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I. ABSTRACT

This thesis discusse& a nonlinear CODEC using chaos.

This is the first device to nonlinearly encode in the

digital domain in this fashion. This device accepts a

stream of data and performs a nonlinear mapping to produce

the encoded data. This data can then be transmitted over a

medium and processed by the decoder which is the inverse of

the encoder. The nonlinear chaotic coding allows for

information to pass through the channel, but it appears to

show no correlation due to its chaotic quality. A 4 bit and

10 bit prototype system are studied in detail using computer

simulation. Responses due to constant, periodic, and AR

process data are shown, and the chaotic properties of the

encoded data are demonstrated.
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II. INTRODUCTION

Information and its transmission over a medium is vital

in today's world. Unfortunately, mediums such. as telephone

lines and the atmosphere are accessible to anybody willing

to take the trouble required to listen in. As a result,

sensitive information can be picked up by people who have no

authorization t~ it. This can be harmful or annoying.

To combat this, the sender can code his information so that

people who have access to his medium cannot automatically

have access to his information. Linear codes have

accomplished this task for decades. Two ways of encoding

signals linearly are (1) to introduce noise to the input

signal, or (2) to utilize a linear map on the signal.

However, today's high speed computers can "break" linear

codes by churning out mathematical functions on the data.

The goal of this work is to investigate a CODEC which

produces an output which appears chaotic in the channel and

'still is able to decode the signal. The CODEC's structure

is composed of a feedback encoder and a feed forward decoder

of which both incorporate a nonlinear function, a Left-

circulate block. Several plots are shown to demonstrate the

randomness of the channel for a 4 bit and 10 bit system.

The 4 bit system is completely explored with constant inputs

and with a sine wave. A general linear process is used to

gain insight into the 10 bit system. Hopefully, Jthese

~romising results generate interest for further research
--- ------- 4 -------- - •.•._-- ;------ - ---- ----
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into the realm of nonlinear coding.

Before detailing the construction of a CODEC system,

perhaps a definition and discussion of chaos is required.

"Any deterministic system of equations of motions driven by

either a dc or deterministic (not random) input signal is

chaotic if one or more of its solution wave forms exhibit a

continuous frequency spectrum. "lOne property of chaotic

signals is that an attractor can be generated which is a

subspace of the entire space. Knowledge of an attractor is

like knowing the house in which someone lives, but having no

clue as to where that someone is inside the house. Another

characteristic of chaos is its extreme dependence upon

initial conditions. In other words, two very close starting

loqatiops can produce very different signals.

In the digital domain, it can be shown that all signals

will repeat in some finite length. In an autonomous system,

the maximum length of a sequence before it starts to repeat

is the number of possible states of each delay multiplied

together. For example, an autonomous system with three 8

bit delays, independent of the configuration, would have at
..

most a sequence which repeats in (28*28*28)=16777216 •. This

is derived by counting each of the <!is'crete state

possibilities. In other words, how many ways can three

numbers be chosen for each de~ay unit? Each delay unit has

a quantity of possible choices, in this case 28
• When each

of these discrete state possibilities are mUltiplied

3



together, they yield the total quantity of ways that numbers

can be chosen for each delay unit, the size of the state

space.

A digital nonautonomous system cannot exhibit a true

chaotic signal either. Since the source signal must be of

finite duration, there are a finite amount of possible

states for the'system. Using similar analysis, the maximum

length of the signal can be determined by finding the

maximum number of states of the autonomous system and then

mUltiplying by the Lea~t Common Multiple of the length of

the 'sequence of each source. No matter how many sources are

. added to the system, only one more dimension is generated.

For example, if there are two sources, one which alternates

between ° and 1 and the other among 2, 4, and 6, then the

repetition length is 6. The sources can be thought of as

one with the sequence: 0,2; 1,4; 0,6; 1,2; 0,4; 1,6; 0,2 .•.

