
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1975

The Lehigh University IBM 360 simulator.
Leonard Ira Horey

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Horey, Leonard Ira, "The Lehigh University IBM 360 simulator." (1975). Theses and Dissertations. Paper 1759.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F1759&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1759&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1759&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F1759&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/1759?utm_source=preserve.lehigh.edu%2Fetd%2F1759&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

THE LEHIGH UNIVERSITY IBM 360 SIMULATOR

by

Leonard Ira Horey

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Electrical Engineering

Lehigh University

1975

ProQuest Number: EP76031

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest

ProQuest EP76031

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

This thesis is accepted and approved in partial

fulfillment of the requirements for the degree of Master

of Science.

ul 3, /975-
(date)

Professor in Charge

Chairman of Department

-11-

Acknowledgment

The author would like to express his gratitude to

his advisor, Professor Peggy A, Ota, Her comments and

suggestions were a valuable aid in preparing this thesis.

-iii-

Tablie of Contents
i

Abstract 1

I Introduction 2

1.1 Background • 2

1.2 Contents of the Thesis #. • 6

II User • s Guide to LUIS 7

2*1 Introduction 7

2.2 Restricted Addresses 8

2.3 The Instruction Set 9

2.4 Use of the Simulator • 11

III The Routines of LUIS 20

3*1 Introduction 20
(

3.2 Description of the Routines 21

3.2.1 The Main Routine 21

3.2.2 Subroutine BOMB 21

3.2.3 Subroutine DUMP 23

3.2.4 Subroutine REED 23

3.2.5 Subroutine RITE 26

3.2.6 Subroutine EXIST 26

3.2.7 Subroutine DEC • 26

3.2.8 Subroutine CONVERT, 27

3.2.9 Subroutine HEX * • 27

3.2.10 Subroutine FIBM 28

IV FIBM29

4.1 Introduction • ..•.*........ 29

-iv-

4.2 The Memory of the Simulated IBM 360 30

4.3 The Storage of the PSW and the General

Registers • •• 31

4.4 The Execution of the User's Program o. 32

4.5 An Alternative Structure for FIBM ••••• 34

V The Flowchart of LUIS 35

5.1 Notation 35

5.2 Flowchart • 36

VI Improving LUIS 104

6.1 Introduction 104

6.2 Adding More Memory •• • 105

6.3 Adding More Instructions • 106

6.4 Abbreviated Messages From LUIS 107

6.5 Additional Simulator Commands • 108

References 109

Appendix A •• • • 110,

Appendix B . • • 117

Vita 120

-v-

List of Figures

1.1 The Program Status Word • • 4

1.2 The Simulated IBM 360 4

3.1 The "GOOD" Common Bloc\ 22
\

3.2 A Typical Output Printed fey Subroutine DUMP;

Entry Point PREDUMP 22

3.3 The "STATUS" Common Block 24

3.4 A Typical Output Printed by Subroutine DUMP •••• 24

3.5 The "BYTES" Common Block 5 25

3.6 The "IN" Common Block 25

-vi-

/■

Contents of the Flowchart

/

Main Program •• 36
MAIN1 : 36
MAIN2 37
REQUEST 37
DUM 38
INSERT 39
INPGM 40
ININ 40
EXECUTE 41
SQ 41
STATUS 41
STORE 42
REWINDP 43
REWINDS • • ... 43

Subroutine BOMB • • ••• 44

Subroutine DUMP 44

Entry PREDUMP • 44

Subroutine REED ••••• •••• 45

Subroutine RITE •• 46

Subroutine EXIST 46

Subroutine DEC ° 46

Subroutine CONVERT 46

Subroutine HEX 46

Subroutine FIBM •• 47
CHANGE 48
WHYBOMB . 48
IOERR 49
ER '. • 49
INSTRA 49
RR 50
NON 4 50
L 51
LTR 51
LCR • 51
LPR 52
LNR ,.. 52
A •» 53
CCC «... 53

-vii-

AL 54
S 54
SL 55
C * 55
N 56
BOOLF • •-• *\ 56
0 V. 56
X .. 57
BCTR 57
BCR 58
BALR 59
SPM 59
RX • 60
RX6 61
RX4 61
RX5 61
SKIP • • 61
LH 62
AH 62
SH 62
CH • 63
ST 63
STH 63
BCT • 64
BC 64
BAL 65
LA 65
IC 65
STC 66
EX 66
CL 67
M 67
MH 68
D 68
RSSI 69
LM • 70
STM 71
SLA 72
SRA . • • • . 72
SLDA • 73
SRDA • 73
MVI 74
CLI 75
NI 76
SIBOOL 76
01 77
XI .A- 77
TM ...V, 78
SLL 79
SRL • . . 79
SLDL . .,,•„•.• *,..•*.*•«,* 9:C a a. » » «-» s » » • • • •*.«...« • * • . • • . 79 "

-viii-

SRDL . . . — _. 80
BXH . - - _ _ - 80
BXLE . _ «. - • 81
TS -. . 82
RANGE . • . — _• 83
FLOAT . • • <*, — . 83
HALFB • • •. — . 83
FULB . • • — — . 83
OFLOW •••_ - - 83
KILL . . — _ . 84
REGERR - - - — — • . • 84
DIVBAD . . - _ _ . . 84
CVB . • _ _ . 85
SS .--_.. 86
DOUB • •«.«. — . 87
DATER . • — — — • 87
KEYER - - - — — . 87
MVC . . _ _ _ - 88
MVN - • - _ • 89
HVZ - - • _ • 90
NC . - . • — - 91
OC ..•___ 92
XC - - - — 93
TR • . . . — . • 94
TRT . . - — — - 95
CLC . . - — — - 96
CVD - • — — - • 97
PACK . - - — «-. - 98
UNPK - - - — . 99
MVO . . - - — . 100
DECI . . . - - — - 101
SK - _ — . • 101
WRRDD • • — —» - 101
SIM - - — — - 101
SIO - - - ~» . 102
OUT . . - - • - 103

Abstract

The Lehigh University IBM 360 Simulator (LUIS) is

an interactive program which enables a user to execute an

IBM 360 machine language program on a Control Data 6400

Computer System. LUIS simulates all but seven of the

instructions in the IBM System/360 standard instruction

set.

The simulator provides a simulated ten thousand byte

memory whose limits are initially specified by the user.

The user can load his IBM 360 machine language program

into this memory either by entering the program from the

remote terminal or by reading the program from a local

file. He may then request that either all or a specific

number of instructions in the program be executed. If

the simulator encounters a situation which would normally

interrupt a real IBM 360, it terminates execution of the

user's program and issues an error message explaining the

reason for interruption. The user can ask to examine the

contents of any portion of the simulated IBM 360 memory

and to examine the contents of the simulated IBM 360

general registers and>jthe program status word. He can
\

also modify his machine language program and store the

modified program on a file for future use*

,. -j.>^JV"' l&W'm .- .^r■.■!-1Y(ir.(:rt^*1W*
CV,

-1-

I Introduction

1.1 Background

This thesis describes an interactive IBM System/360

simulator written for a Control Data 6400 Computer System.

The simulator was written to allow Lehigh University

students to familiarize themselves with the IBM System/360

family of machines. These students would otherwise be

unable to do so in the Lehigh University computing

environment.

In particular, the Department of Electrical Engineer-

ing offers a senior level elective in systems programming)

EE 315. The text currently being used in the course is

Systems Programming by John J. Donovan. Donovan (like

many other authors) uses the IBM System/360 for his

examples. Lehigh University has only a Control Data 6400

Computer System. It would be beneficial to have a set of

programs which would enable Lehigh students, those taking

EE 315 and others, to write programs in IBM System/360

Basic Assembly Language and have them assembled and

executed on a simulated IBM System/360. A first program

would assemble the student*s program on the Control Data

6400 Computer System and produce a machine language

version of the program. A second program would then take

this machine language program and execute it*

-2-

This thesis describes the second program, the

Lehigh University IBM 360 Simulator (LUIS), LUIS is an

interactive program which simulates all but seven of

the instructions in the IBM System/360 standard instruc-

tion set*- * (Diagnose, Set System Mask, Load PSW, Halt

I/O, Supervisor Call, Test Channel, and Test I/O). The

program is available through the Lehigh University

Computing Center.

The simulated IBM 360 has a ten thousand byte memory

(which is stored in the NW array in the simulator) and

sixteen general registers (which are stored in the "STATUS"

common block). The simulated IBM 360 also has a program

status word (PSW) which is stored in the "STATUS" common

block. The PSW (Fig. 1.1) contains information needed to

execute the user's program. Subroutine FIBM acts as the

central processing unit for the simulated IBM 360.

(Fig. 1.2)

Since all user input and output must be done through

the Control Data 6400 Computer System and the simulator,

the input/output instructions Test Channel, Test I/O,

and Halt I/O are not used. Instead all input/output is

done by using a modified version of the Start I/O instruc-

tion. Since input/output is not performed in the usual

manner, the system mask, which is concerned with input/

output interrupts, is not relevant and thus the Set

System Mask instruction is omitted. The user initially

epecifice the PSW andcanchange itthrough the use of
-3-

condition code-

instruction
length code (ILC ,y

j-program mask-If the leftmost
bit of the four bit hexadecimal
character is one, program
interruption will occur if there
is a fixed-point overflow. The
other three bits of the program
mask are ignored by LUIS. n

t: :*V~
instruction address

^interruption code-set by LUIS
-protection key-must be zero
-system mask-ignored by LUIS

■—AMWP-If the leftmost bit of the four bit hexadecimal
character ist one, generated decimal sign and zone
Codes are in USASCII-8 (normally they are in EBCDIC).
The other three bits of the hexadecimal character
are ignored by LUIS.

Fig* 1*1 The Program Status Word
(Each block represents one four bit hexadecimal
character*)

PSW
(stored in the
^STATUS" common block)

Central
Processing
Unit

Subroutine)
? IBM /

Memory

(NW array)

Fig* 1.2 The Simulated IBM 360

-General Registers
(stored in the
*STATUS" common
block)

-4-

the request NEWPSW (see LUIS User*s Guide), so the Load

PSW instruction is not needed. Obviously, since one is

not working with a real IBM System/360, the Diagnose

instruction (which is used for testing the system's

hardware) has no meaning and is not included. Because

all input/output is done through the simulator, and

because none of the other privileged operations are

included, there is no need for a Supervisor Call and this

instruction has also been omitted.

-5-

1.2 Contents of the Thesis

The remaining portion of this thesis is divided into

five chapters and two appendices* Chapter II is a user's

guide to using the Lehigh University IBM 360 Simulator,

Chapter III gives a short description of each of the ten

routines which comprise the simulator. Chapter IV gives

a more detailed description of the subroutine (FIBM)

which actually simulates the IBM 360. Chapter V contains

the flowchart of LUIS. The last chapter, Chapter VI,

describes how additional capabilites can be added to
i

LUIS. Appendix A contains material (reproduced from the

manual, IBM System/360 Principles of Operation) which

should be of value to those who are unfamiliar with the

IBM 360 structure. Appendix B contains a typical output

from LUIS.

