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ABSTRACT

The substitution of natural aggregate with reclaimed Portland cement

concrete (RPCC) could be a convenient solution to satisfy the growing requirement

of aggregate.

The purpose of this research was to study the behavior of RPCC aggregates

in Portland cement concrete and embankment. For the first case, several batches of

concrete were prepared with RPCC aggregate, natural aggregate, different water

cement ratio (WCR) and different maximum size of the aggregate. Standard tests

were performed on RPCC and natural aggregates, concrete made with recycled and

natural aggregate, including specific gravity and absorption, slump and compression

tests. For the second case, shear tests were performed on RPCC aggregate to obtain

the failure envelope and the friction angle.

The lower specific gravity and higher absorption of RPCC aggregate

influence the parameters of the concrete batches and the final cost of concrete.

Monitoring the properties of the recycled material is strongly recommended to

achieve a well designed concrete.

From the slump tests, for a given WCR, concrete made from RPCC aggregate

shows a higher slump, level of workability and plasticity than a conventional

concrete. r c versus age results suggest that as time increases, r c from concrete

made with recycled aggregate gets closer and have a comparable value to that of

conventional.
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From f c versus WCR curves, an equivalent WCR for concrete made from

RPCC aggregate to achieve the same f c can be determined. The use of a smaller

maximum size of RPCC aggregate, together with a lower WCR seems to improve

the compressive strength of the concrete. It seems possible to find a modified

mixture design using RPCC aggregate that ensures a good quality product.

RPCC material can develop a high friction angle at failure, making this

material highly recommended for use in embankments. Moreover, RPCC aggregate

can be mixed with a material of lower quality, making its use more economically

attractive.

Further studies are needed with larger samples to determine more accurately

the relationship between the parameters mentioned above and to implement a similar

mixture design method for concrete made with RPCC to that already existent for

conventional material.
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CHAPTER 1. INTRODUCTION.

The construction of infrastructures related to bridges, highways, water

systems, and buildings has been increasing from the beginning of the past century,

especially in areas where population density is high. Infrastructures need to be

repaired with the pass of the time. In some cases, constructions need to be replaced,

because their service life is reached or their original design no longer satisfy the new

requirements (population, traffic, or weather). These facts have generated two

important issues: first, a growing demand for construction aggregates, and second an

increasing production of construction material waste.

In the United States, two billion tons of aggregate are produced per year (1),

and more than 2.5 billion tons per year are expected to be consumed in the year 2020

(2). This has raised the concern about the availability of production of the actual

natural resource, and the projection of new natural aggregate sources, especially near

large population settlements, where the demand for this material is higher. The

development of new natural resources involves economic issues, such as

transportation costs, as well as environmental concerns, impact in the landscape, and

extinction ofno renewable resources..

The construction waste only, on the other hand, produced from building

demolition is estimated to be 123 million tons per year (2). HIstorically, the most

common method of managing this material has been through disposal in landfills. It

is estimated that 50 percent of concrete debris and 20 percent of all asphalt

pavements end up in landfills (3). As cost, environmental regulations, and land
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policies of landfill arise, the concern to seek alternative uses of the waste material

also increases.

This situation has led the aggregate industry to begin reclaiming construction

waste as an alternative aggregate especially for pavement uses. Additionally,

government entities have started promoting this recycling process as an option to

natural aggregate, helping extend the life of natural resources, reducing the

environmental disturbance around construction. site, and reducing the volume of

waste to landfill areas.

1. 1. Reclaimed Portland Cement Concrete.

Reclaimed Portland cement concrete (RPCC) consists of high-quality, well­

graded aggregates bonded by a hardened cementitiuos paste. This material is

manufactured from demolition of Portland cement concrete construction such as

roads and runways, and structures such as building and bridges. Portland cement

concrete is a widely used construction material. It is defined as a mixture of water,

Portland cement and aggregates. The paste (water and cement) represents 25% to

40% of the total volume of the concrete, and it functions as the adhesive and bind the

aggregate together to form the concrete. The aggregates consist of natural or

manufactured sand, gravel or crushed stone and make up the other 60% to 75% of

the total volume of concrete.

In general, when the source ofRPCC is from existing concrete curb, sidewalk

and driveways sections, RPCC is removed with a backhoe or payloader and is loaded
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into dump trucks for removal from site. In this case, RPCC may contain 10% to

30% subbase soil material and asphalt pavement.

Aggregate made from RPCC can be used for cement-treated or lean concrete

bases, concrete, flowable fill, or asphalt concrete. To be used as an aggregate, RPCC

must be free of foreign debris and reinforcing steel. RPCC can also be used as bulk

fill material on land or water, as shoreline protection material, as gabion basket fill,

or as granular aggregate base for base and trench backfill.

1. 2. Purpose of the Study.

The purpose of this research is to study the behavior of RPCC aggregates

when it is included in Portland cement concrete or in embankments. For the first

case, slump tests were performed on freshly mixed concrete, and compression tests

were performed on hardened concrete. Several batches of concrete were prepared

with RPCC and natural aggregate, changing their mixture design parameters,

including aggregate sieve distribution (gradation) and water cement ratio. For the

second case, shear tests were performed on RPCC aggregate with the objective of

obtaining the failure envelope and the friction angle, and evaluating the shear

capacity of this material.

This thesis is divided into 5 chapters. Chapter 1, Introduction, contains the

general context and the purpose of the study. Chapter 2, Literature Review, is a

summary of the relevant concepts related to RPCC material needed in this study.

Chapter 3, Materials and Methodology, presents a description of the materials and
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their preparation for testing, and a summary of the test methods. Chapter 4, Results,

contains results of the tests performed on RPCC material, concrete made with RPCC

and concrete made with natural aggregates. Chapter 4 also contains the analysis of

the results and comments. Chapter 5, Comments and Recommendations, presents

the general conclusions of this study, the recommendations about the uses of RPCC

aggregates, and suggestion on future research.
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CHAPTER 2. LITERATURE REVIEW.

2. 1. Introduction.

The demand of natural aggregate for construction purposes has increased

over the years in the United States, as it can be seen in Figure 2.1 (3). This demand

depends on two factors: population density and economical development, because

higher population ratios and stronger economies imply the improvement of the

transportation systems and the production places, including highways, roads, bridges,

and buildings.

The substitution of natural aggregate by reclaimed Portland cement concrete

(RPCC) could be a convenient solution to satisfy the growing requirement of

aggregate. Possible advantages of using RPCC as aggregate include waste

reduction, demand of the natural resources decreasing, environmental impact

reduction, and energy resources conservation. A study from the U.S. Geological

Survey (USGS) (4) established that RPCC is produced from two primary sources:

road construction and maintenance debris, and structural construction demolitions.

Kelly (2) reported that the substitution of RPCC for construction aggregate mostly

takes place in highway construction, where sub-base is its principal destination

(68%) and only a minor amount (6%) is used in cement concrete, as it is shown in

Figure 2.2
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This author also established that even though the production of reclaimed

cement concrete has been increasing, RPCC aggregate represents less than 5% of the

total of aggregate required by the construction market as it is indicated in Figure 2.3.

This figure compares the conventional and reclaimed cement concrete aggregate

supplies for the highway construction market in three categories: road and base,

cement concrete, and asphalt concrete.

According to a study made by u.s. Department of Transportation (5),

recycling in the European countries occurs when it is economically feasible. It is

generally supported by government policies and regulations such as bans on

landfilling, lanfill taxes, and natural aggregate taxes. Generally, clear engineering

and environmental test method help reduce uncertainty and allow recycled aggregate

to compete with natural materials. Where tests and standards are not available,

governments usually support recycling by sharing risk. The substitution of natural

aggregates by reclaimed cement concrete material involves a series of steps, ranging

from the selection of the source of reclaimed concrete and its processing to the

quality certification of the final product in which the recycled aggregate is used.

This chapter describes the production of recycled cement concrete, its

material properties and the requirements for different uses in highways, including

base, subbase, Portland cement concrete pavement and embankment.
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2. 2. Production of Reclaimed Cement Concrete.

The raw material used in the production of recycled aggregates comes mainly

from demolition of pavements and building. This material is broken into large

pieces and transported to the processing plant. Once at the plant and before

processing the material, it must be clean, free of contaminants like steel

reinforcement bars, wood, and soil. Then, the material goes through three main

phases: crushing, sizing, and blending.
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2. 2. 1. Processing Plants.

Recycled concrete and asphalt material usually are heterogeneous, having

different sizes, shapes, and composition. Therefore, the equipment used to process

reclaimed material is required to handle these variations; it must be versatile and able

to maintain the production's efficiency for a variety of materials (4). Moreover, the

equipment used in recycled aggregate operation may present higher wear levels, and

therefore a shorter useful life than a conventional material operation. Jaw/cone

combination, horizontal-shaft impactor, and jaw/roll combination are the crushing

equipment commonly used in the recycling of RPCC.

Because of the versatility of the equipment in recycled aggregate plants, they

can be used to process concrete and asphalt debris as well as natural sand and gravel

from natural sources, but conventional aggregate plants usually cannot process

efficiently recycled material. Recycling plants can be stationery or mobile. The

advantage of mobile plants is that they can be located as close as possible to the

source of raw material, decreasing the transportation cost.

2. 2. 2. Plant Operation.

The recycling operation starts when the material comes from demolition

projects. If the reclaimed material contains large pieces of concrete, it is necessary

to break down these pieces to a maximum size of 16 to 28 inches (40.6 to 71.1 cm.),

using hydraulic breakers (6). The material isdeaned from contaminants like steel

and wood and used to feed the crushing equipment (primary crushing). After the

primary crushing, the material is reduced to 2 to 3 inches (5.1 to 7.6 cm.) and

11



deposited in a belt conveyor. Next, reinforcing steel is removed by a self-cleaning

magnet running over the crushed concrete. Then, the reclaimed material is screened

in order to separate the usable size portion from the waste portion. The usable

portion is sent to a secondary crushing process. This crushing process is necessary to

reduce the pieces of reclaimed concrete and produce a finished aggregate of%to 1 ~

inches (1.9 to 3.8 em.) size. This resultant aggregate has less than 2 percent passing

through a No. 200 (75 ~m.) sieve. The final product is screened and stockpiled. To

avoid segregation of particle size, coarse and fine aggregate are stockpiled,

separately. The summary of plant operation is presented in Figure 2.4.

Concrete from Portland cement concrete pavements may be relatively clean

after magnetic and hand removing, but this is not the case with all demolished

concrete. Other contaminants may be present, including plaster, wood, plastic,

asphalt, and other non-metallic materials. Additional cleaning process will be

necessary to remove all the potential contaminants, like washing and air shifting.

2. 3. Recycled Aggregate Properties.

It is important to consider that RPCC can be made from a diversity of

concrete debris, and it may affect its properties. Therefore, it is strongly

recommended to monitor the physical, chemical, and mechanical properties of this

material periodically. The U.S. Department of Transportation (7) has made a general

description of the physical, chemical, and mechanical properties for RPCC that is

summarized below.

12
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2. 3. 1. Physical Properties.

