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Abstract

Electrokinetic phenomena have been studied for a long time. Electrokinetic techniques

have been used extensively for the stabilization of soft soils and other dewatering operations.

Yet, the notion that electrokinetic phenomena may be applicable to hazardous waste

remediation is relatively new. In electrokinetic remediation,electrodes are implanted in the

soil, and a direct current)s imposed between the electrodes. The application of direct current

leads to two effects: ionic species in the soil-water solution will migrate to the oppositely

charged electrode (electromigration), -and concomitant with this migration, a bulk flow of water

is induced toward the cathode (electrosmosis). Electrokinetics is a cost effective method of
~

decontamination and proves to be a feasible remediation process if a high degree of removal

can be attained.
-

This study investigates further procedures that may be applicable to physically

enhance the removal of the trichloroethylene which is a toxic organic contaminant and
I

increase the efficiency of electrokinetic process. Two methods of enhancement were

investigated. The first method was the increased migration potential of contaminants by

increasing the temperature of the pore fluid. In the second method low amplitude-high

frequency shear waves were applied.

Thermal enhancement by increasing the temperature of the pore fluid increased the

amount of water flow through the soil samples considerably. The chemical analysis of treated

soils showed no evidence of contaminant in the soil after the thermally enhanced

electrokinetit runs when compared with chemical analysis of treated soils with no
"'-

enhancement.

The results of electrokinetic tests with shear wave enhancement showed no.

appreciable improvement over electrokffietic process.Yet, monitoring over the entire system

and interpetation of the electronic signals and readout brought up the need for further

improvement on configuration of test set-up.
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Chapter 1

Introduction

1.1 Statement of Problem

Early remedial methods for contaminated soils consisted primarily of excavation and

disposal at a landfill site. Mo're emphasis is now placed on insitu treatment technologies for

cost effectiveness and reduction of environmental.risk. E!ectrokinetics is a relatively new but

a promising insitu process capable of removing heavy metals and organic species

economically from soil.

Electrokinetics refer to the movement of water, ions, and charged colloids relative to

one another under an applied direct current electric field. In soil, contaminated pore fluid may

be made to flow to a collection system which woul~ facilitate one of several treatment

methods such as electroplating at the electrode, precipitation or co-precipitation at the- .
electrode, pumping of water near the electrode, or complexing with ion-exchange resins.

However, it is generally recognized that a better understanding of, and control on the

electrokinetic phenomena are essential before it can be converted to a safe and an efficient

method of soil decontamination.

Electroosmosis, which is one of the electrokinetic mechanisms, mobilizes the nonionic

species such as organics ill-Soil and if is dependent on soil minerology. The process could be
, ,

made to work better by physically enhancing the.electrokinetic effects on the transport of

contaminants.

Previous testing showed-that nonionic species such as organics adsorbed onto the soil

particles a"nd did not respond well to an electric field due to their non-polar chemistry.

Therefore the need to enhance e!ectroosmotic transport, which is the responsible

electrokinetic mechanism for removal of nonionic species, appeared. Other results of physical

enhancement are expected to be the release of relatively loosely held contaminants on soil

surfaces and also promotion of emulsification of same organic contaminants.

1.2 Objectives of Research

/

r
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-.- _---------_ .

----------;-~~lThe objective of this study is to investigate the physical enhancement of the

electrokinetic process in order to achieve the highest possible degree of removal and also

removal rate of contaminants from soil in a feasible manner.

ThEl emphasis is made on trich~oroethylene - an organic str~ngly adsorbed ontQlthe

soil, thus relatively difficult to clean out. Procedures are also applied to blank soil samples for

the ba~ic understandi)Jg of ~he components of enhanced electrokinetic phenomena. The

enhancement methods focused upon are:

L Increased"migration potential of contaminants by increasing the temperature of the

pore fluid. The idea is based on the principle thatthermal expansion of soils cause significant

pore pressures and volume changes which would resu~ in higher pore water flow rates.

iL The application of low amplitude-high frequency shear waves based on the

phenomenon of seismic waves caus("g temporary instability conditi6n in the ground by

increasing pore water pressures progressively. The progressive increase in porewater

pressures would in tum increase the"tendency of the water to f1owout of the soil pores.
'--,'-

A new experimental set-up was designed and constructed for each one of the

enhancement methods mentioned above to carry out the electrokinetic tests in the laboratory.

