View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Lehigh University: Lehigh Preserve

Lehigh University
Lehigh Preserve

Theses and Dissertations

1992

Neural networks and exponential smoothing L2
comparison via application

Harriet L. Lyons
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

Recommended Citation

Lyons, Harriet L., "Neural networks and exponential smoothing : a comparison via application" (1992). Theses and Dissertations. Paper
113.

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an

authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

https://core.ac.uk/display/228647676?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/113?utm_source=preserve.lehigh.edu%2Fetd%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

AUTHOR:
Lyons, Harriet L.

TITLE:
Neural Networks and
Exponential Smoothing:
A Comparison Via
Application

DATE: October 11, 1992

Ncural Networks and Exponential Smoothing:
A Comparison Via Application

by

Harriet L. Lyons

A Thesis
Presented to the Graduate Committee
of Lehigh University
in Candidacy for the Degree of
Master of Science
in

Industrial Engineering

This thesls Is accepted and approved in partial fulfiliment of

the requirements for the Master of Sclence.

5 /5 /95

Date

Professor Laura Burke
Thesis Advisor

'Professor Bob Storer
Co-Advisor

Chairman of Department

Acknowledgments

1 would like toexpress my sincere gratitude to my advisor,
Professor Laura Burke. for her advice. encouragement and
guldance.] would also like to thank my co-advisor. Professor
Bob Storer. for his suggestions. criticism, and comments. It was
her insight into neural networks and his knowledge of statistics
together that gave direction to my work. Both were very
generous with their time. and we worked well together as a
team. | look forward to any future involvement with both of

them.

Special thanks to my husband, parents and brother for all their

support, both emotional and motivational.

Table of Contents

RSN

Introduction

Background on the Existing System
Introduction to Neural Networks
Networks to Forecast Demand for Each Customer
4.1 Building The First Network

4.2 Results from the First Network

4.3 Addition of a "Demand Set Node”

4.4 A 12 Month Moving Window as Input
Forecasting Total Demand

5.1 Direct Two-Step Forecasting

5.2 Iterated Single-Step Forecasting

Conclusion

O 00 O D W

15
22
24
28
29
33
38

List of Figures

ABSTRACT 1
1. The ASI Pyramid b)
2. A 3-Layer Feedforward Neural Network 6
3. Formét of the Input Patterns for Customer Level 9
Networks
4. Architecture of the Neural Network 11
5. Test Set Error vs. Training Cycles 14
6. Raw Error vs. Training Cycles 17
7. Actual Demand versus Neural Network Predictions 18
8. Actual Demand versus ASI Predictions 20
9. Error versus Training Cycles with Demand Set Node 23
10. Moving 12 Month Windows of Historical Demand. 25
11. Input Patterns Consisting of a Moving Window of 26
Demand and Seasonality.
12. Error versus Training Cycles with Moving Window 27

and Seasonality
13. Architecture of the Network to Forecast Total Demand. 29
14. Test Set Error versus Training Cycles for Total Demand 30
Network
15. Architecture of One-Step Ahead Forecaster. 33
16. Error vs. Training Cycles for the Single Step Prediction 35
of Total Demand
17. Eventual Forecast Function for Single Step Network with 37

4 Hidden Nodes after 300 Training Cycles.
VITA ' 53
Y

List of Tables

1. Comparison of Sum of Squared Errors on the Test Set 28
for Three Models

2. Comparison of Models Forecasting 2-Step Ahead Total 32
Demand

3. Comparison of Models Forecasting 1-Step Ahead Total 34

Demand

vi

Abstract

Neural network technology is receiving increasingly more
attention, and is being applied to a growing diversity of
problems. This paper will focus on the application of
backpropagation to forecasting customer demands for a
component produced by Air Products and Chemi'c,:;ls, Inc. One
network will be created to predict demand for each customer;
then a second network will be created which will predict the
total demand for the component. The networks will be
compared to an existing system which uses exponential

smoothing. Issues involving overtraining will be discussed.

Neural Network: "is a parallel, distributed information
processing structure consisting of processing elements (which
can possess a local memory and can carry out localized
information processing operations) interconnected via
unidirectional signal channels called connections. Each
processing element has a single output connection that branches
("fans out") into as many collateral connections as desired: each
carries the same signal - the processing element output signal.
The processing element output signal can be of any
mathematical type desired. ‘The information processing that
goes on within each processing element can be defined
arbitrarily with the restriction that it must be completely local;
that is, it must depend only on the current values of the input
signals arriving at the processiné element via impinging
connections and on values stored in the processing element's

local memory.” [1 p.2]

“Forecast: to calculate or predict (some future event or
condition) usually as a result of rational study and analysis of
available pertinent data...”

Webster’'s New Collegiate Dictionary [2]

1. Introduction

Neural networks are an fairly new mathematical methodology
wfﬁ\ch/maps a set of inputs to a set of desired outputs. The
motivational analogy of neural networks is to mimic the
structure of the brain. They are being developed into useful
tools, and new applications continue to be discovered. One area
of study in which neural networks may play a significant role is

that of forecasting.

Box and Jenkins summarize the uses of forecasting: “the use at
time ¢t of available observations from a time series to forecast
its value at some future time ¢ +/ can provide a basis for (a)
economic and business planning, (b) production planning, (c)
inventory and production controal, (d) control and optimization

of industrial processes.” [3]

A wide variety of forecasting tools are being used at Air
Products and Chemicals, Inc.] However, neural networks are

just being explored.

