Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1975
The Lehigh University IBM 360 simulator.
Leonard Ira Horey

Follow this and additional works at: http://preserve lehigh.edu/etd

b Part of the Electrical and Computer Engineering Commons

Recommended Citation
Horey, Leonard Ira, "The Lehigh University IBM 360 simulator." (1975). Theses and Dissertations. Paper 1759.

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an

authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F1759&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1759&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1759&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F1759&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/1759?utm_source=preserve.lehigh.edu%2Fetd%2F1759&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

THE LEHIGH UNIVERSITY IBM 360 SIMULATOR

by

Leonard Ira Horey

A Thesis
Presented to the Graduate Committee
of Lehigh University
in Candidacy for the Degree of
Master of Science
in

Electrical Engineering

Lehigh University
1975

ProQuest Number: EP76031

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

in the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Pro(Quest.
/ .\

ProQuest EP76031
Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106 - 1346

This thesis is accepted and approved in partial
fulfillment of the requirements for the degree of Master

of Science,

@wl 2 1975

(date)

Pré%@dgor in Charge

Chairman of Department

—tiie

Acknowledgment

The author would like to express his gratitude to
his advisor, Professor Peggy A. Ota. Her comments and

suggestions were a valuable aid in preparing this thesis.

-iii-

Tabl? of Contents
1

ADStrACt cececcceccscvscccsccnrcesccsocscscscscsccsccccce
I Introduction ceeececcsccccccccccscocceccccsccncnsccccs
l,1 BAckground cesecsccccscsscsceccsccacccscaccnnce
1.2 Contents of the Thesis "veieeeeccecccccsccccsssss

II User's Guide tO LUIS eeseescsscosssssscscssscscons
2e1 Introduction cececcsccccscccccsccecccccccoccee
2.2 Restricted Addresses scecescccccccsceccccccsces
2.3 The InStruction Set eeeeeececescsesccscsconcsas
2.4 Use Of the SIiMUlatOr seeeesccccscecscsnoccsncs
III The Routines of LUIS ccesccvcsccccccsccsccccsccscnse
3¢l Introduction eeeeccececaccccccsccccosccccccnns
3.2 Desé?iption of the Routines esececcececccsccccse
3.2.1 The Main Routine:.........

34202 Subroutine BOMB ecesccccccsccsessscccsnes

3.2.3 Subroﬁfinq DUMP eevcecossscscscscocscaccse

3¢.2.4 Subroutine REED scecsccccccsccscccsccccces

3.2.5 Subroutine RITE cceccevecsvesccsccsccccons

34246 Subroutine EXIST esccecoscccccscccccsscccs

3.2.7 Subroutine DEC sesescescsssessrevsracans

3.2.8 Subroutine CONVERT, cecscsccccccccccccccss

3.2.9 Subroutine ﬁEx teeseccicscccssseccrosnsens
3.2.10 Subroutine FiBM sevcssccsccccscrcscecans

IV FIBM ceeeescccccassossssnssoasassscasisanscacnasea

4,1 Introduction ooooo;oooo.oooooooooooooooooooooo

W © 9 N9 60 N N

11
20

20
21
21

AN

21

23
23
26
26
26
27
27
28
29
29

4.4
4,5
>V The
5.1
562

The Memory of.the Simulated IBM 360 ececccose
The Storage of the PSW and the General

Reglsters cecsccnssssesecesresesccsssssassncas
The Executlion of the User's Program eecececececece
An Alternative Structure for FIBM;....
Flodcharﬁ of LUIS Geececsscccscoccssscssscnes

Notation L R BN BN BN IR B BN BN BN BN B NN BE B BN BN AR AR BN AN BN IR BR BN R BN K BN BN NN AN N J

FlOWChartQ...‘0.0.......I........OOQ..‘.‘.

vVl ImprOV1ng LUIS SeoecscsesserssecROOssRVOOOOOOOIOOS

6.1
6.2
6.3
6.4

6¢5

Introduction eecececccccescsccccccsscccocsncnnse
Adding More MemOryY ecseesceccccocccsccrcccscos
Adding More Instructions ececcceccsccccccccccccsese
Abbreviated Messages From LUIS cececscecesccsce

Additional Simulator Commands eeceecocccsceccos

References 0 0000 000000000000 0000OCOCICEORCEOOROBBOOOROTOOSROSOOEOEORDS

Appendix'A‘ oooooooooooo;ooooooooo-oqooooooo.oooooooo

Appendix B S 0 0 0000000 0000600000000000000606000000OCCOLEOESES

Vita

G 00 000G OGPPSO CCOCOCOOCLIOPOOPOOOOCEOCOEOEOIEOGOOOOIOEOINOGIOOES

-v-

30

31
32
34
35
35
36

104

104

105

106

107

108

109

110,

117

120

List of Figures

The Program Sta‘Eu\s word eees0ersecsccsncscsssscsee 4

The Simulated IBM\jS\O e e PP POCOIBIOEPNOOIOIOROIEOPEOEOEONOIOSORTOS 4

The "GOOD" Common Bloék\ oo rcevo0so0resovs00OROe

™

A Typical Output Printed&by Subroutine DUMP;

N

Entry Point PREDUMP oooooo:\“~"~‘9\“ooooooooooooooooooo

The "STATUS"™ Common Block

oooocoo‘&\c\.\ooooooo‘ooooo

A Typical Output Printed by Subroutine DUMP ...

The "BYTES'" Common Block

|

Ed
[20 BN B B BN BN JR BN BN BN B BN A BN BN BN N B BN BN AN N]

The "IN" Common Block 00000000 cce0ssccnssesese

TS S

S te

22

22
24
24
25
25

Contents of the Flowchart
v ' ,

Main Program ® 00 00 OO OOH OO OO0 O OO OP S OO OIS NSNNNTCSPOEOIDSDYS

MAIN1
MAINZ
REQUEST
DUM ..
INSERT
INPGM

LK B BN B BX B B BE BN B RN Y BN BN BN B BN BE BN BN K NE B BRI R BN BN BN BN R AN J

ININ & 5000 0O OGSO O PO SOO SOOI OTHOESO OSSO CEDNSNPEDS

EXECUTE

® 9 0 @0 0 05000 0P 06O OO O OO G OO S e 0090

SQ ® 000 05 0000 O OO SO OO OO OO OO0 OO SOONEPGS OSSN

STATUS
STORE
REWINDP
REWINDS

Subroutine

Subroutine

o OO GO O OO OO O OO OO OSSNSO BOENSOIOEONGNSIOEOS
BOMB‘..'.....................

DUMP ® 0000090 OO OO OO CROOSOIOIVPIOOIEOSEOGOEQCTOTOTSOS

Entry PREDUMP © 0 000 0000000000000 0OCECECLIEECCOCO0CEOCBGORDRTS

-Subroutine
Sﬁbroutine
Subroutine
Sgbroutine
Subroutine
Subroutine

Subroutine
CHANGE
WHYBOMB
IOERR
ER ece
INSTRA
RR e
NON oo
L ® 0 00
LTR oo
LCR oo
LPR .o
LNR [N J
A L X I I)

- CCC 7 e

REED‘.......’....."O............
RITE L B B O B AR BN B IR BN BN BN BN BN BN BN Y B BN BN BX BN BN BN B BN N BN B N J
EXIST 00O OO0 OGO OSOSOSOSOIDPOEOTOSEOEOIEPOPPOTSETSONDS

DEC ..'.O’..OOQ......OOQQOOOUOOQO...'..
CONVERT 9 © 00O GO0 00000 OOCDOLOOEDPOESEOSIOIOS

HEX ‘......O.....'............O......

FIBM ® 0 00O POOCOEOINOSIVPNOIOSIOIOEILIDPNOIODPPOIOIOPOOSIEOSEGEES
9 9 00 00 00000 CPOOOBOOPLLOEOSIPIPOPOOEOSIOSIOEOORTOeSES

LA 2L B BN BB B BN BN BN BE IR BE BN 2R BN R BN R BN B BN B BE BN BN BRI 3 IR B BE BN BN NN
® 0 00O OO OO O OO P SO PO SO O " OO S0P OOSOSCOSOODS
.............‘............0..0.........
© 0 00 Q0P OGO RCOOOCEELOECOIOEOEOEOSOOEOBOONOEOEOIODDIOIOSEOED
® G 0000000000 SO SOOOCO BSOSO POELOSINLITONOSEOISOEOCNEOSTOEDS
O OO OO0 OO0 OO OO0 ESOCRNOEOSOSEOSIOIGBSPOLIIIOEOQOPOPEONOEOSIPOIOOSITOES
® OO0 50000 00O PG OO OO0 L0 PO SO POOOIESTOOSPSsDS
® 000000 OO0 O OO DOPO OSSO OPOPOEBBOOOREESIOSDLIDPSOIO
..........................‘......‘....
....'..........Q...‘.v..................
...........O........‘.............'.”..
...,...........'..........‘.......‘.‘..

LA AR A AN AR AN N R A SN AN AN R E RN NN NERENNNRENENENNYN N

-vii-

AL .ooc;iooooo'.ooooooo-ooocoooooooooooooo'o
S 0 000000 00000000 0000000000000c00000000CSS
SL'..‘..‘.'...l‘..
C ® ® © 0 0 @ 0 GO0 OO OO N OO O OO 0L SO EE SOV OSSOSO SOSITOSOTOS
N 9 © 000 000000000000 00ce0000000BPICROOIOEORTOOGEOIEOES
BOOLF ooboooo.p.o;.oooo..o.oooo.oooo,o.ao.co
O 'ooooooooocooooo.ooooo-o'ooooooooo.-o.ooo..
X .
BCTR ©0 0600000000000 00000600 s000s0rs00c00OCCIOGIESES
BCR © 000000 000000000000 CSICECRCECCODPCESIONINOOIOIOOOEEGOSEED
BALR R R TR R R R
SPM ® O O O O OO O OO OO OO OO O OO OO OD OGOV O OOOOO OSSO OTSES
RX © 000 00 0000000000000 06°00E0000000060000000008
RX6 © 0 0 0 0000000000000 000000000000 tcstscoacsosose
RX4 © 00 000000 Q0009000000000 0000C00CROCIOISIOIEOEES
RX5 0 0000000000000 006000000000000000060ce00000
SKIP P00 00O 00O C0 PP EOEPIPPSOIOOROCOEOIEOOCEOEOROESIDROEOEOIOTS
"LH © 0 0 0 0000000000000 000°CEI0P0LCE0CPCCRCICQCOOIOEOSBTOIOES
AH © 0 0 00000000000 0000000000000 000COCIORCROIEOIOIEOEES
SH © 00 0 000000000 0000000000000006000000OCOCGBREOGIEGELS
CH 0 0L 0000000000000 000000000000 00000cc0osoce
ST © 00 0000000000000 00000000000 00600000000s00cS
STH 00 0 0000000000000 00000000000000060000000OGTS
BCT 0 0000000 0°000 000000000000 ssctosoecsosovocsosscs
BC © G P00 00000000000 000000000°000C0CCORCIOIOIBIOOREOIEOES
BAL 0 0080000000000 C°00CECEIOCICB0O0CICQCE0COCDBCOEIOIOIOCEEOEOSES
LA 9 © 0 ° 000000000 000000000000000CE0POOOCODOIOOETDE®
IC 0 0000000 C00P0 0000000000000 000s000000O0CO0CD0
STC © 0000000 000020 002000000000000800C0ccsccoT e
EX ® 00 00 0 000N 0P00EPOIP P08 000C°00B000BCCIOIOGELIES
CL © 0 06 0000000000000 0000000000000 0s0000000006008
M ec¢ccocccoscscsoscscsvsoscssossrsvosnsvcsocssvcsososscses
MH 9908000000000 000000000000000000000sc000s0"
D © 0 000000000000 EPEECEOPEO00CO0PCORCEOIOGROIOIIEOEEOCROCTORTOTES
RSSI © 0 9000 ®000 000000000 0se000P0OROGIOOROOOSIOIOES
LM 0 0 000 0000 000000000000 0000060000000000000c080
STM 00000 000000000000 0000000000000 00008°0000e0
SLA © 0 0 00000000000 0000000C0CECEOOCOIOESIOCOCIOIROOOSIOEOITES
SRA SS9 000000 C0CLECEPIPNINCNRPCEOESOCEOEOEOOIOCEOEPROIOIOOIEOETS
SLDA 90 0000020000000 000000000000 000000000GCGESEL
SRDA 00 000000000000 0000000 c006000o0ssooosvon e
MVI 0000000600000 0000000000060 00 0600060000600 00O0
CLI 000000000000 0000000000000 000060 0006000800
NI ©0 000000000060 0006000000000000000600000COCCIOSTES
. SIBOOL © 0 00000 PCEEPPCONPIPIOONCLOIOIOOIOIODILOEOSOIOEOIROEOEED
oI ooooooo-oq;fo0..ooooooooooooo-oooooccoooo
XI .ooooooooo{;'ooo-ooooooooooo-oooooooooooo
™ oooooc,obo;wpooooo.o-o-oo.oooo.ooo..ooo.o
SLL 0.00000000.0‘00.0..000000000..b....ooooooo
SRL 0000000000000 0 0000000000060 000000C0000OGS