All tests discussed in this study were conducted on pure kaolinite clay.

"1.3 Technology Scope of Research

)

In this study an investigation of the fundamentals of electroosmotic flow in kaolinite

clay was conducted to augment the electrokinetically enhanced transport. Custom

manufactured ~ctroosmotic cells.were modified in order to facilitate the physical

enhancements mentioned above. Electrokinetic experiments conducted in the laboratory

were divided in two groups. First group constituded the blank kaolinite samples that were

"tested for the better understanding of physically enhanced electrokinetic phenomena. In the

second group, decontamination experiments were conducted to remove trichloroethylene

from artificially contaminated kaolinite. The electr~osmotic flow characteristics observed

during these experiments ~nd the removal attained is compared with the results obtained

from base experiments with re"plicate unenhanced specimens.

3
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Chapter 2

Background

2.1 The Electrokinetic Process

A soil particle· in contact with water will typically acquire a net excess charge at its

surface that produces an electrical potential difference between the solid and the aqueous

phases [Overt>eek and Bjjsterbosch, 1979]. Since the overall system must maintain electrical

neutrality, the excess surface charge is balanced ~Y an egual and opposite ch~rge in solution.

The charge in solution is distributed over a finite distance from the solid surface; this excess

charge in solution is the well-known electrical double layer [Hunter, 1981].

The presence of the electrical double layer gives rise to some interesting transport

phenomena in'solid-Iiquid systems; these phenomena are collectively known as the. .
ele~rokinetic phenomena, The electrokinetic phenomena pertinent to in-situ remediation

include electroosmosis (movement of water in response to electrical field), electrophoresis

(movement of a charged particle or colloid in an electrical field), and electromigration

(movement of solute ions in the electrical field).

~ A full understanding of the process requires knowledge of clay chemistry, surface

chemistry, electrochemistry, and the behavior of soils under an electric gradient. Below are

brief discussions on the pertinent components of electrokinetics.

2.1.1 The Electric Double Layer: Details of double'layer is widely available in literature

[Van Olphen, 1963]. A brief description is also provided here. An ~Iectric double layer is

considered to develop on the surface of a charged colloid which is in contact with a solution.

Figure 2;1 shows schematically the negatively charged surface of a clay particle in contact

with a water solution containing ions. The negativelycharged surface will attract positively

charged ions from the water solution. If the ions were influenced by the electrostatic force

only, the charged surface would adsorb only enough positive ions required for l1eutralization.

This would result in a single layer of

4



11K = double layer. thickness
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'Pd

Figure 2.1. Potential Distribution in the electrokinetic double layer

positive ions. However, this is not the case since the counter ions tend to move away from

the surface due to a random 'Brownian "Motion'. This results in a distribution of the ions over

an area rather than a single layer. Generally, this distributed layer of the counter ions is
termed the double layer. According to Stem [1924], the double layer has two components-the

Stem layer which is firmly held to the surface, and the diffused double layer in which the ions

are free to move randomly under an electric gradient. In the Stem layer the potential

distribution is linear, and in the diffused layer the potential distribution is given by GOuy­

Chapman [1910] theory.

Three electrokinetic phenomena are believed to occur.when a DC voltage gradient is

applied to a soil-water system. These are as follows:

5



2.1.2 Electroosmosis: The movement of a liquid phase toward an electrode while the solid

phase remains stationary is called electroosmosis. In a soil-water system, the water moves

toward the negative electrode (cathode) while the soil particles remain in place. Flow of the

pore water is in the direction of the cathode because the positive ions inthe double layer are

attracted to the negative electrode. If the clay particles are not allowed to move, the cations
. L..

in the double layer migrate towards the cathode, dragging the pore fluid \yith them. Thus

eleCiroosmotic flow causes a net water transfer through the soil towards the cathode. A

schematic representation of eleGtroosmotic process is shown in Fig. 2.2.

