
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1980

Design and implementation of a Pascal based
simulation language.
Robert George Wilder

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Industrial Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Wilder, Robert George, "Design and implementation of a Pascal based simulation language." (1980). Theses and Dissertations. Paper
1722.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F1722&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1722&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1722&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=preserve.lehigh.edu%2Fetd%2F1722&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/1722?utm_source=preserve.lehigh.edu%2Fetd%2F1722&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

DESIGN AND IMPLEMENTATION OP

A PASCAL BASED SIMULATION LANGUAGE

by

Robert George Wilder

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Industrial Engineering

Lehigh University

1980

ProQuest Number: EP75994

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest

ProQuest EP75994

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

This thesis is accepted and approved in partial

fulfillment of the requirements for the degree of Master

of Science

/ (eCate)

Chairman of Department

ii

TABLE OF CONTENTS

I. Abstract 1

II. Introduction 4

III. Pascal and Software Design . 7

IV. Design Considerations 12

V. The Preprocessor 15

VI. The Resultant Program 22

VII. Recommendations 27

VIII. Conclusions 32

IX. Bibliography 34

X. Appendix I - Sample User Program 35

XI. Vita 38

iii

ABSTRACT

This thesis investigated the feasibility of

simulation languages based on the programming language

Pascal. The major effort of this investigation involved

the coding and testing of a discrete event language.

The specifications of this language closely followed

those of the FORTRAN based GASP IV, deviating only to

include the constructs and data structures occurring in

Pascal but missing in FORTRAN.

Due to the design of the Pascal compiler, the

implementation of this language required a preprocessor.

This had a considerable impact on the appearance of the

language to the user. He must code a pseudo program in

which he codes not only the procedure that will process

the different events, but also the setting in which the

simulation is to occur. This setting first of all

defines the global variables and variable types that

will be used, such as the names of the different events

and the structure of the event records. It is also

necessary to define other information which the prepro-

cessor uses to manage the histograms and other statistics

and to produce the type of output the user desires. The

preprocessor then produces a valid Pascal program which

is compiled and executed.

Further research will, of course, need to be done

in the incorporation of more sophisticated types of

simulation languages into a Pascal environment and in

the more efficient implementation of those constructs

already included. Two of the considerations that will

guide this future research were identified in this

thesis.

The first consideration is the tradeoff between

space (the amount of memory that the program needs to

execute) and time (how quickly it executes), especially

as it is demonstrated in the use of pointers versus the

use of arrays. More thought must be given to when

dynamic allocation of storage is necessary or advisable.

Perhaps two versions of the preprocessor should be

created. The first of these would identify the amount

of storage actually used but would execute slowly. The

second would use this information to allocate the

necessary storage and would execute relatively quickly.

This would be especially useful if the program is to be

used often.

Secondly, careful consideration must be given to

the type of statistics that will be collected. This was

discovered to have a significant impact on the imple-

mentation of the features of the language. This impact

should be identified in the design phase so that effort

is not wasted.

INTRODUCTION

The development and use of models and simulations

has roughly paralleled the growth of computer technology

in the past three decades. This should be no surprise,

since the increasing computational power of the computer

has enabled more and more problems to be simulated

effectively.

The first digital simulations were written in

machine or assembly languages, but this was extremely

cumbersome, especially if modifications were necessary

in the model. Compiler languages were then used, but

the translation of a model into a language remained time

consuming and expensive. There were two developments

from this situation. First, special programs were

designed to solve specific classes of problems. In that

way much of the design and coding of a program was

already completed, as long as the problem was of the

correct type. Second, general purpose simulation

languages were developed. They could be used on many

different problems, but did not eliminate as much of

the design or coding as problem specific languages did.

Today there are a great many general purpose

simulation languages, and these can be classified by a

number of different characteristics. For example,

continuous simulations are those in which the states

of the simulation change continuously, whereas in

discrete simulations the states change at discrete

points in time. Simulation languages can be further

differentiated by their point of view - the way a system

to be simulated is viewed. The event scheduling approach

segments a system into points of time at which the state

of the system changes (the events). The activity

scanning view segments a system into activities, which

are the ways that the system states change. The process

interaction view traces the progress of an entity

through the many activities and events in a system.

