for testing H  against 

an alternative hypothesis H, is that region consisting 

of all independent samples (x, , ... , x ) which satisfy 

the inequality 

ftx-j^h^) f(x2,h1) ... f(xn,h1) 

f(xl,ho^ f(x2,ho^ *•• f^xn'ho* 
Zi        k» 

where f(x,h.) is the underlying probability density 

function of the random variable x given the hypothesis 

H■, and k is a constant chosen so that the region will 

have the required size &L.  (For an example, see Appen- 

dix A.) 

The Sequential Test Procedure 

As stated previously, the sequential test procedure 

differs from the traditional approach in that the sam- 

ple size is not predetermined but, instead, is a random 

variable which depends on the outcome of the observations 

The sequential analysis proceeds in a stepwise manner 

with one of three decisions being made at each stage 
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of the sampling.  They are: 

1) accept the hypothesis H; 

2) reject the hypothesis H; 

3) continue sampling. 

If we take the set of all possible samples of size n 

and divide it into three regions such that 

Rn, accept H; 

R , reject Hj 

R , continue sampling; 

the sequential test procedure is defined when these three 

regions are defined.  Before looking at this, let us 

look at some of the properties of a sequential test 

procedure. 

The operating characteristic function (OC).  After 

a particular sequential test has been adopted, the 

probability that the hypothesis H will be accepted 

depends only on the distribution of the experiment's 

dependent variable x.  It is assumed that the distri- 

bution is known except for a finite number of parameters 

Ai through A^..  These can be called a parameter vector 

A = ( A, » ••> >   Ak)•  Since the distribution of x is 

determined by 7v, the probability of accepting H will 

be a function of A, the operating characteristic func- 

tion, L(A).  If only one parameter is unknown, then 

L(A) is a curve which can be plotted. 
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The OC function describes what a sequential test 

procedure accomplishes.  For any value of A , the prob- 

ability of making a correct decision can be obtained 

from the OC function.  For values of A. acceptable 

under the hypothesis H, the probability of a correct 

decision equals L( A).  For values of ^ unacceptable 

under the hypothesis H, the probability of a correct 

decision equals 1-L( A).  It follows that the OC func- 

tion is considered more favorable the higher the value 

of L( A) for acceptable A and the lower the value of 

L( A ) for unacceptable A..  However, the closer to the 

ideal OC function one gets, that is, the smaller the 

values of o( and (o, the larger will be the number of 

observations required to make a decision.  To this we 

now turn our attention. 

The average sample number function (ASN).  Since 

the number of observations is a random variable, it 

would be helpful to investigate the value of the average 

number of samples needed to reach criterion, E(n). 

That value, E(n), depends on the distribution of x which, 

previously stated, is known except for the parameter 

vector A .  Therefore, E(n) is a function of A .  This 

is called the average sample number function, which 

is a curve that can be plotted if only one parameter 

is unknown.  Thus, given the ASN function, we may deter- 
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mine how many observations will be needed (on the aver- 

age) given a particular sequential test. 

These properties allow us to develop guidelines 

for choosing a sequential test.  First, we decide on 

the values of ^ and W, which is analogous to deciding 

what OC functions are allowable.  Then, given the subset 

of sequential procedures which fit these required 

probabilities, we select that sequential test which 

minimizes the required number of observations (taken 

from the ASN functions). 

Now let us turn our attention to an optimum sequen- 

2 
tial test procedure. 

The Sequential Probability Ratio Test (SPRT) 

Abraham Wald's sequential probability ratio test 

is designed to choose between two simple hypotheses. 

It is from this procedure that the sequential t-test is 

eventually derived. 

Given a sample (x. ,x„, . . . ,x ) the probability of 

the sample given H, is 

pln = f(x1,h1)..•f(xn,h1). 

The probability of the sample given H  is —o 

p  = f(x,,h )...f(x ,h ). *on  .  1  o    v n o 

2 
Wald does not make clear why the test procedure that 
follows is optimum.  The procedure, however, is analogous 
to an optimum traditional test procedure. 
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The SPRT is defined as follows.  Two positive 

constants A and B (B^A) are chosen.  At each stage of 

the experiment a likelihood ratio is computed.  Continue 

as long as 

ron 

Reject H  (accept H,) if 

Pi.. . 
A. In > 

p 

Accept H  if 

P 

The choice of values for A and B is dictated by the 

values of °< and (^ .  For simplification take logs of 

the inequality.  This allows for the addition of the 

new observation ratio at each stage of the experiment. 

Thus, 

pln    .   fll   _   f12 log -— =  log -z— + log -=— + .... 
pon        r01       r02 

Using the above criterion, the values of A and B have 

been found to be 

A   _  (1 -ft> .  B  _  __0  • A ^     '  B  -  (1- <* ) 

To see how these values for A and B were found consider 

the following (for details see Wald, pp.40-42). 
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Table 1 shows the four possible outcomes of any- 

sequential test.  One rule for termination states 

pl(xl' "• ,xn) z  B 
p (x, , ... ,x ) ~~ *ov 1       n' 

or 

P-^x^ ... ,xn) <    B po(x1, ... >xn). 

The sum of the probabilities of obtaining sets of re- 

sults (x, , ... ,x) given H  is true, summed over all 

sets of results which terminate in a decision in favor 

or H  is equal to the probability of deciding for H 

when H  is true.  Denote this by o J 

Ho 

Similarly, 

^ PQ^, ... ,xn)  =  1 - c* . 

