
Lehigh University
Lehigh Preserve

Theses and Dissertations

1992

Mechanical circulatory assist : a device for direct
ventricular compression
John J. Pacella
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Pacella, John J., "Mechanical circulatory assist : a device for direct ventricular compression" (1992). Theses and Dissertations. Paper 112.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/112?utm_source=preserve.lehigh.edu%2Fetd%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


,"UTHOR~

P cella, J hn Jc

T
······..'·cl'·· l".; j j []

'. ',. []

hanical Circulat ry
, . 1st: D Ie f r

irect ntricular
..

ompresslon

ATE: October 11,1992



Mechanical Circulatory Assist:

A Device for Direct Ventricular Compression

by

John J. Pacella

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in Mechanical Engineering

Lehigh University

September 1992





\

Acknowledgements

The author e:xpresses sincere gratitude to Dr. Eric Salathe for his

guidance and genuine interest in this formidable undertaking. Special thanks

are in order to Susan Fontana, William Lackey, Mr. and Mrs. John N. Pacella,

Mark S. Schnabel, and Mr. and Mrs. Ronald 1. Fontana for their support.

Furthermore, thanks to Dr. Michael Sinclair, David Rice, and the staff

at Lehif?h Valley Hospital for their assistance during the primary animal

experiment. Finally, thanks to Dr. Goldstein, Dennis Trumble, D!. Cmolik,

Dr. Park, Dr. Anderson, and Tom Loebig at Allegheny General Hospital for

their patience and advice.

iii



Table of Contents

Abstract. 1

1. Introducti.on 2

2.. Background Information : 3

2.1 Function of the Heart. 3

2.11 Normal Cycle 3

2.12 Cardiac Abnormalities ~ :..4

2.2 Forms of Circulatory Assistance 5

2.3 Direct Mechanical Ventricular Assistance 7

3. Mechanical Biventricular Assist Device 13

3.1 Device Actuation 13

4. Production Process 15

4.1 General Fabrication 15

4.2 The Molding Process 15

4.3 Prototypes ~ 18

4.4 Discussion of Production Advancements .19

5. Bench Testing 22
5.1 Physiological Afterload Pressure Test 22

5.2 Device-Heart Interaction Test 23

5.3 Durability Test 24

6. Animal Experimentation ~ 25

6.1 Preliminary Protocol 25

6.2 The Primary Animal Experiment.. 26

6.3 Discussion and Observations 28

7. General Discussion of MBAD 30

7.1 Advantages ov~r common forms of Assist 30

iv



7.2 Advantages over the Anstadt Cup 31

7.3 Active Diastole 32

7.4 Considerations 34

8.. Myocardial Mechanics ; 35

8.1 Introduction 35

8.2 Background 35

8.3 Dynamic Tracking of the Myocardium 36

8.31 Materials and Methods 37

8.32 Analysis of Data 38

8.33 Results 39

8,.34 Discussion 40

9. Mechanical Interaction of the MBAD Bladder and the Heart.. 42

9.1 Introduction 42

9.2 Axisymmetric Load Models 44

9.3 Non-Symmetric Load Model .51

9.4 Additional Considerations in MBAD Bladder Design 57

10. Potential Research 59

10.1 . Design Improvements 59

10.2 Device Actuation Advancements 61

10.3 Future Testing Protocol 62

11. Conclusion 64

''1'{

Figures 66

References ~ 92

Appendices 95
Vita 99

v



List of Figures

I

Figure 1 Anatomy of Heart 66

Figure 2 Plot of Physiologic Parameters of the Heart.. 67

Figure 3 Electrical Anatomy of Heart 68

Figure 4 Photograph of Mechanical Biventricular Assist Device 69

Figure 5 Photograph of Microcrystalline Female Heart Replica 70
..

Figure 6 Photograph of Plastic Resin Male Heart Replica 71

Figure 7 Placement of Ultrasonic Crystals on the Heart.. 72
I .

Figure 8 Pressure-Volume Curves from Dimension Data 73

Figure 9 Plot of Myocardial Dimension Changes vers'Us Time 74

Figure 10 Plot of Strain in Myocardium versus Time 75

Figure 11 Plot of Strain in Myocardium versus Time 76

Figure 12 Spherical Shell Representation of MBAD Bladder 77

Figure 13 Shell Element 78

Figure 14 Axisymmetric Meridional Displace:nent.. 79

Figure 15 Axisymmetric Normal Displacement.. 80
\

Figure 16 Geometric Relationship Between Bladder and Heart.. 81

Figure 17 Axisymmetri1c Meridional Displacement.. 82

Figure 18 Axisymmetric Normal Displacement.. 83

Figure 19 Non-symmetric Azimuthal Displacement ·m 84

Figure 20 Non-symmetric Meridional Displacement. 85

Figure 21 Non-symmetric Normal Displacement.. 86

Figure 22 Meridional Displacement For Non-symmetric Loading 87 .

Figure 23 Azimuthal Displacement For Non-symmetric Loading · 88

Figure 24 Spherical Plot of Normal Displacement.. ~ 89

vi



Figure 25 Relative Motion of Points on Bladder and Heart 90

Figure 26 Schematic of Mock Circulatory Loop 91

vii



Abstract

A mechanical biventricular assist device for automatic cardiac massage

has been developed through a highly refined production process. It has been

tested in vitro and in vivo and its efficacy as- a circulatory assist device is being

determined.
d

The device consists of a distensible external polyurethane shell that

internally supports two inflatable bladders. Inflation of the two bladders

results in compression of the native ventricles and production of systolic

pressure. Since the device does not contact blood, it can be applied rapidly for

immediate circulatory support.

An experimental method for quantifying the in vitro hemodynamic

effects of the device utilizing state-of-the-art myocardial deformation tracking

techniques has been cieveloped. Through the use of shell theory, the

mechanical interaction Between the myocardial wall and the device bladder

has been analyzed.

Bench and animal experiments have revealed that this device deserves

further consideration as an effective circulatory assist tool.
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1 Introduction

This project involved the design, development, and testing of a

mechanical biventricular assist device (MBAD). The project was conceived in

1987 by Dr. Eric Salathe. Past research has led to the formulation of a potential

production scheme for the MBAD.

The objective of the present project was to renovate the production

method, improve the design of the MBAD, and perform thorough in vitro

and in vivo testing. In addition to the accomplishment of this objective, a

research protocol for in vivo quantification of device performance has been

developed. Also, a mechanical analysis relating physiological interaction

with the device which utilizes shell theory has been performed.

Currently, the device is prepared for more extensive in vivo and in

vitro testing and evaluation; measurement of assisted and unassisted cardiac

deformation,-cardiac output, and pulmonary and systemic pressures will

provide additional information regarding device performance.

/----
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2 Background Infprmation

An understanding of the function of the human heart is critical to the

development of an effective circulatory assist device. These types of devices

can be used to alleyiate the multiple forms of cardiac dysfunction. As a result,

the field of bioengineering has explored the varied ways in which assist can be

applied. Currently, there are many forms of circulatory assist. In particular,

direct mechanical ventricular assistance is a novel method for the application

of cardiac massage. Through his findings, G.L. Anstadt [1] provided the basis

for the development of a device for direct ventricular compression.

2.1 Function of the Heart

2.11 Normal Cycle

The cardiac cycle of the four chambered human heart consists of two

phases, systole and diastole. During systole, the left and right ventricles

contract and propel blood into the systemic and pulmonary circ~ation. In

diastole, the heart refills with blood in preparation for the next contraction. ­

Typically, the heart spends 70% of its time in diastole during a cardiac cycle.

There are four val~es that operate in the heart to maintain normal
,

pressure and flow. The two atrio-ventricular valves are located between the

atria and the ventricles; these are one-way valves that allow the pressure in

the ventricles to increase without regurgitation of blood into the atria. The

two semilunar valves are one-way valves that are located in the pulmonary

artery and aorta; these prevent retrograde flow of blood into the ventricles

(Figure 1, 2).
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The heart receives its supply of oxygen and nutrients through its own

coronary perfusion. The right and left main coronary arteries supply oxygen

rich blood to the cardiac tissue primarily during diastole, when the heart

muscle is relaxed. They receive their supply through the coronary os, the

-~ coronary artery openings in the aortic arch.

Electrical excitation of the heart is initiated in the sinoatrial node.

Activation of this node causes atrial contraction. The electrical signal from

this node arrives at the atrioventricular node about 1/10 of a second later.

The signal at this node then causes ventricular contraction. The delay of 1/10

of a second allows enough time for blood flow between the atria and

ventricles (Figure 3).

2.12 Cardiac Abnormalities

Heart disease is the le.ading cause of death in the United States,

daiming almost 35,000 lives every year. In some cases, the severity of heart

dysfunction warrants the need for transplant. Unfortunately, the limited

availability of donor hearts forces patients who desperately need transplants

to wait. As a bridge to transplant, assist devices and artificial hearts are being

used to maintain circulation in the ailing patient until a donor heart becomes

available.

In patients where heart dysfunction is not as severe, heart

transplantation is not necessary and mechanical circulatory assistance can be

provided. In these cases, the devices are meant to assist the heart by

circulating blood throughout the body; this provides an opportunity for the

heart to rest and eventually repair itself.
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Presently, there are two indications when circulatory assist is needed.

,The first is cardiogenic shock that is unresponsive tq medical treatment. In

this case, a patient who has undergone open heart surgery is considered to

have temporary ventricular dysfunction. Accordingly, an assist device is

implanted on a temporary basis. Secondly, the need for circulatory assist

occurs in patients who decompensate hemodynamically while awaiting a

donor heart for transplant. In these cases, the ventricles are not expected to

regain function. Overall, many of these disease states have been alleviated

through the various forms of circulatory support.

2.2 Forms of Circulatory Assistance

Although mechanical circulatory assistance dates back to 1965, the

advent of new technology has increased the overall successes in this area. In

the past, circulatory assist was primarily administered to patients with

postcardiotomy cardiogenic shock. However, the scope of patients has

increased to include those with shock following acute myocardial infarction,

as well as those who deteriorate before or after heart transplantation.

In all, there are a variety of types of circulatory assist pumps, including

rotary pumps, roller pumps, sac-type pumps, and electrically driven pumps.
I

The primary forms of circulatory assistance are rotary pumps and intra-aortic

balloon pumps (IABP). Rotary pumps rely on a high speed impeller to drive

blood, while the IABP utilizes compressed air to augment the cardiac cycle.

A common type of rotary pump is the centrifugal pump, which is

ty~ically used -to provide left ventricular assist. This pump consists of a blood

chamber with an inlet and outlet port. Generally, the inlet of the pump is )

inserted into the left atria or into the left ventricle through the mitral valve.

5



The outlet port is fastened to the descending aorta through an end-to-side

anastomoses. An impeller located inside the blood chamber is coupled to a

rotor and powered through a DC brushless motor. The impeller is usually

rotated between 3000-5000 RPM.

Typically, the centrifugal pump is used for circulatory support either as _

an implant or extraco.JPoreally. However, this device is best suited for short

term application, as long term use often results in mechanical deterioration,

fibrin deposition, hemolysis, and end-organ dysfunction.

Axial-pumps are similar to centrifugal pumps in design except for their

small size and slender shape. In order to compensate for size difference they

must be operated at much higher speeds to move equivalent amounts of

blood. These pumps are slender tubes that enclose a tiny impeller. In one
\

particular application, they are inserted into the femoral artery and are guided

into the left ventricle to provide assist. While in the left ventricle, the

impeller is rotated at high speeds (25,000 in some cases) to effectively move

blood into the systemic circulation. The major drawbacks associated with this

type of pump are substantial hemolysis and excessive mechanical wear.