The point of view is an essential part of a

simulation language (although the distinctions between

the different views appear vague at times). It not

only provides a frame of reference to view the problem

from, but also determines the building blocks the user

will have to construct the model. These, in turn, aid

the user in both the decomposition of the system into

its functional parts, and in the formulation and

translation of the model.

Contrast this with an assembly language or compiler

language simulation. The compiler language gives no

guidance at all in the formulation of a model, while a

simulation language forces the user to determine the

events or activities involved. Much of the coding in

the compiler language is concerned with how to keep the

list of events correct, or how to keep the bookkeeping

for the statistics accurate. The simulation language,

on the other hand, allows one to focus his attention on

the definition and coding of only the events or activ-

ities involved in the model. This provides a great

savings in time and effort, and the conceptual guidance

offered should make the model more accurate so that

less debugging is required.

PASCAL AND SOFTWARE DESIGN

The growth of simulation languages has also

reflected the development of software design techniques.

Ten years ago, the major emphasis of computer programming

was on the end product, namely the program output,

rather than on a clear and logical path to achieve that

end. As a result, programmers would start to write a

program by coding some detailed procedure only to

discover.that their basic foundation was faulty and

needed to be redone. They continued this coding and

patching process until they had a program that ran, but

was often difficult to understand.

This is not possible today. The complexity of

today's problems and the time constraints frequently

encountered demand that programs or systems be designed

and coded by teams of people. Each person's task must

therefore be more narrowly defined from the beginning.

It is also necessary that programs be easy to maintain.
i.

All too often the original problem changes slightly, or

an error is discovered, and it is not uncommon for the

person making the change to be someone other than the

original writer. It is imperative, then, that the

program be easy to understand, or the modifier could

spend as much time trying to understand the program as

it took to write it.

The techniques and. languages in use today have

been developed to make a program easier to design and

code by allowing one's thought processes to be reflected

more easily. They also make programs more, easy to

maintain because of the simplicity and readability of

the code. Some of those techniques most pertinent to

the design of programs are the following:

1) Top down design - beginning the design
of a program with the highest level of
control;

2) Modular design - the design of a program
module by module; and

3) Functional decomposition - the process
of subdividing a program into smaller,
more manageable, modules or functions.

However, the most widely publicized tool, and the

one pertaining most to coding, is structured programming.

Structured programming is based on the structure theorem

which states that any "proper program" (a program with

only one entrance and one exit) can be constructed using

only three control structures. The simplest of these is

the block or sequence. It consists of a block of state-

ments executed one after another. The next structure

is the IF-THEN-ELSE. This executes one of two alter-

natives, depending on whether a specified condition is

true. Finally, there is the DOWHILE or DOUNTIL. These

8

repeatedly execute a sequence of statements while a

condition is true (or until it is true). Notice the

absence of a GO TO statement. Some people feel that

GO TO statements make the flow of the program logic

difficult to follow, and in addition do not model the

thought process accurately enough. For example, when

one codes IF (condition) GO TO (statement), what is

actually intended is IF (condition) THEN (execute these

statements).

Pascal was designed with structured programming in

mind. The basic control structures of Pascal include

those mentioned above: the sequence, the IF-THEN-ELSE,

the DOWHILE (WHILE condition DO statement), and the

DOUNTIL (REPEAT statements UNTIL condition). In

addition, Pascal has the GO TO statement, a FOB state-

ment which repeatedly executes a statement while a

progression of values is assigned to a control variable,

and a CASE statement which executes one of many alter-

natives depending on the value of a variable. The CASE

statement was included so that large nested IF-THEN-ELSE

statements may be avoided in some instances.

Other characteristics of Pascal include its block

structure (with both variables and procedures being

defined either locally to a procedure or globally), its

allowance of recursive calls, and the flexibility of

its data structures. Pascal is not restricted to the

standard data structures of integer, real, character,

boolean, and array. It also has files, sets, pointers

(variables that point to the location of an item),

records (a collection of named attributes), and scalar

types (an ordered sequence of identifiers or keywords).

The proponents of Pascal point out that coding in

this language guides one's thought processes in

designing a program in much the same way that a simula-

tion language guides one's thoughts in the design of a

simulation. It is only natural, then, to combine the

two, for simulation languages lend themselves easily to

this structured approach. The different functions or

procedures are precisely the processing of the different

events. The basic control structure is extremely simple,

consisting of selecting and processing the events until

the simulation is finished (by whatever stopping rule

is used). In structured terms the main procedure might

look like this:

Initialize simulation variables
DOUNTIL finished

Get next event
Process event

END-DO
Write output.

