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Abstract 

The Lehigh University IBM 360 Simulator (LUIS) is 

an interactive program which enables a user to execute an 

IBM 360 machine language program on a Control Data 6400 

Computer System. LUIS simulates all but seven of the 

instructions in the IBM System/360 standard instruction 

set. 

The simulator provides a simulated ten thousand byte 

memory whose limits are initially specified by the user. 

The user can load his IBM 360 machine language program 

into this memory either by entering the program from the 

remote terminal or by reading the program from a local 

file.  He may then request that either all or a specific 

number of instructions in the program be executed.  If 

the simulator encounters a situation which would normally 

interrupt a real IBM 360, it terminates execution of the 

user's program and issues an error message explaining the 

reason for interruption.  The user can ask to examine the 

contents of any portion of the simulated IBM 360 memory 

and to examine the contents of the simulated IBM 360 

general registers and>jthe program status word. He can 
\ 

also modify his machine language program and store the 

modified program on a file for future use* 

,. -j.>^JV"' l&W'm .- .^r■.■!-1Y(ir.(:rt^*1W*
CV, 
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I Introduction 

1.1 Background 

This thesis describes an interactive IBM System/360 

simulator written for a Control Data 6400 Computer System. 

The simulator was written to allow Lehigh University 

students to familiarize themselves with the IBM System/360 

family of machines.  These students would otherwise be 

unable to do so in the Lehigh University computing 

environment. 

In particular, the Department of Electrical Engineer- 

ing offers a senior level elective in systems programming) 

EE 315.  The text currently being used in the course is 

Systems Programming by John J. Donovan.  Donovan (like 

many other authors) uses the IBM System/360 for his 

examples. Lehigh University has only a Control Data 6400 

Computer System. It would be beneficial to have a set of 

programs which would enable Lehigh students, those taking 

EE 315 and others, to write programs in IBM System/360 

Basic Assembly Language and have them assembled and 

executed on a simulated IBM System/360. A first program 

would assemble the student*s program on the Control Data 

6400 Computer System and produce a machine language 

version of the program. A second program would then take 

this machine language program and execute it* 
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This thesis describes the second program, the 

Lehigh University IBM 360 Simulator (LUIS),  LUIS is an 

interactive program which simulates all but seven of 

the instructions in the IBM System/360 standard instruc- 

tion set*- * (Diagnose, Set System Mask, Load PSW, Halt 

I/O, Supervisor Call, Test Channel, and Test I/O).  The 

program is available through the Lehigh University 

Computing Center. 

The simulated IBM 360 has a ten thousand byte memory 

(which is stored in the NW array in the simulator) and 

sixteen general registers (which are stored in the "STATUS" 

common block).  The simulated IBM 360 also has a program 

status word (PSW) which is stored in the "STATUS" common 

block.  The PSW (Fig. 1.1) contains information needed to 

execute the user's program.  Subroutine FIBM acts as the 

central processing unit for the simulated IBM 360. 

(Fig. 1.2) 

Since all user input and output must be done through 

the Control Data 6400 Computer System and the simulator, 

the input/output instructions Test Channel, Test I/O, 

and Halt I/O are not used. Instead all input/output is 

done by using a modified version of the Start I/O instruc- 

tion.  Since input/output is not performed in the usual 

manner, the system mask, which is concerned with input/ 

output interrupts, is not relevant and thus the Set 

System Mask instruction is omitted. The user initially 

epecifice the PSW andcanchange itthrough the use of 
-3- 



condition code- 

instruction 
length code (ILC ,y 

j-program mask-If the leftmost 
bit of the four bit hexadecimal 
character is one, program 
interruption will occur if there 
is a fixed-point overflow. The 
other three bits of the program 
mask are ignored by LUIS. n 

t: :*V~ 
instruction address 

^interruption code-set by LUIS 
-protection key-must be zero 
-system mask-ignored by LUIS 

■—AMWP-If the leftmost bit of the four bit hexadecimal 
character ist one, generated decimal sign and zone 
Codes are in USASCII-8 (normally they are in EBCDIC). 
The other three bits of the hexadecimal character 
are ignored by LUIS. 

Fig* 1*1 The Program Status Word 
(Each block represents one four bit hexadecimal 
character*) 

PSW 
(stored in the 
^STATUS" common block) 

Central 
Processing 
Unit 

Subroutine) 
? IBM     / 

Memory 

(NW array) 

Fig* 1.2 The Simulated IBM 360 

-General Registers 
(stored in the 
*STATUS" common 
block) 
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the request NEWPSW (see LUIS User*s Guide), so the Load 

PSW instruction is not needed.  Obviously, since one is 

not working with a real IBM System/360, the Diagnose 

instruction (which is used for testing the system's 

hardware) has no meaning and is not included.  Because 

all input/output is done through the simulator, and 

because none of the other privileged operations are 

included, there is no need for a Supervisor Call and this 

instruction has also been omitted. 
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1.2 Contents of the Thesis 

The remaining portion of this thesis is divided into 

five chapters and two appendices*  Chapter II is a user's 

guide to using the Lehigh University IBM 360 Simulator, 

Chapter III gives a short description of each of the ten 

routines which comprise the simulator.  Chapter IV gives 

a more detailed description of the subroutine (FIBM) 

which actually simulates the IBM 360. Chapter V contains 

the flowchart of LUIS.  The last chapter, Chapter VI, 

describes how additional capabilites can be added to 
i 

LUIS. Appendix A contains material (reproduced from the 

manual, IBM System/360 Principles of Operation) which 

should be of value to those who are unfamiliar with the 

IBM 360 structure. Appendix B contains a typical output 

from LUIS. 
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II User's Guide to LUIS 

2*1 Introduction 

The Lehigh University IBM 360 Simulator (LUIS) 

takes a program written in IBM System/360 machine 

language and executes it on a Control Data 6400 Computer 

System . LUIS simulates all but seven of the instructions 

in the IBM System/360 standard instruction set,  (The 

instructions Diagnose, Set System Mask, Load PSW, Halt 

I/O, Supervisor Call, Test Channel, and Test I/O are 

omitted.)  This chapter describes the features and use 

of LUIS.  Section 2 discusses a restriction on the 

addresses used with LUIS.  Section 3 describes the commands 

of LUIS.  The last section, Section 4, explains how to use 

the simulator* 

LUIS operates under INTERCOM.  INTERCOM is a subsystem 
which allows the user to run an interactive program from 
a remote terminal on the Control Data 6400 Computer System. 
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2.2 Restricted Addresses 

One important difference between the simulator and 

the IBM System/360 is that addresses used with LUIS are 

restricted to a maximum of seventeen significant bits. 

If the eighteenth bit is a one, the address will be inter- 

preted as a negative number and the program will be ter- 

minated if and when that address is actually used for 

addressing.  If more than eighteen significant bits are 

used, the address will be truncated when it is used for 

addressing.  If the truncated address is within the memory 

area of the program, the program will continue to execute 

normally.  However, if the resulting address is outside 

the memory area of the program, the simulator will issue 

an error message and terminate execution of the program. 

This restriction on the length of addresses is necessi- 

tated by the fact that the A and B registers in the CDC 

6400 Computer System are only eighteen bits long. (One 

should note the fact that if an address field is not 

actually used for addressing storage such as in a "Load 

Address" instruction or shifting instructions, then this 

limitation does not apply.) 

_8- 



2,3 The Instruction Set 

AH of the simulated instructions (except Start I/O) 

function as described in the manual, IBM System/360 

Principles of OperationL .  The floating-point feature 

instructions, the decimal feature instructions, the 

protection feature instructions, and the direct control 

feature instructions are not available. Conditions 

which would normally produce an interrupt in an IBM 360 

cause the simulator to terminate execution of the program 

and print an error message indicating the reason for the 

interrupt. 

The user*s program can perform I/O by using a modified 

version of the Start I/O instruction. 

Bl 

McMp)   | I 
I/O code 

The I/O code in the instruction indicates the type 

of I/O that is to be performed by the program.  The code 

is 01 for writing and 00 for reading. (All other codes 

are invalid.)  The address specified by Bl and Dl is a 

fullword somewhere in the user's (memory) storage area. 

This fullword contains the count of the number of words 

which the program will read or write and a base register 

and displacement which specify the starting address for 

I/O. The starting address must specify a fullword 

boundary1 

•>9- 



'the full word 
specified by the 

ignored, B 

I     I    1    I     FT~] *—^Start'l/O 
     ->—-'v x '       instruction 

count of the 
number of words. 

When the I/O code specifies writing, the simulator 

responds: 

WORDS PRINTED FROM MEMORY BY THE USER'S PROGRAM 

The simulator then prints the words and their correspond- 

ing addresses. When the I/O code specifies reading, the 

simulator responds: 

YOUR PROGRAM WANTS TO READ SOME WORDS. 
IF YOU HAVE THE WORDS ON THE FILE PGM, TYPE PGM. 
IF YOU ARE GOING TO ENTER THE WORDS, TYPE INPUT. 

Words are read in the same manner as described for 

"INSERT".  If an error occurs during reading, the 

simulator issues an error message and terminates execu- 

tion of the program.  If the reading of the words is 

completed in a satisfactory manner the simulator responds: 

WORDS READ INTO. MEMORY BY THE USER»S PROGRAM 

The simulator then prints the words which it read and the 

locations where each was placed. 

If no errors were detected while performing I/O, 

then the execution of the program continues after I/O 

ia completed* 

-10- 



2.4 Use of the Simulator 

The simulator is an interactive program.  To use the 

simulator the user first attaches the simulator while in 

the INTERCOM command mode.  If the user has his program 

on a permanent file, then he must also attach this file 

(with the local file name of PGM), After the user attaches 

the simulator, he types: 

LUIS. 