To solve one of it's business problems, Air Products requires

two month forecasts of customer demand for a certain

1 Air Products and Chemicals, Inc. is a Fortune 200 Company which
supplies industrial gases and chemicals, process equipment, specialty
gases and chemicals, and a wide variety of services to customers world-
wide.

3

component. Currently, Air Products is using a software package
that utilizes Winters' Exponential Smoothing to generate the
forecasts. The software picks the best parameters for each
customer, and periodically reviews the model to make sure it is
still appropriate. We are always looking for better forecasts,
and we believed that neural network technology might be able

to improve upon the current system.

2. Background on the Existing System

The existing system was purchased from American Software
Institute, and is simply called ASI [4]. It takes 36 months of
historical demand for each customer, and returns forecasts for
18 months into the future. Although ASI generates 18 months
of forecasts, for the business problem necessitating the
forecasts, we are only interested in the first two of these. When
a new customer is entered into the system, ASI picks the best
parameters out of a given set. These parameters include
smoothing constants for seasonality and trend and permanent
components, to name only a few. These parameters are kept for
each customer. Every few months, these parameters are
checked for continued suitability. There are roughly 20
parameters per customer used by the software to generate

forecasts.

ASI works with a pyramid structure as shown in Figure 1. ASI
first creates forecasts for each customer; then it totals the
historical demand for each region and creates forecasts for each
region. Then it totals the historical demand for all the
customers and creates a forecast for the total demand. Since a
better forecast can usually be generated for the total demand
(which is smoother and more well behaved), ASI "forces" the
high level forecasts "down" to the lower levels (i.e. region and
then customer). This is done by multiplying the lower
forecasts by the total upper level forecast and dividing by the
sum of all the lower level forecasts. For example, the forced
forecasts for a customer with 50 units forecasted at the
customer level, where the customer level forecasts for each
customer in the entire region total to 2000 units, and the

regional forecast is 2500, becomes (50 * 2500) / 2000 = 62.5.

ﬁ\
/ Regional \

Individual Customers

Figure 1. The ASI Pyramid

3. Introduction to Neural Networks*

At this point, it is beneficial to briefly discuss neural networks.
Edwin Miller, manager of the Knowledge Based Systems
department at Air Products, describes a neural network
concisely as "consisting of several layers of interconnected
processing elements (crudely analogous to a brain's neurons), as
shown below. Each element in a given layer is connected to
every element in adjacent layers, and each connection has a
weight representing the strength of the connection.” [5]

(Processing elements are also referred to as nodes or neurons.)

O oo Output Layer

Hidden Layer

——
O e O Input Layer

Figure 2. A 3-Layer Feedforward Neural Network. - Nodes are

circles; connections are lines; weights are "w".

"Training" refers to the process of repeatedly presenting the
network with input/output examples .to be modeled until the
network can produce the desired output within a given
tolerance. How to conduct training is one of the most important

issues. Although there are many different neural network

paradigms (Kohonen, Hopfield, BAM, ART, to name only a few),
we will only discuss backpropagation. In this paradigm, the
weighted sum of the inputs to the input layer is calculated and
passed on to the hidden layer(s). There a transfer function is
applied to the sum, and that result is passed to the next layer.
Among the transfer functions frequently used are sigmoid,
hyperbolic tangent, and linear. From the output layer, we get
the results of the network. These results are compared against
our desired results and the error is "propagated" back through

the network in the form of weight updates on the connections,

In order to facilitate convergence of the training process, a
trainable "bias" may be added to each neuron. To use this
feature, a connection is made between each neuron and the bias
node. The weights on the new éonnections will change due to

training, but the output of the bias node is always +1. [6]

Rumelhart, Hinton, and Williams [7] discuss momentum, a
method to improve training time while enhancing the stability
of the training process. A term that is proportional to the last
weight update is added to the equation for the weight
adjustments. This causes the network to follow the bottom of

the error surface instead of crossing from side to side. [6]

Once training is completed, the network is asked to generalize to

inputs not previously presented. On generalization, Wasserman

7

[6] states "Once trained, a network's response can be, to a
degree, insensitive to minor variations in its input. This ability
to see through noise and distortion to the pattern that lies
within is vital to pattern recognition in a real-world
environment. Overcoming the literalmindedness of the
conventional computer, it produces a system that can deal with

the imperfect world in which we live."

4. Networks to Forecast Demand for Each Customer

We began by attempting to create a neural network which
would create forecasts for the individual customers. As we
want to make a valid comparison with ASI, the network had
only 36 input nodes (each of which represented one month of
historical demand). Since we are only interested in the two step
ahead forecasts, the output layer consisted of two nodes (each
representing one month of forecasts). ‘The software used was

NeuralWorks Professional II/PLUS [8].

In order to decrease the size of the problem, 1000 customers
were randomly selected from the entire customer base. For
each customer, we had only 38 months of historical demand. No

other information about the customers was kept.

4.1 Building the First Network

The input patterns consisted of all 38 demands, the first 36
months being the input nodes, and the last two, the desired

output, as given in Figure 3.

0O -+ & O

Inputs Desired Outputs

Figure 3. Format of the input patterns for customer level

networks.

For all networks created, the method of creating input data files
as outlined by Hecht-Nielsen was followed [1]. It involves
splitting ail available data into three files: the training set, test
set, and validation set. The training set is used to train the
network. The test set is used to prevent overtraining. And the
validation set is held out until the very end; then, and only
then, is it used to check the ability of the network to generalize.
"The ideal criterion is that the test set be sufficiently
compr‘ehensive so that if the netwo?k performs well on it then
the ultimate problem will be considered solved. In other words,
the test set is constructed so that it contains essentially every

possible case that will be encountered in the real world." [1 p.