10

The design of Pascal lends itself easily to coding and

performing this procedure. If Pascal is truly one of

the languages of the future, simulations are going to

be written in it. This project is a first step in that

direction.

11

DESIGN CONSIDERATIONS

The first step in constructing a simulation language

is to identify the type of simulation and its point of

view. This project is concerned only with discrete,

event scheduling simulations. Instead of simulation

time being advanced in fixed increments, time is advanced

to the time of the next event. This illustrates more

clearly what is actually occurring in the simulation,

and simplifies some of the coding. This decision was

also motivated by an attempt to follow the specifications

of the GASP IV language as closely as possible since

GASP IV was straightforward, simple to understand, and

the most familiar language to those involved in the

project. This had an added advantage of allowing more

time to be devoted to studying the problems of imple-

mentation.

Since the language was based on Pascal rather than

the FORTRAN used in GASP IV, a number of changes were

introduced. These changes were incorporated into the

project to determine the effect that the increased

flexibility and naturalness of Pascal would have on a

simulation language.

For example, one of the major differences between

Pascal and FORTRAN is in the types of data structures

12

allowed. An event TYPE could be a scalar type of

ARRIVAL and ENDOFSERVICE, and an event would then be a

record with an event indicator (ARRIVAL or ENDOFSERVICE),

time of the event, time it entered the system, the

particular server it would have, and whatever else might

be needed to describe the event. These events could be

linked together in a list with the use of pointers,

thereby allowing storage to be allocated dynamically.

Of course, this additional flexibility has some

side effects. The different possible types of event

records and lists make the list management routines

(those that handle the inserting and removing of the

events) considerably more complex. A different REMOVE

procedure is now needed for each list type, and a

different INSERT procedure is needed not only for each

list type, but also for each field of the event record

that the event list is ordered upon. The requirement

that these types be declared before the list management

routines means that either the user codes these or that

a preprocessor codes them.

The collection of statistics is also made consid-

erably more complex. Separate pointers and lists are

needed for each statistic collected. It is also

difficult to refer to the lists and statistics unless

13

tables are generated which assign numbers to the

different names and types. These drawbacks must be

weighed, though, against the flexibility and ease of

writing a self-documenting program that Pascal offers.

The clarity of Pascal's control structures, coupled with

the multitude of data structures and descriptive names

available, enables the user to code a program that much

more closely reflects his thought processes and that is

easier to read. These advantages are clearly worth the

added complexity in implementation of the language.

Ik

THE PREPROCESSOR

The necessity of a preprocessor has already been

alluded to in the previous section. The early stages of

this project attempted to follow GASP IV fairly closely

by having the user code an events procedure that would

be combined with various subroutines to produce the

simulation program. This eventually proved impossible

because of the linkage problems involved (How, for

example, could the list handling procedures be written

beforehand when the attributes of the event are not yet

known?).

Even if this were not a problem, it would still

not be possible to just code an events procedure. Two

methods were investigated to declare an events procedure

that had not yet been written, and each one failed. The

first method was to declare that procedure to be of type

EXTERNAL. The problem then arose that a Pascal procedure,

unlike a FORTRAN subroutine, can not be compiled by

itself. Several attempts were made at compiling it as

part of a dummy program and then extracting the procedure

from the program but these attempts failed. An

additional problem was created by the fact that the

procedures are not known by their procedure names, but

15

by a compiler generated, name such as PROC0002 or PR0C0003,

The second method was to write a dummy events

procedure in the program, and to override this with

the one written by the user. This is the method used

by GASP IV, but in Pascal the same problems as before

were encountered, and so the whole idea was abandoned.

These considerations led to the concept that the

user would code not just a procedure, but also the

context of the simulation. This pseudo program would

be input to a preprocessor which would extract the

necessary information from this program skeleton, code

the required supporting procedures, and thus create a

valid Pascal program.

The preprocessor is therefore divided into two

major parts - a parsing part and a program writing part.

The parsing part identifies the standard Pascal

constructs and the additions to these that make up the

language. This information is used to build the lists

and tables that enable the program writing part to

assemble the supporting procedures required by the

program.

