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Abstract

Neural network technology is receiving increasingly more

attention, and is being applied to a grow~ng diversity of

problems. This paper will focus on the application of

backpropagation to forecasting customer demand~ for a
.-~

component produced by Air Products and Chemicals, Inc. One

network will be created to predict demand for each customer;

then a second network will be created which will predict the

total demand for the component. The networks will be

compared to an existing system which uses exponential

smoothing. Issues involving overtraining will be discussed.
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Neural Network: "is a parallel, distributed information

processing structure consisting of processing elements (which

can possess a local memory and can carry out localized

information processing operations) interconnected via

unidirectional signal channels called connections. Each

processing element has a single output connection that branches

("fans out") into as many collateral connections as desired: each

carries the same signal - the processing element output signal.

The processing element output signal can be of any

mathematical type desired. The information processing that

goes on within each processing element can be defined

arbitrarily with the restriction that it must be completely local;

that is, it must depend only on the current values of the input

signals arriving at the processing element via impinging

connections and on values stored in the processing element's

local memory." [l p.2]

"Forecast: to calculate or predict (some future event or

condition) usually as a result of rational study and analysis of

avaihible pertinent data..."

Webster's New Collegiate Dictionary [2]
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1. Introduction

Neural networks are an fairly new mathematical methodology

w~aps a set of inputs to a set of desired outputs. The

motivational analogy of neural networks is to mimic the

structure of the brain. They are being developed into useful

tools, and new applications continue to be discovered. One area

of study in which neural networks may play a significant role is

that of forecasting.

Box and Jenkins summarize the uses of forecasting: "the use at

time t of available observations from a time series to forecast

its value at some future time t + I can provide a basis for (a)

economic and business planning, (b) production planning, (c)

inventory and production control, (d) control and optimization

of industrial processes." [3]

A wide variety of forecasting tools are being used at Air

Products and Chemicals, Inc.! However, neural networks are

just being explored.

To solve one of it's business problems, Air Products requires

two month forecasts of customer demand for a certain

1 Air Products and Chemicals, Inc. is a Fortune 200 Company which
supplies industrial gases and chemicals, process equipment, specialty
gases and chemicals, and a wide variety of services to customers world­
wide.
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component. Currently, Air Products is using a software package

that utilizes Winters' Exponential Smoothing to generate the

forecasts. The software picks the best parameters for each

customer, and periodically reviews the model to make sure it is

still appropriate. We are always looking for better forecasts,

and we believed that neural network technology might be able

to improve upon the current system.

2. Background on the Existing System

The existing system was purchased from American Software

Institute, and is simply called ASI [4]. It takes 36 months of

historical demand for each customer, and returns forecasts for

18 months into the future. Although ASI generates 18 months

of forecasts, for the business problem necessitating the

forecasts, we are only interested in the first two of these. When

a new customer is entered into the system, ASI picks the best

parameters out of a gIven set. These parameters include

smoothing constants for seasonality and trend and permanent

components, to name only a few. These parameters a~e kept for

each 'customer. Every few months, these parameters are

checked for continued suitability. There are roughly 20

parameters per customer used by the software to generate

forecasts.

4



ASI works with a pyramid structure as shown in Figure 1. ASI

first creates forecasts for each customer; then it totals the

historical demand for each region and creates forecasts for each

region. Then it totals the historical demand for all the

customers and creates a forecast for the total demand. Since a

better forecast can usually be generated for the total demand

(which is smoother and more well behaved), ASI "forces" the

high level forecasts "down" to the lower levels (Le. region and

then customer). This is done by multiplying the lower

forecasts by the total upper level forecast and dividing by the

sum of all the lower level forecasts. For example, the forced

forecasts for a customer with 50 units forecasted at the

customer level, where the customer level forecasts for each

customer in the entire region total to 2000 units, and the

regional forecast is 2500, becomes (50 * 2500) I 2000 = 62.5.

Regional

Individual Customers

Figure 1. The ASI Pyramid
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3. Introduction to Neural Networks'

At this point, it is beneficial to briefly discuss neural networks.

Edwin Miller, manager of the Knowledge Based Systems

department at Air Products, describes a neural network

concisely as "consisting of several layers of interconnected

processing elements (crudely analogous to a brain's neurons), as

shown below. Each element in a gIven layer is connected to

every element in adjacent layers, and each connection has a

weight representing the strength of the connection." [5]

(Processing elements are also referred to as nodes or neurons.)