C:l
o
O.
:z:
<

. .

.~ (f)
<=) ~ .

~ PORE WATER G
E) : FLOW DIRECTION (f)

41 G>
........1-­G)'o ....~..-~

Figure 2.2 Schematic Diagram of a soil pore showing electroosmotic flow

2.1.3 Electrophoresis: The migration of charged col/oids in a solid-liquid mixture is cal/ed

electrophoresis. In a compact system, electrophoresis should be of less significance since

the solid phase is restrained from movement. In some cases, however, electrophoresis may

playa major role'irraecontamination if the migrating colloids carry the chem'ical species of

interest adsorbed onto them.

2.1.4 Electrolytic-Migration and Electrolysis: The movement of ions in the free water of

soil pores under an electric gradient is termed electrolytic migratio·n, and the disassociation of

water molecules into their ionic components is termed electrolysis: These are responsible for

6



conducting the bulk of the current in the soil-water system. The chemical reactions inherent

in electrolysis decompose water in the vicinity of the electrodes. These reactions are:

H20 - 4e- =02 + 4H+

4H20 - 4e- =H2+ 40H- r-

( anode reaction)

( cathode reaction)

[2.1]

Water is reduced to hydrogen gas at the cathode.· The removal of the hydrogen results

in the increase in pH at the cathode site. Similarly, water is oxidized to oxygen at the anode. .

site and thereby lowers the pf;i. ~ '.

Soil decontamination by electrokinetic method is based on the assumption that most of

the contaminant is present in pore water solution. While non-ionic species will be removed

through electroosmotic flow alone, ionic species will have a flow velocity affected by both _

electroosmosis and their response to the electric field. Cations will migrate towards the

cathode and anions will migrate towards the anode. Since the electroosmotic flow in a clay­

water system is toward the cathode, the movement of cations will be accelerated while the

. extraction of anions will be retarded by electroosmosis.

2.2 Engineering Applications of Electrokinetic Flow Processes

Elyctrokinetics may be used for many different purposes. Some of its common uses
~ )

are listed below:

2.2.1 Geotechnical Engineering Applications:

1. The stabilization of slopes, embankments, and dams (Casagrande 1952a, 1962, 1983);

."] 2. Rendering larg~ excavations stable for construction (Casagrande 1952a, 1962, 1983);

3. Strengthening of subgrades and sub-bases under pavement (Simon et. al. 1956; Gladwell

1965);

4. Dewatering and consolidating fine grained soils effectively, and increasing the soil shear

strength considerably (Wan and Mitchell 1976; Gray and Somogyi 1977; Baglin and Mcintosh

1987) ;

5. In the reduction of negative skin friction of piles, or to facilitate the pullout of used sheet

piles (Casagrande 1962; Nikolaev1962);

6. Injection of bentonite suspension into low permeability soils (Holmes f963) ;

7. Prevention of moisture rise in capillary systems (Gray 1969)..

2.2.2 Environmental Engineering Applications:

7
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stabiUzation of soft soils, and civil engineers have extensively used electroosmosis to .

,stabilize soils in preparation for pile driving [Nikolaev, 1962].

Lockhart [1982] performed astudy of the d~watering of sediment suspensions from

sodium kaolinite clay. He found that higher voltages produced more rapid dewatering; to--­

produce an equiUbrium of 37 percent solids at the cathode, naturaldrainage required 4 to 6

days, the application of 1 volt took 1 day, and the application of 50 volts requiredless than 15

minutes.

The notion that electrokinetic phenomena may be applicable to hazardous waste

remediation appears to stem from the work of Segall et al. [1980], who found that
4 _ .

electrokinetically dewatering dredging sludges generated extracted water, rich in heavy

,. metals. Ironically, Segall et al. considered this to be an inhibitation to the use of

electrokinetics in the field, since it produ~ed a toxic liquid waste that requires further

treatment.

By mid-1980's, numerous researchers, apparently simultaneously, realized that
1 ' •• , l -

separations of heavy metals from soils posed a potential contamination solution rather than a

potential contamin~tion problem. Mitchell [1986] and Renaud and Probstein [1987] described

the possibility of removing contaminants by electroosmosis from fine-grained saturated soils.