Reclaimed aggregate is usually a combination of natural aggregate and

mortar from the recovered concrete. Reclaimed material is obtained after several

crushing processes, making the resultant material highly angular in shape. The

mortar portion in this aggregate makes its texture rougher, its specific gravity lower,

and its water absorption higher than that of natural aggregate with similar size

characteristics. Higher absorption values are expected in reclaimed fine aggregate

(material passing sieve No.4 [4.75 mm.]) because the proportion of mortar is bigger

than that of the coarse aggregate. Table 2.1 shows a set of typical values for specific

gravity and absorption for recycled aggregates as well as natural aggregate listed by

the U.S. Department of Transportation (7) and Kosmatka and Panarese (8),

respectively.

Table 2.1. Typical Physical Properties of Processed Reclaimed Concrete Aggregate
and Natural Aggregate.

Property Reclaimed Concrete Natural Aggregate

Aggregate (7) (8)

Specific Gravity

• Coarse Particles 2.2 to 2.5 2.4 to 2.9

• Fine Particles 2.0 to 2.3

Absorption, %

• Coarse Particles 2 to 6 0.2 to 4

• Fine Particles 4 to 8 0.2 to 2

14



2. 3. 2. Chemical Properties.

Chemical properties of RPCC are influenced by cement paste, original

aggregate and immersed contaminants of the recovered concrete. The alkalinity in

recycled aggregate depends highly on the cement paste. It has a series of calcium­

aluminum-silicate compounds, including calcium hydroxide, which is highly

alkaline. The pH of RPCC-water mixtures usually exceeds 11. Corrosion can

appear in aluminum material and galvanized steel pipes in direct contact with

recycled aggregate RPCC and in the presence of moisture as a consequence of the

high pH.

Chloride ions may be present in RPCC aggregate; these contaminants come

from the applications of deicing salts to roadways surfaces. Chloride ions are

associated with corrosion of steel. Sulfates might also be present in RPCC aggregate

as a result of the contact with sulfate-rich soils. Sulfate reactions lead to expansive

disintegration of cement paste. RPCC may contain aggregate susceptible to alkali­

silica reaction (ASR); this reaction may cause expansion and cracking.

2. 3. 3. Mechanical Properties.

Recycled aggregates larger than 4.75 mm (retained by sieve No.4) have

favorable mechanical properties for aggregate uses, including good abrasion

~ resistance, good soundness characteristics, and bearing strength. Los Angeles

Abrasion Loss values are higher than those of high-quality conventional aggregates.

Magnesium sulfate soundness and California Bearing Ratio (CBR) values are

15



comparable to conventional aggregate. Table 2.2 shows a set of typical values for

these mechanical properties of reclaimed concrete as well as natural aggregate (6, 7).

2.4. Use ofRPCC Material in Highways.

The use of RPCC in highway construction has economIC advantages.

Recycled aggregate has usually a lower specific gravity than natural aggregate. As a

consequence, for a given specified coarse aggregate content greater volumes of

RPCC material can be obtained compared to conventional aggregate. In addition,

mobile processing plants of recycling aggregate can be installed as near construction

sites, decreasing considerably the transportation costs for large projects.

Table 2.2. Typical Mechanical Properties ofProcessed Reclaimed Concrete
Material and Natural Aggregate.

Property Reclaimed Concrete Natural

Aggregate. [%](7) Aggregate. [%](6)

Los Angeles Abrasion Loss

(ASTM C131) 20-45 20 to 25

• Coarse particles

Magnesium Sulfate Soundness

Loss (ASTM C88) 4 or less 3 or less

• Coarse particles Less than 9 6 to 8

• Fine particles

California Bearing Ratio (CBR) 94 to 148 130 to 180
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It can be seen from Figure 2.2 that the principal destination of reclaimed

cement concrete in pavement construction are: subbase, including granular and

stabilized base, bituminous concrete, Portland cement concrete and general fill.

RPCC aggregates may potentially be used in flowable fill and surface treatment.

Recommendations and considerations about the use of reclaimed concrete III

granular base, Portland cement concrete, and embankment are presented below.

2. 4. 1. Granular Base.

A granular base consists of a prepared and compact material, which is placed

III layers below Portland cement or asphalt concrete pavements. The largest

proportion of recycled aggregate is used in base and subbase applications (see Figure

2.2). According to U.S department of Transportation (9), twenty states of U.S. have

accepted the use of RPCC aggregates in base and subbase, including Arizona,

California, Colorado, Florida, Indiana, Iowa, Louisiana, Maryland, Massachusetts,

Minnesota, Missouri, Nebraska, New Jersey, New York, North Dakota, Ohio,

Pennsylvania, Rhode Island, South Carolina, and Texas. Illinois and Pennsylvania

have specifications for RPCC aggregate uses in granular base, meanwhile other

states are conducting or have proposed research that involves the use of reclaimed

concrete material in granular base, like Arizona, Iowa, Louisiana, Michigan,

Missouri, and Nebraska. A summary of the considerations and recommendations

provided by the U.S Department of Transportation (9) are presented below.

17



2. 4. 1. 1. Considerations for Using RPCC in Granular Base.

RPCC properties generally exceed the minimum requirements for

conventional granular aggregate. Because RPCC aggregate is crushed material, this

aggregate "lock up" well in granular base application, providing good load transfer

when placed on weaker sub grade. Some other favorable features of RPCC material

in granular base applications are: the ability of stabilized wet, soft, underlying soils

at early construction age, good durability, good bearing strength, good drainage

characteristics, good stability and little postcompaction settlement.

Special considerations are made when RPCC aggregate is used in granular

base course applications in conjunction with subdrains, with the intent of preventing

the leachate precipitation. The recommended procedures are: to wash the RPCC

aggregate, and to ensure that any geotextile fabric surrounding the subdrains does not

intersect the drainage path from the base course (to avoid potential plugging with

fines). There have been reports of tufa-like precipitates (white, powdery precipitate)

from unsuitable or improperly processed recycled concrete aggregate that have

clogged subdrains and blinded geotextile filters.

2. 4. 1. 2. Requirements for Using RPCC in Granular Base.

RPCC material must be crushed and screened to satisfy AASTHO M147 (10)

and ASTM D2940 (11). It is recommended the use of the standard AASHTO

pavement structural design procedure for granular base when RPCC aggregates are

incorporated. It is suggested that, for construction purposes, placing, compacting,

18



and quality control procedures of reclaimed concrete material follow the same

method and equipment as those of conventional aggregates. The material handling

and storage, though, needs additional care to avoid segregation of coarse and fine

aggregate. Some jurisdictions require that stockpiles be separated from water

courses to avoid contamination from lecheate that is highly alkaline. Regulations for

some states like Ohio require that RPCC aggregate be washed in order to reduce

potential tufa formation.

2. 4. 2. Portland Cement Concrete.

D.S Department of Transportation (12) established that reclaimed concrete

material can be used as coarse aggregate and/or fine aggregate in Portland cement

concrete pavements. High quantities of fine RPCC aggregate (more than 10 to 20%)

can produce a reduction in the concrete quality due to the elevated level of

absorption of this material, needing more water in order to maintain an adequate

workability of the concrete mix.

Several states have special specifications covering the RPCC aggregate uses,

including Colorado, Connecticut, Illinois, Indiana, Iowa, Louisiana, Michigan,

Montana, North Dakota, Oklahoma, and Wyoming. General considerations and

requirements given by the D.S.D.O.T (12) are presented below.
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2. 4. 2. 1. Considerations for Using RPCC in PCe.

The shape of recycled aggregate (highly angular) increases the strength of the

mix and at the same time it can reduce its workability. The use of fine RPCC

aggregate also reduces the concrete mixture workability because of the high

absorption and high angularity of this kind of aggregate.

It is expected that Portland cement concrete made with recycled aggregate

develops lower strength than the concrete made with conventional aggregate.

Compressive strength could be reduced up to 25%, flexure strength up to 10%, and

the static and dynamic modulus of elasticity up to 40 % for mixture with the same

characteristic (water cement ratio and slump). On the other hand, the incorporation

of RPCC aggregate improves the damping capacity up to 30%. The reduction in

strength associated to the incorporation of reclaimed concrete aggregate depends on

the origin of the concrete. Table 2.3 shows the compressive strength of concrete

made from natural and recycled aggregates. In general, there is a reduction in

strength asa concrete is produced from reclaimed aggregate.

The mortar in the reclaimed concrete aggregate provides a proper air void

system to the concrete resulting in a good resistance to freeze-thaw cycles. Recycled

material that comes from pavement can contain deleterious substances like chlorides

as a result of the deicing salt application on old roads. The high content of chloride

in this aggregate can induce corrosion of reinforcing steel embedded in new

concrete. Usually, the content of chloride in recycled aggregate is below the
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threshold value (2.4 kg/m3 recommended by the American Concrete Pavement

Association)

2. 4. 2. 2. Requirements for Using RPCC in PCc.

It is established that RPCC aggregate can be considered as conventional

aggregate for Portland cement concrete mixtures, therefore RPCC aggregate needs to

satisfy the following standard requirements:

• AASTHO M6, " Fine Aggregate for Portland Cement Concrete"

• AASTHO M43, " Size of Aggregate for Road and Bridge Construction"

• AASHTO M80, " Coarse Aggregate for Portland Cement Concrete".

Table 2.3. Compressive Strength in Psi (MPa) of Concrete Made from Natural and
Recycled Aggregate Concrete. (6).

H H/H HIM H/L M MIH M/M MIL L LIH LIM L/L

8,870 8,178 7,150 5,020 5,090 4,990 4,748 3,900 2,150 2,000 2,100 1,940

(61.16) (56.39) (49.30) (36.61) (35.09) (34.40) (32.74) , (26.89) (14.82) (13.79) (14.48) (13.38)

8,870 8,800 - - 5,250 - 5,220 - 2,100 - - 1,970

(61.16) (60.68) (36.20) (35.99) (14.48) (13.58)

8,790 8,480 - - 5,220 - 4,810 - 2,180 - - 1,860

(60,60) (58.47) (35.99) (33.16) (15.03) (12.82)

Note:
1. H= High strength concrete; M= Medium strength concrete; L= low strength

concrete.
2. H/H= High strength concrete made with recycled aggregate from high strength

concrete.
H/M= High strength concrete made with recycled aggregate from medium strength
concrete.
H/L= High strength concrete made with recycled aggregate from low strength
concrete.
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It is highly probable that RPCC material comes from different sources, in

such case recycled aggregate should either be blended with other aggregate or

separately processed and placed in separate stockpiles to ensure uniformity of RPCC

aggregate properties.

It is recommended that the level of contamination and potential reactivity of

RPCC be controlled, and it is required to satisfy the same limits as those of natural

aggregates. The level of impurities, such as sulfate and chloride ions, alkali-reactive

aggregate and freeze-thaw expansion of large aggregate also needs to be controlled

in order to ensure strength and durability requirements of the concrete.

Trial batches of concrete mixture and the necessary adjustment should be

done in order to ensure the achievement of concrete mixture requirements. It is

strongly recommend maintaining the recycled aggregate wet, otherwise it will absorb

water from the concrete mix because of its high absorption rate. The higher

absorption rate in fine aggregate can affect workability, strength, and finishability in

Portland cement concrete mixtures. The U.S. Department of Transportation (8)

established that RPCC fines blended with natural sand at substitution rates of 10 to

20 percent has resulted in satisfactory performance and preparation of trial mixes are

often required to find the optimum substitution rate.

This entity also recommends AASHTO rigid pavement thickness design

procedures for the structural design of pavement incorporating recycled aggregate.