The first set of tables is used to hold information

about the way the lists are constructed. LISTTYPES is

an array that contains the names of the record types of

16

the entries that make up a list. The names of the

different lists for each particular list type are found

in the table LISTS. The entries of a list can, in turn,

"be ordered on many different fields. The name of each

field that a list is ordered on (and the word "DUMMY"

when a list is not ranked on a field) is kept in the

array LISTPLDS, and the name of the respective insert

procedure is stored in LISTNAM.

The second set of tables consists of a few work

areas. For example, the user currently has the ability

to dump the values of selected fields at the end of the

simulation. The names of these fields are stored in the

array DUMPS, and the names of their respective lists are

stored in DUMPLISTS. TOTALLIST is used to assign a

number to each list for the purpose of collecting

statistics. LOW, HIGH, INTERVAL, and TITLE pass informa-

tion from the HISTOGRAMS declaration to the resultant

program, and SAVES is used to hold identifiers until it

is known if they are list names.

The preprocessor reads the input program character

by character, combines these characters into symbols

(operators, numbers, reserved words, or identifiers),

and syntactically evaluates them by the parser. The

procedures which handle the construction of a symbol

17

are NEXTCHAR (which reads the next character from the

input stream), GETCHAR (which writes the previous

character to the buffer and calls NEXTCHAR), PUTBUP

(which handles the placing of a character into the

buffer), WRITEBUP (which writes the contents of the

buffer onto the output file), and GETSYM (which contains

the logic to get the next valid symbol).

The parser needs two output files, AAA and BBB. As

the parser examines and formats the syntax of the input

program, it writes the PROGRAM, LABEL, CONST, TYPE, and

VAR declarations to AAA, and writes the procedure and

function declarations to BBB, which acts as a temporary

holding area until the preprocessor is able to construct

the proper procedures. The program writing portion will

eventually combine the two parts onto AAA.

The parser closely follows the syntax charts found

in the Pascal User Manual and Report1 Most of the

purposes for each procedure are obvious. For example,

FORMATLABEL parses a LABEL declaration, and CONSTANT

parses a constant. Other procedures have been added to

manage the additions and modifications to Pascal that

make up this simulation language. They will now be

1 Kathleen Jensen and Niklaus Wirth, Pascal User
Manual and Report, pp. 116 - 118.

18

described in further detail.

A number of procedures have been added to assist

in the collection and reporting of statistics. FORMAT-

HISTO extracts the information from the HISTOGRAMS

declaration to fill in the tables LOW, HIGH, INTERVAL,

and TITLE. It will pass this information to the output

program by means of the initialization procedure,

ZZZZZINITL, and by means of the declarations produced

by PORMATVAR. FORMATDUMP extracts information from

the DUMPS declaration to fill in the arrays DUMPLIST

and DUMPS. This information details the list record

fields that the user wishes to be printed for each

record left in the list when the simulation is over.

ASSIGN is used to assign a place in TOTALLIST for the

list names declared in FORMATVAR and GETTYPE. This

also assigns to them a number which is used in the

collection of statistics. RECOVER returns the number

that was assigned by ASSIGN. This is used when the

INSERT and REMOVE commands are editted in the user's

program. .

The other procedures incorporate modifications to

Pascal. GETTYPE parses a data structure type (found on

the right side of a TYPE or VAR declaration). In

addition to the standard Pascal types, a new type LIST

19

is defined. This type is used to declare the names of

the lists and the record types that are linked together.

It is allowed only in the VAR declaration. An example

is - QUEUE: LIST OP EVENTTYPE. FORMATTYPE parses the

TYPE declaration. A major modification of the standard

declaration is the addition of a subblock, LISTTYPES

ARE (record definitions) END. This is the way in which

the record types of the entries in a list are declared.

It is necessary to set them apart in this manner because

pointers to these records and an array used to identify

the first and last records of a list must be defined in

terms of this record type. A boolean variable PUTPTRS

must also be set so that when GETTYPE is called the

NEXT and PRIOR pointer declarations may be inserted

into the record declaration. FORMATTYPE also adds the

TYPE declarations that the preprocessor needs. FORMAT-

VAR parses the VAR declaration and inserts needed

variables. The array SAVES is used to hold identifiers

until the type has been determined. If the variables

are lists the identifiers are stored in the LISTS array.

STATEMENT parses a Pascal statement. However, special

action must be taken when an INSERT or REMOVE command

is encountered. A unique procedure name must be

assigned and the proper procedure must be written. The

20

name is constructed by adding the first five characters

of the list name to a unique two character combination.