SLDL seeeesssenssssnsscssscosessosnnvevsodna,

~viii-

54
54
55
55
56
56
56
57
57
58
59
59
60
61
61
61
61
62
62
62
63
63
63
64
64
65
65
65
66
66
67
67
68
68
69
70
71
72
72
73
73
74
75
76
76
77
77
78
79
79

Ly L)

S 2 25

®eovoe0n00000000sRROO S 80

SRDL L 2 B B 28 N 2% 2 2R 3N NN BN J
BX,H ® 600000 0oOs
BXLE ® ® 00 9090 660 0
Ts‘.0.‘........
RANGE ® 00060000900
FLOAT co0oev000co e
HALFB e e e eeevose s
FULB o9 co0o00covooc o
OFLOW eeveevssce e
KILL o0 009 600000
REGERR ® 0 0000 0¢ 0 0e
DIVBAD ccsceccces

CVB ‘Q.........'O

® © © 000 0 60" OO 000 00 00 00 80
® © 0 0@ 0 00 OO OO S S0 o000 e 81
® & © © OO O 0 s O OO OO OO O OSSO 82

® ® O O 0O OO0 000 0SS OO 0 83

83
83

® ® & 600 00000000000 83

® 0 000V OOOOESOOGPOCEOOONOSIEPQOGEOCOS 83
® ® 5 0000 00 0008 00 00000 00 84
®eos 0000900000000 00 84
e 00000 0000000000000 00 84
® s 0 s 0cs000c0 000000y 85

SS ® O 000000 eOSOOSS ® 0008 6000 OO OSSOSO o 86

DOUB ® 60 O0O0ONNOSPPISIOOOS
DATER LA N B2 BN BN 2N N BN 4
KEYER 00 Q000000 0

MVC seveecscesseve

® @ ® 00 Q0 ° 0006 OSSR ve 87
® 00O SOOONNOIOSIOIPOCOEOSIEOEIOGIEOTDNS 87
® 060 080000 e 0 000000 000 87

L A K B N BN BN BE BN BN BN BN BN BN BX 2N B BN BN 2N I J 88

MVN ®ecccvecsoocc e ®eeoescvecsseocssvcccssoe 89
MVZ X EEXEEEXEEXER X @0 e00eceosss0s0000s00 0 90
NC evsecssccccvoco e ® o000 s0eecessssto00 e 91
oC ees0eccccsnococ e ® 000 vv0c0s0000cetrnooe 92
XC eseeveoecscocso @ 0000000000000 rss0ve 93
TR o000 scedovcors e ®e000csevcsseccorsnosse 94

TRT ® o 0000000000 ® 00000 OO O OSO OO PSOCS SO 95

CLC ® 9600 @0 000000
CVD oo 0000000 PO
PACK ® 680006000 OSGQS
UNPK L BN BN BN N BN K BN BN BN A J
Mvo e 00000900 O
DECI LA B 2N BN K BN IR BN BN AN J

® @ 00 0660000 0000000 e 00 96
....‘............I..; 97
L 2K B 2R BN BN AR 2N BN BN 2R B BN 2 BN BN BN 2N BN BN AN J 98
.0.0.....l..".....“. 99
® ® & 0000 000 000 e OoOONIES 100
® o5 00O 00O OO0 HOGOESS GBS POGOE 101

® e 0200000000000 0000000 101

(2 I 2 D I N R N O e N B N B R R A B I R A R I B I I N B B B
€0 0 0 0 0 0 0 00 00N EE Y Y

COP 0000000000 0000000000000 bl

SK 00 O0OGOGOGOBOEOSECOGCEOSISIEOS

WRRDD PG O0OOOOESSESIOOS [2N B IR BN BN BN BN BN BN BN BN B BE B BN BN BN I) 101
SIM 00 O0OOOSISTOSEPIOES ® 00 0060000000000 0000 101
SIO ®®0OO06OOGOIOSOEBOIOSOES L AL AL N AL N A A A 2L A R A N 2 N J 102

EE 0000000000000 0000000000000 00

AN NN RN RN R RN
€0 € 0 0 0 0 0 0 0 0.0 060 0 000000 0000000000000 00

OUT o6 000000000 OIOIS O .O......'..C.....-.... 103

— R -

Abstract

The Lehigh University IBM 360 Simulator (LUIS) is
van interactive program which enables a user to execute an
IBM 360 machine language program on a Control Data 6400
Computer System. LUIS - -simulates all but seven of the
instructions in the IBM System/360 standard instruction
set. |

" The simulator provides a simulated ten thousand byte
memory whose limits are initially specified by the user,
‘The user can load his IBM 360 machine language program
into this memory either by entering the program from the
remote terminal or by reading the program from a local
file. He may then request that either all or a specific
number of instructions in the ﬁrogram be executed. If
the simulator encounters é situation which would normally
interrupt a real IBM 360, it terminates execution of the
user's program and issues an error message explaining the
reason for interruption. The user can ask to examipe the
contents of any po:pion»of the simulated IBM7§§QHméhory
and to examine tﬁ;lﬁéntents of the simulated IBM 360
general registers andwthe program status word. He can
also modify his machin:m&anguage program and store the

modified program on a file fo;ﬁﬁuture uses

P T L EEECE

‘

—le

I Introduction

l.1 Background

This thesls describes an interactive IBM System/360
simulator written for a Control Data 6400 Computer System.
The simulator was written to alléw Lehigh University
students to familiarize themselves with the IBM System/360
family of machines. These students would otherwise be
unable to do. so in the Lehigh University computing
environment,

In particular, the Department of Electricél Engineer-
ing offers a senior level elective in systems programming,
EE 315. The text currently being used . in the course is

Systems Programming by John J. Donovan. Donovan (like

many other authors) uses the IBM System/360 for his
examples, Lehigh University has only a Control Data 6400
Computer System. It would be beneficlal to have a set of
programs which would enable Lehigh students, those taking
EE 315 and others, to write programs in IBM System/360
Basic Assembly Language and have them assembled and
executed on a simulated IBM System/360. A first program
would assemble the student's program on the Control Data
6400'Computer System and produce a machine language
version of the program. A second program would then take

this machine language program and execute it.

This thesis describes the second program, the
Lehigh University IBM 360 Simulator (LUIS). LUIS is an
interactive program which simulates all but seven of‘
the instructions in the IBM'System/BGO standard 1instruc-
tion set[ll(Diagnose, Set System Mask, Load PSW, Halt
1/0, Supervisor Call, Test Channel, and Test I/0). The
proéram'is available through the Lehigh University
Computing Center.

The simulated IBM 360 has a ten thousand byte memory
(which is stored in the NW array in the simulator) and
sixteen general regiéters (which are stored in the "STATUS"
common block). The simulated IBM 360 also has a program
~status word (PSW) which is stored in the "STATUS" common
blocke. The PSW (Fig. l.1l) contains information needed to
execute the user's program. Subroutine FIBM acts as the
central processing unit for the simulated IBM 360,

(Fige 1.2) |

Since all user input and output must be done through
the Control Data 6400 Computer System and the simulator,
the input/output instructions Test Channel, Test I/O,
and Halt I/0 are not used. Instead all input/output is
done by using a modified version of the Sfart I/0 instruc-
tion. Since input/output is not performed in the usual
manner, the system hask, which is concerned with input/
output interrupts, is not relevant and thus the Set
System Mask instruction 1s omitted., The user initially

~_specifiesz tke PEW & dweau"chahqe”if'fhréhgh Ehé ﬁééuéf
-3

condition code———— rprogram mask-If the leftmost

v bit of the four bit hexadecimal
instruction character 1is one, program

length code (ILC) interruption will occur if there
is a fixed-point overflow. The
other three bits of the program
mask are lignored by LUIS.

L — !

A

| | 1 1 |
l —‘=:I5§E;z;tion address

interruption code-set by LUIS
protection key-must be zero
system mask-ignored by LUIS

‘L—-Amwp-zf the leftmost bit of the four bit hexadecimal
character is one, generated decimal sign and zone
codes are in USASCII-8 (normally they are in EBCDIC).

The other three bits of the hexadecimal character
are ignored by LUIS.

Fig. 1.1 The Program Status Word

(Each block represents one four bit hexadecimal
character.) .

PSW Central Memory
(stored in the | Processing
STATUS' common block) Unit | (NW array)
ubroutinﬂ
IBM

General Registers
- Sstored in the
STATUS common
block)

Pige 1.2 The Simulated IBM 360

-4-

" <

the request NEWPSW (see LUIS User's Guide), so the Load
PSW 1nstructioh is not needed. Obviously, since one is
not working with a real IBM System/360, the Diagnose
instruction (which is used for testing the system's
hardware) has no meaning and is not included. Because
all input/output is done through the simulator, and
because none of the other privileged operations are
included, there is no neéd for a‘Supervisor Call and this

| instruction has also been omitted.

1.2 Contents of the Thesls

The remaining portion 6f this thesis 1s divided into
five chapters and two appendices. Chapter II 1s a user's
guide to using the Lehigh University IBM 360 Simulator.,
Chapter III gives a short descriptioh of each of the ten
rouéines'which comprise the simulator. Chapter IV gives
a more detailed description of the subroutine (FIBM)
which actually simulates.the IBM 360, Chapter V contains
the flowchart of LUIS. The last chapter, Chapter VI,
describes how additional capabilites can be added to

LUIS. Appendix A contains material (reproduced from the

manual, IBM System/360 Principles of Operation) which

should be of value to those who are unfamiliar with the
IBM 360 structure. Appendix B contains a typical output

from LUIS.

I1 Usert's Gulide to LUIS

2.1 Introduction

The gghigh gpiversity IBM 360 Simulator (LUIS)
takes a program written in IBM System/360 machine
language and executes it on a Control Data 6400 Computer
System‘. LUIS simulates all but seven af the instructions
in the IBM System/360 standard instruction set. (The
instructions Diagnose, Set System Mask, Load PSW, Halt
I/0, Supervisor Call, Test Channel, and Test I/0 are
omltted.) This chapter describes the features and use
of LUIS. Section 2 discusses a restriction on the
addresses used with LUIs: Section 3 describes the commands

of LUIS. The last section, Section 4, explains how to use

the simulator.

*Luts operates under INTERCOM. INTERCOM is a subsystem
which allows the user to run an interactive program from
a remote terminal on the Control Data 6400 Computer System.

P LAt

2.2 Restricted Addresses

One important difference between the simulator and
the IBM System/360 is that addresses used with LUIS are
restricted to a maximum of(seventeen significant bits.

If the eighteenth bit is a one, the address will be inter-.
preted as a negative number and the program will be ter-

minated if and when that address is actually used for

addressing. If more than eighteen significant bits are

used, the address will be truncated when it is used for
addressing. If the truncated address is within the mé%ory
area of the program, the program will continue to execute
normally. However, 1f the resulting address is outside
the memory area of the program, the simulator will issue
an error message and terminate execution of the program.
This restriction on the length of addresses is necessi-
tated by the fact that the A and B registers in the CDC
6400 Computér System are only eighteen bits long. (One
should note the fact that if an address field is not
actually used for addressing storage such as in a "Load
Address" instruction or shifting instructions, then this

limitation does not apply.)

2.3 The Instruction Set

All of the simulated instructions (except Start I/0O)

function as described in the manual, IBM System/360

Principles of Operationllq The floating-point feature

instructions, the decimal feature instructions, the
protection feature instructions, and the direct control
feature instructions are not available. Conditions
which would normally produce an interruptuin an IBM 360
cause the simulator to terminate execution of the program
and print an erfor message indicating thé reason for the
interrupt. ' o

The user's program can perform I/O0 by using a modified
version of the Start I/O instruction.

Bl

A
(oic| | [1)

 —
I1/0 code —— Dl

The I/0O code in the instruction indicates the type
-of I/0 that is;to be performed by the program. The code
is 01 for writing andldo for reading. (All other codes
are invalid.) The address specified by Bl and D1 is a
fullword somewhere in the user's (memory) storage area.
This fullword contains the count of the number of words
which the program will read or write and a base register
and displacement which specify the starting address for
I/0. The ltarging address must specify a fullword

- - po s

boundary.

[N R SO T

’ BTN - P

ignored B the fullword
M specified by the
T T 1T T 1 J«istart 1/0
———

count of the “::I——“) nstruction
number of words) ‘

when the I/0 code specifies writing, the simulator

responds:

WORDS PRINTED FROM MEMORY BY THE USER'S PROGRAM

The simulator then prints the words and their correspond-
ing addresses. When the I/O code specifies reading, the
simulator responds: |

YOUR PROGRAM WANTS TO READ SOME WORDS.

IF YOU HAVE THE WORDS ON THE FILE PGM, TYPE PGM.

IF YOU ARE GQING TO ENTER THE WORDS, TYPE INPUT.
Words are read in the same manner as described for
"INSERT". If an error occurs during reading, the
simulator issues an error message and terminates execu-
tion‘of the program. If the reading of the words is
completed in a satisfactory manner the simulator responds:

WORDS READ INTO MEMORY BY THE USER'S PROGRAM
The simulator then prints the words which it read and the
locations where each was placed.