^ P-L^, ..." ,xn)  = \3   . 
Ho 

Substituting into the above inequality, we get 

g p1(x1, ... ,xn) ^ B £,p(xlt   ... ,xn) . 
Ho Wo 

Substituting again 

(2>  1  B (1 - o( ) 

which becomes 

£_ L t: B. 
(1 - <*   ) 

The same line of thinking is used to show the other 

inequality. . 



Table 1_ 

Given any sequential test the following four 

outcomes may occur with the following associated 

probabilities. 
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Test Decision 

Ho Hl 
*********************** 
* * * 
* * * u        * * * Ho   *     1   -  o(       * ^ * 
* * * 
* * * 
* * * Truth *********************** 
* * * 

x   * N * * * * * 
* * * 
*********************** 
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Since sampling is stopped when one of the limits 

A or B is passed, in inequalities are very nearly equal- 

ities.  Given the overshoot in a sequential test, that 

is, termination with a value greater than A or less 

than B, Wald has shown that no appreciable increase in 

S^  or  \— will result and, at most, one of these quan- 

tities will be increased (for details see Wald, pp.44-47) 

The inequalities have been derived under the as- 

sumption that the sequential procedure terminates with 

probability equal to one.  Wald has shown this (see 

Wald, pp.157-158), but only after using the additional 

assumption of independence of observations.  This last 

assumption is not true for many sequential tests.  There- 

fore, it is necessary to show that a sequential pro- 

cedure with dependent observations terminates with 

probability equal to one (for a detailed proof see 

David & Kruskal, 1956). 

The Sequential t-Test 

We now turn our attention to a problem of chief 

interest in this paper: testing the mean of a normal 

distribution given that the variance is unknown (a 

sequential t-test).  However, before the theory of the 

sequential probability ratio test can be applied to 

this situation, two characteristics of the SPRT must 

be satisfied: the hypotheses tested are simple (in 

16 - 



contrast to the composite hypotheses found in a t-test) 

and all parameters except the one to be tested are 

known.  The t-test, however, is used when the hypotheses 

are composite and the variance is unknown. 

Wald's solution to this dilemma is to weight the 

simple hypotheses included in a given composite hypo- 

theis and ascribe a prior distribution to the undefined 

("nuisance") parameter.  This solution is not unique 

but only Wald's attempt to evaluate the likelihood 

ratio.  In fact, Wald never makes explicit why he has 

chosen this approach.  It will be presented here as 

3 only one method of developing a sequential t-test. 

The possible outcomes (sample space) for the un- 

known parameters are divided into three regions: 

w : H  preferred, 
0 o ^ 

w. : H-, preferred, 

remainder:  indifference. 

We construct two weighting functions, W.(0) (1=0,1), 

for the sample space such that 

1 wo(e) de  =   jw-^e) de  = 1. 

For a criticism of the weight function approach see 
Barnard (1947).  Cox (1952) transforms the data so that 
it no longer depends on the unknown variance and, there- 
fore, allows for evaluation of the likelihood ratio. 
Both methods, however, lead to similar approximations 
of the likelihood ratio. 
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Now consider two hypotheses that the probability of 

a set of observations (x,, ... ,x ) equals 

f(x1,e)f(x2,e).. .f(xn,e) w^e) de 
for i=0,l. 

This, with the addition of a prior distribution for 

2 the unknown variance Q~ ,   will allow for the construc- 

tion of a SPRT with the desired values of ^ and I?. 

The weight functions which allow ^ and fo to take 

their desired values are: 

WQ(e)  =  1   when 9 = 0 

=  0   otherwise 

W-^9)  = h       when 9 = 0Q * S *T 

=  0   otherwise. 

To allow for the fewest assumptions about the distri- 

bution of 27y   a rectangular distribution is used.  It 

is: 

(f)  ( CT)  =  1/c  0 + (T+   c 

= 0     otherwise. 

The modified likelihood ratio with the limit c -*°° is: 
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In essence, this procedure integrates out the nuisance 

parameter and allows the likelihood ratio to be evalu- 

ated.  (For a complete derivation of the above, see 

Wald, pp.80-84.)  It should be noted, however, that 

since the variance is unknown, the OC and ASN functions 

cannot be calculated for the sequential t-test. 

Delta 

One of the characteristics of the likelihood ratio 

for the sequential t-test is the need to specify the 

parameter delta (g ).  This parameter is defined as 

u/<T"  , and can be interpreted as the size of the effect 

to be detected.  But before attempting to go further, 

let us look at the reason we are using such a statis- 

tical test. 

The sort of experiment that is often being attempted 

when using the t-test is the following.  Two groups 

of subjects are given two different treatments (for 

instance, an experimental group and a control group), 

and we wish to ascertain whether the two groups differ 

on the effects of the treatment of interest.  Statistical 

tests are used in order to answer this question since 

random differences in subjects often lead to differences 

in numbers that are of no real consequence (at least, 

as far as the experimental treatment is concerned) . 
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The t-Test 

Traditionally, we specify the number of subjects 

we wish to run and the level of significance, <=< .  We 

have seen previously that, although incalculable, v3 

is minimized for that number of observations.  What is 

often ignored is that when specifying the number of 

observations, the size of the effect that can be de- 

tected (in terms of the unknown variance) is also set. 

Table 2 shows this for various values of n. 

What this means in practice is that if the true 

size of the effect is larger than the critical value 

that the test can detect, the probability of detection 

increases over the preassigned value of \~*.  However, 

if the true size is smaller than the critical value, 

the probability of detection decreases.  This loss of 

power may mean that a scientifically interesting effect 

will be ignored. 

