
Lehigh University
Lehigh Preserve

Theses and Dissertations

1993

Quantification of thin gate oxide impact on the
switching characteristics of MOSFETs
Franklin Daniel. Nkansah
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Nkansah, Franklin Daniel., "Quantification of thin gate oxide impact on the switching characteristics of MOSFETs" (1993). Theses and
Dissertations. Paper 185.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/185?utm_source=preserve.lehigh.edu%2Fetd%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


U···.~···T··'.-···'-H".'• ··C _.. • .: . - .

Nkansah, Franklin Dani I

TI LE:

uantificati n f Thin Gate
.. xide Impact n the

[

witching Characteristics

f MOSFETs

TE: May 30,1993



QUANTIFICATION OF THIN GATE OXIDE IMPACT

ON THE SWITCHING CHARACTERISTICS OF

MOSFETs

by

Franklin Daniel Nkansah

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Electrical Engineering

Lehigh University

1993





ACKNOWLEDGEMENTS

I would like to thank Professor D.R. Young, W.Y Yarbrough, W.T. Cochran,

lA. Shimer and LC. Kiziyalli for their genial support and guidance during this thesis

work. I am especially grateful to my wife Mercy and daughter Claribel for their love and

patience. In addition I would like to acknowledge the encouragement ofK.R. Olasupo,

YS. Obeng and D. Alugbin. I would like to sincerely thank R. Dyas, T. Kook and R. Key

their assistance in growing of the thin oxides, etching and electrical chracterizations.

I would also like to thank AT&T Bell Laboratories for providing the funds and

silicon resources that made this work a reality. Finally, I dedicate this thesis to my parents

for their long and hard struggle in Liberia.

iii



TABLE OF CONTENTS

THESIS TITLE PAGE

CERTIFICATE OF APPROVAL 11

ACKNOWLEDGEMENTS III

LIST OF TABLES

LIST OF FIGURES

'vl11

IX

ABSTRACT .

1. INTRODUCTION....................................................................................... 2

1.1 SCOPE OF THESIS 2

1.2 REVIEW OF OXIDATION MODEL 4

1.2.1 SPACE CHARGE EFFECTS '......................... 4

1.2.2 OXIDE STRUCTURAL EFFECTS 7

1.2.3 STRESS IN SILICON DIOXIDE 9

1.2.4 OXYGEN SOLUBILITY IN THE OXIDE

1.3 SILICON OXIDATION IN THE THIN REGIME

1.4 TillN OXIDE EFFECTS ON MOSFETs

1.4.1 EFFECTS ON MOBILITY

1.4.2 EFFECTS ON OXIDE CHARGE

10

1I

13

14

15

1.4.3 BORON PENETRATION THROUGH
TIllN GATE OXIDES................................................................. 18

2. THEORy................................................... 2I

2.1 THEORY OF THIN DIELECTRIC OXIDATION 21

2.1.1 BASIC OXIDATION MODEL 21

2.2 EFFECTS OF FLUORINE 26

iv



2.2.1 INTERACTION WITH INTERFACE STATES 27

2.2.2 FLATBAND VOLTAGE EFFECTS 30

2.2.3 QBD' VBD AND AGING EFFECTS 31

2.3 EFFECTS OF NITRIDED OXIDES ON DEVICES 33

2.3.1 KINETICS OF NITRIDATION 33

2.3.2 NITRIDATION EFFECTS 35

2.4 EFFECTS OF POST OXIDATION ANNEAL (POA) 36

2.5 CHARACTERIZATION OF TlllN OXIDES 38

2.5.1 INTERFACE TRAP CHARGE 38

2.5.2 FIXED OXIDE CHARGE 39

2.5.3 MOBILE IONIC CHARGE 40

2.5.4 OXIDE TRAPPED CHARGE 40

2.5.5 FOWLER NORDHETh1 TUNNELING MECHANISM 41

2.6 TTh1E DEPENDENT DIELECTRIC BREAKDOWN 44

2.6.1 INTRINSIC BREAKDOWN MODEL 45

2.6.2 DEFECT RELATED BREAKDOWN MODEL 46

2.6.3 TDDB PREDICTION 50

2.6.4 RELIABILITY PREDICTION..................................................... 51

2.6.5 FAILURE RATE 53

2.7 THE MOS CAPACITOR 55

2.8 MODES OF OPERATION 56

2.8.1 FLATBAND 56

2.8.2 ACCUMULATION 56

2.8.3 DEPLETION AND INVERSION 57

2.9 FIELD EFFECT AT THE SEMICONDUCTOR SURFACE................. 57

2.10 CAPACITANCE CHARACTERIZATION 60

v



2.10.1 Cos DEPENDENCE ON GATE VOLTAGE

2.11 FRREQUENCY DEPENDENCE OF CAPACITANCE

2.11.1 Cos AT LOW FREQUENCY

2.11.2 Cos AT HIGH FREQUENCY

60

61

61

62

2.12 tHE MOS TRANSISTOR 63

2.12.1 BAND STRUCTURE AT DRAIN EDGE 64

2.12.2 CHANNEL CROSS-SECTION OF NMOSFET

2.12.3 LONG CHANNEL NM:OSFET MODEL

2.12.4 SHORT CHANNEL NMOSFET MODEL

2.12.5 NARROW WIDTH EFFECT

2.12.6 DRAIN-INDUCED BARRIER LOWERING

2.12.7 SUBTHRESHOLD REGIME

2.13 HOT CARRlER EFFECTS ON RELIABILITY

66

67

69

71

73

74

76

2.13.1 SUBSTRATE CURRENT 77.....................................................

2.13.2 SYMPTOMS OF DEGRADATION 79

2.14 GATE OXIDE THICKNESS LIMITATIONS FOR ULSI 81

2.14.1 STATIC LOGIC LIMITATIONS

2.14.2 GATE OXIDE TUNNELING

2.15 MOS CAPACITANCE EFFECTS ON
SWITCHING CHARACTERISTICS

82

8S

88

2.15.1 DEVICE CAPACITA1'lCE 88.....................................................

2.15 .2 PARASITIC CAPACITANCE

2.16 INVERTER DELAY CHARACTERIZATION

2.16.1 FALL TIME DETE&\J1INATION

2.16.2 RISE TIME DETERMINAnON

92

93

94

96

3. EXPERIMENT 97.........................................................................................

VI



3.1 INTRODUCTION 97

3.2 DEVICE SIMULATION 98

3.3 CMOS DEVICE FABRICATION SEQUENCE 99

3.3.1 NTUB FORMATION 99

3.3.2 PTUB FORMATION 100

3.3.3 DEVICE ISOLATION 101

3.3.4 THRESHOLD ADmST IMPLANT 102

3.3.5 GATE DEFINITION 103

3.3.6 LDD AND SPACER FORMATION 104

3.3.7 SELECTIVE N+ / P+ SID FORMATION 105

3.3.8 SELF-ALIGNED SILICIDATION 106

3.3.9 INTERLEVEL DIELECTRIC, CONTACT,
METALLIZATION AND PASSIVATION 107

3.4 TEST STRUCTURES............................................................................. 109

4. RESULTS AND CONCLUSIONS 113

4.1 DELAY CHARACTERIZATION 113

4.2 ELECTRICAL CHARACTERIZATION

4.3 DEVICE AGING CHARACTERIZATION

118

132

REFERENCES ......................................................................................... 143

vii



LIST OF TABLES

TABLE 1: Summary of C-V measurement data for various gate oxide
thicknesses . .. .. .. .. .. .. .. .. . .. ..... 123

TABLE 2: Ion/Ioff data for NMOS of LCODED =O.75f.JJn as a function ofgate
oxide thickness. 13 1

TABLE 3: Ion/Ioff data for PMOS of LCODED =O.85f.JJn as a function of gate
oxide thickness. 13 1

TABLE 4: Summary ofDevice degradation for NMOS of LCODED =O.75f.JJn

as a function of Vtis and gate oxide thickness 141

viii



Figure 1: Enhanced transport of ionized oxidizing species during the initial stages of
oxidation in dry oxygen by field enhanced diffusion.

Figure 2a: Micropores in thin oxides affecting the transport oxygen species to the
interface.

Figure 2b: Modeling oxidation-rate enhancement in the thin regime by adding
additional processes in parallel to those described by the linear-parabolic
model.

Figure 3: Interface states effect on device mobility.

Figure 4a: Drain current versus drain voltage-experiment. Solid lines: pre-stress;
dashed lines: post-stress nonnal; dashed-dotted lines: post-stress reverse.

Figure 4b: Measured substrate current. Solid lines: pre-stress; dashed lines: post-stress
nonnal; dashed-dotted lines: post-stress reverse.

Figure 4c: Drain current versus drain voltage-experiment. Solid lines: pre-stress;
dashed lines: post-stress nonnal; dashed-dotted lines: post-stress reverse
stress conditions.

Figure 4d: Measured substrate current. Solid lines: pre-stress; dashed lines: post-stress
nonnal; dashed-dotted lines: post-stress reverse.

Figure 5c: Flat-band voltages for boron- and BF2-implanted devices as a function of
900 C anneal time.

Figure Sa: Boron penetration through the gate oxide.

Figure 5b: VFB as a function of gate oxide thickness for n-channel and BF2-implanted
p-channel capacitors.

Figure 6: Oxide-thickness dependence of the excess in growth rate for the oxidation of
lightly doped (100) silicon in dry oxygen in the 800 -1000 C range.

Figure 7c: Si dangling bond, Si-Si bond, and 0 vacancy level at the interface. These
energy levels move in the lower half of the Si band gap with changing bond
length d. Open and closed circles denote 0 and Si atoms respectively.

Figure 7a: Basic model constructed with amorphous Si02 represented by Bethe-lattice
and Si substrate with (111) orientation. Open and closed circles denote 0
and Si atoms respectively.

ix



Figure 7b: Perfect interface and oxygen dangling bond at the Si-Si0
2
interface having

no energy level in the range between 0.5 eV below the top of the valence
band and 0.5 eV above the bottom of the conduction band of Si. Open and
closed circles denote °and Si atoms respectively.

Figure 8b: Impurity at the Si-Si02 interface. If any of H, OH, CI, and F is bonded to
the Si dangling bond, no energy level exists in the energy range between
0.5 eV below the top of the valence band and the 0.5 eV above the bottom
of the conduction band of Si. Open and closed circles denote °and Si
atoms respectively.

Figure Sa: Commonly observed U-shaped distribution of interface-trap state density
in the forbidden gap of Si.

Figure 9: Change in flat-band voltage of fluorine enriched Si02 vs. the fluorine
implant dose.

Figure lOa: Breakdown field of fluorine rich oxides as a function of implant dose.

Figure lOb: Charge-to-breakdown of fluorine rich oxides as a function of implant
dose.

Figure 11: Transistor lifetime until 10% degradation in ~ vs. reciprocal of drain
voltage.

Figure 12: Charge to breakdown of nitroxide dielectrics.

Figure 13a: Breakdown field for MaS capacitors with and without post-oxidation
anneals.

Figure 13b: The effect of gate dielectric fonnation conditions on surface mobility. OX:
pure oxide grown at 1050 C for 35 seconds. NO: nitroxide formed at
1150 C for 24 seconds in a 25% NH

3
ambient. aNa: NO reoxidized at

1150 C for 20 or 40 seconds. AONO 30: aNa annealed an additional 30
seconds in argon at 1150 C. AONO 60: aNa annealed an additional 60
seconds in argon at 1150 C.

Figure 13c: Hot electron lifetime of annealed NO MISFETs.

Figure 14: Fowler-Nordheim Tunneling DiagrarnFigure 15a: Dependence of the
leakage current on the oxide thickness. The oxide thickness was: 5.1 nm
(curve a), 6.0 nm (curve b), 7.5 nm (curve c), and 9.7 nm (curve d).

x



Figure lSa: Dependence of the leakage current on oxide thickness. The oxide thickness
was: 5.1 om (curve a), 6.0 nm (curve b), 7.5 nm (curve c), and 9.7 nm
(curve d).

Figure ISb: Increase of the low-field leakage current as a function of electron fluence
for a capacitor. The stress was: 2.5 V (curve a), 3 V (curve b), 3.5 V
(curve c), 4 V (curve d). [70l, and 4.5 V (curve e).

Figure 16: log (tun> versus l/Eox for a 79A gate oxide.

Figure 17a: Oxide defects modeling as effective oxide thinning by DXox.

Figure 17b: An illustration of the dependence ta~ on the severity of defects DXox as a
function of the oxide field Eox.

Figure 18a: Tirne-dependent dielectric breakdown (TDDB) data for an oxide of 107A
under 13.2 V plotted in cumulative percent failure versus ta~ or equiva
lently versus DXox.

Figure 18b: TDDB data for an oxide of 107A under various stress voltages. Good
agreement is obtained with the ~ox model (solid curves) through the
equation lum =taDl(tO/tuDl)(1-VoxlNox2).

Figure 19: Defect density as a function of~ox,D(~ox) using Gamma distribution
for the data in Figure 18a. Once D(~ox) is derived for a given process,
many reliability parameter such as yield, failure rate, and optimum screen
condition can be determined.

Figure 20: Cumulative percentage failure versus time for (a) different areas and (b)
different stress voltages of 107Aoxide. Solid curves are derived from the
defect density and DXox models.

Figure 21: Failure rate versus time for (a) different areas and (b) different stress volt
ages of 107A oxide. Solid curves are derived from the defect density and
l\Xox models.

Figure 22: Theoretical curves of failure rate and cumulative percent failure for different
areas at 5 V operation. These curves are used for screening and screen yield
optimization.

Figure 23a: An MOS (Metal Oxide Silicon) capacitor.

Figure 23b: Energy band diagrams for ideal MOS capacitors for. (b) accumulation; (c)
depletion; and (d) inversion.

xi



Figure 24: MOS capacitance-voltage curves. (a) low frequency; (b) high frequency;
and (c) deep depletion.

Figure 25: An MOS Field Effect Transistor (FEn.

Figure 26: Energy band diagrams near the drain of NMOSFET with different gate and
drain bias conditions: (a) Vg > Vt, Vd =0; (b) Vg < Vt(Vd), Vd> 0; and
(c)Vg> Vt(Vd), Vd > O.

Figure 27: Cross-section of N-channel band structure.

Figure 28: Graphical representation of "Charge Sharing Phenomena".

Figure 29: Realistic picture for a device with bini's beak effect on active area

Figure 30: Shape of the depletion region in a short-channel MOSFET at zero and high
drain bias. The grey areas indicate the charge shared by the gate and the
junctions at zero drain bias.

Figure 31: A cross-sectional schematic of a transistor illustrating subthreshold
conduction.

Figure 32a: Schematic of hot-electron effects in an n-channeIMOSFET.

Figure 32b: Schematics of channel potential and horizontal electric field of a MOSFET
biased at saturation region.

Figure 33a: /1Vth increases as to with n -0.65 in this figure.

Figure 33b: Degradation characteristics after stressing.

Figure 33c: Lifetime as a function of substrate current, lifetime defined as 10 mV shift
in threshold voltage (Vth).

Figure 34: Lateral electric field distributions associated with LDD structures.

Figure 35a: Transfer voltage characteristics of a CMOS inverter with the critical volt
ages VOH' Vu.' Vill' and VOL labeled where VE is the only point at which
the NMOS and PMOS transistors are both saturated and the output voltage
is equal to Vddl2.

Figure 35b: Noise margin definitions.

Figure 36: Dependence of Noise Margin on Leakage Current ~t\.
xii



Figure 37: Gate voltage for given current densities and oxide thicknesses.

Figure 388: Effect of leakage current on the voltage-transfer characteristics of an
un-loaded inverter.

Figure 38b: Simulated effect of leakage current on the switching speed of an inverter.
The gate has a fan-out of 3 and each gate is driving a 1 pF line capacitance.

Figure 39: Definitions of device and parasitic capacitances.

Figure 40: Small-si&nal capacitances vs Vos for a MOSFET in linear and saturation
regions: (a) VSB = 0; (b) VSB = 5 V.

Figure 41: CMOS inverter circuit.

Figure 42: CMOS inverter switching characteristics.

Figure 43: Device simulations flow diagram.

Figure 44: N-tub fonnation.

Figure 45: P-tub formation.

Figure 46: Active device area (Thinox) formation.

Figure 47: High pressure oxidation (HIPOX) for field oxide fonnation.

Figure 48: Threshold adjust ion implantation.

Figure 49: Polysilicon gate definition.

Figure 50: LDD formation.

Figure 51: Spacer fonnation.

Figure 52: Selective N+ and P+ SID ion implantation.

Figure 53: Self aligned selective silicidation.

Figure 54: Dielectric I, Contact opening and Aluminum I metallization.

Figure 55: Dielectric II, Window II, Aluminum II and Passivation CAP.

xiii



Figure 56: Test structure for I-V and aging characterization.

Figure S7b: Schematic diagram of 89 cascaded NAND chain.

Figure 57a: Schematic diagram of 101 cascaded inverter chain.

Figure 58: Test structure for perfonnance characterization.

Figure 59: INRB delay/stage as a function of gate oxide thickness.

Figure 60: ND2 delay/stage as a function of gate oxide thickness.

Figure 61: Inverter derating factor as a function of operating temperature.

.Figure 62: C-V characteristics for 150A gate oxide.

