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ABSTRACT 

Fatigue cracks have been discovered in tie plates on several 

bridges. These plates connect the outrigger bracket to the longitudi- 

nal girder and floor beam. On the Lehigh Canal Bridge the cracks were 

observed to grow from the ends of tack welds placed on the tie plate 

edges adjacent to the cantilever bracket.  Since fatigue test data for 

this type of geometrical configuration was not available, a series of 

tie plates were tested to acquire the needed data.  From this data it 

was found that AASHTO Category D provides a reaonable estimate of the 

lower bound fatigue strength of this detail. 

In conjunction with the physical testing, an analytical 

study of crack growth in the tie plates was undertaken to confirm the 

experimental results. A finite element analysis was used to calculate 

the stress concentration factor at the end of the weld. Two different 

stress concentration decay functions were used in the fracture mechan- 

ics analysis of crack growth and estimation of detail life under 

cyclic loading. Both functions gave reasonable estimates of the 

detail's lower bound fatigue strength. 
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1.  INTRODUCTION 

Tie plates on several bridges, including the Lehigh Canal 

Bridge, have developed fatigue cracks  In the Lehigh Canal Bridge 

these cracks have grown from the end of tack welds (approximately 

2 in. long) placed between the tie plate and the top flange of the 

outrigger bracket during construction of the bridge.  The tack weld, 

in addition to providing the initial flaw from which the crack propa- 

gation, introduces a concentration of stress at the flaw location, 

thereby accelerating crack growth. 

A complex interaction of several bridge members produces the 

cyclic stresses which drives the crack.  The concrete slab, curb and 

parapet provide a relatively stiff in-plane system supported by the 

stringers (see Fig. 1). The stringers rest on the floor beams and 

outrigger bracket, with the outside stringer attached 6-1/4 in. from 

the end of the bracket. The outrigger bracket is attached to the 

longitudinal girder by the tie plate and a simple web angle connec- 

tion, which offers little lateral restraint.  The tie plates are con- 

tinuous over the longitudinal girder, being connected to the floor 

beam, longitudinal girder and outrigger bracket with 7/8 in. rivets. 

This provides a relatively rigid connection at the girder. 

As vehicles pass over the bridge, bending stresses develop 

in the longitudinal girders. Compressive stresses in the top flange 

of the girder in positive moment regions cause the top flange to 
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shorten when the vehicle is in the span.  Smaller tensile stresses 

occur in the top flange when the vehicle is in the adjacent span. 

Since the bracket is attached by the outside stringer, to the rela- 

tively stiff deck slab, the cross-sectional rotation of the longitudi- 

nal girder at each floor beam - outrigger bracket during passage of 

vehicles over the bridge causes a relative displacement to develop 

between the top flange of the girder and the end of the outrigger 

bracket.  This relative displacement produces in-plane bending moment 

stresses in the tie plate and top flange of the bracket thereby devel- 

oping the cyclic stresses which result in fatigue crack growth. 

Since the longitudinal girder is continuous over three 

spans, the girder is subjected to both positive and negative bending 

moments. Hence the tie plates experience various degrees of stress 

reversals as the top flange of the girder shortens or lengthens de- 

pending on the vehicle location along the bridge and the position of 

the tie plate1. 

Because of the cracked tie plates on the Lehigh Canal 

Bridge, it was desirable to have a laboratory definition of the 

fatigue strength of the tie plate.  Fatigue test data were not avail- 

able for the geometrical configuration that existed.  To assist in de- 

fining the applicable stress range - cycle life relationship, a series 

of twenty tie plates were tested at various stress ranges on the 

dynamic test bed of Fritz Engineering Laboratory. 

A second objective of this study was to confirm the experi- 

mental results with an analytical study of crack growth in the tie 
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plates.  Since the origin of the fatigue crack was at the end of the 

tack weld, it was necessary to determine the stress concentration 

factor in order to calculate the stress intensity factor range experi- 

O   4 

enced by the crack ' . A finite element solution was used to estimate 

the stress concentration factor at the tack weld toe.  Then the 

principles of fracture mechanics were used to analyze the growth of 

the crack. 
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2.  DESCRIPTION OF TEST SPECIMEN 

It was desirable to have the experimental tie plates dupli- 

cate the tie plates installed on the Lehigh Canal Bridge as much as 

possible.  Two sizes of the plates are used on the bridge. Only six- 

teen 12 in. wide plates  (12" x 3'-8" x 1/2") were used over the 

interior piers of the bridge.  Two hundred 10 in. wide plates are 

used at other floor beam locations. Hence, the tie plate tested in 

the laboratory was modeled after the narrower plate, which is shown in 

Fig. 2. 