-6-

II User's Guide to LUIS

2*1 Introduction

The Lehigh University IBM 360 Simulator (LUIS)

takes a program written in IBM System/360 machine

language and executes it on a Control Data 6400 Computer

System . LUIS simulates all but seven of the instructions

in the IBM System/360 standard instruction set, (The

instructions Diagnose, Set System Mask, Load PSW, Halt

I/O, Supervisor Call, Test Channel, and Test I/O are

omitted.) This chapter describes the features and use

of LUIS. Section 2 discusses a restriction on the

addresses used with LUIS. Section 3 describes the commands

of LUIS. The last section, Section 4, explains how to use

the simulator*

LUIS operates under INTERCOM. INTERCOM is a subsystem
which allows the user to run an interactive program from
a remote terminal on the Control Data 6400 Computer System.

-7-

2.2 Restricted Addresses

One important difference between the simulator and

the IBM System/360 is that addresses used with LUIS are

restricted to a maximum of seventeen significant bits.

If the eighteenth bit is a one, the address will be inter-

preted as a negative number and the program will be ter-

minated if and when that address is actually used for

addressing. If more than eighteen significant bits are

used, the address will be truncated when it is used for

addressing. If the truncated address is within the memory

area of the program, the program will continue to execute

normally. However, if the resulting address is outside

the memory area of the program, the simulator will issue

an error message and terminate execution of the program.

This restriction on the length of addresses is necessi-

tated by the fact that the A and B registers in the CDC

6400 Computer System are only eighteen bits long. (One

should note the fact that if an address field is not

actually used for addressing storage such as in a "Load

Address" instruction or shifting instructions, then this

limitation does not apply.)

_8-

2,3 The Instruction Set

AH of the simulated instructions (except Start I/O)

function as described in the manual, IBM System/360

Principles of OperationL . The floating-point feature

instructions, the decimal feature instructions, the

protection feature instructions, and the direct control

feature instructions are not available. Conditions

which would normally produce an interrupt in an IBM 360

cause the simulator to terminate execution of the program

and print an error message indicating the reason for the

interrupt.

The user*s program can perform I/O by using a modified

version of the Start I/O instruction.

Bl

McMp) | I
I/O code

The I/O code in the instruction indicates the type

of I/O that is to be performed by the program. The code

is 01 for writing and 00 for reading. (All other codes

are invalid.) The address specified by Bl and Dl is a

fullword somewhere in the user's (memory) storage area.

This fullword contains the count of the number of words

which the program will read or write and a base register

and displacement which specify the starting address for

I/O. The starting address must specify a fullword

boundary1

•>9-

'the full word
specified by the

ignored, B

I I 1 I FT~] *—^Start'l/O
 ->—-'v x ' instruction

count of the
number of words.

When the I/O code specifies writing, the simulator

responds:

WORDS PRINTED FROM MEMORY BY THE USER'S PROGRAM

The simulator then prints the words and their correspond-

ing addresses. When the I/O code specifies reading, the

simulator responds:

YOUR PROGRAM WANTS TO READ SOME WORDS.
IF YOU HAVE THE WORDS ON THE FILE PGM, TYPE PGM.
IF YOU ARE GOING TO ENTER THE WORDS, TYPE INPUT.

Words are read in the same manner as described for

"INSERT". If an error occurs during reading, the

simulator issues an error message and terminates execu-

tion of the program. If the reading of the words is

completed in a satisfactory manner the simulator responds:

WORDS READ INTO. MEMORY BY THE USER»S PROGRAM

The simulator then prints the words which it read and the

locations where each was placed.

If no errors were detected while performing I/O,

then the execution of the program continues after I/O

ia completed*

-10-

2.4 Use of the Simulator

The simulator is an interactive program. To use the

simulator the user first attaches the simulator while in

the INTERCOM command mode. If the user has his program

on a permanent file, then he must also attach this file

(with the local file name of PGM), After the user attaches

the simulator, he types:

LUIS.

At this point the user is in the simulator program. The

simulator responds:

LEHIGH UNIVERSITY IBM 360 SIMULATOR

ENTER THE SMALLEST ADDRESS IN YOUR PROGRAM AS AN
EIGHT DIGIT HEXADECIMAL NUMBER.

The user enters the smallest address in his program.

This address determines one of the boundaries of his

storage area. The address can be between 00000000 and

0001D8A8 hexadecimal and must specify a fullword boundary.

If the address is not acceptable to the simulator, it

responds with an error message and repeats its request.

If the address is acceptable the simulator responds:

ENTER THE MAXIMUM SIZE OF YOUR PROGRAM (IN BYTES)
AS A FOUR DIGIT DECIMAL INTEGER.

The user enters the number of bytes in his storage area.

This number, together with the smallest address, determines

the boundaries of the user's program. The simulator will

prevent the user from exceeding the boundaries of his

storage area. If the number which the user enters is

-11-- ' •

not acceptable to the simulator, it responds with an

error message, and repeats its request. If the number

is acceptable, the simulator responds:

ENTER THE PSW AS A 16 DIGIT HEXADECIMAL NUMBER.

The user enters his program's PSW. If the PSW is not

acceptable, an error message will be issued and the

request will be repeated. *If the PSW is acceptable the

simulator responds:.

REQUEST-

At this point the user is in the simulator request mode

and can issue any of the following requests:

END
BYE
INSERT
NEWPSW
DUMP
STATUS
S
EXECUTE
REWINDP
STORE
REWINDS

These requests are explained below.

END

The request END enables the user to redefine his

storage area and start a new program without leaving the

simulator program. The simulator responds:

PROGRAM ENDED BY USER

The simulator then requests the information needed to

define the storage area (the smallest address in the

 — - -12-

program, the maximum size of the program, and the PSW).

One should note that the simulator zeros the program's

storage area when the storage area is defined by the user.

Thus any bytes which were in the storage area from a

previous program are wiped out*

BYE

The request BYE terminates the simulator program and

returns the user to the INTERCOM command mode. INTERCOM

will respond:

EXIT
COMMAND-

The request BYE may also be called after the simulator

responds:

ENTER THE SMALLEST ADDRESS IN YOUR PROGRAM AS AN
EIGHT DIGIT HEXADECIMAL NUMBER.

INSERT

The request INSERT tells the simulator that the

user wants to insert some bytes into his storage area.

The simulator responds:

ENTER THE STARTING ADDRESS (OF THE COLLECTION OF
BYTES) AS AN EIGHT DIGIT HEXADECIMAL NUMBER.

The address must specify a fullword boundary. If the

address which the user enters is not acceptable, the

simulator issues an error message and repeats its request*

If the address is acceptable the simulator responds:

ENTER THE NUMBER OF BYTES WHICH WILL BE INSERTED
AS A FOUR DIGIX. DECIMAL INTEGER.-

-13-

If the number is not acceptable the simulator issues an

error message and repeats its request. If the number

is acceptable the simulator responds:

IF YOU HAVE THE BYTES ON THE FILE PGM, TYPE PGM.
IF YOU ARE GOING TO ENTER THE BYTES, TYPE INPUT.

If the user types "INPUT" the simulator responds:

ENTER THE BYTES. FOUR BYTES PER LINE.

and prints the location where the bytes will be inserted..

When the user enters the bytes, the simulator responds

by printing the location where the next group of bytes

will be inserted. This process continues until the

user finishes entering all of the bytes. After the

simulator reads all of the bytes, it responds:

THE BYTES HAVE BEEN READ

and returns the user to the request mode.

If the user types "PGM" the simulator assumes that

the bytes are on the local file PGM. If the files does

not exist the simulator will respond:

PGM DOES NOT EXIST

and will return the user to the request mode. The

simulator assumes that the file PGM has the bytes packed

forty bytes per card image. The simulator reads as many

cards as are necessary to satisfy the user's INSERT

request* If a second INSERT request causes the simulator

to read from PGM a second time, the simulator will begin

reading at the next card image* If the simulator reads

th«. EOF because PGM does not contain enough bytes, the

-14-

simulator issues an error message and zeros all locations

mentioned in the INSERT. After the simulator reads all of

the bytes, it responds:

THE BYTES HAVE BEEN READ

and returns the user to the request mode.'

NEWPSW

The request NEWPSW enables the user to change his

program's PSW. The simulator responds:

ENTER THE PSW AS A 16 DIGIT HEXADECIMAL NUMBER.

After the user enters an acceptable PSW, the simulator

returns the user to the request mode.

DUMP

The request DUMP enables the user to dump, all or a

portion of his memory (storage area). The simulator

responds:.

TYPE ALL OR PARTIAL «

If the user types PARTIAL, the simulator asks the user to

supply the starting address of the dump and the length of

the dump in bytes. The dump must start on a fullword

boundary. The user is not permitted to dump outside his

storage area.

Insertions and dumps can only be done with fullword

units* Thus all requests are rounded up to the nearest

number of fullwords. This rounding process may cause a

request to exceed the user's memory area by a fraction of

-15-

a word. However, this fact will be ignored by the

simulator and will not cause any problem.

After the simulator performs the requested dump,

it returns the user to the request mode*

STATUS

The request STATUS causes the simulator to print the

PSW, the instruction address, the ILC, the condition

code, and the contents of*all of the general registers.
' ■*

The simulator then returns the user to the request mode.

The request S enables the user to request that a spec-

ified number of instructions be executed in his program

(starting with the one specified by the .instruction address

portion of the PSW). The simulator responds:

ENTER THE NUMBER OF INSTRUCTIONS TO BE EXECUTED AS A
FOUR DIGIT DECIMAL INTEGER.

After the user enters the number, the simulator executes

the specified number of instructions and then returns the

user to the request mode.

It is possible for the simulator to return to the

request mode before it finishes executing all of the

specified instructions. This happens when the simulator

encounters a condition which would produce an interrupt

in a real IBM 360. In this case the execution of the

program stops t and the simulator prints an error message

-16-

indicating the reason for program termination.

EXECUTE

The request EXECUTE enables the user to execute his

entire program. EXECUTE tells the simulator to execute

9,999 instructions. Usually this will be much greater

than the number of instructions in the user's program.

Thus the user's program will end when a condition occurs

which would produce an interrupt in a real IBM 360.

However, if the user's program is either longer than

9,999 instructions or has an endless loop in it, the

simulator will return to the request mode after it executes

9,999 instructions. The user can recognize when this

happens because no interrupt message occurs before the

simulator returns to the request mode.

REWINDP

The request REWINDP enables the user to rewind the

file PGM. The user must do this if he has previously

read from PGM, and then wants to start at the beginning

of the file. The simulator rewinds the file and returns

the user to the request mode. If the file does not exist

the simulator will respond:

PGM DOES NOT EXIST

and will return the user to the request mode*

-17-

STORE

The request STORE enables the user to dump all or

a portion of his memory (storage area) onto a file

named STORE. In this manner the user can save the

contents of his memory for future use. The simulator

responds:

TYPE ALL OR PARTIAL

If the user types PARTIAL, the simulator asks the user to

supply the starting address of the dump and the length

of the dump in bytes. The request STORE has the same

restrictions as the request DUMP (See DUMP). The bytes

are written forty bytes per card image on the file STORE.