If no errors were detected while performing I/O,
then the execution of the program continues after I/0

is completed.

2.4 Use of the Simulator

The simulator is an intefactive program. To use the
simulator the user first attaches the simulator while in
the INTERCOM command mode. If the user has his program
on a permanent file, then he must also attach this file
(with the local file name of PGM). After the user attaches
the simulatof, hé-typeﬁz |

LUIS.

At this point the user is in the simulator program. The
simulator responds:
LEHIGH UNIVERSITY IBM 360 SIMULATOR

ENTER THE SMALLEST AbDRESS IN YOUR PROGRAM AS AN
EIGHT DIGIT HEXADECIMAL NUMBER.

The user enters the smallest address in his program;

This address determines one of the boundaries of his
storage area. The address can be between 00000000 and
0001D8A8 hexadecimal and must specify a fullword boundarye. -
If the address is not acceptable to the simulator, it
responds with an error message and repeats its request.

If the address 1s acceptable the simulator responds:

ENTER THE MAXIMUM SIZE OF YOUR PROGRAM (IN BYTES)
AS A FOUR DIGIT DECIMAL INTEGER.

The user enters the number af bytes in his storage area.
This number, together with the smallest address, determines
the boundaries of the user's program. The simulator will
prevent the user from exceeding the bouﬁdaries of his

storage area. If the number which the user enters is
=1l1l="

not acceptable to the simulator, it responds with an
error message, and repeats its request. If the number
is acceptable, the simulator responds:

ENTER THE PSW AS A 16 DIGIT HEXADECIMAL NUMBER.
The user enters his program's PSW. If the PSW is not
acceptable, an error message will be issued and the
request will be repeated. °*If the PSW is acceptable the
simulator responds:.

REQUEST=
At this point the user is in the simulator request mode
and can issue any of the following requests:

END

BYE

INSERT

NEWPSW

DUMP

STATUS

S

EXECUTE

REWINDP

STORE

REWINDS

These requests are explained below.

END

The request END enables the user to redefine his
storage area and start a new program without leaving the
simulator program. The simulator responds:

PROGRAM ENDED BY USER
The simulator then requests the information needed to

define the storage area (the smallest address in the

program, the maximum size of the program, and the PSW).
One should note that the simulator zeros the program's
storage area when the storage area is defined by the user.
Thus any bytes which were in the storage area from a

previous program are wiped out.

BYE

The request BYE terminates the simulator program and
returns the user to the INTERCOM command mode. INTERCOM
will respond:

EXIT
COMMAND-—

The request BYE may also be called after the simulator
responds:
ENTER THE SMALLEST ADDRESS IN YQUR PROGRAM AS AN
'EIGHT DIGIT HEXADECIMAL NUMBER.

"INSERT

The request INSERT tells the simulator that the
user wants to insert some bytes into his storage area.
The simulator responds:

ENTER THE STARTING ADDRESS (OF THE COLLECTION OF
. BYTES) AS AN EIGHT DIGIT HEXADECIMAL NUMBER.

The address must specify a fullword boundary. If the
address which the user enters is not acceptable, the
simulato; issues an error message and repeats its request.
If the address is acceptable the simulator.responds:

ENTER THE NUMBER OF BYTES WHICH WILL BE INSERTED
AS A FOUR DIGII.DECTMAT INTEGER,.

-]l3-

i

If the number 1is not acceptable the simulator issues an
error message and repeats its request. If the number
is acceptable the simulator responds:

IF YOU HAVE THE BYTES ON THE FILE PGM, TYPE PGM.
IF YOU ARE GOING TO ENTER THE BYTES, TYPE INPUT.

If the user types "INPUT" the'simulator responds:

‘ ENTER THE BYTES. FOUR BiTES PER LINE.,
and prints the lbcation where the bytes will be inserted..
when the user enters the bytes, the simulator responds
by printing the location where the next group of bytes
will be inserted. This process continues until the
user finishes entering all of the bytes. After the
simulator reads all of the bytes, it.responds:

THE BYTES HAVE BEEN READ
and returns the user to the request mode.

If the user types "PGM" the simulator assumes that
the bytes are on the lbcal file PGM. ' If the files does
not exist the simulator will respond: |

PGM DOES NOT EXIST
and will return the user tp the request mode. The
simulator assumes that the file PGM has the bytes packed
forty bytes per card image. The simulator reads as many
cards as are necessary to satisfy the user's INSERT
requests If a second INSERT request causes the simulator
to read from PGM a second time, the simulator will begin
reading at the next card image. If the simulator reads

.thQMEQE‘becausérPGH does not contain enough bytes, the
-14;

simulator issues an error message and zeros all locations
mentioned in the INSERT. After the simulator reads all of
the bytes, it responds:

THE BYTES HAVE BEEN READ‘ | .

and returns the user to the request mode.'

NEWPSW

The request NEWPSW enables the .user to change his
program's PSW. The simulator responds:

ENTER THE PSW AS A 16 DIGIT HEXADECIMAL NUMBER.
After the user enters an acceptable PSW, the simulator

-
returns the user to the request mode.

DUMP

The request DUMP enables the user to dump all or a
portion of his memory (storage area). The simulator
responds:. | |

TYPE ALL OR PARTIAL ' ’

If the user types PARTIAL, the simulator asks the user to
supply the starting address of the dump and the length of
the dump in bytes. The.du;p must start on a fullwofd
boundary. The user is not permitted to dump outside his
storage area.

Insertions and dumps can only be done with fullword
units. Thus all requests are rounded up to the nearest
number of fullwords. This rounding process may cause a

request to exceed the user's memory area by a frécﬁlbn of
-15=

a word. However, this fact will be ignored by the
simulator and will not cause any problem.
After the simulator performs the requested dump,

it returns the user to the request mode.

STATUS

The request STATUS causes the simulator to print the
PSW, the instruction address, the ILC, the condition
code, and the contents of 4all of the general registers;
[AEY'Y

The simulator then returns the user to the request mode.

S

Thé request S enables the user to request that a spec-
ified number of instructions be executed in his program
(starting with the one specified by theﬁinstruction address
portion of the PSW). The simulator responds:

ENTER THE NUMBER OF INSTRUCTIONS TO BE EXECUTED AS A
FOUR DIGIT DECIMAL INTEGER.

After the user enters the number, the simulator executes
the specified number of instructions and then returns the
user to the request mode.

It 1s possible for the simulator to return to the
‘request mode before it finishes executing all of the
specified instructions. This happens when the simulator
encounters a condition which would produce an interrupt
in a real IBM 360. In this case the execution of the

-program stops, and the simulator prints an error message.

-]l6=

indicating the reason for program termination.

EXECUTE

The request EXECUTE enables the user to execute his
entire prégram. EXECUTE tells the simulator to execute
9,999 instructions. Usually this will be much greater
than the number of instructions in the user's programe.
Thus the user‘'s program will end when a condition occurs
which would produce an intekrupt in a real IBM 360.
However, if the user's program is either longer than
9,999 instructions or has an endless loop in it, the
simulator will return to the request mode after it executes
9,999 instructions. The user can recognize when this
happens becauée no interrupt message occurs before the

simulator returns to the request mode.

REWINDP

The request‘REWINDP enables the user to rewind the
file PGM. The user must do this if he has previously
read from PGM, and then wants to stért at the beginning
of the’file. The simulator rewinds the file and returns
the user to the request mode. If the file does not exist
the simulator will respond:‘
| PGM DOES NOT EXIST

and will return the user to the request mode,

=17

[

STORE

The request STORE enables the user to dump all or
a portion of his memory (storage area) onto a file
named STORE. In this manner the user can save the
contents of his memory for future use. The simulator
responds:

TYFPE ALL OR PARTIAL
If the user types PARTIAL, the simulator asks the user to
Supply the starting address of the dump and the length
of the dump in bytes. The request STORE has the same
restrictions as the request DUMP (See DUMP). The bytesr'
are written forty bytes per card image on the file STORE.
If a seéond~STORE“request causes the simulator to write
on file STORE a-second time, the simulator will begin
writing at the next card image._ The simulator rewinds
flle STORE when the ﬁser initiaily executes the simulator
program. File STORE is not des£royed when the user
terminates the simulator program. Thus the file can be
saved by the user and used as the file PGM at some later
time.

After the simulator dumps the bytes onto file STORE,
it responds:

" THE BYTES HAVE BEEN DUMPED ONTO FILE STORE

and returns the user to the request hode.

REWINDS

The request REWINDS enables the user to rewind the
file STORE. The user must do this if he has previously
written on STORE, and then wants to start writing at the
beginning of the file. The simulator rewinds the file

and returns the user to the request mode.

PP YT S I

~19-

III The Routines of LUIS

3.1 Introduction

The Lehigh University IBM 360 Simulator is written
in COMPASS[2’31(assembly language) and FORTRAN., The
program consists of a main routine and nine subroutines.
The COMPASS subroutines assume‘that the FORTRAN routines
are compiled by using the RUN compiler. Approximately
23.6 CP seconds are needed to‘compile and assemble the

program. 31242 words of central memory are required

octal
by the program and the various system routines which it
calls. Naturally, additional central memory 1s needed
for the loader and the loader tables, Section 2 gives a

general description of each of the routines of LUIS.

3.2 Descriptioh of the Routines

3.2.1 The Main Routine

The main routine is written in FORTRAN. All of the
communications between the user and the simulator (except
some error messages and program I/0) are handled by this
routine. The information needed to define the bou;aaries
of the user's memory area is initially requested by the
main routine and all user requests are processed through
it. Checks are made to insure that no insertions or
dumps aré performed.outside of the user's memory area.

If any invalid requests or otherwise erroneous input
are received, an apprbpriate error message is printed,
and the request for the input 1s repeated.

(see flowchart pp. 36 - 43)

3.2.2 Subroutine BOMB

Subroutine BOMB is written in FORTRAN. This
subroutine prints error messages. The calling routine
passes one parameter to BOMB. This parameter determines
which of twenty error messages is to be printed. BOMB
also sets a flag if elther of two particular error messages
are printed., This flag 1is passed to.the main routine
through the "GOOD" common block (Fig. 3.1).

(See flowchart p.44)

, -21-

L D—1IBAD

Fige. 3.1 The "GOOD" commdn block

PROGRAM STATUS WORD 0000000798000048

INSTRUCTION ADDRESS 00048
CONDITION CODE 1 ILC P4

GENERAL REGISTERS

0 00000000 1 00000040 < 00000010 3 00000501
4 00000000 5 00000000 6 00000000 7 00000000
8 00000000 9 00000000 A 00000000 B 00000000
C 00000000 D 00000000 E 00000000 F

00000000

Fig. 3.2 A typical output requested by the user through
the use of the request; STATUS. (Output printed
by subroutine DUMP; entry point PREDUMR)

T O L RIS SO TRt O A Lo NS e PR) B AR s £

-22-

B ot SILILIIVEIRY k3 DR

3.2.3 Subroutine DUMP

Subroutine DUMP is written in FORTRAN. The sub-
routine is actually composed of twb separate parts. The
first part (DUMP) prints the program status word, the
instruction address, the condition code, the ILC, and the
contents of each of the sixteen general registers (Fig.
3.2). This information is passed to DUMP through the
"STATUS" common block (Fig. 3.3). The second part of the
subroutine (entry point PREDUMP) prints the byte addresses
and the contents at each address (in hexadecimal) (Fig.
3.4). The subroutine must know the byte address of the
first word, the corresponding index in the NW array (where
the words are actually stored), and the number of bytes
which are to be dumped. This information is passed to
DUMP through the "BYTESY" common block (Fig. 3¢5)e

(See flowchart p.44)

3.204 Subroutine REED

Subroutine REED is written in FORTRAN, REEb‘allows
the user's program to read words into memory. Subroutine
FIBM passes three parameters (the first byte address, the
corresponding_index in the NW array (where the user's
program is stored), and the number of bytes which are to °*
be read) to REED, The subroutine stores the parameters it

recelves in the "BYTES" common block and reads the words

- from the source indicated By the user. If the reading

g e g T IR L ML e el & SRR N A L L T e R VRIS T AT EDULN T BTN JeN AN, W e X

-23=

\.%

}——the PSW .

the IBM 360
"lgeneral registers

the instruction address
the ILC

the condition code

the program mask

STEP

)

Fig. 3.3 Tﬁe "STATUS" common block

00000
00010
00020
00030
00040
00050
00060
00070
00074

00020004

00000000

9C000000

8BR0O0004
960C001F
00105830

000C1BSS .

00000000
00000000

addre3§<

Fiq)

,zontents at

00004 00000000 00008 00000000
00014 00000000 00018 00000000
00024 58100004 00028 58200008
00034 50100014 00038 5020001C
00044 4F100010 00048 4F200018 .
00054 00148830 00058 00045030
00064 50500010 50500018

00068.

v

that addresé

0000C
0001cC
000RC
0003C
0004C

© 0005C

0006C

00010014
00000000

- 8B100004

960C0017
1A1R4F10
00149C01
47F000R0

3.4 A typical output requested by the user through
the use of the request; DUMP,

(Output printed
by subroutine DUMP.) :

BURSLILEL E AR ER TR AN 7 VoL N GRUE S APCIRE R PR AL N SRS T B Sl 4P e b

NW array| {—2500 words

the starting byte address
the number of bytes

the starting byte address
for an insert or dump

the number of bytes
in the insert or dump

the index in the NW array corresponding
to the starting byte address for
ﬂ/(the insert or dump

Fig. 3.5 The "BYTES" common block

a table used by FILESTAT ,
(the second word in the table is
set to zero if PGM does not exist)

NEOF (zero unless an EOF has been
read on file PGM)

Fige 3.6 The "IN" common block

25

S e L

process is not completed in a satisfactory manner, a
parameter (the number of bytes which are to be read) is
set to zero before returning to subroutine FIBM.