Figure 3 shows the dimensions of the test specimens.  By 

comparing with Fig. 2, it can be seen that the 10 in. width and 0.5 in. 

thickness of the test specimen was the same as the narrower bridge tie 

plate.  Since the fatigue cracks grew from construction tack welds on 

the outrigger bracket side of the tie plate, it was not necessary to 

include the floor beam portion of the tie plate in the test specimen. 

Hence the test specimen was shortened from 3 ft.-8 in. to 2 ft.-0 in. 

The hole pattern used for the tie plate - outrigger bracket 

connection was maintained.  But, the hole pattern corresponding to the 

longitudinal girder - tie plate connection had to be altered to match 

the dynamic test bed's W12 x 85 column holes, to which the specimens 

were to be bolted.  Fritz Engineering Laboratory did not have the 

equipment to drive 7/8 in. rivets, therefore bolts had to be used. 

One inch bolts were used as they were readily available and the 
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increased hole diameter did not appreciably alter the net area of the 

tie plate. The necessary 1-1/16 in. holes for the bolts were drilled 

instead of being punched as the 15/16 in. holes of the tie plates 

were.  This change was not considered significant for two reasons. 

First, the fatigue cracks did not grow through the holes.  Second, the 

end of the tack weld, where the fatigue crack originates, is just out- 

side of the bolted connection between the tie plate and loading beam. 

Because of the availability of plate material, plates were 

taken from the laboratory's stock. A total of thirteen specimens, 

marked as TPC-x were made out of mild steel.  Six of these were cut 

from 1/2 in. plate that had been removed from a highway bridge. 

Another ten specimens were cut from 1/2 in. A514 steel plate.  These 

are marked as TPC-x. 

One other detail of the specimen fabrication should be men- 

tioned. All edges were saw cut to ensure that there would be compar- 

able discontinuities along the specimen's edges after the tack welds 

were placed. 



3.  TESTING APPARATUS AND TECHNIQUES 

3.1 Installation of Tie Plates 

Figure 4 shows the test setup used for the tie plate experi- 

ments.  One end of the tie plate was bolted to the W12 x 85 column, 

while the other end was bolted to the W12 x 120 beam flange.  The beam 

was loaded by a 22 kip Amsler hydraulic jack connected to an Amsler 

pulsator. 

The tie plates were installed using the following procedure: 

the bolted connections were placed in bearing and the bolts were then 

torqued to develop between 20 - 25 kips preload, i.e. between 1/3 - 

1/2 of specified preload.  This was to simulate the clamping force in 

the rivets. Then the construction tack weld was placed. 

The 3/16 in. construction tack welds were placed on both 

sides of the tie plate and varied in length and location. A field 

inspection of these welds indicated that they started about 1/2 in. 

from the end of the outrigger bracket top flange and had an average 

length of 2 in.  Therefore, the laboratory tack weld was standardized 

in the test as a 3/16 in. weld starting 1/2 in. in from the end of 

the beam and extending 2 in. as shown in Fig. 4.  This weld was placed 

on both sides of the tie plate as observed on the bridge structure. 

3.2 Comparison of Test Setup to Bridge 

Figures lb and 4 provide a comparison between the test setup 

and the Lehigh Canal Bridge.  The W12 x 85 column simulated one of the 
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bridge's longitudinal girders, while the flange of the W12 x 120 beam 

simulated the top flange of the outrigger bracket.  In addition the 

1/2 in. gap that existed between the longitudinal girder flange and 

the outrigger bracket top flange was duplicated as a 1/2 in gap be- 

tween the column flange and the beam flange in the test setup. 