For construction purposes, the same equipments and procedures may be used to

batch, mix, transport, place, and finish the concrete as well as material handling and

storage, and compacting, for mixture made with natural as recycled aggregate.
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Quality control processes for Portland cement concrete with natural aggregate can be

used for concrete with recycled aggregate. Fresh concrete mixes need to be tested at

the time of placement using standard methods, including slump (ASTM C143), air

content (ASTM C138, C173, C 231), and temperature (ASTM C 1064). It is

important to monitor the hardened concrete strength properties by casting cylinders

and testing them using standard method, including compressive strength (ASTM

C39) and splitting tensile tests (ASTM C78). Prisms can be used to test flexural

strength following ASTM C 496 standard method.

2. 4. 3. Embankment or Fill.

An embankment is a structure of soil, soil aggregate, or rock, with the

purpose of raising the grade of the roadway or railway above the level of the existing

surrounding ground surface. U.S Department of Transportation (13) establishes that

reclaimed material requires a minimal processing to satisfy the conventional soil and

aggregate physical requirements for embankment or fill material. Usually, the

properties of recycled material are overqualified for filling purposes. RPCC

aggregate has attributes that make it attractive to use: it has high friction angle, good

bearing strength, negligible plasticity, drainage characteristics, and it is not

susceptible to frost (13).
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2. 4. 3. 1. Considerations for Using RPCC in Embankment.

In general, RPCC aggregate has good durability and resistance to weathering

and erosion, good stability and little postcompaction settlement. RPCC aggregate

can induce corrosion in aluminum or galvanized steel pipes in presence of moisture

due to its high alkalinity. Recycled concrete material that comes from composite

pavements may contain some reclaimed asphalt pavement. It is recommended that

the content of this material be limited to a rate of 20% in order to prevent a reduction

in bearing strength.

2. 4. 3. 2. Requirements for Using RPCC in Embankment.

The U.S. Department of transpo.rtation (9) established that RPCC material

must satisfy the gradation requirement on the following standard specifications:

• AASTHO Ml45 (10), "The classification of soils and soil-aggregate mixture

for highway construction purpose".

• ASTM D2940 (11), "Standard specification for graded aggregate material for

bases or subbases for highways or airports".

The same potential for tufa-like precipitates to leach from recycled aggregate

in granular base application should be considered in embankment and fills. To

prevent this tufa formation, some jurisdictions require washing the aggregate to

remove'the dust and use only RPCC aggregate not containing significant quantities

of unhydrated cement or lime (13).

24



For structural design purposes, the standard specifications and methods for

embankment and fill using natural aggregate can be used when recycled aggregate is

incorporated. It is suggested that for construction purposes, the material handling

and storage, needs additional care to avoid segregation of coarse and fine aggregate.

Some jurisdictions require that stockpiles be separated from water courses to avoid

contamination from lecheate that is highly alkaline. Special care is required to

compact RPCC aggregate in order to achieve its maximum density value because of

its high angularity. For quality control purposes, the same standard test used with

conventional aggregate can be applied to embankment and fill made with recycled

concrete material.
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CHAPTER 3. MATERIALS AND METHODOLOGY.

3. 1. Introduction.

The research was addressed to the study of the incorporation of Reclaimed

Portland cement concrete (RPCC) in Portland cement concrete pavement and

embankments. For Portland cement concrete, slump and compression tests were

performed with the purpose of studying and comparing the properties of freshly

mixed and hardened Portland cement concrete made with RPCC as well as natural

aggregate, using the same mixture design and specifications. For the second case,

the use of recycled concrete in embankment, shear tests were performed with the

objective of determining the shear capacity of this material, i.e. calculating its failure

envelope and its angle of friction at failure. The present chapter presents a

description of the work made for this research, including material description,

aggregate properties, material preparation, and testing procedures.
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3. 2. Material Description.

3. 2. 1. Reclaimed Portland Cement Concrete Coarse Aggregate.

An aggregate producer in Maryland donated the RPCC aggregate used in this

research. The recycled aggregate was identified as RC-57 (Reclaimed concrete #57)

and it met the requirements for size #57 specified in ASTM C33 (14). Table 3.1

contains the material properties of RPCC. Specific gravity and absorption were

determined in laboratory and they were included in Chapter 4, Section 4.2.1. Table

3.2 presents the sieve analysis of the aggregate. From visual observation as shown in

Figure 3.1, the material was highly angular in shape.

The recycled aggregate was sieved, separated, and stored by individual sizes.

All the contaminated particles were removed through sieving and washing processes.

RPCC aggregate was recombined later according to the necessities of the mixture

design and following the grading proportion specified in Table 3.3.

Table 3.1. Crushed Concrete Recycled Aggregate Physical and Mechanical
Properties.

Property Value

Plastic index Non-Plastic

Loss Angeles Abrasion Loss 35.9%

Soundness. (By use of sodium 6.6%
sulfate.
ASTM C88)
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Table 3.2. Sieve Analysis of the Crushed Concrete Recycled Aggregate.

Sieve Size Crushed Concrete recycled ASTM C33 Requirements

Material (14)

in mm % passing by weight % passing by weight

1 ~" 37.5 100 100

1" 25.0 96 95-100

~" 12.5 27 25-60

#4 4.75 5 0-10

#8 2.36 2 0-5

Figure 3.1. RPCC Aggregate.
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3.2.2. Natural Coarse Aggregate.

The natural aggregate used in concrete mixture was the material available in

the laboratory. It corresponded to coarse aggregate type 2 B according to

Pennsylvania Department of Transportation (15). This material was sieved,

separated, and stored by individual sizes. Natural aggregate was recombined later

according to the necessities of the mixture design and following the grading

proportion specified in Table 3.3.

Specific gravity and absorption were determined in laboratory and they were

included in Chapter 4, Section 4.2.1. The physical appearance of this material can be

seen in Figure 3.2.

Figure 3.2. Natural Aggregate.
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3.2.3. Natural Fine Aggregate.

The natural fine aggregate used was that available in the laboratory. It

corresponded to Cement Concrete Sand (type A) according to Pennsylvania

Department of Transportation (15). A sieve analysis was made to fine aggregate

following ASTM C136 (16). Four samples were taken using the technique named

Quartering which is explained in ASTM C702 method B (17). The minimum size

requirement of the sample was 300 gr or 0.661 lb. The sieves used for the grading

analysis corresponded to: 3/8"(9.38 mm), No.4 (4.75 mm), No.8 (2.36 mm), No. 16

(1.18 mm), No. 30 (600 /lm), No.50 (300 /lm), and No. 100(150 /lm).

Specific gravity and absorption were assumed as 2.64 and 0.7 % respectively. These

values represent average magnitudes for specific gravity and absorption (8).

3. 2. 4. Gradation of Coarse Aggregates.

Three gradations were specified in this section. They are presented in Table

3.3 and shown in Figures 3.3, 3.4, and 3.5. They corresponded to No.57, No. 67, and

No. 7 under the ASTM C33 (14) designation. The grading proportions were

estimated based on the maximum size of the aggregate needed for the concrete

batches, the material availability, and the requirements established by ASTM C33

specification.
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Table 3.3. Gradation of Coarse Aggregate for Different Maximum Sizes of the
Aggregate.

Size Number No. 57 No. 67 No.7

Maximum Size, in 1 3/4 1/2
(mm). (25.0) (19.0) (12.5)

Sieve Size

III mm % passing by weight % passing by weight % passing by weight

1 1/2" 37.5 100 100 100

1" 25.0 96 100 100

3/4" 19.0 62 95 100

Y2" 12.5 27 55 90

3/8" 9.50 13 20 50

No.4 4.75 0 0 0

No.8 2.36 0 0 0

100
• ..

•
90 •

• .. .... ·ASTM C33,
• size #5780 -• grading

• requirement.... 70 •.Cl l
Ill) •
~ 60

• •
~

.. .... ·ASTM C33,

.6' • size #57
" gradingIll) 50 ,

.S • requirement
'"'" 40 • l0:

I:l.c • • --Gradation of
~ - l

'" 30 "
" " coarse

" ~ aggregate
20 • ..

~,
•

10 ..... .. ....
0

No.8 No.4 3/8 1/2 3/4 1 11/2

Sieve Size

Figure 3.3. Gradation of Coarse Aggregate Size #57. According to ASTM C33
(14).
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Figure 3.4. Gradation of Coarse Aggregate Size #67. According to ASTM C33
(14).

100

90
·ASf M C33,

80
, size #7 gradin

• requirement.... ,
-= 70
~

'Q:j

~ 60 ·ASfM C33,

S size #7 gradin

~ 50 requirement
.9
til

~ 40 --Gradation of
=--
't 30 coarse

aggregate

20

10
..

•~

0
No.16 No.8 No.4 3/8 1/2 3/4 1 1/2

Sieve Size

Figure 3.5. Gradation of Coarse Aggregate Size # 7. According to ASTM C33 (14).
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3. 2. 5. Specific Gravity and Absorption.

ASTM C 127 (18) standard test method was used to determine Specific

Gravity and Absorption of RPCC and Natural coarse aggregates. These two values

were used afterward in the mixture design method. Two samples were tested, a

RPCC and a natural aggregate sample of 9.20 lb (41.7 kg) saturated-surface-dry

weight. The samples corresponded to a material No.57, with maximum size of the

coarse aggregate of 1 in (2.5 cm) and their grading description is shown in Table 3.3

and Figure 3.3.

The test method consisted in immersing the samples in water for

approximately 24 hours. Then, the samples were removed from the water and dried

until the water from the surface of the particles disappeared. After this, the samples

were weighed, corresponding to saturated surface dry weight (B). Next, the samples

were weighed while they were submerged in water, obtaining the saturated weight in

water(C). Finally, the samples were oven dried and weighted (oven dry weight in

air, A).

Specific gravity and absorption values were calculated as follows:

• Bulk Specific Gravity, SG.

A
SG= ( )B-C

(3.1)

• Bulk Specific Gravity (saturated-surface-dry), SGssd.

(3.2)
B

SGssd = ( )B-C
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• Apparent Specific Gravity, ASG.

(3.3)
A

ASG =( )A-C

• Absorption, Abs [%].

(3.4)

3. 4. Portland Cement Concrete (PCC).

Portland cement concrete is made from three principal components:

Aggregate, cement, and water. In this study, batches of PCC were made with

recycled as well as natural coarse aggregate in order to study changes in properties of

freshly mixed and hardened PCC. The properties to study were slump, for freshly

mixed concrete, and compressive strength (fc) for hardened concrete. The mixture

design of each batch was based on the absolute volume method (8).

Once the batches were made, a slump test was performed on freshly mixed

concrete following the standard method given by ASTM C143 (19), (see section

3.4.3). Next, cylindrical concrete specimens were cast and cured following the

standard method given by ASTM C192 (20) (see section 3.4.4). The cylinders were

tested in compression to obtain the f c (compressive strength) at certain ages of the

concrete. Compression tests were made according to the standard method specified

in ASTM C39 (21).
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3. 4. 1. Batches.