Figure 63: C-V characteristics for 130A gate oxide.

Figure 64: C-V characteristics for 110A gate oxide.

Figure 65: C-V characteristics for 90A gate oxide.

Figure 66: C-V characteristics for 70A gate oxide.

Figure 67: Breakdown voltage versus Tox.

Figure 68: Charge to breakdown versus Tox.

Figure 69: Snapback voltage versus Tox.

Figure 70a: ~ vs Vos characteristics for 150A gate oxide thickness.

Figure 70b: Subthreshold characteristics for 150A gate oxide thickness.

Figure 71a: ~ vs Vos characteristics for 130A gate oxide thickness.

Figure 71b: Subthreshold characteristics for 130A gate oxide thickness.

Figure 72a: los vs Vos characteristics for 11oA gate oxide thickness.

Figure 72b: Subthreshold characteristics for 110A gate oxide thickness.

Figure 73a: ~ vs Vos characteristics for 90A gate oxide thickness.

xix



Figure 73b: Subthreshold characteristics for 90A gate oxide thickness..

Figure 74a: 1m vs Vos characteristics for 70A gate oxide thickness.

Figure 74b: Subthreshold characteristics for 70A gate oxide thickness..

Figure 75: Substrate current as a function of gate voltage for variable Lgate and Tox.

Figure 76: Substrate current as a function of gate voltage for variable Lgate and Tox.

Figure 77: Substrate current as a function of gate voltage for variable Lgate and Tox.

Figure 78: Substrate current as a function of gate voltage for variable Lgate and Tox.

Figure 79: Substrate current as a function of gate voltage for variable Lgate and Tox.

Figure 80: 10% transconductance (~) degradation as a function of Isub for 150A gate
oxide.

Figure 81: 10% transconductance (~) degradation as a function of Isub for 130A gate
oxide.

Figure 82: 10% transconductance (~) degradation as a function of Isub for 110A gate
oxide.

Figure 83: 10% transconductance (~) degradation as a function 'of Isub for 90A gate
oxide.

Figure 84: 10% transconductance (~) degradation as a function of Isub for 70A gate
oxide.

xx



ABSTRACT

The characterization of the effect of thin oxides on Metal Oxide Semiconductor

performance has been completed. This encompassed gate oxide thickness from 150A to

70A which is the regime of increasing interest for sub-micron CMOS technologies. MOS

device characteristics such as gain, current drive capability dependence on gate oxide

thickness were also characterized. Device performance characterization was completed by

using the ring oscillators with 101 and 89 stages to demonstrate the adverse impact of the

gate capacitance on switching performance due to decreased gate oxide thickness, and a

minima for gate oxide scaling in relation to switching performance was established.

Process and Device simulators were used to fully investigate the various capacitance's

associated with the ring-oscillator delay, which are contributing factors to the overall gate

delay. Devices were characterized for hot carrier degradation and the lifetime due to

increasing substrate currents were quantified as a function ofgate oxide thickness. The

aging characterization established that device degradation worsened as gate oxide was

,thinned.
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CHAPTER 1

INTRODUCTION

Thermally grown layers of silicon dioxide has been an integral part of silicon

device technology since their first applications in surface protection and selective masking

and stabilizing silicon surfaces[1]. Silicon dioxide layers found additional applications in

device isolation, impurity gettering, masking against impurities, junction passivation and

insulation between metallayers[2]. Such applications have made silicon oxidation a vital

processing step in both bipolar and MOS technologies. Its most important application,

however, is that of the gate-dielectric material for MOS transistors where SiOz layers

become an active component. As the VLSI era enters into the sub-micron regime, thin

gate oxides must be grown routinely and reproducibly with high yield and long-term

reliability.

Much work has been done to achieve uniform, thin oxides under controlled

processing conditions. In order to controllably grow thin oxides, the growth rate must be

reduced, thus allowing the process a reasonable time of growth. Various techniques such

as dry oxidation, dry oxidation with HCL, trichloroethylene (TCE) or trichloroethane

(TCA), reduced pressure oxidation, low temperature high pressure oxidation and rapid

thermal oxidation have been investigated.

1.1 SCOPE OF THESIS

As gate oxide thickness is reduced to further meet the current drive capability of

the ULSI MOS devices, there is a minima in oxide thickness, beyond which the increase in
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gate capacitance due to decreased oxide thickness causes a decrease in the drive

capability, which manifest itself as an increase in the ring oscillator delay time.

The work presented in this thesis will experimentally investigate the effects of thin

gate oxides on MOS Device characteristics, and the impact on switching of digital

systems. The characterization of thin oxides will include the use of high and low frequency

C-V measurements to quantify the flatband voltage and recovery rate of the capacitance

for the various oxide thicknesses. In addition to capacitance quantification, high field

measurements will be used to investigate the breakdown voltage and the tunneling

mechanisms of thin oxides. Electric field and temperature effects of Time-Dependent

Dielectric Breakdown (TDDB) implications will be discussed. Hot Carrier Aging ofMOS

transistors will be used to examine the reliability implications ofthin gate oxide dielectric

for ULSI applications.

The gate oxide dielectric will be varied from 150A to 7oA. Since the substrate

doping in the MOS transistor channel had to be modified to achieve the proper threshold

voltage, the implications of these changes to device I-V characteristics will be quantified.

Furthermore, I will unify the correlation of thin oxide impact on device performance with

the experimentally observed ring oscillator propagation delay per stage measurements.

This thesis chronology begins with the development ofthin oxidation model, which

will be followed by theoretical development of implications of thin gate oxide on

MOSFET switching characteristics which encompassed the MOS capacitor and transistor

The experimentation procedures, transistor modeling and advanced fabrication techniques

are then discussed. Finally the results obtained are discussed and conclusions established

to support the "minima" concept encountered in gate oxide thickness dependence on

propagation delay.
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1.2 REVIEW OF OXIDAnON MODELS

Several models have already been proposed in an attempt to explain the initial fast

regime ofgate oxidation kinetics. These models fall into four major groups (i) space­

charge effects where the enhancement is electrochemical in nature, (ii) oxide structure

effects that provide additional oxidant transport, (iii) oxide stress effects influencing the

diffusivity of oxidizing species in the oxide and the surface-reaction rate constant at the

interface, and (iv) oxygen solubility considerations in the oxide where growth would be

enhanced due to oxygen concentrations exceeding its solid solubility limit.

1.2.1 SPACE - CHARGE EFFECTS

A number of electrochemical mechanisms have been proposed to enhance the

oxidation process in the thin oxide regime[4-8]. The transport ofoxidant species by

thermal diffusion has been proposed to be affected by an electric field across the oxide in

the early stages of growth. Field-assisted oxidant diffusion was originally proposed by

Cabrera et al[3] to account for metal-oxidation results. This phenomenon was proposed by

Deal and Grove[3] to account for silicon-oxidation results in dry oxygen in the thin oxide

regime. Theoretical analysis of the kinetics of metal oxidation emphasize only two types of

rate-determining oxidation mechanisms[3]. In the first, the oxide thickness is small in

comparison to the space charge regions within the oxide and the growth kinetics are

strongly influenced by the voltage drop across the oxide film caused by contact-potential

differences. In the second, the diffusion rate of either the oxidizing species or the metal

across the oxide determines the oxidation kinetics; thus the growth is purely parabolic

The space-charge effect involves electrons readily available in the metal. These electrons

penetrate the oxide either by tunneling or by thermionic emission into its conduction band

and then fill the surface states provided by the adsorbed gas molecules at the oxide-gas

interface. A steady -state condition is established in which the net electronic current is

4



close to zero, thereby equalizing the surface-state level and the Fermi level of the metal.

This process results in a constant contact potential difference between the two interfaces

and an internal electric field. This field is assumed to be strong enough to alter significantly

the activation barrier for the diffusion of ions or other charged defects. As a result, field­

dependent transport of ionic defects constitutes the rate-limiting step. The model of

Cabrera et al [3] yielded an inverse-logarithmic growth law.

The rapid initial oxidation regime in dry oxygen and its absence in wet oxygen or

steam have been interpreted by Deal and Grove [1] to be a result of space-charge effects.

In their interpretation, the oxidizing species is ionic, and oxidation is enhanced until the

oxide thickness becomes larger than the extent of the space-charge region within the

oxide. The thickness is on the order of the extrinsic Debye length in the oxide

In dry oxygen, C*=Sxl016 cm-3
, kox=3.9 and therefore, at lOooac LDox =lsoA

which correspond well with the oxide thickness beyond which the rapid initial-growth

mechanism stops being effective. In contrast, for wet SiQ 2 at 1000a C, using

C*=3xI019 cm-3
, Lnox =sA. Based on the linear pressure dependence of the parabolic rate

constant B, Deal and Grove [1] concluded that no dissociation occurs at the oxide-gas

interface, which implies that the diffusing species are undissociated molecules of oxygen

or water for dry and wet SiQ 2 oxidation, respectively. Coupled with the findings of

Jorgensen [4], where an electric field was observed to affect the oxidation of silicon, they

suggested that the diffusing species in dry oxygen is a singly ionized oxygen molecule 0: -

The field created by the space-charge of the negatively charged oxygen ions should be

directed toward the gas-oxide interface, as illustrated in fig. I a.

5



eee 02 + e- -+ O2 OXYGEN 02 -+ 02 + h+--------

t
el t02 Si02 02' + h+

•--------e e@e
Tunneling or Steady-State Transport Si Transport
Thermonic Electric Field of Oxidizing of Oxidizing
Emission is Established Species is Species
of Electrons Across the Field-Enhanced is by Coupled

Oxide in the Oxide Diffusion

(a) (b)

Figure 1: Enhanced transport of ionized oxidizing species during the initial stages of oxidation in dry
oxygen by field enhanced diffusion (a) and by coupled diffusion (b). [18]

The transport of the oxidizing species could also be enhanced by a slightly different

mechanism [5], illustrated in fig. lb. Here, it is assumed that as a molecule ofoxygen from

the gas is absorbed at the outer surface, and after entry into the oxide, it dissociates into a

negatively charged oxygen molecule °2- and a hole. Holes, diffusing more rapidly than

q -, move toward the SiQ 2 interface and drag the slower oxygen ions with them by the

built-in electric field that results from the coupled motion of two charged species with

different mobilities. This field aids the motion of the slower species.

Hamasaki [6] proposed that negatively charged oxidant species are prevented from

reaching the SiQ 2 interface by the oxide field near the interface caused by the positive

oxide fixed charge Q[ generated by the oxidation reaction. In this description electrons

reached the outer surface of the oxide by thermionic emission. The initial rapid growth is

explained by oxides growing at a fast rate before a sufficient amount of Q[ has been

generated by the oxidation reaction. Once formed, the oxide fixed charge establishes an
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electric field that opposes the transport of negatively charged oxidizing species toward the

interface. This description implies that the linear rate constant BlAis a measure of the

surface reaction when the oxidizing species are under the influence of the Qf induced

retarding field. For the same description ofthe oxidation process, Lu and Cheng [7]

further assumed a mathematical form for the distribution of the oxide fixed charge and

derived the oxidation rate constants corresponding to the thin « 300A) and thick regimes.

In analyzing the less-than-linear pressure dependence of the linear rate constant

BIA, Hu [8,9] proposed an intermediate oxygen-chemisorption step where chemi-sorbed

molecular oxygen may directly oxidize silicon at a slow rate or dissociate slowly into

atomic oxygen which then rapidly oxidizes silicon. The extra growth rate in the thin

regime was proposed to be the result of a possible parallel flux ofnegatively ionized

atomic oxygen (0-) becoming more important for small thicknesses. Because of its

smaller size, 0- ions are expected to diffuse substantially faster than oxygen molecules.

The free energy of 0- at 1200K is 1.1eV [8]. The diffusion of ionized atomic oxygen is

argued to be possible only if there is substantial electronic conduction by tunneling

through the oxide [8]. As a result, this mechanism would stop for oxide thicknesses larger

than 150A. The above mentioned models based on space-charge effects predict an inverse­

logarithmic relationship between oxide thickness and oxidation time.

1.2.2 OXIDE STRUCTURAL EFFECTS

A number of proposals have been made to relate the fast oxidation rate in the thin

regime to the oxide structure. Revesz and Evans [9] proposed that SiQ 2 films are non-

crystalline and may contain structural microheterogeneities, especially micro channels,

along which diffusing species may transport preferentially. This is illustrated in fig 2. It has

been
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Figure 18: Micropores in thin oxides affecting the transport oxygen species to the interface. [18]
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Figure 2b: Modeling oxidation-rate enhancement in the thin regime by adding additional r--ocesses in
parallel to those described by the linear-parabolic model. [18]
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demonstrated [10] that the room temperature gaseous permeability of thermally grown

SiD 2 layers can be considerably higher than in fused silica, and this increase was attributed

to microchannels whose diameters are less than 50A.

The formation ofchannels has been proposed to be closely related to the

mechanism of oxide growth in that both parabolic rate constant and the extent of the fast

initial regime are higher in the <Ill> than in the <100> orientation of silicon, provided

that the H20 content in the oxidizing ambient is very low [11]. This behavior of SiD 1

films occurs when the channels are aligned perpendicularly to the silicon surface. The

structure of thermally grown films, including the Si - Si02 interface, is determined by

combination of ordering and disordering effects. Increased ordering enhances the

diffusivity of O2 molecules along structural channels. The presence of H20 in the

oxidizing ambient has a great disordering effect on structure of SiD 2 because it interacts

with SiD 2 more strongly than does 02 whose behavior is similar to that of inert gases. As

illustrated in fig. 2 growth-rate enhancement occurs as a result of localized points such as

point B where microchannels or structural defects meet the Si - Si02 interface. The

oxidation rate at these points is enhanced as a result oflocalized high concentration of

oxygen in direct contact with silicon rather than in faster transport ofoxygen through the

oxide which would not affect the oxidation reaction because oxide growth in the linear

regime is rate limited by surface reaction. The lateral transport of high concentration of

oxidant species at the Si - SiO 2 interface, as a result of micropores in the oxide, may be

responsible for localized oxidation rate enhancement around micropores and

microchannels in the thin regime.

1.2.3 STRESS IN SILICON DIOXIDE

Stress measurements in silicon dioxide have been made at room temperature

[12, 13]and at growth temperatures [14]. Stress in the oxide measured at room
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temperature is a result of the mismatch between the thermal expansion coefficients of Si

and SiO 2' and it develops as the oxidized wafer cools down from the oxidation

temperature to room temperature. Intrinsic stresses resulting from the mismatch in the

molar volume of the Si and SiO 2 exists at the oxide growth temperature. When present,

the intrinsic stresses are large enough to cause plastic deformation of the silicon substrate

at growth temperatures. The temperature dependence of the linear and parabolic' rate

constants above and below the viscous flow temperature was discussed elsewhere[2].

These results suggested that stress in the oxide affects the transport of oxygen through the

oxide and its reaction with silicon at the Si - SiD 2 interface. A new formalism that

explains the low and high temperature dependence of the linear rate constant on the

intrinsic stress was proposed by Irene[15]. Intrinsic stress effects on the surface reaction

rate constant are a possible source of oxidation-rate enhancement in the thin film regime.

In a study of silicon oxidation in dry oxygen in the thin film regime, Fargeix and

co-workers[16] suggested that the diffusivity of the oxidizing species is not constant

across the oxide layer as a result of the influence of stress in the growing film. They

proposed that diffusion through the first hundreds of angstroms of the oxide layer is

slowed down due to compressive stresses in the SiO 2 film. The increase in diffusivity far

from the oxidizing interface is presumably related to the relaxation of the stresses. These

stresses were assumed to be maximum at the Si - SiD 2 interface and decreased

monotonically with the characteristic distance from the interface and towards the free

surface of the oxide.

1.2.4 OXYGEN SOLUBILITY IN THE OXIDE

According to Henry's law, the equilibrium concentration C· of the oxidant in the

oxide is related to the partial pressure Pg of the oxidant species in the gas ( C*=HPg). The

relationship holds only in the absence of dissociation or recombination of the oxidant
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species at the oxide-gas interface and when their chemical potential in the oxide is

independent of pressure. Increased solubility of 02 in SiQ 2 for very thin layers may be

important in describing the fast initial dry oxidation ofsilicon[18] because it would reflect

an increase in the constant of proportionality in Henry's law when the oxide thickness is

less than the mean spacing ofoxygen solute molecules dissolved in the oxide.

To obtain a more realistic description of oxides thinner than the average spacing

between oxidant molecules, a two dimensional structure, wherein solute molecules are

packed, was suggested by Derbenwick and Anderson[ 18]. The oxidation rate is directly

proportional to the concentration of oxidizing species at the Si - SiQ 2 interface for films

with thinner than 270A oxide, which implies a proportionally faster rate. A simple model

to test this solubility concept was proposed[33] based on the assumption that the effective

solubility of oxygen into the oxide decreases exponentially in thin oxides. This resulted in

a growth law of the form[33]

where Xax (0) is the native-oxide thickness at the start ofoxidation ( Tax =0) , C* the

equilibrium bulk solubility, (C· +Co) the equilibrium concentration at the surface, and LQ a

characteristic length related to the equilibrium spacing ofthe solute molecules.