(See flowchart p.45)

3.265 Subroutine‘RITﬁ

.

Subroutine RITE is writfen in‘FORTRAN, This
subroutiﬁe allows words to be pr;nted from memory by
the user's program. The subroutine is passed three
parameters (the first byte address, the corresponding
index in the NW array, and the number of bytes which are
to be printed) by subroutine FIBM. Subroutine RITE stores
the parameters it receives in the "BYTES" common block and
then calls the routines needed to print the words in

hexadecimal. (See flowchart p.46)

3¢2.6 Subroutine EXIST

Subroutine EXIST is written COMPASS. The subroutine
builds the necessary table and then calls the system
macrotng FILESTAT, to detérmine whether the file PGM
exists. If PGM does not exist, the second word in the
"IN" common block will be set to zero (Fige. 3.6).

(See flowchart p,46)

3¢2¢7 Subroutine DEC

Subroutine DEC is written in COMPASS. This

subroutine takes a word which contains four digits in

Csel .

display code (right juStified and zero filled) and
converts the word to an integer. The word is passed to
DEC as a parameter by the calling routine.

(See flowchart p.46)

3.é.8 Subroutine CONVERT

Subroutine CONVERT is written in COMPASS. Two
parameters (the number of characters to be converted and
the ;ddress of the first word which is to be converted)
are passed to subroutine CONVERT by the calling routine.
CONVERT assumes that each word contains eight hexadecimal
characters in display code (right justified and zero
filled). The subroutine replaces the eight characters in
each word with their thirty-two bit binary equivalent

(right justified and zero filled). (See flowchart p.46)

3.2¢9 Subroutine HEX

Subroutine HEX is writtén in COMPASS. The calling
routine passes two parameters (the number of words to be
converted and the address of the first word which is to
be converted). Hex assumes that each word contains a
thirty-two bit binary number (right Justified and zero
filled). Subroutine HEX replaces each number with its
equivalent eight hexadecimal characters. These
characters are stored right justified (and zero filled)
in display code. (See flowchart p.46)

=2 T=

3¢2.10 Subroutine FIﬁM

Subroutine FIBM is written in COMPASS. This
subroutine is the routine which actually simulates the
IBM 360, Three parameters are passed to FIBM by the
main routine. Thé parameters passed are the starting'
address of the user's program, the number of bytes in
the user's program, and the starting address of the NW
arraye. The "STATUS" common block contains additional
information which is used by FIBM. One of the words in
the "STATUS" common block specifies how many instructions
are to be executed by FIBM. Subroutine FIBM will continue
to execute 1nstructioﬁs until the specified number have
been executed or until a condition occurs which would
produce an interrupt in a real IBM 360,

(See flowchart pp.47 - 103)

w28

IV FIBM

4.1 Introduction

Subroutine FIBM is the heart of the Lehigh Universify
IBM 360 Simulator. FIBM is the routine which actually
simulates the IBM 360. Section 2 describes the memory of
the simulated IBM 360. Section 3 describes how the PSW
and the generél registers are stored. Section 4 describes
how the user's program is executed by subroutine FIBM.

Section 5 discusses an alternative structure for FIBM.

20w

4.2 The Memory of the Simulated IBM 360

The memory of the simulated IBM 360 is a 2500 word
array called NW, Each word in the array holds one IBM
360 fullword. The thirty-two bit IBM 360 fullword is
stored right justifiéd in fhe sixty bit CDC word. The
leftmost twenty-eight bits of each word are zero. To
locate a byte in memory, FIBM first removes the right-
most two bits of the byte address. Then it right shifts
the address two places and adds the contents of register
B7 to it. Register B7 contains a number which when added
to the shifted byte address gives that address' actual
location in the CDC 6400. While subroutine FIBM is
executing the contents of register B7 remains fixed at
that number. 1In.this manner, FIBM 1s able to locate the
word which contains the desired byte. Finally FIBM uses
the rightmost two bits which were originally removed
from the byte address to determine which of the four bytes
in the word is desired. Register B6 contains the smallest
byte address which the simulator is allowed to read or
write. Register B2 contains one plus the largest byte
- address which the simulator is allowed to read or write.
The contents of these two registers remains fixed while
FIBM is executing. FIBM checks to make sure that every
- byte address falls within the rénge set by the contents

of these two registers.

=30=

4.3 The Storage of the PSW and the General Registers

The PSW is stored in the "STATUS" common block.
Subroutine FIBM extracts the instruction address, the
condition code, the ILC, and the program mask from the
PSW and stores them at separate locations in the "STATUS"
common block when it is called by the main routine. The
locations containing the condithn code and the program
mask may be examined and their contents may be altered
during the execution of the user's programe. The contents
of‘the location containing the ILC is altered every time
an iﬁétruction is fetched by FIBM. While subroutine
FIBM 1is executing, the contents of register X1 contains
the updated instruction address. Whenever FIBM terminates
execution of the user's program, it stores the contents
of register X1 in the location‘resérved for the instruc-
tion address in the "STATUS" common block. Then it puts
the current value of the condition code, the ILC, the
program mask, and the instruction address in the location
reserved for the second half of thg PSW in the "STATUS"
common blocke. |

Each of the sixteen IBM 360 general registers is
stored in the "STATUS" common blocke. The contents of

each register occuples the pightmost thirty-two bits of
a sixty bit location.’

-3le=

4.4 The Execution of the User's Program

When FIBM is called by the main routine, the sub-
‘routine extracts the instruction address, the condition
code, the ILC, and the ﬁrogram mask from the PSW and
stores them at separate locations in the "STATUS" cormon
block. FIBM checks the protection key portion of the PSW
to make sure that it is zero and sets the contents of
registers X1, B2, B6,and B7. Next the subroutine sub-
tracts one from the contents of 'a location (called STEP)
in the "STATUS" common block which specifies the number
of instructions which are to be executed. If the result-
ing contents is not equal to zero, then the subroutine
fetches the halfword specified by the contents of reglster
X1 (instruction address). FIBM.examines the leftmost two
bits to determine whether the halfword is an RR 1lnstruc-
tion, part of an RX instruction, part of an RS or SI
instruction, or part of an SS instruction. Then FIBM
branches according to the type of instruction to one of
four sections in the subroutine. 1In these sections the
remaining portion of the instruction is fetched if
necessary, the contents of register X1 is updated, and
all of the information necessary for the execution of the
instruction is extracted from the instruction. Any
needed byte addresses are generated from the address
components contained in the instruction. ¥Finally the
" op code is exaﬁihéd-and~a‘ﬁrahéh“iswmaﬁevtﬁ”the~saction;
| -32-

of FIBM which actually pé;forms the operation specified
by the instruction. Once the operation has been performed,
FIBM branches back to the section of the subroutine where
one 1is subtracted from the contents of the location STEP
in the "STATUS" common block. The process repeats itself
until the contents of that location is zero, or unless a
condition occurs which would peruce an -interrupt in a
real IBM 360.

wWhen the contents of location STEP is zero, FIBM
terminates execution éf the user's program, updates the
PSW, and returns to the main routine. When a condition
occurs which would produce an interrupt in a real IBM
360, FIBM terminates execution of the user's program,
updates the PSW, return jumps to subroutine BOMB (to
print the reason for interruption), and returns to the

main routine.

-3,3:- IR LR

4.5 An Alternative Structure for FIBM

One should note that it would be possible to determine
the op code of the instruction when the halfword is
initially fetched. The subroutine could then branch
directly to the section which actually performed the
operation specified by the instruction. Each section
would fetch the remaining portion of the-instruétion if
necessary, update the contents of register kl, extract all
of the needed information from the instruétion, and gen-
erate any needed byte addresses from the address compo-
nents contained in the instruction. Undoubtedly this
change in the subroutine would tend ﬁo decrease somewhat
the time required to execute each instruction. However,
the change would greatly increase the length of the sub-
routine and would not produce a significant difference

in the time required to execute the user's program.

Lot -34“_. S Teear s LR S PR SR CVIE SR ™ XLl St S A e T A

V The Flowchart of LUIS

Sl Notation

The following symbolic notations are used in the

flowchart:
Symbolic Notation Meaning
name «—Yy set 'name' equal to Yy
C(Xi)*——b set the contents of register
v Xi equal to b
- L(d)e—cC(x1) put the contents of régister
Xi into location d

+ arithmetic sum
* : arithmetic product
- arithmetic difference
/ arithmetic division
«NOT. | : boolean complement
«AND,. boolean AND
+OR. boolean OR
«XOR. boolean EXCLUSIVE OR

5.2 Flowchart

PRINT - LEHIEN UAVVERDITY
1M 360 SIMULATIR

REWIND FILE
“STORE *

MAIN PROGRAM

2ERS THE PIW AND
GANSRAL RESISTER
STORASE [OCATIONS

!

[veor «—o |

RND OF
PROGRAM

ARINY A MECSARY
REAESTING THE SAMLEST]
ABDREST W THE AraLaaM

AND READ N START

DOES
NSTART
sPECIEY A
*ULLWORD
ADD

?
Yis

/

l PRINT A MESSACE

REAVESTING THE MAX .|

srac oF THE PrssmM] N\]
| AND AEAD nlevrE caLy

RERO NW (1) TuRWEM
Nw({(NBYTE+3\/4)

i ngcluan‘iu R

-36=

MAIN2

e
PRINT A MESSAGE ‘{ PRINT AN
REQUESTING THE PSW : ERROR MESIASE
AND READ [NFO(1), INFO(R)

[CALL
CONVRRT (16, INFD)

NFIN

m caUAL y&s
PRINT " REAvasTS e . "
AND ReAD NFIN Re REWINDP
NO
PRINT MESSARKE
"PRogRAM gaDED
(R
YES
\ - .
NO
% "
NO -
“
NO
Es
LRSSt AN SV SEUNPNRY: . ® . [} i OO P IPINIRS TP o SICETEIL o S ity S gUP) AP SRS N et Ve L o aR P RRT E AR s - .. N P - AT

P

ourm

PRINT THE MELrace
‘TyYAT ALL OR PARTIAL
AND AYXAD NFIN

PRINT A MESIAGC
REQUVEXTING THE

NUMAaER ofF BYrut
AND READ (BYTE

{caLL Dec (igvre) |

REQUEST/NG THE XTART!
LOCATION AND ARAD

LOC

PRINT A M“H“ﬁ)

< 18AD4— O

PRINT AN
CRAOR MELSAGE
L4

CALL
C ONVE =T(8,L0

SPECIFY A
FULLWORD
ADDRESS

v

[Loc «—— wsTART |

| 1BYTE «— Nnayre |

[ivoex «— i

J

eabl
MTX § +3)[q, NWN

{eae prepUMP

|

© TR AT

L 1BAD «—— O

7

PRINT A MESSAGE
REQUESTING THE
STARTING ADDREIS

THE coLLECTION OF

oF

@YTES AND READ LOC

I PRINT AN
ERROR MESSAGE

\

SPECIFY A
FULLWORD
ADDRESS

PRINT A MYLSAGE
ASKING HOW THE B
ARE TO BE INSERTED
(PGM OR INPUT)AND

READ NFIN

[4
YES

| NoEX e Loch -NsTARTA:-1]

DEX

l~< ves i
o Ol _EaRon messace |
P

NoO
1NDEX
& BYTE+3)/4 No

PRINT A MESSAGE
REQUVESTING THE
NUMBER oF RYTES TO
RE INSERTED AND
READ (8YTE

{ caLL DEc(iavre) |

-

B 2272 SR Po:

[CALL EXIST J

PRINT A NefrAsE
THAY PdM OosS
NOT EXILST

(iaYTE+ 3y

IEND g

+ INDEX ~

-~

PRINT AN ERRR K READ Nw((-1)*10+ INDEY
MESSASE THROUGH (Nw('!ND)
FAM PEM

| NEo¥ o— 1 |

EOF
ENCOUNTERED

ZERO Nw (inoex)
THROUC H
Nw((1BYTE *N/p 4 (NDEX -

ARINT A MESSAGE
THAT TNE avTES

€
\WERE REMDVED I 1 «— 141 |}

AERUE;

(1AYTE +39) /o Ho

YES

PRINT THE MESTAGE
THAT THE WORDS

[«—— mvoex |

l LIST «— NSTART 4+ u-(:-p]

[A mex(nus) |

L prinT _LIST]

| meap ww(z)]

o~

P:zvr; nli“n:‘t CALL
YTHAT THE BYY
HAYE BEEN AEAD ‘°"‘”r‘"‘_""'""(""'ﬂ

16AD
YeS EQUAL No
° \AD «— O]
? J/
'.v ,.?".',"vh“é\ g W W RQLT. T Ll e T I LT T e mrgs SN A A R B L

Livror2y «— 10000 |

NUMBAK & aF INFTRVETY/
AND ARAD NEIN

V

cALL Dec(nem) |

PRINT A MESSACE
REQUESTING THE

INFQ, *— NFIN +

CALL
FIAM (NSTary, WBYTE, NW.