If a second STORE request causes the simulator to write

on file STORE a second time, the simulator will begin

writing at the next card image. The simulator rewinds

file STORE when the user initially executes the simulator

program. File STORE is not destroyed when the user

terminates the simulator program. Thus the file can be

saved by the user and used as the file PGM at some later

time •

After the simulator dumps the bytes onto file STORE,

it responds:

" THE BYTES HAVE BEEN DUMPED ONTO FILE STORE

and returns the user to the request mode*

-18-*

REWINDS

The request REWINDS enables the user to rewind the

file STORE. The user must do this if he has previously

written on STORE, and then wants to start writing at the

beginning of the file* The simulator rewinds the file

and returns the user to the request mode.

-19-

Ill The Routines of LUIS

3,1 Introduction

The Lehigh University IBM 360 Simulator is written

in COMPASS'-'^ (assembly language) and FORTRAN. The

program consists of a main routine and nine subroutines.

The COMPASS subroutines assume that the FORTRAN routines

are compiled by using the RUN compiler. Approximately

23*6 CP seconds are needed to compile and assemble the

program. 31242 ., words of central memory are required

by the program and the various system routines which it

calls. Naturally, additional central memory is needed

for the loader and the loader tables. Section 2 gives a

general description of each of the routines of LUIS.

-20-

3,2 Description of the Routines

3.2.1 The Main Routine

The main routine is written in FORTRAN. All of the

communications between the user and the simulator (except

some error messages and program I/O) are handled by this

routine. The information needed to define the boundaries

of the user's memory area is initially requested by the

main routine and all user requests are processed through

it. Checks are made to insure that no insertions or

dumps are performed outside of the user's memory area.

If any invalid requests or otherwise erroneous input

are received, an appropriate error message is printed,

and the request for the input is repeated.

(See flowchart pp. 36 - 43)

3.2.2 Subroutine BOMB

Subroutine BOMB is written in FORTRAN. This

subroutine prints error messages. The calling routine

passes one parameter to BOMB. This parameter determines

which of twenty error messages is to be printed. BOMB

also- sets a flag if either of two particular error messages

are printed. This flag is passed to the main routine

through the "GOOD" common block (Fig. 3.1).

(See flowchart p.44)

-21-

I ~D IBAD

Fig, 3,1 The "GOOD" common block

PROGRAM STATUS WORD 0000000798000048

INSTRUCTION ADDRESS
CONDITION CODE 1

00048
ILC

0 00000000
4 00000000
8 00000000
C 00000000

GENERAL REGISTERS
1 OOOOOOAO 2 00000010
5 00000000 6 00000000
9 00000000 A 00000000
D 00000000 E 00000000

S 00000501
7 00000000
B 00000000
F 00000000

Fig* 3.2 A typical output requested by the user through
the use of the request; STATUS, (Output printed
by subroutine DUMP; entry point PRE DUMB.)

.-."■ -..'.V-vf * -..-: .«...:-$•.-

-22-

3.2.3 Subroutine DUMP

Subroutine DUMP is written in FORTRAN. The sub-

routine is actually composed of two separate parts. The

first part (DUMP) prints the program status word, the

instruction address, the condition code, the ILC, and the

contents of each of the sixteen general registers (Fig.

3.2). This information is passed to DUMP through the

"STATUS" common block (Fig. 3.3). The second part of the

subroutine (entry point PREDUMP) prints the byte addresses

and the contents at each address (in hexadecimal) (Fig.

3.4). The subroutine must know the byte address of the

first word, the corresponding index in the NW array (where

the words are actually stored), and the number of bytes

which are to be dumped. This information is passed to

DUMP through the "BYTES" common block (Fig. 3.5).

(See flowchart p.44)

3.2.4 Subroutine REED

Subroutine REED is written in FORTRAN. REED allows

the user's program to read words into memory. Subroutine

FIBM passes three parameters (the first byte address, the

corresponding index in the NW array (where the user's

program is stored), and the number of bytes which are to •

be read) to REEDfc The subroutine stores the parameters it

receives in the "BYTES" common block and reads the words

from the source indicated by the user* If the reading

-23-

the PSW

the IBM 360
general registers

the instruction address

the ILC

the condition code

the program mask

STEP

Fig. 3,3 The "STATUS" common block

00000 00020004 00004 00000000 00008 00000000 ooooc 00010014
00010 00000000 00014 00000000 00018 oooooooo 0001C oooooooo
00020 9C000000 00024 58100004 00028 58200008 0002C 8B100004
oooso 8B200004 00034 50100014 00038 5020001C 0003C 960C0017
00040 960C001F 00044 4F100010 00048 4F200018 0004C 1A124E10
00050 00105850 00054 00148850 00058 00045050 • 0005C 00149C01
00060 000C1B55 00064 50500010 00068 50500018 0006C 47F00020
00070 00000000
£0074 00000000,

1 contents at that address

address

Fig* 3*4 A typical output requested by the user through
the use of the request; DUMP. (Output printed
by subroutine DUMP.)

v"*. *"- '#.*'-■*

-24-

NW array "2500 words

-the starting byte address

-the number of bytes

fthe starting byte address
[for an insert or dump

("the number of bytes
^//"(in the insert or dump

the index in the NW array corresponding
y^to the starting byte address for

r ithe insert or dump
Pig. 3.5 The "BYTES" common block

P
a table used by FILESTAT
(the second word in the table is
set to zero if PGM does not exist):

NEOF (zero unless an EOF has been
read on file PGM)

Fig. 3.6 The "IN" common block

-25-

process is not completed in a satisfactory manner, a

parameter (the number of bytes which are to be read) is

set to zero before returning to subroutine FIBM.

(See flowchart p.45)

3.2.5 Subroutine RITE

Subroutine RITE is written in FORTRAN. This

subroutine allows words to be printed from memory by

the user's program. The subroutine is passed three

parameters (the first byte address, the corresponding

index in the NW array, and the number of bytes which are

to be printed) by subroutine FIBM. Subroutine RITE stores

the parameters it receives in the "BYTES" common block and

then calls the routines needed to print the words in

hexadecimal. (See flowchart p.46)

3.2.6 Subroutine EXIST

Subroutine EXIST is written COMPASS. The subroutine

builds the necessary table and then calls the system
T4l macrou , FILESTAT, to determine whether the file PGM

exists. If PGM does not exist, the second word in the

"IN" common block will be set to zero (Fig. 3.6).

(See flowchart p.46)

3.2.7 Subroutine DEC

Subroutine DEC is written in COMPASS. This

subroutine takes a word which contains four digits in

-26- *

K'

display code (right Justified and zero filled) and

converts the word to an integer. The word is passed to

DEC as a parameter by the calling routine.

(See flowchart p.46)

3.2.8 Subroutine CONVERT

Subroutine CONVERT is written in COMPASS. Two

parameters (the number of characters to be converted and

the address of the first word which is to be converted)

are passed to subroutine CONVERT by the calling routine.

CONVERT assumes that each word contains eight hexadecimal

characters in display code (right justified and zero

filled). The subroutine replaces the eight characters in

each word with their thirty-two bit binary equivalent

(right justified and zero filled). (See flowchart p.46)

3.2.9 Subroutine HEX

Subroutine HEX is written in COMPASS. The calling

routine passes two parameters (the number of words to be

converted and.the address of the first word which is to

be converted). Hex assumes that each word contains a

thirty-two bit binary number (right justified and zero

filled). Subroutine HEX replaces each number with its

equivalent eight hexadecimal characters. These

characters are stored right justified (and zero filled)

in display code. (See flowchart p.46)

-27-

3.2.10 Subroutine FIBM

Subroutine FIBM is written in COMPASS. This

subroutine is the routine which actually simulates the

IBM 360. Three parameters are passed to FIBM by the

main routine. The parameters passed are the starting

address of the user's program, the number of bytes in

the user's program, and the starting address of the NW

array. The "STATUS" common block contains additional

information which is used by FIBM. One of the words in

the "STATUS" common block specifies how many instructions

are to be executed by FIBM. Subroutine FIBM will continue

to execute instructions until the specified number have

been executed or until a condition occurs which would

produce an interrupt in a real IBM 360.

(See flowchart pp.47 - 103)

-28-

IV FIBM

4,1 Introduction

Subroutine FIBM is the heart of the Lehigh University

IBM 360 Simulator, FIBM is the routine which actually

simulates the IBM 360, Section 2 describes the memory of

the simulated IBM 360, Section 3 describes how the PSW

and the general registers are stored. Section 4 describes

how the user's program is executed by subroutine FIBM.

Section 5 discusses an alternative structure for FIBM.

-29-

4.2 The Memory of the Simulated IBM 360

The memory of the simulated IBM 360 is a 2500 word

array called NW. Each word in the array holds one IBM

360 fullword. The thirty-two bit IBM 360 fullword is

stored right Justified in the sixty bit CDC word. The

leftmost twenty-eight bits of each word are zero* To

locate a byte in memory, FIBM first removes the right-

most two bits of the byte address. Then it right shifts

the address two places and adds the contents of register

B7 to it. Register B7 contains a number which when added

to the shifted byte address gives that address* actual

location in the CDC 6400. While subroutine FIBM is

executing the contents of register B7 remains fixed at

that number. In this manner, FIBM is able to locate the

word which contains the desired byte. Finally FIBM uses

the rightmost two bits which were originally removed

from the byte address to determine which of the four bytes

in the word is desired. Register B6 contains the smallest

byte address which the simulator is allowed to read or

write. Register B2 contains one plus the largest byte

address which the simulator is allowed to read or write*

The contents of these two registers remains fixed while

FIBM is executing. FIBM checks to make sure that every

byte address falls within the range set by the contents

of these two registers*

-30-

4,3 The Storage of the PSW and the General Registers

The PSW is stored in the "STATUS" common block.

Subroutine FIBM extracts the instruction address, the

condition code, the ILC, and the program mask from the

PSW and stores them at separate locations in the "STATUS"

common block when it is called by the main routine. The

locations containing the condition code and the program

mask may be examined and their contents may be altered

during the execution of the user's program. The contents

of the location containing the ILC is altered every time

an instruction is fetched by FIBM. While subroutine

FIBM is executing, the contents of register XI contains

the updated instruction address. Whenever FIBM terminates

execution of the user's program, it stores the contents

of register XI in the location reserved for the instruc-

tion address in the "STATUS" common block. Then it puts

the current value of the condition code, the ILC, the

program mask, and the instruction address in the location

reserved for the second half of the PSW in the "STATUS"

common block.

