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Abstract 
 

  The refrigeration cycle is highly dynamic and changing. From the time the 

compressor commences to run until it stops, the suction pressure, evaporator temperature, 

the rate of heat exchange, refrigerant flow and many other factors are continuously 

changing. The total efficiency of the system changes through the entire life cycle. The 

load on refrigeration system is also not constant; it varies based on ambient conditions 

and production activities.  

Two control algorithms are developed to predict the load on system based on 

predicted ambient wet-bulb temperatures and to control the capacity of compressors 

while improving the compressor energy efficiency. The approach here is to create a 

database of different operating parameters and utilize that database to create model of 

system energy. The capacity control algorithm provides the energy efficient capacity 

variation and sequencing of compressors based on compressor models.  

Main conclusions derived from the work are as follow: due to many practical 

reasons compressors may consume different amount of energy even if they are rated 

same. In high power systems this difference can be significant. In multi compressor 

system, whenever there is a redundancy in compressors, it is advantageous to evaluate 

compressor energy consumption in different operating conditions and then selecting the 

most efficient compressor to run. In case of multi screw compressor system, rather than 

applying specific rules for loading and unloading of compressors via slide valve, a model 

based approach, which uses database of different compressor parameters and minimizes 

energy according to each compressors’ performance characteristics, is more efficient.  
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1. Introduction of Refrigeration System and the 

Vapor Compression Refrigeration Cycle 
 

In this chapter basic building blocks of the refrigeration system are discussed. The 

chapter explains working of an evaporator, compressor, condenser, expansion valve and 

refrigerant. Basic thermodynamic principles related to the vapor compression 

refrigeration cycle are also discussed in brief. We will also discuss vapor compression 

refrigeration cycle. Different stages of the cycle are explained by referring to the pressure 

vs. enthalpy diagram. The last part of this chapter discusses motivation behind the work, 

literature survey and outline of the thesis.  

1.1  What is Refrigeration? 
 

The most widely used explanation of this question is “Refrigeration is a process in 

which work is done to remove the heat from one location to another”
. 
Let’s understand 

this by one day-to-day example - If you were to place a hot cup of coffee on a table and 

leave it for a while, the heat in the coffee would be transferred to the materials in contact 

with the coffee, i.e. the cup, the table and the surrounding air. As the heat is transferred, 

the coffee cools. Using the same principle, refrigeration works by removing heat from a 

product and transferring that heat to the outside air. Refrigeration has many applications 

including but not limited to; household refrigerators, industrial freezers, cryogenics, air 

conditioning, and heat pumps. In order to satisfy the Second Law of Thermodynamics, 

http://en.wikipedia.org/wiki/Second_Law_of_Thermodynamics
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some form of work must be performed to accomplish this. The work is traditionally done 

by mechanical work but can also be done by magnetism, laser or other means.
  

1.2   Refrigeration System Components 
 

There are five basic components of a refrigeration system are evaporator, 

compressor, condenser, expansion valve and refrigerant. In order for the refrigeration 

cycle to operate successfully each component must be present within the refrigeration 

system.  A description of each of the components of a refrigeration system is given 

below. 

1.2.1 The Evaporator 
 

Purpose of the evaporator is to remove unwanted heat from the product, via liquid 

refrigerant. Liquid refrigerant contained within the evaporator is boiling at a low-

pressure. Level of this pressure is determined by two factors: The rate at which the heat is 

absorbed from the product to the liquid refrigerant in the evaporator and rate at which the 

low-pressure vapor is removed from the evaporator by the compressor. To enable heat 

transfer, the temperature of the liquid refrigerant must be lower than the temperature of 

the product being cooled. Once transferred, the liquid refrigerant is drawn from the 

evaporator by the compressor via the suction line. When leaving the evaporator coil the 

liquid refrigerant is in vapor form. 

Evaporators that operate with a refrigerant temperature below the freezing point 

of water and dew point of the conditioned space will build frost on the coils during 

operation. Frost accumulation degrades the performance of an evaporator by reducing the 

http://en.wikipedia.org/wiki/Mechanical_work
http://en.wikipedia.org/wiki/Magnetism
http://en.wikipedia.org/wiki/Laser
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UA and impeding the airflow. Periodically the frost must be removed from the coil 

surface. Several defrosting methods are commonly used. Hot gas, hot water, electric heat, 

and warm air can all be used to melt the frost off of evaporator coils. Figure 1.1 shows 

evaporator coils with fins to increase the rate of heat transfer. In industrial and 

commercial systems fans are used to accelerate the heat transfer by forced convection.  
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Figure 1.1 Evaporative Coils 
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1.2.2 The Compressor 
 

The refrigeration industry widely uses screw and reciprocating compressors. 

Compared to reciprocating compressors screw compressors are compact and create less 

noise. At full load they are more efficient. But at part load reciprocating once are more 

efficient. For this thesis we have worked with screw compressors and we will discuss 

them in briefly. The rotary screw compressor is designed for low pressure applications 

with inlet pressures ranging from vacuum pressure up to 100 psig and discharge pressures 

up to 350 psig. There are some screw machines available capable of operating at higher 

pressures by using cast steel casings but these are not yet commonly used in the natural 

gas industry due to capital cost and availability. The purpose of the compressor is to draw 

the low-temperature, low-pressure vapor from the evaporator via the suction line. Once 

drawn, the vapor is compressed and rises in temperature. Therefore, the compressor 

transforms the vapor from a low-temperature vapor to a high-temperature vapor, in turn 

increasing the pressure. The vapor is then released from the compressor in to the 

discharge line. The rotary screw compressor is a positive displacement machine that 

operates without the need for suction or discharge valves. It has the ability to vary suction 

volume internally while reducing part load power consumption. Screws provide a much 

wider operating range and lower maintenance costs than conventional reciprocating 

machines. The machines are much smaller and create much lower vibration levels than 

piston machines as well. Some of the major components include one set of male and 

female helically grooved rotors, a set of axial and radial bearings and a slide valve, all 

encased in a common housing (Reindl et al., 2002). 
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Figure 1.2 Industrial Screw Compressors 
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1.2.3 The Condenser 
 

The purpose of condenser is to extract heat from refrigerant to outside air. 

Condenser is usually installed on the reinforced roof of building, which enables the 

transfer of heat. Fans mounted above the condenser unit are used to draw air through the 

condenser coils. 

The temperature of high-pressure vapor determines temperature at which the 

condensation begins. As heat has to flow from condenser to the air, condensation 

temperature must be higher than that of the air; usually between - 12°C and -1°C. The 

high-pressure vapor within the condenser is then cooled to the point where it becomes a 

liquid refrigerant once more, whilst retaining some heat. The liquid refrigerant then flows 

from the condenser in to the liquid line. Chapter 3 discusses evaporative condenser in 

more details. 
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Figure 1.3 Evaporative Condensers 
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1.2.4 The Expansion Valve 
 

Within the refrigeration system, the expansion valve is located at the end of the 

liquid line, before the evaporator. The high-pressure liquid reaches the expansion valve, 

having come from the condenser. The valve then reduces the pressure of the refrigerant 

as it passes through the orifice, which is located inside the valve.  

On reducing the pressure, the temperature of the refrigerant also decreases to a 

level below the surrounding air. This low-pressure, low-temperature liquid is then 

pumped in to the evaporator. Figure 1.4 shows orifice tubes that reduces the pressure and 

intern temperature of refrigerant.  
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Figure 1.4 Thermal Expansion Valve 
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1.2.5 The Refrigerant 
 

The refrigerant is a medium for heat transfer. The type of refrigerant used will 

depend on the pressure capabilities of the system and the temperatures that have to be 

achieved during refrigeration. Common refrigerants used in various applications are 

ammonia, sulfur dioxide, and non-halogenated hydrocarbons such as methane. Ammonia 

is widely used in industrial set up because of low cost, strong odor and environment 

friendly properties.  

1.3 Fundamentals of Thermodynamics 
 

Before we turn to describe the vapor-compression refrigeration cycle some 

fundamental thermodynamically relations are briefly recalled. 