1.3 SILICON OXIDAnON IN THE THIN REGIME

In searching for the physical mechanisms responsible for the oxidation-rate

enhancement in the thin regime for a surface-reaction rate-limited process, one must

investigate the possible ways by which the two components of the surface reaction,

namely, the concentration of oxygen species and the contribution of the silicon substrate.

can be influenced. In other words one should investigate the mechanisms that would affect

the flux of oxidant species F; consumed in the surface reaction at the Si - SiQ 2 interface
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This flux is expressed as ~ = ksC; where ks is the surface-reaction rate constant,

representing the contribution of the substrate and C; is the concentration of oxidizing

species at the interface. According to Deal-Grove[1], the oxidation is surface-reaction rate

limited for thin oxides, and the concentration of oxidizing species is uniformly distributed

in the oxide and is at solid-solubility limit.

The analysis ofthe rate enhancement in the thin regime at lower partial pressures

of oxygen indicates that, when the oxygen supply to the surface reaction was varied by

changing the oxygen partial pressure in the oxidizing ambient, both the linear surface

reaction and the thin regime surface reaction are affected in the same manner. This result

reinforces the fact that oxidation in this thin regime is surface-reaction rate limited, and

that the rate enhancement in the thin regime would not be affected by any mechanism that

would influence the transport of oxidizing species through the oxide, but by some

mechanism that affects the concentration of O2 at the Si - SiO 2 interface and or the way

in which the silicon substrate contributes to the oxidation reaction. Further studies [18]

have revealed that, a surface layer in the silicon substrate containing additional sites for

oxidation is responsible for the oxidation rate enhancement in the thin film regime. The

concentration of these sites has a profile which decays exponentially with a characteristic

length of - 30A. The analysis of SiD 2 growth rate in the thin regime under a variety of

experimental conditions such as; substrate orientation, doping, and oxygen partial pressure

by Massoud et al [18] can be expressed as

The first term is the linear-parabolic term where B and HIA are the parabolic and linear

rate constants, respectively, as defined by Deal and Grove[I]. The two exponential terms

represent the rate enhancement in the thin regime, defined in terms of pre-exponential

constants CI and C2 and the characteristic lengths L. and ~. The first decaying
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exponential has a characteristic length on the order of lOA, is non zero for the first 40­

50A of oxide growth, and vanishes for oxides thicker than 50A. The second decaying

exponential has a characteristic length on the order of 70A and is present from the onset

ofoxidation to an oxide thickness of -250A, where it decays to zero and where the

growth becomes pure linear-parabolic.

Oxidation-rate enhancement in the thin regime can, in summary be expressed by

the exponentially decaying with thickness. Its thickness extent is independent of substrate

orientation, doping level, and oxygen partial pressure in the oxidizing ambient. Its

magnitude has the same pressure dependence as that of the linear rate constant and is only

moderately affected by high phosphorus concentrations in the substrate.

1.4 THIN OXIDE EFFECT ON MOSFETs

The demand for increasing system performance and complexity has acted as a

driving force to increase the complexity of monolithic integrated circuits. By shrinking the

gate dielectric ofthese devices, increased drive current and speed are obtained. Each new

generation ofprocess introduces thinner dielectrics in order to more strongly couple the

gate and channel potentials. As the dielectric is made thinner, gate current and

capacitance increases and can limit the usefulness of the MOS transistor by modifying its

voltage transfer characteristics in a circuit, or by eliminating its ability to act as an effective

latch as employed in Dynamic Random Access Memory circuitry.

One ofthe main advantages of CMOS devices is that they can be configured in

circuits having low standby power dissipation and are able to store charge on capacitors

As the gate leakage current increases, the time required between cycles to refresh the

voltage values on a node decreases. The standby gate leakage current and power required

to refresh the voltage on the capacitors increases the power dissipation of the chip and

system.
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Although it is well known that circuit performance can be enhanced by scaling

down MOSFET dimensions, in the deep-sub micrometer regime the various design

tradeoff's between reducing the channel length L'ff' the oxide thickness Tax, and the power

supply voltage Vdr is still not clear. Changing a particular device parameter such as

decreasing oxide thickness to improve current drive can lead to an intolerable degradation

in reliability. As a result of the high electric fields in the gate oxide due to device scaling,

Fowler-Nordheim (F-N) tunneling current flows through the thin oxides[19], resulting in

charge trapping and interface trap generation [20]-[25].

1.4.1 EFFECTS ON MOBILITY

Since the mobility in the inversion layer ofMOS devices is a very important factor

in determining the performance of devices, it has been studied extensively. In reference to

Akizawa et al[26], from the flatband voltage shifts of high-frequency capacitance-voltage

(C-V) characteristics ofMOS capacitors, the effective interface charge at Si - SiQ 2' N tnt'

which include both oxide charge and interface state charges, could be estimated. By

measuring the drain characteristics of the MOSFETs, the effective mobility was derived

from the DC drain conductance measurements and expressed by

U,ff = (/dr) !:... Tax (1)
(Vgs - V;) W Bax (Vdr - IdrRs)

where Vdr and Idr are the drain voltage and current, VgS and V; are the gate and threshold

voltages, Rs is a parasitic resistance between the source and the drain.

14



Nint (cm-2)

o 4.42 x 1011

o 2.10 X 1012

4 3.10 X 1012

I::l 4.19x1012

c 5.66 X 1012
o 0

o 0 0 0
000

0°0
°00

o 0 0 0 0 00000
000

,

A A A 4 A 4 A A 4 A4.t.~
[J l'J l'J C C E1IHlJEJC llI~El;mc

C C C C c ceQ:] ca:a:c

o

o

S - 17 (5 - C)
Jinj = -2.0 mAlcm2

1000 r---------------------.-
800 -

"-

600 '-

:l
200 f-

-
} 400 '-

•
~

I

20
I I I I I I I I

2
I

100 1
4 6 8 10

Ninv (x 1012 cm-2)

Figure 3: Interface states effect on device mobility. [18]

With the increase of N int' U'if lowers over the entire region of Nirrv , and the

dependence of Ueff on N;rrv becomes less with increasing N int. Such behavior of Ueff on

N;rrv suggests that the increase of Coulomb scattering due to F-N stress influences the

electron scattering predominantly. Since the current circuit design trends have reduced

operating voltages less proportionally than the device geometries[27],the device

performance improvement by scaling is limited stilI more fundamentally by the electric

field induced mobility degradation.

1.4.2 EFFECT ON OXIDE CHARGE

Device degradation is a severe constraint for the long-term stability of modem

VLSI circuits. The shrinking of device dimensions gives rise to high fields at certain bias

conditions in the drain region of the MOSFET [28]. There is a general agreement that the

observed drain current degradation is due to some localized charges caused by hot-carrier
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injection in the high-field regions. Charges localized at the Si - SiO 2 interface act as

Coolombic centers that scatter the carriers, thus reducing the channel mobility which is

observed as a decrease in drain current after post-stress as shown in the figures below
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Figure 48: Drain current versus drain volrage-experimenL Solid lines: pre-stress; dashed lines: post-stress
normal; dashed-dotted lines: post-stress reverse. Stress conditions VG =3 V, VD=8 V, ISTRESs = 5 x 1et s.
[30]
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Figure 4b: Measured substrate current Solid lines: pre-stress; dashed lines: post-stress normal;
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The post-stress characterization shows a striking asymmetry between normal and

reverse (interchanging source and drain) mode currents as in fig. 4a. Therefore one can

conclude that the surface charges due to the stress are very inhomogeneously distributed

over the channel. This is in good agreement with other studies of inhomogeneous charge

distributions at the Si - SiO 2 interface[29]. The effect ofdegradation shifts the bulk current

in opposite directions for normal and reverse mode operation, which gives direct access to

the sign ofthe surface charge. Moreover, it should be noted that degradation affects the

reverse-mode substrate current strongly over the whole range ofgate bias as shown in

figs. 4b&4d. In the p-channel devices the drain current and transconductance are increased

as shown in fig. 4c. There are several ideas in the literature concerning the nature of

stress-induced charges. These can be classified into three distinct categories: (i) Positive

charges in fast or slow interface states, with the mobility degradation being responsible for

the drain current degradation [30], (ii) Negative charges in slow interface states which is

identical to negative charges trapped in the bulk oxide, as long as the potential effect is

considered[31-34], (iii) Fast interface states that are occupied according to the position of

the quasi-Fermi level in the Si band-gap[29,35-37].

1.4.3 BORON PENETRATION THROUGH
THIN GATE OXIDES

PMOS devices which employ n+ doped polysilicon gates typically require a

compensating p-type channel implant to lower the threshold voltage. Although this results

in buried-channel structures with enhanced hole mobility, submicrometer channel-length

devices typically suffer from excessive short channel behavior caused by sub-surface off­

current conduction. As a result, P+ doped polysilicon gates have been proposed for the

fabrication of surface- channel PMOS devices which are scalable to deep submicrometer

dimensions[38]. Submicrometer PMOS devices fabricated with P+ polysilicon gates offer

improved short-channel behavior similar to that of the NMOS transistor design. Several
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disadvantages ofusing P+ polysilicon gates in CMOS process include additional process

complexity and a reduction in the low field hole mobility. In addition, the boron used to

dope these P+ poly gate electrodes can diffuse through the thin gate oxides and into the

underlying silicon channel region, causing an instability in the PMOS threshold voltage

(Vip)' Previous studies have shown that the Vip shifts due to boron penetration through thin

gate oxides become more severe with increasing post-implant anneal temperature[39] as

shown in the fig. 5a below.

As shown in fig.5c the presence of fluorine further enhances the boron penetration

problem resulting in PMOS devices with positive threshold voltage shifts [40,41] and an

increase in the electron trapping rate in the thin gate oxide[40]. The amount ofVtp shift is

enhanced for thinner gate oxdes as shown in fig.5b.
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Figure Sa: Boron penetration through the gate oxide. [39]
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CHAPTER 2

THEORY

2.1 THIN DIELECTRIC OXIDATION

Thermally grown silicon dioxide has been an integral part of silicon device

technology, and applications have made silicon oxidation a vital processing step in VLSI

technologies. Its most important application is the growth ofgate-dielectric material for

MOS transistors. Continued shrinkage of device dimensions in the sub-micron regime

oxide layers of 150A and below is being implemented in an attempt to meet the stringent

device requirements. These thin gate oxides must be grown routinely and reproducibly

with high yield and long-term reliability and must not be degraded by subsequent

processmg.

Earlier studies of silicon oxidation kinetics, revealed that the growth rates were

higher than predicted by the linear-parabolic kinetics for layers below 250A, also the oxide

characteristics such as dielectric breakdown, interfacial optical properties and reliability

differed[42]. To fully quantify the electrical effects there is an unquestionable need to

understand the oxidation kinetics, the role of the oxidizing ambient and how they impact

the intrinsic oxide quality and reliability yield strength.

2.1.1 BASIC OXIDATION MODEL

This model commonly known as the Grove Deal model is valid for oxide

thicknesses above 300A in a dry oxygen ambient. For oxidation to occur, the oxidizing

species must: 1. Move from the oxygen-containing gas phase across the gas-oxide
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interface with a flux F;, 2. Move across the Si02 film already present toward the silicon

with flux F; and 3. React with the silicon at the Si - Si02 interface with a flux F;.

In steady state: F;= F;.= F;, and in equilibrium the concentration of oxidant in the oxide is

related to the partial pressure of the oxidant by

C· =kPg

Assuming the flux across the oxide layer follows Fick's law at any point within the oxide

layer

F; = _D dC

dX

From steady state assumption F;. must be the same at all points in the Si02 => cJ.F; = 0,
dX

hence

F.
- D(Co -C;)

2 -
Xo

The flux representing the oxidation reaction occurring at the Si - Si02 interface is

assumed to be proportional to the concentration of oxidant C;

F; = ksC;

where ks is the surface reaction constant. Equating F;=F;., F;=F;

The flux ofthe oxidant reaching the Si - Si02 interface is expressed as

but Xo = X, at t=O hence the solution to the differential equation is
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Xo
2 +AXo = B(t + r)

I 1 • I d X
2

+AXwhere A =2D(ks - +h- ), B =2DC N] - an r == I I • Thus solving for the
B

quadratic relationship for Xo as a function of t implies that

For long oxidation times: t» A
2

and t» r the above equation could be
4B

approximated as

IXo
2

= Btl--- Parabolic Law

For short times t+ r «A
2

and again the above equation reduces to
4B

(1)

(2)lx, =~(t+ rj -- Linear Law

The advanced model of oxidation proposed by Massoud et al [18] specifies that

an oxidation rate higher than that predicted by the Grove Deal model results in additional

processes in the thin regime. In a general case these processes can be represented by fluxes

M;, M; and M; in parallel with F."F; andF; respectively, and ~ in parallel with their

total sequence as illustrated in fig.2.

As a result of the additional fluxes: F=F., +M; =F;+M; = F;+M; substituting

the new F.., F; andf; into the initial Grove Deal model yields

From the experiments ofMassoud et al [18] , plots of oxidation-rate enhancement,

expressed in the form of an additive term M,(Xar ), from the dry oxidation of <100>

lightly doped silicon oxidized in dry oxygen in the 8000 e - 10000 e range as shown below
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in fig. 6. It can be seen that the excess rate, at all temperatures, has an initial phase

extending to 50A and an intermediate phase extending from that point to the onset of

(100) Silicon
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Figure 6: Oxide-thickness dependence of the excess in growth rate for the oxidation of lightly doped
(100) silicon in dry oxygen in the 8000 -10000C range. [18]

linear-parabolic kinetics. This suggest that M.(Xa.J can be expressed as two terms; the

parallel straight-line dependence of M.(Xar ) on thickness in the intermediate phase

suggests that the fit could be accomplished with a term that exponentially decays with

thickness. When M.(Xar ) in the initial phase was calculated and plotted it could be fitted

to a second term that decays similarly with thickness. The expression of the total growth

rate is then expressed as

The following observations were made by Massoud et al :

I. The characteristic length ~ is approximately independent of temperature in the

800°C-IOOO°C range and has a value of69A for <100>.
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2. The constant C2 has a single activation energy in the Arrhenius-type plot

3. The characteristic length ~ increases slowly from 7.7Aat 800°C to 12.4A at

1000°C for <100>.

4. The dependence of C\ on temperature has a break at -900°C and is

temperature independent below 900°C.

The lack of a well-behaved trend in the temperature dependence of C\ may be

attributed to the fact that it describes the growth rate of the first few layers of SiD2 that

has been shown to depend on the surface after cleaning and pre-oxidation procedures. It is

therefore suspected that the first exponential contribution of the excess in oxidation rate is

closely related to wafer cleaning and surface preparation. From their experimental data a

good empirical expression for the oxidation rate in the thin gate oxide regime was

proposed [18]

(3 )

In summary, the oxidation-rate enhancement during the early stages of silicon

oxidation in dry oxygen can be modeled by adding a term that exponentially decays with

oxide thickness to the rate expression of the linear-parabolic model. The prefactor of the

added term reflects the excess rate at which the reaction proceeds and a characteristic

length that represents its extent in thickness. The activation energy of the excess rate was

found to be a function of substrate doping density and oxygen partial pressure in the

ambient.
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2.2 EFFECTS OF FLUORINE

The most commonly encountered silicon oxidation ambients are, Fluorine, Nitrogen and

Argon which could be used either as part of the oxidation process or for Post -Oxidation

Anneal (FOA).

Fluorine enriched gas ambients have been used for some time to increase the

oxidation and nitridation rate of silicon. The fluorine could be introduced via fluorinated

gas or ion implantation. Morita et al [43-46] examined the effect of adding low levels of

NF3 « 1%) to dry oxygen ambient. They were able to increase the oxidation rate and

observed other indications that the incorporated fluorine tended to neutralize positive

charges at the Si - Si02 interface. The results of the XPS work showed that the fluorine

atoms formed only Si-F bonds and no O-F bonds. Both the linear and parabolic rate

constants of oxidation were enhanced by the addition of NF3 • The fluorine atoms

enhanced the linear rate constant by acting as a catalyst at the interface. It was suggested

that the increase in the coefficient was a result of the large number of Si-F bonds in the

oxide modifying the microstructure of the oxide and enhancing the oxygen diffusivity.

Schmidt et al [47] performed a thorough study of the effects of fluorine on

oxidation rates by adding 1,2-dichlorofluoroethane in various amounts to a dry O2 ambient

for temperatures ranging from 700°C to 800°C, for times 1 to 12 hours, and

concentrations of C2H3C12F up to 0.11% by volume. Their experiments showed enhanced

oxidation in both the linear and parabolic regimes with C2H3C12F concentrations as low as

0.011%. Kim et al [48,49] have examined the effect of fluorine-enriched oxidation on

stacking faults and boron diffusion. In their work they reported a shrinkage of stacking

fault size with the addition of NF3 to their dry oxidation ambient. This shrinkage has been

attributed to an increased vacancy concentration as a result of the fluorine.
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2.2.1 INTERACTION WITH INTERFACE STATES

When fluorine bonds to a dangling weak Si bond, the associated trap state is

moved outside the silicon band gap, thus rendering it ineffective. A model of continuously

distributed trap states has been given by Sakurai et al [50]. They developed a method to

calculate the electronic structures of crystalline and S- -amorphous SiO2 interface with

and without microstructural defects. They modeled the interface as crystalline Si with

<Ill> orientation and amorphous Si02 represented by a Bethe-Iattice as shown in fig. 7a.