Hemolysis occurs when the high speed impeller blades actually lyse red blood

cells into fragments. High rotational speeds cause greater friction loss and

eventual mechanical deterioration.

The IABP is another common method of assist. It is a plastic device

that is usually positioned in the descending aorta via the femoral artery. The

balloon itself is several inches in length, and it is inflated and deflated to

provide systolic unloading and diastolic augmentation. It is controlled by the

ECG signal or arterial pressure through a console. The balloon is inflated

during diastole. This displaces a volume of blood equivalent to that of the
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balloon, causing an increase in both arterial diastolic pressure and flow rate to

the systemic circulation. This augments coronary perfusion, since the

displaced blood between the balloon and the coronary os drains into the

coronary arteries. At the end of diastole, the EeG triggers deflation, and the

systolic pressure in the aorta (afterload) is lowered. This decreases the

amount of I cardiac energy that is required to eject a given stroke volume and

diminishes the oxygen requirement of the myocardium.

Besides rotary pumps and intra-aortic balloon pumps, roller pumps,

sac-type pumps, and electrically driven pumps are also available. However,

the latest advancement in circulatory assist systems is pulsatile flow assist

devices. One particular method of pulsatile flow assist is direct mechanical

ventricular assistance.

2.3 Direct ~rchanical Ventricular Assistance

Direct Mechanical Ventricular Assistance (DMVA) is an innovative

method for the application of automatic cardiac massage first conceived by

G.L. Anstadt [1]. It is accomplished through the use of a pneumatic

biventricular assist device known as the Anstadt Cup. This device consists of

a rigid, heart size, glass outer shell which is placed around the heart. The

shell supports two inflatable bladders on its inner surface. Pneumatic

pressure lines are attached to the bladders to allow inflation. The bladders are

positioned on the shell in order to make contact with the ventricles. When

the bladders are inflated, a compressive force acts on each of the ventricles,

forcing blood out of the heart to the pulmonary artery and the aorta. In order

to secure the cup to the heart, negative pressure is applied to the apex via a
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tube fastened to the base of the shell. Filling and evacuation of the bladders is

controlled through a timed circuit with solenoid valves.

In order to test the efficacy.of DMVA, G.L. Anstadt performed a variety

of animal studies in which it was used in the following scenarios:

o Circulatory Support Following Ventricular Fibrillation.

o Resuscitation Following Cardiac Arrest

o Circulatory Support Following Ischemia

o Circulatory Support Following Myocardial Infarction

o In vivo Organ Preservation

o Comparative Studies With Cardiopulmonary Bypass

These studies proved the usefulness of the Anstadt Cup as it underwent a

series of intensive testing procedures under various modes of cardiac

dysfunction.

Circulatory Support Following Ventricular Fibrillation

Several experiments by G.L. Anstadt revealed the effectiveness of

DMVA as circulatory support following ventricular fibrillation, a non-linear

contractile state of the left ventricle. In one particular experiment, DMVA

was used to support a dog for 8 hours [3]. In later experiments [4], animals

were sustained for 24-40 hrs with a 50% survival rate. In fact, infection was

the cause of death for 8 out of 10 of the animals that did not survive. DMVA

was also demonstrated to support circulation during 3 days of ventricular

fibrillation (VF) with long term survival [5]. The hemodynamics produced by

the device were found to be near normal.
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Resuscitative Circulatory ,Support

DMVA was used for circulatory support following cardiac arrest in 1967

[6]. It was applied through a thoracotomy after a 5 minute ventricular

fibrillation for 2.5-4 hours. 50% of the animals tested were found to achieve

normal hemodynamics after the assist device was applied.

In other cases of cardiac arrest, myocardial infarction was induced

through ligation of the left circumflex coronary artery [7]. DMVA was then

applied for 5 hours and was found to supply normal hemodynamics to 95% of

the animals. DMVA was also compared to open chest cardiac massage

(DCCM) [8]. Circulatory arrest was induced for five minutes in dogs and

either DMVA or DCCM was applied. DCeM incurred only 17% successful

resuscitation, while DMVA produced 83%.

The standard therapy for cardiac arrest is closed chest cardiac massage

(CCCM). However, in 1983 McCabe [9] compared CCCM to DMVA and found

that DMVA increased 'circulatory hemodynamics three times that of CCCM.

This same experiment was verified in 1984 by Bartlett [10] who found that

DMVA produced flows 256-340% greater than CCCM.

DMVA was also found to significantly increase myocardial perfusion.

This was verified by Brown [11] who induced VF in swine and then applied

CCCM to some while applying DMVA to others. Brown determined that

DMVA not only provided a cardiac output of seven times that of CCCM but

also provided the endocardium with forty times the perfusion.

Circulatory Support Following Ischemia

In order to study the effect of DMVA after myocardial ischemia, the left

anterior descending coronary artery of several dogs were occluded by Anstadt
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[12]. After 90 minutes of occlusion, the ligature was removed and reperfusion

was allowed. The dogs were then randomized into two groups. The first

I- group received standard drug therapy for circulatory stabilization.

Ventricular fibrillation was induced in the second group, and DMVA was

applied. No evidence of myocardial necrosis was found in the dogs that

underwent DMVA. This demonstrates that DMVA can actually salvage areas

of ischemia and prevent infarction.

Circulatory support following myocardial infarction

DMVA was applied in several canine studies in order to treat

myocardial infarction [13]. In most cases, the left circumflex coronary artery

(LeA) was occluded for 5 hours to induc~ myocardial infarction, and DMVA

was applied to some of the animals. The application of DMVA resulted in

higher canine survival rates in all instances. For example, only 4 dogs that

received standard medical therapy for treatment of myocardial infarction

survived for one week. However, 15 dogs survived for one week following

myocardial infarction (MI) with application of DMVA. This ·same trend was

seen over 24 hours. In this case, a study in 1969 [13] revealed that 4 dogs

survived for 24: hours receiving standard medical therapy, whereas 12

survived with DMVA.

III vivo organ preservation

When organs are harvested for transplant, mechanical circulatory

assist devices are often used to maintain organ perfusion. Several studies

using DMVA for this purpose have been done. The first of these involved

the use of DMVA to preserve organs after cardiac arrest [6]. Dogs were

10



arrested and DMVA was applied. Their kidneys were then transplanted or

tested histologically and were found to be healthy for transplantation. In

another case, a 32 year female who deceased following a one hour cardiac

arrest was administered DMVA to maintain kidney perfusion [14]. The

perfused kidney was transplanted, and the recipient was discharged shortly

thereafter. At Johns Hopkins, DMVA was used for organ perfusion after

much longer periods of cardiac arrest [15]. For example, animals were arrested

for 15-20 minutes and were then provided with either DMVA or OCCM. The

animals that received DMVA were found to have much healthier renal

£Unction than the animals who received OCCM. In deceased humans,

DMVA was applied for 1-5 hours following cardiac arrest to assess renal

perfusion. In 4 patients, adequate renal per£Usion was immediately attained

and remained constant until device removal. DMVA was also found to

provide adequate organ perfusion to the liver and lungs in other studies by

Veith [16].

Comparative Studies with Cardiopulmonary Bypass

Many studies by Anstadt have compared DMVA to cardiopulmo~ary

bypass (CPB). One particular study viewed DMVA and CPB support following

ventricular fibrillation [17]. In this case, ischemia was not present using

either method. Studies have also revealed that DMVA can be applied more

quickly and provides more adequate renal cortex perfusion and myocardial

perfusion [17]. Finally, Anstadt [18] has shown that DMVA supplies higher

myocardial ATP levels and more ischemic tolerance than CPB.

Overall, the research for DMVA provides the ground work for devices

that operate on a similar principle. Specifically, a biventricular assist device
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was designed and fabricated to advance the procedure for DMVA.

Accordingly, there are-significant hnprovements in this device that make it a

more viable alternative for circulatory assistance.
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3 Mechanical Biventricular Assist Device

A mechanical biventricular assist device (MBAD) that operates

similarly to the Anstadt cup ha~ been designed and tested both in vivo and in

vitro. This device consists of a plastic outer shell that internally supports two

inflatable bladders. When the device is applied to the heart and the bladders

are inflated, compression of the left and right ventricles results. This

compression effectively deforms the ventricles and propels blood into the

pulmonary and systemic circulation.

The outer shell of the device conforms to the heart and is comprised of

distensible polyurethane. The bladders are made of similar polyurethane

with slightly different mechanical properties to allow expansion during

inflation. They are oriented within outer shell to allow maximum contact

with the ventricles during inflation. The shell size is made to fit

approximately 4 cm up into the atrial portion of the heart. However, the

bladders only encompass the ventricular area of the heart. In order to supply

a pathway for air, one 3{16 in (0.5 em) inner diameter Tygon tube, 12 in (30.4

cm) long, is attached to each of the bladders via the outer shell. Another 12 in

(30.4 cm) piece of the same diameter Tygon tubing is attached to the base of

the cup to supply negative pressure to the apex of the heart.

3.1 Device Actuation

This device requires either a liquid or gas source to provide bladder

inflation. In the past, dichloroflouromethane was used in 12 oz (0.0007 m3)

canisters as a compressed gas source. However, dichloroflouromethane is not

approved for clinical use and the canisters do not supply ample volume;
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therefore alternate sources of actuation were considered. These included

refillable cylinders of helium, nitrogen, and carbon dioxide, and compressed

air. An air compressor was chosen as the most viable source of actuation

because it was readily available and the large cylinders were too costly. A 1/4

horsepower SpeedAir air compressor was obtained from the Mechanical

Engineering machine shop. This compressor has a 10 gallon (0.0378 m3)

accumulator tank and a pressure switch that maintains tank pressure between

20 and 50 psi (95.7 and 239.2 N/ m2). A 50 foot (15.2 m), 1/4 in ( 0.6 em)

pneumatic hose was fitted with quick connectors and was fastened to a

portable pumping unit.

The pumping unit consists of a timer circuit, a three-way solenoid

valve, and a pressure regulator rated at 150 psi (717.7 N/ m2). The inlet of the

solenoid valve is connected to the gas source, while the two outlets are

attached to a vacuum source and to the bladders of the BVAC. The rate of gas

delivery is controlled by the timer, while the bladder pressure is controlled

through the regulator. During inflation, the solenoid valve opens to the

compressed air source; typically, pressures of 3 to 4 psi (14.4 to 19.1 N / m2)

were found to adequately fill the bladders.

The air present in the bladders during inflation is quickly removed by

attaching a vacuum source to the outlet port of the solenoid valve. In the

past, the air was passively evacuated to the atmosphere. However, this rate of

evacuation was extremely slow and was believed to cause impedance to the

incoming blood during diastole. Therefore, the rapid evacuation of the

bladders with a vacuum source was considered to be a major improvement in

device actuation, preserving the normal functionality of the cardiac cycle.
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4 Production Process

4.1 General fabrication

The first step in the fabrication process is the construction of a heart

replica. This is done by first obtaining a heart, creating a female mold of the

heart, and then producing a plastic male mold of the heart. This process has

undergone considerable improvemep.t since its inception.

After the mold is created, it is then dipped into two specific mixtures of

polyurethane in an extensive dipping process. The end result is a

polyurethane MBAD (Figure 4).

4.2 The Molding Process

The replication of a natural heart is created in a series of steps leading

to a finished mold. The goal is to obtain a mold of the heart that does not

contain any imperfection on its external surface. This allows for ease and

accuracy when coating the mold to obtain a reliable and functional MBAD.