At this point the user is in the simulator program.  The 

simulator responds: 

LEHIGH UNIVERSITY IBM 360 SIMULATOR 

ENTER THE SMALLEST ADDRESS IN YOUR PROGRAM AS AN 
EIGHT DIGIT HEXADECIMAL NUMBER. 

The user enters the smallest address in his program. 

This address determines one of the boundaries of his 

storage area. The address can be between 00000000 and 

0001D8A8 hexadecimal and must specify a fullword boundary. 

If the address is not acceptable to the simulator, it 

responds with an error message and repeats its request. 

If the address is acceptable the simulator responds: 

ENTER THE MAXIMUM SIZE OF YOUR PROGRAM (IN BYTES) 
AS A FOUR DIGIT DECIMAL INTEGER. 

The user enters the number of bytes in his storage area. 

This number, together with the smallest address, determines 

the boundaries of the user's program.  The simulator will 

prevent the user from exceeding the boundaries of his 

storage area.  If the number which the user enters is 

-11--    '  •  



not acceptable to the simulator, it responds with an 

error message, and repeats its request.  If the number 

is acceptable, the simulator responds: 

ENTER THE PSW AS A 16 DIGIT HEXADECIMAL NUMBER. 

The user enters his program's PSW.  If the PSW is not 

acceptable, an error message will be issued and the 

request will be repeated. *If the PSW is acceptable the 

simulator responds:. 

REQUEST- 

At this point the user is in the simulator request mode 

and can issue any of the following requests: 

END 
BYE 
INSERT 
NEWPSW 
DUMP 
STATUS 
S 
EXECUTE 
REWINDP 
STORE 
REWINDS 

These requests are explained below. 

END 

The request END enables the user to redefine his 

storage area and start a new program without leaving the 

simulator program. The simulator responds: 

PROGRAM ENDED BY USER 

The simulator then requests the information needed to 

define the storage area (the smallest address in the 

  — -     -12- 



program, the maximum size of the program, and the PSW). 

One should note that the simulator zeros the program's 

storage area when the storage area is defined by the user. 

Thus any bytes which were in the storage area from a 

previous program are wiped out* 

BYE 

The request BYE terminates the simulator program and 

returns the user to the INTERCOM command mode.  INTERCOM 

will respond: 

EXIT 
COMMAND- 

The request BYE may also be called after the simulator 

responds: 

ENTER THE SMALLEST ADDRESS IN YOUR PROGRAM AS AN 
EIGHT DIGIT HEXADECIMAL NUMBER. 

INSERT 

The request INSERT tells the simulator that the 

user wants to insert some bytes into his storage area. 

The simulator responds: 

ENTER THE STARTING ADDRESS (OF THE COLLECTION OF 
BYTES) AS AN EIGHT DIGIT HEXADECIMAL NUMBER. 

The address must specify a fullword boundary. If the 

address which the user enters is not acceptable, the 

simulator issues an error message and repeats its request* 

If the address is acceptable the simulator responds: 

ENTER THE NUMBER OF BYTES WHICH WILL BE INSERTED 
AS A FOUR DIGIX. DECIMAL INTEGER.- 

-13- 



If the number is not acceptable the simulator issues an 

error message and repeats its request.  If the number 

is acceptable the simulator responds: 

IF YOU HAVE THE BYTES ON THE FILE PGM, TYPE PGM. 
IF YOU ARE GOING TO ENTER THE BYTES, TYPE INPUT. 

If the user types "INPUT" the simulator responds: 

ENTER THE BYTES.  FOUR BYTES PER LINE. 

and prints the location where the bytes will be inserted.. 

When the user enters the bytes, the simulator responds 

by printing the location where the next group of bytes 

will be inserted.  This process continues until the 

user finishes entering all of the bytes. After the 

simulator reads all of the bytes, it responds: 

THE BYTES HAVE BEEN READ 

and returns the user to the request mode. 

If the user types "PGM" the simulator assumes that 

the bytes are on the local file PGM. If the files does 

not exist the simulator will respond: 

PGM DOES NOT EXIST 

and will return the user to the request mode.  The 

simulator assumes that the file PGM has the bytes packed 

forty bytes per card image. The simulator reads as many 

cards as are necessary to satisfy the user's INSERT 

request*  If a second INSERT request causes the simulator 

to read from PGM a second time, the simulator will begin 

reading at the next card image* If the simulator reads 

th«. EOF because PGM does not contain enough bytes, the 

-14- 



simulator issues an error message and zeros all locations 

mentioned in the INSERT.  After the simulator reads all of 

the bytes, it responds: 

THE BYTES HAVE BEEN READ 

and returns the user to the request mode.' 

NEWPSW 

The request NEWPSW enables the user to change his 

program's PSW.  The simulator responds: 

ENTER THE PSW AS A 16 DIGIT HEXADECIMAL NUMBER. 

After the user enters an acceptable PSW, the simulator 

returns the user to the request mode. 

DUMP 

The request DUMP enables the user to dump, all or a 

portion of his memory (storage area).  The simulator 

responds:. 

TYPE ALL OR PARTIAL « 

If the user types PARTIAL, the simulator asks the user to 

supply the starting address of the dump and the length of 

the dump in bytes.  The dump must start on a fullword 

boundary.  The user is not permitted to dump outside his 

storage area. 

Insertions and dumps can only be done with fullword 

units*  Thus all requests are rounded up to the nearest 

number of fullwords.  This rounding process may cause a 

request to exceed the user's memory area by a fraction of 

-15- 



a word.  However, this fact will be ignored by the 

simulator and will not cause any problem. 

After the simulator performs the requested dump, 

it returns the user to the request mode* 

STATUS 

The request STATUS causes the simulator to print the 

PSW, the instruction address, the ILC, the condition 

code, and the contents of*all of the general registers. 
' ■* 

The simulator then returns the user to the request mode. 

The request S enables the user to request that a spec- 

ified number of instructions be executed in his program 

(starting with the one specified by the .instruction address 

portion of the PSW).  The simulator responds: 

ENTER THE NUMBER OF INSTRUCTIONS TO BE EXECUTED AS A 
FOUR DIGIT DECIMAL INTEGER. 

After the user enters the number, the simulator executes 

the specified number of instructions and then returns the 

user to the request mode. 

It is possible for the simulator to return to the 

request mode before it finishes executing all of the 

specified instructions.  This happens when the simulator 

encounters a condition which would produce an interrupt 

in a real IBM 360.  In this case the execution of the 

program stops t and the simulator prints an error message 

-16- 



indicating the reason for program termination. 

EXECUTE 

The request EXECUTE enables the user to execute his 

entire program. EXECUTE tells the simulator to execute 

9,999 instructions. Usually this will be much greater 

than the number of instructions in the user's program. 

Thus the user's program will end when a condition occurs 

which would produce an interrupt in a real IBM 360. 

However, if the user's program is either longer than 

9,999 instructions or has an endless loop in it, the 

simulator will return to the request mode after it executes 

9,999 instructions.  The user can recognize when this 

happens because no interrupt message occurs before the 

simulator returns to the request mode. 

REWINDP 

The request REWINDP enables the user to rewind the 

file PGM.  The user must do this if he has previously 

read from PGM, and then wants to start at the beginning 

of the file. The simulator rewinds the file and returns 

the user to the request mode.  If the file does not exist 

the simulator will respond: 

PGM DOES NOT EXIST 

and will return the user to the request mode* 
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STORE 

The request STORE enables the user to dump all or 

a portion of his memory (storage area) onto a file 

named STORE.  In this manner the user can save the 

contents of his memory for future use. The simulator 

responds: 

TYPE ALL OR PARTIAL 

If the user types PARTIAL, the simulator asks the user to 

supply the starting address of the dump and the length 

of the dump in bytes.  The request STORE has the same 

restrictions as the request DUMP (See DUMP).  The bytes 

are written forty bytes per card image on the file STORE. 

If a second STORE request causes the simulator to write 

on file STORE a second time, the simulator will begin 

writing at the next card image.  The simulator rewinds 

file STORE when the user initially executes the simulator 

program.  File STORE is not destroyed when the user 

terminates the simulator program.  Thus the file can be 

saved by the user and used as the file PGM at some later 

time • 

After the simulator dumps the bytes onto file STORE, 

it responds: 

" THE BYTES HAVE BEEN DUMPED ONTO FILE STORE 

and returns the user to the request mode* 
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REWINDS 

The request REWINDS enables the user to rewind the 

file STORE.  The user must do this if he has previously 

written on STORE, and then wants to start writing at the 

beginning of the file*  The simulator rewinds the file 

and returns the user to the request mode. 
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Ill  The Routines of LUIS 

3,1 Introduction 

The Lehigh University IBM 360 Simulator is written 

in COMPASS'-'^ (assembly language) and FORTRAN.  The 

program consists of a main routine and nine subroutines. 

The COMPASS subroutines assume that the FORTRAN routines 

are compiled by using the RUN compiler. Approximately 

23*6 CP seconds are needed to compile and assemble the 

program.  31242  ., words of central memory are required 

by the program and the various system routines which it 

calls.  Naturally, additional central memory is needed 

for the loader and the loader tables.  Section 2 gives a 

general description of each of the routines of LUIS. 
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3,2 Description of the Routines 

3.2.1 The Main Routine 

The main routine is written in FORTRAN. All of the 

communications between the user and the simulator (except 

some error messages and program I/O) are handled by this 

routine.  The information needed to define the boundaries 

of the user's memory area is initially requested by the 

main routine and all user requests are processed through 

it. Checks are made to insure that no insertions or 

dumps are performed outside of the user's memory area. 