The last three characters are "PUT" if the procedure is

an INSERT, "GET" if it is a REMOVE. This process is

managed by the procedures INSERTING and REMOVING.

The program writing part writes all the supporting

procedures onto file AAA, and then adds the procedures

that were editted and written onto file BBB. The

procedures it uses are rather straightforward in their

function. PIRSTPROCEDURES writes out the standard

procedures that need to be declared first onto file AAA.

These include ZZZZZTIMST, ZZZZZADDTO, and ZZZZZSUBPM.

WRITEREMOVES writes the necessary remove procedures that

have been constructed. SIMILARPROCEDURES then writes

out other procedures common to all simulations: COLCT,

HISTO, WRITEHISTO, ZZZZZDUPDT, ZZZZZINITL, OUTPUTT,

RANDOM, and the statistical distribution functions.

WRITEINSERTS writes the constructed insert procedures.

GETNXTEVNTPROC writes the procedure that will get the

next event from the event list. Finally, COMBINEFILES

copies the final parts of the program from BBB to AAA.

21

THE RESULTANT PROGRAM

The basic structure of the program produced by

the preprocessor can be seen in its main procedure;

BEGIN
ZZZZZINITL; (simulation initialization)
INIT; (user's initialization)
REPEAT

NEXTEVENT; (gets the next event)
EVENTS; (processes the event)

UNTIL STOP; (STOP must be set to TRUE
when the user wishes to
stop)

OUTPUTT; (simulation output)
END.

The core of this is the user coded events procedures,

EVENTS. In EVENTS, the user specifies what is to be

done with each event, and how other events are to be

scheduled. The most important procedures he will need

are those that handle the list maintenance. To under-

stand them it is necessary to see how lists are treated

by the program.

A user creates a list by first declaring a record

type to be used in the list. For example:

EVENTTYPE = RECORD
EVENTTIME,
QUEUED IME,
SERVIGETIME,
ENTRYTIME : REAL;
EVENTINDICATOR : EVENTCHOICES;

END.

When this is declared in the TYPE declaration, the

22

preprocessor defines two other types and modifies the

record type. PTRxxTYPE is declared as a pointer to

EVENTYPE where the "xx" are two characters assigned by

the preprocessor to make the type unique. ARRAYxxTYPE

is defined as an array (with two indices: FIRST and

LAST) of PTRxxTYPE, and the record declaration is

modified by inserting a declaration which declares

NEXT and PRIOR as PTRxxTYPE. When the user then declares

QUEUE: LIST OP EVENTTYPE, the preprocessor translates it

to QUEUE: ARRAYxxTYPE. The first and last entries of

ARRAYxxTYPE are initialized to NIL (the pointer that

points to nothing), but when there are entries in the

list they point to their respective entries, and the

entries themselves are linked together by means of the

NEXT and PRIOR pointers. The NEXT pointer of the last

entry and the PRIOR pointer of the first entry are NIL.

To insert an event called EVENT into EVENTLIST (the

list of events), the user codes the function call

INSERT(EVENTLIST, EVENT, EVENTTYPE, list discipline,

field) where "list discipline" is the manner in which

the entry should be inserted, and "field" refers to the

field which is used to order the list (if any). Current

choices of the list discipline are LIFO (last in, first

out), FIFO (first in, first out), and NEXTTIME (rank in

23

ascending order, on field). The preprocessor translates

this to yyEVENTPUT(EVENTLIST, EVENT, list discipline,

list number) where "yy" make the name unique, and the

list number is generated by ASSIGN. The list type and

the field are used to write the procedure yyEVENTPUT.

To remove an event from EVENTLIST and assign it to

EVENT, the user codes REMOVE(EVENTLIST, EVENT, EVENT-

TYPE, pointer) where pointer is a pointer to the record

which the user wishes removed (at the present there is

no way to assign this), or NIL for the first entry.

This is translated to yyEVENTGET(EVENTLIST, EVENT,

pointer, list number) with the list number assigned as

before. Note that the "EVENT" in the name is from

EVENTTYPE; in the insert command it was from EVENTLIST.

The list number is used as an argument in a call

to ZZZZZADDTO (if an insert) or ZZZZZSUBFM (if a remove),

which keep track of the number of entries in the list.