On the bridge a stringer is attached to the end of the out- 

rigger bracket at a distance of 2 ft.-6 in. from the edge of the 

longitudinal girder's top flange.  Corresponding to the stringer, at 

2 ft.-6 in. from the column flange of the test setup, a jack intro- 

duced a cyclic displacement of the end of the beam.  This provided 

the same moment gradient in the tie plate as existed in the bridge 

due to the relative displacement of the longitudinal girder's top 

flange and the end of the outrigger bracket. 

3.3 Testing Procedures 

The stress in the tie plates was controlled by electrical 

strain gages attached to the plates.  For the first set of the plates 

tested, TPC-la and TPC-lb, the strain gages were placed on the face of 

the tie plates as shown in Fig. 5.  There proximity to the bolted con- 

nection resulted in jack loads which were twice as large as was pre- 

dicted from bending theory. As a result, an additional gage was 

attached to the tie plate edge 1 in. from the tack weld, in line with 

the column flange edge on all other plates.  The predicted strain at 

the edge gage based on the applied jack load was in agreement with the 

measured strain. Hence, in all subsequent tests the stresses at the 
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tack welds were controlled by strain gages attached to the tie plate 

edge, 1 in. from the end of the tack weld. / 

Because of the inconsistencies with bending theory found 

above, extra strain gages were placed on several tie plates to investi- 

gate the stress distribution. The results are reported in Chapter 4. 

The stress range at the tack weld for the first set of tie plates was 

estimated from these measurements. 

Initially the tie plates were tested in pairs, one bolted 

to each flange of the loading beam.  Those tie plates marked with sub- 

script "a" were bolted to the east side and those with subscript "b" 

were bolted to the west side. A problem with torsion was encountered 

and this twisting was minimized by adjusting the hydraulic jack's posi- 

tion under the beam until the deviation of stresses between the two 

tie plates was a minimum.  For the third tie plate set, TPA-3a and 

TPA-3b, the W12 x 120 loading beam was split down the web to minimize 

the unequal distribution of force to each plate. 

When one of the tie plates in the set developed a 1-1/2 in. 

or greater length crack, a steel strap was bolted over the plate so 

that the second plate test could be continued. But the crack continued 

to grow under the steel strap. As the crack grew in one of the tie 

plates, redistribution of load was observed to occur between the two 

plates.  Therefore after TPA-3a and TPA-3b tie plates were tested the 

procedure was changed and the remaining tie plates were tested one at 

a time. The test tie plate was attached to the west side of the 
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setup. The east side tie plate was only bolted to the column and beam 

and no tack welds were placed.  In addition a strain gage was placed 

on the bottom edge of the unwelded tie plate to monitor the load dis- 

tribution between the two tie plates.  All tie plates with specimen 

numbers lacking subscripts "a" or "b" were tested individually. 
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4.  TEST RESULTS 

4.1 Observed Stress Distribution in the Tie Plates 

Because of the discrepancy between the measured strain and 

predicted jack load on the first  test setup,  several tie plates were 

extensively gaged  to   determine   the stress  distribution in the tie 

plate at the critical cross-section.     Figure 6 shows the location of 

the strain gages used in the first study.    Also shown is  the predicted 

and measured strain distribution for a nominal plate bending stress of 

10 ksi at  the end of the tack weld.    Tests were also run on TPC-3 and 

TPC-5.    On TPC-5  the column bolts were only hand tightened.     Figures  7 

and 8 show the location of  the  strain gages and compares the measured 

and  predicted strains  for a stress  of 10 ksi.    All of the tests 

showed that  the strains on the face of  the tie plate were smaller 

than expected based on bending theory.    Apparently the bolted connec- 

tion between the tie plate and loading beam flange interacted because 

of the shear forces developed on the plate-beam flange faying surface. 

Hence there was a decrease in the estimated bending stress  away from 

the plate  edge. 