The calculations of Sakurai et at suggest that both the perfect interface with a bonding

angle of 1200 to 1800 and the interface with oxygen bonds do not have a state within the

band gap. However the Si 3 =Si dangling bond at the interface gives rise to a state at about

the middle of the Si band gap as shown in fig. 7b. The 0- vacancy and Si-Si weak bond at

the interface produce traps in the band gap whose energies vary in the lower half of the

band gap by changing various bonding parameters. Fig. 7b demonstrates the dependence

of the Si-Si weak bond level including the 0- vacancy level on the Si-Si bond length.

Amorphous
Si02
(Bethe-Iattice)

Crystalline
silicon

Top view of
Bethe-Iattice

~

Figure 7a: Basic model constructed with amorphous SiO 2 represented by Bethe-lattice and Si substrate
with (lll) orientation. Open and closed circles denote 0 and Si atoms respectively. [50]
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Figure 7b: Perfect interface and oxygen dangling bond at the Si-SiO 2 interface having no energy level in
the range between 0.5 eV below the top of the valence band and 0.5 eV above the bottom of the conduction
band of Si. Open and closed circles denote 0 and Si atoms respectively. [50]
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Figure 7c: Si dangling bond, Si-Si bond, and 0 vacancy level at the interface. These energy levels move in
the lower half of the Si band gap with changing bond length d. Open and closed circles denote 0 and Si
atoms respectively. [50]

The commonly observed U shaped distribution as shown in fig. 8a can be

explained with a bonding length distribution. The rapid decrease of the distribution in tig

8a can be attributed to the normal bond lengths being shorter than 2.sA and the longer

bond lengths less likely, The gap states move out of the energy range between O.SeV
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below the top of the Si valence band and O.5eV above the bottom of the Si conduction

band when species H,OH,Cl ofF is bonded to the Si atom at the interface as illustrated in

fig. 8b. As a result a trap whose energy level is outside the band gap can not normally

function as an interface state. Hence this explains the effectiveness of reducing the

interface states by annealing semiconductor devices in H2 Hel or F. Because of the

stronger bonding energy of the Si-F(5.73eV) compared to Si-H bond(3.l8eV) [51],

fluorine bonds at the Si - Si02 interface should be more immune to hot electrons and

show improved resistance to irradiation.

'\

- 100I"
> "CQ)

"C ')I 80 c:
c: ~
~

E
(J c:

Q) ... 60 0...
'+=l(J 0 (Jc: .... ::JQ)

n; x 40 "C.... c:
> - 0

en c..>
en 20z

0 0.1 ~.1 0
Surface Potential (eV)

Figure Sa: Commonly observed V-shaped distribution of interface-trap state density in the forbidden gap
of Si. [SO]
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Figure 8b: Impurity at the Si-SiO 2 interface. If any of H, OH, Cl, and F is bonded to the Si dangling bond,
no energy level exists in the energy range between 0.5 eV below the top of the valence band and the 0.5 eV
above the bottom of the conduction band of Si. Open and closed circles denote 0 and Si atoms
respectively. [50]

2.2.2 FLUORINE EFFECT ON FLATBAND VOLTAGE

Results of high frequency capacitance vs. voltage measurements are shown in fig.

9. As the fluorine dose increases the flatband voltage shift is more severe for the thinner

oxide, due to the negative fixed charge at the Si - Si02 interface and a relaxation of the

bonds.
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Figure 9: Change in flat-band voltage of fluorine enriched SiO 2 vs. the fluonne implant dose. [54]
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2.2.3 QBD' VBD AND AGING EFFECTS
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Figure lOa: Breakdown field of fluorine rich oxides as a function of implant dose. [54]

50 .....-~'..--...---...---~--~---

-E 40
~
:::!-'U 30
Q)
u:
c:
~ 20o

~
~ 10

CD

A--413nm
e----o 41 nm

-----................------ ---- ....------+---

oL.-~'_-..l..---J----J----L.----J
No Implant 1012 1013 1014 1015 1016

Fluorine Implant Dose (cnr2)

Figure lOb: Charge-la-breakdown of fluorine rich oxides as a function of implant dose. [54]
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Fluorine has a small degradation in breakdown field at higher dose as shown in fig.

IDa. The measurements of QBD are shown in fig. 1Db. Low to medium doses of fluorine are

found to have little effect on the QBD of the MOS capacitors. However it is seen that

higher doses of fluorine has a detrimental effect on QBD of the thinner oxides.

The mobility and concentration of ionic fluorine in oxides which have undergone

high temperature processing has been examined to determine if the fluorine acts as a

mobile ion in the oxide by Stagg et al[52]. They reported that the drift mobility of ions is

Si02 dependent, to first order, on the ionic radius. The ionic radius of F- and K+ are

both about 1.33A[53]. Hence to a first order the two should have similar mobilities. Stagg

et al showed that for a 1016 F- implanted sample about 1010 mobile ions were detected.

Hence fluorine which has been annealed in an oxide at high temperature and forms a stable

bond does not act as a negative mobile ion.

Measurements of hot electron degradation as a function of fluorine dose is shown

in fig. 11. This was reported by Wright [54]. The lifetime was defined as the time to 10%

degradation in gm' During the stressing the gate voltage was set to the peak value of

substrate current for a given drain bias. The drawn gate lengths of the transistors were

1.25 J.D11. For high drain voltages, the fluorine enriched oxides showed enhanced

degradation, but at 5V the lifetimes of the fluorinated oxides were about 1000 times

greater than that of the pure unimplanted oxide.
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Figure 11: Transistor lifetime until 10% degradation in gIrl vs. reciprocal of drain voltage. [54]

2.3 EFFECTS OF NITRIDED OXIDES ON DEVICES

Long-term reliability, electrical stability, and the poor diffusion barrier properties

of sub 100A thick oxides has created interest in alternative dielectrics to silicon dioxide.

Of these nitroxides and reoxidized nitroxides appear to be the most promising for future

gate dielectric applications. Nitroxides have shown good diffusion barriers against

impurities [55] and superior hot electron immunity in comparison to thermal oxide[56].

But nitroxides have been reported to have lower charge to breakdown(QBD)[57],

increased trapping[58], and a higher fixed charge than pure oxide[59]. Although extensive

nitridation of the film returns the fixed charge density to the original levels of the pure

oxide, the mobility ofFETs with these gate dielectrics never returns to the value of the

starting oxide[60].

2.3.1 KINETICS OF NITRIDATION

The kinetics of nitridation have been extensively studied although many questions

still remain. Parameters used to model the nitridation process are similar to those used bv

Hori et al[59]. For nitridation in an ammonia ambient, a nitriding species diffuses through
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the gate dielectric from the oxide surface. The oxide then reacts with this species forming

a nitride with a total amount controlled by the temperature and with the nitridation

occurring preferentially at the Si - Si02 interface. Theories put forth to explain the

increased nitrogen concentration at the Si - Si02 interface typically suggest that stress at

the interface enhances the reaction rate. The increased surface nitridation rate relative to

that of the bulk is typically thought ofbeing a result of a higher concentration of the

nitriding species. As a result of the nitrogen incorporation, fixed charge and interface

states increase.

Hori et al[59] have developed a set of coupled partial differential equations to

explain the nitridation process. The diffusion ofthe nitriding species is modeled by

differential equation of diffusion as

iJNix,t) = D ifNiX,t)
a n &2

where Nd(x,t) is the volume density of nitrogen-related diffusing species and Dn is the

diffusion coefficient. Dn decreases at the surface of the oxide for longer nitridation times

but has been modeled as a constant. The differential equation for the nitrogen

incorporation is given as

il(x,t)
I~---'-=kjNix,t){Isat - I(x,t)}a (4)

where I(x,t) is the volume density of incorporated nitrogen, Isat is the saturation value of

incorporated nitrogen, and kj is the rate constant of nitrogen incorporation. Isat IS a

function of the nitridation temperature and increases with increasing nitridation

temperature. The results ofPan and Paquette[61] indicate that the steady state value of

nitrogen incorporation is determined by the temperature of the film, not the pressure of

nitridation, and the surface boundary conditions must be known to solve the differential

equation.
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Defects generated in the oxide from the nitridation have been suggested as being

responsible for the increase in fixed charge density and Dil . The density of the defect state

is expressed by the differential equation

t5NAx,t) = p a(x,t) -k N(x t)a a a ,

where N (x, t) is the volume density of the defect state, P is the probability of fonning a

defect as a result of nitrogen incorporation, and ka is the rate constant of the annealing-

type process.

2.3.2 NITRIDAnON EFFECTS

(5)

Wright et al[62] examined the effect of nitridation conditions on dielectric

properties. As shown in fig. 12, nitridation leads to a decrease in QBD compared with pure

oxides. The peak is similar to the shift in flat-band voltage with nitridation[58] and is a

result of positive charge in the dielectric reducing the Fowler-Nordheim electron tunneling

distance. The peak QBD is higher for high temperature nitridation in comparison to that of

low temperature. Hori et al[63] have demonstrated that the interface integrity ofnitroxides

increases for increasing interfacial nitrogen concentration. The ratio of hydrogen to

nitrogen incorporated in the film has been found to decrease with increasing

temperature[64].
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Figure 12: Charge to breakdown of nitroxide dielectrics. [54]

2.4 EFFECTS OF POST-OXIDAnON ANNEAL (POA)

The effects of inserting an inert anneal in between the oxidation and nitridation on

the dielectric properties have been examined. Anneals such as argon have been reported to

improve the dielectric properties[65]. Fig. 13a shows the effect of these anneals on the

breakdown field ofMOS capacitors. Wright reported that there is no significant difference

between argon and nitrogen for post-nitridation annealing. They also reported as shown in

fig. 13b that the surface mobility ofMOS devices decreases with nitidation time and

begins to increase with reoxidation. Although continued reoxidation will further increase

the mobility, additional oxide grown will decrease the gm of the device. The resistance to

hot electron stressing is shown in fig. 13c. Devices show improvement in lifetime with

nitridation and further improvement with reoxidation anneals.
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0.200

2.5 CHARACTERIZAnON OF THIN OXIDES

To accurately predict the dielectric viability of thin oxides in ULSI devices, there is

an ardent need to fully identify the phenomena ofcharge distribution and interactions at

the Si - Si02 interface. The quality of the oxide is a function of oxidation and annealing

conditions, oxide charges, surface crystallographic orientation, pre-oxidation surface

preparation and a number of factors.

There are four basic types of charges that exist in the oxide or near the Si - 510.

interface namely: interface trap charge CQJ, fixed oxide charge, CQr), mobile ionic charge

CQm) and bulk oxide trapped charge CQot ).

2.5.1 INTERFACE TRAP CHARGE (QJ
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The interface trap charge refers to charge which is localized at the Si - SiO~

interface on sites that can change their charge state by exchange of mobile carriers with

the silicon. The charge state of the interface trap site changes with gate bias if the interface

trap is moved past the Fermi level, causing its occupancy to change. These traps have

energy levels distributed throughout the silicon bandgap with a V-shaped distribution

across the bandgap. The density of these charges can be quantified by the extraction of

Dit . The charge pumping technique as described in [66] can be used to accurately quantify

the Dil . This can be achieved by pulsing the gate of a transistor with a triangular

waveform, and plotting the recombined charge per cycle as a function of frequency on a

semi-logarithmic plot. One obtains a straight line, the slope of which can be used to

determine the interface state density by employing the equations below.

The slope of Qu with respect to log f is give~ by

dQss =2qktDil A
a

.
dlogf loge

(6)

In as grown oxides QI depends on the oxidation temperature, oxygen partial pressure, and

silicon substrate orientation, and is found to decrease with increasing temperature. The

two most effective annealing techniques employed in the reduction of QI are low

temperature post-metallization anneal and high temperature post-oxidation anneal. It is

believed that the hydrogen diffuses to the Si - Si02 interface where it reacts chemically

with traps thus rendering them electrically inactive.

2.5.2 FIXED OXIDE CHARGE (Qr)
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The fixed oxide charge is located within 3sA of the Si - Si02 interface in the so­

called transition region between silicon and Si02 . These charges do not change their state

by exchange of mobile carriers with silicon as occurs in Qt. The Qf charge is

predominantly positive and typically viewed as a sheet of charge. The lowest values of Q1

are obtained at high oxidation temperatures. A rapid rate of cooling is also known to

reduce Qf' but this quenching activity is impractical and may lead to warpage. For a given

oxide thickness the total fixed charge Qf is typically defined as

(7)

where Tax is the effective oxide thickness, and r<x) is the spatial distribution function of

the fixed charge in the oxide.

2.5.3 MOBILE IONIC CHARGE (QIlI)

The mobile ionic charge is commonly caused by the presence of ionized alkali

metal atoms (Na+ ,K+). This charge is located either at the gate-Si02 interface or at the

Si - Si02 interface. It is found to drift with applied gate bias even at room temperature,

since the ions are extremely mobile in Si02 . The degree of incorporation of the mobile

ions in the gate oxide is dependent on the cleanliness of the fabrication process. The

presence of these ions can in long term alter the threshold voltage ofthe MOS device. The

mobile ionic charge density which ranges from 1010 to 1012 I cm2 can be measured either

by C-V temperature biasing method or using the triangular voltage sweep (TVS) [67-69J

Methods of eliminating mobile ions includes growing the Si02 in HCI or TCA

which neutralizes the alkali metals upon arrival at the interface. Also phosphosilicate glass

used in device fabrication can act as a getter for mobile alkali metals.

2.5.4 OXIDE TRAPPED CHARGE (Q,t)
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Bulk oxide traps can be located at the gate-Si02 interface, the Si - Si02 interface,

as well as deep in the oxide. The traps are associated with defects in the Si02 , such as

impurities and broken bonds. Such traps are usually uncharged, but can become charged

when electrons and holes are introduced into the oxide via mechanisms such as avalanche

injection and ionizing radiation.

2.5.5 FOWLER-NORDHEIM TUNNELING MECHANISM

Thin gate oxide wearout is one ofthe major reliability concerns for MOS

integrated circuits. The mechanism of oxide time-dependent breakdown has been

attributed to charge trapping [70]. It has been demonstrated that there exist a close

correlation between oxide breakdown and hole trapping by energetic electrons injected

into oxide via Fowler-Nordheim (F-N) tunneling[70].

The general consensus in the literature is that the reliability ofthin oxides improves

with decreasing oxide thickness [70]. However all data presented so far has been obtained

using the same techniques used for thick insulators which can lead to serious errors and

overestimations. The coventional breakdown test assumes that oxide breakdown causes a

large and sudden increase in electrical conductivity and VBD is determined from a large

jump in the measured current-voltage ramp.

E

Metal

-w--''----1

x
Figure 14: Fowler-Nordheim Tunneling Diagram
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From quantum mechanics, the transmission probability is given by

,

2 -fk(x)dr

T(x) = '110 =e 0 and E Y- '" '" - '" III- -"x, qlB-qlM- 'f'0

'II

where k(x) is the vector associated with a particle in the barrier, Y is the potential energy,

E is the total energy. Assuming a single parabolic energy band model at X=O, Y- 8 x'= 8 F'

thus at.any X in the barrier,

v- 8 = W - q8 - q'Y - 8x ax 1\.0 X

W-qX -8asY-'" ~o X~d~ d= 0 x<:Ix ' q80

It is known that

Jx = Lq~T(x)f
all-k

where fis the Fermi-dirac electron distribution function defined as f = (&1_& )/kT
1+e ' ,

h 2k 2 h 2k 2

withGF = Gx =--~- = ~. From the cold electron approximation when
2m 2m

k ~ kF => f (Gx) =1 and when k > kF => f (Gx) = O. Integrating the Jx over the first

Brillouin zone yields

J =_2_!.d3kq(tzkx)T
x (211/ j m·

substituting d 3k = dkxn{k/ - k/), ¢B,8x into above equation implies that

hence the Fowler-Nordheim tunneling current can be approximated by
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c-0 3
3 2 SIr'/2m qp!i _lir

J -_ q GO e 311lio 2 Ii= A Go e 0

FN 16,rfuPB
(9)

where ~B is the barrier height, Gr is the critical electric field for tunneling, Go is the electric

3

field across the oxide, A = ;
16 h~B

Figure 15a shows the I-V characteristics before (solid) after stress (dot-dashed) for

various oxide thickness, ranging from 51 Ato 97Astressed with voltage ramp of 5mV/s

increasing until IJFN Itunneling current reaches O. 1AIcm2
, corresponding to an average

oxide field of- 12MV/cm. It is seen that the low-field leakage phenomenon becomes

10-s r--------.,.__....,...--r--...,.........,
10-6

10-7

10-a«-~ 10-9

10-10

10-11

10-12 1L--...liI---L3-'--..I..o&........5I1..-....IoIoIo---'-7-~ .........-...----'11

Gate Voltage (V)

Figure lSa: Dependence of the leakage current on the oxide thickness. The oxide thickness was: 5.1 nm
(curve a), 6.0 nm (curve b), 7.5 run (curve c), and 9.7 run (curve d). [70]
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stress was 2.5 V (curve a), 3 V (curve b), 3.5 V (curve c), 4 V (curve d). and 4.5 V (curve e). [70]

increasingly significant in very thin oxides, while the predominant effect of electrical stress

in thicker films is electron trapping as indicated by the positive voltage shift.