Fo{23)+— | |

CALL
18 F(NSTART, NRYTE, NW)

(cALL pume |

CALL ‘
converr (168, INFO)

PRINT A MK SSAGE
REQUESTING THE
NUmBeR oF BYTES

AND READ 18YTE .

| caLr oxcfiarme) |

PRINT AN

NFIN
EQUAL.
"PARTIAL®

YES

PRINT A MESSAGE

REQUESTING THE START!
LOCATION

ANO °
READ LOC

|

CALL .
C.ONVERT(R LOC)

<{ jpap_+—— 0O

NO

PR
ERROR MESSASE

Does

Loc
SPECIFY A
FULL\WORD
ADPRESS

[nowtiaen - navreseet]

BRINT AN Y&S
EAROR MESIAGE

Vi

[ieyre «—navre |

l INDEX &—- |]

[Trax «qworrery/a |

cALL

HeX((1aYTE+3)/8 , NW/IN

WRITE Nwtm(pgx))
THAOVGH NW (PMAX
oON FILE’STORE

v

N

B R FSTNN FEEY AN P e

- s’A_ZF .

lear s]

[n:w»m FILE “PEm®

v

[N:orﬂ—-o 1

PRINT A MESSACE THaT

REWIND FILE “STowe?|

-43-

svaroUTIVG
BOMBINFLAS)

IBAD 15 iNmiALIZD To QN

AFCRTAMN pars sTArsgag)

PRINT AN ERROA
Peccacs. (THE VALUE
OF NFLAC DETERMINGS
WHICH NESSAGE WL
@K PRINTRD) ALSO

IF NFLAS 1 | OR 20
IBAD WiLL BE ser
COQUAL TO .

RETURN To

THE ROVT/nG
WHICH CALLED
)

SUBROUTINVE
DUumm

LCALL HEX(21, mvoﬂ .

PRINT STArus

HIYFORNMATION
PEfw ANDO CONTENT
oF THE CENGRALAE

RETURN TO
rHe ROUTING

WHICH CALLED
oUMp

lem’&v PREOUM P

PRINT (10YTE+3)/0s
ADDRESSES AND THEIR
CORRLSPONDING CONTENTS]

STARTING WITH THE
aYra Adnmess (Lol
WHICH COeRESPOND

WHIitH CALLED
PREODUMP !

-44-

SUBRUTIVE

NINY THE MesSAceE
RYEO(TP), 1P2, IPY)

THAT THT wognm'

I PRINT THE MESIASE \V
THAT THE PReCRAM l PRI LIST
IANTYE TO READ ——-———I
| —2AD AN wiT)]
| mead NEIN }—

{ £8 Asnen |

PRINT MESAET [QLL EXIST |

THAT PEM DOES
NOT EXIET

rIPl -— 0 J

RETUVRN TO
THE ROUTING
WHICHM CALLED
REED

rrnmr AN ERROR
MESSACE /

EOF 4—— 1| Tes
l | T e 1]
2eR0 NW(/NDEX) I
THROUGH NW (I YTE/ 4+ 1N OEX
l 1END < (X910)4 INDEX=1 |.

PRINT A MESSALL
TH&T BYTKY WERE REMOVED)

| Pt «——0qa |}

ARETUAN T¢ THE

AoV TINE WHNICH
CALLED AEED

(renrg«a)/ua

_IerinT A _neroine]

CALL PREOUMP j

~45-

SUBROUTINE
RITE (1P1, TP2,TP3)

| (6YE «— 177)

| INQEX 4 LP2

Ltoc «—zP2 |

CAL L
HEX(1@YTE /4 NW(1NOEX)

IPRmr A HEADINE]

Lcm.:. PREOUMmP]

CALL
CONVERT (2018YTE NW(iny

RETURN To
THE ROUTINE

WHICH cALLED
RITE

SUBROUTIVE
Lcovverr

CONVCRT THE sPECIFid
WORD FROM WEXABECIMAY
. IN DISPLAY Cope To
QINARY. IF AN INVALY
CHARACTER IS
ENCOUNTERE D DYRING
CONVERS 1IN, SET
NFLAGC EQULALTG |
ANO QRETVEN TUMP
7O SUBROUTIVE BIMD

RETURN TO
THE ROUTINE
WHICH CAL

cCONVEAY

SURROUTINVE I

SXIET

CALL FILESTAT
NTHERE() WILL BC
og 01 v D N

RETURN Te TMC
AQUTIME WHICH
eALLED EXigtY

l sv {oiocm ve l

CONVERT THE SPECImid
WoORD FROM DISPLAY
co0E (Ry FORMAT)
T0 BINARY. |F AN
HIVALID CHARACTER
1S ENCOUNTERED
DURING CONVERSIDN,
L€T NFLAC eQUAL TO
20 AND RETURN
JUMP To SUBRMWTINE
Soni

RETURN ra

THE BROUTINE

WHICH CALLED
DEC

SUBROUTINE
HEX

A

CONVERT Tua
SPECIFIED \worDS
FROM QINARY TO
HEXADECIMAL 1N
DISPLAY Cook.

RETURN To
THE ROUTINE

WHIZR gALLeD
HEX

SUBROUTINE
Fism

NSTRUCT:

ADDRE IS
POATION OF

c(X|) «—

PROSRAM
AL K

 fpir PORTION OF

THE PSW

ONDITION

Lccoog)+~ | BoRTiap oF

ALC

PORTION BF
LD+ ThE Psw

PROTECT/0
KEY PORTION
oF THE PSW
2ERO
3

YES

LL(:ADM.) «— c(x)) l

FIAST BYTE
c(a¢+ {ADDRES:

AST BYTE

C @“2}.— {ibn&esx

+1

ACTUAL
. STMEISN‘G

ADDR
c@2)*~9or THe

BYTES

NO

&

-4 7=

[LicreAecl fsren)-1]

- FIRST

NALFWaoRrD

C(Xg OF THE
NS TRUCTTS

NUMBRER OF

INSTAVCTIOM]

cfugv { e

ABRANCH
ACCORDING TO
THE TYPE
a¥r INSTRUCTION

=4 B

&

{cﬁ_(m’w'
L swi JOR.
Pswi)e e

THE CURRENT]
ALUE 0
eswis)e] fug gve
HALF _OF
[HE PSW.

IL(/Aonn)e— cfx1)

RETURN TUmp
T0 SUBR OUTINE
BomaAs

&

RETURN TO

THE ROVTINE

wWHICH CALLYD
Fl18mM

[(wrrge— 2]

[CKGeme]

@

.
NFLAS -— 3

C(xg)+— ¢

clLfic) «— o

49~

l C(XI)«——- cexi) -&3___'

SELOND

T HE NUMBER
{OF THE
REGISTER

HE 7_0/‘195&
or NE

. cd<+1{Eirsr

RES/STER

CONTEAé
c(x2)> 4 Qcond
REGISTER

BRANCH ACCORDING ToO OP CODE

5&566@5@56666

S EEEEEEEEHE
(1)

NFLAG ~— 4 |

Lec (é‘)i(- ! J—a@

(0

uckdmss)-—c(xz)]

aONO

[L(c(xo)-r REG)+C ()EI
L c(83) «— oj

L C(83)+— © l

MAX.
NECATIVR
NUMBER
COMPLEMENTEP

| _c@y+—o |

BSOLUTE
LEkQirER VALUE

0F C(x2)

MAX.
NECATIVE

NUMBER
CoOMpPLEM

32 a/r Twos
COMPLEMENT]
OF THE
ABSOLUTE
VALVE

oF C{2)

Lﬂ(dme

c(83)«— 0 |

'<—{C(L(c coo))«— O

e—[c(l_(ccoon) « 2

L cBy<«—o0 |

c(x2)
fteateneg c@t&e««é}
YES .
cleg «~—1 |
No
cce

Ai{ccooe)}«— 3]

[¢l tccooe))«— 1 |

|

-53=

FRoM SIEN
:1h e

REMOVE
CX¢) «— 2 CARRY BIT

C(xe)4— cfed+ |

N~
| L (ccooe)«— c fxs)]

&

| c@ye—o0 |
l/

I:k#w C{'-(C(ld*m»
- C(x2)

YES

c(as) «— 1 |

p J/
cce '

-54-

| cx)e—o0 |

Clufe(ro+rE
L(chopreel c(x2)

REMMAGVE
cxe)e— 2 1—9{ CARRY 81T

NO

C (k) +— Cxe)+1 |

YES

v

L{ccooE) «— Cx6

s

Lcke)e—2 |

CCf6)4— O b—>
HLM-&‘— corg) |
€ (%€)e— | J-—-%\

~ 7

&

L cxge—1 |

chn
EQUAL YES
0 c(x§) «— o |

P

NO |

| Lecopye— cerg)

{1L(clxg+REC) «~— c ()]

L c(x) fl |
- ek
{5

[cxd «—c(x2) |
>
NO

-5T=

> @
No

ety |

C(X7?,
s RIGM4)SHIPTED

c(L{ccope)) 81TS

[cix) «—— c@xa) |

e

NO

&

THE CumaenT]
VALUE OF

HALF OF
THE PSwW

clLielxoyr rea))
IS RIGHT SHIPTED
24 PLACES

v

“TNE
' RIENTMOST
Lf‘ FOUR BITS
oF

Clt(cpropgee)]

C(L(c(x) + rES)
I RICHT SMIFTED
Y PLACES

ey

THE FiIRST
REGISTER

. [THE
C (XQ)«{ NUMBER oF:

aYTE
seones
+~{0oF
S L A
QPERAND |

EQUAL 40 H
oR 44 HEX

=60

RAS SKip

ACTUAL |
LocAT :‘N
. oF SECOND
C(AZ) OPERAND

A DDRESS

@@@@@ e

BRANCH ACCORDING ToO OP CODE

BEOOAEEOEEE
S EEEEEEEED

Ckk2) s
RIGHT SHIFTED

THE
RICHT MOST]

1€ BITS OF

o< cix2) ARE
C(x2)" 3 cowveare
TOA 22 Bt

AH

c(sy)
EQUAL .

No

Ck2) Is
RIEHT SHIFTED

‘YHE
RICHTMOST
i€ BITS ofF

~d €2} ARE
A~y converren

TOA 22 8/T)
LINORD

cfx2)

RIEHT
& D

1<
SHIFTED

ch2) s
RIGHT SHIFTED
1€ BITs

NO
THE
RicHTMOST
1€ BITS OF
C(X2)" C(xa) ARE
CONVERTED

TOAB2BIT
FULLWORD

or
SP&iei
.34

“63=

G

chicka+
Lekderedy ") ';q

[cx7)— 8 |

C(x7)
IS RICHT SHIFTED
obE) BITS

7. AND

=64

THE CURRENT]
VA LUE
OF THE

ECOND

et e HALF
OF THE
PSW

L ck)e—c(an |

4 B8IT
Lt regyADDRESS
SPECIFIED

8Y C{x2)

IGHT Birs
(ONK BYTE)
$ECIFIED

7

EIGHT 8) IGHTMOST
LOCATIO EIGHT
SPECIFIED (|BITS
8y cfs3) { |oF

L

AND Cixd)) |LChgHae

OF INSTR.
LOCATED
AT ADDRESY
SPECIFIEO

(;mn TMosT
Zan OF

)

NUMBER
OF BYTES

cfcr) = N
JILNJYRKT)

IRST
cles{TE ary

x4

c(x6)+—0 |

[C(XG)’*—‘l l v
| Lecod— cix) |

DS

AN EVEN
NUMRER

[3

'rn:i_r cma?r.
L(Ck% cl(,n_g&qn‘ REC

» C(x2)

LAST 32
ket &Z{%S&q

-67-

Ccf2) g
RIGHT SHIFTED
g Birx

FIRST 32 BiTs or
DIVIDEND IS IN
Lcixa+red. LAST 32

BITS OF VIOEN
AN & 14 A

Quarin?) (DIVI DEND
Aeramoch) / C(X2)

-68—

PriHREd e QUOTIENT

LEGOHREQ)— REMAINDRR

Let)—cik)+4 |

IMMEDIATE
k3 {oPeranDd

DOtSs
THE OP
CODE START
wWiTHOL

&

YES

HE NUMBE:

OF THE
cig)e—< THIRD

REGISTER

THE NOee
oF
CK3) « {FirsT

RECISTER

BYTE

ADDRESS
QF SECOND

QPERAND

kg~

K

BRANCH ACCORDING TO 0p CODE

é&éé ééé&ééb

EEEEEEEEBE

SPECIFY A
FULLWORD

C(A2)e

oF SECOND
Pésﬁwn

ACTUAL N
ADDRESS

[<6y ;— c(x3) |

(el 3+ #ed)e e (A2))]