Each of the sixteen IBM 360 general registers is

stored in the "STATUS" common block. The contents of

each register occupies the rightmost thirty-two bits of

a sixty bit location*

-31-

4.4 The Execution of the User's Program

When FIBM is called by the main routine, the sub-

routine extracts the instruction address, the condition

code, the ILC, and the program mask from the PSW and

stores them at separate locations in the "STATUS" common

block, FIBM checks the protection key portion of the PSW

to make sure that it is zero and sets the contents of

registers XI, B2, B6,and B7. Next the subroutine sub-

tracts one from the contents of a location (called STEP)

in the "STATUS" common block which specifies the number

of instructions which are to be executed. If the result-

ing contents is not equal to zero, then the subroutine

fetches the halfword specified by the contents of register

XI (instruction address), FIBM examines the leftmost two

bits to determine whether the halfword is an RR instruc-

tion, part of an RX instruction, part of an RS or SI

instruction, or part of an SS instruction. Then FIBM

branches according to the type of instruction to> one of

four sections in the subroutine. In these sections the

remaining portion of the instruction is fetched if

necessary, the contents of register XI is updated, and

all of the information necessary for the execution of the

instruction is extracted from the instruction. Any

needed byte addresses are generated from the address

components contained in the instruction. Finally the

op code is examined and a Stanchie snade t© the section

-32-

of FIBM which actually performs the operation specified

by the instruction. Once the operation has been performed,

FIBM branches back to the section of the subroutine where

one is subtracted from the contents of the location STEP

in the "STATUS" common block. The process repeats itself

until the contents of that location is zero, or unless a

condition occurs which would produce an interrupt in a

real IBM 360.

When the contents of location STEP is zero, FIBM

terminates execution of the user's program, updates the

PSW, and returns to the main routine. When a condition

occurs which would produce an interrupt in a real IBM

360, FIBM terminates execution of the user's program,

updates the PSW, return jumps to subroutine BOMB (to

print the reason for interruption), and returns to the

main routine.

-33-

4,5 An Alternative Structure for FIBM

One should note that it would be possible to determine

the op code of the instruction when the halfword is

initially fetched. The subroutine could then branch

directly to the section which actually performed the

operation specified by the instruction. Each section

would fetch the remaining portion of the instruction if

necessary, update the contents of register XI, extract all

of the needed information from the instruction, and gen-

erate any needed byte addresses from the address compo-

nents contained in the instruction. Undoubtedly this

change in the subroutine would tend to decrease somewhat

the time required to execute each instruction. However,

the change would greatly increase the length of the sub-

routine and would not produce a significant difference

in the time required to execute the user's program*

—34-: *M',..;., .:r.. . \ .-■•■ ,^r ,.&, -- -'-'-ifci»;y-*r- *+*.'

V The Flowchart of LUIS

5.1 Notation

The following symbolic notations are used in the

flowchart:

Symbolic Notation

name*—y

C(Xi)«*—b

L(d)«—C(Xi)

• NOT,

• AND.

• OR.

• XOR.

Meaning

set 'name' equal to y

set the contents of register
Xi equal to b

put the contents of register
Xi into location d

arithmetic sum

arithmetic product

arithmetic difference

arithmetic division

boolean complement

boolean AND

boolean OR

boolean EXCLUSIVE OR

-JD-

5.2 Flowchart

fKINr-UHll* (MNwcax/ry
I«M 1*0 nnut*nn.

REWIND Flt-E
*JT0*C ♦ <r MAM P«0«(MM

^
XtRO TMS AJW ANO

XL
NEOF

5
(•HINT A KIErJA&t

AftONVrt *V TMI Mt(MI(
AMD *EAD N frAAr

C KWD OF

V
CALL .

[cONVgftfr«.»»TA»r)

<
101^0

\L_asss*J3iaa«L.

•^1 **»AfT AM

Mw((NBfiT*aH/4)

fKlNTA mtdMS

-36-

^

IIAO]>

D£C/N«mE)

HA/W2

I <r
PRINT A M1!W6£
ntmunriN& r»e PJW

CALL
ctwve<TY'«,, i*yp)

IftAD 4-

P*wr "mmjmsrS
AMD KtAO NriN '•* ^-[«M«rt /J*\Mrfl J

PKINT fKUAK

•t Mllft*

END Of

PRINT AN
CAftO* mfXSAfZ

•r.'".:tr /->Y.-.-r ,."-."v-T

-37-

Tyi* ALL o* Mtruo
ANC AEAP NfIN

)k-
«wr A mrjjAOc
neaucT-rirja -THE
Nunax.it OF Brycf
AND READ IflVTE

CALL, oec^pyfE)

Ki&WSr>M7HC. *t*KTIM
LOCATION AND MAO

L.OC

V JsL
CALL

g-j IBAP*— g>

-^

1^1—M!«y AW

£ALL, PAEPI/MP

^LL CALL

|/*n«x»n>cA. -A«yrt>»(j

-38-

■>

e
PRINT A MtSSAGK
ntaveiTiHc THE
STAH.TM* A&OfttM O*
THE COLLECTVO/* OT
ayrty AW «<AD toe

<■

18 AD
PRINT AN

PR /NT AN
ennon wet»A6C
 7K

fRiwr A MtiSAGE
MKINC HOW THE 6>fE
AAE TO 6£ INSitXeD
(MM *«. tNrv-r)AHt>
KCAD VPN

|WOCX<-LOC/» -NTTAffTfr-l

M/Wf Aft) }^

PRINT A MESSAGE
«cat/err/wc THE
Numaen OP ami -ro
BE IN««TED AND
HEAD /errE

^T

I BAD B>v

?KINT AW.
MMH Mt**A«it

-39-

7t\
INP6M)

V
CALL cxirr

ININ

}k-

PKwr A ritrj-A«c I -^
THAT PlJM DS(I Y&—

M>r riu/r (^

P*.INT T*/6 netfA te
■THAT rut. WO*05

XL
I +- WOtK

czx 3L

ICNO«_.
V
/\

J PMUr AN EA««* •
*A<TE <T

 ^ .
NEO* » - I I

3/
ZE.KO n/vvf/woek.)

TftAOucM

MAD Nw({l-l)»lO+lNO<«)
THS0U4M rtU(ltNO)

r«9M P8M

^
PAINT A ««««
THAT rM€ «vre/

V>/tft.t RKl-iBVIO c^ TT7-1

■>

5
tnr+- NifAnr+n»(t-ll

±
CALL HE* f',<-'*J I

, V .
| PRINT LIST J

; ^ _,
I MAD NV>I(I\ 1

d
v

J +i

ye*

PK.INT A nt.fiAt*
THAT fH« «*TM
HAtft BiCN ftSAO

CALL
eOM«*rft*/8yrv,NW(iwffd

YM
IBAD

_V
W.'W-* .-^u.-"- :. .:"".%- .V?t»? ~ '"£' ' **iU—

lEttCV

 ± .
^L

I mrtimffih**, "*H y$>b*x*A

{lNf*k3)+—NFIN + t 1

3L
CALL

so.

PMivr A mtLtxAte
ftr«ucrrM« r««
wun««w iNrr«i/er;Mu
AMD AOAA /yeiM

^
j C/SLL DgCfWFtMj I

-^((Ut«sn

1 INFOdS)-

STATUS)

±.
\L

CALL

NJZ.
CALL eon*

^
CALL

coNw*rp<t, ift/ro) -^WEWWri

-41-

0«fNT +*£. h\kiSA*t
"ryrc AH. O* PAKT?»L"

AND REAP A/P/W

<-

^ PKIMT A MtlSAOC
AtOUtiTINS THF
Nvmae* OF syrrj
AND AEAD I8VTX .

3L
IBYfE -N8VTE

^_
| INDEX *-— t . 1

XL
| MAX: -*-fr»yrr»a>/»

PAIWT A MEffASB
MQUf *TI*t THE ITAtriN*
LOCATI4W AND '

ftEAi> LOC

<e
Nfc

CALL.

V
CALL

coivvE«r^,t.og)

>ki
THAOt/lSM, NWfW*)

'OkThtam. wWrtWHX))

EftftOft MS If A**

PWNT AM
CUttOW MC<IA«f

,-A2—

PKIHT A MEJMs* Thflrr
ftn nits mr E*nr

| WEW//M F/Uj "fH>«g«|

-43-

SU6KOVT//VC

^.
ntrsxrc. frHE i/ALUf

WH/cw ntSJAit VVIILI.
«t mi/vrio) ALSO
IF NFLA* 11 I 0* ZO
19A 0 Win. SC HT
cauAt. ro i..

J^
R.WTUAN To

THE noirr/A/s.
WHICH CAUtMM

. astna

tufsouriivt

XL
| CALL HEXfc^/nreO)

±_
PHlMT STAr-OS

fflW AfUD CoMrsNtAl

(i
^.

WHICH C.A(_t.C0

CATTAW PK60t//*1/»

Ji
pw/vr oom+3)/*

ADDKtiStS ANOTHEIR
CORKCSM/IOIIM cawiwo|
rmftnivi WITH THE
BTTB AtoltUl <_OC

/WHICH C0eU£P«MAf\
I TO ivw/iwpaxi J

&.
rue nowiN* \
lAlMICH CA<-<LC£ 1

-44-

I I6YTE -XL

1L.
INDEX*— 1*1

LOC * Zf>}

CAUl—
HEXfurTE/yNV/(it/C€XJ)

PHINT A HCAOINf

CALL P6.E6UMP

C«hNtt.f(t*lBTK,

(

XL
KenvAN TO
rHt KOUTiHC
WMICTW CALLED

SUBROUTINE
CONVERT

±.
coNVcier ThE xrtcifiaj.
WOAD raoiA rtQUKciftu]

■ IIV DIJCPLXV cent TO
SINAO.V. (FAN IMVALH)
CHAIW7EK /S
CVCsUMTC.it.CI> DCWNC|

tONvees(INI, ser
NFLAC E4UALTO I
ANO OSTUKN irunP
TO iuaft-oi/rni/e B8n6

(K£TV*JV Ta N
THE AOtCT/WC 1
WHICH CALUCi) y

SUanOlrrin/c

CALL F/LS.STAT
f A/T«r«e(i) WILL Ac \

M.TUKM TO T»«e
AoirriA/r WHICH
CALLCD EXttr

SU6R.0UT1IVC

C«WV€ftT THE yPEeifK*
WOR.0 FROM ptirud
CODE (fei* fOnrvAT)
TO airvAfty. ip AN
IWVAUO CWAKACT«*
I J EWCOtiWTe«EO
DUKIUC CdNVCAEieK}
JCT NFLAe e&VALTO
io A Mo ASTUIM
y*rt» TO fl/«/Mirrttt

Sor>B

" ftETt/iC/V To N
T«E RQUTINt \

WHICH CALLCb)
DEC y

S.U6K.00TI X/C
HEX

coNVeiw rwt
iPECIFlEO WOICAC
FftOn 6INAKX TO
HEXADECIMAL IN
DISWAV COOK.

(ft£TU«./V TO N.
THE itoi/r/A/e i
WHICH CAU-C6 I

-46-

SVBROUTINt

c<Xl)«
$

HsritucTi&i
ADOHM.it
PORTION OF
THE P?W

ywAflW
MASK
Po/trtev <sr
THE «W

•fc('^tektf

I
(" IL.C

1 ; [THE.P3w

LflADOft) 4 Cfrl)

,/ft/u fFl AST BYTE

I
flASr BYTE

(ACTUAL
] srAAfllVfi
f ADORES*

-47-

L\iV£^*-c(ufiT£lf)-i
L (PSWl)i

(tffi^Jj
.OK.