Shapiro et al. [1989] have described removing small soluble organic contaminants

from columns of saturated clays in the laboratory. In similar bench-scale experiments, Acar,
~ . .

et al. [1989] and Hamed et al. [1989] described the removal of heavy metals from clays. In

each of these experiments the concept has been to convect contaminants with water using

electroosmosis as a separation mechanism. Runnells and Larson [1986] demonstrated the

removal of cationic copper from sand in a bench-scale experiment, without considering

whethef, electroosmosis or electromigration caused the removal.

So far there has been few field demonstrations of electrokinetic remediation. Lageman

[1989] has described field-scale attempts to remove heavy metals from saturated soils in The

Netherlands. A field-scale trial funded by EPA for the removal of chromium contamination

from soils hsa met with partial success, but the success was limited by inadequate site

characterization [Banerjee, 1988].

Acar et al. [1991] and Hamed et al. [1991] showed that the movement of the acid front

from the anode to the cathode end is impo,rtant in the removal of heavy metals from clay

soils. Through their experiments they were able to show that the migration of H+ ion front

helped release Pb (lead) from the soil surface into the water phase. The contaminant was

, then extracted with the electroosmotic flow.

9
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Khan-and coworkers [1989] showed that the cationslithium (U+) and sodium (Na+)

have the ability to enhance electroosmotic flow, and that soil densification will not occur if

water is injected during the application of an electric field.

, ,~ainukcu and 'coworkers [1991] fouM thatziflCjJlay.J)aremoved-simultaneously--+L,·~--­
through the anode and cathode ends. The decrease in pH at the anode end enhances zinc

dissolution and diffusion in the region, and the electric current causes a migration 9f the pore

water to the cathode.

2.4 Theoretical Development

The electrokinetic phenomena were first handled analytically by Helmholtz in 1879. He

developed an equation for electroosmotic velocity which was modified by Smoluchowski in

1921 to apply to electrophoretic velocity. The equation is known as the Helmholtz­

Smoluchowski equation a'nd reads as follows:

[2.2]

UEO = electroosmotic or electrophoretic velocity

8 =permittivity of the liquid (water) in free space

; =- zeta potential (the electric potential at an arbitrary distance from the solid surface

resulting from the interaction between the surface and the

electrolyte)

f.J =viscosity of the fluid

o~ /Ox =electric gradient

/

This equatio~ has been modified by Pellat, who introduced the dielectric constant in

1904. Schmid [1950] presented another notable approach to quantifying electroosmosis. He

proposed that the mobile ions in solution are uniformly distributed within the clay pore. This

theory replaced the notion of zeta poten.tial at the slipping plane with the Donnan quantity,

which is defined by the total charge per unit volume of pore fluid.

Khan [1991] a~d Pamukcu et al. [1992] porposed a modified theory of electroosmotic

velocity of water uEO through soil. In this theory, the true electroosmotic flow is directly
"-

""­
I
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proportional to the current carried by the charged solid surfaces in soil. In this ap~ch, the

zeta potential used in the Helmhol~-Smoluchowski theory is replaced by a constant surface

potential, 'Pd ' which is inva~able with ionic concentration and pH of the pore fluid.

Theref~re,

where, Is =surface current

Rs =surface resistance of soil

[2.3]

t

Equation [2.3] further reduces to the following with 'PdRs shown to remain fairly constant for a

wide range of electrolyte concentration of the pore fluid:

UEO =Kls
where, K ={eD'lrd / p}Rs / L =constant

This agrees with Gray and Mitchell's [1967] observations and the much earlier observations of

Napier [1846] who stated: "The measurable endosmose (electroosmosis) seems to be

greater when the current has greatest difficulty to pass through, and when the decomposition

of water was least." This follows that the true electroosmotic flow is large when the ratio of

the surface current to the electrolytic current (carried by the ions in the pore flUid) is large,

due to the reduced concentration of ions in the pore fluid. The modified theory basically

emphasizes that the surface conductivity of the porous compact medium is the most essential

precondition for electroosmotic flow.