This brings our analysis to a very 
important realization: acceptance 
of the null hypothesis will often 
occur even when /*t< /Ja  but when 
the difference /^-/"i is small.  That 
is why in cases of statistically 
not significant results the null 
hypothesis can be considered as 
true only provisionally, i.e. as a 
working hypothesis.  We therefore 

^  

These can be determined by.a power analysxs of the 
t-test for fixed sample size.  This particular table 
comes from Armitage (1954, p.267). 
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Table 2 

Sensitivity of the t-Test with Paired Observations 

A test of the mean of n differences has a prob- 

ability of .95 of yielding a significant result (at 

the p=.05 level) when the true mean difference is a 

multiple a of the true standard deviation of the 

difference. 
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Number of Mean diff./s.d. of diff. 
Pairs ( in) " £ " 

10 1.29 

15 1.00 

20 0.85 

30 0.68 

50 0.52 

100 0.36 

200 0.26 

1000 0.11 
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can obtain a statistically not sig- 
nificant result when in fact, the 
alternative hypothesis is true which, 
however, is only a little different 
from the null hypothesis.  This 
erroneous conclusion will be formed 
more frequently when fewer exper- 
imental objects are used in the ex- 
periment.  The reverse is also true, 
i.e. the more objects there are in 
the experiment the smaller may be 
the difference from the null hypo- 
thesis which will be detected. 

(Doubravsky et al., 1964, p.97) 

No strict guidelines have been given for selecting 

the number of observations we should take except to 

say "the more, the better".  This has two problems, 

however, both stemming from ignoring the critical size 

of the effect that can be detected.  First, as mentioned 

above, we may screen out a difference that is important. 

But as serious, we may make a t-test so sensitive that 

a statistically significant difference may appear that, 

in fact, is of no consequence to the experimenter.  The 

treatment effect may be so small as to be scientifically 

unimportant and uninteresting. 

The Sequential.t-Test 

As mentioned previously, by using a sequential 

analysis we may specify before the experiment not only 

&L t   but also U2 which allows us to safeguard against 

a low powered experiment.  But this makes the number 

of observations needed for a decision a random variable 

whose expectation (average) is determined by the value 
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of 6 .  And here is a crucial difference between the 

traditional test and the sequential test.  Before taking 

the first observation, we must specify what size effect 

we wish to detect.  Since this has been largely ignored, 

there appears at first to be little basis for that 

decision.  However, various guidelines can be used. 

Approximating Delta 

Considering the history of sequential analysis 

and its early use in industry, it is no surprise that 

one method for approximating delta is practical con- 

siderations.  For example, managers and technicians may 

be able to decide what tolerance levels are required 

for their products on the assembly line.  However, this 

method offers little to the scientific researcher. 

Theoretical considerations may show more promise.  If 

some theory or model exists then a precise prediction 

may be generated.  Unfortunately, this is not always 

the case in psychology.  If previous investigations 

of the experiment in question have been made, then an 

empirical estimate may be possible, particularly if the 

results have been somewhat steady.  And of course, a 

combination of the above is possible as will be shown 

later. 

Mention should be made here that taking an "edu- 

cated guess" at a value may not be as crude as it ap- 
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pears.  It seems no worse than arbitrarily fixing the 

sample size in the traditional procedure.  In fact, 

Armitage (1954) suggests "it may be useful to refer 

to" the table of critical values of o for the tradi- 

tional test (Table 2, p.21).  What he appears to be 

suggesting is that the experimenter decides how many 

subjects he would run given the traditional test and 

use that value of o .  This seems an interesting way 

to avoid many of the arguments that might come from 

those who still adhere to the traditional methods. 

That "educated guess" method has in fact been used 

(Sainsbury & Lucas, 1959). 

Implementation 

The likelihood ratio derived by Wald for the se- 

quential t-test has been approximated in various ways. 

In this section I will briefly discuss two of these 

ways and show how they are used to perform a sequen- 

tial t-test. 

NBS Tables 

Arnold (1951) in his evaluation of the likelihood 

ratio noticed the similarity of the likelihood ratio 

to the confluent hypergeometric function.  Using var- 

ious transformations, he showed that the original in- 

equalities in the form 
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0      £ln   (1 -(3) 
(1 -«* ) < Pon <    <* 

could be written in the following way: 

LL <  Zn <  LU 

where 

z n 
2<xi -eo)

2 

and the boundaries LT and LTT are solutions to the Li U 

confluent hypergeometric function given the parameters 

— >   \r» 2 » and H (for details see Arnold, pp.v-vii). 

The National Bureau of Standards Tables prepared by 

Arnold list these solutions given various values of the 
5 

above parameters.  Therefore, to perform a sequential 

t-test given the above approximation, the following 

steps are taken: 

1) choose values for the parameters <* ,   \3 , and o; 

2) at each stage of the experiment calculate z   ; 

3) find the values of L  and L in the NBS tables 

for the given value of n; interpolate if necessary; 

3 : :     ; ; " 
Arnold points out that the likelihood ratio evaluated 
is slightly different from Wald's, but this difference 
is of no consequence for our purposes. 

Note that this is a two-sided t-test.  No values are 
listed for a one-sided test in the NBS tables, and I 
know of no other tables that contain values for a one- 
sided test. 
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4) if  z <   LT, sampling is terminated and the n   XJ 

hypothesis that the mean equals 9 is accepted 

with probabilities s6   and \^> ; 

5) if z 2" L , sampling is terminated and the 

hypothesis that the mean equals 0 is rejected 

with probabilities fK and L?; 

6) if step 4 or step 5 does not hold, continue 

sampling and repeat the procedure (step 2). 