Output Layer

Hidden Layer

Input Layer

Figure 2. A 3-Layer Feedforward Neural Network. Nodes are

circles; connections are lines; weights are "w".

"Trai~ing" refers to the process of repeatedly presenting the

network with input/output examples to be modeled until the

network can produce the desired output within a given

tolerance. How to conduct training is one of the most important

issues. Although there are many different neural network

6



paradigms (Kohonen, Hopfield, BAM, ART, to name only a few),

we will only discuss backpropagation. In this paradigm, the

weighted sum of the inputs to the input layer is calculated and

passed on to the hidden layer(s). There a transfer function is

applied to the sum, and that result is passed to the next layer.

Among the transfer functions frequently used are sigmoid,

hyperbolic tangent, and linear. From the output layer, we get

the results of the network. These results are compared against

our desired results and the error is "propagated" back through

the network in the form of weight updates on the connections~~

In order to facilitate convergence of the training process, a

trainable "bias" may be added to each neuron. To use this

feature, a connection is made between each neuron and the bias

node. The weights on the new connections will change due to

training, but the output of the bias node is always +1. [6]

Rumelhart, Hinton, and Williams [7] discuss momentum, a

method to improve training time while enhancing the stability

of the training process. A term that is proportional to the last

weight update is added to the equation for the weight

adjustments. This causes the network to follow the bottom of

the error surface instead of crossing from side to side. [6]

Once training is completed, the network is asked to generalize to

inputs not previously. presented. On generalization, Wasserman

7



[6] states "Once trained, a network's response can be, to a

degree, insensitive to minor variations in its input. This ability

to see through noise and distortion to the pattern that lies

within is vital to pattern recognition in a real-world

environment. Overcoming the literalmindedness of the

conventional computer, it produces a system that can deal with

the imperfect world in which we live."

4. Networks to Forecast Demand for Each Customer

We began by attempting to create a neural network which

would create forecasts for the individual customers. As we

want to make a valid comparison with ASI, the network had

only 36 input nodes (each of which represented one month of

historical demand). Since we are only interested in the two step

ahead forecasts, the output layer consisted of two nodes (each

representing one month of forecasts). The software used was

NeuralWorks Professional II/PLUS [8].

In order to decrease the size of the problem, 1000 customers

were 'randomly selected from the entire customer base. For

each customer, we had only 38 months of historical demand. No

other information about the customers was kept.

8



4.1 Building the First Network

The input patterns consisted of all 38 demands, the first 36

months being the input nodes, and the last two, the desired

output, as given in Figure 3.

Inputs

®®

V
Desired Outputs

Figure 3. Format of the input patterns for customer level

networks.

For all networks created, the method of creating input data files

as outlined by Hecht-Nielsen was followed [1]. It involves

splitting all available data into three files: the training set, test

set, and validation set. The training set is used to train the

network. The test set is used to prevent overtraining. And the

validation set is held out until the very end; then, and only

then, is it used to check· the ability of the network to generalize.

"The ideal criterion is that the· test set be sufficiently
"'\

comprehensive so that if the network performs well on it then

the ultimate problem will be considered solved. In other words,

the test set is constructed so that it contains essentially every

possible case that will be encountered in the real world." [l p.

115] The validation set may be kept by the customer to

9



facilitate final approval of the network (or an "acceptance set"

may be created for this purpose). Use of these three sets

increases the likelihood that "the final network will be able to

generalize well. All three sets must contain data that represent

the distribution of the data. As we have a large quantity of

data, it was broken down into the sets as follows: 50% for

training, 25% for testing, and 25% for validation2• Therefore, we

randomly selected 500 of the 1000 customers to be contained In

the training set and 250 to be in each of the other two sets.

Then it was verified by visual inspection of the histograms in

Appendix A that all fouf sets (the original 1000 customers,

training, test, and validation) come from roughly the same

distribution.

Selection of the number of hidden units is critical because if

there are too many hidden units there is a high potential for

overtraining to occur. However, there are no set guidelines for

the number of hidden nodes. According to several rules of

-- thumb, we determined that 15 to 20 nodes might be

appropriate.