The past method for creating a female mold of the heart was through

the use of silicone caulking. The heart was suspended within the boundary of

a wooden box and silicone caulking was poured into the box using a caulking

gun. Unfortunately, due to the high viscosity of silicone rubber, the resultant

female replica did not contain enough detail of the actual heart. Therefore,

substantial amounts of sanding were required in order to obtain an accurate

mold.

In order to obtain a more accurate representation of the heart,

microcrystalline, or sculptor's wax, was used as a female mold material.

Although machinable wax and paraffin were considered, the expense of
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machinable wax and the peeling and cracking associated with the use of

paraffin made neither material appropriate for the task.

Once a fresh pig heart was obtained, all of the fat and connective tissue

were removed; the pulmonary artery, aorta, vena cava, and pulmonary veins

were cut to the level of the left and right atria, and the heart was rinsed with

warm water. In order to prevent the heart from collapsing under the

pressure generated during the wax molding process, gauze was inserted into

all four chambers to maintain rigidity. This also insured that the device

would not be made too small for the particular heart size. The heart was then

fastened to a nylon string and suspended within the bounds of an appropriate

size container.

Next, the wax was liquified by placing it on the burner of an stove. It

was discovered that using the minimum temperature to melt the wax was

the most effective and accurate way of creating the female replica, so the

- temperature setting on the burner was placed on low and the wax was heated.

Once all the wax was melted, it was carefully poured into the container that

enclosed the heart. In order to obtain a seamless parting line in the mold, the

wax was poured to a height that corresponded to the widest cross section of

the heart and allowed to dry for 120 minutes. The heart was then removed

and the top surface of the wax was sprayed with high temperature enamel to

create a partition between it and the next layer of wax. The enamel was

allowed to dry for several hours. After this, the second layer of wax was

poured into the mold and allowed to dry. At this point, the two sections of

the female mold were easily separated at the parting line and the heart was

removed from the mold. The wax female mold was found to be a near

perfect replica of the heart, detailing even the superficial right and left main
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coronary arteries (Figure 5). In order to solidify the mold more quickly, the

molding container was placed in a refrigerator after the wax was completely

poured. The detailed steps required to produce the female mold are outlined

in :t.\ppendix A.

The process of producing the male mold was much simpler than that

for the female mold. Before the female wax mold was taken apart, two

adjacent marks were placed on the outer surface of each part of the mold.

These marks insured proper alignment of the mold sections when they were

reassembled. A hole was placed in the top section of the female mold to

allow an entrance for the male mold material. Also, a threaded bolt was

suspended within the chamber of the female mold for ease of handling the

mold later in the fabrication process. Plaster of Paris was initially used as the

molding material, but plastic resin was determined to finish with a much

smoother surface and to cure much more quickly than the plaster. This resin

was a clear, liquid acrylic plastic mixed with a catalyst hardener. It was used to

eliminate the need for coating the mold with a release agent. The pouring

was done incrementally, with tapping of the female mold on a hard surface to

rid the plastic of air. Once the pouring was complete, the resin was allowed to

dry for approximately two hours. Upon extraction from the mold, the

contour of the plastic replica was found to be quite accurate and did not

require sanding, as did the plaster (Figure 6).

An important step in this process was maintaining the wax mold

temperature considerably below ambient temperature to prevent melting

during the exothermic reaction between the plastic resin and the hardener. If

the wax melts during the process, imperfections in the plastic mold will

reyxlf.......!t.te wax mold was placed in a freezer for 30 minutes and then the
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liquid plastic solution was mixed and poured into the mold. The wax mold

was then placed in a refrigerator to further prevent wax melting during the

reaction. The list of steps required for the production of the male mold are

also included in Appendix A.

4.3 Prototypes
,

Several MBAD prototypes were produced to determine and evaluate

device performance. The major limitation of the past design was that it did

not maintain its position on the heart even with apex suction. Therefore,

two potential solutions were examined. The first employed the use of a ring

bladder located at the top portion of the device. This ring bladder inflates

first, causing a constriction around the atria and less likelihood of device

ejection. This ring bladder was incorporated into the design of several

prototypes. However, it was impossible to make the bladder large enough to

cause significant clamping around the atrioventricular junction. Therefore,

this method was eliminated as a solution for securing the device around the

heart.

The second and final prototype utilized the elastic property of the

polyurethane of which the cup is made. When removing the cup from the

solid mold, the placement of the initial incision in the polyurethane dictates

the length of the cup. By making this incision near the threaded bolt that

protrudes from the mold, a highly elastic, strong cross section is formed.

Since the incision is made near the bolt, this cro~s section is much smaller

than the widest point of the hgart. Therefore, in order to fit the cup around

the heart, the top portion of the plastic cup must be stretched significantly.

After stretching the device and positioning the it on heart, the stretched
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material returns to its original cross sectional area. This rubber band effect at

the top of the assist device secures the heart within the cup.

A prototype with this design was tested with a fresh heart from a 230 lb

(104 kg) pig. It maintained its position on the heart with and without apical

vacuum assist. In fact, the device was suspended upside down during

operation and it still maintained its position around the heart. This

prototype was therefore used for additional in vitro testing and for the

primary in vivo experiment.

4.4 Discussion of Production Advancements

The major disadvantages present in the past process of replicating the

natural heart were in molding materials. The female mold was initially

made using silicone caulking. Because of its high viscosity, this material does

not conform well to the surface of the heart. Three different types of wax and

one flexible molding material were investigated as potential replacements for

this inadequate material.

The three waxes considered were microcrystalline wax, machinable

wax, and paraffin. Because of the high cost of machinable wax and the

brittleness of paraffin, microcrystalline wax was used. This wax provides an

excellent replication of the surface of the heart, revealing even the details of

the superficial coronary arteries.

Additionally, a flexible molding material was considered to effectively

replicate heart. It was applied in approximately 30 coats to the heart. Ample

dry time was allowed between each coat. When the flexible material was

removed from the heart, the result was a fairly accurate female replica.

However, this process was lengthy, due to the multiple coatings and the
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extensive dry time requirement. Therefore, the flexible mold material was

not used in the final mold production process.

Finally, plastic resin was used as a replacement for the plaster of Paris

initially used. The plaster required significant dry time and despite attempts

to remove the air from the liquid mixture, it was trapped on the surface and

caused significant superficial imperfections of the plaster mold. Plastic resin,

on the other hand, dries in one to two hours and finishes with a highly

smooth surface, requiring little to no sanding. Another important reason for

selecting the plastic resin was to eliminate the coating step in the device

production process. Since the plaster mold is extremely porous, it requires a

coating to seal it from the polyurethane and therefore allow removal of the

device from the mold. However, the plastic resin is impermeable to the

liquid solvents used in the device production. Therefore, it permits MBAD

release and eliminates the need for coating the mold. This reduces

production time and simplifies the manufacturing process.

In summary, the device was developed from a preliminary prototype

to an effective circulatory assist tool. Changes in both device actuation and

design were required in order to accomplish this task. First of all, the newly

designed outer shell incorporating the elastic band insured maintenance of

the device's position on the heart. Furthermore, the change from

environmentally harmful dichlororflouromethane to compressed air as an

actuation source made the MBAD safer not only from an environmental

standpoint, but also from a clinical one. Finally, the most critical

advancement in device design was evacuation of the bladder actively during

diastole. This not only facilitated the normal diastolic filling pattern of the

heart, but also prevented the life threatening con~ition of cardiac tamponade·
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that would surely occur otherwise. Overall, these advancements were

necessary for safe and effective MBAD operation.
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5 Bench Testing

Various bench tests were performed to evaluate each of the MBAD

prototypes. These included a physiological afterload test, a device-heart

interaction test, and a durability test.

5.1 Physiologic Afterload Pressure Test

The purpose of this test was to determine whether the MBAD could

generate enough ventricular compression to provide physiologic pressure to

the systemic and pulmonary circulation. It was accomplished according to the

following procedure. First, both the aortic and pulmonary valves of a fresh

heart from a 230 lb (104 kg) pig were excised using forceps and a scalpel. Next,

the left and right atrium were sutured near the vena cava and pulmonary

veins to seal the atrial portion of the heart. Then, aluminum fittings with

tapered barbs were connected to the pulmonary artery and aorta with hose

clamps. The other side of the aluminum fittings was attached to 3/4 in (1.9

em) Tygon tubing which was fastened to ports on two plexiglass afterload

columns. These columns were designed to provide various amounts of

ventricular afterload ranging from 0 to 150 mm Hg. A specific afterload was

attained by filling the column to the appropriate height with water.

For this test, the column connected to the right ventricle was filled

with 13 in (33 em) of water to simulate a physiologic afterload of 25 mm Hg.

The left ventricular column was filled to a height of 64 in (163 em) of water to

approximate the normal afterload of 120 mm Hg. Once the columns were

filled, tubing clamps preventing flow into the ventricles were removed and

the water filled each ventricle causing significant dilation. Additional fluid

22



was then added to each column to replenish the fluid height lost in the

ventricles. The 230 lb (104 ~g) series MBAD was then inserted onto the heart

by carefully stretching the top portion and positioning the device around the

heart to maximize ventricular-bladder contact. The apical negative pressure

source was then activated and the device assumed a tenacious position

around the heart. The portable pumping unit was then switched on at

approximately 60 beats per minute (bpm) and the bladder pressure was

increased until motion of the fluid columns was· observed. This motion

corresponded to the compression of the ventricles. Significant fluid motion

occurred when the bladder was at approximately 3 psi (14.4 N/m2). Since left
\

ventricular afterload is much higher than that of the right ventricle, it is clear

that -this factor determines whether the pump can effectively compress the

heart and generate adequate pressure.

This test revealed that at a bladder pressure of only 3 psi (14.4 N/ m2),

the MBAD could generate physiologic pressure for both the right ventricle

and the left ventricle in an excised pig heart. In vivo, the heart is much more

compliant and therefore would be more easily compressed. Therefore, it was

believed that less bladder pressure would be required to sustain physiologic

pressure in a live animal experiment.

5.2 Device-Heart Interaction Test

Most of the bench testing for the several prototypes was done according

to visual assessment of the MBAD fit and function on excised pig hearts.

These tests were accomplished simply by inserting the heart into the cup and

then activating the device with the portable pumping unit. Two key

occurrences were anticipated. First, the device's ability to maintain its
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position on the heart was determined. This was tested by changing the

orientation of the device and the heart with respect to gravity. At the same

time, bladder pressure was varied to determine the pressures that would

allow the heart to remain in the device. Second, the actual contact between

the bladders and ventricles was assessed. This was done by noting the

amount of compression of the heart. When the device compressed the heart

significantly, deformation of the myocardium resulted in protrusion of the

atria from the top of the device. Also, the bladder-ventricle contact area was

observed. In each case, the bladders were observed to make full contact with

each of the ventricles.

5.3 Durability Test

Each device made was inflated with air from the portable powering

device at a rate of 60 bpm with a bladder pressure of 3 psi (14.4 N / m2). This

was done for approximately one hour to investigate potential device failure

through the development of air leaks.
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6 Animal Experimentation

A primary in vivo experiment was performed in order to qualitatively

ascertain MBAD performance in an animal. This experiment employed the

staff and facilities at the Lehigh Valley Hospital in Allentown, Pennsylvania.

Dr. Michael Sinclair performed surgery for the experiment and David Rice

assisted in surgery and was responsible for animal acquisition and surgical

equipment oranization.