115] The validation set may be kept by the customer to
. 9 _

facilitate final approval of the network (or an "acceptance set"
may be created for this purpose). Use of these three sets
increases the likelihood that the final network will be able to
generalize well. All three sets must contain data that represent
the distribution of the data. As we have a large quantity of
data, it was broken down into the sets as follows: 50% for
“training, 25% for testing, and 25% for validation2. Therefore, we
randomly selected 500 of the 1000 customers to be contained in
the training set and 250 to be in each of the other two sets.
Then it was verified by visual inspection of the histograms in
Appendix A that all four sets (the original 1000 customers,
training, test, and validation) come from roughly the same

distribution.

Selection of the number of hiddén units is critical because if
there are too many hidden units there is a high potential for
overtraining to occur. Iibwever, there are no set guidelines for
the number of hidden nodes. According to several rules of
thumb, we determined that 15 to 20 nodes might be

appropriate.

2 In a presentation at the Expert Systems and Neural Networks in
Trading conference organized by International Business
Communications (South Natick, MA) on January 24, 1991, Tom Schwartz,
of Schwartz Inc., mentioned that another appropriate breakdown might
- be 85%, 10% and 5%. The appropriate breakdown depends on the amount
of data available and the size of the network.

10

As we expected the relationships within the data at hand to be
non-linear and fairly complex, we decided to deliberately
exceed that range and oversize the network. We relied on the
test set training method to avoid overtraining. We chose 22
hidden nodes. The architecture of this network is given in

Figure 4.

@ @ Output Layer (forecasts)

D

@ oo Hidden Layer
.. Input Layer
@ : (Historical Demand)

Figure 4. Architecture of the Neural Network.

This network follows the description given by Weigend,

Huberman, and Rumelhart [9] of a d-n-2 network as "denoting:

« The d input units are given the values
Xt-1, Xt-2, ..., Xt-d.

e« The n non-linear hidden units are fully
connected to the input units.

o The [non]-linear output unit[s are] fully
connected to the hidden units, producing the
prediction[s] as the weighted sum of the
activations of the hidden units.

e Output and hidden units have adjustable biases.

» The weights can be positive, negative, or zero.

+ There are no direct connections from input to
output that skip the hidden layer."

11

3 A bias node was included in all networks built. The
momentum coefficient used was .4. The learning rule was the
normalized cumulative delta rule with learning coefficients of .3
and .15. The transfer funétion used was the hyperbolic tangent:
T= (el' - e1) / (el + &) '
where T = value transferred out of the node
I' = weighted sum into the node multiplied by a

parameter from the learning and recall schedule.

Therefore, the data were scaled between -1 and 1. This was
accomplished for each node (input and output) denoted by:

f1, f2, ..., f1, fi+1, ..., fI4D
where I = number of nodes in the input layer and D = number
of nodes in the output layer. The arrays:

mi, my, ..., My, Mi+1, ..., MI+D

Mi, My, ..., M1, Mi41, ..., M1+D
are found such that mx and My are the smallest and largest
values, respectively, for node k. NeuralWorks creates a
“MinMax table” to do the scaling. [8 RF-218] A MinMax Table
specifies the ranges of the real world input and oiltput data,
denoted, respectively, by

(11, Rp) and (rp, Rp).

Then ‘the ‘linear fnappings from the real world to the network
are as follows:. | |

Input:

3 These parameters are described in detail in the Reference Guide for
NeuralWorks " (page RF-171).

12

ij= (Rrmx fiy Mjx - mjx Ry)
™ - m)

Desired Output:

dx = (Rp-mp) x fik+ (Mkx 1D - mkx Rp) .

(Mg - mg)
where f= a real world value (input for i, desired output for d)

i= a scaled value input to the network
d = a desired scaled output value
g = a real world output value

o= a scaled network output

On output, the mapping from network output to real world is:
gk = (My-my) x ok + (RpX mg - 1p X M)
Rp -m)

Values that are outside of the MinMax Table ranges are linearly

mapped using the same écale and offset values.

The training set was presented to the network once. Then the
weights were frozen and the test set was presented. The
training set was presented again, and so on. This cycle was
completed 100 times. ~ For each cycle, the total sum of squared
errors onvthe test set was calculated (sse = sum ((demandl-
predi;:tionl)2 + (demandZ-prediction2)2)). The 100 errors were

A

plotted, yielding Figure 5.

13

jog Surutey], 9y ySnoLy [, $9ssed

U S e A R PR A 4
¥ ¥ o
. N ;
+ + +F 4+
+ C +
+

4=

-

.

-00+300°0

-60t300°1

- 60+300°¢

- 60+300°¢

-60+300° %}

-60+300°S

F 60430079

14

As Hecht-Neilson [1] points out "the test set error
typically decreases for a while, but then begins to
increase again (often it eventually seems to level
out, but not always).