Three classes of batches were prepared for both, natural and RPCC coarse

aggregates. These are described as follows:

1. Batches 1. These batches were specified with a water cement ratio equal to

0.48 and coarse aggregate No.57 (maximum size of the aggregate = 1 in.). A

slump test was applied to batches made from natural coarse aggregate

(Batches IN) and RPCC coarse aggregate (Batches lRPCC). A total of 24

cylindrical concrete specimens were cast, 12 from Batches IN and 12 from

Batches lRPCC. The cylinders were subjected to compression test at 3, 7,

14, and 28 days. The objective of the compressions tests was to study the

relationship between compressive strength versus age of concrete made with

recycled and made with natural aggregates, and then compare the results.

2. Batches 2. These batches were specified with coarse aggregate No.57

(maximum size of the aggregate = 1 in.). Five water cement ratios were also

specified, WCR =0.42, 0.44, 0.45, 0.46, and 0.48. A slump test was applied

to batches made from natural coarse aggregate (Batches 2N) and RPCC

coarse aggregate (Batches 2RPCC). A total of 54 specimens were cast, 27

from Batches 2N and 27 from Batches 2RPCC. The cylinders were subjected

to compression test at 28 days. The objective of the tests was to study the

relations between slump and WCR, compressive strength versus slump, and
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compressive strength versus WCR made with recycled and made with natural

aggregates, and then compare the results.

3. Batches 3. Three coarse aggregate were specified for these batches: No.57,

No.67, and No.7 (maximum size of the aggregate 1, %, and 12 inch

respectively). For each specified coarse aggregate, three Water Cement Ratio

were established, WCR =0.44, 0.47, and 0.50. A slump test was applied to

batches made from natural coarse aggregate (Batch 3N) and RPCC coarse

aggregate (Batch 3RPCC). A total of 54 specimens were cast, 27 from

Batches 3N and 27 from Batches 3RPCC. The cylinders were subjected to

compression test at 28 days. The objective of the tests was to study the

relation between compressive strength versus maximum size of the aggregate

of concrete made with recycled and made with natural aggregates, and then

compare the results.

Table 3.4 summanzes the batches identification number and their design

parameters.
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Table 3.4. Batch Identification Numbers and their Design Parameters.

No Batch Batch Maximum Water Cement
Identification Size Ratio

Number
[in] [mm]

1 BIR-I-O.48 lRPCC 1 25.0 0.48

2 BIN-I-O.48 IN 1 25.0 0.48

3 B2R-I-O.42 2RPCC 1 25.0 0.42

4 B2R-I-O.44 2RPCC 1 25.0 0.44

5 B2R-I-O.45 2RPCC 1 25.0 0.45

6 B2R-I-O.46 2RPCC 1 25.0 0.46

7 B2R-I-O.48 2RPCC 1 25.0 0.48

8 B2N-I-O.42 2N 1 25.0 0.42

9 B2N-I-O.44 2N 1 25.0 0.44

10 B2N-I-O.45 2N 1 25.0 0.45

11 B2N-I-O.46 2N 1 25.0 0.46

12 B2N-I-O.48 2N 1 25.0 0.48

13 B3R-I-O.44 3RPCC 1 25.0 0.44

14 B3R-I-O.47 3RPCC 1 25.0 0.47

15 B3R-I-O.50 3RPCC 1 25.0 0.50

16 B3R-3/4-0.44 3RPCC % 19.0 0.44

17 B3R-3/4-0.47 3RPCC % 19.0 0.47

18 B3R-3/4-0.50 3RPCC % 19.0 0.50

19 B3R-l/2-O.44 3RPCC Y2 12.5 0.44

20 B3R-l/2-O.47 3RPCC Y2 12.5 0.47

21 B3R-l/2-O.50 3RPCC Y2 12.5 0.50

22 B3N-I-O.44 3N 1 25.0 0.44

23 B3N-I-O.47 3N 1 25.0 0.47

24 B3N-I-O.50 3N 1 25.0 0.50

25 B3N-3/4-0.44 3N % 19.0 0.44

26 B3N-3/4-0.47 3N % 19.0 0.47

27 B3N-3/4-0.50 3N % 19.0 0.50

28 B3N-l/2-O.44 3N Y2 12.5 0.44

29 B3N-l/2-O.47 3N Y2 12.5 0.47

30 B3N-l/2-O.50 3N Y2 12.5 0.50
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3. 4. 2. Mixture Design.

Several batches were prepared according to the absolute volume method (8).

The first step was to define the average design compressive strength of design (fc)

and the required average compressive strength of concrete (fcr). All batches had a

specified fcr equals to 5000 psi (34.5 MPa). The next step was to select the water

cement ratio from Table 3.4 and the expected slump. From these values the content

of water, cement, and coarse aggregate could be determined using data given by the

method (8). These quantities were expressed in pounds needed to make a cubic yard

of concrete. Fine aggregate content was calculated from equation 3.5 and 3.6.

( (
WCweight CCweight + CACweight JJ (3.5)

FCvolume = 1- +---=----
SGwater *r water SGcement *r water SGcoarse *rwater

FCweight =FCvolume* SGfine *r water (3.6)

FCYo!ume: Volume of fine aggregate to complete a cubic yard of concrete.

WCweight: Quantity ofwater in a cubic yard of concrete, [lb].

CCweight: Cement content in a cubic yard of concrete, [lb].

CACweight: Coarse aggregate content in a cubic yard of concrete, [lb].

FCweight: Fine content in a cubic yard of concrete, [lb].

SGwater: Specific gravity ofwater.

SGcement: Specific gravity of cement.

SGcoarse: Specific gravity of coarse aggregate.

SGfine: Specific gravity of fine aggregate.

Ywater: Unit weight of water, [lb. per cu yard].
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3. 4. 3. Cylindrical Concrete Specimens.

Cylindrical concrete specimens were made according to ASTM C192 (20)

specifications. The cylinders were tested to maximum compressive strength. Molds

for the specimens were 4 in (10.2 cm) of diameter by 8 in (20.4 cm) height. Figure

3.6 and Figure 3.7 show typical cylindrical specimens made with natural and

recycled aggregates, respectively. Three specimens were made from each batch

specified in Table 3.4 with a total of 132 cylinders.

The casting process consisted in placing a layer of concrete in a mold

corresponding to approximately 1/3 of its volume. Next, concrete was rodded by 25

uniformly distributed strokes using a rod of 3/8 inch (0.95 cm) of diameter. Filling

and consolidation procedures were repeated two more times. Finally, the cylinder

was finished at the top to produce an even surface. The curing process was made

following the instructions given in ASTM C192 (20). Once the specimens were

finished, they were covered with a plastic sheet to prevent evaporation for 24 hours.

After this time, the cylinders were put in a water storage tank until they turned the

specified age for the compression test. Figure 3.8 shows the water storage tank with

the specimen inside. All specimens were stored together. The date and an

identification number were provid~d to each cylinder in order to distinguish the

individual batches concrete characteristics where they were made.
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Specimens with Natural Aggregate

Figure 3.6. Cylindrical Concrete Specimens Made with Natural Aggregate.

Figure 3.7. Cylindrical Concrete Specimens Made with RPCC Aggregate.
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Figure 3.8. Curing Process of Cylindrical Concrete Specimens.

Table 3.5 contains the identification number description for the cylinders.

Due to the quantity of planned batches, it was not possible to make all the concrete

mix in one day, therefore it was decided that two batches would be made, one with

natural and the other with recycled aggregate, and both with the same mixture

designcharacteristic, i.e. water, cement and coarse aggregate contents
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Table 3.5. Concrete Specimen Identification Numbers and Their Design
Parameters.

Specimen Batch Maximum Water- Age of Number of Variation

Identification Identification Size Cement testing specimens ofrc with

Number Number Ratio respect to

[in] [mm] [days]

RACA-I-O.48-3 BIR-I-0,48 1 25.0 0,48 3 3 Age

RACA-I-O.48-7 BIR-I-0,48 1 25.0 0,48 7 3 Age

RACA-I-O.48-14 BIR-I-0,48 1 25.0 0,48 14 3 Age

RACA-I-O.48-28 BIR-I-0,48 1 25.0 0.48 28 3 Age

NACA-I-O.48-3 BIN-I-0,48 1 25.0 0.48 3 3 Age

NACA-I-O.48-7 BIN-I-0,48 1 25.0 0.48 7 3 Age

NACA-I-O.48-14 BIN-I-0,48 1 25.0 0.48 14 3 Age

NACA-I-O.48-28 BIN-I-0,48 1 25.0 0.48 28 3 Age

RACS-I-O.42-28 B2R-I-0,42 1 25.0 0.42 28 3 Slump

RACS-I-O.44-28 B2R-I-0,44 1 25.0 0.44 28 3 Slump

RACS-I-O.45-28 B2R-I-0,45 1 25.0 0.45 28 3 Slump

RACS-I-O.46-28 B2R-I-0,46 1 25.0 0.46 28 3 Slump

RACS-I-O.48-28 B2R-I-0,48 1 25.0 0.48 28 3 Slump

NACS-I-O.42-28 B2N-I-0,42 1 25.0 0.42 28 3 Slump

NACS-I-O.44-28 B2N-I-0,44 1 25.0 0,44 28 3 Slump

NACS-I-O.45-28 B2N-I-0,45 1 25.0 0.45 28 3 Slump

NACS-I-O.46-28 B2N-I-0,46 1 25.0 0.46 28 3 Slump

NACS-I-O.48-28 B2N-I-0,48 1 25.0 0.48 28 3 Slump

RACZ-I-O.44-28 B3R-I-0,44 1 25.0 0.44 28 3 Max. Size

RACZ-I-O.47-28 B3R-I-0,47 1 25.0 0.47 28 3 Max. Size

RACZ-I-O.50-28 B3R-I-0.50 1 25.0 0.50 28 3 Max. Size

RACZ-3/4-0.44-28 B3R-3/4-0,44 % 19.0 0.44 28 3 Max. Size

RACZ-3/4-0.47-28 B3Rc3/4-0,47 % 19.0 0.47 28 3 Max. Size

RACZ-3/4-0.50-28 B3R-3/4-0.50 % 19.0 0.50 28 3 Max. Size

RACZ-1I2-0.44-28 B3R-l/2-0,44 Y2 12.5 0.44 28 3 Max. Size

RACZ-1I2-0.47-28 B3R-l/2-0,47 Y2 12.5 0.47 28 3 Max. Size

RACZ-1I2-0.50-28 B3R-I/2-0.50 Y2 12.5 0.50 28 3 Max. Size

NACZ-I-O.44-28 B3N-I-0,44 1 25.0 0.44 28 3 Max. Size

NACZ-I-O.47-28 B3N-I-0,47 1 25.0 0.47 28 3 Max. Size

NACZ-I-O.50-28 B3N-I-0.50 1 25.0 0.50 28 3 Max. Size

NACZ-3/4-0.44-28 B3N-3/4-0,44 % 19.0 0.44 28 3 Max. Size

NACZ-3/4-0.47-28 B3N-3/4-0,47 % 19.0 0.47 28 3 Max. Size

NACZ-3/4-0.50-28 B3N-3/4-0.50 % 19.0 0.50 28 3 Max. Size

NACZ-1I2-0.44-28 B3N-l/2-0,44 Y2 12.5 0.44 28 3 Max. Size

NACZ-1I2-0.47-28 B3N-l/2-0,47 Y2 12.5 0.47 28 3 Max. Size
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3. 4. 4. Slump Tests.

A slump test was made to every batch to certify the concrete consistency.