When the constant voltage stress is applied to thin oxides as done in TDDB, it is

found that the stress induced leakage begins to occur at low levels of electron fluence and

long before catastrophic failure as shown in fig. ISb.

2.6 TIME DEPENDENT DIELECTRIC BREAKDOWN

Most conventional TDDB cannot detect the occurrence of stress-induced oxide

leakage because measurements and breakdown determination concentrate in the high

current and high-field region. Only repeated I-V measurements at low voltages will reveal

the oxide leakage. Devices such as DRAMS, £2 PROMS and SRAMS, while sensitive to

leakage currents at low fields will fail when the oxide becomes sufficiently leaky. Because

oxide leakage always precedes destructive breakdown, it becomes the dominant failure

mode of thin oxides. It is more relevant from device application viewpoint, to detennine
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the onset of a critical leakage rather than catastrophic breakdown. It is believed that thin

oxides have localized weak spots that probably come from imperfections such as particles

and surface roughness. High-fields stress destroys the integrity of thin oxides at these

weak spots by changing the oxide physically. This change leads to a reduced tunneling

barrier and causes a local enhancement of the tunneling current that appears as the stress­

induced oxide leakage at low fields.

The reliability of thin oxides is one of the most important problems in MOS

integrated circuits. Furthermore, since the gate oxide yield and the time-dependent

reliability of an integrated circuit is defect related, statistical modeling is paramount for the

prediction ofyield and lifetime of devices. As reported by Jack C. Lee et al [70] the

concept of modeling oxide defects as IIeffective oxide thinning" ~ox and describing the

defect density as D(M ox) can be employed in the evaluation of thin oxides for the

determination of stress time, stress voltage and stress temperature required for screening

to meet a given failure rate.

2.6.1 INTRINSIC BREAKDOWN MODEL

There are numerous models regarding the breakdown mechanism, including the so­

called hole-induced breakdown model [71,72], the electron trapping breakdown model

[73], and the interface trap generation and resonant-tunneling induced breakdown models

[74]. Experiments have shown that the lifetime ofan oxide is determined by the time

required for the hole fluence Qp to reach some critical value

Q a. J t::::::> Q a. e-01E",
p m p

where Jm a. e-B1EttJ is a more compact form of the Fowler -Nordheim current density

previously developed. The time required to accumulate Qp (tBD) has E- field dependence

of tBD a. eOIE
.. from graph of fig. 16 which illustrates a plot of t BD vs. 1/Ear. Furthermore
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the electric field acceleration factor defined as the tangential slope of the log (t BD) vs. Eax

curve, can be expressed as

-d(log(tBD)) G
fiE = 2

dEox 2.3E ox

which implies that B cannot be a constant but proportional to 1/EO%,
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Figure 16: log (tBO> versus l/Eox for a 79A gate oxide. [70]

2.6.2 DEFECT RELATED BREAKDOWN MODEL

17.4 20.0

Discussion so far assumes small area oxide samples in which intrinsic breakdown

dominates. However in VLSI circuits oxide yield and reliability are determined by defect­

related breakdown. Defects that result in localized weak spots in the oxide could lead to

effects such as localized high field, higher trap generation rate, or higher current density at

these localized areas.

Using the effective oxide thinning by an amount LlXox as shown in fig.17a and

modifying the intrinsic breakdown model[76]
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(10)

where XeJT :: X~ - M~ G - 350MV, Xox is the oxide thickness, AX~ is the amount of

oxide thinning at the localized defective spot, '0 is detennined by the intrinsic breakdown

time under an applied voltage V~. Fig. 17b shows a plot of the dependence of the time to

breakdown of a given oxide sample under an oxide field E~ and the severity of defect

AXox/X~. '0 is 1x 10-11 s and is fairly constant for oxide thickness such that

X ox -Xl» t where Xl is tunneling distance and A. - 15Afor electron in SiO2 .

Figure 17a: Oxide defects modeling as effective oxide thinning by dXox• [70]
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(11 )

Fig. 18a shows the time-dependent dielectric breakdown (TDDB) data for

O.25mm2 MOS capacitor of 107A under a stress bias of 13.2V. Since tBD can be related

directly to DXox through (5) one can construe cumulative failure versus D(Mox )' Fig.

18b shows TDDB data for the same sample set under various oxide fields. The predicted

theoritical curves we generated by [77]

'

-t--t--(·-/-t-)":':"'(I_-:":vOII-/:':":'vCllI~I)1
Bm = BD! To BD!

And as seen in fig. 18b the D( M ox) model prediction agrees quite well with the

experimental results. Using the DXox model it can be shown from (5) that the field

acceleration factor is a function of the oxide defect[77], hence
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2.6.3 mDB( tBD ) PREDICTION

To project the lifetime of the oxide, the cumulative defect density as a function of

effective oxide thinning is first deduced from TDDB data as shown in fig. 18b. For a given

oxide area, the percentage failure below a certain tBD , P(t' ED < tBD) is equal to the

probability of finding a defect with an effective oxide thinning larger than D(.:U"ox ),

P(M~ > Max) which implies that

P(t~D <tBD)=P(M~ > Max)

P(M~ > M ax )= 1- P(no defect with effective thinning> D(.:U"ox))

Assuming defects are randomly distributed, using a poisson distribution to estimate

probability [28], then

P(no defect with effective thinning> D(.:U"ox )=e-AD(t.x.,.)

where A= oxide area, D(DXox) is the area density of all defects with an effective thinning

larger than DXox. Combining above equations yields

P(I BD < tBD )=I-e-AD(t.x.,.l

, 1
P(t BD < tBD) =1- ( )11

I+ADS 3

where s is a measure ofthe degree of clustering.
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Figure 19: Defect density as a function of ax ox' D(axox) using Gamma distribution for the data in
Figure 18a. Once D(ax ox) is derived for a given process, many reliability parameter such as yield, failure
rate, and optimum screen condition can be determined. [70]

Fig. 19 shows an example of the defect density D{AXox ,) deduced from the measured tBD

distribution data of fig. 18b using equations above with s=O.6. The decreasing trend of the

defect density with AXox explains why larger capacitors are more likely to incorporate

defects with larger Max and exhibit shorter tBD IS.

2.6.4 RELIABILITY PREDICTION

With the D{AXox ) curve, one can predict the TDDB curves and failure rates for

any oxide area and stress voltage. The data in fig. 19 can be curve fitted to equation

ID(Max ) =a1ebl.x.. +a2e
b21lX"1 (13)

for data in fig. 9 at=13.1, a2=6.3, bt=-O.26 b2=-O.11

Using this D(LiXax ) equation, the cumulative percentage of failure F which is a function of

the oxide area, the oxide field and time can be expressed as
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where DXox is related to Vox, through tBD equation above. As shown in fig. 20a&b, the

solid curves, which are the cumulative failure curves calculated using D(M ox) agree well

with the actual TDDB data for different stress voltages and oxide areas.
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Figure 20: Cumulative percentage failure versus time for (a) different areas and (b) different stress
voltages of 1enAoxide. Solid curves are derived from the defect density and LUox models. [70]
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2.6.5 FAILURE RATE

The failure rate is an important reliability parameter. One common specification for

reliability is to have a failure rate of less than 0.01 % per 1000 device hours ( i. e. 100

FIT's) [78] before shipping to the customers. The failure rate A.(t) as defined as the rate of

increase in the cumulative percentage divided by the percentage of remaining good

devices.

Xax= 107A
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Figure 21: Failure rate versus time for (a) different areas and (b) different stress voltages of 107Aoxide.
Solid curves are derived from the defect density and.1X ox models. [70]
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ldP
A(t)=:--

l-P dt

combining previous equations yields

(14)

Fig. 21 shows comparison between calculated failure rates and experimental data, which

shows reasonable agreement. Hence with the above equations one can predict the TDOB

and failure rate behavior for different oxide areas and different applied voltages without

additional measurements. The statistical model has been applied to screening which is an

effective technique for eliminating early failure devices. Fig. 22 shows the theoritical

failure rate curves at 5V predicted from model for data shown in figs 18-20. For example

a product with a total oxide area 0.0 Icm2 would not meet the failure rate specification of

0.01% per 1000 hours until after lOOyears. Only then would a sufficient number of weaker

devices have died to meet the failure goal. As the upper axis offig. 22 shows one can

accelerate the failure by applying higher screening voltage of8V for lmin, or 11 V for

20ms, which is oxide thickness dependent.
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Stress lime (min) at 8 V
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Figure 22: Theoretical curves of failure rate and cumulative percent failure for different areas at 5 V
op<73tion. These cmves are used for screening and screen yield optimization. [70]
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2.7 THE MOS CAPACITOR

The simplest device in the CMOS technology is the MOS capacitor, consisting of

Metal gate typically made ofpolysilicon, oxide and a semiconductor as shown in fig. 23a.

The electron energy band diagrams ofMOS capacitors using both Nand P substrates are

also shown in fig. 23b,c&d

Si Substrate

Figure 23a: An MOS (Metal Oxide Silicon) capacitor. [86]

N-Type

- . Ec
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• Ev
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Figure 23: Energy band diagrams for ideal MOS capacitors for: (b) accumulation; (c) depletion; and
(d) inversion [86]
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Ec and Ev are the conduction and valence bands edges, Ej is the intrinsic level which is

as the center ofthe energy bandgap. For the n-type semiconductor the Fermi level is closer

to the conduction band whiles in a p-type material it is closer to the valence band.

The MOS capacitor structure has been subject to extensive studies over many

years and a detailed study and related history can be found elsewhere [79]. Thus my

discussion will encompass the characteristics ofthe MOS capacitor relevant to the

gradual development ofthe MOS transistor theory.

2.8 MODES OF OPERATION

2.8.1 FLATBAND

At zero applied gate voltage condition the Fermi levels in the bulk silicon and the

gate material line up . But this condition is achieved only when a given gate voltage has

been applied namely the flatband voltage. The charges in the oxide and at the Si - SiOz

interface acts in a manner to reduce the work function difference between the gate and

bulk semiconductor hence a reduction in the flatband voltage required to align the Fenni

levels. Let Q= Q", +Qo/ff +Q;t +Q[ be the total charge of the MOS system then the

flatband voltage is given as

(15)

2.8.2 ACCUMULATION

As Vgb decreases below VF1J i.e. more negative, the negative charge in Vgb will

cause a negative change in Q; which must be balanced by a positive change in Q;. Thus

holes will accumulate at the surface as shown in fig. 23b giving rise to the conditions:
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2.8.3 DEPLETION AND INVERSION

Assume the case in which Vgb increases above VFE' the total charge on the gate Qg

will become more positive than the value at flatband. The positive Qg must be balanced by

negative change in Q: to satisfy charge neutrality. Hence Vgb > VFB' Q; <0, 0< rPs <rPf

IfVgb is not much higher than VFB' the positive potential at the surface with respect to the

bulk will simply drive holes away from the surface leaving it depleted as illustrated in fig.

23c.

As Vgb is increased further, more acceptor atoms are uncovered and rPs becomes

sufficiently positive to attract a significant number of free electrons to the surface from

electron-hole generation in the depletion region. Eventually at a significantly high Vgb the

density ofelectrons will exceed that of holes at the surface leading to the condition of

"surface inversion" as shown in fig 23d.

2.9 ELECTRIC FIELD EFFECT
ATSENUCONDUCTORSURFACE

Assuming that the MOS system is in thermal equilibrium, then the electrostatic

potential in the system lj), can be related to the total space charge density p by Poisson's

equation

Since the total charge in the material is the sum offully and partially ionized species is

given by

But deep in the bulk of the silicon the electrostatic potential and electric field are

approximately equal to zero thus:
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At the surface the electrostatic potential 'S increases with increasing gate voltage can be

seen as a direct measure ofthe amount ofband-bending occurring at the surface of the

silicon. Assuming complete ionization of carriers implies: ND+ = ND , NA- = N
A

and thus

- q(;,-;) q(;,-pl

Near the surface the carrier concentrations are given as: n =n;e kT and p =n;e kr ,

hence the Poisson's equation could be written as

d
2

, =_2qn; {Sinh(-q'F) -sinh[q(,- 'F)l}
dx2

8 s kT kT'

Letting U =q, , UF= q'F , Us = q,s and sinh (UF)= -sinh(UF)
kT kT kT

(16)

1

~ d2~ =-!.dsinh(U-UF ) +sinh(UF )] where LD =( 8i~)2 is the intrinsic Debye
dx LD 2~q

length.

Integrating from deep in bulk of the substrate to the surface of the silicon:

which implies that the electric field at the surface is given by:

I

kT{ 2 }2Ex =- --2[cosh(U-UF)-cosh(UF)+Usinh(UF)]
q LD

(17)

By Gauss' law the total charge density in silicon is given by: Qr = -8sEs = Qnv + QSD

where Qnv is the charge density contained in the inversion layer and QSD is the charge

density in the surface depletion layer. Using the previous equations Qr can be formulated

as
1

QT =-2qn;LD{2cosh(U - UF)- cosh(UF ) +Us sinh (UF)}2 .
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If the inversion layer has not been formed yet, then the surface is intrinsic. As a result

¢Js =¢JF' and Qnv=0 then:

I

QSD = -2qnj LD{2[1- cosh(UF) + UFsinh(UF)]}2

If Qnv :t 0 then:

A similar expression could be developed for Qp (positive) charge density associated with a

p-type surface inversion layer in an n-type substrate.

Grove et al[80] have shown that, for high values of surface potential, practically all

of the charge density associated with Qr lies within the inversion layer . The physical

implication is that once an inversion layer has been formed any additional surface charge

resulting from increased gate voltage will lie within the inversion layer and hence increase

surface conductance.

At strong inversion: ¢s == 2¢F

1

=> Q =Q == -2qnL [4q¢JF sinh (q¢F )]2SDmu; r,D kT kT'

under typical conditions such that q¢F > 1=> sinh (q¢JF ) ==.!.e q:: thus approximating
kT kT 2

IQSDlIlL1t == [4q8sNA¢F]i =-qNAXdl (18)

where Xd = 2nj LD {2[cosh(Us- UF) - cosh(UF)+ Us sinh (UF)]}i
NA

At strong inversion conditions the depletion width reaches a maximum and can be

approximated as
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and the inversion layer charge can also be approximated by:
q;,

Qn =qN[ == .fiLDn/iiT

2.10 CAPACITANCE CHARACTERIZATION

( 19)

(20)

As discussed earlier the width of the surface depletion region for an MOS structure

in equilibrium will remain virtually constant after the formation ofa surface inversion layer

even at higher gate voltages. However if a condition of non-equilibrium exists where the

charge density in the inversion layer is unable to follow a high frequency A. C. variation of

the applied gate voltage, it follows that the capacitance under inversion conditions will be

a function offrequency.

2.10.1 DEPENDENCE OF GATE TO SUBSTRATE
CAPACITANCE ON GATE VOLTAGE

The applied voltage is related to the surface potential ¢s' the voltage across the

insulator Vox and the gate-semiconductor work function ¢MS by

Va =VOX +¢MS +¢s

assuming charge neutrality and recalling VFB equation implies

v, - v: =,/,-~
a FB If/. C

ox

but the gate to substrate capacitance is given by
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dfJo dQr C dQss .
where Car =-- , Cs = - d,l. and ss =-T are the made, surface space charge and

dVOJC 'f's ¢s

interface charge capacitance respectively. Combining these expressions and assuming that

Css =0 the gate to-substrate capacitance could be written as

(21)

2.11 FREQUENCY DEPENDENCE OF CAPACITANCE

Under inversion conditions, the minority carriers in the substrate must provide the

charge required to terminate the gate field. If the response time of the surface inversion

layer is denoted by Tinv , then the inversion layer can follow a signal of frequency f applied

to the gate if OJ!~ 1/ Tinv , however for frequencies such that OJ!~ 11 Tinv , the inversion layer

will not follow the gate signal and a non-equilibrium condition exist. Hence while the C-V

curve associated with an MOS capacitor will be independent of frequency under

accumulation and depletion conditions for all frequencies of practical interest this will not

be true when a surface inversion layer is present.

2.11.1 CGS AT LOW FREQUENCY

For low frequencies such that OJ!<< 1/ Tinv the charge in the inversion layer can

follow the gate signal and a condition of thermal equilibrium will exist. This follows that

the capacitance associated with the surface space charge region Cs can be obtained by

differentiating the Qr equation presented earlier.

Hence at low frequency

C = Esq(ps -ns+ND -NA )

s Qr
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Figure 24: MOS capacitance-voltage curves. (a) low frequency; (b) high frequency; and (c) deep depletion.
[86]

Under accumulation conditions the capacitance is approximately equal to Cor'

When the surface depletion region forms, the space charge capacitance adds in series to

the dielectric capacitance; consequently, the total gate-to-substrate capacitance decreases.