[_c3)—

cp3 +! |

ClA

=

2)+1

s '
YES _~Lle g v1)\ N0
IN

RANCE

RANGCE

?

| clea) «—cxa) |

ADDRESS
WHERS

C(Bll)"‘ WOoRD

IS TO
BE
STORED

[eoue— chicionens)]

ves L ceg+—deder |

IN RANGS

C(BY) «— C@H+

¢

SLA
\

1GHTeS 7]
CX2)em Six 8IS | ‘
oF C

[cpyj«—o0 |

FHE 31
oF L +
LERY+negdArE LoFT
SHIFTED
C2) PLACES

YES

YHE S/€N RIT
SHIPTED our QF

c(p 3) |]

RIGHTMOST
c{X2) e— {six BITS
OF Cfx2)

[cey+——o |

THE 31!
INTERER

8]7TS oF
a0

SHIFTED
C(2) PLACES

-T2

i)
AN EVEN
NUMBER

(RICHTMOST

ched e 12 B

THE <2
INTEGER

L c(sa)\lf—- o >

BVEN

oDD BITS OF THE
REGILTER EVEN DD
PAIR RECISTER
SPECIFIED PAIR

SPECIFIEDAY
o

(X7 e—1 |

cks
AN EVEN
NUMBER

v

1CHTMOLT)
cAe{six airs
aF (X231

cfB3) «—0 |

=73

NO

‘ RICHTMOST|

TWO BIrS
Cy)+f T 3)
Y7L Aob(LE

ACTUAL
aeesvE
‘_
c a .2) ADDRE X

Leta)eclfemz))]

tk2)

HAS RYTE
ch7)e{speciruo
{BY Y1)

REMOVED

cha) g
INTo Ck)
[}
L(Cazi IN PLACE
. OF THE
MISSING

ICHTMOST
rwo 8iIrs
C(XW) +-{ oF c(x2)
rTe Aporesd

ACTuAL

ADDRESS
CA2)+{or ayre
ADORESS

[cka) « clEnm)) |

aar 5 F’eol:)'

(s WHIC

7 e IS SPECIFIED
BY <{x4)

L _cxg)e 2]

| Liccooe)« cb(6 |

)

-75~

el

SigooL

L_cxg)— 1]

YES

C(xg) «— ©

J

SPECIFIED

BYTE
c@ﬁ&fmﬁlﬁw
8Y cixy

&)
k1 {3

NO
RIGHTMOST
e [Lecoor) a— cixe) |
OF ciXa)
(BYTE ADD: :
REPLACE
BYTE IN c{x2)
SPECIFIGD
G)
cfp2)«{or Byre with cfer)

ADDRELSC
[3
Lty chefaz)))] @

-76=

RISHMT MasST

TWO 8iTS
e 4 oF cx2)

WTE ADDREK)

CTUAL
che-{5
ADDRESS
cka) «— ijC@h 2) |

YTE&
From cfk2)

WHICH IS
&) +- 4 Seecirreo
aY cixw

—y -

RIGHT MOST

cw*{::"c?;z

BYTE Aooaﬂl

ACTUAL

?
w0 ~{3h

ADDRECS
cp2) { prigee]
ADDRECS

| CEH - Cﬂcagi“

gms &2

ROM

(X P «{ WHicH is
SPECI¥/ED

8Y cfcy)

A

coQ)a- .%fég).

RIGHT MOST |

TWO BITS
C(K‘I)'— OF Cfxa

(BYTE ADD

AC TUAL
ADDRESS
c@z)*— oF BYTE

ADDRES S

Leta)«— ctema)) |

BYT)E fRM;:

W

cho - [FH5 58
BY ciy

CLexge—1]

clxgle— 0 >

7NoT. CfK3).0R. <k

ALL oONE€ES

cix¢) «— 3 M

.

| L_gcooz)t(— c(xe)

&

IENTMOS T

Six BITS

P
Chay«—f5x 875

Lictx A+ ~Eé,
IS LEFT

SHIFTED
Wekosest) S1e
PLACES

RICHTMOS T
cfx2)«—1six BITS

QF C(X?2)

LE (X 3)+ aee,
1S RIGHT

cfche mes)] SWIFTED

ck2)
PLACEL

(d'&)
AN EVEN
NUMBER
°

C(XZ)Q- RIEHTMOST

3% 8irs
QF_Cfx2)
‘HE €& a1
FVEN oF THE EVEN
oDD g%:ﬂnmma
REGUCTER
PAIR sPeciFieDd 8Y

creomm| |CXd ARe
LEFT SHPTED

oy
3 X2} Piaces
=T

(X Xmm'no;'r

C -q SIX 3T

a of ¢fx2)
HE €&

CVYEN oF Tf-l‘ gV"E);I

rY 1) ::?“n“mc

‘;‘\‘,2"" SPECIFIED BY

TOECIFIED 3 ARE
RICHT

g(:@ SHFTED
cix2) pLaces

s
cxe)
AN EVEN
NUMBER

f chta)ecifefxe)e rce))]

bedet bRiQ)]

cllcha)
clicp)rRE

fchs)e

=80

L_CAY «— Cfxz +res)

C(x6) veS

AN EYEN
NUMBER

Lcko)e chicierreq) |

<

JAXYI))
LS C(L@(;émm\

> @
YES

(o) «— ax2)]

41s

L RIGATMOLT
TWo BITS
chxy - oF c(x2)
(Byre Atoeed]

ACTUAL
ADDRESS
OF BYTE
ADDRESS

ey

[y

I cx2) «— C‘:I:QAZ!N l

SPEC/IFIED

gY‘fE &
ci?) ‘—{ wn‘?(rg uC: sZJ
8Y cX¥

REPLACE
BYTE iNdk2)

ofX€) & |

]

v
[L{CCODE) «— C(XGTJ

&

~82-

l NFLAG «— 5] [NELAG +— &]

Lcod~—s] [ctxg —1]

lANﬂAéé—-7 1 | NFace— 8§ |

L cxere—¢6 | Chd—e]

[NFLAG «—— 9 l

L c)e—2 |

=83~

3

[~NFias «—q0 |

[_cke)e—3]

L NELAGa— 11]

[exd+—¢]

@

\\4

| NFLag «—12]

L cpee—q |

S

-84

THE S/

cixi) -4 oF

GN
THE NUMBE

VALID SIEN

THE
NUMBER
POSITIVE

Qe

CHANEE

3
NUMBER
T0 32
8IT Twos
comMf

MaosST S8IT OF
THE 0P coD

[(x3) — tensTH|

BYTE '
ADDRESS

é(a)«{wunssn

BYTE
ADDRESS

Cx e~ { NUMBEAR

TWO -

) op
CoDE :
YES

2
EQ HEX
P

VoY

BRANCH ACCORDING TO OP CODE

@@ééééééb

BRANCH ACcomDING TO 0P coDE

66656

| nFeaG«— 13]

.

Lexd ~—s6 |

YT

L_cxee— 7]

&
&

LNFLAG «— (s]

RETURN JTUMP To
SUBROUTINE B0

RETURN TO
THE RoUTINE
WHICH CALLCD
Flam

b, 14

LODCATRE THE
NEXT FIACST
OPERAND BYTE
AND LOCATE THE
NEXT S€CONO
OPERAND BYTE

THE
LARSER
OF THE

- Two BYTE
ADDRESSES

ch
c(s2)

m 'S‘ﬁamn an

PROPERLY

SHIFTED
Clo)e | 75 L InE

UP WiTH

FimrsT
OPERAND BYTEK|

SECoND
OPERAND

ayre
P ROPERLY
SHIFT%O T8
Cx7 < Line um
WITH
riRST
OPERAND BYTE

MASK oUT THE
FIRST OPERAND
8YTE AND INSERT
THE SECOND
OPERAND BYTE
IN ITS PLACE

[_cfxa) «— cfx3-1_]

c@y) «— clav)+s |

LOCATE THE NEXT
FIRST OPERAND

ADDRES.

THE [ARGER
OF THE
CRY «—{Two 8yre

cky)
2

<(B2)
7

BYTE AND LOCATE

THE NEXT S€EcaND

NO

Yes

RANéG

PROPERLY
SHIPTED TO
LINE upP
#WITH THE
- FIRST
OPERAND RYTE]

c(xo)+

v

THE SECoND
HALF 6F THE
SECaND
oPERAND BYTE
PROPERLY
SHIFTED TO
LINE UPWITH
THE FIRST
QPERAND
BYTE

cx7)e

MASK QuT THE
SECOND HALF OF TIHE
FIRST OPERAND BYTE
AND INSERT THE
SECOND HALE OF THE
SECOND QPERAND RYTE

MAsK
(o000iiigy

IN ITS PLACE

cfa4) — s+]

LOCATE THE NEXT
FIRSY OPERAND RYTE
AND LOCATE THC
NEXT SECAND
OPERAND BYTE

OF THE TwoO
8YTE ADOResSSGCS

céc)

NO

THE
LAREER

Cl¥) «<{ oF THE
TwoO BYTE
ADDRESSES

5K
(imm.mo.,,uj
PROPERLY
SNIFTED TO
LINE uP
WITH FIRST
O PERAND BYTE]

cta) «

THE FIRST
HALF OF THE
SECOND
OPERAND BYTH

Ched = ettt e

UP WITH THE
F{AST OPERAND
YIX

MASK oUT THE FIrST
HALF oF THE FIRST
OPERAND BYTE ANO
INSERT THE FIRST
HALF OF THE SECOND
OPERAND RYTE IN

YEg

NO
Lcbd «—csd-f |
B -clpy+ |

| Lccoor) «— 0}

THE
LARGER
4}e—{ OF THE
C(B Two BYTE
ADORESSCES

LACATE THE NexT
FIRST OFERAND BYTE]
AND LOCATE THE
NEXT SECaND
OFPERAND RYTE

MASK
(LTSI PP |
ROPERLY
SHIFTED TO
c(x LINE vP
ITH THE
FIRST 0 PERAND)
BYTE

THE. secowD
DPERAND

BYTE PROPERD
SHIFTED To

Cl7) o= i ‘e

FIRST O
AYre

REM:AVE THE FIRST
OPERAND RYTE AND
C(Bwe—CBY) +) INSCRY THE .AND.
I) —J OF THE FirsT
OPERAND BYTE AND

THE. L£ECOND OPE
| CiX3) — K3 -1] RYTE IN)ITS PLACE

[Llccope)+—0]

ADDRESSES

AND LOCATE THE
XT SECOND,

No

C(E‘l
e _>_
cB2)
?

LOCATE THE NeXT
FIRST OPERAND BYTE]

B

c(B2)
?

NO

[#9)
be_v_tL_l

[Ccled—cem+i)

L ckd—cks) -1 |

MASK
(M1 teaARy)
PROMPERLY
SHIFTED TO
Cx0)e {ive vp
'\?‘uru THE
Fr¥ano grri
R .
HE SESCON.
OPERAND 8
PROPERLY
SHIFTEDTO
AXPe< Livg up WITH
. THE FIRST
OPERAND BYTH
REMOVE THE FIRST
OPERAND BYTE AND
INSERT THE OR.
OF THE FIRSY
OPERANDL BYTE AND
TKE SEcaND 0FERAND
BYTE IN ITS PLNCE

Lccooe) «—— |

]

-92-

LOCATE THE NEXT
FIRST OPERAND
BYTE ANO LOCATE
THE NEXT SECOND
YTE

L_cen—cp+ |

[ca—ck3 -]

ASK
éﬂ"“'nwnd

PROPERLY
SHIFTED TO
LINE UP WITH
THE FIRST

O PERAND

f’i

E_SECOND
QPERAND
BY7E PAOPERLY
ax SHIFTEDT©
LINEuP
WITH THE
FIRSY OPERAND
YTE

REMOVE THE FIRST
OPERAND BYTE AND
INSERT THE .XOR.
OF THE FIRST

OPERAND BYTE AND
THE CECOND

OPERAND BYTE IN

ITS PLACE

Lccooe) «—1 |

L OCATE THg
NEXT FIRST
OPERAND BYTE

INSERT THE BY7TC

SPECIF/ED BY dXS)
INTO THE L OCATION

ORIGINALLY aCLUPIED)
HE FIRST
QPERAND RYTE

cei—chy +i_|

F‘IR T
c{xs)e—{ OPERAND

BYTE +cfky
CXxs
CheciFiD. NO 2 s
(KXS)‘—{BY c{xS) C(B?)
| 2

9““: "1",;"7' RICHT MosT
2% 87 4~ C ZICHT AlTS
OF L{RGC+1)} (8'}) ¥ { [REG*2 }‘ @

[efxe—1]

r L{CCODE)e © 3
[ekas ves E'GOUAI_
s '7‘
[cx3ecka-| | * "
(e coo)e-cxc)]
[cBH« cla9y+1] ¢

&

| Liccootye-0 |

THE LARGER

OF THE
C(h‘l) TWOo 8YTE

ADDORESSES

CxE) «— |

THE SECOND
QPERAND

Lk cha-i]

(o= chasr_]

LOCATE TME NEXT
FIRST QPERAND BYTE

&——————] AND LocATE THE
. NEXT S&COND
L QPERAND BYTE |

=96=

LA e

RICHTMOS T
32 BITY
oF Cfx7)