The First Law of Thermodynamics 

The first law of thermodynamics describes conservation of energy that is for an 

insulated system, the change of internal energy ΔU equals the sum of the applied work 

Wand heat Q. 

ΔU = W + Q  (1.1) 

The Specific Enthalpy 

The specific enthalpy (h) is a refrigerant specific property that only depends on 

the state of the refrigerant, i.e. pressure, temperature and quality. The specific enthalpy is 

defined as: 

        (1.2) 

Where, u is the specific internal energy, P is the pressure and v is the specific volume. 

http://en.wikipedia.org/wiki/Ammonia
http://en.wikipedia.org/wiki/Sulfur_dioxide
http://en.wikipedia.org/wiki/Hydrocarbons
http://en.wikipedia.org/wiki/Methane
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The enthalpy of a refrigerant can be interpreted as the quantity of energy supplied 

to the refrigerant to bring it from a certain initial reference state to its current state. By 

applying first law of thermodynamics on a finite volume with an entering ( ̇ ) and 

exiting ( ̇ ) mass flow, the internal energy increase of the volume can be written as 

(neglecting the potential and kinetic energy (Sonntag et al., 1998)): 

  

  
   ̇    ̇  ( ̇      ̇   ) (1.3) 

For a steady state and steady flow process this gives: 

 ̇    ̇   ̇ (      )  (1.4) 

The Second Law of Thermodynamics and Entropy 

The second law of thermodynamic basically states that energy stored as heat, 

cannot be converted to the equivalent amount of work. This means that the efficiency of a 

process that involves transforming heat to work cannot under even ideal conditions 

become 1. If we focus on the compression process which among others takes place in the 

vapor compression cycle process in a refrigeration system, then the theoretically best one 

can do is to perform a reversible process, such that the increase of the involved entropy is 

0. The specific entropy (s) is as the enthalpy a refrigerant specific property only 

dependent on the state of the refrigerant. By using the definition introduced in Sonntag et 

al. (1998), the entropy can be defined as: 

   (
  

 
)
   

    (1.5) 

Where T is the temperature and the sub subscript rev means it is defined in terms of a 

reversible process. 
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To get a true measure on how close the compression process is to the theoretical 

most efficient, that is to a reversible isentropic process, the isentropic efficiency ( is) is 

introduced. 

The isentropic efficiency is defined as (for a process where work is added 

(Sonntag et al., 1998): 

    
   

     
  (1.6) 

Where Wis is the required work for performing an isentropic compression process and 

Wreal is the real work added. 

1.4   The Vapor Compression Refrigeration Cycle 
 

The purpose of the vapor-compression cycle process is basically to remove heat 

from a cold reservoir (e.g. a cold storage room) and transfer it to a hot reservoir, normally 

the surroundings. The main idea is to let a refrigerant circulate between two heat 

exchangers, which are an evaporator and a condenser, see Figure 1.5.  

In the evaporator the refrigerant "absorbs" heat from the cold reservoir by 

evaporation and "rejects" it in the condenser to the hot reservoir by condensation. In order 

to establish the required heat transfer, the evaporation temperature (Te) has to be lower 

than the temperature in the cold reservoir (Tcr) and the condensation temperature (Tc) has 

to be higher than the temperature in the hot reservoir (normally the surroundings Ta), i.e. 

Te < Tcr and Tc > Ta. The refrigerant has the property (along with other fluids and gasses) 

that the saturation temperature (Tsat) uniquely depends on the pressure. At low pressure 

the corresponding saturation temperature is low and vice versa at high pressure.  
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This property is exploited in the refrigeration cycle to obtain a low temperature in 

the evaporator and a high temperature in the condenser simply by controlling respectively 

the evaporating pressure (Pe) and the condensing pressure (Pc). Between the evaporator 

and the condenser is a compressor. The compressor compresses the low pressure 

refrigerant (Pe) from the outlet of the evaporator to a high pressure (Pc) at the inlet of the 

condenser, hereby circulating the refrigerant between the evaporator and the condenser.  

To uphold the pressure difference (Pc > Pe) an expansion valve is installed at the 

outlet of the condenser. The expansion valve is basically an adjustable nozzle that helps 

upholding a pressure difference (Larsen, 2005).  
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Figure 1.5 Schematic Diagram of Typical Vapor Compression Refrigeration Cycle 
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Figure 1.6 The vapor compression cycle in an h - log(p)-diagram (Larsen, 2005)  
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In Figure 1.6 the vapor compression cycle is plotted in a h-log(P)-diagram. The 

diagram is specific for a given refrigerant and gives a general view of the process cycle 

and the phase changes that takes place. In the h-log(P)-diagram, Figure 1.6, the specific 

enthalpy at the different state points of the refrigeration cycle is denoted by the sub-

indices i and o for "inlet" and "outlet", plus e and c denoting "evaporator" and 

"condenser", i.e. hoe is the specific enthalpy at the outlet of the evaporator. The vapor 

compression cycle consists of 4 connected sub processes namely a compression, a 

condensation, an expansion and evaporation. We will go through each the processes 

following the numbers depicted in Figure 1.5 and 1.6 (Larsen, 2005). 

Compression; State Point 1-2 

At the inlet of the compressor the refrigerant is in a gas phase at low pressure and 

temperature. By compressing the refrigerant, the temperature as well as the pressure 

increases. 

The required work for the compression can be found by forming a control volume 

around the compressor, assuming it is insulated (adiabatic compression) and using Eq. 

1.4: 

  
̇   ̇(        )  (1.7) 

Where,  ̇ is the mass flow of refrigerant. If the compression is not adiabatic, then hic ≠ 

had i.e. some heat is transmitted to the surroundings during the compression. In that case 

it is common to introduce a heat loss factor fq, to compensate the measurements at the 

outlet of the compressor for the heat losses. fq is normally defined as the heat fraction of 

the applied compressor work that is transmitted to the surroundings (Sonntag et al.,1998): 
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(    –    )

(        ) 
   (1.8) 

The work applied to the compressor ( ̇ ) can then using Eq. (1.7) and Eq. (1.8) is written 

as: 

  
̇  

 

    
  ̇(       )  (1.9) 

Condensation; State Point 2-3 

Form the outlet of the compressor the refrigerant flows into the condenser. The 

condenser enables a heat transfer (  ̇) from the hot gaseous refrigerant to the 

surroundings. Because of the high pressure (the condensing pressure Pc) the refrigerant 

starts to condense at constant pressure changing its phase from gas into liquid (state point 

2-3). A fan blowing air across the condenser helps increasing the heat transfer. Through 

the last part of the condenser, the refrigerant temperature is pulled down below the 

condensing temperature (Tc), creating a so-called sub cooling (Tsc). This sub cooling 

ensures that the entire refrigerant is fully condensed when it passes on to the expansion 

valve (state point 3). This is important because even a small number of gas bubbles in the 

liquid refrigerant would lower the mass flow through the valve dramatically, causing a 

major drop in the cooling capacity (  ̇). The heat rejected in the condenser (  ̇) can be 

computed forming a control volume around the condenser and using Eq. (1.4): 

  ̇   ̇(       )  (1.10) 

Using the first law of thermodynamics on the system the heat rejected in the 

condenser can also be computed as: 

 ̇   ̇    
̇     ̇     (1.11) 
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Expansion; State Point 3-4 

The expansion valve separates the high pressure side from the low pressure side. 

When the refrigerant passes the valve (state point 3-4), it is therefore exposed to a large 

pressure drop causing some of the refrigerant to evaporate. In Figure 1.6 this can be seen 

as the process moves from the liquid phase (L) in state point 3, into the two-phase region 

in state point 4. This partial phase change causes the temperature to drop down to the 

evaporation temperature (Te), determined by the low pressure (Pe). From the expansion 

valve the refrigerant flows to the evaporator. Since no work is done when the refrigerant 

passes the expansion valve ( ̇= 0) and the expansion valve is assumed insulated ( ̇= 0) 

then according to Eq.(1.4) the inlet enthalpy (hoc) to the valve equals the outlet enthalpy 

(hie), i.e. hoc = hie. 