At inversion the charge in the layer follows a low frequency gate signal and the

charge in the surface depletion region will remain constant at its maximum value. Hence

for low frequency gate signal dQsv ~ 0 as a result any small-signal variations in the gate
dVG

field will now be accommodated by fluctuations in the charge stored in the surface

inversion layer and gate-substrate capacitance will rise again and approach cQZ •

CGS AT LOW FREQUENCY

For frequencies such that f.» 11 "/IV' the charge in the surface inversion layer does

not follow the gate signal thus resulting in non-equilibrium conditions. Qnv remains
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constant for a given D.C. bias dQnv ~ O. The high frequency gate-substrate capacitance
dVa

will be equal to Cox in series with the minimum capacitance associated with the maximum

width of the depletion region. The capacitance of the surface space charge region when

the depletion region is at its maximum width will be denoted by C
SDmin

which can be

expressed as

thus yielding a high frequency capacitance as

(23)

2.12 THE MOS TRANSISTOR

P-Substrate

NMOSFET

Figure 25: An MOS Field Effect Transistor (FET).
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The MOS transistor is fabricated by attaching two p-n junctions at both sides of

the MOS capacitor. As seen in fig 25 , it hence becomes a four tenninal device: gate,

source, drain and substrate or body. The gate is typically made ofpolysilicon material

whiles the two n+ regions for an NMOS are isolated by the substrate and no current flows

unless the surface ofthe substrate is inverted by an adequate gate voltage. At this point an

inversion layer is formed as described earlier, and so that positive voltage on the drain can

attract electrons to flow from the source to drain.

2.12.1 BAND STRUCTURE AT DRAIN EDGE

At zero drain bias, only a built-in potential Vb; exists between the p-n junction to

counter balance the diffusion force; hence we have p-n junction equilibrium and the Fenni

level is constant along the channel. When Vg, > Vr , the band bends 2<PB i.e. ¢, =2<PB, thus

making the conduction band Ec closer toEF as shown in fig. 26a.

Now if a positive Vd,s is applied at the n+ of the p-njunction, the reverse bias will

create a larger potential barrier (<PB +Vdr ) across the p-n junction, thus lowering the quasi­

Fenni level for electrons (EFn ) by Vd,s and placing the system in non-equilibrium. Therefore

the band bending is not enough to bring Ec near EFn to cause inversion as seen in fig 26b.

As a result higher Vg, must be applied to bend the bands by (2<PB+Vd,s) and lower the Ec

under the gate closer to EFn as shown in fig. 26c. Hence the gate voltage for inversion to

occur in a MOSFET channel is a function of the applied drain voltage.
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(b)

Figure 26: Energy band diagrams near the drain of NMOSFET with different gate and drain bias
conditions: (a) Vg > Vt' Vd = 0; (b) Vg < Vt(Vd)' Vd >0; and (c)Vg > V~Vd)' Vd >O. [5]
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2.12.2 CHANNEL CROSS-SECTION FOR NMOSFET

/
I
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-- EiS

ECB

---;;;----- EiB
."
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_--- EVB,-
"t--/------- EFN

/

Figure 27: Cross-section of N-channel band structure.

'Ps ='Pro +V(y) hence

• • • J...(;(x)-;.) J...(;,-;(x»)
which implies that np =nje;:]' and Pp =nje;:]'

At the surface x=O and ¢(x) = <Ps. <Pp = <Pn hence the condition ofthennal equilibrium can

be written as

The electron current density is then given as

_ ihp _ kT
I n - qnp/JnE +qDn- where Dn - IJn-

0' q
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enp a,p iJfP inp &/J ~ 1But also - =__+__n J =-qll n _n and Q =-q n (x y)dx0' &/J 0' &/In 0" n rn p 0' n 0 p ,

knowing that Qs =Qn +QB and Vgb =Vox + rPgs + rPs then

Q = -C [v -v. - m - V(y)- QB(y)]
n ox gs FB "t'so C

ox

2.12.3 LONG CHANNEL NMOSFET MODEL

(24)

The assumptions made for the long channel devices is that mobility is constant, A

=0 implying zero bulk charge QB=O, for long device (L» Xd ) the gate length is much

longer than the depletion width and that it is operated in strong inversion. For such a

device

which implies that

including bulk charge ( i.e. A:;eO) implies that

where
I

QB(y) = -).Cox (2rPF +VSB +V(y»2
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which can be written in a compact form as

MOBILITY CONSIDERAnONS

Recognizing the fact that the channel carriers encounter collisions resulting in

scattering which influence the carriers mobility thus

1 1 1 1
-=-+-+-,
fJn fJo fJs fJc

(25)

(26)

after mathematical manipulations the mobility in the drain current equation can be better

modeled as

=_--:::,....--_----:fJ-'o'- ___=_

1+ e,[vGS -V, +2A(Vsa +2 91)]

Hence for the Long channel NMOSFET the drain currents could be approximated by:
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2.12.4 SHORT CHANNEL NMOSFET MODEL

r
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/
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p
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Region III Vo

Figure 28: Graphical representation of "Charge Sharing Phenomena".

When the MOS transistor is scaled downward to achieve shorter gate lengths to

increase performance and packing density in VLSI applications, two dimensional effects

near the edges of-the smaller transistors become significant in the static and dynamic

characteristics of the short channel MOSFETs. The effect of decreasing L causes more

depletion of the region under the inversion layer. This deeper depletion region is

accompanied by a larger surface potential which makes the channel more attractive for

electrons or holes. Thus the device can conduct more current than what would be

predicted by the long channel theory derived earlier.

In the short channel device using the "charge sharing phenomena", the charges in

the depletion regions I&III in fig. 28 are generated by the field lines from the source and

drain thus controlling those charges. Hence the charge directly controlled by the gate
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voltage is that in the region II. As a result the bulk charge QB2 (V) depleted by the gate

voltage is greatly reduced.

The long channel drain current derived earlier could be written in a compact form

for typically employed in device modeling as

SHORT CHANNEL EFFECT

Let the depletion widths at the source be Xs and the drain be XD and assuming that

Nd » Na then
1 1

Xs = a(tPB +VSB )2 and Xd = a(tPB + VSB + V<tr)2

~
k8 kT NN

where a= _s_o and tPB =-In A2 D
qNA q n;

AT SOURCE END: (Xs +XJi =(~+Yl)2 +X1
2

AT DRAIN END: (XD+ Xi )2 = (L-u2+Xi )2 +x/

The bulk charge in each region due to the charge sharing phenomena can be written as
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after manipulation and solving, the change in threshold voltage due to the short channel

effect is given as

(29)

2.12.5 NARROW WIDTH EFFECT

Chanstop Charge

Depletion Region

Figure 29: Realistic picb.Ire for a device with bird's beak effect on active area.

In the MOS fabrication process the field oxidation scheme is used to isolate noo­

communicating devices and also for the minimization of cross-talk. The thinning of the

field oxide as you approach the active device region gives rise to the characteristic "bird's
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beak" shape, which consequently causes the effective width of the device to differ from the

mask coded width. As seen in the above figure the depletion region is not limited to just

the area directly below the thin oxide. This is because some ofthe electric field lines

emanating from the gate charges terminate on ionized acceptor atoms on the sides, which

constitute what is called the "fringing field". Assuming that the side parts of the depletion

region have quarter circle cross-section [82] then

but

~W == w[1 + 7tX"d(Y)]
eff 2W

Xd(y) =~VSB + ~ + 'Pso

Hence evaluating in the same manner as the short channel, the narrow width contribution

to the threshold voltage is expressed as

(30)
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2.12.6 DRAIN-INDUCED BARRIER LOWERING

G

o5
~. I , ,

I \ \

----/ -'..J'-----OV
Edge of depletion regiOnP - - - - - 5 V

Figure 30: Shape of the depletion region in a short-<:hannel MOSFET at zero and high drain bias. The grey
areas indicate the charge shared by the gate and the junctions at zero drain bias.

The previous derivations for short channel MOSFETs had been obtained at low Vds

values. But if Vds is increased, the depletion region width around the drain will widen. This

in tum will cause a decrease in bulk charge QB and thus further decreasing Vr . Hence for

short-channel devices, Vr becomes a decreasing function of Vds'

Many attempts have been made to model this effect in short channel MOSFETS.

The method of "voltage-doping transformation" which assumes that the potential

distribution along the channel varies gradually with distance [83,84], has proven to be the

most accurate to date. In this approach

If/(x,y) = lfI1(X)+ lfI2(y)·

Using the boundary conditions of lfI, (0) =rPB + V, and '1/, (0) =rPB +Vd where rPB is the

built-in potential, it can be shown that

IJ'I/ _2 Vds * d 'f'" - () ha 2 - IF' an 1 'fJc - '1/1 Y t en

I

Vds *=(Vd- V,) + 2( rP8 +~ - rPc )+ 2[(rPB+~ + rPc )(Vd + rPB- rPc)F
thus substituting the above equations into 2-D Poisson's equation yields
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This equation eventually reduces the 2-D Poisson's equation to a I-D form. Physically

this means that the influence of the lateral drain-source field on the potential is equivalent

to and can be replaced by a reduction of the doping concentration according to previous

equation. The contribution to threshold voltage decrease due to DffiL phenomena has

thus been approximated by

Hence the threshold voltage of sub-micron MOSFET considering all the 2-D

behaviors can be accurately modeled as

(31 )

·2.12.7 SUBTHRESHOLD REGIME

t+---L--~

n+ Drain

I--~----~I--"" yy=O y=L

Figure 31: A cross-sectional schematic of a transistor illustrating subthreshold conduction.
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The previous discussions of the MOSFET characteristics addressed the conditions

when the applied gate voltage exceeded the threshold voltage of the device and the device

completely turned on. But another mode of operation is the weak: inversion mode in which

the Si surface has changed to n-type, but is not strongly inverted, meaning minority carrier

concentration is still lower than the bulk doping concentration. Unlike in the linear region

in which the onset of strong inversion occurs and the minority charge density increases

with Vgs , in the subthreshold regime, the minority carrier concentration is too low to

change the band bending significantly, thereby resulting in a low electric field along the

channel. Both the lower carrier concentration and low field region makes the E-field

assisted drift current much less than the diffusion current, hence the subthreshold current

is dominated by the diffusion component given as[85]

where
qAt. ..i.[P.-(2;,+V+V.SI)] XJd &

F == ;; -1 +e~ and also Qn = -q 0 n( ¢J) iJ¢Jd¢J which implies

Q(At. V) =Q Q =-C (At. ) kT ';'1;,-(2;"V'V~)J - AC J.. _kT
s 'I's' n + B D 'I's e ar 'I's .q q

TT TT v: v: At. (Qs +Qit) hi h' I' hYaB =Yas + SB = FB + 'I's - W C Imp les t at
Car

v, -V, 3 m
At. = as m +- At. + v: + (1 - - )V
'I's n 2 'I'F SB n

where n =1+ CD +Cit m =I + CD and n - m =Cit . Substituting the above equations
Car' Car Car

into the current equation and after manipulations yields
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(33)

SUBTHRESHOLD SLOPE

Because ¢Js is roughly proportional to Vgs in the subthreshold region[86], Itis is also

exponentially dependent on Vgs ' The subthreshold slope is then defined as

s = 81og1Ds -I =2.3 kT[1 + CD +Ci/ ](MV)
t ~s q C~ ~c

A large St measuring a gradual slope of10g1<is vs. Vtis results in a significant

amount at the off state. Also an advantage of thinner oxide is to reduce St thus increasing

Ids. Also the gradual slope St can be used to monitor the incidence of the Drain-Induced

Barrier Lowering phenomena since increased Vtis causes an increase in the subthreshold

current conduction due to barrier lowering effects.

2.13 HOT CARRIER EFFECTS ON RELIABILITY

It has long been recognized that hot-electron/hole-induced device degradation can

pose a limit on device scaling. This problem is more serious for an N-channel MOSFET

than P-channel due to the higher impact ionization rate of electrons as compared to holes.

Device lifetime may be predicted reliably using the substrate current I SIIb' which if

unchecked can overload the substrate-bias generator, cause substrate potential fluctuations

or electron injection into the substrate and induce snap-back breakdown and CMOS

latchup [87,88]. Studies[89-91] have produced convincing evidence that the generation of

interface traps (surface states) is the dominant cause of MOSFET degradation.
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Figure 328: Schematic of hot-electron effects in an n-ehannel MOSFET.
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Figure 32b: Scbematics of channel potential and hOOzontal electric field of a MOSFET biased at saturation
region.

2.13.1 SUBSTRATE CURRENT

For an N-channel MOSFET the electrons in the channel near the drain end

experience a very large field which can cause impact ionization resulting in the generation
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of electron-hole pairs via the process of weak avalanche multiplication. The generated

electrons are attracted to the drain adding to the channel current, the holes are collected

by the substrate contact resulting in the "substrate current" as shown in the fig. 32a above.

Analytically the substrate current can be expressed as [92]

l SUB = (M -l)/dI

I dI is the channel current and M is the avalanche multiplication factor given by

M= 1
I-fadx

where a. is the impact ionization coefficient. For low level avalanche multiplication M=1

hence the substrate current equation reduces to

As explained in reference [91] a. is a strong function of peak E-field at the drain edge
B

given by aCE) =Ae E(x) where A and B are constants obtained by fitting data to

equations above. Hence can be expressed as

B

I = IdlAEmu.e E_

SUB B[dE(x)/dr]

v -V I I
where Emu = tis d.uIt, / = O.2Tox3X/i. and Lff is the length of the LDD region.

/+4

(34)

(35)

As shown in my experimental graphs 1m has a maximum at low gate voltages (= O.4Vtis )

where a significant number of carriers are available. The device lifetime dependence on

I stdJ can be expressed in a power law relationship as[94]

I"UFll = aUSUBrb

I·
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2.13.2 SYMPTOMS OF DEGRADAnON

The hot carriers, when injected into the oxide, can be trapped and also result in the

generation of interface states. MOSFET degradation shows up in at least three quantities;

a shift in the threshold voltage[93], a shift in the subthreshold current swing M , [9] and a

reduction in the transconductance in the linear or saturation region &gift [10] as shown in

the figures below.

100..-------------------,

Xox (nm) Vos(V)
o 100 35.8 71.8

o!QQ 32.1 8.51.8

¢!QQ 11 6.31.8

t1 100 26.6 71.8
'il 100 33 8.71.8

10S
0.1 .......-----'----......---.........-----"

101

n-MOSFET
Vos =3 V

10
>
E-

1Q3
Time (sec)

Figure 338: &Vth increases as t" with n- 0.65 in this figure. [70]
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The device lifetime power law relationship mentioned earlier when plotted on a

log-log scale as shown above yields a straight line. Thus showing that I SUB is a good

indicator of the peak E-field and also that the lifetime is a strong function ofdevice

channel length.

Controlling hot carriers in today's technologies involve the implementation of

Lightly Doped Drain (LDD) engineering in the attempt to limit the extent of the high field

region. As shown in the fig. 34 below the peak field at the drain edge which is the

dominant culprit behind generation and injection of hot electrons, could be moved deeper

into the bulk and further away from the drain edge and thus separating it from the path of

the channel current and effectively minimizing impact ionization.
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u: ) I0 4:a / I
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Figure 34: Lateral electric field distributions associated with LDD structures. [107]

2.14 GATE OXIDE nnCKNESS LIMITATIONS FOR ULSI

Although thinner gate oxides have allowed a certain increase in perfonnance for

MOS circuits, studies have shown that below 50A the oxide begins to have noticeable
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amounts of direct tunneling current. This can limit the transfer characteristics of the MaS

transistor by modifying its voltage transfer characteristics and hence eliminating its ability

to act as an effective latch in MOS storage devices.

2.14.1 STATIC LOGIC LIMITATIONS

Static CMOS logic has large noise margins, which are nearly equal to the power

supply voltage, and has a very low standby power dissipation. The voltage transfer

characteristics of a CMOS inverter are shown in fig. 3Sa. The critical voltages VOH and

VOL are the equilibrium high and

Figure 358: Transfer voltage characteristics of a CMOS inverter with the critical voltages V OH' VIL' VIH'
and VOL labeled where VB is the only point at which the NMOS and PMOS transistors are both saturated
and the output voltage is equal to Vdill. [62]

low voltages for a chain of inverters without noise. As explained in [96], ~L and VIH are

the points at which bV0lI1 =-1. If there is sufficient input noise to increase a low input
~n

voltage value ~L or to decrease a high input voltage value below ~H' then the noise will
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disturb the proper logic operation of the inverter. The noise margins of the CMOS inverter

are then defined to be and shown in fig. 35b as

-t>---~t>-

Indeterminate
Region

Input Characteristics

Vss or (GND)

+ Output Characteristics VDO

Logical Low
Output
RaDQe

!

f
Logical High

Output
Range

Figure 3Sb: Noise margin defInitions.

_I 1- 3VDD - 31Vtpl +5Vtn
NML - ~r.",.. - Vor.",.. = -----:.---:.--

8

where NML and NMH represents the minimum and maximum allowable amount of noise

to the input of a gate. Any voltage noise above this can change the logic state of the

inverter. Ifeither NML or NMH for a gate are reduced to - O.lVDD , then the gate may be

susceptible to switching noise present at the inputs. Modeling the MOSFETs [96] without

gate leakage current, the critical voltages are determined to be: VOH =VDD ' VOL = O.

Hence
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~ _ (VDD +VTP )(1+2.Jl+3K)+3KVTN
IH - 1+3K +2.Jl+3K

~L = 3(VDD +VTP ) + 3KVTN(1 +2.Jl + 3/ K)
K +3+2.Jl+3/ K

where VDD , VTP and VTN are power supply voltage, and threshold voltages of PMOS and

NMOSFETs respectively. K is the ratio ofthe transconductance of the NMOS to the

PMOSFET.