If any invalid requests or otherwise erroneous input 

are received, an appropriate error message is printed, 

and the request for the input is repeated. 

(See flowchart pp. 36 - 43) 

3.2.2 Subroutine BOMB 

Subroutine BOMB is written in FORTRAN.  This 

subroutine prints error messages.  The calling routine 

passes one parameter to BOMB. This parameter determines 

which of twenty error messages is to be printed. BOMB 

also- sets a flag if either of two particular error messages 

are printed. This flag is passed to the main routine 

through the "GOOD" common block (Fig. 3.1). 

(See flowchart p.44) 
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I        ~D IBAD 

Fig, 3,1  The "GOOD" common block 

PROGRAM STATUS WORD 0000000798000048 

INSTRUCTION ADDRESS 
CONDITION CODE    1 

00048 
ILC 

0 00000000 
4 00000000 
8 00000000 
C 00000000 

GENERAL REGISTERS 
1    OOOOOOAO 2    00000010 
5    00000000 6    00000000 
9    00000000 A    00000000 
D   00000000 E   00000000 

S 00000501 
7 00000000 
B 00000000 
F 00000000 

Fig*  3.2     A typical  output requested by the user  through 
the use of  the request;   STATUS,     (Output printed 
by subroutine DUMP;  entry point PRE DUMB.) 

.-."■ -..'.V-vf * -..-:   .«...:-$•.- 
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3.2.3 Subroutine DUMP 

Subroutine DUMP is written in FORTRAN.  The sub- 

routine is actually composed of two separate parts. The 

first part (DUMP) prints the program status word, the 

instruction address, the condition code, the ILC, and the 

contents of each of the sixteen general registers (Fig. 

3.2).  This information is passed to DUMP through the 

"STATUS" common block (Fig. 3.3).  The second part of the 

subroutine (entry point PREDUMP) prints the byte addresses 

and the contents at each address (in hexadecimal) (Fig. 

3.4).  The subroutine must know the byte address of the 

first word, the corresponding index in the NW array (where 

the words are actually stored), and the number of bytes 

which are to be dumped.  This information is passed to 

DUMP through the "BYTES" common block (Fig. 3.5). 

(See flowchart p.44) 

3.2.4 Subroutine REED 

Subroutine REED is written in FORTRAN.  REED allows 

the user's program to read words into memory.  Subroutine 

FIBM passes three parameters (the first byte address, the 

corresponding index in the NW array (where the user's 

program is stored), and the number of bytes which are to • 

be read) to REEDfc  The subroutine stores the parameters it 

receives in the "BYTES" common block and reads the words 

from the source indicated by the user*  If the reading 
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the PSW 

the IBM 360 
general registers 

the instruction address 

the ILC 

the condition code 

the program mask 

STEP 

Fig. 3,3  The "STATUS" common block 

00000 00020004 00004 00000000 00008 00000000 ooooc 00010014 
00010 00000000 00014 00000000 00018 oooooooo 0001C oooooooo 
00020 9C000000 00024 58100004 00028 58200008 0002C 8B100004 
oooso 8B200004 00034 50100014 00038 5020001C 0003C 960C0017 
00040 960C001F 00044 4F100010 00048 4F200018 0004C 1A124E10 
00050 00105850 00054 00148850 00058 00045050 • 0005C 00149C01 
00060 000C1B55 00064 50500010 00068 50500018 0006C 47F00020 
00070 00000000 
£0074 00000000, 

1 contents at that address 

address 

Fig* 3*4 A typical output requested by the user through 
the use of the request; DUMP. (Output printed 
by subroutine DUMP.) 

v"*. *"- '#.*'-■* 
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NW array "2500 words 

-the starting byte address 

-the number of bytes 

fthe starting byte address 
[for an insert or dump 

("the number of bytes 
^//"(in the insert or dump 

the index in the NW array corresponding 
y^to the starting byte address for 

r    ithe insert or dump 
Pig. 3.5  The "BYTES" common block 

P 
a table used by FILESTAT 
(the second word in the table is 
set to zero if PGM does not exist): 

NEOF (zero unless an EOF has been 
read on file PGM) 

Fig. 3.6  The "IN" common block 
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process is not completed in a satisfactory manner, a 

parameter (the number of bytes which are to be read) is 

set to zero before returning to subroutine FIBM. 

(See flowchart p.45) 

3.2.5 Subroutine RITE 

Subroutine RITE is written in FORTRAN.  This 

subroutine allows words to be printed from memory by 

the user's program.  The subroutine is passed three 

parameters (the first byte address, the corresponding 

index in the NW array, and the number of bytes which are 

to be printed) by subroutine FIBM.  Subroutine RITE stores 

the parameters it receives in the "BYTES" common block and 

then calls the routines needed to print the words in 

hexadecimal.  (See flowchart p.46) 

3.2.6 Subroutine EXIST 

Subroutine EXIST is written COMPASS. The subroutine 

builds the necessary table and then calls the system 
T4l macrou , FILESTAT, to determine whether the file PGM 

exists.  If PGM does not exist, the second word in the 

"IN" common block will be set to zero (Fig. 3.6). 

(See flowchart p.46) 

3.2.7 Subroutine DEC 

Subroutine DEC is written in COMPASS. This 

subroutine takes a word which contains four digits in 
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display code (right Justified and zero filled) and 

converts the word to an integer.  The word is passed to 

DEC as a parameter by the calling routine. 

(See flowchart p.46) 

3.2.8 Subroutine CONVERT 

Subroutine CONVERT is written in COMPASS.  Two 

parameters (the number of characters to be converted and 

the address of the first word which is to be converted) 

are passed to subroutine CONVERT by the calling routine. 

CONVERT assumes that each word contains eight hexadecimal 

characters in display code (right justified and zero 

filled).  The subroutine replaces the eight characters in 

each word with their thirty-two bit binary equivalent 

(right justified and zero filled).  (See flowchart p.46) 

3.2.9 Subroutine HEX 

Subroutine HEX is written in COMPASS.  The calling 

routine passes two parameters (the number of words to be 

converted and.the address of the first word which is to 

be converted). Hex assumes that each word contains a 

thirty-two bit binary number (right justified and zero 

filled).  Subroutine HEX replaces each number with its 

equivalent eight hexadecimal characters. These 

characters are stored right justified (and zero filled) 

in display code.  (See flowchart p.46) 
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3.2.10 Subroutine FIBM 

Subroutine FIBM is written in COMPASS.  This 

subroutine is the routine which actually simulates the 

IBM 360.  Three parameters are passed to FIBM by the 

main routine.  The parameters passed are the starting 

address of the user's program, the number of bytes in 

the user's program, and the starting address of the NW 

array.  The "STATUS" common block contains additional 

information which is used by FIBM.  One of the words in 

the "STATUS" common block specifies how many instructions 

are to be executed by FIBM.  Subroutine FIBM will continue 

to execute instructions until the specified number have 

been executed or until a condition occurs which would 

produce an interrupt in a real IBM 360. 

(See flowchart pp.47 - 103) 
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IV  FIBM 

4,1 Introduction 

Subroutine FIBM is the heart of the Lehigh University 

IBM 360 Simulator,  FIBM is the routine which actually 

simulates the IBM 360,  Section 2 describes the memory of 

the simulated IBM 360,  Section 3 describes how the PSW 

and the general registers are stored.  Section 4 describes 

how the user's program is executed by subroutine FIBM. 

Section 5 discusses an alternative structure for FIBM. 
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4.2 The Memory of the Simulated IBM 360 

The memory of the simulated IBM 360 is a 2500 word 

array called NW. Each word in the array holds one IBM 

360 fullword.  The thirty-two bit IBM 360 fullword is 

stored right Justified in the sixty bit CDC word. The 

leftmost twenty-eight bits of each word are zero*  To 

locate a byte in memory, FIBM first removes the right- 

most two bits of the byte address.  Then it right shifts 

the address two places and adds the contents of register 

B7 to it.  Register B7 contains a number which when added 

to the shifted byte address gives that address* actual 

location in the CDC 6400.  While subroutine FIBM is 

executing the contents of register B7 remains fixed at 

that number.  In this manner, FIBM is able to locate the 

word which contains the desired byte.  Finally FIBM uses 

the rightmost two bits which were originally removed 

from the byte address to determine which of the four bytes 

in the word is desired.  Register B6 contains the smallest 

byte address which the simulator is allowed to read or 

write.  Register B2 contains one plus the largest byte 

address which the simulator is allowed to read or write* 

The contents of these two registers remains fixed while 

FIBM is executing. FIBM checks to make sure that every 

byte address falls within the range set by the contents 

of these two registers* 
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4,3 The Storage of the PSW and the General Registers 

The PSW is stored in the "STATUS" common block. 

Subroutine FIBM extracts the instruction address, the 

condition code, the ILC, and the program mask from the 

PSW and stores them at separate locations in the "STATUS" 

common block when it is called by the main routine.  The 

locations containing the condition code and the program 

mask may be examined and their contents may be altered 

during the execution of the user's program.  The contents 

of the location containing the ILC is altered every time 

an instruction is fetched by FIBM.  While subroutine 

FIBM is executing, the contents of register XI contains 

the updated instruction address. Whenever FIBM terminates 

execution of the user's program, it stores the contents 

of register XI in the location reserved for the instruc- 

tion address in the "STATUS" common block.  Then it puts 

the current value of the condition code, the ILC, the 

program mask, and the instruction address in the location 

reserved for the second half of the PSW in the "STATUS" 

common block. 