If 0,2 is declared to be position Xl' 1,4 position x2 , etc,

then the input sequence cycles through the positions of Xl

through x6 • The new input sequence has a finite length

because each of the original sources were periodic.

since the state space of any discrete system has been
/'

shown to be finite, it is impossible to have a trulY digital

chaotic signal. The signal's relationship to the frequency

spectrum is that there must be a spectral term which is much

greater than any other. This will occur at a frequency

which i~ equal to l/period. As the period of the repeating

4
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sequences approaches infinity, the spectral term of greatest

magnitude approach~s a frequency of.O Hertz. Note that

these limits place constraints on the system, but these

limits are such that the system could still appear to be

chaotic.

5



III. THE CODEC SYSTEM

In the design of a nonlinear CODEC which possesses

properties of chaos, it is important to put some thought

into the relationship between the encoder and decoder of the

system. The block diagram shown below illustrates the

relationship of each unit.

Sequence ->I ENCODER f-> CHANNEL -> I DECODER f-> Sequence

(figure 1)

In a successful transmission of a signal, the sequence which

is entered into the encoder is the same as the sequence

produced by the decoder. Also, it is hoped that the

channel's sequence is sUfficiently scrambled.

The relationship between the decoder and the encoder is

that they are the inverse of one another. Whatever one does

the other must undo. Both are essentially digital filters.

In order to approach chaos in the channel, these filters

incorporate a nonlinear function in- their structure.

The most basic building block of each of the coders is

the delay. If the encoder of the system is accomplishing

its task of placing a chaotic signal in the channel, then

initial conditions provide several interesting

characteristics. Different initial conditions for .each

delay produce different signals. Hence, the decoder can

only decode if it knows the proper starting conditions. In

6



order to avoid the complications of initial conditions, the

encoder is designed to have only feedback and the decoder

only feed-forward. Such a configuration allows the decoder

to sync into the correct signal. The required Jync time is

directly proportional to the number of delays in the system.

Because the decoder is not using the information in the

. channel in any feedback, errors in the decoder are not

compounded to the point where the decoder follows some other

output sequence. When the signal from the channel remains

error free long enough to fill each delay with good data,

the decoder will then decode the signal properly.

Therefore, noise corrupts the output of the decoder, but the

length of the bad output which is produced is proportional

to the number of delays.

7



The 4 Bit Encoder

.
The key to making. a filter become chaotic is to find a

nonlinear function which causes the filter. to possess "good"

properties. The Left-circulate function, LCIRC, tends to

produce the desired characteristics. The following is a

block diagra~ of the design of the encoder:

ENCODER

X(n) __~ t-----------.------~U(n)

(figure 2)

In order to begin analysis on the system, a 4 bit number

will be used. This means that numbers can range from 0 to

15 without u$ing two's compliment notation. The LCIRC will

map numbers by l~ft circulating the four bits (ex

LCIRC(10)=5). Also, for our beginning analysis the input

sequence will be DC.

If the input sequence is set to be 0 for all time, then

the filter· produces some interesting results. Depending on

the initial conditions~ the filter produces differ~nt

8



sequences. There are sequences of length 232, 8, 6, 3, and

1. There are also two different sequences of length.6.

This accounts for all of the 256 states of the system.

Maybe the most interesting occurrence of initial

cohditions is 01=0 and 02=0. The output of the encoder

remains unchanged at a constant of zero. This is not just

unique to the zero input case, since for any constant input

there is a set of initial conditions which will cause the

output to be a constant.

ENCODER OUTPUT SEQUENCE
Zero Input

15

~

10 -

P

. ..
5- I

I

r
0

- Discrete Time

(figure 3)

In figure 3, the longest·sequence is graphed versus

time.. At first glance it seems very unlikely that this is

the output of a constant input of zeroes. The initial

conditions of this sequence is 01=1 and 02=0. These are not

9
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the only initial conditions which lead to this sequence~

There are 231 other possible starting loca~ions which would

produce the same sequence.

As seen in figure 4, no matter what the starting states

are, there are no states in which a transient is produced.