Rushton's Approximation 

Rushton (1950) used the similarity with the con- 

fluent hypergeometric function to directly approximate 

the likelihood ratio.  His method allows for the cal- 

culation of the likelihood ratio for any o and n.  This 

calculation is compared with the original boundaries 

A =  a -Q)    and   B =     (3      • 
-< (1 ~ a<   ) 

To perform this sequential t-test the following steps 

are taken: 

1) choose values for the parameters c<, \Z),   and cb j 

2) calculate ,,  CL . 
in A = in ±±—^-^ 

(this is the upper boundary for all n)j 

7—;—; :  
This xs a one-sided test where H  states that the mean 

equals zero.  See Rushton (1952) for the two-sided case. 
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3) calculate 
In B = In £ (1 -ot ) 

(this is the lower boundary for all n) ; 

4) calculate 

u = £x/( Zx2)h 

at each stage of the experiment; 

5) calculate the first approximation to the log 

of the likelihood ratio, 1, : 

11 = (n)^ou - ^n6 + h b     u  ; 

6) when one of the boundaries is approached (re- 

lative to the opposite boundary), calculate the 

second approximation, 1~: 

= (n)^<Su{l - ^1 - 3gn I2 + kh2  u: 

which can be obtained from the first by subtracting 

a, = |(n)^ouj/(4n)  from the first so that 

12  = 11 ~ al J 

7) if !o~ lnB' sampling is terminated and the 

hypothesis that the mean equals zero is accepted 

with probabilities £< and \i; 

8) if ±2  — In A, sampling is terminated and the 

hypothesis that the mean equals QQ~is accepted 

with probabilities o< and Qj; 

9) for further precision in the approximation, 

calculate the third approximation, 1~: 
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13 =   (n)^u jjl   - j^y + §2 u2]/(24n)j 

- %n<$     + k O     u 

which can be obtained from the second by adding 

2      C 2  2 
a? = -g- a-i % O u   to the second approximation 

so that 

X3  ~   12 + a2' 

10) if neither boundary is crossed, continue taking 

observations and repeat the procedure (step 4). 

This seemingly complicated procedure is simplified by 

tabulating the calculations as will be shown later. 

Graphing 

It is possible to use a graphing procedure to 

accomplish the NBS-approximation t-test.  For instance, 

the boundaries from the NBS table could be plotted on 

the ordinate of a graph (with n on the abcissa) before 

any observations are taken.  Then, as each observation 

is taken, the resulting value of the test statistic, z, 

could be plotted and joined with a straight line to 

the previous point.  As long as the line is within 

the "channel" formed by the boundaries, observations 

are continued.  When one of the boundaries is crossed, 

the sampling is completed and the appropriate decision 

made depending on which region is entered. 

The advantage of this method is the visual picture 

presented of the experiment's progress.  However, pre- 

- 29 - 



cise graphing techniques should be used since the pos- 

sibility of error is greater with this method. 

The Sequential Sign Test 

The sequential t-test is one approach to testing 

the hypothesis that the mean of a normal distribution 

with unknown variance is zero.  The sequential sign 

test, analogous to the traditional sign test, is ano- 
o 

ther alternative.   This test, in short, converts the 

difference scores into probabilities which can be 

tested using a sequential binomial distribution test 

(see Wald, chapter 5). 

In considering the difference between two groups, 

the size of the difference between pairs is ignored, 

and only the sign of the difference is used.  Given 

this way of looking at the data, the hypothesis that 

the mean equals zero is transformed into the hypothesis 

that the probability of an observation being a minus 

is ^, that is, 

P(-) = H. 

The hypothesis that the mean equals qCT (the alterna- 

tive hypothesis) is transformed into the hypothesis 

that the probability of a minus equals 

Pi = —~—x,     \   e"^x dx. 

TJ :  

Note that this is a one-sided test where the null hypo- 
thesis states that the mean equals zero.  See Armitage 
(1947) for the two-sided case. 
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The test is defined by Armitage (1947) with the 

following procedure: 

1) choose values of ^ > w >   and o; 

2) find p, from a table of the normal distribution; 

3) calculate the following: 

(i -Go log  ^ 

Ai 
log 2(1 - p1) 

(1 - <* ) log 

A2 
"S" 

log 2(1 - p1) 

1 

B  = 

log 2(1 - Px) 

4) start a score at A2 units; 

5) if an observation is a "+", add 1 unit to the 

score; 

6) if an observation is a •»-••, subtract B units 

from the score; 

7) if the score reaches zero, terminate sampling 

and accept H ; 

8) if the score reaches A,+A2» terminate sampling 

and reject H ; 

9) if neither of the above, repeat the procedure 

(step 5). 
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This procedure has the advantage of being very easy 

to administer once the initial calculations are com- 

pleted.  However, since the size of the difference 

between pairs is ignored and only the sign of the 

difference is used, a loss of information occurs. 

The result is an added number of observations needed 

to reach a decision compared to a sequential t-test 

set at the same o< and w. levels.  This is in contrast 

to the traditional sign test.  Its loss of information 

usually results in a loss of power when compared to 

a traditional t-test set at the same o< level with the 

same sample size. 

A Demons tration 

In order to demonstrate the sequential test pro- 

cedure and help evaluate its usefulness, part of a 

previous experiment (Sunday & Kay, unpublished manu- 

script) was replicated except that the analysis was 

performed sequentially.  A brief account of the exper- 

iment follows. 