When the circuit is subject to gate leakage current, there is a decrease in the noise

margins of the inverter. If the input resistance of the FETs remain much greater than the

output resistance, then the new critical voltages could be defined as

This implies that

(VDD+VTP)(1+2.Jl+3K{I+~ I L })+3KVTN
V

IH
= { 1+3K 2I",vs,s }

3K I
1+3K+2~1+3K 1+ L

1+3K 21PMOS~lH

where I PMOS and I NMOS are the drain-to-source currents through the PMOS and NMOS

transistors at the given input voltages.
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The degradation in the critical voltages and noise margins of the inverters as a

function of leakage current I L is shown for a symmetrical inverter in fig 36. The leakage

current have been normalized to I E which is the current through either of the transistors

in inverter at the point at which V
0ll1

is equal to V
DD

/2.
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Figure 36: Dependence of Noise Margin on Leakage Current IIflE. [62]

2.14.2 GATE OXIDE TUNNELING

20..-------------------,

.........

--1 AJcm2

--- 1 mAJcm2

_.- 1 lLA'cm2

.••••..• 1 nAJcm2

15

~
Ql
Cl

~ 10
~

~
5

oI::::::::::J==--l:""':"""---..l._--'-_-..L.._.....L..._....I.-_....L-..--I

1 2 4 5 6 7 8 9 10
Oxide Thickness (nm)

Figure 37: Gate voltage for given current densities and oxide thicknesses. [62]
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The most predominant mechanism of MOS leakage current associated with thin

dielectrics is tunneling through the gate dielectric .Direct tunneling current limits operation

for both the ON and OFF regions of the MOS transistor.

Direct tunneling and Fowler-Nordheim tunneling have been examined by numerous

authors [97-100]. Maserjain [97] has examined the tunneling current through thin MOS

structures for different oxide thickness and bias voltages. For voltage across the gate

oxide less than the barrier height for the injected electrode, direct tunneling is the

dominant mechanism of conduction in the thin oxides. The barrier height for a silicon

electrode injecting electrons into the conduction band of the gate oxide is 2.90eV[98].

Hence the current density for direct tunneling is

J =B(VG)Tor-2e-2kevo)T""

where Vg is the gate voltage and k(Vg ) is the average value ofthe attenuation ofthe

electron waves in the oxide[97] and B(Vg ) models the effect of the indirect bandgap of

silicon.

When the barrier height is above 3.4eV the dominant current conduction

mechanism is Fowler-Nordheim tunneling, whose current density could be approximated

as given in previous equations. Hence from the above figure one can deduce the maximum

power supply voltage by the oxide thickness and the maximum permissible leakage current

through the gate dielectric. The fig. 38 below shows the impact of gate leakage current or

direct tunneling current on the transfer characteristics of a CMOS inverter and also on the

switching speed.
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2.15 MOS CAPACITANCE EFFECTS ON
SWITCHING CHARACTERISTICS

The effect of thin oxides on device performance manifests itself as an increase in

the device capacitance as the oxide thickness is reduced. In recent generations, device

scaling ofMOSFETS has been accomplished without scaling the supply voltage, and thus

the drive capabilities and parasitic capacitances ofMOSFETS were satisfactorily scaled.

However in O.5um generation and below the VDD must be scaled in accordance with the

requirements ofMOSFET reliability and the total power consumption which is quite

severe in ASICs especially microprocessors with large cache memories.

2.15.1 DEVICE CAPACITANCE

@

®

Figure 39: Defmitions of device and parasitic capacitances.

The performance ofMOS circuits is limited by the various capacitances associated

with the interconnect wiring and the devices themselves. An MOS device in a given

operation mode manifest itself as a capacitive load to its driver. Recalling from previous

MOS treatment
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where Q~ is the charge density in the channel.

A. LINEAR REGION

In this region of operation

Q; = -C~(VGS - Vrs ) = -C~Xs and Q; = -C~(VGD - VTD) = -C~XD

since Qn =Qn(VS'VD), there are two capacitors associated with the device with Cs

accounting for the charge due to Vs and CD accounting for the charge due to VD .

Cs = Cgs +Cb.r

differentiating 1 with respect to x yields

=>C =~C' WL(l+ C; )X/ +2XS XD

s 3 ax C' (X +X )2
ax S D

hence

and
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similarly at the drain end:

hence

where

A. dV. {I+0\ - Vgs +VT ~ linear
C =C' WL 0\ = =_T_ a= and

/Xl /Xl' 2~(¢JB +VSB ) tflisB' 0~ saturation

C;WL =o\C/Xl

B. SATURAnON REGION

(38)

(39)

In the saturation region for the first order approximation, I tis is independent of ~ '.:iJ

and CD hence X D=0 which implies that

90



2 4 6 8 10
VOS (V)

ra Linear-+-Saturation--

(a)

0.8

0.2

00 2 4 6 8 10
Vos (V)

14 Linear ~4 Saturation--

(b)

Figure 40: Small-signal capacitances vs VDS for a MOSFET in linear and saturation regions: (a) VSB = 0;
(b) VSB =5 V. [104]
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From the above graph it can be seen that at VD = Vs = 0 and CgS = Cgd . As Vds is

increased, CgS increases and C gd decreases. As device enters into saturation Cgd decreases

to zero. Note that the total device capacitance associated with the gate and channel

C g =Cs +CD and one can see that from the above figure that CgS dominates when device

is in saturation.

2.15.2 PARASITIC CAPACITANCE

In addition to the previously discussed device capacitances are the "parasitic

capacitance" surrounding the device. As shown in the fig. 39, Csbm extends from the

bottom ofthe source diffusion to substrate and Csp extends from the perimeter ofthe

source diffusion to the channel area and the substrate. Cgsov due to the overlap between

the gate and the source as a result ofLDD under-diffusion and spacer oxide overlap. And

also due to the finite thickness ofthe gate material Cgf fringes from edges of the gate to

adjacent conductors. All these capacitances that can affect device speed in MOS circuits

are given as [101]:

(40)

(41 )

using Schwartz-Chrstoffe transformation [102,103]
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[ (U)]2 - In 4 + In a + In - 1

where rc = a with a = 2K(K2
- 1) 2" +2K2

- 1 and
;r

K =1+ To with To =gate thickness and u determined trancedentally.
Tax

Furthermore the gate overlap capacitance is given as

2.16 INVERTER DELAY CHARACTERIZATION

I---.......,r----<) Vout

Figure 41: CMOS inverter circuit

(42)

(43)

The device capacitances shown in fig. 39 are logically divided into three categories

namely: the input capacitance contributing to the gate input capacitance, Cgb and Cgs

output capacitance contributing to the output capacitance Cdb and the feedback

capacitance Cgd . In this section, a newly developed versatile model will be presented that
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describes the switching characteristics for a CMOS device with considerations for carrier

velocity saturation effects under high field conditions which are not considered in the

conventional models. The switching speed for a CMOS gate is limited by the time required

to charge or discharge load capacitance CL by the MOSFET drain current. The delay time

consists of the following three terms:

Fall time 'f =time for a waveform to fall 90%, to 10% ofVDD

Rise time 'r =time for a waveform to rise 10%, to 90% of VDD

2.16.1 FALL TIME DETERMINATION

Voo -------~-----------

01------

----------- 0.9 Voo
-------- VOSAT

____ 0.1 Voo
OL.-..----+--t--j-=:Il:I---~-

t3 Time

Voot----­

Vout

'tt1 'tt2
'tt = 'tt1 + 'tt2

Figure 42: CMOS inverter switching characteristics.

Fig. 42 above shows the familiar CMOS inverter with capacitive load CL which

represents the capacitance of the next gate CG and the output capacitance of the previous

stage. Since the N-channel transistor pull-down action controls the fall-time, then it can be
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shown that [104] when the input is driven by a step waveform as shown in fig. 42, the r
f

VDD operation consist of:

'rf \- Period during which capacitor voltage VOIlt drops from O.9VDD to pinch-off

voltage VdJat

'rf2- Period during which VOIlt drops from VdJat to O.lVDD .

The transfer characteristics could be expressed as

where Ids is the drain current for the NMOSFET and CL is the loading capacitance such as

gate, junction and fringing capacitances. Accounting for high electric field effects, an

analytical Ids model[105] could be used

in linear region where Vds ~ Vdsat

in saturation region where Vds > VJsat

E LV,'
where Vdsal =E ~ + ;, and integrating 1 from ~ =O. 9VDD to VOIlt =Vdsat and substituting

C G

into the above equation

When the N-channel device begins to operate in the linear region, the discharge

current is no longer constant. The time Tf2 taken to discharge the capacitor is obtained by

substituting and integrating from VdJat to 0.1 VDD .
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where A =2V~ ~ O.lVDD
. The combination of rII and r12 yields the complete fall time as a

2Vo -Vdrat

result of load CL

(44)

2.16.2 RISE TIME DETERMINAnON

Due to the symmetry ofCMOS circuits a similar approach could be used to derive

the rise time which is controlled by the P-channel device as

(45)

Hence the average delay ofan inverter stage which is dominated by the output rise and fall

times could be approximated as:

(46)

where k is a constant, CL is the total load capacitance, W is the transistor width and I dJ is

current in MOSFET at Vgs = V'" = VDD . The load capacitance could then be expressed as

ICL =CoxF.O+Cj +CA,j. (47)

As shown by the derivations for r / , r, and rpD , the switching performance of a

CMOS inverter has strong dependence on the loading capacitance CL' which is mostly

influenced by the gate capacitance Co and the total number of fan-outs.
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CHAPTER 3

EXPERIMENT

3.1 INTRODUCTION

This chapter describes my experimental procedure including device modeling,

transistor fabrication, device aging and measurements. The primary goal of this thesis was

to quantify the effects of thinner gate oxides on MOSFET switching performance. I

therefore had to design experiments that will satisfy the modeled device characteristics.

In carrying out the experimental plan, at the N-tub step the threshold voltage had

to be adjusted for the PMOS devices. This is because the blanket adjust used for the

NMOS devices automatically alters the p-channel threshold. As a result the N-tub arsenic

implant was used to correct for the Vr shift in the PMOS devices. This is because in the N-

tub Arsenic engineering, the peak of the profile is placed just below the maximum

depletion width edge. As a result the straggle ofArsenic profile can influence the surface

charge enough to modulate the threshold voltage ofthe PMOSFET. This was done for all

variations of the gate oxide thickness.

The gate oxidation process was performed in dry q in presence ofTCA with

diluent N2 to inhibit oxide growth during the ramp-up cycle to ensure thickness unifonnity

across the wafer. After the gate PB'3 doping and patterning, the polysilicon gate was

etched with reactive sputter etch plasma chemistries which had an enhanced ability of

stopping on the thin gate oxide thus preventing gate oxide breakthrough into bulk silicon.

The wafers were then recombined and processed with the flow yet to be described. The

discussions in this chapter will encompass device simulation approach used, device

fabrication, aging and I-V parametric measurements.
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3.2 DEVICE SIMULAnONS

Tox1 ' Tox2' Tox3'

Tox4' Tox5

Variable Process
and Device

Specifications
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Process Simulation
(BICEPS)

2-D Device
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Parameter Extraction
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Circuit
Simulation
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Verification Electrical Measurements

Figure 43: Device simulations flow diagram.
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During the developmental stages ofthe experimental plan, I had to use the 2-D

process simulator BICEPS to model the fabrication process the wafers were expected to

see in the manufacturing line. The output ofBICEPS which is the doping profiles for the

devices was fed into the device simulator MEDUSA which was used to fully characterize

the MOSFETS before actual processing. This device simulator takes into account all the

2-D devices encountered in the sub-micron regime such as short channel, narrow width,

DffiL phenomena etc.

This highly computer intensive loop was carried out until the desired device

characteristics were achieved for every variation of oxide thickness. As discussed earlier

with the MOS device equations, thinning the gate oxide tends to cause a decrease in the

threshold voltage of devices. To correct this the substrate doping must be increased to

make it more difficult to tum the device on which results in an increase in the threshold

voltage. But increasing the substrate doping also results in a decreased mobility and hence

a decrease in device drive current. As a result, these must be carefully balanced for

efficient drive capability of the transistors and also the ability to make one-to-one

comparison of performance as a function ofgate oXide thickness.

3.3 CMOS DEVICE FABRICATION SEQUENCE

3.3.1 NTUB FORMATION
N-Tub 12: Arsenic

Residual Pad OxidePad Oxide

! ! ! ! ! ! ! !
-Pho-toresist-'-N-tub------ N-Tub 11: Phos

SlIlcon Nitride ! ! ! ! ! ! ! !

----------------------------------------------------_.
C Pad Oxide p+ subs.
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The starting material for the devices was lightly doped p-type epitaxial layer grown

on p-type bulk: silicon with <100> crystalline orientation which generates a minimum

number of surface states. The N-tub processing begins with a thin pad oxidation, followed

by Si3N4 deposition and spin on photoresist for tub patterning. After exposure, develop

and bake the exposed the Si3N4 is etched off stopping on the pad oxide which serves as
,-'>-.

an implant mask as shown in fig. 44. The wafers are then implanted with phosphorus

followed by arsenic whose peak depth is engineered so as to coincide with the depth of the

LDD, thus serving as an effective punchthrough suppression implant for minimizing short
/

channel-VTP roll-off in PMOS devices.

3.3.2 PTUD FORMATION

Boron II: Punchthrough suppression
Boron I: P-Tub Formation

L N-Tub Oxide

/,---~---------=============::::::
Pad Oxide + Tub Drive Oxide

P-tub N-Tub

------------------------------------------------------

~ Pad Oxide + Tub Drive Oxide

Figure 45: P-tub formation.

~ Back of wafer

After N-tub implants the photoresist is stripped and a thick oxide is grown, which

drives the N-tub into the silicon and set the tub junction. The Si3N4 is then stripped to
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exposes the P-tub region which receives two boron implants for P-tub formation and

NMOS punchthrough suppression as shown in fig. 45.

3.3.3 DEVICE ISOLAnON

L Silicon Nitride

Pad Oxide ~~==::E==3:===
Residual Oxide

P-tub

"=Silicon Nitride

S 5 § $$8?&?5§ 2?

N-Tub

P&MW4&$$ ?£WWMkM?MY?& $ 9M &%

"=Back of wafer

Figure 46: Active device area (Thinox) formation.

/Silicon Nitride < HIPOX Oxide

-----"):~ Z__~-.- <'~~=2?----
Pad Oxide

P-tub

/"" Pad Oxide

N-Tub

Figure 47: High pressure oxidation (HIPOX) for field oxide formation.
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This sequence allows for the patterning and definition of the active regions of the

transistors. Si3N4 is deposited and patterned to define the active regions and the field left

exposed as shown in fig. 46. The field oxide is now grown as shown in fig. 47 using a high

pressure oxidation scheme. This process is advantageous because of its reduced thermal

budget which limits the oxidation-enhanced diffusion of dopants thus maintaining good

isolation between two adjacent devices in the same tub.

3.3.4 THRESHOLD ADJUST IMPLANTS

BF2

! ! ~ ! ~ ! ! ! ~ ~ ~ ~ ! ~ ~ ~ ~

Gate ·0·

P-tub

Figure 48: Threshold adjust ion implantation.

N-Tub

At this stage the Si3N4 had been stripped off and the transistor active region

defined as shown in fig. 48. The pad oxide is stripped off and a sacrificial oxide of equal

thickness as the actual gate oxide is grown. This is used as an implant screen to prevent

implant ion channeling and silicon damage. A blanket BF2 is implanted to set threshold

voltage for the NMOS and PMOS devices. Five experimental cells were made each with
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different BF2 dose estimated from device simulations to accurately correct for the Vr shift

due to the variation in gate oxide thickness.

3.3.5 GATE DEFINITION

HIPOX Oxide

P-tub

LGate Oxide

'= Polysilicon

Figure 49: Polysilicon gate defmition.

N-Tub

After the threshold adjust implant, the sacrificial gate oxide was etched and the

true gate oxide was grown for the five cells ofvarying thickness, after which the

polysilicon gate was deposited, PBr3doped and then patterned. This was then etched using

dry etch chemistry to define the transistors and polysilicon interconnects.
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3.3.6 LDD AND SPACER FORMAnON

Photoresist P-LDO

Gate Oxide
Phos. LOO

P-tub N-Tub

Figure 50: LDD formation.

P-tub

Residual LOo push Oxide

TEaS spacer Loo

BF2 Loo (Phos. Loo
counter doped)

N-Tub

'CTEOS

cats Oxide Polysilicon..
"C Loo push Oxide ~

Figure 51: Spacer formation.
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The LDO structures are formed by a blanket phosphorus implant which dopes both

the n and p channel SID regions. This is followed by a thermal cycle to set the NLOD

junction and activate dopants. After this the n-channel regions are masked as shown in fig.

50 and the PLDD BF2 implant done which is of high enough dose to counter-dope the

phosphorus.

Following the PLOD implants comes the deposition ofTEOS oxide which is

etched anisothropically to form the spacers which protects the LDD regions from the SID

implants as shown in fig. 51.

3.3.7 SELECTIVE N+ AND P+ SID FORMATION

P·tub

TEOS spacer LDD
Polysilicon

Boron LDD (Phos. LDD
counter doped)

N-Tub

'CTEOS

~
"=LDD push Oxide ,

Figure 52: Selective N+ and P+ SID ion implantation.
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Photoresist is used to selectively mask the n and p-channel regions for Arsenic and

BF2 SID implants respectively. This is followed by a high temperature anneal to set the

SID junctions, effective channel length and also to activate the dopants.