Every state is part of a loop. Note that this is the case

for every constant input between 0 and 15, not just the zero

input. The diagram is only for the zero input, but it shows

STATE SPACE OF ZERO INPUT RESPONSE

Delay 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 I * * * * * * * * * * I JL * * *lr
1 * * * * * * * * * + * * * * * *
2 * * * * * * * I * * * * * * * *
3 * * * * * * * * * * * * m * * *

D 4 * * * * * * * * * * m * * * * *
e 5 * JL * * * * * * * JL * * * * * mlr lr
1 6 * * * * * * * * * * JL * * m * *lr
a 7 * * * * * * *. * * * * * * * * *
'1 8 * * * * * * * * * * * * * JL * *I

lr
9 * * * * * * * * * * * * * * *

1 10 .* * + * * * * * * * * * * * * *
11 I * * * * * * I * * * * * * * *
12 * * * * + * * * JL * * * * * *lr lr
13 * * * I * * * * * * * * * * * *
14 * * * * * * * * m * JL * * * * *lr
15 * * * * * * m * * * * * * * * *

* Sequence of length 232
JL Sequence of length 8111 -

Sequence of length 6
Sequence of length 3
Sequence of length 1

(figure 4)

the .regions which each of the sequences occupy • A property

of nonlinear Clrcuits is bifurcation. The above is not

really period dOUbling, but a constant value shows many

10



different lengths of periods. All constant ~nputs have very

similar diagrams and properties.

In order to analyze the characteristics of the largest

sequence of 232, it follows that a Fourier transform would

provide some useful insight. Figure 5 shows the magnitude

spectrum and figure 6 the phase spectrum of the signai.
':,

Notice that the magnitude spectrum is fairly flat except at

DC. This leads to an observation that this sequence does

not have any discrete spectral terms associated~with it, and

that any section of the sequence would appear to be noise.

The phase plot supports this observation since the angle is

sufficiently chaotic. such a resul:t is very similar for any

constant input in both the magnitude and phase plots .

.11



MAGNITUDE PLOT

CD
o

Sequence of length 232
8r----------------------------------,

4

o

(figure 5)

PHASE PLOT
Sequence of length 232

200 r------------...;....------------------....,

100

1J)
Q)
Q)
L- 0
01
Q)
o

-100

-200

(figure 6)
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After completely testing the encoder with all the

possible constant inputs, the encoder was then tested with

the sequence 0, 7, 0, -7, 0, 7, 0, -7, etc. This simple

sine wave, 7 Sin[~ rrn], produces many interesting

sequences. ,Noting that the longest possible sequence is

1024, it is found that the longest sequence which is

produced is 412. However, depending on the initial

conditions there are a multitude of other possible

sequences.

Encoder Sequence Length Table with sine Input:

Sequence
Length

412
160
128

84
56
32
28
20
16

8
4

Quantity

1
1
1
1
1
1
1
1
1
3

16

(table 1)

SYmbol

*+
#

M'
flr
*§

.~.

aBrnEa~Ttan6A~€n

~

The smallest sequence found is one of length four.

There were no sequences found which were smaller than the

original sequence, and all sequences of loops are divisible

by four. The observations are not unique to this sample

sine wave. Any repeating sequence will have encoded output

sequences which are divisible by t~nput sequence len9th.

Also, the smallest repeating sequence will be equal to the

length of the input sequence. The encoded output sequence

~13



cannot be smaller in length than the input sequence which

will be discussed later.

ENCODER OUTPUT SEQUENCE
Sine Input (Length 4)

Discrete Time

(figure 7)

The diagram above shows the output of the decoder for

the longest sequence, 412. The initial conditions for the

decoder are D1=0 and D2=0. There appears to be no

correlation between this output and to that of the input of

the sine wave sequence of 0, 7, 0, 9. Note that the value

of 9 in two's compliment is a -7.

In figure 8, the output sequence of length 20 is shown

with the input sequence in order to show the relationship

between the input and output of the encoder. Notice that

even in this short output sequence, the encoder produces

numbers unrelated to the input.

14



ENCODER C INPUT AND OUTPUT]
Delay #1 = 5_ Delay #2 = 8

1S ...-----------------------0-------.....,

10

S

Discrete Time

__ Sine Wave Input -G- Encoder Output

(figure 8)

The state space in figures 9 through 12 is shown with

each of the possible inputs. The plots work as follows:
r-

knowing the states of the two delays and the position in the
"

input sequence, the attractor formed can be seen on each of

the two dimensional subspaces associated with the position

in the input sequence. Define a "plane" to be the state

space formed by each of the delay units of the encoder

circuit. There is a plane associated with each input value

in the sequence. Since the input sequence repeats in a

length of 4, there are 4 unique planes of the stater space.