"If we assume that the error curve of the
network tested against the entire infinite set of
possible examples would be approximately the
same as that of the training test set curve (which is
often only a crudely correct assumption) then,
clearly, we want to stop training when this curve
reaches its minimum. At this point, the network
can be tested against the validation test set to
verify adequate performance.” [1 p. 116]

4.2 Results from the First Network

Although the error curve of Figpre 5 does not appear to
increase dramatically, it does flatten out after roughly 37 passes
through the training set. Therefore, the error achieved after 37
passes was compared to the error from ASI. The total sum of
squared error (sse) in ASI was 333,283,063; whér_eas the total
sse from the network was 549,009,944, a 39% difference. As
the network was not able to beat ASI, the validation set was not
used. The reasoning was as follows: the point at which training
was stopped was when the error curve for the test set flattened
out. It_is improbable that this point will be exactly the same for
any other set of input patterns. Thereforé, the weights
produced after 37 passes through the training set might not
produce the minimum error for the validation set. It is hoped

15

that by using the test set to attempt to safeguard against
overtraining, the network will be able to 'generalize well, and
will therefore do well on the validation set, as well. However, it
cannot be expected to do as well on the validation set as it does
on the test set. Since the goal is to provi&e a forecasting tool
which provides better forecasts than ASI, there was no reason
to present the validation set to a network which did not even

perform better on the test set.

It is interesting to note that the raw error (actual demand -
predicted demand) ((Figure 6) flattens out to zero. We would
expect this because the learning process changes the weights to

drive the error toward zero, as illustrated in the figure. -

In order to determine w.herc thé network went awry, some
further exploration of the resulis was .conducted. Figure 7 (a
and b) contains plots of the actual demand versus the demand
predicted by the neural network for each of the two months
being forecasted. Figure 8 (a and b) contains plots' of the actual
demand versus the demand predicted by ASI for each of the
two months forecasted. It can be seen from these plots that ASI
is better equipped to handle the few very large customers. This
is so because ASI has the ability to create a distinct model for
each customer, and can therefore recogniie the large customers
as such. As we attempted to create one network for all

customers which only had historical demand as inputs, it was

16

19§ Suturel], oy YSnoiyJ, ssssed

001 06 08 0L 09 06 04 0¢ 0? 01 0
I VNV NUT SRR YN N VI JU0C YUK WU UUNE TOUY TR SUUK YOU: NUUE SURT YOUL SO YOO ST VU WA SARE VIORD AUE O TR NG T FUE SOURT AU Y SN VNN YOUR TR WA WU DU JVUN VORI VO WU IOV WURT SUOY YOUS T |
-000000C -
* -0000001 -
\T
\ +
)
.) 0
. + -
+ 4 + + + o + o+ + !
+ + . ¥ + + . f-
++ Tt ey T g bt bty ++++ gt +++ ++ &+ P F s 4+ - 0 :
+) + 4 + + ¥ +]
.y oy
s + +
-+ »
+ * + v
4 Y
vt
0000001
-—.
+
o+
] - 0000002

SOTIAD ‘wﬁﬁ.m.ﬂk ‘A J0JIg MBY 9 9In31g

17

peyoIpald

’

SUONIIPRI] SIOMIDN TeINaN STSIoA Puews([endy e/ 91ndig

-00001 o

- 00007

L 0000¢

18

PaAadpald

0000¢ : 00007 00001

q/ @unbL4

-00001 !

-0000¢

- 0Qoo0¢

19

paRIpaIg

,

SUONIIPRIJ [SY SNSIDA PUBWS(] renidy eg 2andig

- 00001

-0000¢

L ooo0¢
1Y

20

peIIpald

gooot
L1

qg a4nbLg

-00001

-0000¢

F0000¢
13V

21

not able to make that distinction. The sum of squared errors for
the large customers is very big relative to the that for the small

customers; therefore, this distinction is vital.
4.3 Addition of a “Demand Set Node”

To facilitate the recognition of large customers, but without any

further data than the 36 months of input history, a "demand set
| node" was added to the input patterns. We believed that this
node would provide relevant information that was contained in
the given 36 months of demand history. The value for this
node was calculated from the 36 months as follows:

L (Z(last 6 months demand))/ 6000]

For example, the demand set node for a customer whose total
demand for the last six months is 12,421 is 2, which is the

average number of thousands of- units demanded per month.

A new network was built using the same training, test, and
validation sets used before, but with the demand set node
added to the input layer. The errors on predicting the test set
were monitofed during training after every five cycles as

previously outlined.

The number of training cycles to after which the error from the
test set flattened out can be seen from Figure 9 to be 100.

After 100 trainin'g cycles the total sum of squared errors was,

22

198 Sunne1], owp ySnolyy, sesseq

0L 09 0s ot 0¢ 0¢

A . . [1 . 1 s l 2 ul
i - -80+300°¢

+ L g0+300 "+

-80+300°6

B0+300°9

80+300°¢

v

30+300°8

80+300°6

60+300°

60+301° 1

60+307 "}

60+30¢° 14

-60+30%° 1

[V NN
23

VoD O~ wD

327,923,352. This is smaller than the error from ASI for the
test set. Since we had an encouraging result on the test set, the
validation set had to be presented and the error from that set
compared with the error from ASI from that set. The error
from the network on the validation set was 964,764,659;
whereas the error from ASI on the validation set was
788,609,362 (an 18% difference). Further examination revealed
that although the histograms for the validation and test sets
looked similar, the validation set contained more customers
with high demand one month and little the next month. This
means that the network was not trained on data containing the

same patterns as the test set.

44 A 12 Month Moving Window as Input to the Neural

Network -

- Using a moving window of time may provide more accurate
forecasts than simply using all the historical demand at once.
Therefore, we divided the input patterns into moving windows
of 12 months input and two desired months of output demand

as illustrated in Figure 10.