6.1 Preliminary Protocol

In order to prepare for the first animal experiment, a general meeting

was held at the Lehigh Valley Hospital. During this meeting, all of the

equipment for the experiment was checked and evaluated. This included a

230 lb (104 kg) and a 120 lb (120 kg) series MBAD , the portable pumping

mechanism, the vacuum sources, the intraaortic balloon pump (IABP)

console, and all surgical equipment. Each MBAD was connected to the

pumping mechanism and the bladders were observed to inflate fully, making

contact in the center of the cup. At the suggestion of the surgeon, the IABP

console was connected to each device. However, it only supplied a 40 mL

maximum air volume, which was inadequate for bladder inflation in either

device, as previously measured. Therefore, this console could not be used as

a pumping source. Finally, the two wall vacuum sources were verified to

supply ample negative pressure to accomplish bladder evacuation and device

position maintenance. .
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All surgical equipment was obtained and accounted for. The cardiac

surgeon and laboratory director discussed the different options for exposing

the heart and aecided upon a procedure known as a thoracotomy.

The ~ize of pig to be used in the experiment was also determined. The

cardiac surgeon and animal researcher concluded that a 230 lb ( 104 kg) pig

would be cumbersome in the operating room. Therefore, it was agreed to

work with a 120 lb ( 54 kg) pig.

6.2 The Primary Animal Experiment

The first animal experiment occurred at the Lehigh Valley Hospital in

the animal surgical suite. The 120 lb (54 kg) pig arrived pre-anesthetized with

acepromazine maleate, administered intramuscularly in a 1.0 mg/ kg dosage.

Induction of the pig was performed using ketamine HeL at a dosage of 25

mg/ kg. The animal was placed on the operating table and all four legs were

secured. An endotracheal tube was then inserted into the animal and it was

enflourane aspirated with 20% nitrous oxide in oxygen. Also, an IV

pentobarbital solution was ,administered at 10 mg/ kg.

Before the animal's chest was opened, a Swan-Ganz catheter was

inserted through the iliac vein into the right ventricle in order to measure

central venous and right ventricular pressure. The Swan-Ganz catheter is a

quadruple lumen catheter used to monitor hemodynamics during surgery.

Once the catheter is inserted into the iliac vein, a balloon at its tip is inflated

and blood returning to the heart drags its distal port into the right ventricle.

This port is connected to a fluid filled pressure transducer and measurement

of right ventricular pressure is obtained. The proximal port is located several
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centimeters away from the distal and is therefore positioned to supply

inferior vena cava pressure.

A thoracotomy was performed in order to expose the animal's heart.

An incision was made between the fourth and fifth ribs and the connective

tissue was removed. A periosteal elevator was used to fully expose the ribs.

A rib retractor was utilized to make the heart accessible through the

intercostal space. '

Unexpectedly, the size of the heart of the 120 lb (54 kg) pig was larger
"'

than anticipated. Generally, an excised heart is' smaller than an intact heart.

However, the degree of difference in size was not realized until the heart of

this animal was exposed. The intact heart was nearly twice the size of the

excised heart obtained from the butcher. This is attributed to the dilation of

the heart during diastole, the proliferation of the heart muscle with blood,

the coronary circulation, and perhaps even the muscle tone due to

continuous myocardial electrical activity. Therefore, the 230 lb (104 kg) series

MBAD was used to accommodate the larger size heart.

Next, the heart was fibrillated, and the device was applied. At this

time, the negative pressure was applied at the apex, not at the outlet port of

the solenoid valve. The SpeedAir air compressor was connected to the the

bladders through the Tygon tubing. The pumping cycle was begun at 60 bpm

while the bladder pressure was regulated from 3 to 4 psi (14.4 to 19.1 N/ m2).

The device was operated for 30 minutes in this mode. The device maintained

its position on the heart quite tenaciously and sufficiently compressed the

ventricles throughout this range of bladder air pressure. However, the slow

rate of bladder evacuation was confirmed to prevent efficient fill of the heart.

Therefore, the negative pressure source was switched on at the outlet port of
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the solenoid valve to cause active bladder evacuation. Again, the device was

operated for 30 minutes with bladder pressures ranging from 3 to 4 psi (14.4 to

19.1 N/m2). In this case, the rate of air evacuation from the bladders was

rapid and therefore refill of the heart was unimpeded.

At the conclusion of the experiment the animal was euthanized with a

50 mgt mL dosage of sodium pentobarbital solution.

6.3 Discussion and Observations

The purpose of this experiment was to determine the most optimal

surgical procedure for device application and qualitatively assess the device's

function as a circulatory assist tool. The device was applied to the fibrillating

heart of the animal for a period of approximately 1 hour. It was observed to

continually maintain its position on the heart and fully compress the

ventricles, causing significant ejection of blood. This was noted by the aortic

pulse following bladder inflation.

The deflation of the bladders was observed to be quite rapid with the

assist of the vacuum source, not causing any impedance to diastolic fill. A

seal between the device and the heart along the atrioventricular junction

resulted in negative pressure on the ventricular walls.

An important consideration in the experiment is the size of the

animal. This factor dictates the complexity of the procedure. In this

particular case, there was some difficulty in obtaining pressures with the

Swan-Ganz catheter due to the complicated anatomy of this large animal. By

choosing a smaller pig, catheterization of the heart and the surgical procedure

would have been simpler and less time-consuming. This would allow more

time for useful data acquisition.
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The surgical procedure used in this experiment was a thoracotomy.

However, this procedure does not allow much working space around the

heart, and it therefore made device application difficult. A more effective

way to expose the heart would be to employ a surgical procedure known as a
,

median sternotomy. In this procedure, the sternum is cut and retracted,

allowing greater access to the heart.

The IABP console should be considered as a potential powering device

for the MBAD due to its high speed of gas delivery to and from the device. Its

maximum stroke volume is only 40 mL, but with certain internal

modifications, it could be utilized as an improved pumping mechanism.

The process of attaching the device to the intact heart is in need of

improvement. In the experiment, the two-handed method was revealed to

be very cumbersome and time consuming. It could be replaced by using a

large, blunt end retractor to spread the top portion of the device for

application around the heart. The use of the retractor would eliminate the

need to crowd the hands around the heart, decreasing the overall surgical

time and the chance of damage to the internal organs.

29



7 General Discussion of the MBAD

7.1 Advantages over Common Forms of Assist

This device has several advantages over currently available circulatory

assist devices. First of all, its operation does not necessitate blood contact.

This advantage is extremely significant since two of the major obstacles that

other assist devices face stem from blood contact, namely hemolysis and

thrombogenesis. For example, the complex fluid mechanics of blood flow

makes the design of rotary pumps quite challenging. At any point in

operation, if a stagnation point develops either in the pump housing or in

the cannulae connecting the pump to the circulatory system, thrombogenesis

can occur. This emboli can either clog the pump or it can break off and lodge

in the brain, kidneys, or lungs, causing severe damage to these vital organs.

This can be fatal to the patient. This same problem of thrombogenesis is seen

in assist devices with pneumatically compressed blood sacs and artificial

valves.

Furthermore, many of the blood-contacting assist devices require

continuous anticoagulation therapy. This is accomplished through the use of

either heparin, persantine, or coumadin. The application of these

anitcoagulants increases the chance of severe bleeding due to accidental cuts.

Another advantage of the BVAC is that it assists circulation by

maintaining the physiologic pulsatile flow requirement. Centrifugal assist

devices are notorious for end organ dysfunction when used for long term

assistance due to the non-pulsatile flow input to the systemic circulatory

system.
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Another important advantage of the MBAD is the ease with which it is

applied. Since it is simply a semi-rigid shell that fits securely around the

heart, it can be applied in a matter of seconds. This significantly reduces

surgery time and therefore would allow the patient a much higher chance of

survival. This is especially evident when considering the significant time

involved in performing complex surgical techniques for anastomoses of

rotary pump inlet and outlet cannulae. Also, the MEAD's simplicity of

operation limits the amount of technical problems that can occur in vivo

when compared to devices that operate based on complex circuitry and

mechanical motion.

Finally, the insignificant cost and ease of production of this device set it

apart from all others in its class.

7.2 Advantages over the Anstadt Cup

This device and the Anstadt cup have several commonalities, but the

changes in design for this device have resulted in several advantages over the

Anstadt design.

Because Anstadt's device consists of a rigid outer shell, it requires

surgery for removal. However, some patients cannot survive a second

thoracotomy. In order to eliminate the need for this traumatic surgery, the

outer shell of the BVAC is created with a flexible polyurethane to allow

device removal through a large thoracotomy tube.

By making the outer shell flexible, injury to the fragile internal organs

surrounding the heart would be prevented; this type of injury could occur if

the patient was moved around significantly with the rigid shell implanted.

In fact, Skinner [3] demonstrated multiple cases of damage to the heart and
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lungs through contact with the rigid device. The deformable outer shell also
,~

allows a much closer fit to the size of the heart, and therefore would tend to

reduce the overall shear stress on the ventricles.

Furthermore, in order to simulate physiologic conditions as closely as

possible in a fibrillating heart, the rate of inflation and deflation of the

bladders can be monitored. That is, the normal human heart spends 70% of

its time in diastole and 30% in systole. By adjusting the timer circuit of the

portable pumping unit, the device can be made to mimic this systolic phase

ratio through the inflation-deflation cycle. In a moderately dysfunctional

heart, the inflation and deflation of the device would be synchronized with

the EeG through a pacemaker.

Once the device is applied to the heart, it creates a seal just past the

atrioventricular junction, due to the design change. This seal provides a

vacuum chamber that surrounds the entire heart. This can produce active

diastole of the heart and greater end-diastolic volume. Starling's law of the

heart states that increased end-diastolic volume causes greater myocardial

wall tension and therefore more forceful contraction. This means that an

increased volume of blood can be pumped during one cycle than if the pump

was not used. This active diastole is not a characteristic of many circulatory

assist devices and it is believed to offer several advantages to the

dysfunctional heart.

7.3 Active Diastole

According to William Grossman, "Many of the signs and symptoms of

cardiac failure, previously attributed to impaired systolic performance, may be

due in large part to altered diastolic properties of the ventricular chambers"
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[19]. One important function of the MBAD that deserves careful

consideration is its ability to provide negative pressure to the walls of the

ventricle throughout the cardiac cycle. This negative pressure could assist

ventricular diastole in several ways.

Because of the negative pressure applied to the myocardium, the left

and right ventricular chamber pressures would attain negative values during

diastole. This negative pressure could result in an increased flow rate of

blood into the ventricles and a higher end-diastolic volume. This means that

for each actuation of the ventricular walls, a larger stroke volume will be

supplied to the aorta and pulmonary artery. This allows a lower heart rate

and more time for the dysfunctional heart to unload and recover. The

amount of this recovery can be controlled through regulation of the negative

ventricular wall pressure.

The negative pressure applied to the ventricular walls could also

augment coronary perfusion. During diastole, the pressure in the coronary

arteries located in the ventricular walls attains the same pressure as does the

ventricular chambers. With negative pressure applied to the walls of the

myocardium, this diastolic chamber pressure decreases. The coronary os,

located in the aorta directly distal of the aortic valve, undergo systolic

pressure during contraction. With the application of suction to the

myocardium, the pressure gradient driving-flow from these openings into the

coronary circulation is greater. Therefore, coronary blood flow rate increases,

delivering more oxygen to the potentially damaged myocardium.
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7.4 Considerations

The two major concerns in the device design are the prevention of

cardiac tamponade and adequate device fit to insure vacuum seal and proper

contact between the ventricles and bladder.

Pericardial tamponade occurs when the pericardium secretes

abnormally high amounts of fluid around the heart. This fluid constricts the

heart and prevents proper diastolic fill. The MBAD could cause this same

type of problem if it is not designed large enough to allow significant dilation

of the heart during diastole.