Depending upon the initial conditions of the encoder,

different attractors are found in the state space.

15



STATE SPACE OF SINE WAVE INPUT RESPONSE

Input = 7 Sin[~ 71' 0] = 0

Delay 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 * * * + + + # I * * * * * * *
1 * * * * , + + # g * * * * B *
2 * * * * * '" + + # # cS I~
3 + ± * rp * + + + + 1f # * * * *

D 4 * lr ~ f * * * ... + # # I * * i)-

e 5 Ii i)- * * * * r * S + # # i * *
1 6 * E * * a * * * +

ill
+ + # #

a 7 # g a I * * * + + + + I !8 g + i ...
y * * * n * * + + +'.

f m ...
9 g * i)- T * JL + * * * + + +

# I I lr ...
1 10 * I: i)- * * * * * * + +

11 + + e * * * * * * * * * * + +
12 + n I # # * * I * * * * *i ...
13 '" \ + + + # g # * * I * + ][ * * *
14 * , § + + # # , i)- 0 * JL *
15 * * § + + # # * * eta f ][

* *... lr

(figure 9)

Input = 7*Sin[~ 71' 1] = 7

Delay 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 * * *
+

* i)- * * II # # + + § *

I!!
# #

...
1 * * * * * * .* # + + + *
2 * * * * * * * * # ! I + + §
3 * * * * * * t * * * * # + +

D 4 + + * * * * * I * * # + +
e 5 + + 'I * * * * * JL * Ii * # # I #lr
1 6 + + + + * * * ~ * * I * I #

'" +a 7 i I + + '" rp * * * * E i)- #...
±y 8 # + + + * * * * * • *

9 * # # + + + + * * lr * * a *
'1 II I , ... JL II10 * * # + + * * * a J[ eta

11 * * * * I + + * * r * * lr * ±12 * * * i)- # + + ... + * * * * * lr
13 * + * T # 71' I + n §

'" * * *
14 * n * * cS * # e # # + + + * *
15 * JL B JL II I: * * # I # + § 'Ilr lr ... ...

(figure 10)

-- Note: See table 1 for symbol reference
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STATE SPACE OF SINE WAVE INPUT RESPONSE

Input = 7*Sin[~ 1f 2] = 0

Delay 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 # , * * * '). + * * * * * + + + #
1 # # # * * * + + * * * + + +
2 + + # # * * ~ * * JL * * * *

In
§lr

3 + + # # I I * * * * * *

I;II JL
...

D 4
m

+ + + *. * * lr * * * ¢
e 5 * + + i * * * * + ~ * *
1 6 * * + + + # * ~ 11 * * n + *
a: - 7 * * * + + + # # # * T <J. * * JL

lr
Y 8 * * *

~
+ + + # II # # II * * B...

II JL9 * * + + + + I * l5 *
.~ + + ... ...

I I1 10 * * * * * + + 1f * e
11 * * + JL * * * * + A II # <J. ~lr
12 <J. ,) * * * * * r + + + + e # *
13 * II * * * a * * * * + n + # # *
14 * * * a * JL * * * ., § + # # ,
15 II II * * * I * JL * * * ... + + #lr

(figure 11)

Input 7*Sin[~ 1f 3] = 9

Delay 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 # # + + ... *
I!I·

* * * + * 11 # * I
1 I , # + § * * * * ~ * * a * *
2 * # + + + ., * !t * * • a * * T *
3 * , # , + + + + r * * n JL <J. *lr

D 4 * # # I + A § + * + * * I
e 5 • * * * # 1f # # + + * * * * *
1 6 + * * l5 * II #

"
+ + * * * JL JL

lr lr
a 7 * B * * * * , + + + + * * * *
Y 8 * * t JL

~ e I # + n .+ , * *lr
9 * * * ! * lr e I + + § * *

1 10 * * * * * * ~ * # # + + + ...
11 * * * JL * * * * # i # + +lr
12 + §

i~
* * * * II ~ * * # + +

13 + + * * * * i * .. * * # # I14 + + + * * JL * * I * * #lr lr
15 # + + + * * * * * * * JL * #... lr

(figure 12)

Note: See table 1 for symbol reference
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Longer input sequences would only generate more planes.