Evaporation; State Point 4-1 

In the evaporator the low inlet temperature (Te) enables a heat transfer from the 

cold reservoir (the cold storage room) to the refrigerant. Hereby the remaining part of the 

liquid refrigerant evaporates at a constant temperature (Te) under heat "absorption" from 

the cold storage room. Like in the condenser a fan helps increasing the heat transfer by 

blowing air across the evaporator. At the outlet of the evaporator (state point 1) the entire 

refrigerant has evaporated and the temperature has increased slightly above the 

evaporating temperature (Te). This small temperature increase is called the superheat 

(Tsh). The superheat is important to maintain, as it ensures that the entire refrigerant has 

evaporated, such that no liquid gets into the compressor (state point 1). The liquid could 

otherwise cause a breakdown of the compressor. The cooling capacity ( ̇ ) can be 

computed forming a control volume around the evaporator and using Eq. (1.4). 
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  ̇   ̇̇ (       )  (1.12) 

The refrigerant has now completed the vapor compression cycle and returns to the inlet of 

the compressor, state point 1 (Larsen, 2005). 

1.5   Background and Motivation 
 

 Refrigeration and Air Conditioning systems can be found in many types of 

applications ranging from food and chemical preservation to space cooling to process 

cooling. Generally residential units are standard single compressor systems while the 

commercial systems are either custom built or standard off the shelf systems. In industrial 

scenario refrigeration systems are custom built. Custom systems are generally an 

assembly of components that have been tested and rated individually under design 

operating conditions but not necessarily rated as an integral, coordinated system. 

Therefore, in the assembled refrigeration plant, there is a possibility that the individual 

components may not provide optimum operation based on the deviation between the 

different components in the system. Consequently the final refrigeration plant may not 

operate optimally, resulting in lower operating efficiency and higher operating cost.    

Table 1 presents information on the manufacturing industries that are intensive in 

process cooling and refrigeration (PC&R) energy consumption as monitored by the US 

Energy Information Administration (EIA) in 2006. The information in Table 1 indicates 

that in the Food and Beverage industries, process cooling and refrigeration represent one 

of the largest electrical end uses, while the Food and Chemical industries use are the 

largest energy users of process cooling and refrigeration in the manufacturing industries 

(D’Antonio et al., 2006). 
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 The factors that influence the refrigeration system energy use are the inherent 

efficiency of design and refrigerant, the condition of the equipment, the control strategy 

and the load profile of the system (deviation of the operating cooling loads from the 

design cooling loads). In many cases, the installed refrigeration plants can benefit in 

subsequent control adjustments and or system operational changes based on assessed 

data.  

 The refrigeration cycle is dynamic and changing. From the time the 

compressor commences to run until it stops, the suction pressure, evaporator temperature, 

the rate of heat exchange, refrigerant flow and many other factors are continuously 

changing. The total efficiency of the system changes through the entire life cycle. 

Due to the high cost of energy and growing consumer awareness about the energy saving 

there is a growing need for energy efficiency in the field of industrial refrigeration. The 

present work provides various techniques of reducing energy consumption of the 

refrigeration system. 
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Industries 

 

 

NAICS 

Code 

Energy Consumption  

(Millions of kWh) 

 

 

PC&R % of 

Total (A/B) 

 

 

% of Total 

US PC&R 

(A/D) 

Process Cooling & 

Refrigeration 

(PC&R) (A) 

 

Total 

(B) 

Food 311 17,679 67,390 26.2% 28.6% 

Beverage and 

Tobacco Products 

312 2,349 8,242 28.5% 3.8% 

Chemicals 325 16,109 215,008 7.5% 26.1% 

All Manufacturing 

Industries 

311-339 61,763 (D) 1,025,149 6% 100.0% 

Table 1: Energy Consumed as a Fuel by End Use in Manufacturing Installations 

(D’Antonio et al., 2006) 
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1.6   Literature 
 

Numerous literatures can be found in the fields related to this study, but literature 

related to the specific aspect of industrial refrigeration control and operation strategies is 

rather sparse. Manske (1999) did a study on performance optimization of industrial 

refrigeration systems. He developed a detailed model of a vapor compression 

refrigeration system, including subcomponents. Primozic et al. (2003) discussed about 

staging of reciprocating compressors by following the rate of rise and fall of the suction 

pressure. Aprea and Renno (2004) performed an experimental analysis of a 

thermodynamic model of a vapor compression refrigeration plant on varying the 

compressor speed. Larsen (2005) developed a model based control of refrigeration 

system. In that work model based set point optimization control method was developed. 

The optimizing control is divided into two layers, where the system oriented top layers 

deals with set-point optimizing control and the lower layer deals with dynamical 

optimizing control in the subsystems. The objective was to derive a general applicable 

set-point optimization method for refrigeration system that can drive the set-points 

towards optimal energy efficiency, while respecting the system limitations. Widell and 

Eikevik (2008) did a study on reducing power load in multi compressor refrigeration 

systems by limiting part load operation. An experimental analysis of compressor 

operation in a large refrigeration system was undertaken and a model for optimal 

compressor operation for energy efficiency was developed. The system used 5 screw 

compressors and ammonia as the refrigerant, with slide valves to regulate the 

compressors and match their refrigeration capacity with product freezing loads. 

Optimized operation was made both with and without a variable frequency drive. Reindle 
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et al. (2003) have suggested load sharing strategies in multi compressor refrigeration 

systems. In that study they have showed that when two identical screw compressors are 

operating in parallel, there exists an optimum point at which it is best to switch from each 

compressor equally sharing the load to one compressor operating at full load and the 

other unloaded to match the remaining system load When two screw compressors of 

different sizes are operating, an optimal compressor control map can be developed which 

maximizes the efficiency of the entire system over the entire range of loads. These 

optimum operating maps are shown to depend on the characteristics of the individual 

compressor’s unloading performance and the relative sizes of compressors. An optimum 

control strategy for systems having multiple compressors, screw and/or reciprocating can 

be implemented using the concept of crossover points introduced. 

1.7   Objective of Thesis 
 

 The main objective of this thesis is to create novel control algorithms and 

operating procedures that can reduce the energy consumption of dynamic industrial 

refrigeration system. The approach here is to create a database of different operating 

parameters and utilize that database to create model of system energy consumption. 

Compared to the physical model, the data driven model will account for dynamic 

behavior of the refrigeration system. The data driven model will be used to predict the 

performance of compressors and condensers and to provide the energy efficient capacity 

control. Control algorithms developed in this study will also identify maintenance and 

operational problems up to certain extent in future and indicate the operator about those 

possible problems before hand. An algorithm is developed for changing the discharge 
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pressure set-point (floating the discharge pressure) for reducing the energy consumption 

of the whole system.  

 The objectives that identify the scope of this project are deciding floating 

discharge pressure set point for energy optimization, compressor performance prediction 

and selecting most efficient compressor(s) in predicted conditions and compressor 

capacity control by real time model based energy optimization in multi-compressor 

system 

1.8  Thesis Outline  
 

The chapter 1 is an introduction to refrigeration system. Basic building blocks of 

the refrigeration system are discussed and principles of thermodynamics are presented 

that drives the refrigeration cycle. The vapor compression refrigeration cycle is also 

discussed which is the area of study of this work. The chapter ends with background and 

motivation. The chapter 2 provides a detailed description of the particular system that 

was selected for the study. It also discusses the analysis of gathered data and 

observations. The chapter 3 discusses Manske (1999) approach of finding discharge 

pressure with energy optimization.  The chapter 4 discusses a novel method of designing 

the sequencer, algorithm and simulation results. 
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2. The Refrigeration Plant 
 

In this chapter we will describe the refrigeration plant examined for the study. The 

second part of the chapter will discuss analysis of the data obtained from the plant and 

describe the findings. These will form the bases for chapters 3 and 4. 

2.1   System Overview  
 

 The refrigeration plant examined in this project is a food processing facility. 