LEFrmasT

L(C(Al))t{ 22 Birs

or c(x)

SPECIFY A
DOURLE - WORD

(o cligcieg +reay)]

18
cfxs)
A POSITIVE

NUMBER

ves

| cexs)-—{ T&ﬁ‘"ﬁg:ﬁf l

THE sitarv
CODE OF
THE NUM
DETERM
BY THE 5/4
OF THE
NUMEBEAR AND
BITI2 Of

Cide

| ckn<— o]

cke) “{{Eg 994@:- lol

INSERT

THE DICIT

fcixc)) inTo 1S
PLACE IN C

ORER"

C(X7)4— RIGHTMOS

cix3) IS RIGHT]
SHIFTED & PLACES

(efs «— % &

EXCHANGE
PLACTS BETWEEN
Co(THE FIRST HALF
ANDSECOND HALF
OF THE SECOND
QPERA

LOCATE THE NEXT
FIRST OPERAND BYTE]
(10NINE AlSHT IO

C(X7 .0R,
Cb”)‘-{)
clewy IS LEFT
SHIFTED 4 PLACES
e
(_(5(:,9._ SECOND
OPERAND BE

i\

LOCATE THE NEXY
SECOND OPERAND GYTE

(MovING RIEHTTE

INSERT CX7) INTO
THE LOCAT/ON
ORISINALLY GCCURIED
RY THE FIRsST
QPERAND BYTE

‘r'ME FIRST OFPERAND
BY7E IS THE RICHT-
MOST QYTE OF THE

ISy OFERANS , THE |
SECONO OPERAND BYTE
13 THE RIGHTMOST 8

£ rHE g

L ks «cky-1 |

|_cy)+cay-1]

LOCATE THE INEXT
FIRST OPERAND BYTE
{MOVING RIGHT To LEfT)
AND RERO THIS LOOATION

LOCATE THY NEXT
SRCOND OPERAND 8Y
OVING RIGHT Ta

1

SECOND
cix-inizar

QPERAND BITH

[_@»7—%_:;-']

N

w98

HE 2ONEco
((DE TERMINED X
X BIT 12 OF PIw)
c LEFT SHIFTED
ay FouRr

THE FIRST OPERAND
BYTE /S THE RIGHT~
MOST BYTE OF THG
PIRIT OPERAND. THE

SECOND OPERAND BYTE
15 THE RIGHTMOST BY

RIGHTMOLT

cfx?) «{v- 8ITS OF |

Ux?)

EXCHANGE
PINCES BETWEEN

C(X7 THE FIRST HALF
AND SECOND NAWF

OF THE SECOND
OPERAND BYTE

[c!l'/)c-cﬁcs) oR. csz

LOCATE T‘H(NEXT
FIRST OPERAND BYTE
{Mov/iNg Rlsﬂrmm

INSERT CXY)INTO
LOCATION QR INALLY
OCCUP/ED RBY THL

FIRST OPERAND QYTE

LOCATE THE NEkXxT
FIRST OFERAND BYTE

INSERT Clx?) INTO
THE LOCATION
ORICINALLY OCCUPIED
B8Y THE FIRST
OPERAND BYTE

ar€)

EQUAL

Y is RienT
SHIFTED Y PLACES

[0}
v
NO Y

Lchkaye oy - |

‘ [claa)y«—c3)-1]

LOCATE THE NEXT

IRST OPERAND BY
OV/N & RIONT 1o LEF

LOCATE THE NEAT
LECOND OPERAND BYTE|
[(MEVING RIGHT TO LE

OPERAND
8YTE

b Sacons
CO(‘I) - o

NE RIGHT T

ofX3) o—

CiX® 15 RIsNT
SHISTED & PLACGS

AN
N\

N,

|

THE FIRST OPERAND
BYTE 15 THE RICHT -

LOCATE THE NEXT
FIRST OPERAND BYTE
D LOCATE THE

SECOND HALF

c{s(g)«{or FIAST

OPERAND 8YrE]

MoSr BYTE OF THE
FIRST OPERAND. THE
SECOND O PERAND BYTX]

T SECOND OPERAND
v -

1S THE RIGNTMosL T
BYTE OFY DPEAANE

(moviné RIGHT To'LerT)

SECOND HALF
c(x»._{a: SECOND
OPERAND BY

XD s LEFT
SHIFTED By
Yy PLARS

INSERT C[X7).0R. C{x&
INTO THE Ecﬁrmu
QRIGINALLY OCCUPIED BY

THE FIRST OPERAND BYTE

NO

Lehde—cha) -] |

FIR3T RALF
CO(‘)"{ OF SECOND
OPERAND

LOCAT'E THE NEXT
FIRST OMERAND BYTE

~100-~

[(Nrirc «— ¢] [nFras 17]

L cxoe—y J L CXe e— |]

e 6

2T APSTER [wFLAG <« (q]

Lcke e—1 | L ctae— 1 |

ST

=101-

YES

INDEX OF NW
ARRAY WHERE

IP2eq AR

RETURN JimMe
T0 SUBROVTINK

~BITE

RESTORE (X1,
€@, (se), (BY)

YES
@ ;

ST{\"RT/”‘

BYTE

CX¥)*1 AppRESS
FoR X/

Q

RYTE ADDAESS]
IP3 +< wHERE
T/Q STARTS

N\

COUNT
IP|*{ oF NUMBER
DF QYTHS

SA cxl), c
\5!‘). cla7)
IN _£ToRASE

B,

No

Ve

& cika)ecia) -y |

-102~

—

SPECIFY A
FULLWORD
BOUNDARY

[Cé\'Z)*-{‘éé‘b’i\‘f’r

—d

INDEX 0F NW
IP24+)ARRAY WHERE
TI/0 STARTS

RETURN TJUMP
TO &;uanwmvs
{]-)

RESTORE C(x1),
cBy), cBd, cB)

m

HE CURReNT)
VALUE of
THE SECOND
LPSWII yate oF
THE PSW

{ L{mooR)e— clxD)]

RETURN TO Tha
ROUTINE WHICH
CALLED FI8M

-103-

VI Improving LUIS

6.1 Introduction

While the Lehigh University IBM 360 Simulator is
quite useful in its present form, there are a number of
changes which could be made to improve it. Section 2
describes how more memory could be added to the simulated
IBM 360, ,Sectioﬁ 3 describes how.the decimal and floating-
point feature instructions could be added to the simulator.
Section 4 suggests a modification to LUIS which would
enable the user to selec{ whether the simulator sent
normal or abbreviated messages to the user. Section 5
vdescribes how additional commands could be added to the

simulator.

~104-

6.2 Adding More Memory

The maximum storage capacity of an IBM 360 is

16,777,216 byte addresses., Unfortunately the

decimal '
CDC 6400 can only provide the user with a maximum of

40,960 sixty bit storage locations. Therefore

decimal
it is necessary to limit the size of the memory of the
simulated IBM 360 to a small fraction of the maximum
capacity. Since byte addresses are often placed into
eighteen bit B registers by subroutine FIBM, byte
addresses mﬁst be restricted to a maximum length of seven-
teen significant bits. This fact restricts the largest
possible byte address to 131’071decima1'
LUIS allows the user to specify the portion of
storage which will be used. The user may specify any
starting address between 000000 and 0lD8A8 hexadecimal
(121’000decima1)' The user's portion of storage may
contain a maximum of ten thousand bytes. Whilé the size
of the simulated memory is currently limited to ten
thousand bytes, this limit could be increased. By
increasing the dimension of the NW array and by modifying
the DEC subroutine so that an integer larger than 9,999
could be read, the maximum size of the simulated memory
could be increased. Naturally, even if this was done,

it would still be necessary to limit the largest possible

byte address to a pumber less than lal’ovzdecimal'

=105~

6.3 Adding More Instructions

The decimal feature instructions are not avallable
in LUIS. However, one could easily add these instructions
to LUIS. Currently a request for any of these instructions
causes subroutine FIBM to branch to a section of the
subroutine called DECI. DECI causes an error message to
be printed and terminates execution of the user's program.
One could add additional sections to FIBM which would
perform the operations specified by the decimal feature
instructions. Subroutine FIBM could then be changed so
that a request for a decimal feature'instruction would
cause FIBM to branch to the appropriate seétion where
the operation would be performed.

Currently a request for any of the floating-point
feature instructions causes FIBM to branch to a section
of the subroutine called FLOAT, FLOAT causes an error

message to be printed and terminates execution of the
user's program. One could add additional sections to
FIBM which would perform the operations specified by the
floating~-point feature instructions. Sections RR and
RX of subroutine FIBM would have to be modified to
include branches to the sections of FIBM which would
perform the floating-point operations. Naturally it
would be necessary to add floating-point registers to
LUIS. These registers could be storage locations in the
"STATUS" common block.

-106~

6.4 Abbreviated Messages From LUIS

Whenever the user must supply some information to
the simulator, the simulator specifies the exact nature
and format of the information required. Usually the
message 1s in the form of a one or two line sentence.
These messages are especially useful to the person who
has not used the simulator previously. Unfortunately
these messages can limit the speed with which an experi-
enced user can use the simulator. This fact is especially
true when using a teletype.

For the experienced user, a two or three word phrase
would provide sufficient information so that the user
would know what type of information the simulator required.
The simulator could be modified to provide two additional
requestse. Oﬂe request would cause the simulator to go
into the abbreviated mode where all messages sent to the
user would be in an abbreviated form. Another request
would place the simulator in the néfmal mode. In the
normal mode all messages would be printed by the simulator

in the manner currently being used.,

~107~

6.5 Additional Simulator Commands

At the present time there are eleven different
commands which the user may issue when the simulator
is in the request mode. The main routine uses a series
of IF statements to branch to the sectioh of the routine
which handles the particular request. Additional
commands could be added to the simulator. Additional IF
statements would be added to the present series which
would check for the new commands. These IF statements
would then branch to sections of the main routine which

would handle the new commands.

~108-~

1.

2.

3.

4.

References

A22-6821-6, IBM System/360 Principles of Operation,
Copyright 1967, International Business Machines

Corporation.

COMPASS Version 3 Reference Manual, Copyright 1974,

Control Data Corporation.

Grishman, Ralph: "Assembly Language Programming for
the Control Data 6000 Series," Algorithmic Press,

New York, Copyright 1971,

SCOPE Reference Manual Version 3.4.1, Copyright

1974, Control Data Corporation.

-109-

Appendix A

The following material is reproduced from the

manual, IBM System/360 Principles of Operation. This
material should be of value to those who are unfamiliar

with the IBM 360 structure.,

Instruction Format

The length of an instruction format can be one, two,
or three halfwords. It is related to the number of stor-
age addresses necessary for the operation. An instruc-
tion consisting of only one halfword causes no refer-
ence to main storage. A two-halfword instruction pro-
vides one storage-address specification; a three-half-
word instruction provides two storage-address specifi-
cations. All instructions must be located in storage on
integral boundaries for halfwords. Figure 13 shows
five basic instruction formats.

The five basic instruction formats are denoted by
the format codes rmr, rx, Bs, s1, and ss. The format
codes express, in general terms, the operation to be
performed. rr-denotes a register-to-register operation;
RX, a register-and-indexed-storage operation; Rs, a reg-
.ister-and-storage operation; s1, a storage and immedi-
ate-operand operation; and ss, a storage-to-storage
operation. An immediate operand is one contained
within the instruction.

For purposes of describing the execution of instruc-
tions, operands are designated as first and second op-
erands and, in the case of branch-on-index instructions,
third operands. These names refer to the manner in
which the operands participate. The operand to which
a field in an instruction format applies is generally de-
noted by the number following the code name of the
field, for example, R, By, Ly, Ds.

In each format, the first instruction halfword con-
sists of two parts. The first byte contains the oper-
ation code (op code). The length and format of an
Mﬂnmﬂmlunspnﬂalbyﬂulhntwobnsofﬂw
operation code.

«110-

First Halfword | Second Halfword 2 Third Helfword 3
Bl | Byre2

a2

!]
' Register Reglster

L]
[}
: Operand | Operond 2 , I
A { {
OpCode | % | Ry | arFormar | |
» 79 N 18 : |
T T . :
! Register ' Address ! '
' Opemm’ 1 : Opomnd 2) [}
] — Ay A :
OpCode | Ry | X3 [8 | 0y | ~x Format '
J e nn 1114 e n |
| v : t
: Register Register Address i :
H Operand 1 Operand 3 Operand 2 . '
m—]
Op Code l R, I Ry 8, l o,] RS Format '
:o 1'1 n ulu e n' ' :
! ' | |
i ! Immediate ! Address |]
' ! Operand | Operand 1 X !
OpCode | 1, [8] D, S1 Format \
o 7e u‘u ”e n :
1 1 . - ']
E { Length ' Address .) Address :
1 Operand | Operand 2 Operand | ! Operond 2 1
1 A — A oy . -
{ opCose [L T L8] D [% | D, | 55 Format
[] 78 " " 1920 n L4
Figure 13. Five Basic Instruction Formats
INSTRUCTION LENGTH RECORDING
BIT POSITIONS INSTRUCTION INSTRUCTION
0-1) LENGTH FORMAT)
00 One halfword RR
© 01 Two halfwords RX
10 . Two halfwords RS or SI
11 Three halfwords SS .
The second byte is used either as two 4-bit fields
or as a single eight-bit field. This byte can contain the
following information:
Four-bit operand register specification (Ri, Rs, or
Ri)
. Four-bit index register specification (X,)

Four-bit mask (M,)

Four-bit operand length specification (L, or Ly)

Eight-bit operand length specification (L)

Eight-bit byte of immediate data (I,)
In some instructions a four-bit field or the whole sec-
ond byte of the first halfword is ignored.