3.3.8 SELF-ALIGNED SILICIDAnON

TiSi2

P-tub N-Tub

-------------------------------------------------------_.

'CTEOS
Figure 53: Self aligned selective silicidation.

TiSi2 films are now formed on the SID and gates only, by depositing titanium and

subjecting it to an RTA heat treatment to form a C-49 phaseTiSix film. A selective

chemical etch is then used to remove the unreacted Ti/TiN films. A second RTA is then

performed to transform the C-49 to C-54 phase stable TiSi2 film. This is followed by the

deposition and flow ofundoped TEOS and doped BPTEOS inter-level dielectric between

the polysilicon gate and aluminum I levels as shown in fig. 53.
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3.3.9 CONTACT, METALLIZATION AND PASSIVATION

P-tub

p+
Polysilicon

N-Tub

""""" TEOS
Figure 54: Dielectric I, contact opening and Aluminum I metallization.

p·tub

-------------------------------------------------------_.

,.

'CSPTEOS

Figure 55: Dielectric II, Wmdow II, Aluminum II and Passivation CAP.
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The transistors are connected to bond pads with a sandwich of aluminum and

Titanium Nitride interconnect. The contact to the transistor terminals are made by cutting

windows in the inter-level dielectric I, after which titanium is deposited and given an RTA

treatment in a nitrogen ambient to form the titanium nitride. Aluminum is then deposited,

patterned and etched as shown in fig. 54. This process sequence is repeated with the

deposition of inter-level dielectric II which is used to isolate the first and second level

metallization. Window II's are then cut in the oxide and aluminum II is deposited,

patterned and etched as shown in fig. 55. After this an oxide-Si3N4 sandwich is deposited,

patterned and etched resulting in a passivation layer, which is followed by a low

temperature sintering cycle. This is followed by back grinding, after which the wafers were

ready for device characterization.
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3.4 TEST STRUCTURES
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Figure 56: Test structure for I-V and aging characterization.
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Figure 57a: Schematic diagram of 101 cascaded inverter chain.
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Figure 5Th: Schematic diagram of 89 cascaded NAND chain.
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Figure 58: Test structure for perfonnance characterization.
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The devices used for transistor and performance characterization were fabricated

with the process flow previously described. The transistor tester had NMOFETs of coded

lengths O.75um, O.9um, l.05um and 20um, and PMOSFETs ofO.85um, 1.0um, 1.15um

and 20um gate lengths. As shown in the diagram above fig. 56, the transistors had a

common source, gate and substrate nodes with individual drain contacts. As already

discussed the effects of gate oxide on device parameters and hot carrier degradation were

characterized using this test structure. Fig. 57 shows the schematic capture of the delay

chains for both the lNRB and ND2 with no external loading effects.

The fig. 58 contains a) the CMOS inverter delay chain with 101 stages and no

external capacitive load, and b) the nand gate delay chain of 89 stages. These were both

used in the quantification ofthe effect of thin gate oxides on switching delays.

The electrical test equipment's used for the device characterization consisted of an

HP model 4145A Semiconductor Parametric Analyzer, a probe station equipped with

thermal chuck and an HP7470A plotter. For the hot carrier characterization similar

equipment's were used, but one that had the capability ofcomputer interface to run the

"aging program" and report to the plotter the changes in device characteristics.
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CHAPTER 4

RESULTS AND CONCLUSIONS

4.1 DELAY CHARACTERIZAnON

As shown in figure 59 and 60, the propagation delay was quantified for two

different ring-oscillator delay chains, namely INRB and ND2 as described in the

experiment section which was made of 101 and 89 stages respectively. Fig. 59a shows the

INRB delay/stage at 3.3V operation as a function ofgate oxide thickness and varying

operating temperature. The delay/stage with a fan-out load of 1 is larger at the higher

operating temperature, this is a manifestation ofdegraded device characteristics at those

temperatures. However a characteristic "bell" shape dependence of the delay/stage on

gate oxide thickness is present at both low and high temperatures. Fig. 59b shows the

same result at the operating bias of 5V, the shape is still evident even with the lower rPO .
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F'tgUre 59: INRB delay/stage as a function of gate oxide thiclcness.
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Figure 60: ND2 delay/stage as a function of gate oxide thickness.

140 160

Figure 60a and 60b shows a similar data for the ND2 delay chains even though the

absolute delay is higher due to the larger load of the NAND. This convincingly defines a

"minima" in gate oxide thickness necessary to achieve optimum circuit performance. The

above experimental results can be explained by the equations developed in the theory

section. Recalling from the theory section, 'po could be compactly expressed as

where

from these simplified equations one can see why the propagation delay 'po is dependent

on Voo as shown in figs. 59 and 60, and also dependent on CL which is mostly influenced

by the gate capacitance Co for a given fan-out. But Co is a complex function of Car which

increases with decreasing Tar as developed in other equations in the theory section. This
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unequivocally shows why after a certain "minima" in gate oxide thickness the propagation

delay/stage begins to increase with decreasing gate oxide thickness. Another contributing

factor also is the decrease in mobility as Tox decreases which coupled with the velocity

saturation due to the high critical electric field decreases after a certain gate oxide

"minima".

As a result, to enhance device performance during scaling, the optimum Tax must

be chosen so as to minimize 'PD for a given gate length. Also since the fan-out (F.D) is

typically a design parameter the Cj and CAl must also be reduced to enhance performance.

This is a challenge because with scaling dimensions, higher substrate impurity

concentration is required to prevent short-channel effects and also sufficient chanstop

boron is required to maintain adequate n+ /p+ isolation. However the higher substrate

concentration also causes an increase in Cj , especially when using twin tub processing. It

has been reported elsewhere that performing the chanstop implant after the isolation cycle

serves to reduce Cj due to the small amount ofboron lost from the substrate as a result of

redistribution[105]. This technique is also effective in reducing the narrow width effects

since the diffusion of the chanstop boron into the active device area is limited.

In other to minimize c'~l ' multilevel metallization could be employed to effectively

decrease interconnect parasitics due to the reduction of total wiring length thus reducing

substrate-to-metal capacitance.
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Figure 61: Inverter derating factor as a function of operating temperature.

Figure 61 shows the derating factor( rDF) for the INRB ring oscillator as a function

ofoperating temperature. An increase of about 24% was evident as the operating

temperature increased from 2S0C to 12Soe. It was also determined experimentally that the

1'DF was independent of operating supply voltages of 3.3V and SY.
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4.2 ELECTRICAL CHARACTERIZAnON
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Figure 62: C-V characteristics for 150A gate oxide.
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Figure 63: C-Vcharacteristics for l30A gate oxide.
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Figure 64: C-V characteristics for 1wA gate oxide.
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Figure 65: C-V characteristics for 90A gate oxide.
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Figure 66: C-V characteristics for 70A gate oxide.
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The C-V curves at low and high frequencies were generated for the various oxide

thickness as shown above in fig 62 to 66. These were generated to examine the variation

of Cmin and the percentage recovery of the oxides capacitance after bias. Each oxide

thickness was stressed at 5V and 3.3V. From the data gathered, it can be seen that within

experimental error the Cox, and the percent recovery were independent of applied voltage.

However as theoretically expected, both Cox and Cmin increases with decreasing oxide

thickness while the percent recovery decreased with thickness as tabulated below.

Tox Coz C Recoverynun

(A) (pF/cm2
) (pF/cm2

) (%)

150 126.1 37.4 98

130 145.8 41.7 91

110 176.3 46.7 88

90 220.7 56.5 90

70 286.4 63.9 91

Table 1: Summary ofC-V measurement data for various gate oxide thicknesses

Assuming linear scaling of oxide capacitance with thickness, Cox was found to

increase at about 2.3pF/Aincrease in gate oxide thickness.

In a attempt to verify the quality and reliability of the gate oxides grown, the

breakdown voltage(VBD ) and charge to breakdown(QBD) as a function of Tox were

generated as shown in fig 67 and 68. Fig 67 confirms theoretical expectations of

decreasing oxide breakdown voltage with decreasing Tax as a result of increased Fowler-

Nordheim tunneling gate current induced by the increased vertical fields across the oxide

Similarly fig. 68 shows that the charge to breakdown decreases with decreasing oxide

thickness.
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The devices were fabricated with specific interest in the submicron devices. As

shown in fig. 69 a consistent difference exists between the O.9um and 0.7um NMOSFET

devices. The Vsnap or lateral punchthrough voltage of the above mentioned Lcodcd devices

was found to decrease with gate oxide thickness. This is because of the increased

depletion width as TOJ: decreases thus decreasing the effective channel length and making

the device punchthrough susceptible.

Standard I-V characteristics were extracted for all the oxide thicknesses as shown

in fig 70-74. This was done for the 0.75um NMOSFET device. As shown, the Ids

increased with decreasing gate oxide thickness, but beyond 11oA of gate oxide it appears

to decrease a bit. This is believed to be the result of increased gate capacitance CG due to

decreased Tax which impacts the drive capability of transistors.
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7.50>
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Figure 69: Snapback voltage versus Tox'
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Figure 70a: los vs Vos characteristics for 150A gate oxide thickness.

---,------ ------,------r-----'------,------T------r------r-----,· ..I I I • I I I I I
I I I I t I I I I I
I I I I I I I I I

-oo -~- NMOS --- ~-- --- -:-- --- -~- --- .. _~--- ---; .. ---- -~ . .
, """ Vds =5.5 Vt • I I I I I I

---:------1------:------r-----:------~------~------~------~-

...... ~_ ~ ~ I ~_ ~ ~ L ...:.. J ..

: I : I I I I : V 01 V
---~------l-----·t -,-------:------i------t------~ ds =. .

I I' I I t I I
I I I I I I I I

---~------i----- -----~-----~------~------t------~------~--- .. -~--
'1 " I I I I I

---~------ ---- .. ------~-----~------~------~------~-----~-----~--,,,
---1------1---
---~_ .. _---~-- ..

: I___ J _

: I

1E--D2

Q

<' decade- /div
.------------~-----~------.------~------------~--, ,, ,
I I I I I I I I_l ~ ~ J l .~ ~ ~ __

I I I I I I I I
I I I I I I I I
I I I I I I I I___ L L J J 1 L ~ J __

I I I I I I , I
I I I I I I I I
I I I I I I I I

r:~~--_w~~- ---r------r-----'------,------r------r------~-----,--
I I I I I I I I
I I I I I I I I
I I I I I I I I

----~------~-----~------,------~------~-----~-----~--
I I I I I I I I
I I I I I I I I

I I I I I I I I I

---1------,------:------:-----:------:------:------r------:-----:--
1E-14 L..-...''''''-_L...-_....' _ ........' -----'_.-10.'_.-10.'_.-10.'_ ........' ---,-'...J

-.6000 0 .6000/div 4.800
VG (V)

Figure 70b: Subthreshold characteristics for lsoA gate oxide thickness.

126



6.000

,
" ,

-.------~-----~-----~------.------.------I I I I I
I I I I I
I I I I I
I I I I

,
I I I I

I I I I t____ ~ ~ ~ ~ ~ ~ 4 _

I I I I I I
I I I I I I
I I I I I

------~------.------, , ,, , ,, , ,
I I I I I I I-- __ ~ ~ ~ ~ ~ 4 • __

I I I I I

, , I___ .. ~ ~ ~ J ~ _

1 I I I I 1 I
I I I I I I t
I I I I I I I

I I I I t I I I____ j J L L ~ __
, , ,

I, , ,
I I I I I I I I I

~-----~------i------t------~------~----~i------t------ --
t I I I I , , ,

I I I I I I I

-:- ~ , t :- -:- -: , + -
I I I I I I I I,

,,,,
------'----,,,,_____ ...L.

I,
I,

1 I I I I I I I
, I I I I I I •

N OS
I I I I I I I

_____ ~ -----~------~------~-----~-----~------~ I-, , ,, ,,, , ,
-----~-----~------1-, ,, .

I ,, ,

9.67

<'E .967
- /div.
E

.6000/div
Vo (V)

Figure 71a: los vs Vos characteristics for BoA gate oxide thickness.
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Figure 72b: Subthreshold characteristics for 110A gate oxide thickness.
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Figure 738: los vs Vos characteristics for 9OA. gate oxide thickness.
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Figure 73b: Subthreshold characteristics for 9OA. gate oxide thickness.
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Figure 748: IDS VS Vos characteristics of 70A gate oxide thickness.
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Figure 74b: Subthreshold characteristics for 70A gate oxide thickness.
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The lib appears to have decreased about 16% as you go from 25°C to 125°C

operating condition, while the Iotfin both cases satisfied the typicallnNum at 125C

criterion for leakage in VLSI technologies. Tabulated below in table 2 are the I <is' and lotI

for Nand PMOSFETs which appears to support the previously discussed "bell" shape

phenomena of propagation delay.

Tox Ion@25°C Ion@125°C IotT@25°C IotT@125°C

(A) (mA) (mA) log(A) lo~(A)

150 8.44 6.83 11.16 10.72

130 9.67 8.07 10.27 10.66

110 10.36 8.56 11.32 10.67

90 10.15 9.31 11.48 10.72

70 10.1 8.65 11.50 10.70

Table 2: Ionlloff data for NMOS of LeoDED = O.75um as a function ofgate oxide thickness

Tox Ion@25°C Ion@125°C IotT@25°C IotT@125°C

(A) (mA) (mA) lo~(A) I02(A)

150 3.73 3.20 11.70 10.80

130 4.49 4.09 10.72 10.79

110 5.18 4.60 11.70 10.60

90 5.0 4.33 11.58 10.80

70 4.81 4.20 10.89 10.68

Table 3: Ionlloff data for PMOS of LeoDED =O.85um as a function ofgate oxide thickness
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4.3 DEVICE AGING CHARACTERIZAnON

Transistor aging results is of paramount importance in VLSI technology. This is

results can be used to predict the device lifetime thus providing prolonged reliability

information about devices for a given technology.

Figure 75 to 79 shows the substrate currents as a function of the applied gate

voltage at constant drain voltage with Vds =5V for different coded gate lengths. It is

observed that the peak substrate current increases with decreasing Lc:cxUd and increased

with decreasing gate oxide thickness. These curves were used to judiciously determine the

optimum gate voltage for a given drain voltage where impact ionization due to hot

electron injection was a maximum. This was then employed in the hot carrier aging

characterization ofthe transistors to establish some reliability dependence of device

lifetime on gate oxide thickness .

Figures 80 through 84 shows graphically the time to 10% gm degradation as a

function of device substrate current for a fixed Vgs=2V and Vds =7V, for the various gate

oxide thicknesses. The data was plotted on a log-log scale to facilitate the extraction of

the a and b coefficients which allows for the computation ofthe lifetime rUFE for a given

substrate current. Recalling from the theory section, the lifetime ofa device could be

related to the substrate current for a given gate oxide thickness and Lgar. as

r UFE =a(ImJ -b .
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Figure 75: Substrate current as a function of gate voltage for variable Lglte and Tox•
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Figure 76: Substrate current as a function of gate voltage for variable Lgate and Tax.
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Figure 77: Substrate cwrent as a function of gate voltage for variable Lgate and Tox.
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Figure 78: Substrate current as a function of gate voltage for variable !..gate and Tox'
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Figure 79: Substrate current as a function of gate voltage for variable !..gate and Tox.
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The fa and b coefficients are shown on all the above mentioned figures. Tabulated

below is the comparison of TUFE and I sub for various gate oxide thicknesses and operating

bias conditions.

Tox lSUB@Vb = 5V IsUB@Vtb = 7V Tun:®Vtb = 5V TUFE@Vtb =7V

(A) VB_ =2V VB_ = 2V VB_ = 2V

VB_ = 2V

150 1.28pAlj.JI1I 15.77pAlj.JI1I 1024yrs 0.707yrs

130 1.74pAlj.JI1I 20.5pAlj.JI1I 14.5yrs 84.47min

110 2.12pAlj.JI1I 25.3 pAlj.JI1I 6. 12yrs 217.9min

90 2.77pAlj.JI1I 30.5pAlj.JI1I 36.2yrs 130min

70 3.24pAlj.JI1I 34.6pAlj.JI1I 1. 19yrs 47. 14min

Table 4: Summary of Device degradation for NMOS of LeaDED =O.75um as a function of ~'dJ

and gate oxide thickness.

The data in table 3 clearly shows the strong dependence of TUFE on substrate

current which increases with increasing Vds for a given Vgs' This is because of the

dependence of l sub on Ids which is a function ofVd.s as depicted in the equation below

B
; --

_..21- I AE e E_
I = C I e ;'.E. = d.s max

SUB 1 d.s B[dE(x) / £tt]

where C\ is detennined experimentally, A.. is the electron mean free path, ~i is the impact

ionization coefficient and Em the peak electric field at the drain end.

From the tabulated data in table 4 one can see that as the gate oxide thickness

decreases the device becomes more susceptible to impact ionization. This gives rise to

higher substrate currents and subsequently lower lifetime,UFE' The 90A cell apparent

defiance of this trend could be attributed to a superior oxide growth conditions. Thi s
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TUFB dependence on Isub for a given Tax reinforces the fact that power supply voltage

should be scaled together with Tax so as to maintain reasonable device reliability.
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