The facility uses single stage refrigeration system for cold storage as well as for process 

cooling. The facility maintains 19°F suction temperature and the discharge temperature 

floats between 70°F to 90°F i.e. 115 psig to 165 psig discharge pressure. The facility has 

seven single stage screw compressors installed. All the compressors have liquid injection 

cooling system. Our analysis shows that the liquid injection cooling consumes 7% of 

cooling capacity of compressors. Out of seven six compressors have fixed volume index 

(fixed Vi) and one has variable volume index (Vi). The refrigeration system uses 

ammonia (R717) as refrigerant. On a pick summer day with full production activities the 

facility operates maximum of four compressors to satisfy 2000 to 2200 tonnage load. 

Loads on the system can be classified as, plant and office air conditioning load, process 

cooling load and cold storage load.  The table 2 shows rated compressor capacity, motor 

voltage and Full Load Ampere (FLA) data for all seven compressors.  
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Table 2 Capacity, motor voltage and Full Load Ampere (FLA) data for Compressors 

 

 

 

 

 

 

 

 

 

Compressor 

Name 

Type Load Varying 

Mechanism  

Make / Year Cooling 

Capacity 

(Tonnage) 

Motor 

HP 

Motor 

Voltage and 

FLA 

Compressor #1 Screw Slide Valve FES / 1998 426 500 HP 4160V / 60A 

Compressor #2 Screw Slide Valve FES / 1971 512 600 HP 4160V / 74A 

Compressor #3 Screw Slide Valve FES / 1971 512 600 HP 4160V / 74A 

Compressor #4 Screw Slide Valve FES / 1971 512 600 HP 4160V / 74A 

Compressor #5 Screw Slide Valve FES / 1971 512 600 HP 4160V / 74A 

Compressor #6 Screw Slide Valve FES / 1984 512 600 HP 4160V / 77A 

Compressor #7 Screw Slide Valve FES / 2002 390 450 HP 4160V / 55A 
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Evaporators and heat exchangers in the plant are either top fed or pumped liquid 

overfeed. A greater quantity of liquid is pumped through the evaporator than the amount 

of refrigerant that is actually evaporated in pumped liquid overfeed evaporators. All 

pumped liquid overfeed systems require receiver vessels. Receiver vessels are large tanks 

that hold two phase refrigerant. They have four main purposes: Separate the liquid and 

vapor components of a two-phase flow, maintain a liquid level with suitable static head 

for the liquid pumps, store a reserve of refrigerant to smooth transient load fluctuations in 

the system, prevent liquid refrigerant surges in the system from damaging compressors 

(since gravity will separate the liquid from the vapor inside the vessel). 

Three evaporative type condensers are placed for converting the refrigerant vapor 

into liquid phase. The sprayed water evaporates during the refrigerant phase transfer 

process. Each condenser has six 7.5 HP axial fans to provide forced convection. Two step 

speed control strategy is applied (50% speed and 100% speed) for condenser fans. 

Condensers are designed with nominal heat rejection capacity of 18,746.5 KBTU/hr (or 

also referred as MBH) at 95ºF dry bulb / 74ºF wet bulb outside air temperature. Two 

types of expansion valves are used, hand expansion type (HEX) and thermal expansion 

type (TXV). Process cooling is performed by shell and tube and plate and frame type heat 

exchangers. Due to safety issues many processes use glycol-water mix to transfer the 

heat. Evaporator coils in the coolers are defrosted with hot gas twice a day on a time 

scheduled basis. Evaporator defrost cycles are staggered so that there is usually no more 

than one evaporator in defrost at a time. Hot gas is superheated refrigerant vapor. It is 

piped directly from the discharge headers of the compressors. 
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2.2   Data Analysis and Conclusions 
 

Discharge pressure reading, suction pressure reading, and current draw by each 

running compressor and slide valve readings are taken three times a day for daily round 

sheets. Also a software called RSEnergy Matrix is also installed in the plant to log the 

current draw data of each compressor automatically on a computer server. In this study 

the daily round sheet database as well as the computer database is used. One year long 

data of different operating parameters were gathered and analyzed. Figures 2.1 to 2.4 

show second-order polynomial trend lines created from the data for each compressor. The 

whole discharge pressure range is divided in four sub ranges  

An analysis of figures provides us following observations. In low discharge 

pressure range compressors #3 and #6 draw 15 to 20 ampere more current than 

compressors #2, #4 and #5 at 100% slide valve positions. Near 85% slide valve position, 

compressor #3 becomes more efficient than compressor #6. Compressor #4 is only 

efficient in high slide valve values. In the 130-134 psig pressure range also compressor 

#3 and #6 are less efficient than Compressor #2, #4 and #5 for 100% slide valve. Second 

order polynomial model for Compressor #1 is different in this pressure range compared 

to the previous pressure range. It draws less amount of current in less than 130 psig 

pressure range compared to 130 to 134 pressure ranges. Among all 600 HP compressors 

Compressor #5 becomes most efficient below 50% slide valve. In this pressure range the 

Compressor #4 is the most efficient compressor to run in all slide valve positions. There 

are many cross over points between compressors that makes one compressor more 

efficient than other.  
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Figure 2.1 Current vs. % Slide valve graph for 100 to 129 psig discharge pressure 

 

 

 

 

 

 

I = 0.0011(SV)2 + 0.1(SV) + 26.914 

I = 0.0003(SV)2 + 0.0819(SV) + 31.323 

I = 0.0038(SV)2 - 0.046(SV) + 28.329 

20

25

30

35

40

45

50

55

60

65

70

0 20 40 60 80 100 120

C
u

rr
en

t 
(A

) 

Slide Valve % 

115-129 psig 

Poly. (#1)

Poly. (#2)

Poly. (#3)

Poly. (#4)

Poly. (#5)

Poly. (#6)

Poly. (#7)

I=Current 
SV= Slide 
Valve % 



32 
 

 

 

 

 

Figure 2.2 Current vs. % Slide valve graph for 130 to 134 psig discharge pressure 
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Figure 2.3 Current vs. % Slide valve graph for 135 to 139 psig discharge pressure 
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Figure 2.4 Current vs. % Slide valve graph for 140 and higher discharge pressure 
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In 135 to 139 psig pressure range the Compressor #4 is most efficient in all slide 

valve conditions. Also cross over points are different compared to previous plots. Cross-

over points are circled in all plots. The figure 2.4 shows Current vs. % Slide valve graph 

for 140 and higher discharge pressure. In that pressure range compressors #2, #3 and #6 

draws same amount of current in full load condition. But as these compressors start 

unloading, the Compressor #2 becomes more efficient than #3 and #6. At low slide valve 

values compressors #2, #3 and #6 have almost same current draw. Compressor #1 

performs better in this range compared to other pressure ranges. In all figures compressor 

#7 draws least amount of power, as it is rated with lowest power. But its specific power 

(kW/Tonnage) indicates that it is efficient in only a few conditions (see chapter 3). 

Based on the above analysis we concluded that a model based approach of 

selecting and sequencing compressors would save significant amount of energy in such 

high power systems and so a new design of sequencer algorithm is required to integrate 

the data driven modeling capabilities.   
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3. Evaporative Condenser Part Load Operation 

with Energy Optimization 
 

In this chapter we will describe the evaporative condenser in more details and 

discuss advantages of floating discharge pressure. We will also discuss Manske’s (1999) 

method of finding discharge pressure with energy optimization. The approach followed in 

this chapter was developed by Manske (1999). Here we are following the approach to 

simulate the data gathered from the plant in consideration. The results obtained and 

lessons learnt during the simulation, described in this chapter are very much useful in the 

next chapter where Manske’s work is extended to predict the discharge pressure for the 

model based sequencer.  

3.1   Evaporative Condenser Description 
 

The task of an evaporative condenser is to reject the heat gained during 

evaporation action and gas compression action, from the refrigerant into the atmosphere. 