Each of the sixteen IBM 360 general registers is 

stored in the "STATUS" common block. The contents of 

each register occupies the rightmost thirty-two bits of 

a sixty bit location* 
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4.4 The Execution of the User's Program 

When FIBM is called by the main routine, the sub- 

routine extracts the instruction address, the condition 

code, the ILC, and the program mask from the PSW and 

stores them at separate locations in the "STATUS" common 

block,  FIBM checks the protection key portion of the PSW 

to make sure that it is zero and sets the contents of 

registers XI, B2, B6,and B7.  Next the subroutine sub- 

tracts one from the contents of a location (called STEP) 

in the "STATUS" common block which specifies the number 

of instructions which are to be executed.  If the result- 

ing contents is not equal to zero, then the subroutine 

fetches the halfword specified by the contents of register 

XI (instruction address), FIBM examines the leftmost two 

bits to determine whether the halfword is an RR instruc- 

tion, part of an RX instruction, part of an RS or SI 

instruction, or part of an SS instruction.  Then FIBM 

branches according to the type of instruction to> one of 

four sections in the subroutine.  In these sections the 

remaining portion of the instruction is fetched if 

necessary, the contents of register XI is updated, and 

all of the information necessary for the execution of the 

instruction is extracted from the instruction. Any 

needed byte addresses are generated from the address 

components contained in the instruction. Finally the 

op code is examined and a Stanchie snade t© the section 
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of FIBM which actually performs the operation specified 

by the instruction.  Once the operation has been performed, 

FIBM branches back to the section of the subroutine where 

one is subtracted from the contents of the location STEP 

in the "STATUS" common block.  The process repeats itself 

until the contents of that location is zero, or unless a 

condition occurs which would produce an interrupt in a 

real IBM 360. 

When the contents of location STEP is zero, FIBM 

terminates execution of the user's program, updates the 

PSW, and returns to the main routine.  When a condition 

occurs which would produce an interrupt in a real IBM 

360, FIBM terminates execution of the user's program, 

updates the PSW, return jumps to subroutine BOMB (to 

print the reason for interruption), and returns to the 

main routine. 
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4,5 An Alternative Structure for FIBM 

One should note that it would be possible to determine 

the op code of the instruction when the halfword is 

initially fetched.  The subroutine could then branch 

directly to the section which actually performed the 

operation specified by the instruction. Each section 

would fetch the remaining portion of the instruction if 

necessary, update the contents of register XI, extract all 

of the needed information from the instruction, and gen- 

erate any needed byte addresses from the address compo- 

nents contained in the instruction. Undoubtedly this 

change in the subroutine would tend to decrease somewhat 

the time required to execute each instruction.  However, 

the change would greatly increase the length of the sub- 

routine and would not produce a significant difference 

in the time required to execute the user's program* 
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V The Flowchart of LUIS 

5.1 Notation 

The following symbolic notations are used in the 

flowchart: 

Symbolic Notation 

name*—y 

C(Xi)«*—b 

L(d)«—C(Xi) 

• NOT, 

• AND. 

• OR. 

• XOR. 

Meaning 

set 'name' equal to y 

set the contents of register 
Xi equal to b 

put the contents of register 
Xi into location d 

arithmetic sum 

arithmetic product 

arithmetic difference 

arithmetic division 

boolean complement 

boolean AND 

boolean OR 

boolean EXCLUSIVE OR 
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5.2 Flowchart 
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? 

?    Cfa)* C|fc«)+< 

Cfej)<  0 

REMOVE: 
CAftrtY    8 IT 

V 

C(83) +— I     ~| 
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C(Kt). 
ftEnove 

CA*£.Y   BIT 

CfoJ*—C0WT,)-*-! 

Y£S     ] 

3          yS 

W 

\ 
L(CC0K) *— C0f«J 

CfoX  Q~l £| 

}( ^foH-^-T- CW> J 

cfrfr"—I    I *,\ 
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Cfr€) 

CM<- 
c£|fc£o)+««]j) 

BOOLF) 

Cfc^ 
B3LL/AL va* y- - 0 0 /   ^L C,X6J*_ 

> t 

L(ccope)*— C(kd) 

ifefrgMft) -*—C(*i) 
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cftfr 

W7r-1 .xo*. 
CXttL 

t^M^fiy^ 
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C0C7) 

IS    «I6»<T    SHIFTED 
CMCCODE)) BITS 

£»*«-.{•£» 
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THE co«*cNr| 
VALUE   OF 
THC 

I HALF OF 
\_rHE   fSW 

C(L(C(>CO>+ <ee)) 
IS    H/CMT SHlfTED 
2*   PLACES 

I 
TTHC 

/ » I AIM 
tffnuw FOU 

AUHTMOJT 
POI/K fl»ry 

 M/ 
CfLfc(5«pJ + (l€<5)) 
IS   «KHT SHIfTEO 
H cuAces 

("THE 

|t(ccoo^-j two aiw -^pOWCKJ 
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cfr')»» 

,   rtHE 

I THE F/esr 

c(k2)*- 

Jk  
^aYTE 

ADDAEtt 
OPTMC 
SECOND 
pfwyft 
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( RXSj (SK"j 

-> 
NJ^_ 

CfA2)« 
ACTOAL 
LOCATION 
arszcbNO 
QPEAAHO tin 

cfca)«-cft.fcfr?l)) 
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cfrz)   is 
RICHT    SHIFTED 

16   ,   .PLSQU  

c(x$<- 

rrwe. 

I it Bin or 
q*2) ARC 
COHVEXItD. 

>A ai BIT 
JLLWvne 

Cf/2)     /S 
RUKr    SH/fTCO 
It     PLACXS  

cfxir 

rrtt.  nicmniir 
It  BITS OF 
c(<.2.\ A«e 
CtNViKTtD 
T»A«»/r 

itWOAP 

G> <#2> 
KtchfTrittf 
if arts eF 

*/CMT     SHKTCD 
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Cfte)     ; s 
Ricur    SHtrrxo 

l(    BITS 

fTMC 
*lc«TMOT 
icorrj OF 
C(K2) MX 
COWWEfttEP 
TO A u. air 
FUU.WORO 

L^^-4^(»»^| 

QITS OF 

FIRiT ~N 

OT TH6V*J««0 

MY ifclM), 

-C0C7) 

SECONO 
HALF (vac 0 
or-rncv/0 

Ofef 
CH/WKEl 
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L«w^* 

V   J 

C(*7)' 8 

IS Ricur SHlfTEO 
cLtccoptf HITS 

$L 
Cto+SM-MK 

XM 

I  c6cl«-cfefl 
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m+ m 

ffW CUHMXHt\ 
\JALU£ 
OF THE 

{SCCONA 
HALF 
OP THE 

W* A.DDM«" 
SPECIFIED 
BY CfaM 

SI&MT 
BITS 

LEE* 

(SIGHT airs 
\(ON* BmsJ 
fSPECiF/eo 
BY c(taa) 
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LOCATMN 
snctrnft 
ayqM I 
AN0C(xj)J 

ZHSHT 
BITS 
OF 

C(X3) 

JFIKST 
HALFWOAD 
OF INSTK. 
L.OCATe.0 
ATADDHEXf 
iftfOFIffl 
arc/as) , 

NO akti 

NO 

Ei^z?) 

> 
NUMaen. 
OF syrer 

C(BS>- TWO il«. 
oroPc«od 

I 41      ^ 

^ 
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<&€)<— 2 

"£f(bM *■ «e<^\yK   . -— 1 
EQUAL       >~^       C(X*)+—0      I 

? 

NOT « 

C(X6) «  I 

ifccoc^— cfrs) 

_y 

rnitsr 32 
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rut 
fucHmasr 
16. airs 

1  CONV€*T£D 

I 

or F/ftST 3t BITS 
PIVlDEND IS IN 

~   ~~   OF, PIN/IOEND airj  _ 
I? '"  Lfr 

auoncN 
MCmMOCI U1 

2L 

C 
!♦*«< 

OIVIOBND 
/coa) 

LC:0UKi4mO4-aiMricMr 

-68- 



cfc/)<— cp<!)-»fr 

THt NUMBE& 
OFfWE 
FffcST 

£ 
C#2)' 

fSYTE 
__ 7 APPLES* 
*~ ) Of tZCoND 

_&_ 

fiftANCW    ACCOA0INC TO 

MROO) (exwj ^axi.ej fSALJ 
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/K 

cA2Ucfo.yi 

ACTUAL 

OrSECOND 
OPERA MO 

i*. 
|     cfe3)Z-crx3)   | 

ifcM+«fr.cteft5)l 
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A" 

vu 

cfea) «— c(X3) 

c(&*)< 

t£ft<4«- cL(c(a j)»wt]) 

 tf -y 

<:(&»)«—cfoj+i 
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SLA 

C(KZ)~ 
* £/* airs 

,<?r eft a 

C<fe3) 

_^L 

L^M'M^ 

iNrece* sin 
OF Lfc^+WdJ 

SHIFTED 
cfca) Places 

MCHTttoST 
six BITS 
OF ciScaj 

Cftt) 

i<L 
Cfe3) 

0*4* 

rTHE  3/ 

Bjrior   % 
L(c(xa)+rtK«) 
A« auwr 
SHIFTED 
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res 

& 
Cfc2)> 

MHTMOiT 
SIX  &ITS 
or cfcz) 