11
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Chapter 3

Methodology and Approach-Background Electrokinetic Testing

3.1 Introduction

The design and development of a new apparatus was necessary to simulate the

electrokinetic phenomena in the laboratory and to monitor the controlling parameters for a
•

better understanding of the electrokinetic process. A consolidation apparatus was also

designed and manufactured to prepare homogeneous replicate specimens from well mixed

~oil slurries.

This chapter presents the description and operation of the custom manufactured

electrokinetic apparatus -and the consolidation apparat.us, both used previously in background

electrokinetic testing. Modifications made on the original electrokinetic cell and other system

features of the new set-up to facilitate the physical enhancements mentioned in section 1.2 of .

Chapter 1 are described hi Chapters 4. with pertinent operation procedures.

3.2 Facilities and Equipment

3.2.1 Consolidation Apparatus

A schematic diagram of the consolidation apparatus is given in Figure-3.1. It consists

of a frame supporting a pneumatic cylinder into which pressurized air enters from the top,

causing a piston and plat~ assembly to exert vertical pressure on the column of slurry. The

slurry is filled in a 19.35 cm long cylindrical acrylic container joining the "guide tube" and the

"sample tube" together. The sample tube, approximately 8.5 cm long with an inner diameter

of approximately 3.5 cm, fits neatly into the guide tube at it's top and is remove,d after

consolidation, by which time the slurry has been reduced to a d~nse soil within it. This

sample tube is then mounted in the ·E-K cell, minimizing the disturbance effects of extrusion.

Fluid is drained through the bottom of the sample via a porous stone resting on the base and

another porous stone contained in the piston cap during consolidation. Air pressure is applied

to the unit through an adjustable regUlator (not shown in the schematic diagram).·

-
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Figure 3.1. The Specimen Consolidation Apparatus

3.2.2 Electrokinetic Test Apparatus

The apparatus consisted of two parts: an electrokinetic cell and a flow control panel. A

schematic diagram of the system is given in Figure 3.2. The details of the cell assembly is

shown schematically in Figure 3.3.

13



9
PUMP

IIIrLOU ournou

l,I,l----4TL---t--Illl.. ORAIN

UOLTMETER
~
UA~\f'BLE AMMETER

POUER

'\ Figure 3.2. Schematic diagram of the electrokinetic apparatus and control panel

release

. 1/2
~1 1/2 ....'1

~ top plate ~

§ bottan plate il13

s. '" soil chamber

• : ..r: --'--r-- I. /
./ I ~ ": :~oH' s~e::: 1

i 1: : ,: : : :P;ro'us' ~~e.:.., 1:
I.: __._ . " '1'· A' . -

:. :j r
t- 111~ 1/.::' JI.~l--4 \

,- 3 3/8 oj auxilia
probe

gas release

I

~1 1/2 .... "'-

- Figure 3.3 Details of Electrokinetic Cell Assembly

14



The electrokinetic test apparatus usedin'this research was developed from the

following considerations:

i. Electrodes should be isolated from to the soil to prevent deposition and reduce the effect of

electrode reactions on the soil to a minimum;

ii. A convenient method for gas ventilation should be provided to accurately measure the

("' water transport; since the electrode reactions will produce gas at the electrode surfaces;

iii. The electrode surface has to belarger than the soil cross-sectional area so that a low

current density at the electrodes will produce a relatively large current density in the soil;

iv. Ports for extracting inflow and outflow fluid samples have to be provided for the analysis

and monitoring process.

Following these considerations, the electrode surface area was made to be six times

larger than the soil sample cross-sectional area. Clear acrylic plastic was selected for alleell

parts to provide visibiHty and also detect gas generation at the electrode compartments, at

the soil-water interface, and possibly in the soil. One other advantage of acrylic material is

that it allows further modifications. The electrode are made of high grade graphite rods to

minimize electrode deterioration.