As energy is removed from the hot refrigerant a change in state from vapor to liquid 

occurs. Evaporative condensers reject energy from the high pressure, hot compressor 

discharge refrigerant to the ambient air. A diagram of an evaporative condenser is shown 

in Figure 3.1.  
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Figure 3.1 Evaporative condenser descriptions  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



38 
 

Superheated high pressure refrigerant vapor coming out of the compressor, enters 

the coils of the evaporative condenser at the top of the unit. In order to have better heat 

transfer, water from a basin is pumped up to the top of the unit and sprayed down over 

the outside of the coils as outside air is drawn or blown through the unit by fans. As the 

water pours over the coils and evaporates into the air stream, the exterior heat exchanger 

surface tends to approach the outside air wet-bulb temperature. Also energy is transferred 

from the high temperature refrigerant to the cold water resulting in a phase change and 

condensing the refrigerant into a liquid (still at high pressure). Nearly saturated air leaves 

the top of the condenser at a temperature near the refrigerant’s saturated condensing 

temperature (SCT). The SCT is the refrigerant’s saturation temperature corresponding to 

the pressure inside the condenser. The refrigerant then leaves the condenser as a saturated 

or perhaps slightly sub cooled liquid. An evaporative condenser rejects energy by both 

heat and mass transfer on the outside surface of the condenser tubes. The main 

component of energy rejected by the condenser comes from evaporating the water, so an 

evaporative condenser is mainly a wet-bulb sensitive device (Manske, 1999).  The heat 

transfer depends on the condensing pressure of the refrigerant. Higher the wet bulb 

temperature, higher refrigerant condensing pressure is required to maintain the 

temperature gradient.  

3.2   Fixed vs. Floating Head Pressure Control 
 

System condensing pressure, also referred to as head pressure, is typically 

controlled in one of two ways. Fixed head pressure control has the simplest control 

strategy; however this control strategy results in unnecessary compressor power due to 
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the compressors operating with higher pressure lifts than required. The fixed level head 

pressure control strategy maintains the head pressure at a constant preset level regardless 

of system load and outside air conditions. This level could be adjusted several times a 

year in northern climates to improve performance during months of colder outdoor 

temperatures. 

The second type of control strategy is termed “floating head pressure”. In this 

control strategy, the head pressure is allowed to “float” down to a minimum set value 

which is normally determined by system defrost pressure, expansion valve pressure drop 

requirements, or oil pressure requirements from oil injected screw compressor cooling. 

As the load on the system or the outdoor dry bulb (wet bulb in the case of evaporative 

condensers) temperature increases, the head pressure will rise, thereby, allowing the 

system to reject energy to the environment as needed to balance system heat rejection 

requirements. Although the condenser energy is reduced using fixed head pressure 

control due to less fan run-time, the compressor energy consumption increased 

significantly (Manske, 1999). The current system uses a floating head pressure control 

strategy with a minimum head pressure set point of 115 psig.   

3.3   Manufacturer’s Ratings 
 

Typically, manufacturers provide the nominal volumetric air flow, the nominal heat 

rejection capacity, and a variable load multiplier that is referred to as the heat rejection 

factor (HRF). The HRF is a function of the outside air wet bulb and the refrigerant SCT. 

The rated heat rejected by the evaporator is calculated by dividing the nominal heat 

rejection capacity by the HRF. (Equation (3.1)) 
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    (       )
  (3.1) 

Evapco provided HRF’s for wet bulb temperatures between 50°F and 86°F and for 

saturated condensing temperatures (SCT) between 70°F and 90°F. Dry bulb temperature 

was not specified and can be assumed to have negligible effects on evaporative condenser 

performance (Manske, 1999). Varying inlet conditions are adjusted by mixing outside air 

with some of the moisture laden exhaust air exiting out the top of the evaporator until the 

desired inlet air wet bulb temperature is reached. 

3.4   Evaporative Condenser Part-Load Operation 
 

Condenser rejects the system energy to the environment. Condensing 

pressure/temperature is controlled with the fans to transfer the required amount of energy 

to the environment. If the load on the system increases, the head pressure needs to 

increase. As the head pressure increases, the refrigerant condensing temperature increases 

which increases the condensers heat rejection capacity. If the condenser is operating in a 

mode where it is rejecting too much energy, the condensing pressure will decrease along 

with the condensing temperature of the refrigerant until a head pressure which balances 

the heat rejection needs of the system is reached. Allowing too low a condensation 

pressure can cause operational problems with other components in the system such as 

expansion valves, back pressure regulators, and hot gas defrost capacities. When the 

amount of energy that needs to be rejected from the system is less than the full load 

capacity of the evaporative condenser, which is most of the time, the capacity of the 

condenser must be reduced. An evaporative condenser’s capacity can be reduced in two 
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ways: Head pressure control by altering the airflow through the unit with fan speed 

control or fan cycling and dry operation by shutting the cooling water off. 

The capacity of a condenser can be changed by modulating the mass flow of air through 

the unit by controlling the speed or cycling the fans. Equation (3.2) is used to de-rate the 

performance of the evaporator using fan speed control (Manske, 1999). 

                             (
               

              
)
 

  (3.2) 

The coefficient N is expected to vary between 0.5 for laminar flow and 0.8 for turbulent 

flow (Mitchell and Braun, 1998). A manufacturer’s representative from Evapco 

suggested a value of 0.76 for their evaporative condenser units (Manske, 1999). 

As air mass flow through the condenser is increased by increased fan run time or 

faster fan speeds, more energy is rejected from the warmer refrigerant and the SCT of the 

refrigerant is reduced. With a lower SCT to drive heat and mass transfer mechanisms, the 

capacity of the condenser will be reduced. With this capacity reduction scheme, the 

system sees an additional benefit in the reduction of the head pressure on the compressors 

which cuts down on the power consumption of the compressors. 

The other method used to reduce the capacity of an evaporative condenser is to 

simply shut the cooling water off. Without a wetted exterior surface, the only mechanism 

of energy rejection is by sensible heat transfer between the refrigerant and outside air. 

With reduced loads and relatively cool outside air dry bulb temperatures, as commonly 

found during winter months in cooler climates, this is a perfectly acceptable method of 

capacity control. This type of control also has the advantage of reduced power 

consumption because the water circulating pumps are no longer energized. For outside air 



42 
 

temperatures below 32°F, a manufacturer’s representative suggested an evaporative 

condenser running dry operates between 30 and 35 percent of its wet capacity (Manske, 

1999). Thirty-five percent was used in the present model. Due to the drastic change in 

capacity between wetted and dry operation (100% to 35%), condenser water cycling 

should never be used for capacity control.  

Typically a combination of both capacity reduction schemes mentioned above are 

used to maintain the desired condensing pressure in the system throughout the year. Mass 

flow of air through the condenser is controlled by the fan motors. Widely used control 

schemes are: On\Off motor cycling, (Current evaporator control strategy), half-speed 

motor cycling (High speed, low speed, off) and Variable Frequency Drive (VFD) 

controllers on the motors. 

With the on-off motor control strategy, the condenser fans are run at full speed 

until the condenser’s pressure falls below an acceptable limit and then the motors are shut 

off. 

Half-speed control first cycles the fans to half-speed and then to full speed if the 

condenser’s head pressure is still too high. VFD control runs the fans at a speed just fast 

enough to maintain a constant head pressure at a defined set point. The advantage of 

using the half-speed and VFD control can be explained by the fan laws. Fan power is 

related to the cube of fan speed. If the speed is cut in half, half the mass flow is achieved 

at only one-eighth of the design fan power. Depending on the size and arrangement of the 

condenser, there may be more than one motor driving any number of fans. Of course each 

individual motor can be sized differently. The evaporator modeled in this study has two 

motors. One 7.5 horsepower motor drives one fan and one 15 horsepower motor drives 
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two fans. The condenser has an internal baffle that prevents internal recirculation of the 

air when only one of the motors is on. The internal baffle combined with two separate fan 

motors splits the large condenser into two smaller ones; one with 33.3 percent of the total 

capacity and the other with 66.7 percent. When one section is active the other will still 

reject approximately 10 percent of its nominal capacity due to natural convection effects. 

When this arrangement exists, there are several different control strategies to choose 

from. Each control strategy dictates a different order by which “parts” of the condenser 

are activated or deactivated to build up to its full capacity. When motors are purchased 

with a half-speed option, the number of possible control strategies increases further. 

Several control schemes were selected and compared. Figure 3.2 shows what percent of 

the full load power each fan control scheme would use given the percent of full load that 

the condenser must operate at to satisfy the energy rejection requirements of the system. 