24

1 2 ' 23 validation

Figure 10. Moving 12 Month Windows of Historical Demand.

Since these patterns represented different periods of time we
could attempt to capture potential seasonality in the data.
(Examples of seasonality include when May is always a high
demand month or when demand is different in the first quarter
than in the second ever year, and these behavior patterns
repeat over time.) In order to enable the neural network to
determine seasonality, 12 (0,1)-nodes were added to the input
layer. Each node represented one month of the year. The value
of node j is 1 if the last month of input data represented actual
demand from month j, and 0 otherwise. For instance, if the
value for the 12th historical demand node in Figure 11
represented the demand for May, then all the “month” nodes
would be O except for the 5th one (which would be 1) because

May is the 5th month of the year.

25

Input ‘ Desired Output

0 0Q- 008

Months (0,1) Historical Demands

Figure 11. Input Patterns Consisting of a Moving Window of

Demand and Seasonality.

The resulting training set consisted of 11,500 patterns of 24
nodes each (500 customers * 23 patterns per customer). (The

validation and test sets still had 250 patterns each.)

This network was trained as outlined previously. From the
error versus training cycles graﬁh given in Figure 12 we tried to
choose that point at which the curve flattens out. It is very
important to recognize that there are no rules for picking_ such a
point; however, the selection has drastic impact on the
performance of the network on the test set. In this case we
might ‘pick either five or ten training cycles. If we chose to
train for ten cycles through the training set, the error on the
test set would be much larger than if we chose to train for five
cycles. In fact, the results for five cycles are better than for
ASI; whereas for ten cycles, they are worse! These results are

summarized below.

26

sojoAg Bujujeal
0g 114 0¢ gl 0}]

Ajjeuoseag pue
Mopuipy Bulroy Yyim sajohn Buiuieal snstaa dosig ‘gL aanbidg

A

00000000
000'000°'00%
000°000°00§
000'000'009
00000000
000000008
000000°006
000°000°000°
000°000°00}" ¢
000'000°002'

salenbg jo wng

27

total sse % different from ASI

10 training cycles: |1,117,316,685 41 % worse

5 training cycles: 632,827,766 19% better

ASI: 788,609,362

Table 1. Comparison of Sum of Squared Errors on the Test Set

for Three Models

These results highlight the necessity of monitoring the network
to avoid overtraining. Due to the extreme sensitivity of this
problem to the amount of training, the analyst in charge of such
a system would have to pick the earliest point at which the
errors start to flatten out in order to obtain reasonable

forecasts.

5. Forecasting Total Demand

Another very important piece of information that ASI utilizes
but the customer level neural network does not is the forecast

" for the total demand. (Recall that ASI forecasts the total
demand and then "forces" that forecast to the cﬁstomers via
‘ratios.) Therefore, it was believed that the next step should be
to forecast the total demand for the next two months. The input
patterns for the training set were created similarly to the

previous network by taking a moving window of 14 months of
28

known historical demands; the first 12 of each 14 corresponded
to the input layer, and the last 2 were the desired outputs.
(Therefore, there were 36 - 14 +1 = 23 patterns in the training
set.) The test set consisted only of the last 12 months of history
and the two months of actual demand to be forecasted. Since
there were so few patterns available (while still utilizing only

36 months of historical demand), a validation set was not used.

5.1 Direct Two-Step Forecasting

As in the customer level networks, the first networks built to
forecast total demand predicted the two months directly.

Networks were built and trained with 2, 3, 4, 5, and 6 hidden
nodes. The results were the best when there were 4 hidden

nodes. The resulting architecture is as in Figure 13.

@ @ Output Layer (forecasts)

PRI

@ @ @ Hidden Layer

=

@ . e e Input Layer
(Historical Demand)

Figure 13. Architecture of the Network to Forecast Total

Demand.

29

sajohp Bujujeay
062} 002+ 0G1L 00LE 0SOL 000 0OS6 006 0S8 008 0SZ 00Z 0S9 009 0SS 00§ OG¥ OO0F

e — —t 000000'002'2

- 000'000'00€2
L 000'000'00%'2
L 000'000'005'Z
T 000000008

-+ 000°000°00L°2

000'000°008'¢

’

JJomlaN purwiad [BI0], JOJ SB[OAD SUIURI] SNSIAA JOJIY 19S 1S3, ¥ 2408}

10113 pasenbs jo wng jeiol

30

We presented the training patterns to the network 50 times,
and then 'we presénted the test set. This process was iterated
until the training set had been presented 1,250 times. From the
graph of the error on the validation set (Figure 14), it can be

seen that the error was minimized after 1,100 training cycles.

The error curve increases after 1,100 training cycles and then
decreases again after 1,200 cycles. After investigation, we
determined that 1,100 training cycles does not represent a local
minimum; the error does not decrease below the level at 1,100

cycles.

One can see that if total sum of squafed errors is the desired
criteria for judging the forecasts, then ASI provides better
forecasts. If, however, the criteria is absolute error, then the
neural network provides better forecasts. It should be noted
that the network outperforms ASI in the first month forecasted,

and ASI outperforms the network in the second.

The performance of this network after 1100 training cycles as

compared with ASI is summarized in Table 2.