The Experiment; A Summary 

Rock's (1957) interpretation of his data as evi- 

dence for all-or-none learning led to repeated criti- 

cism of his drop-out method for paired associate learn- 

ing (e.g. Postman, 1962; Underwood, Rehula, & Keppel, 
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1962; Cohen & Murray, 1968).  One criticism suggested 

by Sunday and Kay was that the serial position effect 

in paired associate learning (Hovland, 1938) was mini- 

mizing the differences between the experimental group 

(drop-out condition) and the control group (drop-none 

condition).  They proposed to restrict the positions 

of the test items by only shuffling stimuli within 

blocKs between each study and presentation trial. 

Hopefully, this procedure would minimize the serial 

position effect.  Their results, however, continued 

to support the all-or-none interpretation. 

One further criticism of the Rock experiment is 

that the design is possibly a low powered one and 

cannot produce a large-enough difference for detection. 

In fact, no one has attempted to predict what degree 

of difference is to be expected given the incremental 

theory.  (The all-or-none theory predicts no difference.) 

For these reasons, the sequential precedure was seen 

as ideal for this design.  First, the analysis could 

be made as high powered as necessary (without affecting 

the significance level, «=< ) .  But even more interesting, 

the necessity to specify a value for o ,   dictated that 

a prediction be made for the two opposing theories. 

Method.  Stimuli consisted of letters A through Z 

excluding I and AA through ZZ excluding II randomly 
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paired with the numbers 11 through 60.  Each paired 

associate was printed on a 10 x 6 cm card. 

Five study-test trials consisting of 10 stimuli 

each were given to each subject.  The stimuli were 

divided into three blocks with block I and block III 

consisting of the first three and last three stimuli 

positions respectfully.  Block II consisted of stimuli 

positions 4 through 7., Between each study-test trial, 

the stimuli were shuffled within their blocks. 

In the drop-errors condition (DE) the errors in 

block II were replaced after each trial.  In the drop- 

none condition (DN) no stimuli were replaced.  The 

stimuli in blocks I and III were replaced after each 

trial for both conditions.  Since subjects were not 

treated differently until the beginning of trial 2, 

the dependent variable was the difference between the 

number of correct responses for a subject in the DN 

condition and the number of correct responses for a 

subject in the DE condition (DN-DE) in block II on 

trials 2-5.  Thus, subjects were paired by when they 

participated in the experiment.  This results in an 

equal number of subjects in each condition. 

The study trials consisted of 3 seconds for each 

stimulus and an interstimulus interval of 3 seconds. 

The test trials consisted of 5 seconds per stimulus 
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for recall with zero seconds in between stimuli.  The 

intertrial interval was 40 seconds. 

Subjects were undergraduates enrolled in the intro- 

ductory psychology course at Lehigh University.  They 

were alternately placed in either condition and tested 

individually. 

Hypotheses.  The null hypothesis states that there 

is no difference between groups ( /U = DN-DE = 0).  Ac- 

ceptance of this hypothesis favors an all-or-none inter- 

pretation.  The alternative hypothesis states that the 

control group (DN) will make more correct responses 

than the experimental group (DE), that is, JU  = DN-DE 

= <3(T ~y 0.  Acceptance of this hypothesis is evidence 

for an incremental interpretation. 

The analysis.  The following sequential test pro- 

cedures were used after each pair of observations: 

1) a two-sided sequential t-test using the NBS 

approximation j 

2) a one-sided sequential t-test using the Rushton 

approximation; 

3) a one-sided sequential sign test. 

All sequential procedures were set at the .05 level 

of significance ( <=< = .05) and 95 per cent power ( W = .05) 

The value of o calculated in the next section was 

used in all three tests.  Observations were taken until 
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all three sequential tests reached a decision, although 

each test was terminated by its own decision rule. 

Calculating Delta 

The following procedure for calculating delta is 

a combination of the empirical and theoretical approaches, 

Although complicated, it was considered to be the most 

accurate method for setting this parameter. 

The data from the previous experiment were used 

in the empirical section of the procedure.  The num- 

ber of correct paired associates in the first trial 

was used in estimating the learning parameter c.  This 

is the probability of a correct response given the 

initial presentation of that stimulus.  Its value was 

.30337. 

Now we derive a prediction of the results of this 

particular experiment given the learning parameter c. 

The prediction of the all-or-none theory is straight- 

forward: no difference between the two experimental 

groups (Q  ,.f    =0).  The incremental theory, however, 

is a more complicated matter. 

The incremental model used in this derivation has 

the following assumptions.  If a stimulus was correct 

on trial n, the probability of it being correct on 

trial n+1 is one.  This assumption was made on the basis 

of informal observation in previous experiments of a 
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similar nature (for example see Rock, 1957, p.190). 

If a stimulus was incorrect on trial n, the probability 

of it being correct on trial n+1 is 

p(n) + c(l - p(n)) 

where p(n) is the probability of a correct response on 

trial n.  This model is based on the single-operator 

linear model of Bush and Mosteller (see Atkinson, Bower, 

& Crothers, 1965).  In the present case, however, the 

learning parameter c was calculated with a different 

procedure.  Bush and Mosteller estimated c from the 

observed mean total errors per subject-item.  The pre- 

sent experiment used the total number of correct re- 

sponses on the first trial only from a previous exper- 

iment because the latter information is unavailable 

due to the nature of the procedure.  In theory this is 

the same approximation. 

The above model is used to predict the performance 

of a subject on trials 2-5 of block II in the DN con- 

dition.  The probability of a correct response on each 

trial assuming an effect due to practice may be ex- 

pressed mathematically 

P(n) = c £(1 - c)1"1. 