4.2 Results of Tie Plate Fatigue Tests 

Twenty tie plates were tested at stress ranges which varied 

between 7.3 and 30 ksi.     Shown schematically in Appendix A are  the 

fatigue cracks  that formed in the tie plates.     Because of  the high 

residual stresses at  the tack weld,  a number of the tie plates 
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developed fatigue cracks at the tack weld on the tie plate's   compres- 

sion edge.    These are marked with a subscript "c" after the tie 

plate's number.     Only in one case,  TPA-lac, did this  crack grow 

through the tie plate thickness.    Even in this case the tie plate 

failed on the tension side.    A tie plate was  considered to have failed 

when the crack reached a length of 1-1/2 in.    Table 3 summarized the 

results  for each tie plate.     Those cracks which developed on the 

compression edge  are also included in Table 1 since they would have 

grown much larger when subjected to the stress reversals experienced 

by the tie plates  in the bridge. 

The results of the  tie plate tests  are also summarized in 

Figure 9.     This figure shows  the stress range as  a function of cycle 

life.     The test  data are compared with the AASHTO Category D1* which 

provides a reasonable estimate  of  the lower bound fatigue strength of 

this detail. 

In addition  to  the fatigue failures which originated at the 

tack weld,   the unwelded plate used on the east side of the test setup 

for the individual  testing of  the  tie plates  developed an 8-1/8 in. 

fatigue crack.     This  fatigue failure  is  discussed in Appendix B. 
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5.  EVALUATION OF STRESS CONCENTRATION CONDITION 

AT TACK WELD TOE 

In order to evaluate crack growth in the tie plate, the 

stress concentration at the tack weld termination was needed2'3. A 

finite element analysis of the plate using the three dimensional solid 

element (eight node brick) of the SAP IV5 finite element program was 

performed to estimate the stress concentration factor.  The model used 

for the analysis consisted of the tie plate and bracket flange In the 

Immediate vicinity of the bolted connection between these two members 

as shown schematically in Fig. 10. 

The bracket flange and tie plate are connected by two 2 in. 

long tack welds and eight bolts.  In the finite element model the tack 

weld was represented by a 2 in. long triangular wedge attached to the 

edge of the tie plate and the face of the flange.  The adjacent faces 

of the tie plate and flange were unattached except at the bolt loca- 

tions.  Here the two faces shared four nodes, one at each corner of a 

one inch square centered on the bolt hole center line.  Though this 

is not the same as the bolted joint, it does provide a relatively 

stiff joint as do the bolts, torqued to one-half of the required tor- 

qued, under the low shear stresses experienced by the tie plate.  In 

addition the bolts are far enough away from the point of interest, the 

tack weld termination, that any errors introduced by the modeling of 

the bolts will not significantly effect the results of the finite 

element analysis. 
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Appropriate forces from the bending moment and shear were 

applied to the right-hand end of the bracket flange and the left-hand 

end of the tie plate.  The resulting stresses in the region where the 

stress distribution was investigated agreed with bending theory and 

therefore not with the measured stresses. This could be expected since 

the bolt clamping force was not modeled and therefore the faying sur- 

face interaction was not included, except at the common node points. 

Using the nodal displacements from this analysis as boundary 

conditions; a second much finer mesh analysis of the region in the 

immediate vicinity of the tack weld termination was performed.  The 

element stresses at the base of the tack weld termination obtained 

from the analysis were then utilized in a least square fit using a 

complete second order polynominal to approximate the stress concentra- 

tion at the weld termination. 

The above analysis was performed for the extreme case of the 

tack weld having a vertical termination and also for the case of the 

tack weld termination having a slope of 1 to 3.75, which was typical 

for the tie plate specimens. For the vertical tack weld termination 

the stress concentration factor was estimated to be 2.82, whereas the 

sloping tack weld termination provided a value of 2.80. As can be 

seen the slope has little effect on the stress concentration, there- 

fore in all calculations involving the stress concentration factor a 

value of 2.80 was used. 
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6.  FRACTURE MECHANICS ANALYSIS OF CRACK GROWTH 

IN THE TIE PLATES 

An analytical study of the crack growth in tie plates was 

undertaken to assist in evauating the experimental results. The dif- 

ferential equation of crack growth proposed by Paris11 was used for 

this analysis. This equation states 

|f = C (AK)n (1) 

da where — is the rate  of crack propagation,  AK is  the stress  intensity 

range,  and C and  n are material constants.     C and n were assumed to be 

constant over  the full range of AK and were taken to be 2 x 10 ~      and 

3 respectively.     These are rounded values  of  those found by Hirt and 

Fisher      and used in Ref.   3 to evaluate  crack growth at stiffener and 

attachment details.    The stress  intensity range is  dependent on a 

number of variables  and therefore must be evaluated for each configu- 

ration encountered. 