The length of the MBAD is crucial in forming the vacuum seal that

preserves the negative ventricular epicardial pressure during diastole. This

length must be made to allow geometric alignment of the top portion of the

device with the atrioventricular junction. Also, the bladders must be formed

to allow complete contact and full ventricular compression during inflation.
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8 Myocardial Mechanics

8.1 Introduction

An in vivo experiment that directly quantifies the function of the

MBAD is of primary importance in advancing the device toward clinical use.

A rapidly growing area of research in cardiac physiology and biomechanics

that directly relates to in vivo MBAD testing is the study of deformation of

the myocardium during ventricular contraction. Although this area of

research is relatively new, it provides insightful ideas for quantifying the

hemodynamic performance of the MBAD. Moreover, a thorough knowledge

of the specifics of myocardial deformation allows an advanced understanding

of the design requirements of the MBAD.

8.2 Background

Various methods have been postulated in the literature for measuring

myocardial deformation in an intact heart. One method by Waldman [19]

involves the implantation of lead beads in the myocardium. This method

utilizes high-speed biplane cineradiography to track the motion of these

implanted beads. The beads are positioned in the heart, implanted from the

epicardium to the endocardium. Three closely-spaced columns of four to six

beads were implanted within the ventricular wall. Five additional beads

were implanted on the epicardium, three above each column, one at the

bifurcation of the left main coronary artery, and one at the apical dimple.

EeG, left ventricular pressure, and aortic pressure were recorded during high

speed simultaneous biplane cineradiography (16 mID, 120 frames/ second).
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The camera shutter marks were also recorded to allow correlation between

the cine frames and the physiological events.

The heart was excised after the animal was sacrificed and a calibration

grid was positioned on the left ventricle in each projection plane. This was to

provide a basis for three-dimensional x-ray measurements. The shadows of

each of the marker's centroids caused by the x-rays were captured through two

dimensional digitizing. Three-dimensional x-ray coordinates were then

obtained. By utilizing the reference markers on the epicardium these x-ray

coordinates were converted to cardiac coordinates.

Strain was calculated by forming finite tetrahedrons of markers within

the ventricular wall. The base was comprised of three markers that were all

within 1 mm difference of depth beneath the epicardium. The vertex was

between 1.9 and 4.0 mm from the base. The strain was calculated from the

formula

where Eij is the symmetric strain tensor. This is related to os, the distance

between markers before contraction and OSOt the distance between markers

after contraction. The an coordinates represent the dimensions of the

original tetrahedron.

8.3 Dynamic Tracking of the Myocardium

Aside from the method of Waldman [19], another procedure for

determining patterns of ventricular wall deformation has been developed.

This method, performed at Allegheny General Hospital in Pittsburgh,
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Pennsylvania, involves the placement of ultrasonic crystals on the

myocardium in order to measure cardiac motion. It is significantly less time

consuming than Waldman's method and can be used to accurately describe

myocardial deformation. This experiment could potentially be used to

quantify the performance of the MBAD.

8.31 Materials and Methods

A mongrel dog was anesthetized and maintained through an

endotracheal aspiration of halothane. A median sternotomy was performed

and a rib spreader was utilized by the surgeons to expose the heart. Pulse

transit ultrasonic dimension gauges were attached to six locations on the
1

heart to provide three-dimensional tracking of the-heart, as shown in Figure

7. The three pairs of transducers were positioned to measure the long axis,

the short axis, and left ventricular wall thickness of the heart. The first pair

was placed at the widest section of the epicardium to measure the short axis.

The second pair was sutured at the apex and base to capture long axis changes

in dimension during contraction. Finally, the third pair was placed on the

epicardium and on the endocardium through a needle hole.

These crystals receive and send pulses of ultrasound in pairs. The

transit time of the pulse between the piezoelectric transducers is measured as

an analog signal. This signal is directly proportional to the distance between

the crystals. The sonomicrometer sampling rate is 1000 Hz.

The crystals' analog output is sent to an oscilloscope and is calibrated

into distances. Baseline heart dimensions are recorded on an IBM data

acquisition program. One to four weeks after implantation, the dog was

studied while conscious. If it was determined to be healthy, it was given a
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general anesthetic in order to remove the transducer leads from an

abdominal pouch. The leads were then connected to the sonomicrometer.

Left ventricular pressure was measured by inserting a Millar PC-350

micromanometer into the left ventricle through the carotid artery. Right

ventricular pressure was measured by a Swan-Ganz catheter.

All data were recorded through a real-time data acquisition program.

After the dog was sacrificed, the position of the ultrasonic crystals was verified

to have remained unchanged throughout the experiment.

8.32 Analysis of data

The left ventricle was geometrically modelled as a three-dimensional

prolate ellipsoid, since the long axis diameter is 30-40% greater than the short

axis. Spherical models have been used in the past, but have been found to

underestimate circumferential stress [20]. The shell thickness at the apex and

base was assumed to be 55% of the midwall thickness as found by Rankin [21].

The equation for the volume of a prolate ellipsoid is

v= nj6(b-2h)2(a-1.1h)

where b is the short axis dimension, a is the long axis dimension and h is the

wall thickness [21]. Three pressure-volume curves were calculated from the

ultrasonic dimension data and the pressure utilizing an IBM cardiovascular

analysis program (Figure 8).
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8.33 Results

The changes in pressure, short axis, long axis, and wall thickness are

shown in Figure 9. These data reveal shortening of both the long and short

axis during ventricular contraction. They also demonstrate that the wall

thickness increases during contraction. This can be seen in the short axis

dimension plot, which varied from 6.15 cm at end diastole to 5.72 cm at end

systole. The long axis dimension varied form 7.75 cm to 7.53 cm between end

diastole and end systole. Finally, the wall thickness varied from 1.5 and 1.85

cm between end systole and end diastole. Longitudinal, radial, and

circumferential strain were calculated at each point in the cardiac cycle using

the relation

E=ln (X/Xo),

where Xo is the end-diastolic dimension. X is a general variable representing

each of the three dimensions. For circumferential strain, X becomes Land

were used to calculate the circumference at each time during the cardiac cycle

[21]; Lo is the end-diastolic circumference. These strains are shown in Figure

10. The average stroke work is calculated over three of the cardiac cycles and

is defined as the average area enclosed by the three pressure-volume curves

(Figure 8). It was found to be approximately 1204 g-cm.
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8.34 Discussion

This method of determining myocardial deformation results in the

strain values (Figure 10) similar to those found by Waldman [19]. The

corresponding plots of circumferential, longitudinal, and radial strain found

by Waldman are shown in Figure 11. As is evident from these plots, the

discrepancy in strain values is very small. For instance, the maximum

circumferential strain determined by Waldman is -0 .17. The present method

predicts this value to be -0.16. For longitudinal strain, both methods predict

values near -0.025, Finally, radial strain reaches a value of 0.20 predicted by

Waldman and 0.18 from the ultrasonic data.

Although these two experiments were obviously performed on

different animals, virtually identical trends in strain are evident. Therefore,

the data confirms that this method of determining dynamic left ventricular

geometry is as effective as the method utilizing high-speed biplane

cineradiography with lead bead markers. However, this experiment is much

simpler and less time consuming than Waldman's experiment.

The pressure-volume curve generated from this data demonstrates

that values of stroke work for baseline cardiac output can be determined. The

MBAD should cause several changes in the pressure-volume loop. First,

since the MBAD applies negative pressure to the walls of the left ventricle, it

should produce a significantly lower diastolic pressure. Therefore, the rapid

filling phase, point four to point one in Figure 8, should occur at a much

lower pressure.

By adjusting the device bladder pressure, the end-systolic volume can

be regulated. A high bladder pressure causing a large ventricular compressive

force results in a reduction in end-systolic volume. By increasing negative
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pressure on the ventricles during diastole, a large end-diastolic volume will

result. Finally, increases in systolic pressure will also accompany the

increased compressive force on the ventricles.

In a patient requiring assist, end-systolic volume is high and the

systolic pressure is low. With the addition of the MBAD, the ejection fraction

and the systolic pressure should be augmented. This should produce a

pressure-volume curve with lower end-systolic volume and higher systolic

pressure, as shown in Figure 8. It is obvious from this curve that the stroke

work should increase significantly with the application of the MBAD.

Therefore, this device should augment hemodynamic performance and

unload the ventricles.

In conclusion, this method is believed to be the simplest, most effective

way of quantifying the performance of the MBAD. By implanting ultrasonic

crystals on an intact animal heart and measuring ultrasonic dimension

changes during contraction with and without the MBAD, an extremely

effective measure of the device's performance can be obtained.
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9 Mechanical Interaction of the MBAD Bladder and the Heart

9.1 Introduction

An essential consideration in the design and application of the MBAD

is its mechanical interaction with the heart; this determines the life of the

bladder and the effects on the myocardium. Because of the repetitive nature

of the MBAD application, a poorly designed bladder could result in early

failure and/ or myocardial necrosis.

When the bladder inflates and pushes into the heart, it becomes loaded

by the heart. Due to the complexity and present uncertainty of myocardial

mechanics, it is difficult to pinpoint the form of cardiac loading. For instance,

the right ventricle differs from the left ventricle in dimensions, contractile

patterns, and internal pressure. These differences will certainly result in

different-loading conditions on the bladder. Additionally, a heart with

noncontractile, infarcted tissue may cause irregularities in bladder loading

and stress concentrations.

A convenient and logical method for analysis of the interaction

between the heart and bladder employs the use of shell theory. This allows

calculations of stress, strain, and deformations of the bladder using various

models of cardiac loading. In this way, it is possible to analyze the interaction

of the bladder with the heart under a variety of loading scenarios. As a first

approximation, the MBAD bladder will be modelled as a portion of a thin­

walled spherical shell of revolution, quasistatically loaded by the heart. As

shown in Figure 12, the shell representing the MBAD bladder can be formed

by rotating a curve (meridian) about an axis in its own plane, where 4>

represents the meridional angle and each 8, the azimuthal angle, defines a
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unique meridian. A element of this shell is depicted in Figure 13 and the

differential equations that result from an equilibrium analysis on the shell

are:

0/0<1> (rN~) + I1 (oN~e/oS) - qNe Cos Ij> + p~rq =a 9.1.1

0/0Ij> (rN~e) + 11 (oNe/oS) +qNe~ Cos Ij> + perq =a 9.1.2

N~f q + Nef r2 =pr 9.1.3

1 where equation 9.1.1 is a force balance in the Ij> direction, equation 9.1.2 is a

force balance in the edirection, and equation 9.1.3 represents equilibrium for

forces which are perpendicular to the shell element [23]. The shear stress

resultant is defined as N~e. N~ and Ne are the stress resultants in the Ij> and e
directions; they are defined as positive in directions of increasing angles. Each

of these stress resultants is defined as the stress per unit length of the shell

thickness. Once these stress resultants are calculated, it is possible to obtain

the shell stresses by dividing each of the resultants by the bladder thickness, t.

Therefore, information regarding bladder failure based on comparison with

the critical stress for this material is obtained.

Several different loading schemes will be used to approximate the

interaction between the heart and the MBAD bladder. These loadings are

characterized by symmetry and non-symmetry with respect to the shell axis.

Axisymmetric loads result in shell displacements that are independent of the

azimuthal angle, e. Non-symmetric loads, however, cause displacements

that are dependent upon the e.
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9.2 Axisymmetric Load Models

A typical description of an axisymmetric load model for the MBAD

bladder involves fixing the loading pressure to a maximum value where the

bladder extends furthest into the myocardium during inflation and to zero at

its edges. Two suitable representations for this are a meridional angle

dependent pressure loading and a myocardial displacement-proportional

model.