2 In a presentation at the Expert Systems and Neural Networks in
Trading conference organized by International Business
Communications (South Natick, MA) on January 24, 1991, Tom Schwartz,
of Schwartz Inc., mentioned that another appropriate breakdown might
be 85%, 10% and 5%. The appropriate breakdown depends on the amount
of data av~ilable and the size of the network.
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As we expected the relationships within the data at hand to be

non-linear and fairly complex, we decided to deliberately

exceed that range and oversize the network. We relied on the

test set training method ~o avoid overtraining. We chose 22

hidden nodes. The architecture of this network is given in

Figure 4.

CD Output Layer (forecasts)

Hidden Layer

Input Layer
(Historical Demand)

Figure 4. Architecture of the Neural Network.

This network follows the description gIven by Weigend,

Huberman, and Rumelhart [9] of a d-n-2 network as "denoting:
• The d input units are given the values

Xt-I, Xt-2, ..., Xt-d·
• The n non-linear hidden units are fully

connected to the input units.
• The [non]-linear output unit[s are] fully

connected to the hidden units, producing the
prediction[s] as the weighted sum of the
activations of the hidden units.

• Output and hidden units have adjustable biases.
• The weights can be positive, negative, or zero.
• There are no direct connections from input to

output that skip the hidden layer."
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3 A bias node was included in all networks built. The

momentum coefficient used was.4. The learning rule was the

normalized cumulative delta rule with learning coefficients of .3

and .15. The transfer function used was the hyperbolic tangent:

T = (eI' - e-I') I (eI' + e-I')

where T = value transferred out of the node

l' = weighted sum into the node multiplied by a

parameter from the learning and recall schedule.

Therefore, the data were scaled between -1 and 1. This was

accomplished for each node (input and output) denoted by:

fI, f2, ..., fI, fI+I, ..., fI+D

where I = number of nodes in the input layer and D = number

of nodes in the output layer. The arrays:

mI, m2, ... , mI, mI+I, ..., mI+D

are found such that mk and Mk are the smallest and largest

values, respectively, for node k. NeuralWorks creates a

"MinMax. table" to do the scaling. [8 RF-218] A MinMax. Table

specifies the ranges of the real world input and output data,

denoted, respectively, by

(IJ, RI) and (rn, RD).

Then ,the .linear mappings from the real world to the network

are as follows:

Input:

3 These parameters are de~cribed in detail in the Reference Guide for
NeuralWorks· (page RF-171).

·12



ij = (RI-n) x f; + (M; x 11 - mj x RI)

(Mj - mj)

Desired Output:

dk = (Rn-11» x fk + (Mk x 11> - mk x Rn) .

(Mk - mk)

where f = a real world value (input for i, desired output for d)

i = a scaled value input to the network

d = a desired scaled output value

g = a real world output value

o = a scaled network output

On output, the mapping from network output to real world is:

gk = (Mk - mk) x Ok + (Rn x mk - rn x Mk)

(Rn - rn)

Values that are outside of the ·MinMax Table ranges are linearly

mapped using the same scale and offset values.

The training set was presented to the network once. Then the

weights were frozen and the test set was presented. The

training set was presented again, and so on. This cycle was

completed 100 times. 'l.. For each cycle, the total sum of squared

errors on the test set was calculated (sse = sum «demand1-
\

prediction1)2 + (demand2-prediction2)2)). The 100 errors were

plotted, yielding Figure 5. 4.

·13
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As Hecht-Neilson [1] points out "the test set error
typically decreases for a while, but then begins to
increase again (often it eventually seems to level
out, but not always).

"If we assume that the error curve of the
network tested against the entire iIifinite set of
possible examples would be approximately the
same as that of the training test set curve (which is
often only a crudely correct assumption) then,
clearly, we want to stop training when this curve
reaches its minimum. At this point, the network
can be tested against the validation test set to
verify adequate performance." [1 p. 116]

4.2 Results from the First NetWork

Although the error curve of Figllre 5 does not appear to

increase dramatically, it does flatten out after roughly 37 passes

through the training set. Therefore, the error achieved after 37

passes was compared to the error from ASI. The total sum of

squared error (sse) in ASI was 333,283,063; whereas the total

sse from the network was 549,009,944, a 39% difference. As

the network was not able to beat ASI, the validation set was not

used. The reasoning was as follows: the point at which training

was stopped was when the error curve for the test set flattened

out. It-is improbable that this ·point will be exactly the same for

any other set of input patterns. Therefore, the weights

produced after 37 passes through the training set might not

produce the minimum error for the validation set. ~t is hoped

15



that by using the test set to attempt to safeguard against

overtraining, the network will be able to generalize well, and

will therefore do well on. the validation set, as well. However, it

cannot be expected to do as well on the validation set as it does

on the test set. Since the goal is to provide a forecasting tool

which provides better forecasts than ASI, there was no reason

to present the validation set to a network which did not even

perform better on the test set.