The number of cycles  to failure   (N)   can be obtained by 

integrating Eq.   1 from the initial crack size   (a.)   to the final crack 

size   (a ).     The result of this integration is: 

N-C/aHf    —^T** (2) C    ai       (AK)n 

In order to perform the integration an estimate of the ini- 

tial crack size  is needed.     The range of  initial weld flaw sizes at 

-15- 



the toe of fillet welds was reported to vary from a low of 0.00075  in. 

to a maximum of 0.02 in., with an average of 0.003 in.8'9.    Reasonable 

agreement with these observations was provided in subsequent studies 

at Lehigh University2'10.     Flaws from tack welds would in all proba- 

bility have larger sizes.    Therefore  the  initial  crack size used in 

the analysis was varied from 0.001  to 0.003 in.    A crack length of 

1.5 in. was used to define failure of  the tie plate. 

For each initial crack size used in the integration of 

Eq.   2,   a threshold stress  range was also  calculated.     The threshold 

stress intensity range of 3.3 ksi /in.   found by Klingerman11   along 

with  the assumed  initial  crack size was  substituted into   the stress 

intensity function to obtain the threshold  stress  range. 

Two models were used to estimate AK in the analytical inves- 

tigation of the tie plate  crack propagation.     Each involved the use of 

a decay function for the  stress  concentration at  the  tack weld 

termination. 

In both models  it was assumed that  the initial crack was  a 

corner  crack,  since  the tie plate cracks were observed  to start as 

corner  cracks  from visual inspection of the crack surface.    This  cor- 

ner  crack can be seen in the photograph of the plate TPC-2b's  crack 

surface shown in Fig.   11. \ 

The first model consisted of a three stage integration of 

Eq.   2 shown schematically in Fig.   12.     For the first stage the stress 

intensity factor  (K) was defined as 
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where O  is the stress, a is the crack size and K„ ( — j is the stress 

concentration decay function3.  The decay function was taken as 

*r(t) ■«,-!(«,-O^K-i)(J) W 

where KT is the stress concentration factor and w is the weld size
3. 

Since this decay function was derived for a different detail, w had to 

be modified.  The stress concentration effect was taken into account 

until a crack length of 0.26 in. was obtained.  This corresponded to 

v2  times the weld size at the end of the weld toe as shown in Fig. 12 

Equation 2 was integrated from the initial crack sizes of 0.001, 0.003, 

0.02, and 0.03 in. to the final crack size of 0.26 in. considering the 

stress concentration factor to be 2.80 as derived from the finite 

element analysis. 

For the second crack growth stage, Eq. 2 was integrated 

from 0.26 in. to the plate thickness (t) of 0.5 in. The stress inten- 

sity function used the secant correction for a free surface and there- 

fore was defined as 

K = a /ite    /sec g- (5) 

The shaded region shown in Fig.   12 was not included in the 

analysis,   as  the number of  cycles required to propagate  the crack 

though  this  region was small. 
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During the first two stages of growth, the crack was not 

appreciably affected by the moment gradient in the tie plate.  But in 

the third stage, the crack was growing in a region of moment gradient 

and therefore the following stress intensity factor12 was used: 

0.923 + 0.199 1 - sin Ua 

K =   /— tan    -r—      x      (6) 
/ ira 2oo ira 

cos    2^ 

where w is the plate width.  Equation 2 was then integrated from a 

crack size of 0.5 in. to 1.5 in. 

In addition to varying the initial crack size, the stress 

concentration factor of 2.80 was varied by ±10%, i.e. 2.52 to 3.08. 

This was done to evaluate the effect of a deviation of the stress con- 

centration factor from the value derived from the finite element 

analysis. 