These procedures modify the list ZZZZZSNTRY which links

together records containing the list number, the number

of entries in that list, the list name, and a pointer

to the next record. These records are of type NUMTYPE.

The procedure ZZZZZTIMST is called to keep

statistics on the average number in the list. This

procedure works exactly like the subroutine TIMST of

24

of GASP IV, integrating the step function of the statistic

being collected with respect to time, and dividing out by

the total time when a report is generated. The insert

routines also call ZZZZZDUPDT to compute the mean and

standard deviation of the fields the user has specified

to be dumped at the end of the simulation.

The dumps that the user wishes to see require a

separate procedure for each list, and these are given

names in a fashion similar to that used for the remove

procedures. Galls to each of these procedures are part

of the simulation generated output procedure OUTPUTT.

Other statistics the user can collect are means

and standard deviations through the procedure COLCT

(exactly like GASP IVs procedure), and histograms through

the procedure HISTO (which also generate calls to COLCT).

Reports from these procedures are also generated from

OUTPUTT.

In addition to these procedures, the preprocessor

also creates ZZZZZINITL, which initializes all the

variables and lists in the program created by the

preprocessor. It is also necessary for the user to

write an initialization procedure called INIT to schedule

at least the first event. The distribution sampling

functions and NEXTEVENT are then written. NEXTEVENT

25

removes the next event from the event list, calculates

the time since the last event, and sets NOW equal to

the current time, as determined by the new event.

NEXTEVENT has no arguments, but automatically places

the values of the event into the variable selected by

the user in the USE statement.

The output produced by the simulation is, for the

most part, self explanatory. A few lines are written

noting that the simulation is over and displaying the

current time. The title, mean, standard deviation,

maximum, minimum, and number of observations for each

statistic collected by the user are displayed. The

histograms are then displayed with their corresponding

statistics. For each histogram, the observed frequency

of values in that range is recorded, along with the

relative frequency, the cumulative frequency up to that

point, the value of the upper limit of that cell, and

a bar graph showing the relative frequency as a row of

asterisks and the cumulative frequency as a "G". There

are 76 print positions, each representing one and one

third percent of the total. The statistics collected

for the values are then labelled and listed below the-

histogram. Finally, the statistics on the fields that

were dumped are labelled and listed, with the dumps

following.

26

RECOMMENDATIONS

A major goal of this project was to identify

potential problems that would need to be examined more

thoroughly in the future. The project began by developing

a simple program, and proceeded by adding on other

desirable features. As one might expect, this led to

quite a few awkward constructions and others that were

redundant or inefficient. Therefore, the first recom-

mendation concerns the program itself. While the major

points of the preprocessor are good and should be used,

further design work is necessary. This should center

mainly on the type of statistics and output reports

that should be provided to the user, and how they are

o, to be generated. Further discussion of some of these

problems follow.

Since a major reason for the existence of simulation

languages is to provide ease in writing simulations,

procedures to assist in the collection of statistics

will be a significant feature of the language. In fact,

it would be quite useful to have certain statistics

concerning list utilization collected automatically.

Careful consideration must, however, be given from the

beginning to the way in which this will be implemented.

27

For maximum flexibility there should be practically no

limit to the number of statistics possible. This would

require either dynamically allocated storage (pointers

and lists), or an array whose size would have to be

declared by the preprocessor. An array would also be

faster if the indices could be managed efficiently.

The decisions about statistics will impact the

types of data structures in two ways. One obvious

decision is whether the user may collect statistics on

real numbers only, or also integers and, if possible,

scalar types. If a field is being dumped at the end,

must it also be a real number? A relatively minor

problem would be how to keep track of the statistics.

The simplest solution would appear to be to have the

preprocessor assign different numbers to different

statistics. It was hoped in the beginning that this

somewhat inelegant solution could be avoided, but there

seems to be no other manageable method.

Attention must also be given to the effect the

type of statistics collected will have on the other

procedures. For example, it is really only necessary

to have an insert procedure for each list type (plus an

extra one for each field the user orders the list on).

However, if the user is allowed to specify that certain

28

statistics be collected on fields being dumped at the

end, the user will either have to collect those statis-

tics himself, or an insert procedure will be needed for

each list instead of each list type (to handle the

special processing necessary for each list).