In the DE condition any stimulus that the subject 

is given on trial n+1 that was shown on trial n must 
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have been correct on trial n since all errors in block 

II had been replaced.  Therefore, the probability of 

the repeated stimulus being correct again is one (as 

assumed previously).  All replacement stimuli have the 

probability of being correct equal to the learning para- 

meter c since these stimuli are being seen for the first 

time. 

The expected difference between the two conditions 

given the incremental model may be quantified by con- 

structing a probability distribution for each condition 

and comparing their parameters.  These distributions 

are of the random variable given by the number of cor- 

rect responses in block II for trials 2-5, which can 

vary from zero to 16.  An example of these calculations 

is given in Appendix B.  The distributions are shown 

in Table 3. 

The expectation, E(x), and the variance, CT , of 

each distribution can be determined in a straightfor- 

ward manner.  Finally, delta is calculated from that 

information by the following: 

 DE 

which is from the original definition of delta, o = 

H,. f/ (f~\ . f.  The resulting value of Q equals .86003 

(see Appendix C for calculations). 
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Table 3 

The probability of n correct responses on block II 

for trials 2-5 given the incremental theory with c = 

.30337. 
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Drop Errors Drop None 

p(n) n p(n) 

.00073 0 .00000 

.00126 1 .00000 

.00264 2 .00000 

.00521 3 .00000 

.01525 4 .00001 

.01986 5 .00003 

.03122 6 .00013 

.04741 7 .00053 

.08448 8 .00193 

.08179 9 .00614 

.10139  • 10 .01699 

.12053 11 .04196 

.15384 12 .08894 

.09352 13 .15857 

.09038 14 .23301 

.08029 15 .25960 

.07018 16 .19197 
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Results and Discussion 

The results of the NBS approximation t-test are 

shown in Table 4.  Sampling was terminated on the 16 th 

trial (32 nd subject); the decision was to accept the 

null hypothesis. 

The results of the Rushton approximation t-test 

are shown in Table 5.  Sampling was terminated on the 

6 th trial (12 th subject); the decision was to accept 

the null hypothesis. 

The results of the sequential sign test are shown 

in Table 6.  Sampling was terminated on the 8 th trial 

(16 th subject); the decision was to accept the null 

hypothesis. 

The evidence sides with the all-or-none learning 

theory since there is no apparent effect due to prac- 

tice.  One possible source of error, however, is that 

the effect of practice may be quite small and the cal- 

culation of delta was in error (i.e. it may be smaller). 

In that case, the present tests would not be sensitive 

enough to detect the difference.  (If the true delta 

is much smaller, then the probability of missing that 

effect would be much larger than .05.)  However, until 

some other procedure is developed to magnify the hypo- 

thesized difference, the all-or-none interpretation will 

stand. 
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Table 4 

The NBS approximation t-test on the difference, x, 

between a pair of subjects with one in each experi- 

mental condition using the NBS boundaries 1^. and L. . 
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Table 5 

The Rushton approximation t-test on the difference, 

x, between a pair of subjects with one in each exper- 

imental condition. 

- 44 - 



CM 

in in CO •sr r~ 
t-i 00 0 in en 
<£> co ID en co 
ID r- r* en in 

+ i-H 
1 

CM 
1 

1 ro 
1 

<£> ■sr CM 0 CD 
Ol en en en CO 
CO 0 r- <? rH 
r- 1-1 ^r CO CM 

CM 

3 

Jf 

CM i-l ^r 0 en 
<£> (D ^ 0 CM 
i-H ID 0 <N in 
CM tO ^ CO <sf 

CM 

A*l 

A™ 
CM 

CM 
X 

en O co ID O 
^ r^ en en CO 
00 CO CM en 00 
tH 0 rH 0 0 

O CM in "sT r- 
O r- ID (D cn 
O ^r i-H CM CO 
O ^ 00 ^ ID 

0 T-i in <tf en 
0 VO en 0 CO 
O en ^ en <tf 
0 CM <tf to t-H 

CM 

in 

X\    o 

+  1 

iH   CM 
+    I 

CM 

tD 

^r 

CM 
CM 

CM   CM 
I    + 

I  + 

en 
O 
rH 

1 

en 
1 

CQ • CD 
in -H 
0 V4 » f« 

CO ■a 
11 G • s 

^l H 0  ,* O XI 
U 

Tf IM 
a 0 
(d \- 

c 
in 0 
0 t^ -H • -p • rO 

11 H H 
O 3 

*l CJ U 
H 
td 

£ + U 
•P 
-H U 
> ID O 

0 m 

ffi H 
O 

w 
-p CJ X 
ft -H 
CD 1! T3 
O c 
CJ rH 0) 
rtf H p, 
* a •• <: 

CD 
+> CD 
O 0) 
•z. w 

CM  co  ^j*  in to 

- 45 - 



Table 6 

The sequential sign test on the difference, x, 

between a pair of subjects with one in each experimen- 

tal condition. 
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pair # X sign score 

start - - 6.1811 

1 0 + 7.1811 

2 + 1 + 8.1811 

3 -2 - 6.2033 

4 -1 - 4.2255 

5 + 4 + 5.2255 

6 -9 - 3.2477 

7 -5 - 1.2699 

8 -9   -0.7079 * 

* accept HQ with o< = .05 and (3 = .05. 