The results of the first analytical model used in the analy- 

sis of crack propagation in the tie plate are shown in Fig. 13 for the 

three initial crack sizes, 0.001, 0.003, 0.02 and 0.03 in., and a stress 

concentration factor of 2.80. Also shown are the threshold stress 

range for each initial crack.  Design Category D and the test data are 

plotted in Fig. 13 for comparison.  It can be seen that the lower life 

estimate for this model is just above Category D, with all but three 

of the test data points between the outer two prediction lines.  Two 

of these points fall just below the lower life estimate and suggest 

a slightly larger initial crack size than assumed.  The third point, 

-18- 



at 30 ksi,   is  tie plate TPC-lb.     The stress range was estimated for 

this  tie plate.     In addition the  crack was only 3/4 in.   long when  the 

test was  stopped.     Integrating  the third stage of growth from 3/4  in. 

to 1-1/2 in.  at a 30 ksi stress range,   adds 20,000 cycles to its  life 

and provides better agreement with the lower bound life estimate.     By 

comparing Fig.   13 with Figs.   14 and 15,   the results of using stress 

concentration factors  of 2.52 and 3.08 respectively in  the first ana- 

lytical model,  it can be seen that variations in the stress  concentra- 

tion factor has  little effect on the predicted life.     The first ana- 

lytical model provides a  threshold stress range of 4 ksi based on an 

initial crack size  of 0.03 in.   and stress  concentration of 3.08 and a 

reasonable lower bound estimate of the  tie plate's fatigue life. 

In the second analytical model,   stages I and II were com- 

bined.    For  this  combined stage the stress  intensity factor was 

expressed as 

K = *r ( f)  ° ^  /sec   S (7) 2t 

where 

*l(?)   =K
T[

1
-  

3'215 F+ 7-897Cl)2 " 9.288(f)3 + 4.086(f) j 

(8) 

is the decay function with alt, the plate thickness3. With this 

formulation of the stress intensity, Eq. 2 was integrated from the 

initial crack sizes of 0.001,   0.003 and 0.03 in.   to a crack size of 
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0.5 in. The second stage of crack growth was identical to the third 

stage of growth used for the first model. 

The results of using model II are summarized in Figs. 16, 

17 and 18 along with Category D and the test data. Figure 16 is for 

the stress concentration factor equal to 2.80. As can be seen in 

this figure the lower bound estimate of the stress range-cycle life 

relationship is closer to Category D than the first model and all 

test data falls between the lower and upper bound estimates of life. 

Figures 17 and 18 are the results obtained using a stress concentra- 

tion of 2.52 and 3.08 respectively.  Changing the stress concentra- 

tion factor had little effect on the predicted life.  About the same 

crack growth threshold stress range (4 ksi) was predicted for an 

initial crack size of 0.03 in. and stress concentration factor of 3.08. 

Figures 13 through 18 demonstrate that Category D is a rea- 

sonable lower bound life estimate for the tie plate with tack welds. 

Only an extreme condition would cause the crack growth threshold to 

fall below the fatigue limit for Category D.  It also can be seen 

that all the test data fall above Category D. 
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7.  SUMMARY AND CONCLUSIONS 

The following summary and conclusions are from the labora- 

tory tie plate tests and the analytical studies of the tie plates. 

1. The stresses on the face of the tie plate at the critical 

section were smaller than expected based on bending theory. 

The stresses on the plate edge did conform to bending theory. 

Apparently the bolted connection between the tie plate and 

loading beam interacted because of shear forces developed on 

the plate-beam flange faying surface. Hence there was a de- 

crease in the estimated bending stresses away from the tie 

plate edge. This decrease had no influence on crack growth 

from the tack weld on the tie plate edge. 

2. The fatigue cracks originated at the toe of the tack weld 

termination, at the corner where the tie plate edge and face 

meet. From here the crack grew through the thickness and up 

the face of the tie plate. 

3. A finite element analysis of the stress concentrations at the 

tack weld termination revealed that the stress concentration 

was not sensitive to variations in the slope of the weld 

termination. A stress concentration factor equal to 2.80 was 

found for the typical slope on the test specimens. 
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4. Two different analytical models, using different decay func- 

tions for the stress concentration, were used in the fracture 

mechanics analysis of crack growth in the tie plates. Even 

with a ±10% variation of the stress concentration factor both 

models provided a reasonable lower bound estimate of the tie 

plate fatigue life; with failure defined as a 1-1/2 in. or 

longer fatigue crack. 