X. 
Cfc3)«—  O    f-2> 

EVtW      \ 
ODD 
RtillTE* 

BY i 

INTEGER 
Birs OV THl 
EVCNoDD 

PAIft 
SPEClFIEDfll 
C(k3)A»tt 
Ltrrsmrm 
CtKTJ PtACtt 

     Cop 

C("B3) 

EVOTN 
006      I 

*/»tei»t»* 

[THE 6i 
IMTEffC* 

I BITS OTTWC. 
I EVEN  OMJ 

PAIR 
tncinu «Y 
ftibHTswwn 
CUM WOt 

(ccc)^ / r~~ 
Nol VEi, 

/$K 
E(&.UAL. s^iti ^   ESIML   x 

o ^      °       S 
NoS^ 

1 CC^TI- .—i \4 
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ffi(CWTA»0/r 

 lorn AohgtiA 

* 

c(M< 
ACTUAL 

oP Sirt-c 

iL 
C(xz)«-c(LfoA2^) 

^1 
(fcfrij 

HAS sync 
CK7)*- \ SPK.CID*B LV* ''       / BY C<**) 

I. REMOVED 

^L 

-(C^ 

Wvts 
I WrtUTI D 
ir/ro cfoj 
IN   PIACC 
OF THE 
MissiHt am 
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c(Kf) 

(RICH 
rwe 

I km 

(M 

rwo s/ri 
CfXZ) 
APP«K 

fACTUAJ. 

 lApp*£.r.f 

cfcz} <- qL£M)) 

(Byre F/eoM 
Cfr2)Wk»cM 
If SrtCirltD 

 BY  CM 

V 
I      Cfr£)<- 2. I 

|   L(CCOPE)|<-Cfr6)   I 

cfo) >*i 

^)—   I     h-» 
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C0C¥)< 
\Ri6Hmosr 
/TWO aitr 
) OF Cfc£> 
L (oyrt AppsaH 

('ACTUAL. 
ADDKtSS 
or oy*-c 
ADD«E£f 

I   Ct*2)+-cLtz(A2.))\    I 

iL 
fByrE 

cfo)*-Jr!?!P..t&V "1 WHICH   It 
I SPECIFIED 
LAY CM 

Jd 
C*7) 

CSTT 
, .AND. 

4*3) 

BY £<Sc») 
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{"*/«MTMarr 
TWO BITS 
OF   Cfx£) 
piTt ADPXtt) 

Ute^-c^MDI 
_^L 

C^C7). 

FROM C(^2) 
WHICH  IS 
SPECif/eo 

I 

VM 

rts 

,   ,      |TW<J a/rr 

ild. 

efa)«- 
>CTt>At_ 
A0O«££* 
OF »yrK 

Lfca_ 
^Z. 

f^Mfl 

* 

c(x}. 
BYTC 
FROM qk2) 
WHfCtt U 
SPECIT/Cft 
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/ACTUAL 
\ADOK£S£ 

1 UDO*E.S\J 

-^ 
fr3«- C^ft^ ] 

3L 
rarre P*OM 

C6(7)-«-/cM WHICH 

I LfccooE^X- cfrtil 

cfrfl. ]-*l 

cfrd ■* 
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<#2) SIX BITS 

XL 

tfcfcM 
AM 

cfc*) 
HTr*asT 
BITS 
Cfr2J 

ZfcCX3)+«WJ 
If  */6HT 
SHIFTED 

PLACE.* 

[#(*«*) 

n ODD 

PAIR 
trtOFttD 
or 

fYHfc c* airr 
OFTHCCWEN 
ODD iwcirrert 

ypccifiCB «Y 
cbt3t Ane 
i_err SHirrm 
ftrtrwxs 

-^toNMNCEj 
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SVtf*     ^ 

M.GHTK* 

soearito 

(Act    J 

« 

frni.c+amr 
OFTWtETVCW 
ODD nstimt 
PAIR 
srcciFiep sv 
Cfc^)   AM 
ftKMT 

lcfra)riAcer 
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I    Cft$«— C(X3)-»WEJ 

CtGj*-Ci.kM*l*(*4ll 
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aW' TWO BIT* 
OF cAf2)   . 

terrtADPtfti 

M. 

cW 
fAcnML. 
ADOZZSS 
OP syre 
ADDKCrf 

^k. 
cfcZ) — dlia>>2))) 

^Jz_ 
<#?)- 

rerTE 
FROM c^ 
WHICH IS 
SPECIFIED 

Tor 

4N «-. 
flyre wcfri) 
iPEcine.0 
BV C(XW 
w/rH 

<&<>«- /       1 

|L(CCOPC)«-cfrfr) J 
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I   .  NFLA6 *— S "j 

XL 
i   cfr«)-- s        I 

NFJ-S&-;—6        I 

i   cfrp«—ri 

A/FLAg <— 7 | 

\/_ 
1       Cfr6) «— 6 1 

|      NFLAG.*—   g I 

I    c6<^)*— 6      I 

s 
NF/Jkc *—    9 I 

iU- 
Cfte)*— 8 
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NTLA& -— 10 

±. 
eke)— i 

/ftC£E*ft\ 

NFZ.A6-  II 

^ 
|      c(x.4)I €       1 

M/ 
1   NFldS «— 12 

&. 
I    cfrsV— q     I 
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f'rwjj s/en 
OF 

T Lrwg NUMBS* 

±- 
C(X2)*- 

'rne is 
aco 
CHAKACrOB 
CP   TMC 

c(x«) 

fCOUVERT -Pit 
SCO 
CWA«ACTtAf 
INTO A 

*-< BfNAXrmnKR 
IFANV W«/l/- 
SCo 

NOr\tR.K 
TO aa 

coMrunurr 
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noot/s j 

\l/ 
|   NrCAU*-—    13    I 

I     Cftfl •»  tf     1 

I     NFLAt  -^     f<f    "] 

&. 
I      Cftc^jt— 7       I 

|    NPLAG «— f5      I 

\ki 
ACTURN   JOMp TO 
SuSMUTJNC gon« 

&. 
CRtTUAN TO *\ 

rue Hour/He \ 
WHICH    CALCXP       I 
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LDCATK    TUB 
NtXT    flACT 
t> POLAND   BVTG 
AND   LOCATfc   THE 
NEXT    SCCONO 
OPt*AHO   »VTS 

A [■"""laiMAUt) 
PR0P&U.1 

cfcoHMSfc 
UP W/TM 
rimsr 

V 

CfX7)*-- 

"5FCOMJ 
OPtLKAND 
8YTff 
PKOttALY 

LlHt. Ui» 
WITH 
riKST 
0P«AWO 0YTE 

$L 
tAkSK OUT   THE 
FIKST OPEKAHO 
ttrVc.     SMO   INfBKT 

TH€    SECOND 
OPERAND    BYTE 
IN   ITS   PLACE 

|    C(X3)+— cftJH    I 
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C&Q) 

(THE LARXK 
OF rue. 
TWO   6YT£ 

tOCATE   THE   NEXT 
F/Wf     OPERAND 
srre AND LOCATC 
TM?    NEXT iCCoN D 
ftrfHAMfl   BYTC 

7<r 
c(xo)«- 

/"MASK 
(ooooinig)WM1 

PROPERLY    J 

SHIPTEO TO 
L//VE U(» 
WITH THC 
Fie.iT 

}k. 

cf*7)< 

fTHf. SEcatib 
HALF «F THE 
SECOND 
OPffcAWZ) flffl: 
PROCfrRLY 
SH/F7ED TO 
i-INC LfPW/fH 
THE  FIRST 
OPERAND 
Byre  

_^k. 
r«ViSK    OUT   THE 
SECON0 HALF OF THC 

F7/WT"  OPCftAND   BYTE 
AND INSERT THE 

JCECOJVO HAlP  OT THE 
SCCONO OPERAAIO tYTS 

IN    ITS    PLKC£ 
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GM 

THE 
1_AR6€« 

«-■{OFTHC 
TWO BYTE 

LOCATE   THE  NKXT 
FlfLST   OfEMND am 
AND   LOCATE   THt 
NKXT    XCC«NO 
OPERAND  arrs 

7K 
CIA-OJ «-< SHIFTED TO 

Llft/E 0*» 

OPCKANDflm 

NJZ_ 

cM« 

("THE F//vr 
1 HALF OF THE 
ISECOWD 
/ OPErtAND fl/TE 

-<PftW>Eftiy 

UP WITH THE 
Ft*STo*HAHb 

v 9/TT  I 
MASK OUT THE P/HJT- 

HALF OF THE F/IRST 
OPERAND BYTE AMD 
INSCKT THE FIIUT 
HALF" OF TtfC secOMO 
OPCrtANO BKTE IA» 
IT*  PLACC 

1 cfri«-o5ci~f    1 

< cfrd-cfrvJ-H     I 
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ffHC 

Cfi'Q-iPF THC 
TWO eyre 

(AODHZSTZS 

LOOTS  THE NKXT" 
fiKsr oreruiND trrt 
AND  LOCATE   THt. 
NEXT   fEGdNO 
OPE«AND  «YTJC 

TFT 
,   . SHIFTED TO 

CfaW L/NE Uf 
wrruTHE 
tiHST*m*MQ 

\ BYTE 

V 

<#?)*- 

(THe recovo 
OPERAND 
BYTE. P/tfl/fKQ 

|SW/PT£D   TO 
7 LfH/6 £//» 
1 WITM 'THC 
I msTonww* 

6Yre 

I  c^)*-qp(f7T 

XL 
ffEMOVf TWt FJRrr 
OPERAND BYTE MfO 
INSGW THS.  .AND. 