The basic structure of the preprocessor would most

likely be very similar to what it is now. Minor differ-

ences would, of course, be necessitated by changes in

the design. It should have a parsing part that collects

information (and perhaps format the program), and a

program writing part. The lists would be kept track of

in much the same way (pointers to first and last entries),

but most of the statistics would perhaps be updated in

arrays. Even the histograms, although the idea of a

list of cells is very appealing, would probably be more

efficiently generated if indexed in an array. This

would suggest that maybe a list of arrays should be used

to combine the best features of both. In any case,

whenever the arrays are incorporated instead of lists,

a savings in execution time will probably result.

It would also be a good idea to incorporate

error checking with error messages in the preprocessor

so that the user would not have to understand the output

program to determine where a problem had arisen. It is

29

the intention of the project to keep the user from coding

as much as possible. This effect would be negated if he

were required to debug a program he did not write.

As mentioned earlier, list searching is slower than

array indexing. It might, then, be worthwhile to have a

flag in the preprocessor to generate routines using

either lists or arrays. A user could then write his

program, execute it using the list option to get an idea

of the size of the lists involved, and then create a

permanent version of the program using the faster array

routines. This would still be a considerable improvement

over the waste of space in GASP IV which uses only one

array, and reserves room for records whose size corresponds

to the largest records used in the entire simulation.

Many extensions to the current capabilities of the

simulation language are also envisioned. The list

discipline of the INSERT command could include the

ability to rank entries in descending order on a field.

A pointer could also be specified so that an entry could

be inserted at a particular place in a list. More

parameters could also be included in the dumps. The user

may just wish to see the first so many entries, or only

those with a field value greater than some specified

number. Another useful feature would provide NEXTEVENT

30

with the capability of selecting the next event from

one of several lists. One useful command would be a

FIND command. This procedure would find an event in

a list with certain required attributes without removing

that event. It would return a pointer, and thus could

be used with either a REMOVE command or an INSERT

command. It would also be beneficial to have the

opportunity to provide a secondary method of ranking

the event list, as GASP IV does.

As is evident from the above list, a great many

features could be conceivably included in a second phase

of this project, producing an extremely useful and

versatile language. The most important recommendation

is, then, to consider the design carefully - especially

in reference to the desired statistics collection

facilities. They will effect a great many of the

problems faced during the design and implementation,

and careful consideration beforehand will save a

multitude of frustration.

31

CONCLUSIONS

In attempting to judge the success or failure of

a project that only scratched the surface of a problem,

it is necessary to remember the objectives of the

project. Recall that the major objective was to deter-

mine the feasibility of a Pascal based simulation

language. This was satisfactorily demonstrated by the

preprocessor which, although implementing only the bare

essentials of a language, successfully solved the basic

problems of event list maintenance and statistics

collection.

Another objective was to construct a language that

provided guidance to the user in modelling a problem.

This approach"not only provided the guidance available

in most event scheduling languages, but also contributed

the additional structure inherited from Pascal. Once

the user has identified the events, lists, and statis-

tics, the program will virtually write itself, even if

the programmer knows little about Pascal. This

illustrates a major advantage of simulation languages -

the often confusing details are automatically handled

for the user. In this case, although the program is

based on list processing, the user need not have any

32

knowledge of pointers at all.

Along with the guidance provided, the language

will also be fairly legible or self documenting.

Pascal's design encourages the decomposition of a problem

into short, single action, easy to follow procedures.

This will, in turn, provide the user with a program

that is easier to debug and easier to modify in the

future.

A substantial amount of guidance has also been

obtained for the next step in developing a Pascal

simulation language. Problem areas have been identified,

a basic foundational plan has been formulated, and the

areas upon which a designer should focus his attention

have been discussed.

Further tests need to be run to determine exactly

how much slower the language would be in a large

simulation, due to the list processing, when it is

compared to GASP IV. It is obvious, however, that an

extremely versatile and powerful language is possible

following this approach.

33

BIBLIOGRAPHY

Pishman, George S., Concepts and Methods In Discrete
Event Digital Simulation, New York, John Wiley &
Sons, 1973.

Jensen, Kathleen and Wirth, Niklaus, Pascal User Manual
and Report, 2nd ed., New York, Springer-Verlag,
1974.

Kiviat, Philip J., "Development of Discrete Digital
Simulation Languages", Simulation, 8:63-70,
February 1967.

Pritsker, A. Alan B., The GASP IV Simulation Language,
New York, John Wiley & Sons, 1974.