This partly explalns why the length will always be evenly

divisible by the length of the input sequence. A better

understanding can be obtained by studying the decoder.

18



The 4 Bit Decoder

"
-

The decoder circuit is very important in the CODEC's

operation, even though it appears rather simple in nature.

without the ability to decode in a straightforward manner

the system loses practicality. Also, the decoder's best

characteristic is that one piece of bad data does not keep

it from producing the correct decoded sequence. This is not

to say that corrupted input does not produce corrupted

output. Rather, after the input data stream is no longer

corrupted, the decoder will be able to lock up such that the
,

decoded message is completely correct after a finite error

block.

DECODER

U(n) --, ~

(figure 13)

t----~ Y(n)

The decoder shown above operates perfectly with the

encoder to successfully transmit messages in simulation.

This 4 bit CODEC syst~m worked without flaws for all the

19 -;



data tested. These promising results encourage further

testing of the encoder to better understand its behavior

with a greater variety of inputs.

Working backwards with the knowledge of the decoder

above, it can be shown that a constant input causes the
.

decoder to produce a constant output. This is due to it's

feed forward structure. These results can be applied to any

sequence entering the decoder. If a sine wave of length 4

~rnters the decoder, it will produce q repeating sequence of

no longer than length four. As proven below, to enter a

sequence of numbers into the ,decoder and have it produce a

longer stream than was entered, is impossible.

In the decoder circuit in figure 13, the equation for

yen) i~: y{n)=u{n)-u{n-1)-LCIRC[u{n-2)]. Since the value of

yen) is a memoryless mapping o~ the inputs, the equation can

be reformulated to y{n)=F[U] where F[o] is a mapping a the

vector u, {u{n) ,u{n-1),u{n-2)}T. A given vector of inputs,

u, always maps to the same scalar, y. Therefore, the

maximum output sequence of yen) cannot be greater than u{n).

In general, any feed forward system has the form y{n)=

Co u (n) + C1 u (n-1), + ••. CN U (n- N) + F[u (n), u (Ii":1), •..

u{n-N)]. This memoryless mapping of a vector of inputs toa

scalar output, always has the property that the length of

the output sequence cannot be longer than the input

sequence.

20



However, it is possible for the decoder to take a long

stream of information and decode it into a smaller sequence.

Since the encoder is the inverse of the decoder, the encoder

cannot produce a smaller sequence than the one which was

entered. If the encoder could produce a stream with a

smaller period, then the decoder would have to be able to

increase to stream back to its original length. This has

been' shown not to be the case.

21



IV. THE 10 BIT CODEC

The width of the bit bus has a direct relation to the

length of the output signal and to the number of discrete

states of the system. A revised encoder is now considered

with a 10 bit bus. The allowable numbers are defined to be

in the range of -512 to +511. This assumes that the ten

bits a+e thought of as two's complement where the first bit

is the sign bit.

Using the same encoder configuration as before, the

task of displaying the state space is more difficult due to

the increased number of states, 10242=1048576. Once again,

it is important to note-that no matter what the encoder is

doing it cannot produce a completely chaotic sequence, but

the output produced has an almost flat magnitude spectrum.

The autonomous system of the encoder will still produce

a constant stream of zeroes if the initial states are'both .~

zero (D1=0, D2=0). The possibie initial conditions for this

simple system has now jumped to the millions. This

complicates the problem of analyzing the system completely

for each of the states.

Similarly, the encoder mentioned above with constant

inputs is very hard to analyze. However, some generalities

between the 4 bit and 10 bit system can be made. There are

attractors in the state space which are of various sizes.

Furthermore, there' is~lways the possibility that there is a

22



set of initial conditions in which a constant input produces

a coded sequence which is a constant output.

As the sequences increase in length, it is known that

the properties are the same as the 4 bit system. Using the

same argument as above, the length of the encoded sequence

cannot be smaller than the input sequence.