5. With failure of a tie plate defined as a fatigue crack of 

1-1/2 in. or more, Category D of the MSHTO specifications 

provides a reasonable lower bound for the fatigue life data 

obtained from the twenty tie plates tested and is in agree- 

ment with the lower bounds found from the two analytical 

models use.  Therefore Category D can be used to define the 

fatigue strength of these tie plates. 
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TABLE 1 SUMMARY OF TIE PLATE DATA 

Tie Plate 
S Ranage 
(ksi) 

13.8 

S Minimum 
(ksi) 

2.0 

N Failure 

TPA-la 1,281,800 
-lac 18.2 2.3 1,281,800 
-lb 15.6 2.1 1,018,500 

TPA-2a 12.3 2.0 3,363,200 
-2b 11.8 2.0 3,363,200 

TPA-3a 7.8 1.9 7,466,700 
-3b 8.2 2.3 26,354,200* 

TPA-4 20.0 2.0 452,000 
-4c 21.4 2.0 481,500 

TPA-5 20.0 2.0 552,000 
-5 c 20.2 2.4 600,000 

TPA-6 10.0 2.0 3,366,400 
-6c 9.9 2.0 3,670,500 

TPA-7 10.0 2.0 4.947,000 

TPC-la 30.0 3.8 71,800** 
-lb 30.0 3.8 71,800 

TPC-2a 13.4 1.6 1,046,600 
-2b 12.3 1.5 15,936,700 

TPC-3 8.0 2.0 20,522,400* 
-3c 7.3 1.9 12,619,700 

TPC-5 16.0 2.0 3,314,600 
-5c 11.7 !-9 2,283,700 

TPC-6 16.0 2.0 628,500 
-6c 16.8 2.3 628,500 

TPC-7 24.0 2.0 211,000 

TPC-8 24.0 2.0 252,000 

*  No detectable crack 

** Test stopped before failure, see crack documentation 
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Fig.   12    Schematic of First Analytical Model's 
Three Stage Integration 
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APPENDIX B 

FATIGUE CRACKING OF THE UNWELDED TIE PLATE 

Near the end of the tie plate test the unwelded tie plate on 

the east side of the test set-up developed a fatigue crack. The crack 

started at the bottom hole under a washer and was not discovered until 

it had grown 8-1/8 in.  This crack is shown schematically in Fig. B-l. 

The bolted connection was not fully slip resistant since the 

bolts were only preloaded between 20-25 kips, which is less than the 

full clamping force of 1 in. A490 high strength bolts. Previous tests 

have shown that reducing the clamping force lowers the fatigue life 

of a bolted joint1 *  .  Therefore this failure was compared to 

Category B of the AASHTO Specification** for a bearing-type joint. 

Since the fatigue strength of bearing joints are governed by stresses 

on the net section, all calculated stresses on the unwelded tie plate 

were based on bending stresses at the net section. 

Category B was derived from fatigue data for welded details 

and shown to provide a lower bound to the fatigue strength of bolted 

bearing joints with fully preloaded joints11*. A lower bound estimate 

of the fatigue crack growth threshold for bolts with low clamping force 

was made using a linear approximation of the stress intensity factor 

for a small crack at the edge of a hole15.  Since the tie plate holes 

were drilled, a small initial crack (a.) of 0.005 in. was assumed. 

This resulted in the following approximation for the stress intensity 

factor 
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K = 2.97 a /rra    (ksi /in ) (B-l) 

where (J is  the stress based on the gross area.    Dividing this stress 

by the ratio of net area to  gross area gives  the stress based on the 

net section, which is needed for this analysis.     By substituting a 

rounded value of  the stress  intensity range threshold found by 

Klingerman11  of  3.0 ksi /in.   into Eq.  B-l for K,  along with 0.005  in. 

for a and the  correction for stress based on net section,  a threshold 

stress range of 10 ksi was estimated for the tie plate. 

A strain gage had been placed on the tie plate's bottom edge 

to check twisting of the beam. Therefore the stress range at the edge 

of the hole could be estimated for each block of loading. The result- 

ing stress ranges and cycle history is  summarized in Table B-l. 