OPZKAND aynr AND 
THC   SECOND QKAAMt 
BTTE    IW ITC   P/AC.C 
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C(B>^-' 

(rue 
LAK6£R OF 
THE TWO 
ayr£ 

LOCATE" THE NEX1 
FIRST OPetiAND flYTG 
AND LOCATE THE 
w&T secoNty 
Q>g<MNE> pyrg 

/\ 

G0fD)« 

rnKK 
(H\IIUttm„) 

SMfrtD TO 
LINE UP 
WITH THE 

V 

dy-M< 

fTue recowo 
OPERAND 6Y1L 
PROPERLY 
ZHIFTCDTO 
UU£ UP WITH 

I "THE FlUSr 
[.OPERAND em 

\    C(8*)<*—CteQ + 

c^—c(a)-i 

^L 
REMOVE 7V/E F/«£T 
OPEKAND fi/Tt *NO 
INye«TTME .OA. 

OF-THE P7*ST 
opettAN* Byre SNO 
THE StcoND OPEOAtJD 
fiYTE IN ITS  PLACE 
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I ifccopg) 

c(b^.)*- 

STHE 
L-AR&at or 
THE. TWO 
BYre 

LOCATE, -rue NVCT 
VIKST OPttANb 
BYTE AND  LOCATE 
THE   WCXT JECOWD 
OrgfiATIP J3YTE 

/\ 
7ASK 
nun 

-/«.!     J f>*or>£*ty .(X0J+-V s'W/FrecTO 
LINf UP WITH 
THE F/KJT 
OPERANO 

NO 

JS£. 

Cfc 

ff«£   SECOND 
1 OPERANQ 

%   ; fiynr PMWIUY 
•#♦< swirreora 

L/WEU/" 
WfTHTHg 

 i syre 

Cfet);*-CtfrrH 
/ft 

I    Cfo3)«-cftjHl 

$L 
AEMOV£  TWE F7HST 
OP£«A(VO 8VTE A NO 
INitXT TM6   .XO*. 
OF THE FIRST 
0P£fiAwfl s/rr AND 
rHe rcct>MD 
OPCCANO fiYTC  IN 

ITS   PLACE 
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I   cfe»)»— cfr2)   | 

L ©CATC     TNt 
NEXT   F»eir 
OPERAND   BY re. 

7\ fFiittr 
r(xc)+-i OPERAND 

lunar TH6   ayrc 
iPi.ciF/e.0 BY cfrs) 
/WTO TW£ LOCATION 
Ort/6/AMU.y OCCI/P/CC 
BY    THE    f^ffcST 
orsKANo fivrc 

I    Cfr3)-*-Cft3)- I   I 

 at  
C(fc»)«-cfe«$ +l    1 
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A 

<■ 

qX5)      I BYTE- -h 
PC/tANO 

CfcS)«-f 

|    l(CCODE)<-  O 

OF UHSt+OJ 

I  cfrj«-eM-i   I 

^L 
I c(a *»)■<- c(a^i  j 

NEXT   P/*Sf- 
OPERAND    BYTg 

$ 
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[   l(CC0Dg)4- Q ] 

C(xe) 

Locjmc THS hlexr 
FIR5T OK.HANO BYTE 
AND   LOCATE   TMC 
wexr sacowo 
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|cfr3*-ckfcM+««nl 

C»$>-(rg 
CHAM6E 

Tttt LrnritM 

(#$« 

rTH£ SIH.N 
CODE   OF 

|THE WUrtBK 
. DErE/9MINED 
BY THE »6fl 
O^THC 
NUnBEO. AND 

, flrnicrttwl 

Cfr7)- 
3Z 
£ 

C(<6) -«-frc&|/iA«(0 

4i. lNse.nr TUX DIGIT 
(c(xe)) INTO   ITi 

(kl6HTM9ST 

L(C(A ̂ ♦{ 2.9 BITS 
or cfx.-?) 

I rkr*+— Jre<£2-°*'U-I C0C7) /fZEFTrHffTBJ 
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cptj-ffiffga 

CfK3)  /*  K/«WT 
SHIFTED VPLACti 

A 

PL\cuBrrwair 
THE rmtr HALF 
ANOJtCONAMUT 
OFTHt«COWO 

AAHP BTTt ? 

TME FX/trr oflEHAND 
8/TK '* THC KI*#T- 
tAosr avre OPTHC 
finsr ofVRANt. THE 
SECOND opc/tANa •yrc 
/i -rwe ni&HTn>osr am 
or rm ttcoNo opcawo 

lNseRTC(x.7)iHra 
THE LOCATION 
O «IGINALIM OCCUPtfA 
ay TMC FY*ST 

OK*ANQ ayre 

LOCATE   T«E A/Err 
Fi*ir oPErtA/vesrrf 

/MPVW6 ftlg>/rret£Prt a 
c6f^ is tepr 

SHirrea 4 PLACES 
 /K ~ 

C<W< 

rsecoivo 
»^LF OF 

I OPEOANb »vn 

A 

^e 

C(jS3)*- CJJM)-I 

LOCATE   THE   NEXr 
SECOND  OPtAANC BYTE 

LOCATE TH£   NEXT 
FIRST OPERAND BYTK 

(noviN* me.nr TO t&i) 
AMD M»R0 TMK LMXTWN 

i CM—CM^TI 

^_ 
LOCATE   TMC   NExr 
SECOND OPEAAHb IVfl 

CM 
4 SECOMO 

4_. HALF OF 
IE COM O 
OPERAND Bffl 

tit 

^| 
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HE   S.6NCC0U 
0cTT*niNCD ay 
BIT It OP P*w) 
LEFT SHIFTED 
flYFOL/* 
PlACgJ 

$»   <=M~ »■ fl/rj OP 

1 cpf^ 
ax3b  it  *i*nr 
SHIFTED   H-HMX.I 

C/X7J 

■THE. Fl«fo«ltA>Hl 
arm /.* THE m««r- 
rio« syre o* rHt 
rf*jr OPCAAMD. THE 
recowo OPCAAA/O a/rc 
»i   r«« AM.MT/'OMT a»TE 
or THE tfcowp orEAAM> 

^ 
PlACcS 8ETWE£/V 

rtWW THE PIRrr HALF 
H*'/M AND SCCOHb HALF 

I «F THE SECOND 
\,opg«ANp arre 

-^fcWANCEJ 

±< 
/AttSAT    C&7)   /WTO 
THE LOCATION 
Qp.tiiNM.iy OCCUPIED 
AY THE F/KST 
opCgANn     8/TE 

cfl"^*-C(k«).oR. cfcv} 

LOCATO rw NEX 
niter OPCKAND avre 
(ntviNt   fUGnrir> 

^f.^-l 

ptoNrt 

j  ciM"-^")-'   I 

LOCATE  THE NEXT 
pmiT OPERAND ayrc 
faov/Nt nitHTTOLXPr) 

\    cft3)-C^-|   J 

ik- 
LocAre   r«E A/exr 
ClCONP OPERAND  8YTE 

(MOVING AICWT TO tcvr) 

INS*K.r CfOJ/A/TO THf. 
LOCATION OHCINALLY 
OCCIIP/ED ay rn* 
F/RfT orSMNb  BYTE 

X. 
cOc*)*- 

F"f AST HAL* 
OF SECOND 
OPERAND 
BYTE 

LOCA7T THE WETT" 
rtusrorSMNo avrr 

TCCO/VD HAJtr 
-    ,      Of 5ECOA/D 

C60J*- OPCRAMO 
avTE .OR. 

cht«i 
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C(X$      IS   AI6HT 
SHlVTSD   9 PLAC&l 

\ 
> sync 

LOCATE   THE 
iWIKtr OPBWWO 

MO LOCATC rue \ 
Exr JECOWO orf«»»M) 

8YTT 

C(B3) t—   C(M 

c^^{; set O NO HAtF 

n 
THE Fi«*r oreKANo 
arf£ u rue. ittnr- 
tAoer am OF rue. 
FiKtrore/tANO. THC 
ICC ON D O/OCAAND BYrt 
IS THK   *l<*/Tf*€L*r 
am e* rtKJtomo vtmn 

' fSZCOND HAlf 
ctfoM oP SECOND M     '     \ OfEgAtt BY71 

3Z 
C(K7)    IS   LEFT 

SHIFTED   IY 
 <j.PLHX.i 

Jc 
INltUT   cpc^.on. C/iKj 
INTO   THE   LOCATIOW 
Oft/fiffMLLy OCCUPItO B1 
rne nurr OPCWWO BYTE 

NO 

_^L 

/'F/IWTMAi.r 

muff r«£ we*r 

fMoV/A>« it/CH-r T» 
AMD iHttarcti4in tn ua 

J4& "Q kran^-c^-> i 

-100- 



DZCI 

\/_ 
|      NFLAO, \  IC       | 

3L 
I        C(M4r-    , 1 

SK 

±. 
I   NFLA6 +-n I 

V 
I     cw  «- I      1 

NFLA&4-I9       1 

^ 
lcW«-l       I 

£/M 

V 
|      KFIA6 *— /q     1 

V 
I    cfc4<-   f   _J 
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VI Improving LUIS 

6,1 Introduction 

While the Lehigh University IBM 360 Simulator is 

quite useful in its present form, there are a number of 

changes which could be made to improve it. Section 2 

describes how more memory could be added to the simulated 

IBM 360.  Section 3 describes how the decimal and floating- 

point feature instructions could be added to the simulator. 

Section 4 suggests a modification to LUIS which would 

enable the user to selec^ whether the simulator sent 

normal or abbreviated messages to the user* Section 5 

describes how additional commands could be added to the 

simulator. 