31

15t month 2nd month

Network predicted 705,769 773,308
 actual 695,219 727,565

absolute error 10,550 45,743

total sse | | 2,203,724,549

ASI predicted 654,588 711,368
actual 695,219 727,565

absolute error 40,631 16,197

_total sse _ 1,913,220,970

Net - ASI absolute error -30,081 29,546
total sse 290,503,579

ASI 15% better

Table 2. Comparison of Models Forecasting 2-Step Ahead Total

Demand

Because the performance was so close for the two methods, we
could not draw any conclusions as to which is the better model
bésed‘ on error statistics only.4. Some understanding of the
purpose for the forecasts would be required to decide which

would be best suited. For éxamplc, if the forecasts are needed to

4 It is important to mention that conclusions made in this chapter are
based on only two data points - the two ménths forecasted. One logical
next step will be to corroborate these findings with more data.

32

plan for next month, the network would be the choice; if they

are needed to plan for two months out, ASI might be the choice.

5.2 Iterated Single-Step Forecasting

An alternative to direct multi-step prediction is iterated single-
step prediction. The latter method generally produces moré
accurate forecasts [10]. Therefore, we created a neural network
which forecasted one month only. The forecast was then fed
back into the input layer of the network to generate the second
step ahead forecast. The architecture for this network, as
shown in Figure 15, was very similar to the two-step ahead
network created previously. The only difference was that there

is one less output node. (Four hidden units were used, as

before.)

@ ~ OQutput Layer

N~
1

@ @ @ @ Hidden Layer

=N

@ cee @ Input Layer

Figure 15. Architecture of One-Step Ahead Forecaster.

33

We presented the test set to the network after every 100
passes through the training set. The resulting error chart
(Figure 16) has an unusual shape. As can be seen in the chart,

training on this network should be terminated after roughly

300 trainin ches.

This network completely outperforms ASI, as can be seen from

table 3.

15‘t month 20d month

Network predicted 682,308 731,802
actual 695,219 727,565

absolute error 12,911 4,237

_total sse _ ____184,646,090]

ASI predicted 654,588 711,368
actual 695,219 727,565

absolute error 40,631 16,197

total sse 1,913,220,970

Net - ASI absolute error -27,720 -11,960
total sse 1,728,574,880

Net 90% better

Table 3. Comparison of Models Forecasting 1-Step Ahead Total

Demand
34

005} 00¥} 00EL 002} 0OLL 000 006 008 00L 009 00§ 00¥ 00E 002 00+ O

3 | | | i | | [l { }] |]] {
! 1 . 1 1 1 L L 1 1 1) 1 L T i o

1
1

000000'002

000'000'00%

1
]

000°000'009

1
}

000'000'008

000'000'000"+

i
1

000'000'002"}

—
]

PUBWIR(] TEI0L JO uondIpard dais ofdurs ayy 10j SOIOAD w&gwﬁh SA JOLIJ QT 2In8i]

35

We generated the eventual forecast function in Figure 17 by
iteratively using the forecast from month i as input to the

network to forecast for month i + 1. (The neural network and
the code to generate the eventual forecast function is given is

given in Appendix B.)

As can be seen in Figure 17, the neural network discovered a
periodic function which follows a sinusoidal function with a
period of two years. This function looks reasonable given the
input data. One possible explaination for the two year period is
that the middle part of the input data cover a period of growth,
but the last part of the data covers the begining of the recent
economic recession. These components are used in many
industries such as the automotive industry which were hit by
the recession; therefore, there was a decrease in demand. The
network was able to interpret the initial low demand, increase,

and then decrease in demand as a two year cycle.

The neural network also determined that the demand alternates

and therefore produced forecasts that alternate each month,
high one month then low the next. This can be explained by
noting that there are a few customers that make up a large
portion of the total demand. These customers tend to place
orders for two months supply at a time; therefore the demand

does, in fact, alternate by month.

36

oyg 022 002 08k 091 OFIL 02} oot 08 09 oy 02 0

" } — } } } — f } } " } 000'009
N 4
L 3
4 969 O .
& i
' . + Q 1 000059
L g 4
Ld . ¢ | ﬂ
» 1o *
IE te <t qs 4 L 000002
p 1§ *
e * .
{ 4+ 000'06L
h 4 .
4
* rv
L 4 5
* I
¢ : 4+ 000°'008
s s o e CH MR 1 i * N K
% Lt * . . . ¢ M , .
1 000'0ss

*$9]9AQ Bujulell 00€ Joye SOPON USPPIH ¥ HUM
yiomiaN deis o|bulg o} uonoung 1sed3lod jeniuaal +/1 a4nbid4

puewaq Jelol

37

6. Conclusion

Neural networks can generate forecasts of customer demand for
the particular, component of interest which exhibit lower sum of
squared errors than those currently being’ generated at Air
Products. For the customer level, one such network takes a
moving window of 12 historical demands and 12 seasonality
nodes as input. This network would need careful monitoring to

avoid overtraining. Forecasts of total demand would be

generated using iterated single-step forecasting.

Further research on this application may improve upon these
results. There are several other models for the customer level
that can be constructed. Instead of using a "demand set node"
(which proved interesting at best), assigning a customer
number in order of total demand from each customer might
allow the network to differentiaté the large customers even
more. Experimentation on the number of hidden nodes should
also yield improved forecasts. Finally, the iterated single-step

method should be attempted.

Although these results are encouraging, a significant amount of
work remains to implement this technology. The one critical
hurdle to be overcome is the large amount of human interaction

necessary to create and maintain a neural network system.

38

Someone must watch for overtraining, homogeneity of the sets
of input patterns, appropriate parameters, convergence criteria,
etc. Once the network is built, it must be monitored to
determine when re-training is required. These take a
considerable amount of time. These issues must be suitably
addressed before a neural network forecasting system can be

implemented successfully at Air Products.