The second and third halfwords always have the
same format:

Four-bit base register designator (B, or B,), fol-

lowed by a 12-bit displacement (D; or Ds).

-1lll=

Address Generation

For addressing purposes, operands can be grouped
in three classes: explicitly addressed operands in main
storage, immediate operands placed as part of the in-
struction stream in main storage, and operands lo-
cated in the general or floating-point registers.

To permit the ready relocation of program seg-
ments and to provide for the flexible specifications of
input, output, and working areas, all instructions re-
ferring to main storage have been given the capacity
of employing a full address.

The address used to refer to main storage is gen-
erated from the following three binary numbers:

Base Address (B) is a 24-bit number contained in a
general register specified by the program in the B
field of the instruction. The B field is included in
every address specification. The base address can be
used as a means of static relocation of programs and
data. In array-type calculations, it can specify the lo-
cation of an array and, in record-type processing, it
" can identify the record. The base address provides for
addressing the entire main storage. The base address
may also be used for indexing purposes. -

Index (X) is a 24-bit number contained in a general
register specified by the program in the X field of the
instruction. It is included only in the address speci-
fied by the nx instruction format. The rx format in-
structions permit double indexing; i.e., the index can
be used to provide the address of an clement within
an array.

Displacement (D) is a 12-bit number contained in
the instruction format. It is included in every address
computation. The displacement provides for relative
addressing up to 4095 bytes beyond the element or
base address. In array-type calculations the displace-
ment can be used to specify one of many items as-
sociated with an element. In the processing of records,
the displacement can be used to identify items within
a record.

In forming the address, the basc address and index
are treated as unsigned 24-bit positive binary integers.
The displacement is similarly treated as a 12-bit posi-
tive binary integer. The three are added as 24-bit
binary numbers, ignoring overflow. Since every ad-
dress includes a base, the sum is always 24 bits long.
The address bits are humbered 8-31 corresponding to
the numbering of the base address and index bits in
the general register.

=112~

The program may have zeros in the base address,
index, or displacement fields. A zero is used to indi-
cate the absence of the corresponding address com-
ponent. A base or index of zero implies that a zero
quantity is to be used in forming the address, regard-
less of the contents of general register 0. A displace-
ment of zero has no special significance. Initialization,
modification, and testing of base addresses and in-
dexes can be carried out by fixed-point instructions,
or by BRANCH AND LINK, BRANCH ON COUNT, Or BRANCH-
ON-INDEX instructions.

As an aid in describing the logic of the instruction
format, examples of two instructions and their related
instruction formats follow.

RR Format

Add 7 9

[70 nn 13

Execution of the Apbp instruction adds the contents of
" general register 9 to the contents of general register
7 and the sum of the addition is placed in general
register 7. :

RX Formot

Store 3 10 14 300

[2 78 " 1918 1720 »

Execution of the sTore instruction stores the contents
of general register 3 at a main-storage location ad-
dressed by the sum of 300 and the low-order 24 bits
of general registers 14 and 10,

[

=113~

Sequential Instruction Execution

Normally, the operation of the cpu is controlled by
instructions taken in sequence. An instruction is
fetched from a location specified by the instruction
address in the current rsw. The instruction address is
then inereased by the number of bytes in the instruc-
tion fetched to address the next instruction in se-
quence. The instruction is then executed and the same
steps are repeated using the new value of the instruc-
tion address.

Conceptually, all halfwords of an instruction are
fetched from storage after the preceding operation is
completed and before execution of the current oper-
ation, even though physical storage word size and
overlap of instruction exccution with storage access
may cause actual instruction fetching to be different.
Thus, it is possible to modify an instruction in storage -
by the immediately preceding instruction.

A change from sequential operation may be caused
by branching, status switching, interruptions, or man-
val intervention.

Branching

The normal sequential execution of instructions is
changed when reference is made to a subroutine, when
a two-way choice is cncountered, or when a segment
of coding, such as a loop, is to be repeated. All these
tasks can be accomplished with branching instruc-
tions. Provision is made for subroutine linkage, permit-
ting not only the introduction of a new instruction
address but also the preservation of the return address
and associated information.

Decision-making is generally and symmetrically
provided by the BRANCH ON coONDITION instruction.
This instruction inspects a two-bit condition code that
reflects the result of a majority of the arithmetic, logi-
cal, and 1/0 operations. Each of these operations can
set the code in any one of four states, and the con-
ditional branch can specify any selection of these four
states as the criterion for branching. For example, the
condition code reflects such conditions as nonzero,
first operand high, equal, overflow, channel busy, zero,
etc. Once set, the condition code remains unchanged
until modified by an instruction that reflects a dif-
ferent condition code. ,

The two bits of the condition code provide for four
possible condition code settings: 0, 1, 2, and 3. The
specific meaning of any setting is significant only to
the operation setting the condition code.

-114~

List of Instructions by Set and Feature

Standord Instruction Set

NAME
Add
Add
Add Halfword
Add Logical
Add Logical
AND
AND
AND
AND.

Branch and Link

Branch and Link

Branch on
Condition

Branch on
Condition

" Branch on Count

Branch on Count

Branch on Index
High

Branch on Index
Low or Equal

Compare

" Compare
Compare Halfword

Compare Logical
Compare Logical
Compare Logical
Compare Logical

Convert to Binary
Convert to Decimal

Diagnose
Divide
Divide
Exclusive OR
Exclusive OR
Exclusive OR
Exclusive OR
Execute
Halt 170 .
Insert Character
Load
Load

.Load Address
Load and Test

Load Complement

Load Halfword
Load Multiple
Load Negative
Load Positive
Load PSW

AR

BXH

BXLE
CR

CH
CLR
CL
CLC
CLI
CvB
CvD

DR

XR

X1
XC
EX

HIO

LTR
LCR
LH
LM
LNR
LPR
LPSW

=115~

RR
RX
RX
RR
RX
RR
RX
S1

§S

RR
RX

RR
RX
RR
RX

RS

MNEMONIC TYPE

oYolololeXelol oY)

olololelolo]®]

a 0000

aon

a0

©oonR
1A
S5A
4A
1E
5E
14
54
04

05
45

47
08
46

87

19
59
49
15
55
D5
95
4F

4E .

83
1D
5D
17
57
97
D7
44

9E
43

18
58
41
12
13
48

11
10

-4

NAME MNEMONIC TYPE CODE

Move MVI SI 92
Move MVC SS D2
Move Numerics MVN SS D1
Move with Offset MVO SS Fl
Move Zones MVZ SS D3
Multiply MR RR 1C
Multiply M RX sC
Multiply Halfword MH RX 4C
OR OR RR C‘ 16
OR (0] RX C 56
OR (0] S1 C 96
OR OoC SsSs C D6
Pack PACK SS F2
Set Program Mask SPM RR L 04
Set System Mask SSM SI 80
Shift Left Double SLDA RS C 8F
Shift Left Single SLA RS C 8B
Shift Left Double

Logical SLDL. RS 8D
Shift Left Single !

Logical SLL RS 89
Shift Right Double SRDA RS C 8E
Shift Right Single SRA RS C 8A
Shift Right Double

Logical SRDL RS 8C
Shift Right Single

Logical SRL RS 88
Start 170 SIO SI C 8C
Store ST RX 50
Store Character STC RX 42
Store Halfword STH RX 40
Store Multiple STM RS 80
Subtract SR RR C 1B
Subtract S RX C 5B
Subtract Halfword SH RX C 4B
Subtract Logical SLR RR C 1F
Subtract Logical SL RX C B5F
Supervisor Call svVC RR 0A
Test and Set TS SI C 93
Test Channel TCH S C 9F
Test 1/0 . TIO S1 C oD
Test Under Mask ™ SI C 91
Translate TR SS DC
Translate and Test TRT §ss C DD
Unpack UNPK SS F3

Note: A"C'in the TYPE column means that the condition
code is set. An"L"in the TYPE column means that
a new condition code is loaded.

=116-

Appendix B
LEHIGH UNIVERSITY IBM 360 SIMULATOR

ENTER THE SMALLEST ADDRESS IN YOUR PROGRAM

AS AN EIGHT DIGIT HEXADECIMAL NUMBER.

00000000

ENTER THE MAXIMUM SIZE OF YOUR PROGRAM (IN BYTES)
AS A FOUR DIGIT DECIMAL INTEGER.

0080

ENTER THE PSW AS A 16 DIGIT HEXADECIMAL NUMBER.
0000000000000000

REQUEST=INSERT

ENTER THE STARTING ADDRESS (OF THE COLLECTION OF BYTES)
AS AN EIGHT DIGIT HEXADECIMAL NUMBER.

00000000

ENTER THE NUMEER OF BYTES WHICH WILL EE INSERTED AS
A FOUR DIGIT DECIMAL INTEGER.

0072

IF YOU HAVE THE BYTES ON THE FILE PGM, TYPE PGM.

IF YOU ARE GOING TO ENTER THE BYTES, TYPE INPUT.
PGM _

THE BYTES HAVE BEEN READ

REQUEST=DUMP

TYPE ALL OR PARTIAL

ALL

00000 05709C00 00004 702E5810 00008 70365910
00010 70145810 00014 703A5910 00018 703E47A0
00020 703E5010 00024 70429C01 00028 703247F0
00030 00037036 00034 00017042 00038 00000023
00040 00000012 00044 00000034 00048 00000000

REQUEST=EXECUTE

YOUR PROGRAM WANTS TO READ SOME WORDS

IF YOU HAVE THE WORDS ON THE FILE PGM, TYPE PGM.
IF YOU ARE GOING TO ENTER THE WORDS TYPE INPUT.
INPUT

ENTER THE WORDS. (ONE WORD PER LINE)

00038 -0000004C | N
0003C ~00000039 -
00040 -0000000D

WORDS READ INTO MEMORY BY THE USER"S PROGRAM

00038 0000004C

-117-

0000C
0001C
0002C
0003C
0004C

703A47A0
70205810
70000000
00000034
00000000

0003C 00000039
00040 0000000D

WORDS PRINTED FROM MEMORY BY THE USER™S PROGRAM

700044 000000LC

YOUR PROGRAM WANTS TO READ SOME WORDS

IF YOU HAVE THE WORDS ON THE FILE PGM, TYPE PGM.
IF YOU ARE GOING TO ENTER THE WORDS, TYPE INPUT.
INPUT

ENTER THE WORDS. (ONE WORD PER LINE)

00038 ~00000004
0003C ~-0000000A
00040 ~-000000FF

WORDS READ INTO MEMORY BY THE USER"S PROGRAM

00038 00000004
- 0003C 0000000A
00040 000QOCFF

WORDS PRINTED FROM MEMORY BY THE USER"S PROGRAM

00044 O000QOCFF

YOUR PROGRAM WANTS TO READ SOME WORDS

IF YOU HAVE THE WORDS ON THE FILE PGM, TYPE PGM.
IF YOU ARE GOING TO ENTER THE WORDS, TYPE INPUT.
INPUT

ENTER THE WORDS. (ONE WORD PER LINE)

00038 -00000000
0003C -00000000
00040 ~000222ZW

WORDS READ INTO MEMORY BY THE USER"S PROGRAM

00038 00000000
0003C 00000000
00040 000ZZZZW
-118-

¢% AN INVALID CHARACTER APPEARED IN A HEXADECIMAL NUMBER.
THE BYTES WERE REMOVED FROM MEMORY
REQUEST=STATUS

QooFO

PROGRAM STATUS WORD

INSTRUCTION ADDRESS

CONDITION CODE

00000000
00000000
00000000
00000000

REQUEST=STORE

TYPE ALL OR PARTIAL

ALL

(= AV AN Qo

1l

0000000090000006

00006

GENERAL REGISTERS

000000FF
00000000
00000000
00000000

2
6
A
E

00000000
00000000
00000000
00000000

THE BYTES HAVE BEEN DUMPED ONTO FILE STORE
REQUEST=BYE

EXIT

=119~

o W~ W

00000000
40000002
00000000
00000000

vVita

Leonard I, Horey, son of Helen and Henry Horey, was
born on January 19,1951 in Newark, New Jersey: He did
his undergraduate work at Lehigh University and in 1973
recelved the Degree of Bachelor of Science in Electrical
Engineering with highest honors.

The author was a teaching assistant in the Department

of Electrical Engineering throughout his graduate program.

«120-

	Lehigh University
	Lehigh Preserve
	1-1-1975

	The Lehigh University IBM 360 simulator.
	Leonard Ira Horey
	Recommended Citation

	tmp.1451580486.pdf.dJB0Q