This procedure was made following ASTM Cl43 (19). The test equipment consisted

in a steel rod and a cone of 12 inches (30.5 cm) height, 8 inches (20.3· cm) base

diameter, and 4 inches (10.2 cm) top diameter. The test consisted in placing a layer

of concrete inside the cone corresponding to approximately 1/3 of its volume. Next,

the concrete was rodded by 25 uniformly distributed strokes using the steel rod.

Filling and consolidation procedures were repeated two more times. Finally, the

mold was raised and the freshly mixed concrete allowed set down freely. The

vertical distance between the original and displaced position of the center of the top

surface of the concrete was measured and reported as the slump of the concrete. An

example of this test is shown in Figure 3.9.

Figure 3.9. Slump Test.
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3. 4. 5. Compression Tests.

The purpose of these tests was to detennine the compressive strength of

concrete specimens made with RPCC aggregate and to compare these values to those

obtained for concrete specimens made with natural aggregate, having a comparable

mixture design. The tests were made following the standard procedure described in

ASTM C39 (21). The compression test consisted basically in applying a

compressive axial load to a cylindrical concrete specimen continuously and without

shock until failure occurred. Compressive strength (rc) was calculated as the

average value of the individual compressive strengths of the three specimens made

from the same batch. The individual compressive strength was calculated by

dividing the maximum load applied to a specimeh during the test by the cross section

area of that specimen. Figure 3.10 shows a typical compression test The specimens

were made from the batches described in Table 3.5. All specimens were teste~ at 28

days of age, except those made from Batches IN and lRPCC
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Figure 3.10.Compression Test.

3. 5. Shear Test.

Shear tests were made to RPCC material in order to determine its failure

envelope and friction angle. The material tested consisted in coarse aggregate that

satisfied the requirement imposed by AASTHO M57 (22). The material belonged to

A-I-a group of classification according to AASTHO M145 (10), corresponding to

coarse aggregate retained by sieve No.4. Its grading characteristics are presented in

Figure 3.3 and Table 3.3.

The test equipment included a shear box designed at Lehigh University for

shear testing purposes. It consisted of a square box of 4 ft2 (0.372 m2
) of area and

one foot height. The box was divided horizontally in two equal parts that allowed a

relative displacement, as it can be seen in Figure 3.11. The shear box included a

cover plate of92lb (0.409 kN) of weight.
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The test method consisted in placing the recycled material in a confinement

device (shear box) as it is shown in Figure 3.12. The material was then covered with

the plate and a normal load was applied to the specimen. The load was maintained

constant during the whole test. Next, shearing displacements were applied in a very

slow rate and shear forces were measured. After reaching the failure the test was

stopped. The failure occurred when the displacement reached between 10% and

20% of the original length of the shear box according to ASTM 3080 (23). The data

obtained were plotted in a graphic containing Horizontal Force (shear force) versus

Horizontal Displacement; the peak value in this graph corresponded to the shearing

force at failure. The stresses were calculated as:

• Normal stress at failure, O"f.

• Shear stress at failure, 'tf.

Norma/Load
(j ------

f - Area

ShearingLoad
r =------"'----

f Area

(3.7)

(3.8)

This procedure was repeated 4 times for axial loads of 500 lb (2.224 kN), 750

lb (3.336 kN), 1000 lb (4.448 kN), and 1250 lb (5.560 kN). The linear equati<:m at

failure for cohesionless soils has the form:

(3.9)

'tf: Shear stress at failure.

O"f: Normal stress at failure.

~f: friction angle.
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Figure 3.11. Shear Box.

Figure 3.12. Placing RPCC Material for Testing.
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Table 3.6. Range of Friction Angle for Soils. (24)

Soil Type ~

• Gravel 35-50

• Mixtures of gravel and sand with fine-grained soils 30-40

• Sand 32-50

• Silt or silty sand 27-35

• Clays 20-30

This linear relationship between nonnal and shear stresses was obtained

using the experiments data and a linear regression analysis. Some reference values

(24) of friction angles for soils are:

3. 6. Comments.

1. In order to simplify calculations and eliminate errors caused by variation in

moisture content of the material, the coarse aggregate was prewetted and then

dried to a saturated surface-dry condition and placed in a covered container to

keep it in this condition until it was used. Therefore, the content of water

was modified and it corresponded to:

(3.10)

Where:

WeM: Modified quantity of water m lb per cu yard of freshly mixed

concrete.
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Wc: Quantity of water from mix design in lb. per cu yard of freshly mixed

concrete.

CA: Coarse aggregate content in lb. per cu yard of freshly mixed concrete.

AbcA: Absorbed water by coarse aggregate in lb per cu yard of freshly

mixed concrete.

AbFA: Absorbed water by fine aggregate in lb per cu yard of freshly mixed

concrete.

CASSD: Coarse aggregate in saturated suface-dry condition in lb per cu yard

of freshly mixed concrete.

2. It was intended to make the batches containing RPCC and natural aggregates

and with similar characteristic the same day, such that the conditions of mix

preparation were the same and did not affect the final results between the

batches.

3. The cover of the shear box used for the shear test weighted 92 lb (0.409 kN).

This value was added to the axial load applied to the specimen.
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CHAPTER 4. RESULTS.

4. 1. Introduction.

Chapter 4 summarizes the data obtained in this study and their analysis. The

chapter is divided in three parts. The first part contains the results from the specific

gravity and absorption test performed on RPCC and natural material. The second

part deals with the mixture design of the concrete plus the results from tests made to

freshly mixed and hardened Portland Cement Concrete (PCC), including slump and

compression tests. The last part of the chapter contains the results from the

application of shear tests to RPCC material.

The tests, results, and analysis presented on this chapter had the aim of

describing the behavior of concrete made from Reclaimed Portland Cement Concrete

in general and comparing it to concrete made from conventional aggregate. The size

of the sample and the distribution of the results permits the use of the obtained

models as a general representation of the performance of the concrete specified in

this study and it is not intended to be applied to other kinds of concrete.

4. 2 Material Properties

In this section, physical properties (specific gravity and absorption) of the

RPCC aggregate and natural aggregate were determined with the objective of using

them in the mixture design process.
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..
4. 2. 1. Specific Gravity and Absorption

The test methods for specific gravity and absorption (18) were applied to two

samples: a RPCC and a natural coarse aggregate samples, each one with a saturated-

surface-dry weight of 9.20 lb (4.17 kg.). The results are summarized in Table 4.1.

From Table 4.1, the different properties are apparent. The specific gravity value for

RPCC aggregate was a 7.9% lower than that of natural aggregate. On the other

hand, the absorption for RPCC material was 3.6 times the value obtained for natural

aggregate.

Table 4.1. Specific Gravity and Absorption Results.

RPCC Natural
A~~re~ate A~~re~ate

Oven dry weight (A), lb (kg). 8.85 9.10
(4.01) (4.13)

Saturated-surface-dry weight (B), lb (kg). 9.20 9.20
(4.17) (4.17)

Saturated weight in water (C), lb (kg). 5.40 5.60
(2.45) (2.54)

Bulk Specific Gravity 2.33 2.53

Bulk Specific Gravity (saturated-surface-dry), 2.42 2.56
(SSD)

Apparent Specific Gravity 2.57 2.60

Absorption, % 4.0 1.1

Note: Bulk specific gravity = AI(B-C).
Bulk specific gravity (SSD) = B/(B-C).
Apparent specific gravity =A/(A-C).
Absorption = [(B-A)/A]*100.
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4. 2. 2. Sieve Analysis of Fine Aggregate.

Sieve analysis was conducted on the fine natural aggregate following ASTM

C136 (16) and ASTM C702 (17) standard specifications. Four samples were

analyzed and the average results are presented in Table 4.2 and Figure 4.1. The

sieve analysis ensured that the fine aggregate satisfied ASTM C33 (14)

requirements.

4. 3. Portland Cement Concrete (PCe).

Portland cement concrete was made from RPCC as well as natural aggregate

with the purpose of study the behavior of freshly mixed and hardened concrete.

Here, the concrete mixture designs and the results for slump and compression tests

are presented.
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Table 4.2.Sieve Analysis afFine Aggregate.

Sieve Size Fine Aggregate ASTM C33 Requirements
(14)

No. mm. % passing by weight % passing by weight
3/8" 9.50 100 100

4 4.75 97 95-100

8 2.36 81 80-100

30 0.60 29 25-60

50 0.30 10 5-30

100 0.15 3 0-10

100 .. ,. .#.. •90 # #..
• •• ·AsrM C33,, •

• ~

grading80 • requirementt t

t t
70 • •... •

.= • • • - - ·AsrM C33,
0.0 60 .. grading.~

~ • requirement

..6' 50 -
0.0 • •
.S •
ell 40 # t --Gradation 0

~ • t fine
~ •
~ 30 - aggregate

" . •. -• •20 # •
# •

# #

10 # #

#..--0
No.100 No.SO No.30 No.16 No.8 No.4 3/8"

Siew Size

Figure 4.1. Sieve Analysis of Natural Fine Aggregate.

53



4.3. 1. Mixture Design.

A total of 30 batches were designed based on the Absolute Volume Method

(8), 15 made with recycled and 15 with natural coarse aggregate. The specific

gravity and absorption values obtained in Table 4.1 were included in the design

process. It can be seen in Table 4.3 that the content of fine aggregate constituted the

only difference between batches with the same maximum size of coarse aggregate

and water cement ratio, made with RPCC and natural aggregate. On the average, the

fine aggregate content was 14.2% more in batches made with natural aggregate. The

content of fine aggregate was calculated according to equations 3.5 and 3.6. From

these equations, it can be seen that the larger the specific gravity, the larger the fine

aggregate volume and fine aggregate content. Therefore, the batches made with

natural aggregate (bigger specific gravity) needed more fine aggregate content as

shown in Table 4.3.

The actual water cement ratio of some of the batches differed from those

specified in Chapter 3, Table 3.4, because the workability of the concrete was poor

or the measured slump did meet specification (19). The modified batches are shown

in Table 4.4.
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Table 4.3. Batch Identification Numbers and Mixture Design.

No Batch Water- Maximum Quantity Cement Coarse Fine
Identification Cement Size of Content Aggregate Aggregate

Number Ratio Water Content Content

in (mm.) Ib*(kg ) Ib (kg ) Ib'(kg ) Ib (kg )
1 BIR-I-O.48 0.48 1 335 678 1782 976

(25.0) (198.8) (402.3) (1057.3) (579.1)
................-..." ... -----_.._-_..._--_.__.- --------_.- .........._----_.._---- ._-_..__....__._- ---------_._.. -_......_-_......._............. _._------

2 BIN-I-O.48 0.48 1 335 678 1782 1136

(25.0) (198.8) (402.3) (1057.3) (674.0)

3 B2R-I-O.42 0.42 1 285 678 1782 1108

(25.0) (169.1) (402.3) (1057.3) (657.4)
.....- --_._.__....- .._-_....._--_.....__.._- ...._..._._._--_. .__.,._._._._-_..._--_........._......_- -_.....__.._._._......__.-------_.....

4 B2R-I-O.44 0.44 1 295 678 1782 1082

(25.0) (175.0) (402.3) (1057.3) (642.0)
........._.........----_. ...._--------- .-...._ .._-_.... --_._.._........._.._._---_._ ...._.. ....__.._-_._............. ---_...._........_.