See Appendix F for calculation of sign 
test constants. 
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A few comments about the analysis are worth special 

mention.  The number of observations needed to detect 

the difference predicted ( o = .86) for the traditional 

t-test would be approximately 20 pairs of subjects (see 

Table 2, p.21).  All three sequential tests showed an 

average savings of 50 per cent (see Table 7).  However, 

in this particular experiment, only a one-tailed test 

would normally be used since the direction of the pre- 

dicted outcome is well known.  Considering this, the 

economy of the sequential tests is even greater. 

Figure 1 shows the graphical representation of 

the two-sided NBS approximation t-test.  This visual 

picture of the progress of an experiment serves to 

further highlight details that the tabulation method 

may miss.  In this case, note how close to a decision 

the test procedure came on observations 11 and 15. 

To further magnify these details, I tooK the square 

root of the boundary values.  This seperated the re- 

jection region into two parts: a rejection of the null 

hypothesis with a positive difference (DN-DE > 0) and 

a rejection of the null hypothesis with a negative dif- 

ference (DN-DE <  0).  I then plotted the test statistic 

u = (z)^    using the sign of £  x.  This graph is shown 

in Figure 2. 

As mentioned earlier, rejection in the positive 
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Table 7 

The economy of the sequential tests when compared 

with the traditional t-test. 
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Test    # observations 

traditional       20 

NBS 16 

Rushton 6 

sign 8 

savings tail 

20% two 

70% one 

60% one 
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Figure 1^ 

The graphical representation of the NBS approxi- 

mation t-test. 
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Figure 2 

The graphical representation of the NBS approxi- 

mation t-test after the square root transformation. 
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direction is evidence for the incremental theory while 

acceptance of the nu^.1 hypothesis is evidence for the 

all-or-none theory.  Rejection in the negative direction 

does not fit any proposed theory (discussed in this 

paper).  Note in Figure 2 how the dependent variable's 

path enters the lower "channel".  In fact, at obser- 

vation 9 it is impossible to reach the upper "channel". 

Mathematically, it would take a value of the dependent 

variable (at observation 10) that is greater than 16 

(its maximum).  Therefore, although the sequential 

procedure has not terminated at observation 9, the 

positive-rejection boundary for termination has been 

eliminated.  In this case, acceptance of the null 

hypothesis was all but certain at this observation 

(since rejection in the negative direction was very 

improbable). 

Conclusions 

The above demonstration clearly shows that sequen- 

tial analysis is a feasible and valuable statistical 

tool in scientific research.  It deserves an equal posi- 

tion with traditional statistical methods in the re- 

searcher's handbook and merits consideration in the 

development of experimental design.  However, little 

is known about its compatability with psychological 

phenomena, and only continued use and evaluation will 

determine its rightful place in statistics. 
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Appendix A 

The following simple case will illustrate the use 

of the principle for choosing a critical region.  It 

is taken from Wald (pp.18-19). 

Let x be normally distributed with unknown mean 

and unit variance. 
i 

V /* =  eo 
Hls ,M =  el    (91  eo) 

For testing H against H, , we must determine the 

likelihood ratio (p.8). 

fCx-^t^) ... f(xn,h1) 

f(xl,ho) *•• f(xn,ho^ 

^   k. 

Since 

f(x1,h1) ... f(xn,h1)  =   —72   e ^^(xi 91) 

(27t)n/2 

and 

f(Xl,ho) ... f(xn,ho)  = t_)n/2       e^^i^o* 
2 

(2tv) 

the inequality can be written 

e-^£(xi-e1)
2 

> 
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Taxing the logarithm of both sides, we get 

^£(xr9o)
2 - i$£(xi-e1)

2 = (e1-eo)£xi + JgnO^-eJ) 

^ log k. 

Thus, 

where 

log k - ^n(e2-e2) 

el " eo 

which can be written 

>    k" 
n 

where 

k' - n9 
k»  =  2. 

n 

We now determine the value of k" such that the criti- 

cal region defined by the above inequality has the 

size ©< = .05. 

Under the hypothesis H the random variable 

£(x. - e )/n  is normally distributed with zero mean 

and variance 1/n.  A table of the normal distribution 

tells us that 

k"  =  1.64 / n2. 
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Thus, the most powerful region of size .05 consists 

of all samples for which the inequality 

holds.  This is a familiar result. 
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Appendix B 

As an example of calculating the probability distri- 

bution for two groups given the incremental model, the 

situation of a subject making 14 correct responses on 

trials 2-5 in block II will be shown in detail.  The 

following notation will be used.  The subject's per- 

formance can be symbolized 

"^"1  ^2' ^"3' ^4' ^"5 

where x. is the total number correct on trial i.  The 

numbers within the parenthesis sum to the dependent 

variable of interest; thus, in this example, x?+x^+x4 

+Xj- = 14.  However, the number correct on the first trial, 

x,, is shown since this value will effect the resulting 

probability. 

The DE condition has a probability correct (given 

a previous error) = .30337 for any trial since a new 

stimulus is being tested.  The DN condition has a prob- 

ability correct (given a previous error) equal to 

p(n) = cf (1 - c)1"1 

where c = .30337 (see p. 36).  The calculated probabil- 

ities are: 

Trial      ^n 
1 .30337 
2 .51471 
3 .66193 
4 .76449 
5 .83594 
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The possible arrangements of 14 correct for the DE 

condition and their associated probabilities are: 

0(2,4,4,4): 

1(2,4,4,4): 

2(2,4,4,4): 

0(3,3,4,4): 

1(3,3,4,4): 

2(3,3,4,4): 

3(3,3,4,4): 