Shannon, Robert E., Systems Simulation; the Art and
Science, Englewood Cliffs, Prentice-Hall, Inc.,
1975.

34

APPENDIX I - SAMPLE USER PROGRAM

PROGRAM CONTROL(OUTPUT);
USE EVENTLIST, EVENTTIME, ENTRY;
HISTOGRAMS

1: TIME-IN-SYSTEM, 0.0, 6.0, 0.25;
2: TIME-IN-QUEUE, 0.0, 6.0, 0.25;

DUMP
EVENTLIST: QTIME;
QUEUE: EVENTTIME, INTIME;

CONST
LASTEVENT = 1000;

TYPE
EVENT = (SERVICE, ARRIVAL);
LISTTYPES ARE

ENTRYTYPE = RECORD
EVENTTIME: REAL;
QTIME: REAL;
INTIME: REAL;
CODE: EVENT;

END;
END;

VAR
QUEUE, EVENTLIST: LIST OP ENTRYTYPE;
ENTRY: ENTRYTYPE;
NUMOFEVENTS: INTEGER;
BUSY, STOP: BOOLEAN;

PROCEDURE INIT;
BEGIN;

NUMOFEVENTS:=0;
BUSY := FALSE;
STOP := FALSE;
WITH ENTRY DO

BEGIN
EVENTTIME := 0;
QTIME := 0.0;
INTIME := 0.0;
CODE := ARRIVAL;
NEXT := NIL;
PRIOR := NIL;

END;
INSERT(EVENTLIST, ENTRY:ENTRYTYPE, NEXTTIME,

EVENTTIME);
END;

35

PROCEDURE EVENTS;
VAR

ATRIB: ENTRYTYPE;
BEGIN

CASE ENTRY.CODE OF
ARRIVAL: BEGIN

ATRIB := ENTRY;
IF BUSY THEN

BEGIN
ATRIB.QTIME := NOW;
INSERT(QUEUE, ATRIB:ENTRYTYPE, FIFO);

END
ELSE

BEGIN
BUSY := TRUE;
ATRIB.EVENTTIME :=

ATRIB.EVENTTIME + EXPO(5.0); .
ATRIB.CODE := SERVICE;
INSERT(EVENTLIST, ATRIB:ENTRYTYPE,

NEXTTIME, EVENTTIME);
END;

END;
SERVICE: BEGIN

NUMOFEVENTS := NUMOFEVENTS + 1;
IF NUMOFEVENTS = LASTEVENT THEN

STOP := TRUE;
HISTO(: NOW - ENTRY.INTIME. 1);
IF NOT(QUEUE(FIRST) = NIL) THEN

BEGIN
REMOVE(QUEUE, ENTRY:ENTRYTYPE);
HISTO(NOW - ENTRY.QTIME, 2);
ENTRY.EVENTTIME := NOW + EXPO(5.0);
ENTRY.CODE := SERVICE;
INSERT(EVENTLIST, ENTRY:ENTRYTYPE,

NEXTTIME, EVENTTIME);
END'

ELSE
BUSY := FALSE;

END;
END;

END;

36

BEGIN
ZZZZZINITL;
INIT;'
REPEAT

NEXTEVENT;
EVENTS;

UNTIL STOP;
OUTPUTT;

END.

37

VITA

Robert George Wilder, son of George A. and

Jacquelyn L. Wilder, was born on November 2^, 1953 in

Baltimore, Maryland. After graduation from a Wappingers

Palls, New York high school in 1971, he entered Lehigh

University with a National Merit Scholarship. During

his third year he was elected to Phi Beta Kappa, and in

June, 197^ graduated sumraa cum laude with a B. A. degree

in mathematics. He was a recipient of the Thornburg

Mathematics Prize, and continued at Lehigh to pursue

graduate studies with a teaching assistantship. In

June, 1976 he received an M. S. degree in mathematics.

After one year of study at Goncordia Theological Seminary

in Port Wayne, Indiana he returned to Lehigh University

to pursue a master's degree in Industrial Engineering.

In June, 1979 he married Debra Marie Rumfield of

Bethlehem. He is now employed by E. I. du Pont de

Nemours & Co., Inc. as a programmer analyst.

38

	Lehigh University
	Lehigh Preserve
	1-1-1980

	Design and implementation of a Pascal based simulation language.
	Robert George Wilder
	Recommended Citation

	tmp.1451580486.pdf.I7wnl