5 B2R-I-O.45 0.45 1 305 678 1782 1056

(25.0) (181.0) (402.3) (1057.3) (626.5)
.._._--- ._-----_..__._-- ._---------_._..._._-_._-_... .....__._---_. ...... _.....-

6 B2R-I-O.46 0.46 1 315 678 1782 1029•
(25.0) (186.9) (402.3) (1057.3) (610.5)

---- ------------_.. -_...._------_. .._--_..__..._- --------_....._......---_..._............ .....- ----_.__.~.

7 B2R-I-O.48 0.48 1 325 678 1782 1003

(25.0) (192.8) (402.3) (1057.3) (595.1)
_. ------ ~--~-~---------_._.._~---- _____·._••M.

~..- --
8 B2N-I-O.42 0.42 1 285 678 1782 1268

(25.0) (169.1) (402.3) (1057.3) (752.3)
._--_.._--- -_._~----._--~---

_. 1--._-----
9 B2N-I-O.44 0.44 1 295 678 1782 1242

(25.0) (175.0) (402.3) (1057.3) (736.9)
------_.------ _._. -.__..- -------

10 B2N-I-O.45 0.45 1 305 678 1782 1215

(25.0) (181.0) (402.3) (1057.3) (720.8)
--_.------._._-----_.._._- .._~------ -------. ~--~.~-_. ._.-

11 B2N-I-O.46 0.46 1 315 678 1782 1189

(25.0) (181.0) (402.3) (1057.3) (705.4)
.._~..._--- ---- __•__M ___._.__ -_... -_.

12 B2N-I-O.48 0.48 1 325 678 1782 1162

(25.0) (186.9) (402.3) (1057.3) (689.4)

13 B3R-I-O.44 0.44 1 300 682 1782 1065

(25.0) (178.0) (404.6) (1057.3) (631.8)
--- ..._---- ---------_.

14 B3R-I-O.47 0.47 1 320 682 1782 1011

(25.0) (189.9) (404.6) (1057.3) (599.8)
-_..._-----_.-• _ ••M.___••_____ ------- _ .._------ ._-----._----_._. -------

15 B3R-I-O.50 0.50 1 341 682 1782 957

(25.0) (202.3) (404.6) (1057.3) (567.8)
----------. ----_.- -----_.__..._-----

16 B3R-3/4-0.44 0.44 % 315 716 1647 1150

(19.0) (186.9) (424.8) (977.1) (682.3)
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Table 4. 3. Batch Identification Numbers and Mixture Design. (Continuation)

No Batch Water- Maximum Quantity Cement Coarse Fine
Identification Cement Size of Content Aggregate Aggregate

Number Ratio Water Content Content

in. (mm.) lb·(kg ) Ib (kg") Ib (kg ) Ib (kg )

17 B3R-3/4-0.47 0.47 % 336 716 1647 1093

(19.0) (199.3) (424.8) (977.1) (648.5)
......_......_. ..-._--_._.__._..__..............- .........._._....-........~......- R _____• __··_..·_·__....• ..• ...• -_._-......._--_............. ........._---- .................__._......-.._.f------.--

18 B3R-3/4-0.50 0.50 % 358 716 1647 1037

(19.0) (212.4) (424.8) (977.1) (615.2)
.................- _.__.__._._....._......----_._....................__.__...........- ....-..........__._-_.._.._.. ..........._....__........_- ...........-_.__..._. --_..._ .._--_._-_.. ...._....._...---_...

19 B3R-1I2-0.44 0.44 12 335 761 1458 1273

(19.0) (198.7) (451.5) (865.0) (755.2)
........._-_..._...._....__._--1--_...._.._-_.__._._- -.-......._.._ ..- ......._...... ......._-----_.. --_.__._-_.._--...... -........._-_...

20 B3R-1I2-0.47 0.47 12 358 761 1458 1213

(12.5) (212.4) (451.5) (865.0) (719.6)
...._-_..... --_... ---'.-_.. ...- ....._..__.._ ..._--_._-

-~~.~ .._._---~ . ......._----_...-
--"'--"~"'---'-

._-_._...-_.__.

21 B3R-l/2-0.50 0.50 12 381 761 1458 1153 .

(12.5) (226.0) (451.5) (865.0) (684.0)
---_..._.. ..._____..··...M_..._.... ._--_....-_._._--- ---'''-''''---'''- --_.._-_._-._. ._._---_.------_..__.- .-.__..----

22 B3N-1-0.44 0.44 1 300 682 1782 1225

(25.0) (178.0) (404.6) (1057.3) (726.8)
..._.._-_.. ..---_._._._. - ......_~_._- _ .....M___..._ ....• ..._ .._._.___..··..._M_ -_._-_..__.._. ----_. ~..~-

23 B3N-I-O.47 0.47 1 320 682 1782 1171

(25.0) (189.8) (404.6) (1057.3) (694.7)
.M...__ ----_._- --_._~...- --_.._~_._----------_. -_. ~...-

24 B3N-I-O.50 0.50 1 341 682 1782 1117

(25.0) (202.3) (404.6) (1057.3) (662.7)
.__. _..~.__.1-----------_......----- ----

25 B3N-3/4-0.44 0.44 % 315 716 1647 1298

(19.0) (186.9) (424.8) (977.1) (770.1)
.__....- ------------- -_.. ._. .-

26 B3N-3/4-0.47 0.47 % 336 716 1647 1241

(19.0) (212.4) (424.8) (977.1) (736.3)
~--~---_.._---_._----- -_._----- .~ ----_.

27 B3N-3/4-0.50 0.50 % 358 716 1647 1184

(12.5) (198.7) (424.8) (977.1) (702.4)
--------- ....~.- ...- ----_._._.----

28 B3N-1I2-0.44 0.44 12 335 761 1458 1404

(12.5) (212.4) (451.5) (865.0) (833.0)
----_.- - ----

29 B3N-1I2-0.47 0.47 12 358 761 1458 1344

(12.5) (198.7) (451.5) (865.0) (797.4)
---'--' -_. --_.---_.-----

30 B3N-1I2-0.50 0.50 12 381 761 1458 1283

(12.5) (226.0) (451.5) (865.0) (761.2)

lb. per Cll yard of freshly mixed concrete.
•• kg. per Cll meter of freshly mixed concrete.
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Table 4.4. Modified Batches

No Original Batch Modified Original Modified
Identification Batch Water Cement Water Cement

Number Identification Ratio Ratio
Number

1 BIR-I-0.48 BIR-I-O.49 0.48 0.49

2 BIN-I-0.48 BIN-I-O.49 0.48 0.49

3 B2R-I-0.42 B2R-I-O.43 0.42 0.43

4 B2R-I-0.45 B2R-I-O.46 0.45 0.46

5 B2R-I-0.46 B2R-I-O.47 0.46 0.47

6 - B2R-I-O.49 - 0.49

7 B2N-I-0.44 B2N-I-O.45 0.44 0.45

8 B2N-I-0.45 B2N-I-O.49 0.45 0.49

9 B2N-I-0.46 B2N-I-O.51 0.46 0.51

4. 3. 2. Slump Tests

Slump tests were conducted on 12 different batches. The results from these

tests are presented in Table 4.5 and Figure 4.2. Figure 4.2 presents the slump test

results as a function ofthe water cement ratio (WeR). The shape of the curve used to

model the slump-WCR relationship was based on a more simple approach of

Popovics' formula (25).
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Table 4.5. Slump Test Results for Portland Cement Concrete Made from RPCC and
Natural Aggregates.

Batch Maximum Water Slump
Number Identification Size Cement Ratio

Number
[in] [em] [in] [em]

1 B2R-1-0.43 1 2.5 0.43 1.5 3.8
2 B2R-1-0.44 1 2.5 0.44 2.1 5.3
3 B2R-1-0.46 1 2.5 0.46 4.0 10.2
4 B2R-1-0.47 1 2.5 0.47 6.5 16.5
5 B2R-1-0.48 1 2.5 0.48 1.0 2.5
6 B2R-1-0.49 1 2.5 0.49 5.0 12.7
7 B2N-1-0.42 1 2.5 0.42 0.5 1.3
8 B2N-1-0.45 1 2.5 0.45 1.5 3.8
9 B2N-1-0.48 1 2.5 0.48 3.0 7.6
10 B2N-1-0.49 1 2.5 0.49 3.5 8.9
11 B2N-1-0.51 1 2.5 0.51 5.0 12.7

7.0

6.0

5.0 ... i·

- 4.0=.•-Cl.e
..: 3.0
00

2.0

1.0

•
0.0 +----,------r------r--r----i-----,----T--~

0.38 0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54

WCR

A RPCC
Aggregate,
Size=1 in.

• Natural
Aggregate,
Size=1 in.

- - - •Popovics'
Model for
RPCC
Aggregate

--Popovics'
Model for
Natural
Aggregate

Figure 4.2. Slump - Water Cement Ratio Relationship.
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The shape's curve was expressed as follows:

S: Slump, [in].

WCR: Water Cement Ratio.

As: Constant.

(4.1)

The least squares method was applied to the data to fit them to equation 4.1,

the obtained expressions are:

• Slump for batches with RPCC coarse aggregate:

(
WCR J10

S -4*
RPCC - 0.4773

• Slump for batches with Natural coarse aggregate:

(
WCR JIO .

S -4*
Nat - 0.4975

Two observations can be made from Figure 4.2:

(4.2)

(4.3)

1. The data distribution from batches made with natural coarse aggregate

fits better its curve; on the contrary, the data from batches made with

RPCC coarse aggregate shows a more irregular distribution. This

may be because batches with RPCC aggregate were more sensitive to

the water cement ratio, and therefore more sensitive to the quantity of

water (cement content remaining constant).
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2. For a given water cement ratio (WCR), the evaluated slump was in

average 1.8 inches (4.6 cm) higher in equation 4.2 than that of 4.3.

This demonstrates a higher sensitivity to the quantity of water for

batches made with RPCC aggregate.

For a given WCR, mixtures made with recycled aggregate were easier tocast,

compact, and finish, they also showed a higher flowability compared to, mixtures

made with conventional aggregate.

The finding mentioned above suggests that for a specified slump, concrete

made with recycled concrete may need lower quantity of water than concrete made

with natural aggregate without losing flowability and plasticity. A lower demand of

water would help improve the compressive strength of the hardened concrete.

.4. 3. 3. Compression Tests.

The objective of the compression tests was to determine the compressive

strength behavior of the concrete made with RPCC aggregate (fcRPcc) and then

compare it to the compressive strength of concrete with the same characteristics but

made with natural aggregate (fCNal)' For this purpose, several batches were prepared

varying parameters like water cement ratio and maximum size of the aggregate, and

cylindrical concrete specimens were made from these mixtures. The specimens were

tested in compression in order to determine the relationship between compressive

strength and age of the concrete, water cement ratio, slump, and maximum size of

the aggregate.
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Table 4.6.Compressive Strength for Concrete Specimens at Different Ages.