It is interesting to note that the raw ~rror (actual demand ­

predicted demand) ( (Figure 6) flattens out to zero. We would

expect this because the learning process changes the weights to

drive the error toward zero, as illustrated in the figure. ..

In order to determine where the network went awry, some

further exploration of the results was conducted. Figure 7 (a

and b) contains plots of the actual demand versus the demand

predicted by the neural network for each of the two months

being forecasted. Figure 8 (a and b) contains plots of the actual

demand versus the demand predicted by ASI for each of the

two months forecasted. It can be seen from these plots that ASI

is better equipped to handle the few very large customers. This

is so because ASI has the ability to create a distinct model for

each customer, and can therefore recognize the large customers

as such. As we attempted to' create one network for all

customers which only had historical demand as inputs, it was

16
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,/

not able to make that distinction. The sum of squared errors for

the large customers is very big relative to the that for the small

customers; therefore, this distinction is vital.

4.3 Addition of a "Demand Set Node"

To facilitate the recognition of large customers, but without any

further data than the 36 months of input history, a "demand set

node" was added to the input patterns. We believed that this

node would provide relevant information that was contained In

the given 36 months of demand history. The value for this

node was calculated from the 36 months as follows:

L(1:(last 6 months demand) )/ 6000J

For example, the demand set node for a customer whose total

demand for the last six months is 12,421 is 2, which is the

average number of thousands of- units demanded per month.

A new network was built usmg the same training, test, and

validation sets used before, but with the demand set node

added to the input layer. The errors on predicting the test set

were monitored during training after every five cycles as

previously outlined.

The number of training cycles to after which the error from the

test set flattened out can be seen from Figure 9 to be 100.

After 100 training cycles the total sum of squared errors was,
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327,923,352. This is smaller than the error from ASI'for the

test set. Since we had an encouraging result on the test set, the

validation set had to be presented and the error from that set

compared with the error from ASI from that set. The error

from the "network· on the validation set was 964,764,659;

whereas the error from ASI on the validation set was

788,609,362 (an 18% difference). Further examination revealed

that although the histograms for the validation and test sets

looked similar, the validation set contained more customers

with high demand one month and little the next month. This

means that the network was not trained on data containing the

same patterns as the test set.

4.4 A 12 Month Moving Window as Input to the Neural

Network"

Using a movmg window of time may provide more accurate

forecasts than simply using all the historical demand at once.

Therefore, we divided t~e input patterns into moving windows

of 12 months input and two desired months of output demand
I

as illustrated in Figure 10.
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1 2 23 validation

Figure 10. Moving 12 Month Windows of Historical Demand.

Since these patterns represented different periods of time we

could attempt to capture. potential seasonality in the data.

(Examples of seasonality include when May is always a high

demand month or when demand is different in the first quarter

than in the second ever year, and these behavior patterns

repeat over time.) In order to enable the neural network to

determine seasonality, 12 (O,l)~ilOdes were added to the input

layer. Each node represented one month of the year. The value

of node J is 1 if the last month of input data represented actual

demand from month j, and 0 otherwise. For instance, if the

value for the 12th historical demand node in Figure 11

represented the demand for May, then all the "month" nodes

would be 0 except for the 5th one (which would be 1) because

May is the 5th month of the year.
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Input

~tv ... @
~

Months (0,1)

Desired Output

@~

Historical Demands

Figure 11. Input Patterns Consisting of a Moving Window of

Demand and Seasonality.

The resulting training set consisted of 11,500 patterns of 24

nodes each (500 customers * 23 patterns per customer). (The

validation and test sets still had 250 patterns each.)