L CM

.(«WI+|)«

THtCUMltNT
VALUe OF
THE f*
HAW OF

fie P**>

Lf/AOon)*- C(X\)

TO SUBK.OI/T/NC
0OM/3

(RITUK.N TO N
TME MVrtNE]
WHICH CALlMO 1
 EiMa /

FIRST
HALPWoftO
OF THE

JMSTHI/CTWH

L(ILC)<

NUMBS*or
HALF WD ROT

INSTRUCTION

fNV
J MA

JUMJ

K^ BRANCH X
ACCORDIlV£ TO \

THE TYPE J 1
or INSTRUCTION/

ISEPi

RR RX RSSJ is

-48-

(lOE««j

NFLS6 x— 2.

Cfr6>«—g

EK

NFU« -*— 3

c(x<5)«— 6

ftNfrnA

ifc_

cMt.C))«—» Q

-49-

i
THE WW/18M

Cfal

 &_
rrHe

* J or
HE NV/1BEA

or r«r

cfxzMSWF

&-

SftAWCW ACC0IWIN6 To OP CODZ

NFLA6 * V-

cfcc)*-- 1 -9(wMim

-50-

d(.k<} + *E<$«—C(X2)

L(C(X$* **$<*- C(V2j

C(B3)

\ C(B$* -o 1
* i

lt(*0)*fitj)*
32. Birnm
CWIPJJEMBW
OF C^C2)

: £

-51-

C(83)

Bsouure

cr«»;-

f32H»r7W(K

,. „ 1 OF THt
LrfaMt«AH*oLL/TK

[OF C(S«2)

^ f
c(83)« 0

-52-

1 C(B3) *—~0

<—\c(L(ccoPi))*- Q

C(L(CCOO*)«—2.

C(L(<:c<JD£))4- I 1

■^^4- 2V

-53-

I <^M
I

■?
c(xa}

L(c/k»**£<d« . . +
tfW*«i

CAR*)
FROM S/tfW^N^v^.

8i r ^~^1 <#«)■
?

? Cfa)* C|fc«)+<

Cfej)< 0

REMOVE:
CAftrtY 8 IT

V

C(83) +— I ~|

-54-

C(Kt).
ftEnove

CA*£.Y BIT

CfoJ*—C0WT,)-*-!

Y£S]

3 yS

W

\
L(CC0K) *— C0f«J

CfoX Q~l £|

}(^foH-^-T- CW> J

cfrfr"—I I *,\

-55-

Cfr€)

CM<-
c£|fc£o)+««]j)

BOOLF)

Cfc^
B3LL/AL va* y- - 0 0 / ^L C,X6J*_

> t

L(ccope)*— C(kd)

ifefrgMft) -*—C(*i)

-56-

cftfr

W7r-1 .xo*.
CXttL

t^M^fiy^

-57-

C0C7)

IS «I6»<T SHIFTED
CMCCODE)) BITS

£»*«-.{•£»

-58-

THE co«*cNr|
VALUE OF
THC

I HALF OF
_rHE fSW

C(L(C(>CO>+ <ee))
IS H/CMT SHlfTED
2* PLACES

I
TTHC

/ » I AIM
tffnuw FOU

AUHTMOJT
POI/K fl»ry

 M/
CfLfc(5«pJ + (l€<5))
IS «KHT SHIfTEO
H cuAces

("THE

|t(ccoo^-j two aiw -^pOWCKJ

-59-

cfr')»»

, rtHE

I THE F/esr

c(k2)*-

Jk
^aYTE

ADDAEtt
OPTMC
SECOND
pfwyft

-60-

(RXSj (SK"j

->
NJ^_

CfA2)«
ACTOAL
LOCATION
arszcbNO
QPEAAHO tin

cfca)«-cft.fcfr?l))

-61-

cfrz) is
RICHT SHIFTED

16 , .PLSQU

c(x$<-

rrwe.

I it Bin or
q*2) ARC
COHVEXItD.

>A ai BIT
JLLWvne

Cf/2) /S
RUKr SH/fTCO
It PLACXS

cfxir

rrtt. nicmniir
It BITS OF
c(<.2.\ A«e
CtNViKTtD
T»A«»/r

itWOAP

G> <#2>
KtchfTrittf
if arts eF

*/CMT SHKTCD

-62-

Cfte) ; s
Ricur SHtrrxo

l(BITS

fTMC
*lc«TMOT
icorrj OF
C(K2) MX
COWWEfttEP
TO A u. air
FUU.WORO

L^^-4^(»»^|

QITS OF

FIRiT ~N

OT TH6V*J««0

MY ifclM),

-C0C7)

SECONO
HALF (vac 0
or-rncv/0

Ofef
CH/WKEl

-63-

L«w^*

V J

C(*7)' 8

IS Ricur SHlfTEO
cLtccoptf HITS

$L
Cto+SM-MK

XM

I c6cl«-cfefl

-64-

m+ m

ffW CUHMXHt\
\JALU£
OF THE

{SCCONA
HALF
OP THE

W* A.DDM«"
SPECIFIED
BY CfaM

SI&MT
BITS

LEE*

(SIGHT airs
\(ON* BmsJ
fSPECiF/eo
BY c(taa)

-65-

LOCATMN
snctrnft
ayqM I
AN0C(xj)J

ZHSHT
BITS
OF

C(X3)

JFIKST
HALFWOAD
OF INSTK.
L.OCATe.0
ATADDHEXf
iftfOFIffl
arc/as) ,

NO akti

NO

Ei^z?)

>
NUMaen.
OF syrer

C(BS>- TWO il«.
oroPc«od

I 41 ^

^

-66-

<&€)<— 2

"£f(bM *■ «e<^\yK . -— 1
EQUAL >~^ C(X*)+—0 I

?

NOT «

C(X6) « I

ifccoc^— cfrs)

_y

rnitsr 32

-67-

rut
fucHmasr
16. airs

1 CONV€*T£D

I

or F/ftST 3t BITS
PIVlDEND IS IN

~ ~~ OF, PIN/IOEND airj _
I? '" Lfr

auoncN
MCmMOCI U1

2L

C
!♦*«<

OIVIOBND
/coa)

LC:0UKi4mO4-aiMricMr

-68-

cfc/)<— cp<!)-»fr

THt NUMBE&
OFfWE
FffcST

£
C#2)'

fSYTE
__ 7 APPLES*
*~) Of tZCoND

&

fiftANCW ACCOA0INC TO

MROO) (exwj ^axi.ej fSALJ

-69-

/K

cA2Ucfo.yi

ACTUAL

OrSECOND
OPERA MO

i*.
| cfe3)Z-crx3) |

ifcM+«fr.cteft5)l

-70-

A"

vu

cfea) «— c(X3)

c(&*)<

t£ft<4«- cL(c(a j)»wt])

 tf -y

<:(&»)«—cfoj+i

-71-

SLA

C(KZ)~
* £/* airs

,<?r eft a

C<fe3)

_^L

L^M'M^

iNrece* sin
OF Lfc^+WdJ

SHIFTED
cfca) Places

MCHTttoST
six BITS
OF ciScaj

Cftt)

i<L
Cfe3)

0*4*

rTHE 3/

Bjrior %
L(c(xa)+rtK«)
A« auwr
SHIFTED

-72-

res

&
Cfc2)>

MHTMOiT
SIX &ITS
or cfcz)

X.
Cfc3)«— O f-2>

EVtW \
ODD
RtillTE*

BY i

INTEGER
Birs OV THl
EVCNoDD

PAIft
SPEClFIEDfll
C(k3)A»tt
Ltrrsmrm
CtKTJ PtACtt

 Cop

C("B3)

EVOTN
006 I

/»tei»t»

[THE 6i
IMTEffC*

I BITS OTTWC.
I EVEN OMJ

PAIR
tncinu «Y
ftibHTswwn
CUM WOt

(ccc)^ / r~~
Nol VEi,

/$K
E(&.UAL. s^iti ^ ESIML x

o ^ ° S
NoS^

1 CC^TI- .—i \4
-73-

ffi(CWTA»0/r

 lorn AohgtiA

*

c(M<
ACTUAL

oP Sirt-c

iL
C(xz)«-c(LfoA2^)

^1
(fcfrij

HAS sync
CK7)*- \ SPK.CID*B LV* '' / BY C<**)

I. REMOVED

^L

-(C^

Wvts
I WrtUTI D
ir/ro cfoj
IN PIACC
OF THE
MissiHt am

-74-

c(Kf)

(RICH
rwe

I km

(M

rwo s/ri
CfXZ)
APP«K

fACTUAJ.

 lApp*£.r.f

cfcz} <- qL£M))

(Byre F/eoM
Cfr2)Wk»cM
If SrtCirltD

 BY CM

V
I Cfr£)<- 2. I

| L(CCOPE)|<-Cfr6) I

cfo) >*i

^)— I h-»

-75-

C0C¥)<
\Ri6Hmosr
/TWO aitr
) OF Cfc£>
L (oyrt AppsaH

('ACTUAL.
ADDKtSS
or oy*-c
ADD«E£f

I Ct*2)+-cLtz(A2.))\ I

iL
fByrE

cfo)*-Jr!?!P..t&V "1 WHICH It
I SPECIFIED
LAY CM

Jd
C*7)

CSTT
, .AND.

4*3)

BY £<Sc»)

-76-

{"*/«MTMarr
TWO BITS
OF Cfx£)
piTt ADPXtt)

Ute^-c^MDI
_^L

C^C7).

FROM C(^2)
WHICH IS
SPECif/eo

I

VM

rts

, , |TW<J a/rr

ild.

efa)«-
>CTt>At_
A0O«££*
OF »yrK

Lfca_
^Z.

f^Mfl

*

c(x}.
BYTC
FROM qk2)
WHfCtt U
SPECIT/Cft

-77-

/ACTUAL
\ADOK£S£

1 UDO*E.S\J

-^
fr3«- C^ft^]

3L
rarre P*OM

C6(7)-«-/cM WHICH

I LfccooE^X- cfrtil

cfrfl.]-*l

cfrd ■*

-78-

<#2) SIX BITS

XL

tfcfcM
AM

cfc*)
HTr*asT
BITS
Cfr2J

ZfcCX3)+«WJ
If */6HT
SHIFTED

PLACE.*

[#(*«*)

n ODD

PAIR
trtOFttD
or

fYHfc c* airr
OFTHCCWEN
ODD iwcirrert

ypccifiCB «Y
cbt3t Ane
i_err SHirrm
ftrtrwxs

-^toNMNCEj

-79~

SVtf* ^

M.GHTK*

soearito

(Act J

«

frni.c+amr
OFTWtETVCW
ODD nstimt
PAIR
srcciFiep sv
Cfc^) AM
ftKMT

lcfra)riAcer

-80-

I Cft$«— C(X3)-»WEJ

CtGj*-Ci.kM*l*(*4ll

-81-

aW' TWO BIT*
OF cAf2) .

terrtADPtfti

M.

cW
fAcnML.
ADOZZSS
OP syre
ADDKCrf

^k.
cfcZ) — dlia>>2)))