39

References

[1] Hecht-Nielsen, Robert. Neurocomputing. HNC, Inc. and
University of California. San Diego: Addison-Wesley Publishing
Company, 1990. p116.

[2] Webster’ New Collegiate Dictionary, Springfield, MA: G. & C.
Merriam Company, 1975.

[3] Box, George E. P. and Jenkins, Gwilym M. Time Series
Analysis: Forecasting and Control. Oakland. California: Holden-
Day, 1976.

[4] American Software, Inc. Product Group & Item Forecasting.
470 East Paces Ferry Road, Atlanta, Georgia, 30305, (404) 261-

4381.

[5] Miller, Edwin. Memorandum on 24 September 1991.

[6] Wasserman, Philip . Neural Computing: Theory and Practice.
New York: Van Nostrand Reinhold, 1989.

[7] Rumelhart, D. E., Hinton, G. E., and Williams, R. J., "Learning

Internal Representation by Error Propagation." Parallel

Distributed Processing. Vol 1. Cambridge, MA: MIT Press, 1986.

40

[8] NeuralWorks Professional II/PLUS, NeuralWare, Inc., Penn
Center West, Building IV, Suite 227, Pittsburgh, PA 15276,
(412) 787-822.

[9] Weigend, Andreas S., Huberman, Bernardo A., and
Rumelhart, David E. "Predicting the Future: A Connectionist

Approach”, International Journal of Neural Systems. Vol 1,
number 3, 1990, pl193.

[10] Farmer, D. and Sidorowich, J., "Exploiting Chaos to Predict
the Future and Reduce Noise", Evolution, Learning, and
Cognition, Edited by W. C. Lee, Singapore: World Scientific
Publisher, 1988, p 277.

41

00527 005L1 00STI 005 004e vogT-

C & C u U C o

L . L . i ; I .) . 1)
-0¢
. -0
. - ..‘ | ncﬁ
| - 08
| - 001

(sdouwroysny 0Ge) umm,pmm& 10j pueuia(g .

(pa3se08404 Yjuow Yoed 404 BUO ~ 335 YO®d U0 USALD ade sweaBoasLy oM])
-e3eQ JO s39§ JO sweubolsiH "y XIAN3ddY

42

0082¢ 00S L1 00524
{ " 1 5 |) L i

Q0

- 09

- 08

- 001

(sdeu109s11) (G2) 188 159 4OF puella(

O ¥ v U & o —

43

0S2L 1 05741 05¢t 0s5¢y 0ses 08¢
{ — 1 1 i N I 2 | N 1

-0t

-0

- 09

08

Ampmﬁ_gm:o 00G) #mm dututed], 10j m_m‘30<

C @ e UV T -

44

05729z 0s521¢ 0styl 05¢1 05249

0821

- 010

-0k

- 09

- 08

-001

Am%@ﬁgmﬁo 00G) 188 dututes], 1oJ s[enioy

C W w v O S

45

oo ®d

100

80

60

40

20

Demand for Validation Set (250 Customers)

3. $ [N N

KR

—2000 2000 6000 10000 14000 18000 22

46

000 26

000 30000 34000 38000

3o 0H O

100

80

60

40

20

o

+

Demand for Validation Set (250 customers)

1 3 I 'x 3 <+ + 3 2 3

—2000 2000 6000 10000 14000 18000 22000 25000 30000 34000 38000

47

tIo0o0oH OO

80

60

40

20

0

+

Actual Demand for 1000 Customers

3

R ER
<+

3

3

'

~2500

. - +
+ t 2 o t
1

2500 7500 2500

438

17500

22500

I
+

27500

32500

o

37500

300X O

Demand for 1000 Customers

100 +

80 +

60 +

40 +

20 +

0 + | e e

3 $ KN + <o 3 3 2 2 3 3. <+ < 3 3
g g

3750 8750 13750 18750 23750 28750 33750 38750

e
-+

=1250

49

Appendix B: The iterated One-Step Neural Network
to Forecast Total Demand and the
Eventual Forecast Function

*%** SAS code version of the one-step ahead neural **%;
*** network forecaster. This code also generates #***;
%% the 20 year eventual forecast function. (The **%*;
% plot is not generated here.) kK
*%% Created July, 1992 by Harriet L. Lyons. *kk;

*% 1 is bias, 2~13 are input nodes **;
Data history:;
array 2(280) zz21-zz280; *** 2z2’s = time series;

z(1)= 667689;
z(2)= 7269307
z(3)= 635339;
z(4)= 723151;
z(5)= 707525;
z(6)= 742597;
z(7)= 718580;
z(8)= 727984;
z(9)= 707960;
z(10)= 675755;
z(11)= 724108;
z(12)= 697460;

data history; set history:

array z(280) zzl1l-zz280;

array Yin(13) YY1-YY13; ** unscaled inputs ;

array Xout(20) xxoutl-xxout20; ** all scaled values;
Yin(1)= 2(1)
Yin(2)= z(2)
Yin(3)= z(3)
Yin(4)= 2(4)
Yin(5)= z(5)

Ne NS NE Ne Ny N Ne Ne N

Yin(6)= z(6)
Yin(7)= 2(7)
Yin(8)= 2z(8)
Yin(9)= z(9)
¥in(10)= z(10) ;
Yin(1l)= z(11):;
Yin(12)= z(12):;
do I = 1 to 240; *%x* forecast for 3 years ;
do j=1 to 12; :
Yin(3j) = z(3j+i-1):;
end;