A. The electrokinetic cell, shown in Figure 3.3, has the following components:

Sample tube: The sample tube is a 3.55 cm 10 and 8.55 em long clear acrylic tube that

contains the soU sample. Three auxiHary graphite electrodes (0.9 mm diameter) penetrate

the sample through tube, separated an equal distance along one side. Voltage gradients

wit~in the soil can be measured through these electrodes during the experiment. The tube is

assembled between the electrode chambers with O-rings placed inside the housings cut on

the inner walls (facing the sample tube) of the chambers. ~

Porous stones: Carborundum porous stones are placed at each end of the sample tube to

hold the soil sample in place durind the experiments. The porous stones have a permeability

of 10-3 em/sec., which is highly porous compares to the clay soils tested with hydraulic

permeabilities ranging form 10-6 to 10-8 em/sec. T~refore, they do not influence the rate of

flow through soil. '\

Electrode chambers: These chambers are approximately 146.5 cm3'in volume and house'

the el~ctrodes at each end of the sample tube. The end pla18s are removable for filling with

and emptying these chambers of fluid. It also faciHtates cleaning of the chambers and the

electrodes after each test run. Teflon membrane gaskets situated at these ends ensure th"at

the unit is water and air tightness.

15



Electrodes: Electrode assemblies with a surface area of 22.6 cm2 were constructed of

graphite rods held together with conductive adhesive. The electrode assemblies a're

adhesively bonded into a small hole in the top back wall of each chamber. The rods are 0.635

cm in diameter. The assembly's connecting rod is flush with the outer surface of the back

wall. An electric socket is placed through the center of the exposed rod and fixed in place with

carbon conductive epoxy glue. These connections are wired to a variable DC power source.

Fluid connections: Teflon or stainless steel quick-connections are provided on the bottom

oHhe back wall of the electrode Chambers. These outlet or inlets are then connected to

volume measuring tubes and pumped via chemical resistant, Teflon tubing. The advantage of

the quick connections is that they allow the electrokinetic cell to be detached from the control

~anel completely while the electrode chambers are still charge<;l with fluid, and that they

facilitate fluid sampling at anytime during the experiment.

Gas expulsion or sample extraction/injection ports: These are pressure valves provided

at the top of each electrode chamber. These valves have metal surfaces which are coated to

control any deterioration by electrochemical reactions or metal ion deposition on them.

Sample extractions or fluid injections can be accomplished using a volumetric syringe which
;7\, '

allows for accurate control of quantities of fluids. ) .

B. The control panel, shown in Figure 3.2, has the following components: ~.

Burettes: 25 cc-glass burettes of are used to measure inflow, normally to the anode (positive

electrode) chamber, and outflow, normally from the cathode (negative electrode) chamber

to an accuracy of 0.1 cc.

Vent-pressure valves: Vented pressure valves exist at the top of each burette to provide gas

expulsion. They are also linked to an air-pressure line via a regulator mounted on the panel

which can facilitate t~e application of hydraulic gradient.

Water connection from cell: Water ports are provided from the control panel to the cell.
------..

They are made of chemical resistant flexible teflon tubes of 0.16 cm 10. .

Water fill/drain valves: These are three way valves.

Pump: 30 mllmin. capacity flushing pumps are used to fill burettes and chambers with water.
c

Dedicated electrical units for each E~K cell consist of variable Direct Current (DC)

power supply capable of applying either constant voltage (0 to 30 volt) , or constant current (0

to 1500 mA). These units also house analog meters for voltage and current readings.

3.3 Materials
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The soil used to prepare the samples in this study was Georgia Kaolinite clay. The

organic'TCE (trichloroethylene) used to contaminate the clay slurry was in the liquid form and

purchased from Fisher Scientific. J

3.4- Experimental
I

3.4.1 Sample Preparation

The soil slurry is prepared at approximately 100 percent water content. It is then

transferred to a glass jar with an air tight lid. A measured amount of the liquid organic is

added directly into the slurry to acquire contamination at 1000 ppm initially. The filled jar is

then shaken rigorously to obtain a homogeneous mixing of the contaminant.