^Jz_
<#?)-

rerTE
FROM c^
WHICH IS
SPECIFIED

Tor

4N «-.
flyre wcfri)
iPEcine.0
BV C(XW
w/rH

<&<>«- / 1

|L(CCOPC)«-cfrfr) J

-82-

I . NFLA6 *— S "j

XL
i cfr«)-- s I

NFJ-S&-;—6 I

i cfrp«—ri

A/FLAg <— 7 |

\/_
1 Cfr6) «— 6 1

| NFLAG.*— g I

I c6<^)*— 6 I

s
NF/Jkc *— 9 I

iU-
Cfte)*— 8

-83-

NTLA& -— 10

±.
eke)— i

/ftC£E*ft\

NFZ.A6- II

^
| c(x.4)I € 1

M/
1 NFldS «— 12

&.
I cfrsV— q I

-84-

f'rwjj s/en
OF

T Lrwg NUMBS*

±-
C(X2)*-

'rne is
aco
CHAKACrOB
CP TMC

c(x«)

fCOUVERT -Pit
SCO
CWA«ACTtAf
INTO A

*-< BfNAXrmnKR
IFANV W«/l/-
SCo

NOr\tR.K
TO aa

coMrunurr

-85-

-86-

noot/s j

\l/
| NrCAU*-— 13 I

I Cftfl •» tf 1

I NFLAt -^ f<f "]

&.
I Cftc^jt— 7 I

| NPLAG «— f5 I

\ki
ACTURN JOMp TO
SuSMUTJNC gon«

&.
CRtTUAN TO *\

rue Hour/He \
WHICH CALCXP I

-87-

LDCATK TUB
NtXT flACT
t> POLAND BVTG
AND LOCATfc THE
NEXT SCCONO
OPt*AHO »VTS

A [■"""laiMAUt)
PR0P&U.1

cfcoHMSfc
UP W/TM
rimsr

V

CfX7)*--

"5FCOMJ
OPtLKAND
8YTff
PKOttALY

LlHt. Ui»
WITH
riKST
0P«AWO 0YTE

$L
tAkSK OUT THE
FIKST OPEKAHO
ttrVc. SMO INfBKT

TH€ SECOND
OPERAND BYTE
IN ITS PLACE

| C(X3)+— cftJH I

-88-

C&Q)

(THE LARXK
OF rue.
TWO 6YT£

tOCATE THE NEXT
F/Wf OPERAND
srre AND LOCATC
TM? NEXT iCCoN D
ftrfHAMfl BYTC

7<r
c(xo)«-

/"MASK
(ooooinig)WM1

PROPERLY J

SHIPTEO TO
L//VE U(»
WITH THC
Fie.iT

}k.

cf*7)<

fTHf. SEcatib
HALF «F THE
SECOND
OPffcAWZ) flffl:
PROCfrRLY
SH/F7ED TO
i-INC LfPW/fH
THE FIRST
OPERAND
Byre

_^k.
r«ViSK OUT THE
SECON0 HALF OF THC

F7/WT" OPCftAND BYTE
AND INSERT THE

JCECOJVO HAlP OT THE
SCCONO OPERAAIO tYTS

IN ITS PLKC£

-89-

GM

THE
1_AR6€«

«-■{OFTHC
TWO BYTE

LOCATE THE NKXT
FlfLST OfEMND am
AND LOCATE THt
NKXT XCC«NO
OPERAND arrs

7K
CIA-OJ «-< SHIFTED TO

Llft/E 0*»

OPCKANDflm

NJZ_

cM«

("THE F//vr
1 HALF OF THE
ISECOWD
/ OPErtAND fl/TE

-<PftW>Eftiy

UP WITH THE
Ft*STo*HAHb

v 9/TT I
MASK OUT THE P/HJT-

HALF OF THE F/IRST
OPERAND BYTE AMD
INSCKT THE FIIUT
HALF" OF TtfC secOMO
OPCrtANO BKTE IA»
IT* PLACC

1 cfri«-o5ci~f 1

< cfrd-cfrvJ-H I

-90-

ffHC

Cfi'Q-iPF THC
TWO eyre

(AODHZSTZS

LOOTS THE NKXT"
fiKsr oreruiND trrt
AND LOCATE THt.
NEXT fEGdNO
OPE«AND «YTJC

TFT
, . SHIFTED TO

CfaW L/NE Uf
wrruTHE
tiHST*m*MQ

\ BYTE

V

<#?)*-

(THe recovo
OPERAND
BYTE. P/tfl/fKQ

|SW/PT£D TO
7 LfH/6 £//»
1 WITM 'THC
I msTonww*

6Yre

I c^)*-qp(f7T

XL
ffEMOVf TWt FJRrr
OPERAND BYTE MfO
INSGW THS. .AND.

OPZKAND aynr AND
THC SECOND QKAAMt
BTTE IW ITC P/AC.C

-91-

C(B>^-'

(rue
LAK6£R OF
THE TWO
ayr£

LOCATE" THE NEX1
FIRST OPetiAND flYTG
AND LOCATE THE
w&T secoNty
Q>g<MNE> pyrg

/\

G0fD)«

rnKK
(H\IIUttm„)

SMfrtD TO
LINE UP
WITH THE

V

dy-M<

fTue recowo
OPERAND 6Y1L
PROPERLY
ZHIFTCDTO
UU£ UP WITH

I "THE FlUSr
[.OPERAND em

\ C(8*)<*—CteQ +

c^—c(a)-i

^L
REMOVE 7V/E F/«£T
OPEKAND fi/Tt *NO
INye«TTME .OA.

OF-THE P7*ST
opettAN* Byre SNO
THE StcoND OPEOAtJD
fiYTE IN ITS PLACE

-92-

I ifccopg)

c(b^.)*-

STHE
L-AR&at or
THE. TWO
BYre

LOCATE, -rue NVCT
VIKST OPttANb
BYTE AND LOCATE
THE WCXT JECOWD
OrgfiATIP J3YTE

/\
7ASK
nun

-/«.! J f>*or>£*ty .(X0J+-V s'W/FrecTO
LINf UP WITH
THE F/KJT
OPERANO

NO

JS£.

Cfc

ff«£ SECOND
1 OPERANQ

% ; fiynr PMWIUY
•#♦< swirreora

L/WEU/"
WfTHTHg

 i syre

Cfet);*-CtfrrH
/ft

I Cfo3)«-cftjHl

$L
AEMOV£ TWE F7HST
OP£«A(VO 8VTE A NO
INitXT TM6 .XO*.
OF THE FIRST
0P£fiAwfl s/rr AND
rHe rcct>MD
OPCCANO fiYTC IN

ITS PLACE

-93-

I cfe»)»— cfr2) |

L ©CATC TNt
NEXT F»eir
OPERAND BY re.

7\ fFiittr
r(xc)+-i OPERAND

lunar TH6 ayrc
iPi.ciF/e.0 BY cfrs)
/WTO TW£ LOCATION
Ort/6/AMU.y OCCI/P/CC
BY THE f^ffcST
orsKANo fivrc

I Cfr3)-*-Cft3)- I I

 at
C(fc»)«-cfe«$ +l 1

-94-

A

<■

qX5) I BYTE- -h
PC/tANO

CfcS)«-f

| l(CCODE)<- O

OF UHSt+OJ

I cfrj«-eM-i I

^L
I c(a *»)■<- c(a^i j

NEXT P/*Sf-
OPERAND BYTg

$

-95-

[l(CC0Dg)4- Q]

C(xe)

Locjmc THS hlexr
FIR5T OK.HANO BYTE
AND LOCATE TMC
wexr sacowo

-96-

|cfr3*-ckfcM+««nl

C»$>-(rg
CHAM6E

Tttt LrnritM

(#$«

rTH£ SIH.N
CODE OF

|THE WUrtBK
. DErE/9MINED
BY THE »6fl
O^THC
NUnBEO. AND

, flrnicrttwl

Cfr7)-
3Z
£

C(<6) -«-frc&|/iA«(0

4i. lNse.nr TUX DIGIT
(c(xe)) INTO ITi

(kl6HTM9ST

L(C(A ̂ ♦{ 2.9 BITS
or cfx.-?)

I rkr*+— Jre<£2-°*'U-I C0C7) /fZEFTrHffTBJ

-97-

cptj-ffiffga

CfK3) /* K/«WT
SHIFTED VPLACti

A

PL\cuBrrwair
THE rmtr HALF
ANOJtCONAMUT
OFTHt«COWO

AAHP BTTt ?

TME FX/trr oflEHAND
8/TK '* THC KI*#T-
tAosr avre OPTHC
finsr ofVRANt. THE
SECOND opc/tANa •yrc
/i -rwe ni&HTn>osr am
or rm ttcoNo opcawo

lNseRTC(x.7)iHra
THE LOCATION
O «IGINALIM OCCUPtfA
ay TMC FY*ST

OK*ANQ ayre

LOCATE T«E A/Err
Fi*ir oPErtA/vesrrf

/MPVW6 ftlg>/rret£Prt a
c6f^ is tepr

SHirrea 4 PLACES
 /K ~

C<W<

rsecoivo
»^LF OF

I OPEOANb »vn

A

^e

C(jS3)*- CJJM)-I

LOCATE THE NEXr
SECOND OPtAANC BYTE

LOCATE TH£ NEXT
FIRST OPERAND BYTK

(noviN* me.nr TO t&i)
AMD M»R0 TMK LMXTWN

i CM—CM^TI

^_
LOCATE TMC NExr
SECOND OPEAAHb IVfl

CM
4 SECOMO

4_. HALF OF
IE COM O
OPERAND Bffl

tit

^|

-98-

HE S.6NCC0U
0cTT*niNCD ay
BIT It OP P*w)
LEFT SHIFTED
flYFOL/*
PlACgJ

$» <=M~ »■ fl/rj OP

1 cpf^
ax3b it *i*nr
SHIFTED H-HMX.I

C/X7J

■THE. Fl«fo«ltA>Hl
arm /.* THE m««r-
rio« syre o* rHt
rf*jr OPCAAMD. THE
recowo OPCAAA/O a/rc
»i r«« AM.MT/'OMT a»TE
or THE tfcowp orEAAM>

^
PlACcS 8ETWE£/V

rtWW THE PIRrr HALF
H*'/M AND SCCOHb HALF

I «F THE SECOND
\,opg«ANp arre

-^fcWANCEJ

±<
/AttSAT C&7) /WTO
THE LOCATION
Qp.tiiNM.iy OCCUPIED
AY THE F/KST
opCgANn 8/TE

cfl"^*-C(k«).oR. cfcv}

LOCATO rw NEX
niter OPCKAND avre
(ntviNt fUGnrir>

^f.^-l

ptoNrt

j ciM"-^")-' I

LOCATE THE NEXT
pmiT OPERAND ayrc
faov/Nt nitHTTOLXPr)

\ cft3)-C^-| J

ik-
LocAre r«E A/exr
ClCONP OPERAND 8YTE

(MOVING AICWT TO tcvr)

INS*K.r CfOJ/A/TO THf.
LOCATION OHCINALLY
OCCIIP/ED ay rn*
F/RfT orSMNb BYTE

X.
cOc*)*-

F"f AST HAL*
OF SECOND
OPERAND
BYTE

LOCA7T THE WETT"
rtusrorSMNo avrr

TCCO/VD HAJtr
- , Of 5ECOA/D

C60J*- OPCRAMO
avTE .OR.