Specimens Compressive Specimens Compressive

Age Identification Strength. Identification Strength. Mc

number f'CRPCC number rCNat

[days] [psi] [MPa] [psi [MPa] [%]

]

3 RACA-I-0.49-3 2390* 16.4 NACA-I-0.49-3 292 20.1 18.1
0

7 RACA-I-0.49-7 3110* 21.4 NACA-I-0.49-7 343 23.6 9.3
0

14 RACA-I-0.49-14 3520* 24.3 NACA-I-0.49-14 387 26.7 9.9
0

28 RACA-I-0.49-28 4120 28.4 NACA-I-0.49-28 451 31.1 8.6
0*

Note: ~fc =100* (UNadRPcc)/ fCNal.
Water =0.49
Cement
*: average of two specimens according to ASTM C 670 -96

5000 ,----,--------,----,-------,----,---,------,

4500-

4000 ---

.........
fI}

..:= 3500
CJ
~

3000

2500- )-~."
0.'

.
I •

i ,,'
, ,
,..

G Specimen
with RPCC
Agg.

• Specimens
with Natural
Agg.

....... Goral's Mode
for RPCC
Agg.

--Goral's Mode
for Natural
Agg.

2000 -I------'----i---------'----,-------'-----i------'----1

3 7

Age [days]

14 28

Figure 4.3. Compressive Strength Versus Age.
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4.3.3. 1. Compressive Strength Versus Age.

A total of 24 specimens were tested at ages of 3, 7, 14, and 28 days. All

specimens were made on the same date. Table 4.6 contains the tests data and Figure

4.3. shows a graphic representation of the results. From Table 4.6 and Figure 4.3 it

can be seen that, the behavior of compressive strength (fc) for both aggregates was

very similar. The curve from the RPCC material is below the natural material. At 3

days of age occurred the largest difference of f c between the results from natural

and RPCC aggregate specimens, where f c from specimens made with RPCC

aggregate was 18.1% smaller than that of specimens made with natural aggregate, as

it is shown in Table 4.6. This difference dropped to 8.6% for the 28 days specimens.

Although this difference is important, it is close to the maximum allowed difference

among three individual compression tests given by ASTM 670 (26) specification,

which is 7.8%.

There were cases where the difference between the maximum and minimum

values of fc was larger than 7.8% (limit established for ASTM 670-96), for a three-

specimen set made from the same concrete. In those cases, the f' c value was

estimated as the average of the two cylinders with the closer fc (values with * in

Table 4.6).

The data were modeled using Goral's equation (25), and the fitted curves are

shown in Figure 4.3. Goral's expression has the form:

f
· , t

c =----
a Aa *t +Ba

f'c: Compressive strength at t age, [psi].
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t: Age, [days].

Aaand Ba: Constants.

The least squares method was applied to the data to fit them to equation 4.4,

the obtained expressions are:

• fc for concrete with RPCC coarse aggregate:

f ' tc ----------
aRPCC - 2.29 *10-4 *t +6.12 *10-4

• fc for concrete with Natural coarse aggregate:

f ' tc ----------
aNat - 2.17*10-4 *t+4.30*10-4

(4.5)

(4.6)

According to these models, when t approaches to 00, f CaRPCC is approximately

4610 psi (31.8 MPa), and fCaNat is approximately 4370 psi (30.1 MPa), and the

difference between them (~fc) approaches to 5.2%. Therefore, the final strength

would be closer than the results at 28 days of age, and the difference would approach

a reasonable value.

4.3.3.2. Compressive Strength Versus Water Cement Ratio.

Water cement ratio is a variable that has high influence in the concrete

performance. In order to quantify this influence, a total of 30 specimens were made

(15 from RPCC and 15 from natural material) with different water cement ratios, the

quantity of water was varied and the cement content was maintained constant. Table

4.7 and Figure 4.4 show the results from the compression tests.
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The individual values of compressive strength for specimens made with

RPCC aggregate had a greater scatter than the corresponding values for specimens

made with natural aggregate. This could indicate a bigger sensitivity of the concrete

made from recycled aggregate to the quantity ofwater.

To model the data, Abrams' formula (25) was used:

(4.7)

fcw: Compressive strength, [psi].

WCR: Water cement ratio

Awand Bw: Constants.

The least squares method was applied to the data to fit them to equation 4.7.

The obtained expressions are:

• fcwfor concrete with RPCC coarse aggregate (fcwRPcc):

f Ie =313622*1O-(WCR*2.051)
wRPCC •

• fcwfor concrete with Natural coarse aggregate (fCwNat):

f 'e = 11165 1*10-(wCRoO.827)
wNal •

(4.8)

(4.9)

Both curves are shown in Figure 4.4. All data from specimens made from

natural aggregate were considered to perform the curve fit. For the case of

specimens made with recycled aggregate only four out of the six results were

considered. The points corresponding to WCR = 0.48 and 0.49 were not considered,

because they were far from the rest of the results and produced an important

distortion in the modeling of the data.
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From Figure 4.4, the rCRPCC curve was below the rCNal curve in the interval

0.40-0.52 of WCR. It can also be observed that the compressive strength decreases

with WCR for both concretes, but more rapidly for the recycled aggregate case. The

observations confirmed two well-known concrete characteristics: first, concrete

made with recycled aggregate has a lower compressive strength than conventional

concrete; second, the rc decreases when the water cement ratio increases.

Table 4.7. Compressive Strength of Concrete Specimens with Different Water
Cement Ratio.

Specimens Water Compressive

No. Identification Cement Strength. Age Observations

number Ratio rc

[psi] [MPa] [days]

1 RACA-I-0.43-28 0.43 4010 27.6 28

2 RACA-I-0.44-28 0.44 4040* 27.9 28 Max. size agg. = 1in

3 RACA-I-0.46-28 0.46 3670* 25.3 28

4 RACA-I-0.47-28 0.47 3300* 22.8 28
*: Average of two

specimens according
5 RACA-I-0.48-28 0.48 4430° 30.5 28

to ASTM C 670 -96
6 RACA-I-0.49-28 0.49 4120° 28.4 28

7 NACA-I-0.42-28 0.42 5130* 35.4 28 0: points not

8 NACA-I-0.45-28 0.45 4480 30.9 28 included in

9 NACA-I-0.48-28 0.48 4630* 31.9 28 modeling process.

10 NACA-I-0.49-28 0.49 4490 31.0 28

11 NACA-I-0.51-28 0.51 4150 28.6 28
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Figure 4.4. Compressive Strength Versus Water Cement Ratio.

If equations 4.8 and 4.9 were extrapolated; they would intersect at WCR

=0.366 and fc= 5560 psi (38.3 MPa), and below that WCR compressive strength for

concrete made with recycled aggregate would be greater than the conventional

concrete strength, but no data were obtained in that range of WCR to substantiate

this hypothesis. In practice, WCR specified for normal concrete (not high strength

concrete) are usually greater than 0.4. For a specified compressive strength it is

possible to find the relation between the WCR for RPCC concrete (WCRRPcc) and

WCR for Natural concrete (WCRNat) by using 4.8 and 4.9. The final expression is:

WCRRPCC =0.2187 +WCRnat *0.4030

and, in general terms:
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(
IOg( AwRPCC ) +WCR *B )A nat Wnal

WCR =~_-----::w.:..:.:Na.:.:....t ~
RPCC

BwRPCC

(4.11)

'(

Hence, for a specified WCR and f c of a desired Portland cement concrete

with conventional aggregate, it would be possible to obtain the equivalent WCR

needed when RPCC coarse aggregate is used. Moreover, using equations 4.10 and

4.3 it is possible to determine the slump. Taking WCRnat = 0.48 as example, the

corresponding fc would be 4480 psi (30.9 MPa) from equation 4.9 and the slump

2.8 in (7.1 cm.) from equation 4.3. The equivalent WCRRPcc would be 0,41 from

equation 4.10. Applying equation 4.2, the slump associated to recycled concrete

should be 1.5 in (3.8 cm). The purpose of this example is to show that it would be

possible to establish a relation between the use of natural and recycled aggregate,

and that it would be possible to achieve the same level of compressive strength by

changing parameters like WCR and Slump in the mixture design.

4. 3. 3. 3. Compressive Strength Versus Slump.

The specimens used for this part of the study were made from the batches in

Table 4.5. The obtained slump for each individual batch was associated to the

cylindrical concrete specimens made from that batch. The specimens were tested in

compression at 28 days of age. The results as a function of the slump are

summarized in Table 4.8 and Figure 4.5.

67



Table 4.8. Compressive Strength for Concrete Specimens with Different Slump.

Specimens Compressive
No. Identification Slump Strength. Age Observations

number rCRPCC

[in] [em] [psi] [MPa] [days]

1 RACA-I-0.48-28 1 2.5 4430 30.5 28

2 RACA-1-0.43-28 1.5 3.8 4010 27.6 28 Max. size agg. =

3 RACA-1-0.44-28 2.1 5.3 4040* 27.9 28
lin

4 RACA-1-0.46-28 4.0 10.2 3670* 21.2 28

5 RACA-I-0.49-28 5.0 12.7 4120 28.4 28
*: average of two

6 RACA-I-0.47-28 6.5 16.5 3300* 22.7 28 specimens

7 NACA-I-0.42-28 0.5 1.3 5130* 35.4 28 according to

8 NACA-1-0.45-28 1.5 3.8 4480 30.9 28 ASTM C 670 -96

9 NACA-1-0.48-28 3.0 7.6 4630* 31.9 28

10 NACA-1-0.49-28 3.5 8.9 4490 31.0 28

11 NACA-I-0.51-28 5.0 12.7 4150 28.6 28
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Figure 4.5. Compressive Strength Versus Slump.
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The results obtained agreed with the previous obtained relationships. It was

confinned that slump increased as WCR increased and f c decreased with increasing

WCR, therefore it was expected that fc would be a decreasing function of slump.

The results obtained and shown in Table 4.8 and Figure 4.5 confinn this trend.

Popovics' Jonnula (25) was used to develop a relationship for slump and

compression strength.

(4.12)

fcss: Compressive strength, [psi].
~

S: Slump, [in].

Ass and Bss: Constants.

The least square method was applied to the data to fit them to equation 4.12.

The obtained expressions are:

• fcss for concrete with RPCC coarse aggregate (fcssRPcc):

f ' 3933.4 16 8
c"RPCC =(~r-7. 7

• fcss for concrete with Natural coarse aggregate (fCssNat):

f l =3153.7 +1195 6
C,,"", (~r .

(4.13)

(4.14)

The compressIve strength behavior for both concretes was similar.

Compariq.g f CssRPCC and f CssNat curves, in both cases f c had its maximum value
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when S~O and fc had its minimum value when S~ 12 in (30.5 cm), maximum

slump cone. Taking the fc versus WCR relationships and a given WCR = 0.46, the

compressive strengths given by equations 4.8 and 4.9 would be fcwRPCC =3570 psi

(24.6 MPa) and fCwNat =4650 psi (32.1 MPa), respectively. Therefore, the difference

in compressive strength would be Llfcw= 23.2%t. Now, taking the fc versus slump

relationships and a given slump of 1.6 inches (4.1 cm) the compressive strength

given by the equations 4.13 and 4.14 would be fcssRPCC =4143 psi (28.6 MPa) and

fCssNat =4650 psi (32.1 MPa), respectively. Therefore, in this case, the difference in

compressive strength would be Llfcss = 10.9%tt. The difference in compressive

strength was larger using the models for fc versus WCR. Usually, models offc as

a function of slump also included other parameter, like content of cement and finesse

modulus of the aggregate (25); then it could be that the slump models shown here

were too simple and they could underestimate the compressive strength.