The sample tube and guide tube are assembled on the base of the consolidation

apparatus and filled about 3/4 of the way wit~urry. After the removal of air bubbles, the
,

piston is lowered into the guide tube to the top of the slurry column, and the apparatus is

assembled. A setting load of 2 psi is applied to overcome mechanical friction. Samples are

censo1iCated to about 50 percent water content under a final pressure of 30 psi (200 kPa).

Calibratio'n of the instrument determined that, for a factor of safety of two, consolidation be

conducted for 24 hours at increments given in Table 3.1.

The last column in thi~able accounts for the ratio of diameter (0.7) between the piston

and the piston end cap. The pressure delivered by the piston is distributed uniformly over the

larger area of the end cap, resulting in a reduced pressure than desired on the slurry column.

This was asjusted by dividing desired pressures by,0.7 and applying the result.
.' .

Table 3.1: Consolidation Guide
/

3~ual PressureCumulative Applied Pressure

Time(hr.) / (psi) (psi)

2 5 7

4 10 14

14 15 r-' 21 "

20 20 28

22 25 35

24 30 42

\,
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After consolidation, the sample tube is removed from the consolidation apparatus and

any soil extruding from the top end is trimmed. Porous stones and o-rings 'are attached to

each end with silicone glue. After applying high vacuum grease to the inner circular'openings

of the chambers, the sample tube is weighed and mounted between the chambers.. This is

achieved by removing one chamber of the E-Kunit, positioning the sample, and

reassembling the cell. Three auxiliary secondary probes are then inserted through holes pre­

drilled at equal lengths across the soil sample..,..

The end plates of the electrode chambers are attached with a rubber gasket to ensure
. ~

water and air tightness. The chambers are then pumped full with the chosen fluid. The cell is
, .
I

connected to the control panel by the fluid and power lines. With the drain valves closed,

fluid is pumped into the burettes. Following this step all gas within the electrode chambers

must be removed through the gas expulsion ports; this will cause fluid to drain from the

burettes into the chambers, completely filling the electrode chambers. After the gas removal,

fluid levels in the burettes are adjusted. The cell is now ready for an experiment. However, it

is a good precautionary practice to allow the cell sit for about 10~15minutes while checking

for water leaks before the experiment is initiated.

3.4.2 Electrokinetic Testing

In all the E-K experiments, 30 volts DC was applied across the electrodes. The actual

voltage gradient in soil varied in time and space as a result of variations in resistivity of the.

soil.and.

3.4.3 Measurements and Methods of Analysis

The data recorded before, dunng, and, after the E-K test is as follows:

During consolidation: Water content, pH, and quantitative chemical analysis sampling.is done

on the slurry. The volumes of the top and bottom waters extracted during consolidation are

, measured and :analyzed for chemical concentration.
" "

During sample preparation: A portion of the trimmings from the consolidated sample is

analyzed for water and chemical content. This measurement provides an "initial"

concentration of contaminant in the sample before E-K treatment and allows for normalization
~ .

of concentrations obtained after the E-K test. .
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During the E-K test: Volumetric electroosmotic inflow and outflow readings are taken from the

burettes. The system is checked to ensure that it is delivering 30 volts, and the

corresponding current is recorded. Voltage readings through the anode and cathode

chambers are taken via the power connections, and voltage drops across the soils are taken

via the secondary electrodes. Readings were generally taken at zero, 15, and 30 minutes
. I

and one and two hours at the start of the test. Readings were taken at every two-hour

intervals thereafter.,

After the E-K test: During cell disassembly, the pH of the anode and cathode waters is

recorded and the water samples are stored for chemical analysis. Because the cathode water

is generally basic and may contain chemical that has precipitated out of solution, it is acidified

with the addition of diluted HCI before chemical analysis to provide a more accurate

chemical content. Basic observations like the color and turbidity of the water, the color of the

soil, and fissures, discontinuities formed in the soil are recorded. The soil is then extruded

from it's tube and measured at the center of the soil cross-section at 5 evenly spaced points

along its length for pH, water content. Soil samples at the anode, center, and the cathode are

collected for the analysis of chemical concentrations retained in the soil after E-K test.

Water content samples were dried for at least 24 hours in an oven at about 100°F,

according to ASTM 04959. The pH of w~erwasmeasured using a Beckman digital pH

meter and standard bulb probe. A flat probe, Orion #913600, was used for the soil pH

readings.