cht«i

-99-

C(X$ IS AI6HT
SHlVTSD 9 PLAC&l

\
> sync

LOCATE THE
iWIKtr OPBWWO

MO LOCATC rue \
Exr JECOWO orf«»»M)

8YTT

C(B3) t— C(M

c^^{; set O NO HAtF

n
THE Fi«*r oreKANo
arf£ u rue. ittnr-
tAoer am OF rue.
FiKtrore/tANO. THC
ICC ON D O/OCAAND BYrt
IS THK *l<*/Tf*€L*r
am e* rtKJtomo vtmn

' fSZCOND HAlf
ctfoM oP SECOND M ' \ OfEgAtt BY71

3Z
C(K7) IS LEFT

SHIFTED IY
 <j.PLHX.i

Jc
INltUT cpc^.on. C/iKj
INTO THE LOCATIOW
Oft/fiffMLLy OCCUPItO B1
rne nurr OPCWWO BYTE

NO

_^L

/'F/IWTMAi.r

muff r«£ we*r

fMoV/A>« it/CH-r T»
AMD iHttarcti4in tn ua

J4& "Q kran^-c^-> i

-100-

DZCI

\/_
| NFLAO, \ IC |

3L
I C(M4r- , 1

SK

±.
I NFLA6 +-n I

V
I cw «- I 1

NFLA&4-I9 1

^
lcW«-l I

£/M

V
| KFIA6 *— /q 1

V
I cfc4<- f _J

-101-

(BYTE ADDKii

! T/0 STA&TS

IPl*-
INOiX OF NW
AKKAyWHUE

^4
TO SuBAOvruvK

JL
ktSTOKi: qx i»,
C(83, Cfrg, C(fl7)

IP/«-
couwr
or NUMatu
or >rm

SAVE cOctf, cfaa).
cfe«), cffl?) '

IP2"
T/NDEX OP NW

"lAftlWy WH£*E
I I/O JTART*

kH cfca)«-eM-i I

J^.
 wfeo

^_

aha), ctBd.c&t

-102-

lf>JW/4JW

(rut CU*I&NT\
VALUE OF"

THC SECOND
HALF OF

(TM£ PSW
<\

±.
| djIADOK)* cfrp

±
(RtruRN TO rm "\

ROUTINE WHICH j
CALLED r/*M 7

-103-

VI Improving LUIS

6,1 Introduction

While the Lehigh University IBM 360 Simulator is

quite useful in its present form, there are a number of

changes which could be made to improve it. Section 2

describes how more memory could be added to the simulated

IBM 360. Section 3 describes how the decimal and floating-

point feature instructions could be added to the simulator.

Section 4 suggests a modification to LUIS which would

enable the user to selec^ whether the simulator sent

normal or abbreviated messages to the user* Section 5

describes how additional commands could be added to the

simulator.

-104-

6,2 Adding More Memory

The maximum storage capacity of an IBM 360 is

16,777,216, . , byte addresses. Unfortunately the

CDC 6400 can only provide the user with a maximum of

40,960.ecimal sixty bit storage locations. Therefore

it is necessary to limit the size of the memory of the

simulated IBM 360 to a small fraction of the maximum

capacity. Since byte addresses are often placed into

eighteen bit B registers by subroutine FIBM, byte

addresses must be restricted to a maximum length of seven-

teen significant bitsi This fact restricts the largest

possible byte address to 131»071rfeciraax»

LUIS allows the user to specify the portion of

storage which will be used. The user may specify any

starting address between 000000 and 01D8A8 hexadecimal

(121,000, .,)• The user's portion of storage may

contain a maximum of ten thousand bytes. While the size

of the simulated memory is currently limited to ten

thousand bytes, this limit could be increased. By

increasing the dimension of the NW array and by modifying

the DEC subroutine so that an integer larger than 9,999

could be read, the maximum size of the simulated memory

could be increased. Naturally, even if this was done,

it would still be necessary to limit the largest possible

byte address to a pumber less than 131,072. . -.

-105-

6,3 Adding More Instructions

The decimal feature instructions are not available

in LUIS. However, one could easily add these instructions

to LUIS. Currently a request for any of these instructions

causes subroutine PIBM to branch to a section of the

subroutine called DECI. DECI causes an error message to

be printed and terminates execution of the user's program.

One could add additional sections to FIBM which would

perform the operations specified by the decimal feature

instructions. Subroutine FIBM could then be changed so

that a request for a decimal feature instruction would

cause FIBM to branch to the appropriate section where

the operation would be performed.

Currently a request for any of the floating-point

feature instructions causes FIBM to branch to a section

of the subroutine called FLOAT. FLOAT causes an error

message to be printed and terminates execution of the

user's program. One could add additional sections to

FIBM which would perform the operations specified by the

floating-point feature instructions. Sections RR and

RX of subroutine FIBM would have to be modified to

include branches to the sections of FIBM which would

perform the floating-point operations. Naturally it

would be necessary to add floating-point registers to>

LUIS. These registers could be storage locations in the

"STATUS" common block.

-106-

6.4 Abbreviated Messages From LUIS

Whenever the user must supply some information to

the simulator, the simulator specifies the exact nature

and format of the information required. Usually the

message is in the form of a one or two line sentence.

These messages are especially useful to the person who

has not used the simulator previously. Unfortunately

these messages can limit the speed with which an experi-

enced user can use the simulator. This fact is especially

true when using a teletype.

For the experienced user, a two or three word phrase

would provide sufficient information so that the user

would know what type of information the simulator required.

The simulator could be modified to provide two additional

requests. One request would cause the simulator to go

into the abbreviated mode where all messages sent to the

user would be in an abbreviated form. Another request

would place the simulator in the normal mode. In the

normal mode all messages would be printed by the simulator

in the manner currently being used.

-107-

6.5 Additional Simulator Commands

At the present time there are eleven different

commands which the user may issue when the simulator

is in the request mode. The main routine uses a series

of IF statements to branch to the section of the routine

which handles the particular request. Additional

commands could be added to the simulator. Additional IP

statements would be added to the present series which

would check for the new commands. These IF statements

would then branch to sections of the main routine which

would handle the new commands.

-108-

References

1, A22-6821-6, IBM System/360 Principles of Operation,

Copyright 1967, International Business Machines

Corporation,

2, COMPASS Version 3 Reference Manual, Copyright 1974,

Control Data Corporation,

3, Grishman, Ralph: "Assembly Language Programming for

the Control Data 6000 Series," Algorithmic Press,

New York, Copyright 1971,

4, SCOPE Reference Manual Version 3,4,1, Copyright

1974, Control Data Corporation,

-109-

Appendix A

The following material is reproduced from the

manual, IBM System/360 Principles of Operation. This

material should be of value to those who are unfamiliar

with the IBM 360 structure.

Instruction Format

The length of an instruction format can be one, two,
or three halfwords. It is related to the number of stor-
age addresses necessary for the operation. An instruc-
tion consisting of only one halfword causes no refer-
ence to main storage. A two-halfword instruction pro-
vides one storage-address specification; a three-half-
word instruction provides two storage-address specifi-
cations. All instructions must be located in storage on
integral boundaries for halfwords. Figure 13 shows
five basic instruction formats.

The five basic instruction formats are denoted by
the format codes HH, BX, BS, SI, and ss. The format
codes express, in general terms, the operation to be
performed, BH denotes a register-to-register operation;
BX, a register-and-indexed-storage operation; BS, a reg-
ister-and-storage operation; si, a storage and immedi-
ate-operand operation; and ss, a storage-to-storage
operation. An immediate operand is one contained
within the instruction.

For purposes of describing the execution of instruc-
tions, operands are designated as first and second op-
erands and, in the case of branch-on-index instructions,
third operands. These names refer to the manner in
which the operands participate. The operand to which
a field in an instruction format applies is generally de-
noted by the number following the code name of the
field, for example, Ri, Bi, L», D».

In each format, the first instruction halfword con-
sists of two parts. The first byte contains the oper-
ation code (op code). The length and format of an
instruction are specified by the first two bits of the
operation code.

-110-

First Holfword I

Byt* I | Byte 2

SOCOIM HaltwOfd •

Register Register
Operand 1 Operand 2

Op Cod* *, R2 RR Format
ri it II is
l I

Register
Operand 1

Addran
Operand 2

71
I

1114 If It
I

' Length ' Address
Operand 1 Operand 2 Operand I

Third HeKword 3

1 Op Code Rl x2 B2 D2
■ re II u nil itM ii

i - i 1
'ii I
[Register Register Address]
! Operand 1 Operand 3 Operand 2 ,

Op Code Rl R3 »2 D2
» I • ii ii uu im >i

: ! !
I Immediate ' Address 1

i ! Operand i Operand 1 ,
■ , . , « '

Op Code '2 B1
D,

RX Format

RS Format

SI Format

Address
Operand 2

1 Op Code 51
7 1 llll Mil Itw

SS Format

Figure 13. FiVo Bute Instruction Formats

INSTRUCTION LENGTH HBCORD1NO

BIT POSITIONS INSTRUCTION INSTRUCTION

(0-1) LENGTH FORMAT

00 One halfword RR
01 Two halfwords RX
10 Two halfwords RS or SI
11 Three halfwords SS

The second byte is used either as two 4-bit fields
or as a single eight-bit field. This byte can contain the
following information:

Four-bit operand register specification (Ri, R«, or
R»)

Four-bit index register specification (Xj)
Four-bit mask (Mj)
Four-bit operand length specification (Li or I4)
Eight-bit operand length specification (L)
Eight-bit byte of immediate data (I»)

In some instructions a four-bit field or the whole sec-
ond byte of the first halfword is ignored.

The second and third halfwords always have the
same format:

Four-bit base register designator (Bi or B,), fol-
lowed by a 12-bit displacement (Di or D»).

-Ill-

Address Generation
For addressing purposes, operands can be grouped
In three classes: explicitly addressed operands in main
storage, immediate operands placed as part of the in-
struction stream in main storage, and operands lo-
cated in the general or floating-point registers.

To permit the ready relocation of program seg-
ments and to provide for the flexible specifications of
input, output, and working areas, all instructions re-
ferring to main storage have been given the capacity
of employing a full address.

The address used to refer to main storage is gen-
erated from the following three binary numbers:

Base Address (B) is a 24-bit number contained in a
general register specified by the program in the B
field of the instruction. The B field is included in
every address specification. The base address can be
used as a means of static relocation of programs and
data. In array-type calculations, it can specify the lo-
cation of an array and, in record-type processing, it
can identify the record. The base address provides for
addressing the entire main storage. The base address
may also be used for indexing purposes. •

Index (X) is a 24-bit number contained in a general
register specified by the program in the X field of the
instruction. It is included only in the address speci-
fied by the nx instruction format. The nx format in-
structions permit double indexing; i.e., the index can
be used to provide the address of an element within
an array.

Displacement (D) is a 12-bit number contained in
the instruction format. It is included in every address
computation. The displacement provides for relative
addressing up to 4095 bytes beyond the element or
base address. In array-type calculations the displace-
ment can be used to specify one of many items as-
sociated with an element. In the processing of records,
the displacement can be used to identify items within
a record.