This network was trained as outlined previously. From the

error versus training cycles graph given in Figure 12 we tried to

choose that point at which the curve flattens out. It is very

important to recognize that there are no rules for picking such a

point; however, the selection has drastic impact on the

performance of the network on the test set. In this case we

might pick either five or ten tr,lining cycles. If we chose to

train for ten cycles through the training set, the error on the

test set would be much larger than if we chose to train for five

cycles. In fact, the results for five cycles are better than for

ASI; whereas for ten cycles, they are worse! These results are

summarized below.
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total sse % different from ASI

10 training cycles: 1,117,316,685 41 % worse

5 training cycles: 632,827,766 19% better

ASI: 788,609,362

Table 1. Comparison of Sum of Squared Errors on the Test Set

for Three Models

These results highlight the necessity of monitoring the network

to avoid overtraining. Due to the extreme sensitivity of this

problem to the amount of training, the analyst in charge of such

a system would have to pick the earliest point at which the

errors start to flatten out in order to obtain reasonable

forecasts.

5. Forecasting Total Demand

Another very important piece of information that ASI utilizes

but the customer level neural network does not is the forecast

for the total demand. (Recall that ASI forecasts the total

demand and then "forces" that forecast to the customers via

ratios.) Therefore, it was believed that the next step should be

to forecast the total demand for the next two months. The input

patterns for the training set were created similarly to the

previous network by taking a moving window of 14 months of
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known historical demands; the first 12 of each 14 corresponded

to the input layer, and the last 2 were the desired outputs.

(Therefore, there were 36 - 14 +1 = 23 patterns in the training

set.) The test set consisted only of the last 12 months of history

and the two months of actual demand to be forecasted. Since

there were so few patterns available (while still utilizing only

36 months of historical demand), a validation set was not used.

5.1 Direct Two-Step Forecasting

As in the customer level networks, the first networks built to

forecast total demand predicted the two months directly.

Networks were built and trained with 2, 3, 4, 5, and 6 hidden

nodes. The results were the best when there were 4 hidden

nodes. The resulting architecture is as in Figure 13.

• • •

Output Layer (forecasts)

Figure 13. Architecture of the Network to Forecast Total

Demand.
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We presented the training patterns to the network 50 times,

and then we presented the test set. This process was iterated

until the training set had been presented 1,250 times. From the

graph of the error on the validation set ~igure 14), it can be

seen that the error was minimized after 1,100 training cycles.

The error curve increases after" 1,100 training cycles and then

decreases again after 1,200 cycles. After investigation, we

determined that 1,100 training cycles does not represent a local

minimum; the error does not decrease below the level at 1,100

cycles.

One can see that if total sum of squared errors is the desired

criteria for judging the forecast~, then ASI provides better

forecasts. If, however, the criteria is absolute error, then the

neural network provides better forecasts. It should be noted

that the network outperforms ASI in the first month forecasted,

and ASI outperforms the network in the second.

The perfonnance of this network after 1100 training cycles as

compared with ASI is summarized in Table 2.
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1st month 2nd month

Network predicted 705,769 773,308

actual 695,219 727,565

absolute error 10,550 45,743

total sse 2,203,724,549

ASI predicted 654,588 711,368

actual 695,219 727,565

absolute error 40,631 16,197

total sse 1,913,220,970

Net - ASI absolute error -30,081 29,546

total sse 290,503,579
'.

ASI 15% better

Table 2. Comparison of Models Forecasting 2-Step Ahead Total

Demand

Because the performance was so close for the two methods, we

could not draw any conclusions as to which is the better model

based' on error statistics only.4 Some understanding of the

purpose for the forecasts would be required to decide which

would be best suited. For example, if the forecasts are needed to

4 It is important to mention that conclusions made in this chapter are
based on only two data points - the two me,nths forecasted. One logical
next step will be to corroborate these findings with more data.
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plan for next month, the network would be the choice; if they

are needed to plan for two months out, ASI might be the choice.

5.2 Iterated Single-Step Forecasting

An alternative to direct multi-step prediction is iterated single­

step prediction. The latter method generally produces more

accurate forecasts [10]. Therefore, we created a neural network

which forecasted one month only. The forecast was then fed

back into the input layer of the network to generate the second

step ahead forecast. The architecture for this network, as

shown in Figure 15, was very similar to the two-step ahead

network created previously. T~e only difference was that there

is one less output node. (Four hidden units were used, as

before.)

Output Layer

Input Layer

Figure 15. Architecture of One-Step Ahead Forecaster.
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We presented the test set to the network after every 100

passes through the training set. The resulting error chart

(Figure 16) has an unusual shape. As can be seen in the chart,

training on this network should be terminated after roughly

300 trainin~cles.