Meridional Angle Dependent Loading

Axisymmetric loads, loads which are symmetric about the shell axis

(Figure 12), are widely studied and present fairly straightforward solutions for

stress, strain, and deformation of the shell element. In this case, all

derivatives with respect to eare zero; therefore, the equations of equilibrium,

9.1.1 and 9.1.3, reduce to:

9.2.1

9.2.2

Equation 9.1.2 describes torsion about the shell axis and will be neglected in

the present analysis by assuming N<jls=O. The meridional angle dependent

form of axisymmetric loading will allow for a maximum loading at the apex

of the bladder where the heart is deformed the most and will diminish to

zero loading at the edges of the spherical shell bladder. It will incorporate the

constant internal pressure of the bladder supplied by the portable pumping

unit. One function that models these criteria is Pr=A Cos <l> - POI where Pr is
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the force per unit area normal to the surface of the bladder, Po represents

internal bladder pressure, and A is the amplitude, defined by the mechanics

of the myocardium. With this pressure loading, we see that at <1>=0, the

pressure is maximum. Furthermore, it is assumed that PS=O and P<1>=0. By

substituting 9.2.1 into 9.2.2, we obtain

4
N~ = (1 I r2 Sin2 <1» I f1 r2 Pr Cos <1>' Sin <1>' d<l>'

o
9.2.3

After substituting Pr into 9.2.3 and integrating, the stress resultants for a

spherical shell of radius r=a are

N~ = a [ (A/3 Sin2<1»(1- Cos3<1» - Pol 2]

Ne = a [ -(A/3 Sin2<1»(1- Cos3<1» - Pol 2 + ACos <1»

9.2.4

9.2.5

Qualitative measurement has revealed that <I> extends to approximately Tt/4.

These expressions for the stress resultants can be better understood by gaining

physical insight into their effects on the shell. For N~, the limit as <I> tends to

zero is (a/2)(A-Po). This value can be demonstrated to be correct by balancing

forces on a small circle near the apex of the bladder, where <I> is approximately

zero. The radius of this small circle is (a Sin <1» and its area is therefore

3ta2Sin2<t>. The total vertical pressure loading on the circle near the apex is (A­

Po). The vertical component of the meridional stress, N~ Sin <I> multiplied by

the length of the circle, 23taSin <1>, gives the total vertical force resisting the

pressure loading. Dividing this force by the circular area and solving for N~,
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the limiting value as lj> tends toward zero in equation 9.2.4 is verified. Ne also

approaches (a/2)(A-Po) as lj> tends toward zero.

The strains are derived from the stresses by utilizing Hooke's law.

They are given by the formulas

E4l = (lIEt) (N4l- 'UNa)

Ee = (lIEt) (Ne - 'U N4l)

where E is Young's modulus of the bladder material, t is the shell layer

thickness (bladder thickness), and 'U is Poisson's ratio for the bladder.

Substituting the values for stress, the formulas for strain are

9.2.6

9.2.7

E4l = (a/6Et) Sin2 lj> [ 2A(1- Cos3lj»(1+ 'U) - 3PoSin2 lj>(1- 'U) -

6A'USin2 lj>Cos lj>] 9.2.8

Ea = (a/6Et) Sin2 lj> [ -2A(1- Cos3lj»(l+ 'U) - 3PoSin2 lj>(1- 'U) + 9.2.9

6A'USin2 lj>Cos lj>]

Both strains tend to the same value, (a/2Et)(A-Po)(1-'U), as <p approaches zero;

this is expected based on the behavior of the stresses. The displacements can

be calculated based on their geometric relationship with the strain [23]. v

represents displacement tangent to the meridian, u is displacement tangent to

the parallel circle, and w is displacement normal to the shell surface. u and v

are positive in directions of increasing angles and w is positive when directed

outward from the shell surface. The displacement v is given by
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q,
v=l a(Eep-Es)/Sin <1>' d<l>'

o

Substitution of the strains and integration gives the final solution,

v=(Aa2(1+u) / 3Et) [-Cot ~ + Cot ~ Cos ~ +

Log( 2(1-Cos <1» / Sin~ ) Sin ~]

9.2.10

9.2.11

A plot of v/ (Aa2/ 3Et) versus ~ is created (Figure 14) by substituting an

approximate Poisson's ratio, v=O.5, for the elastomeric polyurethane bladder.

The displacement normal to the shell surface, w, is

w=a Eep - v Cot ~

and, substituting,

9.2.12

w=(a2/6Et) [ -(2A(1-Cos3 ~)/Sin2~)(1 +v) - 3Po(1-v) + 6ACos $]

- (Aa2(1+u) / 3Et) [-Cot2~ + Cot2~ Cos ~ + Log( 2(1-Cos <p) / Sin2~ )

Sin<p] 9.2.13

The plot of the this displacement (Figure 15) with v=0.5 is formed by

subtracting Po(a2/4Et) from wand dividing this result by Aa2/Et. Since

Po=3psi (2.1 x 104 N/m2), E=1.6psi (1.1 x lQ4N/m2), a=2.5in (6.35cm), and

t=.012in (0.03cm), a general plot normalized in A is formed. E is calculated

from the stress-strain material specifications for the B. F. Goodrich Estanes

that comprise the MBAD bladder. There is no displacement in the u-
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direction for the axisymmetric case because it represents non-symmetric

behavior.

From the plots of the displacements several interesting points are

noted. First, as $ approaches zero v tends toward zero. This demonstrates

that there is no meridional displacement at the apex of the bladder. This

makes physical sense since a purely symmetric loading will cause no motion

of the apical point relative to the shell axis. Additionally, it is observed that

the meridional displacement increases positively with increasing $; this is

seen physically by viewing the bladder in its loaded and unloaded state. If one

hypothetical point on the shell surface is observed as it shifts from the

unloaded to the loaded state, it is obvious that in the loaded state, the point

corresponds to a larger meridional angle than it did in the unloaded state.

This positive shift in the meridional angle implies a positive meridional

displacement. Furthermore, the change in relative meridional angle

positions of the hypothetical point is seen to grow as $ increases.

The plot of the displacement normal to the shell (Figure 15) reaches

values of 0.5 and 0.16 at <p=0 and rr./4, respectively. These values are

reasonable and they define the actual shape of the surface of the shell.

It is interesting to note that the normal displacement depends on the

internal bladder pressure, whereas the meridional displacement does not.

This agrees with intuition, since higher internal bladder pressures certainly

will affect the normal displacement of the shell during loading. This is not

the case for the meridional displacement, where changing bladder pressure

between the shell's loaded and unloaded state causes no change in the

meridional angle.
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Myocardial Displacement-Proportional Loading

Another possible model of axisymmetric loading assumes that the

pressure loading on the bladder is directly proportional to the displacement of

the heart. Figure 16 represents the relationship between the radius of

curvature of the bladder, a, and the radius of curvature of the heart, b, before

and after compression of the heart. Curve 1 represents the undeformed heart

and the deflated bladder; Curve 2 shows the inflated bladder and the

deformed heart. Here, Pr, the pressure normal to the bladder, can be

represented as k(a-ro(<I»), where k is a constant and (a-ro(<I») denotes the

displacement of the heart as it is deformed by the bladder. This representative

loading describes maximum pressure loading at <1>=0 and zero pressure

loading at the bladder edges where <1>=<1>0' ro(<I» is determined through the

geometrical relationship between the two circles that correspond to the shape

of the bladder and the heart (Figure 16). Depending on the bladder design,

this relationship is fixed by <1>0' a, and b. <1>0 defines the maximum value of <I>

for the bladder. For this model, <1>0 will be approximated as Ttl 4. After

extensive trigonometric manipulation (Figure 16),

where

ro(<I» = X+b<l>/Sin <I> 9.2.14

X = [a2+b2- 2ab.Cos(:rc- (<1>0 +Sin-1 «Sin <l>0)a/b»)]1/2 9.2.15

Now, substituting Pr into equation 9.2.3, the stress resultants in the <I> and 8

directions are
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N<jl = ak [ (a-X)/2 - b (Cos $ + $ Sin $ -1)/Sin2 $]

Ne = ak [ ( a-X)/2 + b ( Cos <j> -1)jSin2 <j>]

9.2.16

9.2.17

The limit of each of the stress resultants as </> approaches 0 is ( a-b-X) j 2. As in

the previous axisymmetric case, this limit is verified by performing a force

balance on a small circle at the apex of the bladder where $ tends toward O.

The strains are calculated again by using equations 9.2.6, and 9.2.7.

E<jl= (akjEt) [ (a-X) (1-u)/2 - b ( Cos $ -1) (1+v)jSin2 </>-

b $/Sin </>] 9.2.18

Ee= (ak/Et) [ (a-X) (1-v)/2 + b (Cos </> -1)(1+v)/Sin2 <j> +

ub<j>/Sin <j>] 9.2.19

Each strain value converges to ak (1-v)(a-b-X)/2Et as <j> approaches O.

Substitution of the strains into 9.2.10 and 9.2.12 gives the deformations,

v = (ba2k(1+v)/Et) [ -Csc $ - Sin $ Log (I-Cos $)/Sin2 $ +

Cot <j> - Cos <j> +Sin $] 9.2.20

w= (a2k/Et) [ «a-X) (1-v)/2) + ub<j>/Sin $ +

b(l+v)(-1/Sin2 $ - Cos <j> Log (I-Cos $) jSin2 <j> + Cot2 <j> -

Cos <j> Cot $ + Cos <j»] 9.2.21
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The plot of v is shown in Figure 17. It is obtained by substituting v=O.5 and

normalizing by dividing with ba2k/ Et; in this way, it is not necessary to

deternUile k. This meridional displacement behaves similarly to the

meridional displacement in the previous axisymmetric analysis. It converges

to zero as <I> approaches 0 and it increases as <I> becomes larger. The plot of

displacement normal to the shell, shown in Figure 18, is formed by assuming

a ratio of 2:1 between the radius of the bladder circle and the radius of the

myocardial surface, ie. a/b=1/2. w is divided by a2k/Et to normalize the plot.

From the plot, w reaches approximately 0.97 at <\>=0 and 0.4 at <\>=n/4. As in the

previous axisymmetric case, there is no azimuthal displacement, u.

Furthermore, this behavior for axisymmetric loading complies with physical

intuition.

9.3 Non-symmetric Loading Model

The two previous models of axisymmetric loading represent potential

myocardial loadings on the MBAD bladder. However, if the MBAD was

applied in a situation where a portion of the heart was infarcted or

dysfunctional, the pressure loading pattern of the heart on the bladder may

not be symmetric with the axis through the center of the bladder (Figure 12).

In fact, the extensive thickness of the left ventricular wall near the apex of the

heart may result in a natural non-symmetric loading on the bladder. In this

case, the bladder load may not only vary with the meridional angle but also

with the azimuthal angle, 8. An analysis of non-symmetric bladder loading,

perhaps representing more realistic physiologic behavior, will be performed.

This analysis will be viewed as an addition to the axisymmetric loading of the

bladder. That is, solutions for the axisymmetric case and the non-symmetric
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case can be added to give an overall solution for the mechanical behavior of

the bladder undergoing both symmetric and non-symmetric loading.