The fan power drops to zero at ten percent capacity because some natural convection 

effects were assumed. 
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Figure 3.2 Part load evaporative condenser operation  
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Fan control for control strategy 1 would be as follows. Given a saturated 

condensing temperature and outdoor wet bulb temperature the nominal capacity of the 

condenser is 100 [MBH]. If the actual amount of heat that needed to be rejected was 

below 40 [MBH] (33.3 from the small fan side plus (0.1*66.6) = 6.7 from the natural 

convection of the large fan side), then only the small fan would have to be operated. For 

example if the load was 25 [MBH] the small fan would have to cycle on (25/40) = 62.5% 

of the time. The large fan would remain off. If the load was 50 [MBH] the large fan 

would cycle on (50/70) = 71.4% of the time.  

Fan motors can be designed to operate at single speed, multi-speed, or be 

controlled by variable frequency drives (VFD). Advantages of using multi-speed and 

VFD motors appear when a system is operating at part-load. Condenser capacity control 

is accomplished by modulating or reducing the airflow through the unit with fan control. 

As shown in Figure 3.2, given a specific system operating point, VFD motor control 

requires significantly less condenser fan power than simple on/off control when the 

condenser is operated between 30 and 90 percent of its full load capacity. Figure 3.2 also 

showed that a half-speed motor option also realizes significant power savings in that 

same operating range.  

3.5   Deciding the Head Pressure with Energy Optimization 

 
As we discussed earlier, that the total system power depends on saturated 

condenser pressure. If the pressure is allowed to increase, the condenser fans have to run 

less often or at lower speeds and a savings in condenser fan energy results. Secondly, 

high head pressure requires increased amounts of compressor energy to produce the extra 
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pressure lift. Figure 3.3 is a plot of the combined compressor and condenser energy 

requirements per tonnage of refrigeration (Specific Power) as a function of head pressure. 

The point furthest to the left on the curves in Figure 3.3 represents the pressure at which 

the condenser is operating at 100 percent capacity. Any further decrease in condensing 

pressure would prevent the condenser from rejecting the required amount of energy from 

the system. Simulations were performed to identify optimum head pressure for the 

system in discussion.  
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Figure 3.3 Evaporative Condenser Fan Motor Control Strategies 
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Figure 3.3 shows optimum system head pressure at ambient wet bulb temperature 

of 72°F.  It also demonstrates that VFD fan control could save the system nearly 6% in 

combined compressor and condenser energy requirements if the head pressure were 

raised to 116 psig. The optimum pressure is dependent upon both the system load and 

size of condenser. VFD fan control loses its advantages at low head pressures because the 

fans must run at near full speed most of the time anyway. Simulations were created for all 

different wet bulb temperatures for an imaginary two compressor system. Figure below 

shows optimum saturated condenser pressure for 86°F outside wet bulb temperature.   
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Figure 3.4 Saturated condenser pressures for 86°F outside wet bulb temperature 
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As the ambient wet bulb temperature changes, the point of optimum pressure 

changes, with higher wet bulb temperature the optimum head pressure increases. An 

algorithm was written (Chapter 4) to change system head pressure in real time while 

optimizing the system energy. The new method of designing sequencer described in next 

chapter includes this optimization algorithm to predict the discharge pressure for 

compressors.  
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4. Model based Sequencer for Energy 

Optimization 
 

In this chapter first we will discuss present methods of designing sequencers for 

compressors than we will discuss the model based sequencer and its algorithm. Based on 

the plant described in chapter 2 sequencer software was created and data of different 

operating conditions were fed to obtain the results. These results are also discussed in this 

chapter. Finally we will conclude the study. 

4.1   Present Methods of Sequencing Compressors  
 

 In most application areas refrigeration is a part of critical processes and so in 

majority of cases companies install redundant equipment as a backup. In some cases, 

over a period of time, product range changes, because of which extra compression 

capacity exists. Also the systems are designed based on maximum cooling load which in 

many cases exist during small period of time in a year. Due to all these reasons extra 

compression capacity exists in a refrigeration plant.  

 When there is an extra compression power the question arises as to which 

compressor to operate during a given time period. Refrigeration plants apply different 

methods of selecting compressor(s) to run for a given period of time. These methods vary 

from simple manual selection to semi-automated selection by user configurable 

hardware/software to fully automated selection by a PLC or Sequencer.  
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 The load on refrigeration system is not constant; it varies based on ambient 

conditions and production schedules. Sequencers are also designed to vary the capacity of 

compressors to meet the varying load in real time. 

4.1.1 Introduction to Sequencers 

 
Dugan (2010) explained present day sequencers ar “Sequencers are control 

systems that sequentially stage multiple compressor systems, running only the minimum 

number required, based on one suction pressure signal, usually with only one running in a 

part-load mode (“trim”) and the rest either fully loaded (“base-load”) or off. Here we are 

describing three basic types of sequencers based on their algorithm, “cascade”, “target”, 

and “custom”. The first two are for “discrete” control only, using binary or relay 

interface, best suited for load-unload screw or reciprocating compressors. Custom 

sequencers can be applied to proportional control, which includes variable speed (VS) 

compressors”.  

4.1.2 Cascade Sequencers 

 
The simplest sequencers use a “cascade algorithm”. It is the sequential starting 

and loading of compressors based on rising pressure, and the reverse for falling pressure. 

This algorithm comes from a time before the age of the computer. Sequencers started 

their life as a mechanically-driven pressure switch selectors, using relays, cams and 

timers. They function as follows: as the pressure rises, the next compressor starts and 

loads, and then the next starts and loads if the pressure rises further. As the pressure 

drops, the reverse occurs. The last ON will load and unload once the number of 
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compressors running stabilizes. The sequencer swaps the order around to even out wear. 

This was coded into simple programmed logic when programmable logic controllers 

(PLCs) and embedded controllers were introduced to industry. The cascade algorithm is 

best suited for positive displacement and reciprocating compressors. Cascade sequencers 

have a wide operating pressure differential (Dugan, 2010). 

4.1.3 Target Sequencer 
 

Dugan (2010) explained target sequencer as follows “With the advent of PLC and 

embedded controller technology, different algorithms have been designed. One common 

alternative to the cascade algorithm is the “target” algorithm. There are variants, but the 

simplest uses one pressure band for the trim compressor and a wider pressure band to 

trigger base-load compressors. The sequencer manages the number of base-load 

compressors running without having to wait for pressure to continue to rise again. The 

first time the pressure rises to the lower “base-load” point, the trim compressor is already 

fully loaded and the #1 base starts. The second time it hits the same base-load point, the 

#2 starts, and so on. The reverse happens at the high limit of the wider pressure band, but 

in reverse. Another way is to use timers instead of the wider pressure band to determine if 

the next compressor needs to start. Target sequencers have a narrow operating pressure 

differential. These common designs seem simple. In a “perfect” world, implementation 

would be simple also. However, simple sequencers described above assume the following 

system characteristics for smooth implementation: All of the compressors are the same 

vintage, make, type, and size, all can run load-unload and be remotely started and 
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stopped, all are plumbed to a common header, generously sized and there is adequate 

storage”. 

4.1.4 Custom Sequencers 
 

We will comment briefly on two algorithms: Flow-based and Load-sharing. 

In "Flow-based” sequencer the optimal number and size of base-load compressors are run 

at any time based on total flow, not strict sequential order. A more advanced processor 

and algorithm is required. Significantly different size or type of base-load compressors 

make this algorithm a good fit. 

In “Load-sharing” multiple proportional compressors are run at the same pressure and 

percent load. The management system “bumps” the local settings to make this happen. 

This expands the effective range of efficient trim operation; making a system more stable 

(Dugan, 2010). 

 

4.1.5 Review 

 These methods try to equalize the running hours, stabilize the pressure set points 

and sometimes try to minimize the energy consumption. But in performing these tasks 

they do not account compressors’ relative energy efficiency. Considering that, 

compressors rated with same specifications draw same amount of power, is incorrect. 