This network completely outperforms ASI, as can be seen from

table 3.

1st month 2nd month

Network predicted 682,308 731,802

actual 695,219 727,565

absolute error 12,911 4,237

total sse 184,646,090

ASI predicted 654,588 711,368

actual 695,219 727,565

absolute error 40,631 16,197

total sse 1,913,220,970

Net - ASI absolute error

total sse

-27,720 -11,960

1,728,574,880

Net 90% better

Table 3. Comparison or" Models Forecasting I-Step Ahead Total

Demand
34
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We generated the eventual forecast function in Figure 17 by

iteratively using the forecast from month i as input to the

network to forecast for month i + 1. (The neural network and

the code to generate the eventual forecast function is given is

given in Appendix B.)

As can be seen in Figure 17, the neural network discovered a

periodic function which follows a sinusoidal function with a

period of two years. This function looks reasonable given the

input data. One possible explaination for the two year period is

that the middle part of the input data cover a period of growth,

but the last part of the data covers the begining of the recent

economic recession. These components are used in many

industries such as the automotive industry which were hit by

the recession; therefore, there was a decrease in demand. The

network was able to interpret the initial low demand, increase,

and then decrease In demand as a two year cycle.

The neural network also determined that the demand alternates

and therefore produced forecasts that alternate each month,

high one month then low the next. This can be explained by

noting that there are a few customers that make up a large

portion of the total demand. These customers tend to place

orders for two months supply at a time; therefore the demand

does, in fact, alternate by month.
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6. Conclusion

Neural networks can generate forecasts of customer demand for

the particular, component of interest which exhibit lower sum of
,

squared errors than those currently being generated at Air

Products. For the customer level, one such network takes a

moving window of 12 historical demands and 12 seasonality

nodes as input. This network would need careful monitoring to

avoid overtraining. Forecasts of total demand would be

generated using iterated single-step forecasting.

Further research on this application may improve upon these

results. There are several other models for the customer level

that can be constructed. Instead of using a "demand set node"

(which proved interesting at best), assigning a customer

number in order of total demand from each customer might

allow the network to differentiate the large customers even

more. Experimentation on the number of hidden nodes should

also yield improved forecasts. Finally, the iterated single-step

method should be attempted.

Although these results are encouraging, a significant amount of

work remains to implement this technology. The one critical

hurdle to be overcome is the large amount of human interaction

necessary to create and maintain a neural network system.
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Someone must watch for overtraining, homogeneity of the sets

of input patterns, appropriate parameters, convergence criteria,

etc. Once the network is built, it must be monitored to

determine when re-training is required. These take a

considerable amount of time. These issues must be suitably

addressed before a neural network forecasting system can be

implemented successfully at Air Products.
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Actual Demand for 1000 Customers

---------------------------------------------------------------------
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-1250 3750 8750 13750 18750 23750 28750 33750 38750

49



Appendix B: The iterated One-step Neural Network
to Forecast Total Demand and the
Eventual Forecast Function

*** SAS code version of the one-step ahead neural ***;
*** network forecaster. This code also generates ***;
*** the 20 year eventual forecast function. (The ***;
*** plot is not generated here.) ***;
*** Created July, 1992 by Harriet L. Lyons. ***;

** 1 is bias, 2-13 are input nodes **;
Data history;

array z(280) zZl-zz280; *** z's = time series;
z(l)= 667689;
z(2)= 726930;
z(3)= 635339;
z(4)= 723151;
z(5)= 707525;
z(6)= 742597;
z(7)= 718580;
z(8)= 727984;
z(9)= 707960;
z(10)= 675755;
z(ll)= 724108;
z(12)= 697460;

data history; set history;
array z(280) zZl-zz280;
array Yin(13) YY1-YY13; ** unsealed inputs;
array Xout(20) xxout1-xxout20; ** all scaled values;

yin (1) = Z (1) ;
yin ( 2 ) = Z ( 2 ) ;
Yin(3)= z(3)
Yin (4) = Z(4) ;
yin (5) = z (5) ;
Yin(6)= z(6) ;
Yin(7)= z(7) ;
Yin (8) = Z(8) ;
Yin(9)= z(9) ;
yin ( 10 ) = Z(10 ) ;
Yin(ll)= Z(ll);
Yin(12)= Z(12);

do I = 1 to 240; *** forecast for 3 years ;
do j=l to 12;