The root-mean-square  (RMS) method16»x7»18 was one of two pro- 

cedures  used to determine an effective stress range so that the failure 

could be compared with the constant cycle relationship.    In this 

method the root-mean-square stress range is defined as: 

1/2 - (* -4 -y 
where a.  is  the frequency of occurrence of stress range S 

i 

The second procedure consisted of  combining  the relationship 

provided by  constant cycle data      and Miner's  cumulative damage hypo- 

thesis       to obtain an equivalent stress  range S M. •     This  equiva- 

lent stress  range was estimated as 
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■ (E n* s0 
1/3 

SrMiner=   l Z a«  ^    I <B"3> 

where a.  is the frequency of occurrence of stress range S 

In order to assess  the most  critical condition,   several 

effective  stress  range values were determined for the random block 

loading sequence.     Several of  the initial block loadings were below 

the fatigue limit of 10 ksi.    Hence the  lower stress range blocks were 

eliminated from the effective stress  range analysis one at a time. 

The results  of this  analysis  are  tabulated in Table B-2 and plotted 

along with Category B in Fig.   B-2.     Since there may not be a fatigue 

limit for random cyclic loading when some of the stress  cycles  exceed 

the fatigue limit this  figure shows  the stress range-cycle life rela- 

tionship extended beyond the  fatigue limit. 

The first block loading  (TPC-3) with a 6.5 ksi stress 

range can logically be eliminated from the effective stress  calcula- 

tion,   since it was well below the threshold.     The second block eli- 

minated was TPA-7 with a stress range of  7.1 ksi.    Although some 

crack growth may have occurred under earlier loading blocks,  it is 

probable  that  the  crack size did not increase enough  to cause  the 

crack growth threshold to be exceeded at a  7.1 ksi stress  range. 

This same reasoning was used to eliminate  the  7.8 ksi stress  range of 

the  third block loading,   TPA-6.    The 11.3 and 13.3 ksi stress ranges 

of TPC-5  and TPC-6 respectively were  also eliminated  to determine the 

effects  on the fatigue strength calculations. 
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Figure  B-2 shows that removing  up  to three of the lower 

stress  range blocks provided approximately the  same tie plate fatigue 

strength.     The test data fall at or above the stress range-cycle life 

relationship for Category B indicating failure.    When more  stress 

range blocks were truncated the effective stress range began to fall 

below the fatigue strength line indicating that no failure should 

occur.     Therefore any one of  the first  four effective  stress  ranges 

calculated gives a reasonable estimate  of the tie plate's fatigue 

strength. 
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TABLE B-l UNWELDED TIE PLATE STRESS RANGE 

AND CYCLE HISTORY 

Stress Range (S ) at Hole, 

Specimen Cycles Base on Net Section (ksi) 

TPC-3 20,522,400 6.5 

TPC-5 3,314,600 11.3 

TPA-6 3,670,500 7.8 

TPC-6 628,500 13.3 

TPA-7 4,947,000 7.1 

TPA-4 481,500 16.9 

TPC-7 211,000 17.4 

TPC-8 252,000 18.7 

TPA-8 1,582,000 13.5 

NOTE:  1.  Specimens listed in order of testing 

2.  TPA-8 not included in S-N curve as results 
questionable because of crack in unwelded tie plate 
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TABLE B-2 SUMMARY OF EFFECTIVE STRESS RANGES 

Specimens S    (ksi)   S      (ksi) 
Excluded     Total Cycles      rRMS rMINER 

TPC-3 
TPA-7 

None 35,609,500 8.3 8.8 

TPC-3 15,087,100 10.3 10.8 

10,140,100 11.5 12.2 

TPC-3 
TPA-7 6,469,600 13.1 13.3 
TPA-6 

» 

TPC-3 
TPA-7 
Jp*_g 3,155,000 14.8 14.9 

TPC-5 

TPC-3 
TPC-7 
TPA-6 2,526,500 15.1 15.3 
TPC-5 
TPC-6 
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Fig. B-l Schematic of Fagiue Crack in 
Unwelded Tie Plate 
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