The two previous models of axisymmetric loading of the MBAD

bladder by the heart are fairly straight forward derivations. However, the

non-symmetric case requires a more sophisticated approach. For the solution

of the non-symmetric case the normal pressure loading on the bladders will

be modelled as Pr=-B Sin <j> Cos 8, with P<j> =0 and Pe=O again. <j> ranges from 0

to <1>0 and 8 varies from 0 to 2n. This case will incorporate increased pressure

loading on the bottom side of the heart, 8=7t, and decreased loading at the top

of the heart, 8=0 (Figure 12). The governing equations are obtained from

9.1.1-9.1.3. For this case, 9.1.3 is used to eliminate Ne from equations 9.1.1 and

9.1.2. The following solution for the stress resultants are obtained [23]:

N<j>= -Cos 8 (Ba/3) [(2+Cos <j»(l-Cos <j»Cos <j>/ (1+Cos <j»Sin <j>]

9.3.1

N<j>e= -Sin 8 (Ba/3) [(2+Cos <j»(l-Cos <j»/ (l+Cos <j»Sin <j>]

9.3.2

Ne = -Cos 8 (Ba/3) [(3+4 Cos <j>+2 Cos2 <j»(l-Cos <j»/ (1+Cos 4»Sin <1>]

9.3.3

Now, the strains can be calculated from equations 9.2.6 and 9.2.7

€<j>= - Cos 8 (Ba/3Et) ((i-Cos 4»/ ((l+Cos <j»Sin 4») [Cos <j>(2+Cos 4»­

u(3+4 Cos <j>+2 Cos2 <j»] 9.3.4
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Ee= - Cos 8 (Ba/3Et) «l-Cos $)/ «l+Cos $)Sin $)) [(3+4 Cos $

+2 Cos2 $)-Cos $(2+Cos $)] 9.3.5

Y<j>e = - Sin 8 (2Ba/3Et) [(2+Cos $)(1-Cos $)(1+u)/ «l+Cos $)Sin $)]

9.3.6

The governing differential equations for the displacements are [23]

ov /0$ + w = a E<j>

ou/08 + v Cos $ + w Sin $ = a Ee Sin $

(OU/O$) Sin $ - UCos $ + OV /08 = a Y<j>e Sin $

Now, the form of the solution can be represented by

U=f($) Sin 8

v=g($) Cos 8

w=h($) Cos 8

where

S3

9.3.7

9.3.8

9.3.9

9.3.10

9.3.11

9.3.12

9.3.13



9.3.14

9.3.15

Substitution of the assumed form of the solution into equations 9.3.7-9.3.9

produces the following set of differential equations in cp.

og/ocp +h=a 8lj>

f + g Cos cp + h Sin ep=a 8S Sin cp

(of/Oct» Sin cp - f Cos cp - g = a Ylj>S Sin cp

9.3.16

9.3.17

9.3.18

After considerable manipulation of this set of first order differential

equations, the following second order differential equation in g is obtained.

02g /0ep2 - (og/oep) Cot cp =

a(ylj>s/Sin cp + (?J8lj>/ ocp)-(08S/ ocp) 9.3.19

Now, substituting the equations for the strains into 9.3.19, the equation can be

solved by reducing it to a first order equation and integrating it from 0 to cp.

This gives

og/op = - (Ba2(1+u)/3Et) Sin cp [Log (2/ (l+Cos cp»

- (1/4) Sin4 cp/ (1+Cos cp)4] 9.3.20
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Finally, integrating from 0 to <\>, the solution for v=O.5 is

g = - (Ba2/ 2Et) [ (-3/10) Cos <\> + (3/4) ( i-Cos <\» +

Cos <\> Log (1+Cos <\» - Sin2 <\>/ (2(1+Cos <\»2)]

Substituting 9.3.30 into equation 9.3.16 and performing algebraic

manipulation, we obtain

h= - (Ba2/ 3Et) [-3(-1+Cos <\»(4.2+ (2/10) Cos <\>­

4Log (l+Cos <\»(l+Cos <\»]/8 Sin<\>

Finally, 9.3.31, 9.3.30, and 9.3.17 give

f= - (Ba2/ 3Et) [36.6-2.4 Cos <\> - 27 Cos2 <\> ­

12 Log(l+Cos <\»(l+Cos <\»]/8(1+Cos <\»

9.3.30

9.3.31

9.3.32

Substituting the values of f,g, and h into 9.3.10-9.3.12, the final solution for

the non-symmetric displacements on the bladder is obtained.

The plots for these displacements, u,v, and w, are shown in Figures 19­

21. These displacements represent the more complex physical behavior of the

bladder undergoing non-symmetric loading. However, by noting the values

of displacements at certain points, the solutions agree with physical intuition.

For example, the meridional displacement v is expected to change sign across

the 8=rr./2 plane (Figure 22). In the non-symmetric loading, the bottom side of

the bladder will compress down and the top side will bulge. If two adjacent
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points between the unloaded and the loaded state are mapped on the bottom

of the shell (Figure 22), the meridional angle change associated with their

motion shows a positive increase. This means that meridional displacement,

v, should be positive between 8=IT/2 to 3rt/2. This is confirmed by the three

dimensional plot. On the top side of the bladder, the opposite effect is seen;

the meridional angle change associated with the two points is negative. This

indicates a negative meridional displacement from 8=3rt/2 to 1[/2 and is also

demonstrated in the graph.

The azimuthal displacement curve can also be examined for physical

consistency. Figure 23 demonstrates the type of displacement of the shell

parallel circle that occurs during non-symmetric loading. In this case,

between 0 and 1[, the shift in 8 between the loaded and unloaded state is

positive. Therefore, a positive displacement u is expected. This is

demonstrated by the graph in Figure 19. Between 1[ and 21[, the opposite

occurs; the azimuthal displacement is negative.

Finally, the displacement from the center of the circle formed by the

meridian demonstrates the actual top surface behavior of the bladder under

non-symmetric loading. From Figure 21, it is apparent that the top side of the

bladder is loaded more than the bottom side. This results in an unbalanced

displacement normal to the shell between the top and bottom portions. In

Figure 24, a spherical plot of the normal displacement of the shell is shown.

This plot represents the actual shape of the bladder under non-symmetric

loading. From this plot, it is clear that the bladder is loaded non­

symmetrically.
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9.4 Additional Considerations for MBAD Bladder Design

Another consideration between the bladder and the heart is the

relative motion. Figure 25 demonstrates the relative displacement of

neighboring points on the bladder and the heart. Before bladder inflation,

the two points are directly adjacent. After inflation, the points experience

relative motion. The degree of this motion contributes to the shear stress

between the two surfaces. As discussed in the previous analysis, shear stress

on the myocardium can result in myocardial necrosis and therefore defeat the

main purpose of this cardiac assist device.

One variable that can potentially control this relative motion is the

design of the bladder. Specifically, by adjusting the thickness of the bladder, it

may be possible to produce a bladder that optimally conforms to the

myocardial wall during inflation, causing a minimal amount of relative
,

motion between the two points. The axisymmetric equations for strain, 9.1.6

and 9.1.7, are inversely proportional to the bladder thickness. If the bladder

thickness, t, is made a function of <\>, the following equations represent the

strains

£e = f(<\» ( Ne - 'UNep )

9.4.1

9.4.2

where f(<\»=l/Et(<\». Substitution of 9.4.1 and 9.4.2 into the differential

equations for displacement, 9.3.7 and 9.3.8, the following differential equation

for v is determined
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ov /0<1> - v Cot <I> =a f(<1» (£4>-£8) 9.4.3

Now, by varying f(<I», the meridional displacement v is altered. At this stage,

the determination of an appropriate f(<I» seems quite empiric. However, by

using various myocardial dimension tracking techniques, such as ultrasonic

crystals, perhaps a more thorough knowledge of the actual mechanical

properties of the myocardium will be determined. In this case, the
,

meridional displacement of the myocardium could be substituted into

equation 9.4.3 and f(<I» determined. This would assure highly accurate, point­

wise matching between the two surfaces.

Unfortunately, the field of cardiac mechanics is severely

underdeveloped and this approach is not practical at the present time.

However, various hypothetical forms for f(<I» can be incorporated into the

production of the MBAD in a more sophisticated coating process, perhaps

involving some form of gas deposition. The effect of this on the relative

motion between points on the bladder and heart can be quantified by using an

accurate method of myocardial tracking. That is, by stopping the heart,

suturing ultrasonic crystals to adjacent points between the bladder and the

heart, data regarding relative motion could be obtained.

The bladder thickness can also be varied as a function of 8. This of

course complicates the analysis, but none the less presents another variable

for altering the deformation pattern of the bladder.
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10 Potential Research

Innovative ideas for advancement in device design, actuation, and

testing will make the MBAD more useful as a circulatory assist tool.

10.1 Design Improvements

Several design improvements of the MBAD could increase its

effectiveness as a circulatory assist device. These improvements range from

simple alterations in the production process to advanced concepts for re­

design.

In order to increase the effectiveness of the device in vivo , there is one

minor design alteration that should be implemented: the outer shell must be

reinforced through multiple polyurethane coatings. This will preserve

device distensibility and still allow removal through a large thoracotomy

tube. The advantage of the thickened outer shell could enable increased

deformation of the ventricles during inflation as opposed to outward

displacement of the shell. Thus, the ejection fraction of the heart would

increase. During diastole, the negative pressure surrounding the heart would

more likely pull the heart toward the shell, not the shell toward the heart.

This effect increases rate of diastolic fill and, potentially, myocardial

perfusion.

A more advanced idea requiring device redesign evolved from the

major issue of the complex physical interaction between the device bladders

and the myocardium during contraction. Presently, the device consists of two

bladders that supply equal force to both sides of the heart during inflation.

This results in significant ventricular compression of an essentially
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motionless heart during fibrillation. However, when the heart is

dysfunctional it continues to contract, producing a unique pattern of

myocardial deformation. Therefore, application of this device to a beating

heart could result in significant shear stress on the epicardium, causing

myocardial necrosis.

Accordingly, a method for improving the geometric alignment

between the inflating bladder and the deforming ventricle during systole has

been devised. This method assumes that a thorough knowledge of the

viscoelastic properties of the myocardium are available. It involves dividing

each of the two bladders of the device into several smaller bladders,each

individually pressure controlled. Piezoelectric crystals could be incorporated

into the inner membrane of each bladder to sense the relationship between

bladder pressure force and displacement of the myocardium. The analog

signal from the piezoelectric crystals could be used as feedback to adjust the

amount of pressure filling each bladder. Tuning of the pressure controller

would rely on knowledge of myocardial viscoelastic parameters, such as

compliance. Thus, the several bladders together would be environmentally

sensitive and could apply various amounts of contractile force to each side of

the heart at different times during the cardiac cYcle. This would result in a

much more physiologic deformation during contraction, since the heart

communicates with the bladder through its mechanical composition and its

dynamic behavior. For example, the midsection of the myocardium thickens

the most and contracts with the greatest force during systole. By sending this

information to the pressure controller through the piezoelectric signal, the

corresponding bladder could be inflated to apply more or less force in this

area.
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This method would require a controller that was precisely tuned to the

viscoelastic properties of the heart. Also, the delivery of air to and from the

individual bladders would need to be extremely rapid.

The replication of the natural heart is an area of improvement in

device production that has also been postulated. This method would require

utilizing the highly accurate diagnostic technique known as magnetic

resonance imaging (MRI). MRI images of an intact heart could be obtained in

many two-dimensional slices. These slices could then be converted to a

three-dimensional image utilizing three-dimensional modelling software.

This data could then be used in a manufacturing process known as

stereolithography. This production method involves laser cutting the

computerized three-dimensional object into a series of cross sections. Each

cross section is then carefully sprayed with a finite amount of atomized

material, such as metal or plastic. Then they are stacked, and the spraying

process is repeated. The end result is a solid, three-dimensional object

requiring no machining.

The advantage of this heart replication process is that the device could

be custom made to fit a given heart. Also, the time-consuming molding

process would be completely eliminated. Finally, if plastic was used as the

spraying material, coating the mold would be unnecessary.