(4U (2)( 

<«>< 

<!>< 

<2>< 
<?>< 
(2>< 
<1>< 

;) c (i-c) 

l)(2> <=4(l-c)5 

2) c4(l-c)4 

1\  4/n  x6 
x) c (1-c) 

|)(J) c4(l-c)5 

2)(J) c4(l-c)4 

h c4(l-c)3 

= .02466 

= .01667 

= .01197 

= .01644 

= .01667 

= .02393 

= .01145 

.09038 

The possible arrangements of 14 correct for the DN 

condition and their associated probabilities are: 

= .03863 0(2,4,4,4):  6 p/  p/   (1-Pl) 4( l-p2) 
2 

1(2,4,4,4):  12 p±   p2 p3
2 ( 1-P]L) 

3( l-p2) 
2 

2(2,4,4,4):  6 p.^ p3
2 ( 1-P;L ) 

2( l-p2) 
2 

3 4 
4 P2  P4 (1-Pi) (1-P2)(

1-P3) 0(3,3,4,4) 

= .06537 

= .02765 

= .01611 

1(3,3,4,4):  12 p±   p^  p4 (1-P]L) 
3( l-p2) (l-p3) = .04089 

2(3,3,4,4):  12 P][
2 p2 p4 ( \-p^) 2( l-p2) (l-p3) = .03460 

3(3,3,4,4):  4 p^ p4 (l-px)(l-p2)(l-p3) 

.23301 
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Appendix C 

Given the probability distributions shown in Table 

3 (p.39), the expectation and variance of each can be 

calculated. 

Condition Expectation Variance 

DN 14.06316 2.48599 

DE 11.10773 9.32304 

Delta is then calculated using the previous formula. 

S ■ -P^A DE ( CTDN + <fi)E> 

14.06316 - 11.10773 
"2 (2.48599 + 9.32304) 

O  =  .86003 
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Appendix D 

Since boundary values are not found in the NBS 

tables for Q = .86, a quadratic interpolation was 

performed on the given values using the Gregory-Newton 

formula (see Arnold, p.xi): 

z = p z±  + (1-p) zQ  - h  p(l-p)(zo-2z1+z2) 

where  p = .6 

z = z(for a   = .8) 

z, -  z(for ^ = .9) 

z„ = z(for § = 1.0) 

The accept-H boundary is shown in Table 8.  The reject- 

H boundary is shown in Table 9. 
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Table 8 

The quadratic interpolation of the accept-H 

boundary for 6 = .86. 
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n z(.8) 2(.9) 

0.099 

z(l.) 

0.350 

I II z(.86) 

8 - - - 

9 - 0.234 0.519 - - - 

10 0.086 0.371 0.692 0.2570 0.0043 0.2527 

11 0.193 0.510 0.870 0.3832 0.0052 0.3780 

12 0.302 0.653 1.051 0.5126 0.0056 0.5070 

13 0.412 0.799 1.234 0.6442 0.0058 0.6384 

14 0.525 0.948 1.421 0.7788 0.0060 0.7728 

15 0.640 1.100 1.609 0.9160 0.0059 0.9101 

16 0.757 1.253 1.798 1.0546 0.0059 1.0487 

17 0.877 1.409 1.989 1.1962 0.0058 1.1904 

18 0.999 1.566 2.181 1.3392 0.0058 1.3334 

Note:      I   =   . 6z..   +    .4z 1 o II•=   .12(z   -2z,+z0). 
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Table 9 

The quadratic interpolation of the reject-H 

boundary for o = .86. 
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n z(.8) 

5.831 

z(.9) 

5.325 

z(l.) 

4.992 

I II z(.86) 

5.5066 
6 5.5274 0.0208 

7 5.718 5.309 5.053 5.4726 0.0184 5.4542 
8 5.660 5.333 5.145 5.4638 0.0167 5.4471 
9 5.641 5.386 5.258 5.4880 0.0152 5.4728 

10 5.650 5.460 5.387 5.5360 0.0140 5.5220 
11 5.680 5.549 5.528 5.6014 0.0132 5.5882 
12 5.727 5.651 5.678 5.6814 0.0124 5.6690 
13 5.787 5.762 5.835 5.7720 0.0118 5.7602 
14 5.857 5.881 5.997 5.8714 0.0110 5.8604 
15 5.935 6.006 6.164 5.9776 0.0104 5.9672 
16 6.021 6.135 6.335 6.0894 0.0103 6.0791 
17 6.112 6.269 6.509 6.2062 0.0100 6.1962 
18 6.208 6.407 6.686 6.3274 0.0096 6.3178 

Note:      I   ,   .62l  +   .4ZQ        .        „  =   .12(Zo.2Zi+Z2)_ 
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Appendix E 

The boundaries for the Rushton approximation 

t-test given o^ = .05 and \i=   .05 are as follows; 

In A =  In (i -Q) 

i   (1 - .05) =  In —* — 
.05 

=  In 19.0 

=  2.9444 

In B  =  In & 
(1 -<*■) 

.05 =  In   
(1 - -05) 

=  In .0526 

=  -2.9444 
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Appendix F 

The constants for the sequential sign test are 

calculated as follows. 

The quantity p, was defined (p.30) as 

U~ \     e~ 
(27r) 

Pl  =   ,^,k \ e 2  dx 

This can be found readily in a table of the normal 

distribution.  Its value at  £ = .86 is .1949. 

Given a<  = .05, \^ = .05, and p  = .1949, 

log  <X -ft> 

A1     =     =  6.1811. 

log 2(1 - p±) 

A2  = 

(1 - *   ) log     „ 
v? 

=  6.1811 

log 2(1 - px) 

1 

B   = 

109  2Pl 
=  1.9778 

log 2(1-^) 
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