One test, as discussed before, is to analyze the output

of the encoder by running it into a magnitude and phase

spectrum analyzer. A variety of initial conditions were

tested with the autonomous encoder. In figure 14, the

magnitude plot is shown and in figure 15 the phase plot is

shown for an initial state of D1=1, -D2=0. with the increase

in precision (10 bits), the length of the possible sequences

is greatiy increased. since the sequence is too long for

the program to analyze, a section of the sequence was used

in order to determine the magnitude and phase. The diagrams

show that the magnitude spectrum is rather flat, except for
~

at DC. This observation suggests that t~~ystem output is

very close to white noise. In addition, the phase spectrum

does not have a pattern associated with it.
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The state space allows attractors to be shown for

different combinations of initial conditions. The quantity

of possible states is sUfficiently large such that not all

the sUbspaces can be shown on the same plane without
(

confusion. In figure 16, the subspace shown is for the,

autonomous encoder if the initial conditions are set to

STATE SPACE OF ENCODER
(0}=1, O2 =0)

D
e
1
a
y

1

o Delay 2

(figure 16)

The subspace shown-above is an attractor which occupies

488854 states. It is important to compare this subspace

with some of the other possibilities that the autonomous

encoder produces. Figures 17 and 18 show other attractors

with different initial conditions.
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security - Are There Detectable statistics in the Channel?

The desirable features of an adaptive filter which make

it a powerful device for signal-processing and control

applications are its abilities to operate satisfactorily in

an unknown environment and to track time variations of. input

statistics. An adaptive filter is used to provide a linear

model that represents the best fit to an unknown collection

of data that the encoder is producing in the channel. This

linear filter analyzes the data ut~Jizing a Least-Mean

Square adaptive algorithm. By automatically changing the

tap weights in the filter, the algorithm is able to

successfully compute the best set of tap weights. These tap

weights show the statistics of the data entering the

adaptive filter. If the tap weights, which can be thought

of as a vector, approach zero in every position then the

data entering the adaptive filter does not show much

correlation. The tap weights approaching zero also

signifies that the low order correlation of the data is

zero. Another possible occasion where a chaotic sequence is

detected by the adaptive filter is when the tap weight

vector never becomes stable. One could conclude that the

signal might have some local correlation. However, the

forward prediction error filter is probably of insufficient

length or the constant ~ is too large, causing instability

in the Least-Mean-Square algorithm.
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ADAPTIVE FILTER STRUCTURE

U(n) _-,- --,

(figure 19)

In the diagram shown above of the forward prediction

adaptive filter, the feedback structure allows for the

readjusting of the tap weights. In'order to show how the

filter works under perfect conditions, the sequence of 0, 8,

0, 8 ..• is entered into the filter. The graph in figure 20

shows how the adaptive filter starting with tap weights of 2

and 2 converge to a new setting of 0 and 1.

28



AR Sequence of Tap Weights
Input Sequence 0, 8, 0, 8 ...

2.5r------------~----------------....,

Discrete Time

__ Tap #1 -0-- Tap #2

(figure 20)

The above sequence is highly correlated, however, which

is rarely the case in the real world. By feeding an all

pole filter with white noise, it is possible to generate a

general linear process.

White
noise
{v(n)}

->
All-pole filter
of impulse
response hen)

General linear
1---> process

{u(n)}

(figure 21)

This process can then be thought of as a speech signal

because this signal has correlation due to the filter. The

feedback coefficients of the all-pole ~ilter which is

producing this response from white noise ar~nique. If the )

adaptive filter is operating properly, it should lock into
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feedback coefficients of the all-pole filter. Figure 22,

shows the configuration of the all pole filter.

All-Pole Filter structure

V(n) __~ ~----_-..-__::::::, U(n)

(figure 22)

In order to utilize this filter with a computer, the white

noise can be generated by allowing the computer to produce

random numbers. The output of the filter is a linear

process. This process can then be fed into the same

adaptive filter as described before. If the adaptive filter

is operating properly, the tap weights will approach the

value of the feedback coefficients of the all-pole filter.

If the coefficients of the all-pole filter are set to

.5 and -.5, and the initial states of the adaptive filter

are set to be 0 and 0, then the following tracking of the

adaptive filter is observed in figure 23. Notice how the

adaptive filter is approaching the correct values for the

coefficients. The rate of convergence to the correct

solution is affected by the adaptation constant, ~.
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AR S~quence of Tap Weights
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Discrete Time

_Tap #1 _Tap #2

(figure 23)

However, if ~ is not small enough, the filter's tap weights

may not converge. Since the filter is constantly trying to

correct itself, the correct solution will never exactly be

observed, instead it will be randomly approximated to within

some small error.