50

** Read and scaie input into network *;

*% x¥2 is input 1, x13 is input 12 *;

Xout(2) = Yin(l) * .00000969+-6.9593569;

Xout(3) = Yin(2) * (1.0537741e-005)+(-7.6550049);
Xout(4) = Yin(3) * (1.0537741e-005)+(-7.6550049);
Xout(5) = Yin(4) * (1.0537741e-005)+(~-7.6550049);
Xout(6) = Yin(5) * (1.0537741e-005)+(-7.6550049);
Xout(7) = Yin(6) * (1.0537741e-005)+(-7.6550049);
Xout(8) = Yin(7) * (1.0537741e-005)+(-7.6550049);
Xout(9) = Yin(8) * (1.0537741e-005)+(-7.6550049);
Xout(10) = Yin(9) * (1.0752977e-005)+(-7.8317858);
Xout(1ll) = ¥in(10) * (1.0752977e-005)+(-7.8317858);
Xout(12) = ¥Yin(11) * (1.0752977e-005)+(-7.8317858);
Xout(13) = Yin(12) * (1.0752977e-005)+(-7.8317858);

** Generating code for PE 0 in layer 3 *;

Xout(14) = (-0.065512054)+(-0.65304154) * Xout(2)+
(-0.28332129) * Xout(3)+(-0.22807129) * Xout(4)+
(0.43668315) * Xout(5)+(-0.43300751) * Xout(6)+
(0.034910686) * Xout(7)+(0.0474988) * Xout(8)+
(0.0059591993) * Xout(9)+(0.35130057) * Xout(l0)+
(0.12700793) * Xout(11)+(0.87453079) * Xout(l2)+
(0.33095482) * Xout(13):

Xout(14) = tanh(Xout(14)'3;

** Generating code for PE 1 in layer 3 *;

Xout(15) = (0.072443113)+(0.062924318) * Xout(2)+
(-0.023038119) * Xout(3)+(-0.20059879) * Xout(4)+
(-0.38352284) * Xout(5)+(0.22233321) * Xout(6)+
(0.031286795) * Xout(7)+(-0.2147585) * Xout(8)+
(-0.079028048) * Xout(9)+(0.18169956) * Xout(10)+
(-0.32272851) * Xout(1ll)+(-0.040567964) * Xout(12)+
(-0.13757579) * Xout(13):

Xout(15) = tanh(Xout(15)):

** Generating code for PE 2 in layer 3 *;

Xout(16) = (0.51086879)+(-0.14268588) * Xout(2)+
(0.24350415) * Xout(3)+(-0.1280665) * Xout(4)+
(-0.28067172) * Xout(5)+(0.48116192) * Xout(6)+
(-0.45402175) * Xout(7)+(0.50139827) * Xout(8)+
(0.27197465) * Xout(9)+(0.073758774) * Xout(l0)+
(0.60602796) * Xout(1ll)+(-1.0222355) * Xout(12)+
(-0.34886909) * Xout(1i3);

Xout(16) = tanh(Xout(1le) }; _ -

'51

** Generating code for PE 3 in layer 3 *;

Xout(17) = (-0.56164324)+(-0.76799136) * Xout(2)+
(0.91546154) * Xout(3)+(-0.3789292) * Xout(4)+
(1.0022947) * Xout(5)+(—-0.14396407) * Xout(e6)+
(0.21785158) * Xout(7)+(-0.82619166) * Xout(8)+
(0.017511081) * Xout(9)+(0.0852044) * Xout(10)+
(0.35464713) * Xout(11)+(1.1420908) * Xout(1l2)+
(-0.048709556) * Xout(13);

Xout(17) = tanh(Xout(17)):;

** Generating code for PE 0 in layer 4 *;

Xout(18) = (-0.15891412)+(0.53716618) * Xout(1l4)+
(-0.38866025) * Xout(15)+(-0.6971423) * Xout(16)+
(-1.0497816) * Xout(17):

Xout(18) = tanh(Xout(18)):;

** De-scale and write output from network *;

Yout = ((821334-635339)*Xout(18)+
(.8*%*635339+.8%#821334))/1.6;

z(i+12) = Yout;
output;
end:;

** now the z’s contain the entire time
** gseries (actual and forecast).

e “o

run;

52

<
i o
-t
134

Harriet Lyons was born on September 17, 1967 in New Haven,
Connecticut, to Anne and Allan Kupferman. She graduated from
Carnegie-Mellon University in Pittsburgh, Pennsylvania with a
Bachelor of Science in Applied Mathematics/ Operations

Research.

She is currently employed by Air Products and Chemicals, Inc.
in Allentown, Pennsylvania. She spent two and one half years
in the Operations Research group and is currently with the

Statistical Sciences department.

53

	Lehigh University
	Lehigh Preserve
	1992

	Neural networks and exponential smoothing : a comparison via application
	Harriet L. Lyons
	Recommended Citation

	00001
	00002
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020
	00021
	00022
	00023
	00024
	00025
	00026
	00027
	00028
	00029
	00030
	00031
	00032
	00033
	00034
	00035
	00036
	00037
	00038
	00039
	00040
	00041
	00042
	00043
	00044
	00045
	00046
	00047
	00048
	00049
	00050
	00051
	00052
	00053
	00054
	00055
	00056
	00057
	00058
	00059
	00060