In forming the address, the base address and index
are treated as unsigned 24-bit positive binary integers.
The displacement is similarly treated as a 12-bit posi-
tive binary integer. The three are added as 24-bit
binary numbers, ignoring overflow. Since every ad-
dress includes a base, the sum is always 24 bits long.
The address bits are numbered 8-31 corresponding to
the numbering of the base address and index bits in
the general register.

-112-

The program may have zeros in the base address,
index, or displacement fields. A zero is used to indi-
cate the absence of the corresponding address com-
ponent. A base or index of zero implies that a zero
quantity is to be used in forming the address, regard-
less of the contents of general register 0. A displace-
ment of zero has no special significance. Initialization,
modification, and testing of base addresses and in-
dexes can be carried out by fixed-point instructions,
or by BRANCH AND LINK, BRANCH ON COUNT, or BRANCH-

ON-INDEX instructions.
As an aid in describing the logic of the instruction

format, examples of two instructions and their related
instruction formats follow.

RR Format

Add 7 9
IIII

Execution of the ADD instruction adds the contents of
general register 9 to the contents of general register
7 and the sum of the addition is placed in general
register 7.

ftX format

Store 3 10 14 300
7* ttM

Execution of the STORE instruction stores the contents
of general register 3 at a main-storage location ad-
dressed by the sum of 300 and the low-order 24 bits
of general registers 14 and 10.

-113-

Sequential Instruction Execution

Normally, the operation of the CPU is controlled by
instructions taken in sequence. An instruction is
fetched from a location specified by the instruction
address in the current rsw. The instruction address is
then increased by the number of bytes in the instruc-
tion fetched to address the next instruction in se-
quence. The instruction is then executed and the same
steps are repeated using the new value of the instruc-
tion address.

Conceptually, all halfwords of an instruction are
fetched from storage after the preceding operation is
completed and before execution of the current oper-
ation, even though physical storage word size and
overlap of instruction execution with storage access
may cause actual instruction fetching to be different.
Thus, it is possible to modify an instruction in storage
by the immediately preceding instruction.

A change from sequential operation may be caused
by branching, status switching, interruptions, or man-
ual intervention.

Branching

The normal sequential execution of instructions is
changed when reference is made to a subroutine, when
a two-way choice is encountered, or when a segment
of coding, such as a loop, is to be repeated. All these
tasks can be accomplished with branching instruc-
tions. Provision is made for subroutine linkage, permit-
ting not only the introduction of a new instruction
address but also the preservation of the return address
and associated information.

Decision-making is generally and symmetrically
provided by the BRANCH ON CONDITION instruction.
This instruction inspects a two-bit condition code that
reflects the result of a majority of the arithmetic, logi-
cal, and i/o operations. Each of these operations can
set the code in any one of four states, and the con-
ditional branch can specify any selection of these four
states as the criterion for branching. For example, the
condition code reflects such conditions as nonzero,
first operand high, equal, overflow, channel busy, zero,
etc. Once set, the condition code remains unchanged
until modified by an instruction that reflects a dif-
ferent condition code.

The two bits of the condition code provide for four
possible condition code settings: 0, 1, 2, and 3. The
specific meaning of any setting is significant only to
the operation setting the condition code.

-114-

List of Instructions by Sot and Foatwo

Standard Instruction Set

NAME MNEMONIC TTPB CODE

Add AR RR C 1A
Add A RX C 5A
Add Halfword AH nx C 4A
Add Logical ALR RR C IE
Add Logical AL RX C 5E
AND NR RR C 14
AND N RX C 54
AND NI SI C 04
AND. NC SS C D4
Branch and Link BALR RR 05
Branch and Link BAL RX 45
Branch on

Condition BCR RR 07
Branch on

Condition BC RX 47
Branch on Count BCTR RR 06
Branch on Count BCT RX 46
Branch on Index

High BXH RS 86
Branch on Index

Low or Equal BXLE RS 87
Compare CR RR C 19
Compare C RX C 59
Compare Halfword CH RX C 49
Compare Logical CLR RR C 15
Compare Logical CL RX C 55
Compare Logical CLC SS C D5
Compare Logical CLI SI C 95
Convert to Binary CVB RX 4F
Convert to Decimal CVD RX 4E
Diagnose SI 83
Divide DR RR ID
Divide D RX 5D
Exclusive OR XR RR C 17
Exclusive OR X RX C 57
Exclusive OR XI SI C 97
Exclusive OR XC SS C D7
Execute EX RX 44
Halt I/O HIO SI C 9E
Insert Character IC RX 43
Load LR RR 18
Load L RX 58
Load Address LA RX 41
Load and Test LTR RR C 12
Load Complement LCR RR C 13
Load Halfword LH RX 48
Load Multiple LM RS 98
Load Negative LNR RR C 11
Load Positive LPR RR c 10
Led PS W LPSW 81 L 82

-115-

NAME MNEMONIC TY TS COD

Move MVI SI 92
Move MVC SS D2
Move Numerics MVN SS Dl
Move with Offset MVO SS Fl
Move Zones MVZ SS D3
Multiply MR RR 1C
Multiply M RX 5C
Multiply Halfword MH RX 4C
on OR nn c. 16
OR O RX c' 56
OR OI SI C 06
on OC SS c D6
Pack PACK SS F2
Set Program Mask SPM RR L 04
Set System Mask SSM SI 80
Shift Left Double SLDA RS C 8F
Shift Left Single SLA RS C 8B
Shift Left Double

Logical SLDL RS 8D
Shift Left Single

Logical SLL RS 89
Shift Right Double SRDA RS C 8E
Shift Right Single SRA RS C 8A
Shift Right Double

Logical SRDL RS 8C
Shift Right Single

Logical SRL RS 88
Start I/O SIO SI c 9C
Store ST RX 50
Store Character STC RX 42
Store Halfword STH RX 40
Store Multiple STM RS 90
Subtract SR RR c IB
Subtract S RX c 5B
Subtract Halfword SH RX c 4B
Subtract Logical SLR RR c IF
Subtract Logical SL RX c 5F
Supervisor Call SVC RR 0A
Test and Set TS SI c 93
Test Channel TCH SI c 9F
Test I/O •no SI c 9D
Test Under Mask TM SI c 91
Translate TH SS DC
Translate and Teat TRT SS c DD
Unpack UNPK SS F3

Note: A*C in the TYPE column means that the condition
code is set* An"l/in the TYPE column means that
a new condition code is loaded*

-116-

Appendix B

LEHTOH UNIVERSITY IBM 360 SIMULATOR

ENTER THE SMALLEST ADDRESS IN YOUR PROORAM
AS AN EIQHT DIOIT HEXADECIMAL NUMBER.
00000000
ENTER THE MAXIMUM SIZE OF YOUR PROORAM (IN BYTES)
AS A FOUR DIGIT DECIMAL INTEOER.
0080
ENTER THE PSW AS A 16 DIGIT HEXADECIMAL NUMBER.
0000000000000000
REQUEST=INSERT
ENTER THE STARTING ADDRESS (OF THE COLLECTION OF BYTES)
AS AN EIGHT DIGIT HEXADECIMAL NUMBER.
00000000
ENTER THE NUMBER OF BYTES WHICH WILL BE INSERTED AS
A FOUR DIOIT DECIMAL INTEGER.
0072
IF YOU HAVE THE BYTES ON THE FILE PGM, TYPE POM.
IF YOU ARE GOING TO ENTER THE BYTES, TYPE INPUT.
PGM
THE BYTES HAVE BEEN READ
REQUEST=DUMP
TYPE ALL OR PARTIAL
ALL

05709C00
70145810
703E5010
00037036
00000012

00000
00010
00020
00030
00040

702E5810
703A5910
70429001
00017042
00000034

00008
00018
00028
00038
00048

00004
00014
00024
00034
00044

REQUEST=EXECUTE
YOUR PROGRAM WANTS TO READ SOME WORDS
IF YOU HAVE THE WORDS ON THE FILE POM, TYPE PGM.
IF YOU ARE GOING TO ENTER THE WORDS, TYPE INPUT.
INPUT
ENTER THE WORDS. (ONE WORD PER LINE)

00038 -0000004C "'
0003C -00000039
00040 -OOOOOOOD

70365910
703E47A0
703247F0
00000023
00000000

OOOOC 703A47A0
0001c 70205810
0002C 70000000
0003c 00000034
0004C 00000000

WORDS READ INTO MEMORY BY THE USER"S PROORAM

00038 0000004C

-117-

0003C 00000039
00040 0000000D

WORDS PRINTED FROM MEMORY BY THE USER"S PROGRAM

00044 0000004C
YOUR PROGRAM WANTS TO READ SOME WORDS
IF YOU HAVE THE WORDS ON THE FILE PGM, TYPE PGM.
IF YOU ARE GOING TO ENTER THE WORDS, TYPE INPUT.
INPUT
ENTER THE WORDS. (ONE WORD PER LINE)

00038 -00000004
0003C -OOOOOOOA
00040 -OOOOOOFF

WORDS READ INTO MEMORY BY THE USER'S PROGRAM

00038 00000004
0003C OOOOOOOA
00040 OOOOOOFF

WORDS PRINTED FROM MEMORY BY THE USERNS PROGRAM

00044- OOOOOOFF
YOUR PROGRAM WANTS TO READ SOME WORDS
IF YOU HAVE THE WORDS ON THE FILE PGM, TYPE PGM.
IF YOU ARE GOING TO ENTER THE WORDS, TYPE INPUT.
INPUT
ENTER THE WORDS. (ONE WORD PER LINE)

00038 -00000000
0003c -00000000
00040 -OOOZZZZW

WORDS READ INTO MEMORY BT THE USER"S PROGRAM

00038 00000000
0003c 00000000
00040 OOOZZZZW

-118-

**** AN INVALID CHARACTER APPEARED IN A HEXADECIMAL NUMBER.
THE BYTES WERE REMOVED FROM MEMORY
REQUEST-STATUS

PROGRAM STATUS WORD 0000000090000006

INSTRUCTION ADDRESS 00006
CONDITION CODE 1 ILC

0 00000000
k 00000000
8 00000000
C 00000000

GENERAL REOISTERS
1 000O00FF 2 00000000
5 00000000 6 00000000
9 00000000 A 00000000
D 00000000 E 00000000

3 00000000
7 40000002
B 00000000
F 00000000

REQUEST=STORE
TYPE ALL OR PARTIAL
ALL
THE BYTES HAVE BEEN DUMPED ONTO FILE STORE
REQUEST*BYE
EXIT

-119-

Vita

Leonard I. Horey, son of Helen and Henry Horey, was

born on January 19,1951 in Newark, New Jersey*. He did

his undergraduate work at Lehigh University and in 1973

received the Degree of Bachelor of Science in Electrical

Engineering with highest honors.

The author was a teaching assistant in the Department

of Electrical Engineering throughout his graduate program.

-120-

	Lehigh University
	Lehigh Preserve
	1-1-1975

	The Lehigh University IBM 360 simulator.
	Leonard Ira Horey
	Recommended Citation

	tmp.1451580486.pdf.dJB0Q