Due to many practical reasons like wearing of parts, age of the compressors, type of 

compressors, compressors’ motor efficiencies, effectiveness of the cooling system, fixed 

volume ratio vs. variable volume ratio, discharge pressure range, method of capacity 

control, compressor shaft alignment etc. energy consumed by each compressor is 
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different than other compressor even if they are rated same. In this section we will 

discuss about integrating the computer database of compressor(s) energy consumption 

with compressor sequencers and utilizing the database to predict the operating discharge 

pressure for each compressor. We will also discuss the computer program created for a 

refrigeration plant and energy saving analysis for that plant.  

4.2   Model based Sequencer 
 

As we discussed earlier, the refrigeration cycle is highly dynamic and changing. 

From the time the compressor commences to run until it stops, the suction pressure, 

evaporator temperature, the rate of heat exchange, refrigerant flow and many other 

factors are continuously changing. The total efficiency of the system changes through the 

entire life cycle. In order to account for the dynamic behavior of the refrigeration system 

and provide energy efficient controls it is necessary to keep track of the system’s 

behavior by gathering operational data and model the compressors’ energy consumption 

based on the created database.  

We have developed an adaptive control algorithm that creates a database of 

important system parameters and uses that to predict performance of each compressor. 

Here the ratio of compressor’s energy consumption to cooling capacity is calculated for 

an 8 hour time period and based on that the sequencer selects compressors to run for a 

given period of time. In order to maintain the stable suction pressure, the sequencer 

creates energy models of each compressor in real time and feeds the cooling capacity 

requirement data in the model to optimize the energy. Slide valves of different running 

compressors are varied in order to meet the load requirements while minimizing the 
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energy. The algorithm keeps updating the database and works accordingly. The program 

uses the database of the refrigeration plant discussed in chapter 2. The sequencer program 

was simulated for all different discharge pressure conditions and different operating 

conditions for that plant.  

4.2.1 Correlations and Compressor Models 
 

In most industrial refrigeration applications, compressors consume the majority of 

the system total energy requirements. The three parameters that are of most interest to a 

refrigeration system designer or operator are the power required by the compressor, the 

amount of useful cooling (capacity) it provides, and the amount of oil cooling it needs. 

Most compressor manufacturers provide tables for each of their compressor models that 

list these three requirements (brake horsepower, capacity [tons], and oil cooling load 

[kBTU/Hr]) given saturated suction and saturated discharge temperature/pressure. 

Saturation temperature is defined as the temperature corresponding to the saturated vapor 

state of the refrigerant given a particular pressure (Manske, 1999). But as we discussed in 

topics 2.2 and 4.1.5 that compressor’s actual power consumption changes based on 

different reasons including total running hours put on them, the present system uses data 

base of past ampere, slide valve and saturated pressure data to create compressor models.  

In order to select compressors for full load and part load operations, considering 

different size of compressors, it is necessary to calculate compressors’ cooling capacity 

with respect to the electrical power input. The ratio of electrical power input to the 

cooling capacity is called Specific Power (Manske et al). Its unit is kW/Tonnage. 

Polynomial correlations of steady state compressor power, capacity and Specific Power 
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in the form given by equation 4.1-4.4 were developed as a function of slide valve 

movement. Power and capacity are also function of saturated suction pressure and 

saturated discharge pressure. Here saturated suction pressure is taken constant as the 

facility has a constant suction pressure set point. Equation 5 and 6 were developed to 

calculate maximum compressor power and capacity for different saturated discharge 

pressures. The capacity data were provided by manufacturer. Equations 4.1 to 4.6 are 

totally empirical.   

 For a discharge pressure, power consumed by each compressor at various 

slide valve positions can be described as  

                 (    )     (   )     (4.1) 

For a discharge pressure, cooling capacity of each compressor at various slide valve 

positions can be described as  

              (   )     (   )      (4.2) 

For a discharge pressure Specific Power of each compressor can be described as  

    
   (          ) 

   (       ) 
      (4.3) 

For a discharge pressure Specific Power of each compressor at various slide valve 

positions can be described as  

      (   )     (   )       (4.4) 

The equation below decides maximum power consumed when the compressor is 100% 

loaded at each saturated discharge pressure values.  

                 (   )      (   )      (4.5) 
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The equation below decides maximum capacity consumed when the compressor is 100% 

loaded at each saturated discharge pressure values.  

              (   )     (   )      (4.6) 

Where, P1-P3, S1-S3, DP1-DP3 are empirical coefficients and calculated every time. C1-

C3 and D1-D3 was calculated based on data provided by manufacturer.  

4.2.2 Compressor performance prediction  

 

 Compressor models were used to find optimum power consuming compressor(s) 

for full load and low load operations based on predicted discharge pressures for the day. 

The equations below are used to select full load and part load compressors for sequencer.  

                         ((
 

    
∑

 

  
 ∑   (  ))   

     
    
   

               
 (4.7) 

                         ((
 

    
∑  ∑   (  ))  

     
    
   

               
 (4.8) 

Note here the part load compressor is selected based on total specific power (adding 

specific powers at all slide valves (10% to 80%)). 
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Figure 4.1 Algorithm of Compressor Selection Program 
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 Every eight hour the program predicts discharge pressure based on the ambient 

conditions and for those discharge pressures the average full load specific powers and 

total part load specific powers are predicted. These specific power values are fed into the 

optimization program. The optimization program integrates the average full load specific 

power and total part load specific power over the time period to find the least power 

consuming compressor combination from the available options.  

 Figures 4.2 and 4.3 show predicted zero day (for an 8 hour period) full load and 

part load specific powers for all compressors. In this simulation dry bulb temperatures are 

taken between 60°F to 70°F and the relative humidities are taken between 60% to 65%. 

In these atmospheric conditions the predicted discharge pressures are between 133 psig to 

142 psig. Integration of specific powers for the time period gives us predicted total 

specific power of each compressor. This prediction is used to select the least power 

consuming compressor. Accoring to figure 4.2, compressors #2 and #4 are least power 

consuming compresors at full load operation. According to figure 4.3, the compressor #5 

will consume least amount of power at part load. 
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Figure 4.2 Average full load specific power for an 8 hour predicted period 
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Figure 4.3 Total part load specific power for an 8 hour predicted period 
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4.2.3 Simulation Results 
 

For each discharge pressure between 115 psig to 165 psig the program was simulated and 

Specific Power curves were obtained. The results show that compressors’ efficiency 

varies based on discharge pressure and % slide valve values. The Figure 4.2 shows 

electrical power consumed by each compressor at 115 psig discharge pressure, for one 

tonnage cooling capacity at different slide valve positions. Compressor #1 is poor 

performing in all slide valve conditions, while Compressor #2 is best above 50% slide 

valve. Compressor #3 draws 30% more power at 100% slide valve than Compressor #4, 

but it draws 10 to 20% less power below 50% slide valve than Compressor #4. The 

Figure 4.4 shows Specific Power curves for higher slide valve positions at 115 psig 

discharge pressure. Here the cross over points between different compressors is clearly 

visible. In this pressure range (100-129 psig) Compressor # 3 draws 61.7A current at full 

load (100% slide valve) compared to 42.5A drawn by Compressor #2. The Figure 4.5 and 

3.6 shows electrical power consumed by each compressor at 135 psig discharge pressure, 

for one tonnage cooling capacity at different slide valve positions.  
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Figure 4.4 Specific Power vs. Slide Valve plot for 115 psig pressure 
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Figure 4.5 Specific Power vs. Slide Valve plot for 115 psig pressure 
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Figure 4.6 Specific Power vs. Slide Valve plot for 135 psig pressure 
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Figure 4.7 Specific Power vs. Slide Valve plot for 135 psig pressure 
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 Compressor #2 is efficient for more than 60% slide valve, while Compressor #5 is 

efficient for less than 50% slide valve. Compressor #6 draws 30% to 45% more power to 

remove one tonnage of heat than Compressor #5 below 50% slide valve at this discharge 

pressure value. Compressor #7 is inefficient in all slide valve values. While in 140 psig 

pressure Compressor #7 is most efficient between 50% to 80% slide valve.  The 

simulation shows that Compressor #6 and #1 draw more power per tonnage of 

refrigeration in all discharge pressure conditions and for all slide valve values. The poor 

efficiency of part-load operation is mainly related to two factors, friction and volume 

ratio change. When the slide valve is in use, a slot opens for the refrigerant to vent back 

to the suction side. This leads to friction in the gas and a change in the volume ratio of 

compressor (Stoecker, 1998).  