10.2 Device Actuation Advancements

The major area for improvement in device actuation is the rate of

delivery of air to and from the bladders. This must be accomplished

extremely rapidly in order to preserve the true physiologic patterns of

myocardial contraction. Presently, the portable power unit supplies ample
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volume of air to the bladders at a reasonably fast rate. By increasing the

volume output of the IABP console, a more rapid supply of air to and from

the bladders could be obtained.

10.3 Future Testing Protocol

An important determinant of the eventual clinical use of the MBAD is

a solid testing process. Potential bench and animal testing protocols for the

MBAD have been developed. Specifically, a modified Penn State mock

circulatory loop would reveal the hydraulic performance of the device. This

bench test would model physiologic parameters of the circulatory system such

as compliance, systemic vascular resistance, and atrial preload (Figure 26).

The Penn State compliance chambers consist of rolling diaphragm piston

chambers compressed by a cantilever spring. The Penn State simulated

vascular resistance is a flow dividing compression plate. The density and

viscosity of blood could be simulated with a mixture of saline and glycerol.

Finally, atrial preload can be approximated with a fluid column.

By adjusting the compliance chambers, the mock loop resistance, and

the atrial preload, the performance of the MBAD can be tested over a wide

range of operating conditions. These include various bladder pressures,

pump rates, and systemic vascular resistances. Pressure and flow

measurement could be used to assess the performance of the device. This test

should be performed using a fresh, excised heart to more closely simulate in

vivo function, as the heart muscle's viscoelastic properties change as it dies.

An animal experiment that measures cardiac output, myocardial

deformation, and systemic pressure and flow with and without the MBAD
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would supply necessary in vivo information. This ~ould be accomplished by

following the two previously defined protocol.

63



11 Conclusion

A device for cardiac assist using direct ventricular compression has

been designed and tested. The device's simplicity of operation and ease of

application allow rapid, low-risk use when compared with other forms of

circulatory assist.

In the primary animal experiment, the device's successful in vivo

application was highly dependent on a refined production process and

innovations in' both design and actuation. Specifically, the male and female

molding materials were changed from silicone caulking and plaster to

mycrocrystalline wax and plastic resin; this insured that the required accuracy

of replicating the geometry of the heart with the device was attained. Also,

advancements in the production process reduced manufacturing time and

complexity. The incorporation of an increased device length and an elastic

band in the extended portion of the device produced a secure fit and a

vacuum seal that assisted the diastolic phase of the cardiac cycle.

Additionally, the use of compressed air as opposed to dichlorofluoromethane

eliminated the environmental and clinical risk of device leak. Finally,

through active evacuation of the device bladders by negative pressure, the

normal diastolic filling pattern of the heart was augmented and the

prevention of the deleterious condition of cardiac tamponade was achieved.

Extensive bench testing has quantitatively demonstrated that the

device is not only capable of supplying the necessary compressive force for

substantial cardiac ejection, but also possesses the mechanical integrity for

long term use. The primary in vivo experiment has clearly shown

qualitatively that the device produces adequate assist to a fibrillating heart.
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The need for a quantitative method for in vivo evaluation of the device was

met through the development of a myocardial deformation tracking

experiment, utilizing ultrasound as a diagnostic tool. The effects of device

application have been carefully explored and related to this testing procedure.

This method has been verified to supply accurate geometric data for cardiac

deformation when compared to other methods in the literature.

An extensive mechanical analysis of the interaction between the

device's bladder and the myocardial wall during bladder inflation has been

performed; this employed the application of shell theory to the MBAD

bladder. The results of this analysis predict bladder wall stress, strain, and

displacement under various models of cardiac loading. Specific numeric

calculations for these stresses, strains, and displacements rely on further

information from the field of cardiac mechanics. They demonstrate that

through alteration in the device's bladder wall thickness, it may be possible to

minimize relative motion between neighboring points on the bladder and

the heart wall. Therefore, the possibility of myocardial necrosis or device

failure can be minimized. Although theoretical analysis of the relative

motion of the points is limited, experimental evaluation of various bladder

wall thicknesses can be performed through ultrasonic measurements.

In conclusion, the development of circulatory assist devices is crucial to

the improvement of health care. Presently, most NIH funding has been

redirected to the development of circulatory assist devices, not the artificial

heart. This suggests that devices such as the mechanical biventricular assist

device have tremendous potential as life-saving tools.
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Figure 1: Anatomy and direction of blood flow in the human heart [2].
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Figure 2: Plot of normal left heart pressure, flow, and volume versus time
over two cardiac cycles. EeG and phonocardiogram are included [2].
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Figure 3: Anatomical 10calion of the sinoatrial and atrioventricular nodes [2].
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Figure 4: Complete view of the MBAD with tubing and fitting attachments

(top). Partial inflation of the device bladders (bottom).
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Figure 5: Female microcrystalline wax replica of the heart. Both halves of

the mold are shown separated at the seamless parting line.

70



Figure 6: Plastic resin male replica of the natural heart. Frontal view (top).

Lateral view (bottom).
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Figure 7: Location of the ultrasonic crystals on the heart for measurement of

long axis, short axis, and ventricular wall thickness [22].
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versus time over two complete cardiac cycles from Waldman [20].
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Meridian

--Shems

Figure 12: Spherical shell representation of the MBAD bladder [24]. The shell

surface is formed by rotating the meridian about the shell axis. The

meridional angle, <p, is measured down from the shell axis; The azimuthal

angle, 8, is measured around the shell axis.
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Figure 13: Shell element showing pressure loading and stress resultants [23].
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Figure 14: Meridional displacement v versus <\> for axisymmetric pressure

loading. v is multiplied by 3Etl Aa2 to obtain a normalized plot.
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Figure 15: Normal displacement w versus lj> for axisymmetric pressure

loading. The plot is normalized by subtracting (1/4) Po a2/Et from w and

multiplying by Etl Aa2, where Po=3psi (2.1 x 104 N/m2), E=1.6psi (1.1 x 1()4

N1m2), a=2.5 in (6.35 cm), and t=0.012 in (0.03 em).
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Figure 16: Geometric relationship between the MBAD bladder surface and

the myocardial surface. Bladder position 1 occurs during deflation and

position 2 during inflation.
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Figure 17: Meridional displacement v versus ep for axisymmetric pressure

loading. v is multiplied by Et/bka2 to obtain a normalized plot.
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Figure 18: Normal displacement w versus <\> for axisymmetric pressure

loading. The plot is normalized by multiplying w with Etl ka2.
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Figure 19: Azimuthal displacement u versus cj> and e for non-symmetric

pressure loading. u is normalized by multiplying with 3Et/Ba2.
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Figure 20: Meridional displacement v versus <t> and 8 for non-symmetric

pressure loading. v is normalized by multiplying with 3EtjBa2.
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Figure 21: Normal displacement w versus <p and 8 for non-symmetric

pressure loading. w is normalized by multiplying with 3Et/Ba2.
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Figure 22: The effect of non-symmetric pressure loading on the meridional
displacement. U1 and U2 represent the location of two points on the
unloaded bladder. L1 and L2 are the same points on the bladder in the loaded

configuration. From 8=rr./2 to 3n/2 , the angle change associated with the
meridional displacement of these points is positive, therefore the

displacement is positive. The opposite occurs on the other side of the 8=rr./2

plane, where the displacement is negative.
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Figure 23: The effect of non~symmetric pressure loading on the azimuthal

displacement. Ut and U2 represent the location of two points on the parallel

circle of the unloaded bladder. Lt and L2 are the same points on the bladder

in the loaded configuration, where the parallel circle shifts. From 9=0 to Tt ,

the angle change associated with the azimuthal displacement of these points

is positive, therefore the displacement is positive. The opposite occurs on the
other side of the 9=n plane, where the displacement is negative.
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Figure 24: Spherical plot of the normal displacement of the shell under non­

symmetric loading. This surface represents the actual shape of the MBAD

bladder. e is measured around the shell axis and <p down from the shell axis.
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Figure 25: Upper figure: Location of two adjacent points, A and B, on the

bladder and the myocardium before bladder inflation. Lower figure: Relative

displacement of the two points after bladder inflation.
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Figure 26: Schematic of a modified Penn State mock circulatory loop for

potential use in MBAD bench testing. Physiologic compliance and resistance
are simulated with mechanical elements.
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Appendix A

Steps in the Molding Process

FEMALE MOLD
-~'-

1. • Obtain natural heart from Baringer Brothers.

2. Prepare heart for molding:

a. remove excess fat
~\

b. remove major blood vessels as closely to the heart as

possible.

c. fill the ventricles with gauze

d. seal off the entrances of the vessels with silicone

rubber, shaping the material into the heart.

3. .Suspend heart in container via nylon string and hook oriented with

the apex pointing down.

4. Melt wax in the; accompanying aluminum container.

5. Pour first layer of wax up to the widest cross section of the heart.

6. Allow wax to dry and carefully remove the heart from this half of the

mold.

7. Wipe the top surface of the wax to roughen it to allow the paint to

adhere.

8. Spray 3-4 coats of red high temperature engine enamel on the

top surface of the wax and allow to dry 30 minutes between

each coat. Allow the several hours to dry after final coat.

9. Re-position the heart in the mold and melt wax again.

10. Pour in small amount of wax and let dry for 1 hour (This
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small volume prevents excessive heat transfer between the

recently heated wax and the dry wax below the painted surface since

it is such a small amount. Also/i'r~erves to insulate the painted

parting line from the large volume remaining to be poured).

11. Pour in the remaining wax to completely cover the heart.

12. Allow wax to 1-3 hours.

13. Mark both halves of the mold in order to maintain alignment and

carefully pull mold apart to remove heart.

MALE MOLD

1. After female mold is dry, reassemble and align each half of the mold.

2. Cut 1 inch diameter hole in top half to allow opening for the

pouring of the molding material.

3. Suspend threaded bolt with nylon string within the bounds of the

female mold to create handle for male mold.

4. Place the wax mold in freezer to cool for molding process.

5. Mix plastic resin with the appropriate amount of hardener

depending on mold thickness. (More hardener for larger

molds).

6. Pour the mixture into the cooled wax mold in several steps,

tapping the mold between each to eliminate any potential air.

7. Place container in refrigerator to eliminate wax melting during the

exothermic reaction between the hardener and the resin.

8. After mold has cured, (1-2 hours), pull mold apart.
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AppendixB

List of Products and Suppliers

1. Pig Hearts
Baringer Bros.
Richlandtown, PA
(215) 536-4337

2. Estane Polyurethanes
BFGoodrich
Specialty Polymers and Chemicals Div.
Cleveland, Ohio
(800) 543-2912

3. Stepless Ear Clamps
Oetiker, Inc.
Livingston, NJ
(201) 992-1920

4. General Suppliers
C & H Sales Co.
Pasadena, CA
(800) 325-9465 >

5. McMaster-Carr Supply Co.
New Brunswick, NJ
(201) 329-3200

6. Silicone II Rubber Sealant
General Electric Co.
King of Prussia, PA
(215) 337-4430
(Also available in hardware stores)

7. Microcrystalline Wax
Dick Blick's Art Supply
Bethlehem, PA

8. Plastic casting resin, hardener, and flexible molding material
Mac's Hobby Hall
Bethlehem, PA
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I.

~

App.endix C

Important Contacts

Dr. Michael Sinclair - Cardiac Surgeon

Work (215) 821-8790

Home (215 395-8376

David Rice - Director of Microsurgery Laboratory

Lehigh Valley Hospital

(215) 776-8000
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