By utilizing the general linear process generator with
~

two taps of .5 and -.5 to simulate some characteristic

signal such as speech, the signal can be fed into the ten

bit encoder. The coded signal can then be tested with the

adaptive filter as a check to determine the characteri~tics

of the chaotic signal in the channel.

The adaptive filters' initial conditions are set to

zero, and the algorithm attempts to determine tap weights

for the process. In the graph shown below, several
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observations can be made about the encoded signal. The tap

weights do tend to show some local correlation of the

encoded signal. By decreasing the value of ~, the

correlation is less apparent.

only has two taps.

Also, the adaptive filter

AR Sequence" of Tap Weights
Encoded Output Sequence

0.6 r-------------------------------,

0.4

0.2

-0.4

-0.6 LJ lIIlIIIl lIIIIIIIiIlIIIIlIIIIIlIIIIIII ---l

Discrete Time

_Tap #1 _Tap #2

(figure 24)

If the number of taps are increased on the adaptive

filter to 4, then some information might be able to be

concluded based upon the same linear autoregressive process
J

encoded and fed into the adaptive filter. The graph seen in

figure 25 shows that there is no further information to be

gained by increasing the number of taps. The tap weights

seem to have some local correlation, but for the most part

the vector weight is less than .1 in magnitude for the data

shown in the above g~aph.
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AR Sequence of Tap Weights
Encoded Output Sequence

o.~r-----------------------------.,
0.3

0.2

-0.3

Discrete Time

_Tap #1 _Tap #2 ._Tap #3 _Tap #4

(figure 25)

J>

The same sequence was also fed into an adaptive filter

with eight tap weights utilizing the Least Mean Square

adaptive algorithm. The results were similar to the four

tap filter except with even smaller values of tap weights.

Another way of looking at the encoder circuit is to

consider the LCIRC function as a mUltiplication of 2 and an

occasional 1 added in as a noise component. Treating the

encoder in this manner describes the encoder as an unstable

system because there is a pole outside the unit circle. Due

to encoder's configuration it is possible to imagine

occasions when the system appears to be stable and the

amount of noise introduced into the .system is relatively low

in magnitude.
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However, no matter how one views the encoder, the

results are very typical. This is the~~ase for more than

the general linear process with the taps of .5 and -.5;

several other general linear processes were tested to

demonstrate similar results of the encoded sequence. Some

of these graphs are included in the appendix for further

evaluation.

In a way similar to the testing of the encoder, the

decoder was tested with the same general linear process with

taps of .5 and -.5. By applying a general linear process to

the decoder, a surprising result is discovered when the

adaptive 'filter analyzes the output of the decoder. The

adaptive filters tap weights approach a constant value in

the range of .2 and -.3 as shown in figure 26.

AR Sequence of Tap Weights
Decoded Output Sequence

0.6r----------------------------~

0 ....

0.2

cl--+--------------,---,---------- ~

-0.2

-0.4

-0.6 LJ__IIIllIIllIllllllll_IlIlIIII ....... .. ...--1

Discrete Time

_Tap #1 _Tap #2

(figure 26)
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Remembering that the analysis performed is on the decoder

circuit, the main determination is that the decoder should

never be used as the encoder of the system. This is because

the decoder would not produce a chaotic signal in the

channel.

The principle of the decoder is to take a chaotic

sequence in the channel and decode the sequence back into

the original. Therefore, a signal which has some

correlation already associated with it should become more

correlated. This is due to the decoder's finite impulse

response structure. Remember, the decoder system is

incapable of producing longer sequences. Even though the

adaptive filter approaching constant values from the

decoder's output sequence was surprising, it might have been

expected.