-104- 



6,2 Adding More Memory 

The maximum storage capacity of an IBM 360 is 

16,777,216,  .  , byte addresses.  Unfortunately the 

CDC 6400 can only provide the user with a maximum of 

40,960.ecimal sixty bit storage locations. Therefore 

it is necessary to limit the size of the memory of the 

simulated IBM 360 to a small fraction of the maximum 

capacity.  Since byte addresses are often placed into 

eighteen bit B registers by subroutine FIBM, byte 

addresses must be restricted to a maximum length of seven- 

teen significant bitsi  This fact restricts the largest 

possible byte address to 131»071rfeciraax» 

LUIS allows the user to specify the portion of 

storage which will be used.  The user may specify any 

starting address between 000000 and 01D8A8 hexadecimal 

(121,000,  .,)•  The user's portion of storage may 

contain a maximum of ten thousand bytes.  While the size 

of the simulated memory is currently limited to ten 

thousand bytes, this limit could be increased.  By 

increasing the dimension of the NW array and by modifying 

the DEC subroutine so that an integer larger than 9,999 

could be read, the maximum size of the simulated memory 

could be increased.  Naturally, even if this was done, 

it would still be necessary to limit the largest possible 

byte address to a pumber less than 131,072.  .  -. 
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6,3 Adding More Instructions 

The decimal feature instructions are not available 

in LUIS.  However, one could easily add these instructions 

to LUIS. Currently a request for any of these instructions 

causes subroutine PIBM to branch to a section of the 

subroutine called DECI.  DECI causes an error message to 

be printed and terminates execution of the user's program. 

One could add additional sections to FIBM which would 

perform the operations specified by the decimal feature 

instructions.  Subroutine FIBM could then be changed so 

that a request for a decimal feature instruction would 

cause FIBM to branch to the appropriate section where 

the operation would be performed. 

Currently a request for any of the floating-point 

feature instructions causes FIBM to branch to a section 

of the subroutine called FLOAT.  FLOAT causes an error 

message to be printed and terminates execution of the 

user's program.  One could add additional sections to 

FIBM which would perform the operations specified by the 

floating-point feature instructions.  Sections RR and 

RX of subroutine FIBM would have to be modified to 

include branches to the sections of FIBM which would 

perform the floating-point operations. Naturally it 

would be necessary to add floating-point registers to> 

LUIS. These registers could be storage locations in the 

"STATUS" common block. 
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6.4 Abbreviated Messages From LUIS 

Whenever the user must supply some information to 

the simulator, the simulator specifies the exact nature 

and format of the information required.  Usually the 

message is in the form of a one or two line sentence. 

These messages are especially useful to the person who 

has not used the simulator previously. Unfortunately 

these messages can limit the speed with which an experi- 

enced user can use the simulator.  This fact is especially 

true when using a teletype. 

For the experienced user, a two or three word phrase 

would provide sufficient information so that the user 

would know what type of information the simulator required. 

The simulator could be modified to provide two additional 

requests.  One request would cause the simulator to go 

into the abbreviated mode where all messages sent to the 

user would be in an abbreviated form. Another request 

would place the simulator in the normal mode.  In the 

normal mode all messages would be printed by the simulator 

in the manner currently being used. 
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6.5 Additional Simulator Commands 

At the present time there are eleven different 

commands which the user may issue when the simulator 

is in the request mode.  The main routine uses a series 

of IF statements to branch to the section of the routine 

which handles the particular request.  Additional 

commands could be added to the simulator. Additional IP 

statements would be added to the present series which 

would check for the new commands.  These IF statements 

would then branch to sections of the main routine which 

would handle the new commands. 
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Appendix A 

The following material is reproduced from the 

manual, IBM System/360 Principles of Operation.  This 

material should be of value to those who are unfamiliar 

with the IBM 360 structure. 

Instruction Format 

The length of an instruction format can be one, two, 
or three halfwords. It is related to the number of stor- 
age addresses necessary for the operation. An instruc- 
tion consisting of only one halfword causes no refer- 
ence to main storage. A two-halfword instruction pro- 
vides one storage-address specification; a three-half- 
word instruction provides two storage-address specifi- 
cations. All instructions must be located in storage on 
integral boundaries for halfwords. Figure 13 shows 
five basic instruction formats. 

The five basic instruction formats are denoted by 
the format codes HH, BX, BS, SI, and ss. The format 
codes express, in general terms, the operation to be 
performed, BH denotes a register-to-register operation; 
BX, a register-and-indexed-storage operation; BS, a reg- 
ister-and-storage operation; si, a storage and immedi- 
ate-operand operation; and ss, a storage-to-storage 
operation. An immediate operand is one contained 
within the instruction. 

For purposes of describing the execution of instruc- 
tions, operands are designated as first and second op- 
erands and, in the case of branch-on-index instructions, 
third operands. These names refer to the manner in 
which the operands participate. The operand to which 
a field in an instruction format applies is generally de- 
noted by the number following the code name of the 
field, for example, Ri, Bi, L», D». 

In each format, the first instruction halfword con- 
sists of two parts. The first byte contains the oper- 
ation code (op code). The length and format of an 
instruction are specified by the first two bits of the 
operation code. 
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First Holfword I 
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SOCOIM HaltwOfd • 
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Op Cod* *, R2 RR Format 
ri        it II       is 
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Address 
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1    Op Code 51 
7 1 llll Mil Itw 
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Figure 13. FiVo Bute Instruction Formats 

INSTRUCTION LENGTH HBCORD1NO 

BIT POSITIONS INSTRUCTION INSTRUCTION 

(0-1) LENGTH FORMAT 

00 One halfword RR 
01 Two halfwords RX 
10 Two halfwords RS or SI 
11 Three halfwords SS 

The second byte is used either as two 4-bit fields 
or as a single eight-bit field. This byte can contain the 
following information: 

Four-bit operand register specification (Ri, R«, or 
R») 

Four-bit index register specification (Xj) 
Four-bit mask (Mj) 
Four-bit operand length specification (Li or I4) 
Eight-bit operand length specification (L) 
Eight-bit byte of immediate data (I») 

In some instructions a four-bit field or the whole sec- 
ond byte of the first halfword is ignored. 

The second and third halfwords always have the 
same format: 

Four-bit base register designator (Bi or B,), fol- 
lowed by a 12-bit displacement (Di or D»). 

-Ill- 



Address Generation 
For addressing purposes, operands can be grouped 
In three classes: explicitly addressed operands in main 
storage, immediate operands placed as part of the in- 
struction stream in main storage, and operands lo- 
cated in the general or floating-point registers. 

To permit the ready relocation of program seg- 
ments and to provide for the flexible specifications of 
input, output, and working areas, all instructions re- 
ferring to main storage have been given the capacity 
of employing a full address. 

The address used to refer to main storage is gen- 
erated from the following three binary numbers: 

Base Address (B) is a 24-bit number contained in a 
general register specified by the program in the B 
field of the instruction. The B field is included in 
every address specification. The base address can be 
used as a means of static relocation of programs and 
data. In array-type calculations, it can specify the lo- 
cation of an array and, in record-type processing, it 
can identify the record. The base address provides for 
addressing the entire main storage. The base address 
may also be used for indexing purposes.   • 

Index (X) is a 24-bit number contained in a general 
register specified by the program in the X field of the 
instruction. It is included only in the address speci- 
fied by the nx instruction format. The nx format in- 
structions permit double indexing; i.e., the index can 
be used to provide the address of an element within 
an array. 

Displacement (D) is a 12-bit number contained in 
the instruction format. It is included in every address 
computation. The displacement provides for relative 
addressing up to 4095 bytes beyond the element or 
base address. In array-type calculations the displace- 
ment can be used to specify one of many items as- 
sociated with an element. In the processing of records, 
the displacement can be used to identify items within 
a record. 

In forming the address, the base address and index 
are treated as unsigned 24-bit positive binary integers. 
The displacement is similarly treated as a 12-bit posi- 
tive binary integer. The three are added as 24-bit 
binary numbers, ignoring overflow. Since every ad- 
dress includes a base, the sum is always 24 bits long. 
The address bits are numbered 8-31 corresponding to 
the numbering of the base address and index bits in 
the general register. 
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The program may have zeros in the base address, 
index, or displacement fields. A zero is used to indi- 
cate the absence of the corresponding address com- 
ponent. A base or index of zero implies that a zero 
quantity is to be used in forming the address, regard- 
less of the contents of general register 0. A displace- 
ment of zero has no special significance. Initialization, 
modification, and testing of base addresses and in- 
dexes can be carried out by fixed-point instructions, 
or by BRANCH AND LINK, BRANCH ON COUNT, or BRANCH- 

ON-INDEX instructions. 
As an aid in describing the logic of the instruction 

format, examples of two instructions and their related 
instruction formats follow. 

RR Format 

Add 7 9 
IIII 

Execution of the ADD instruction adds the contents of 
general register 9 to the contents of general register 
7 and the sum of the addition is placed in general 
register 7. 

ftX format 

Store 3 10 14 300 
7* ttM 

Execution of the STORE instruction stores the contents 
of general register 3 at a main-storage location ad- 
dressed by the sum of 300 and the low-order 24 bits 
of general registers 14 and 10. 

-113- 



Sequential Instruction Execution 

Normally, the operation of the CPU is controlled by 
instructions taken in sequence. An instruction is 
fetched from a location specified by the instruction 
address in the current rsw. The instruction address is 
then increased by the number of bytes in the instruc- 
tion fetched to address the next instruction in se- 
quence. The instruction is then executed and the same 
steps are repeated using the new value of the instruc- 
tion address. 