Yin(j) = z(j+i~l);

end;
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** Read and scale input into network *i
** x2 is input 1, x13 is input 12 *i

Xout(2) = Yin(l) * .00000969+-6.9593569i
Xout(3) = Yin(2) * (1.0537741e-005)+(-7.6550049)i
Xout(4) = Yin(3) * (1.0537741e-005)+(-7.6550049)i
Xout(5) = Yin(4) * (1.0537741e-005)+(-7.6550049)i
Xout(6) = Yin(5) * (1.0537741e-005)+(-7.6550049)i
Xout(7) = Yin(6) * (1.0537741e-005)+(-7.6550049)i
Xout(8) = Yin(7) * (1.0537741e-005)+(-7.6550049)i
Xout(9) = Yin(8) * (1.0537741e-005)+(-7.6550049)i
Xout(10) = Yin(9) * (1.0752977e-005)+(-7.8317858)i
Xout(ll) = Yin(10) * (1.0752977e-005)+(-7.8317858)i
Xout(12) = Yin(ll) * (1.0752977e-005)+(-7.8317858)i
Xout(13) = Yin(12) * (1.0752977e-005)+(-7.8317858)i

** Generating code for PE 0 in layer 3 *i
Xout(14) = (-0.065512054)+(-0.65304154) * xout(2)+

(-0.28332129) * Xout(3)+(-0.22807129) * Xout(4)+
(0.43668315) * Xout(5)+(-0.43300751) * Xout(6)+
(0.034910686) * Xout(7)+(0.0474988) * Xout(8)+
(0.0059591993) * Xout(9)+(0.35130057) * Xout(10)+
(0.12700793) * Xout(11)+(0.87453079) * Xout(12)+
(0.33095482) * Xout(13)i

, "

Xout(14) = tanh( Xout(14) )i

** Generating code for PE 1 in layer 3 *i
Xout(15) = (0.072443113)+(0.062924318) * Xout(2)+

(-0.023038119) * Xout(3)+(-0.20059879) * xout(4)+
(-0.38352284) * Xout(5)+(0.22233321) * Xout(6)+
(0.031286795) * Xout(7)+(-0.2147585) * Xout(8)+
(-0.079028048) * Xout(9)+(0.18169956) ~ Xout(10)+
(-0.32272851) * Xout(11)+(-0.040567964) * Xout(12)+
(-0.13757579) * Xout(13)i

Xout(15) = tanh( Xout(15) )i

** Generating code for PE 2 in layer 3 *i
Xout(16) = (0.51086879)+(-0.14268588) * Xout(2)+

(0.24350415) * Xout(3)+(-0.1280665) * Xout(4)+
(-0.28067172) * Xout(5)+(0.48116192) * Xout(6)+
(-0.45402175) * Xout(7)+(0.50139827) * Xout(8)+
(0.27197465) * Xout(9)+(0.073758774) * Xout(10)+
(0.60602796) * Xout(11)+(-1.0222355) * Xout(12)+
(-0~34886909) * Xout(13)i

Xout(16) = tanh( Xout(16) ) i _ --
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** Generating code for PE 3 in layer 3 *;
Xout(17) = (-0.56164324)+(-0.76799136) * Xout(2)+

(0.91546154) * Xout(3)+(-0.3789292) * Xout(4)+
(1.0022947) * Xout(5)+(-0.14396407) * Xout(6)+
(0.21785158) * Xout(7)+(-0.82619166) * Xout(8)+
(0.017511081) * Xout(9)+(0.0852044) * Xout(10)+
(0.35464713) * Xout(11)+(1.1420908) * Xout(12)+
(-0.048709556) * Xout(13);

Xout(17) = tanh( Xout(17) );

** Generating code for PE 0 in layer 4 *;
Xo~t(18) = (-0.15891412)+(0.53716618) * Xout(14)+

(-0.38866025) * Xout(15)+(-0.6971423) * Xout(16)+
(-1.0497816) * Xout(17);

Xout(18) = tanh( Xout(18) );

** De-scale and write output from network *;

Yout = ((821334-635339)*Xout(18)+
(.8*635339+.8*821334))/1.6;

z(i+12) = Yout;
output;

end;

** now the z's contain the entire time
** series (actual and forecast).

run;
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