4.2.4 Real Time Capacity Control in Multi Compressor System 
 

If multiple compressors are used to meet refrigeration loads, it is desirable to 

operate the compressors at the lowest combined power while still meeting the system 

loads. In refrigeration systems with variable loads, the delivered capacity of the 

compressors must be modulated by unloading the compressors in order to balance the 

compressor(s) capacity with the refrigeration demands of the system. As we concluded in 

section 3.2.2, each compressor depending upon type and manufacturer, may have a 

different unloading characteristic. The following results are strictly valid only for the 

particular screw compressors investigated in this study; however, the general concepts 

can be applied to all refrigeration systems with multiple compressors.  
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Manske et al have investigated a performance comparison, in terms of specific 

power, between the screw and reciprocating compressors for several different saturated 

suction temperatures over a range of part load conditions assuming a fixed saturated 

discharge temperature of 85 °F (Figure 4.8). The performance maps include effects of 

refrigerant pressure drop in both the suction-side and discharge-side of the compressor. 

The figure shows that reciprocating compressors unload nearly linearly and their 

performance curve is nearly flat for a fixed suction temperature. The slight increasing 

trend (corresponding to a decrease in compressor performance) from left to right in 

Figure 4.6 for the reciprocating compressor is a result of increasing pressure drop in the 

dry suction line due to increasing refrigerant mass flow rate. The additional (3%) increase 

in total compressor power discussed above also contributes to the increasing trend in 

specific power. Several observations can be made about compressor operation from 

Figure 4.8. A single screw compressor unloaded to 25 percent of its full load capacity has 

nearly a 50 percent increase in specific power when compared to a reciprocating 

compressor. Screw compressors perform better than reciprocating compressors when 

operated near full load; the screw compressor’s full load performance advantage 

increases as the suction pressure drops (i.e. as compression ratio increases). 

Reciprocating compressors are better suited in refrigeration systems where significant 

unloading, i.e. load following, is required. From energy standpoint, is more important to 

size screw compressors correctly as compared to multi cylinder reciprocating 

compressors. 
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Figure 4.8 Comparison of the performance of single stage screw and reciprocating 

compressors including suction and discharge-side refrigerant pressure drop (Manske, 

1999) 
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4.2.5 Load Sharing with Reciprocating Compressors  
 

If two similar reciprocating compressors in parallel operation are sharing a load, 

the load should be split to equalize suction line pressure drop to each compressor. This 

operating strategy minimizes the dominant compressor performance penalty source – 

suction line pressure drop. This conclusion, evident from the results of simulations 

performed by Manske (1999), is based on several factors. First, the unloading 

characteristic of the reciprocating compressor exhibits minimal performance degradation 

when unloaded. Second, the pressure loss in the suction line is roughly proportional to the 

square of the refrigerant mass flow due to line frictional losses whereas the power per 

unit mass increases as the suction pressure is reduced in the manner shown in Equation 

3.7.  

The work per unit mass required compressing refrigerant from the suction 

conditions (state 1) to the discharge conditions (state 2) in a polytrophic process (i.e., Pvn 

= constant) is given by Equation 3.7 (Kuehn et al., 1998). 

    
 

(   )
      (

  

  
)
(   )  

       (3.7) 

Where, 

    is the compressor work per unit mass 

n is the polytrophic coefficient 

   and    are the suction and discharge pressures (corresponding to the saturated suction 

temperature and saturated discharge temperatures, respectively) 

   is suction specific volume of the suction gas (which is affected by superheat) 
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Since the total mass flow rate for both compressors is fixed in order to provide the 

required refrigeration capacity, splitting the load to equalize pressure drop yields 

optimum combined compressor performance. For the reciprocating compressor, the 

combination of lower suction line pressure drop and minimal compressor unloading 

penalty lead to the improved compressor specific power as shown in Figure 4.8, (Manske 

et al.). 

4.2.6 Load Sharing with Screw Compressors  
 

Screw compressors unload non-linearly and their parallel operation must be treated quite 

differently compared to reciprocating compressors. We have developed an algorithm that 

creates model of specific power vs. slide valve for each running compressor in real time 

and performs optimization to minimize the total power required per tonnage of cooling. 

The model is created by gathering past performance data for each compressor for 

particular operating discharge pressure (Figure 4.9).  
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Figure 4.9 Algorithm of real time compressors’ capacity control with energy optimization 
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4.3   Simulation Results 
 

For the simulation a hypothetical two compressor system was chosen and 

Compressors #2 and #5 were selected to operate for some size compressor case. 

Compressors #2 and #7 were chosen in different size compressor case. Figure 4.8 to 4.10 

show plots of the aggregate specific power for a system with two equally sized screw 

compressors operating in parallel. The abscissa is the compressor part load ratio which is 

a ratio of present compressor capacity to total available compressor capacity. The red 

curve shows aggregate specific power of Compressor #2 and #5, by keeping the 

Compressor #2 fully loaded and only unloading the Compressor #5. The system will 

consume more power if Compressor #2 is unloaded and Compressor #5 is kept fully 

loaded, refer figures 4.4 and 4.5.  
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Figure 4.10 Aggregate specific powers vs. system part load ratio for constant discharge 

pressure 
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The blue curve represents aggregate specific powers of Compressors #2 and #5, 

by using model based optimization program. The program cycles compressors based on 

their different performance areas as discussed in section 3.2.2. In this case, for more than 

90% system part load, aggregate specific power is almost same in both the control 

schemes, but as system part load decreases, single compressor unloading scheme 

becomes inefficient. The figure below shows slide valve movements of both 

compressors, decided by the optimization program. Note that slide valves of both the 

compressors are changed to meet the decreasing capacity requirement while minimizing 

the specific power. The figure 4.12 shows the comparison curves of two different 

schemes when the discharge pressure is not constant. The figure 4.13 shows aggregate 

specific power vs. system part load ratio curve for dissimilar sized compressors. The red 

curve shows aggregate specific power when the larger compressor is kept fully loaded 

and the smaller compressor is unloaded based on load requirements. The blue curve 

shows aggregate specific power when both the compressors are unloaded according to 

model based optimization program. 

 

 

 

 

 

  

 

 

 



77 
 

 

 

 

 

 

 

 

  

 

 

Figure 4.11 Unloading curves of compressors #2 and #5 for different system loads 
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Figure 4.12 Aggregate specific powers vs. system part load ratio for floating discharge 

pressure 
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Figure 4.13 Aggregate specific powers vs. system part load ratio for constant discharge 

pressure system with dissimilar sized compressors  
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4.4   Conclusions 
 

When a screw and reciprocating compressor are sharing a reducing load, that is 

below the total available capacity of the system, the screw compressor should be fully 

loaded and the reciprocating compressor used for load following. This conclusion is a 

result of the part load characteristic in Figure 4.6 which indicates that the efficiency of 

the screw compressor decreases as the percentage full load capacity is reduced.   

When two screw compressors are sharing a load, control strategies should avoid 

operating any screw compressor below 50 percent of its full load capacity. 

Screw compressors are better suited for base loading where they can be run at full load all 

the time. 

Due to many practical reasons compressors may consume different amount of 

energy even if they are rated same. In high power systems this difference can be 

significant.  

In multi compressor system, whenever there is a redundancy in compressors, it is 

advantageous to evaluate compressor energy consumption in different operating 

conditions and then selecting the most efficient compressor to run. 

In case of multi screw compressor system, rather than applying specific rules for 

loading and unloading of compressors via slide valve, a model based approach, which 

uses database of different compressor parameters and minimizes energy according to 

each compressors’ performance characteristics, is more efficient.  

Data driven self-updating modeling of the system is more accurate than the fixed 

one time model. 
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