Conceptually, all halfwords of an instruction are 
fetched from storage after the preceding operation is 
completed and before execution of the current oper- 
ation, even though physical storage word size and 
overlap of instruction execution with storage access 
may cause actual instruction fetching to be different. 
Thus, it is possible to modify an instruction in storage 
by the immediately preceding instruction. 

A change from sequential operation may be caused 
by branching, status switching, interruptions, or man- 
ual intervention. 

Branching 

The normal sequential execution of instructions is 
changed when reference is made to a subroutine, when 
a two-way choice is encountered, or when a segment 
of coding, such as a loop, is to be repeated. All these 
tasks can be accomplished with branching instruc- 
tions. Provision is made for subroutine linkage, permit- 
ting not only the introduction of a new instruction 
address but also the preservation of the return address 
and associated information. 

Decision-making is generally and symmetrically 
provided by the BRANCH ON CONDITION instruction. 
This instruction inspects a two-bit condition code that 
reflects the result of a majority of the arithmetic, logi- 
cal, and i/o operations. Each of these operations can 
set the code in any one of four states, and the con- 
ditional branch can specify any selection of these four 
states as the criterion for branching. For example, the 
condition code reflects such conditions as nonzero, 
first operand high, equal, overflow, channel busy, zero, 
etc. Once set, the condition code remains unchanged 
until modified by an instruction that reflects a dif- 
ferent condition code. 

The two bits of the condition code provide for four 
possible condition code settings: 0, 1, 2, and 3. The 
specific meaning of any setting is significant only to 
the operation setting the condition code. 
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List of Instructions by Sot and Foatwo 

Standard Instruction Set 

NAME MNEMONIC TTPB CODE 

Add AR RR C 1A 
Add A RX C 5A 
Add Halfword AH nx C 4A 
Add Logical ALR RR C IE 
Add Logical AL RX C 5E 
AND NR RR C 14 
AND N RX C 54 
AND NI SI C 04 
AND. NC SS C D4 
Branch and Link BALR RR 05 
Branch and Link BAL RX 45 
Branch on 

Condition BCR RR 07 
Branch on 

Condition BC RX 47 
Branch on Count BCTR RR 06 
Branch on Count BCT RX 46 
Branch on Index 

High BXH RS 86 
Branch on Index 

Low or Equal BXLE RS 87 
Compare CR RR C 19 
Compare C RX C 59 
Compare Halfword CH RX C 49 
Compare Logical CLR RR C 15 
Compare Logical CL RX C 55 
Compare Logical CLC SS C D5 
Compare Logical CLI SI C 95 
Convert to Binary CVB RX 4F 
Convert to Decimal CVD RX 4E 
Diagnose SI 83 
Divide DR RR ID 
Divide D RX 5D 
Exclusive OR XR RR C 17 
Exclusive OR X RX C 57 
Exclusive OR XI SI C 97 
Exclusive OR XC SS C D7 
Execute EX RX 44 
Halt I/O HIO SI C 9E 
Insert Character IC RX 43 
Load LR RR 18 
Load L RX 58 
Load Address LA RX 41 
Load and Test LTR RR C 12 
Load Complement LCR RR C 13 
Load Halfword LH RX 48 
Load Multiple LM RS 98 
Load Negative LNR RR C 11 
Load Positive LPR RR c 10 
Led PS W LPSW 81 L 82 
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NAME MNEMONIC TY TS COD 

Move MVI SI 92 
Move MVC SS D2 
Move Numerics MVN SS Dl 
Move with Offset MVO SS Fl 
Move Zones MVZ SS D3 
Multiply MR RR 1C 
Multiply M RX 5C 
Multiply Halfword MH RX 4C 
on OR nn c. 16 
OR O RX c' 56 
OR OI SI C 06 
on OC SS c D6 
Pack PACK SS F2 
Set Program Mask SPM RR L 04 
Set System Mask SSM SI 80 
Shift Left Double SLDA RS C 8F 
Shift Left Single SLA RS C 8B 
Shift Left Double 

Logical SLDL RS 8D 
Shift Left Single 

Logical SLL RS 89 
Shift Right Double SRDA RS C 8E 
Shift Right Single SRA RS C 8A 
Shift Right Double 

Logical SRDL RS 8C 
Shift Right Single 

Logical SRL RS 88 
Start I/O SIO SI c 9C 
Store ST RX 50 
Store Character STC RX 42 
Store Halfword STH RX 40 
Store Multiple STM RS 90 
Subtract SR RR c IB 
Subtract S RX c 5B 
Subtract Halfword SH RX c 4B 
Subtract Logical SLR RR c IF 
Subtract Logical SL RX c 5F 
Supervisor Call SVC RR 0A 
Test and Set TS SI c 93 
Test Channel TCH SI c 9F 
Test I/O •no SI c 9D 
Test Under Mask TM SI c 91 
Translate TH SS DC 
Translate and Teat TRT SS c DD 
Unpack UNPK SS F3 

Note:  A*C in the TYPE column means that the condition 
code is set*  An"l/in the TYPE column means that 
a new condition code is loaded* 
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Appendix B 

LEHTOH UNIVERSITY IBM 360 SIMULATOR 

ENTER THE SMALLEST ADDRESS IN YOUR PROORAM 
AS AN EIQHT DIOIT HEXADECIMAL NUMBER. 
00000000 
ENTER THE MAXIMUM SIZE OF YOUR PROORAM (IN BYTES) 
AS A FOUR DIGIT DECIMAL INTEOER. 
0080 
ENTER THE PSW AS A 16 DIGIT HEXADECIMAL NUMBER. 
0000000000000000 
REQUEST=INSERT 
ENTER THE STARTING ADDRESS (OF THE COLLECTION OF BYTES) 
AS AN EIGHT DIGIT HEXADECIMAL NUMBER. 
00000000 
ENTER THE NUMBER OF BYTES WHICH WILL BE INSERTED AS 
A FOUR DIOIT DECIMAL INTEGER. 
0072 
IF YOU HAVE THE BYTES ON THE FILE PGM, TYPE POM. 
IF YOU ARE GOING TO ENTER THE BYTES, TYPE INPUT. 
PGM 
THE BYTES HAVE BEEN READ 
REQUEST=DUMP 
TYPE ALL OR PARTIAL 
ALL 

05709C00 
70145810 
703E5010 
00037036 
00000012 

00000 
00010 
00020 
00030 
00040 

702E5810 
703A5910 
70429001 
00017042 
00000034 

00008 
00018 
00028 
00038 
00048 

00004 
00014 
00024 
00034 
00044 

REQUEST=EXECUTE 
YOUR PROGRAM WANTS TO READ SOME WORDS 
IF YOU HAVE THE WORDS ON THE FILE POM, TYPE PGM. 
IF YOU ARE GOING TO ENTER THE WORDS, TYPE INPUT. 
INPUT 
ENTER THE WORDS. (ONE WORD PER LINE) 

00038 -0000004C "' 
0003C -00000039 
00040 -OOOOOOOD 

70365910 
703E47A0 
703247F0 
00000023 
00000000 

OOOOC 703A47A0 
0001c 70205810 
0002C 70000000 
0003c 00000034 
0004C 00000000 

WORDS READ INTO MEMORY BY THE USER"S PROORAM 

00038 0000004C 
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0003C 00000039 
00040 0000000D 

WORDS PRINTED FROM MEMORY BY THE USER"S PROGRAM 

00044 0000004C 
YOUR PROGRAM WANTS TO READ SOME WORDS 
IF YOU HAVE THE WORDS ON THE FILE PGM, TYPE PGM. 
IF YOU ARE GOING TO ENTER THE WORDS, TYPE INPUT. 
INPUT 
ENTER THE WORDS. (ONE WORD PER LINE) 

00038 -00000004 
0003C -OOOOOOOA 
00040 -OOOOOOFF 

WORDS READ INTO MEMORY BY THE USER'S PROGRAM 

00038 00000004 
0003C OOOOOOOA 
00040 OOOOOOFF 

WORDS PRINTED FROM MEMORY BY THE USERNS PROGRAM 

00044- OOOOOOFF 
YOUR PROGRAM WANTS TO READ SOME WORDS 
IF YOU HAVE THE WORDS ON THE FILE PGM, TYPE PGM. 
IF YOU ARE GOING TO ENTER THE WORDS, TYPE INPUT. 
INPUT 
ENTER THE WORDS. (ONE WORD PER LINE) 

00038 -00000000 
0003c -00000000 
00040 -OOOZZZZW 

WORDS READ INTO MEMORY BT THE USER"S PROGRAM 

00038 00000000 
0003c 00000000 
00040 OOOZZZZW 
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**** AN INVALID CHARACTER APPEARED IN A HEXADECIMAL NUMBER. 
THE BYTES WERE REMOVED FROM MEMORY 
REQUEST-STATUS 

PROGRAM STATUS WORD 0000000090000006 

INSTRUCTION ADDRESS   00006 
CONDITION CODE    1 ILC 

0 00000000 
k 00000000 
8 00000000 
C 00000000 

GENERAL REOISTERS 
1 000O00FF    2 00000000 
5 00000000   6 00000000 
9 00000000   A 00000000 
D 00000000   E 00000000 

3 00000000 
7 40000002 
B 00000000 
F 00000000 

REQUEST=STORE 
TYPE ALL OR PARTIAL 
ALL 
THE BYTES HAVE BEEN DUMPED ONTO FILE STORE 
REQUEST*BYE 
EXIT 
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