The decoder circuit was checked with several general

linear processes. These additional adaptive filter tests on

the decoder always caused the top weights to approach a

constant value. This effectively guarantees that the

results of the decoder correlating signals are consistent

regardless of the general linear process chosen.
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v. CONCLUSION

since most of the time the encoder is producing nearly

chaotic signals in the channel, it is very important to have

as noiseless a channel as possible. If the channel is

extremely noisy, the probability that enough correct

information will be passed is quite low. Even though the

decoder has the capability of self correction, it only

exists when data entering is relatively error free. It

takes a finite amount of time before any error entering the

decoder is no longer corrupting its own output.

Incorporating error correction codes in the

transmission of the channel can aid in the ability of the

decoder to produce the correct output. Note that there is

always a practical limit as to how much error correction can

be provided; thus, corrupted data can still enter the

decoder. Therefore, careful consideration must be taken

when actually implementing the system.

The CODEC which has been described so far has a

multitude of exciting features, most of which center around

the encoder's ability to produce nearly chaotic signals in

the channel in real time. However, contingent upon the

state of the delay units and the input signal, the encoder's

performance, i.e., its ability to produce a chaotic-like

output sequence, may not be very good~ Therefore, important

transmissions might not always be encoded in a highly

chaotic manner. A slight modification to the-ehcoderi as
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described below, can allow the encoded.signal to retain its

high non-correlation properties.

Depending on what type of signal the encoder was

attempting to code, several schemes could be used to keep

the system producing nearly chaotic signals in the channel.

The encoder could analyze the data it is outputing to the

channel and add small changes to the states of ~he system

when chaos is not present. If ther~were no modification

made to the decoder, it would respond to the encoded channel

as if it were cprrupted. However, the decoder would sync up

after the proper delay. If the signal being transmitted

were audio or video, the receiver might only produce a

momentary "pop". The human ear or eye would probably-not

even catch the mistake. This allows for the expense to only

be spent at the encoder while keeping the decoder circuit

simple and cheap.

The above scheme does not work if the data being

encoded must be 100% correct when decoded. For example, if

a data stream from a computer is being sent via modem, it is

very important not to corrupt the data in the above format.

However, there are other improvements that can be made if

some expense is added to the decoder.

The CODEC is a working encoder/decoder system which

operates in real time on signals and data. The encoder

produces signals which are nearly chaotic in the channel.

These signals are not easily decoded unless the nonlinear
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function is known a priori. Also, it is necessary to know

how many delays are associated with the system in order to

even begin to guess a solution. However, because of the

simple structure of the encoder, it is easy to change the

nonlinear function. If the nonlinear function is being

implemented via a look-up table, EPROM, then the function

can be switched easily. The EPROM in the encoder and the

decoder only need to be changed to one with a different

look-up table.

All linear codes can be broken in some finite time

although this ~jme might be significantly long. However,

this code is based upon a nonlinear function in the

feedback. This nonlinear function creates a problem in

using the typical linear techniques.

To construct a decoding device to "break" the nonlinear

code, there are several assumptions one must make.

Therefore, the "code breaker" would not only have to guess

the nonlinear function, but also the correct number of

delays. Note that the nonlinear function, if implemented

with a look-up table, could be nothing more than a set of

random numbers. This forces the "code breaker" to build a

look-up table of his own. In order to generate such a

table, he needs to know the input before it is encoded.

Furthermore, since the configuration is not known, the

entire feedback will have to be a look-up table. This

should complicate the scheme sUfficiently to discourage
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"code breakers."

Finally, the CODEC is a practical encoding/decoding

system which works in real time and possesses chaotic coding
/'

characteristics in real time implementation. The system has

b~en demonstrated with both 4 bit and 10 bit CODECs. Both

systems were simulated with several types of input, and in

all cases the encoder/decoder combination showed very

promising results. The modification of the nonlinear

function could produce some interesting results and could

improve the quality of the channel.
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VI. APPENDIX

LOZa.--------...,

STATE SPACE OF ENCODER
(01=601, O2 =0)

Delay 2
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(figure 27)

..
"?

(figure 28)

Figure 27 and 28 show the attractors in the state space.

,
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AR Sequence of Tap Weights
Encoded Output Sequence
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(figure 29)

AR Sequence of Tap Weights
Encoded Output Sequence
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(figure 30)

Figures 29 and 30 are the encoded output sequence of an
general linear process with taps .75 and -.75.
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