4. 3. 3. 4. Compressive Strength Versus Maximum Size ofthe Aggregate.

Maximum size of the aggregate is another variable in compressive strength of

concrete. It is known that the strength of comparable concretes with identical water

cement ratios usually increase as the maximum size of the aggregate (MSA)

decreases, the explanation for this is that the bond of the cement paste to the

t: LlI' C
w

=(I' c wNat - f' cwRPCC )

l'cwNat

It: Llf' Css =(I' CssNat.- f' CssRPCC )

f cssNat
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aggregate particles of large sizes is weaker than the bond to smaller sizes because of

the smaller surface of the former. Table 4.9 contains the results of compression test

applied to concrete specimens made from RPCC and Natural aggregate, with

different maximum size of the aggregate and water cement ratio. The maximum

sizes used were: ~ in (1.3 em), % in (1.9 em), and 1 in (2.5 em), and the water

cement ratios were: 0.44, 0.47, and 0.50. Figure 4.6 displays the final results.

From Figure 4.6 for each concrete, the highest compressive strength values

were those obtained from specimens with the maximum size of ~ inch (1.3 em) and

WCR of 0.44, and the weakest specimens were those with the maximum size of 1

inch (2.5 em) and WCR of 0.47 and 0.50. In general, Figure 4.6 shows similar trend

for the concrete made with reclaimed aggregate with respect to the concrete made

with natural aggregate as in previous cases, (i.e. the compressive strength of

specimens made with RPCC aggregate under that of specimensm~ RPCC

aggregate). Some exceptions were:
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Table 4.9. Compressive Strength for Concrete Specimens Versus Different
Maximum Size of the Aggregate.

No. Specimens Water Max. Compressive
Identification Ceme Size Strength. Age Observations

number nt Pc
Ratio

[in] [em] [psi] [MPa]

1 RACZ-1I2-0.44-28 0.44 Y2 1.3 4350 30.0 28

2 RACZ-1I2-0.47-28 0.47 Y2 1.3 4480 30.9 28

3 RACZ-1I2-0.50-28 0.50 Y2 1.3 3390 23.4 28

4 RACZ-3/4-0.44-28 0.44 % 1.9 4120* 28.4 28

5 RACZ-3/4-0.47-28 0.47 % 1.9 3890 26.8 28 *: Average of
two specimens

6 RACZ-3/4-0.50-28 0.50 % 1.9 3890 26.8 28 according to
ASTMC 670-

7 RACZ-I-0.44-28 0.44 1 2.5 3910 37.0 28 96

8 RACZ-I-0.47-28 0.47 1 2.5 3300 22.8 28

9 RACZ-I-0.50-28 0.50 1 2.5 3300* 22.8 28

10 NACZ-1I2-0.44-28 0.44 Y2 1.3 5420 37.4 28

11 NACZ-1I2-0.47-28 0.47 Y2 1.3 4910 33.9 28

12 NACZ-1I2-0.50-28 0.50 Y2 1.3 4220 29.1 28

13 NACZ-3/4-0.44-28 0.44 % 1.9 5300 36.5 28

14 NACZ-3/4-0.47-28 0.47 % 1.9 5340 36.8 28

15 NACZ-3/4-0.50-28 . 0.50 % 1.9 5120* 35.3 28

16 NACZ-I-0.44-28 0.44 1 2.5 5160 35.6 28

17 NACZ-I-0.47-28 0.47 1 2.5 4570 31.5 28

18 NACZ-I-0.50-28 0.50 1 2.5 4910 33.9 28

• The case of maximum size of the aggregate equal to 12 inch (1.3 cm):

the compressive strengths of specimens made with RPCC aggregate

and WCR = 0.44 and 0.47 were 3.1% and 6.1 %, respectively, larger

than that of the specimens made with natural aggregate and WCR =

0.5. This results show that fc of concrete made with RPCC

aggregate gives a comparable value to that of concrete made with

natural aggregate by decreasing the WCR.
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• The case of WCR = 0.47: the fc values of specimens made with

recycled concrete with maximum size of the aggregate equal to Y2

inch (1.3 cm), was 1.9% smaller than that of the specimens made with

natural aggregate and maximum size of the aggregate equals to I inch

(2.5 cm). This results show that fc of concrete made with RPCC

aggregate gives a comparable value to that of concrete made with

natural aggregate by decreasing the maximum size of the aggregate of

the first one.
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4. 5. Shear Tests

Four shear tests were performed. The normal loads applied were 500 lb

(2.224 kN), 750 lb (3.336 kN), 1000 lb (4.448 kN), and 1250 lb (5.560 kN). 92 lb

(0.409 kN) were added to each vertical applied load, corresponding to the cover plate

weight of the shear box. The results from these four experiments can be seen in

Figure 4.7. Table 4.10 contains a summary of the Horizontal Displacement, Normal

and Shear Forces, and Normal and Shear Stresses at failure. Figure 4.8 shows Shear

Stress versus Shear Strain at failure (failure envelope).
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Figure 4.7. Horizontal Force Versus Horizontal Displacement.
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Table 4.10. Shear Strain, Normal and Shear Stress at Failure.

No Horizontal Shear Shear Normal Normal

Displacement Load Stress Force Stress

't'r O'r

[in] [em] [lb] [kN] [psi] [kPa] [lb] [kN] [psi] [kPa]

1 1.3 3.3 969 4.310 1.68 11.58 592 2.633 1.03 71.01

2 1.4 3.6 1569 6.979 2.72 18.75 842 3.745 1.46 10.07

3 1.7 4.3 2197 9.773 3.82 26.34 1092 4.857 1.90 13.10

4 1.8 4.6 2246 9.991 3.90 26.89 1342 5.970 2.33 16.06

The result from the application of the least squares method was a linear

relationship 't'-cr described as follows:

(4.13)

't'f: Shearing stress at failure.

crf: normal stress at failure.

~f= 60.7°, friction angle at failure

The value for ~r was larger than the values in Table 3.6. This may be due to

the characteristic shape of the RPCC aggregate (highly angular), which could

produce a greater interlocking between particles and therefore, a greater resistance to

movement across the failure plane than that of a typical soil like gravel. The results

obtained in this test indicated that RPCC material presented an excellent behavior

under shearing solicitations. The material used in the shear tests was material

retained by sieve No.4, principally coarse aggregate.
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CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS.

The purpose of this research was to study the behavior of RPCC aggregates

in Portland cement concrete and embankment. For the first case, several batches of

concrete were prepared with RPCC aggregate as well as natural aggregate. Several

parameters were varied from batch to batch to understand their influence, including

water cement ratio and maximum size of the aggregate. The design method and

specifications used were the same for all batches prepared. Absorption and specific

gravity test were performed on recycled and natural coarse aggregate, since these

values play an essential role in concrete mixture design. Standard tests used to

certify the quality of freshly mixed and hardened concrete with natural aggregate

were performed on concrete with recycled and natural aggregate, including slump

test and compression tests. For the second case, shear tests were performed on RPCC

aggregate with the objective of obtaining the failure envelope and the friction angle.

The conclusions and recommendations from the tests made and the results presented

in Chapter 4, are presented in the following paragraphs:

1. The difference in properties such as specific gravity and absorption was

important. The specific gravity of RPCC aggregate is lower than that of

natural aggregate. This has immediate consequences: first, for a given

volume of material, the weight needed would be less and therefore using

RPCC material would be cheaper than using conventional one. Second,

because specific gravity is a parameter used in mixture design, it influences
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the final content of the batches of concrete. A lower specific gravity implies

less fine content in the concrete compared to a concrete of similar

characteristics but made from natural aggregates. The difference in fine

material, in this case 14.2%, could affect the workability of the freshly mixed

concrete; it may be that less fine content can result in a more workable and

plastic concrete. On the other hand, the absorption resulted almost 4 times

larger for RPCC aggregate. The original value of recycled material was

4.0%. If the absorption value were estimated as 3%, the error in the

estimation of the absorbed water would be 25% of the original absorbed

water, approximately, then the aggregate would absorb part of the mixture

water reducing the water cement ratio and the slump in 1.5 inches (3.8 cm)

approximately (8). Therefore, it is strongly recommended to monitor

regularly the properties of the recycled material in order to get a well

designed concrete. It is important to keep in mind that RPCC material is

made from different sources of concrete, which affects the specific gravity

and absorption values.

2. From the slump tests, for a given water cement ratio, the concrete made from

RPCC aggregate shows a higher slump, level of workability and plasticity

than a similar concrete made with natural aggregate. It implies a higher

sensitivity to the water cement ratio from freshly mixed concrete made with

RPCC aggregate, and, consequently, to the quantity of water. This suggests

that concrete made from recycled aggregate needs less water content than
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similar concrete made from natural aggregate, therefore helping reduce the

water cement ratio, improving the compressive strength, and without

affecting the workability of the concrete.

3. From the compression tests at different ages, the compressive strength as a

function of the concrete age resulted in weaker hardened concrete made with

RPCC aggregate than concrete with similar characteristic but with natural

aggregate. The difference in compressive strength between both concretes

decreased with the age. Moreover, the curves that describe these relationships

suggest that as the time increases the compressive strength from concrete

made with recycled aggregate tends to have a comparable value to that of

concrete made natural aggregate.

4. From the compressive strength versus water cement ratio results eWCR), the

compressive strength of concrete made with RPCC aggregate was always

weaker than that of concrete made with natural aggregate. Here, the

significant finding was that, given the models of f c for both concretes, a

relation between WCR specified for the concrete .made from the natural

aggregate (WCRNat) and WCR specified for the concrete made from the

RPCC aggregate eWCRRPcc) might be determined. Hence, once f c and

WCR are specified for a concrete made with natural aggregate, it would be

possible to find WCRRPcc for the same f c. This may help modify the

mixture design for concrete made with RPCC aggregate in order to get a
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concrete with the same characteristics as that made from conventional

materials.

5. From the results of fc versus slump, the compressive strength of concrete

made with RPCC aggregate was always weaker than that of concrete made

with natural aggregate. On the other hand, the difference of compressive

strength between concretes was smaller using the models of f c as a function

of the slump than as a function of WCR. In general, models of compressive

strength as a function of water cement ratio tend to be more accurate.

6. From the results of f c versus maximum size of the aggregate, with the use of

smaller particle size together with a smaller. water cement ratio it is possible

to improve the compressive strength of the concrete. The data obtained from

these test were very few and the dispersion was important, therefore the

relation between f c and maximum size of the aggregate was not modeled.

7. From the shear tests, RPCC material can develop a high friction angle at

failure, which makes the use of these material in embankments highly

recommended. As an alternative RPCC aggregate could be mixed with a

material of lower quality, making its use more economically attractive.

Finally, it seems possible to find a way to relate the existing mixture design

method for concrete using natural material to the mixture design using recycled
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coarse aggregate, and ensuring a good quality product, by changing some parameter

like desired slump, water content, or maximum size of the aggregate. These

parameters might not affect the final cost of the concrete, making the use of the

recycled material economically attractive.

Further studies are needed with larger size of samples to detennine more

accurately the relationship between the parameters mentioned above and to

implement a similar mixture design method for concrete made with RPCC to that

already existent for conventional material. More studies about the influence of

changing the maximum size of the aggregate should be done.
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