The quantitative chemical analysis for the organics was performed using a Hewlett

Packard 5880A Series Gas Chromatography (G.C.), equipped with a 5880A Series G.C.

Terminal(level four), with a Restek Crossbonded 100% Dimethyl Polysiloxane capillary

column(30 m. length; .053 mm.lD; 5 J!m. df). The extracted samples were evaluated at

Lehigh University's Seeley G. Mudd facility. The chemical analysis for the TCE contaminants

were performed following the APHA-AWWA-WPCF standard methods. Organic

compound/extraction solvent solubilities, as referenced in the CRC Handbook of Chemistry

and Physics, were evaluated for maximum soil desorption. The following extraction method

was used based on the information pmvided in the referenced documents: Two-gram soil

samples were combined with 15 ml. of acetone. The mixture was sonicated and the
. -

subsequent suspension was allowed to settle. The resultant supernatant was then analyzed

for the TCE organic compound.
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Chapter 4

Methodology and Approach-Enhanced Electrokinetic Testing

4.1 Introduction

In order to investigate the enhanced eleetrokinetip process, two new experimental

units were developed. The original cells described in Chapter 3 were modified and employed

by each one of these new units together with other system features which would facilitate

the associated physical enhancement.

The two physical enhancements investigated are: i)increasing the temperature to

increase the migration potential; ii)applying low amplitude-high frequency shear waves

through the soil. In the following sections the experimental implications and the theoretical

approach will be given for· these enhancement methods.

4.2 Thermal Enhancement

It was anticipated that increased temperature in soil would develop significant pore

water pressure increasing the tendency for the water to flow out of the soil pores. Thus,

simultaneous application was expected to cause enhanced flow rate, therefore, increase the

flushing of contaminants. The experimental set-up was developed based on this coupled

effect.

4.2.1 Facilities and Equipment

A schematic diagram of a thermally enhanced electrokinetic experiment set-up is

shown in Figure 4.1. The set-.u~incorporated three units: a-the modified electrokinetic cell

and control panel; b-multipoint tclnperature recorder; c-temperature controlling uevice and

power attenuator. "

a-The soil sample assembled in the original electrokinetic cell and wrapped

circumferentially with Gias-Col heating and insulating tapes. The maximum temperature

output of these heating tapes are 2500 C. Therefore, operation of the tapes was done through
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Figure 4.1 Schematic Diagram of Thermally Enhanced Electrokinetic Experimental Set-up

a power aUenuator. Temperature control and monitoring are done through three

thermocouples mounted into the soil sample through the acrylic sample tube. Two K-type
(.

ready-made thermocouples placed in teflon casing, being exposed to soil only at the welded-

junction were mounted closest to either one of the soil chamber ends and used for

monitoring. The temperature probe' placed in the middle was for maintaining the desired

constant temperature in the soil in conjunction with a power attenuator and a temperature

controller. The cell was connected to the same control panel used for background testing

through water and electrical connections.

b-A Model L1124S Speed Servo II Multipoint Recorder was used to monitor the

temperature of the soil sample during the enhane-ectrokinetic test through the K-type

ready-made thermocouples. The temperature data was recorded on thermally-sensitive chart

paper. Calibration of the instrument was checked against water at known temperatures

before each experiment.
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c-An Athena 11 Temperature controller was used to maintain the desired constant soil '

temperature by adjusting the knob on its front panel. Input to the controller was through its

temperature probe mounted to the soil chamber. Responding to the signals through its probe,

the controller operates the voltage attenuator intermittantly and the voltage attenuator

supplies power to the heating tape.

4.2.2 About The Experimental Procedures

Experimental procedures and data gathering are as given in section 3.4. with the

following exceptions:

1)- Three more holes other than that of the auxiliary voltage probes were drilled through the

sample tube to mount the thermocouples. Special care was taken while mounting the

thermocouples to the soil sample. Adhesive silicon glue was used to seal the thermocouple

holes and the samples were allowed to stay long enough to make sure that the glue was set

and the system was water tight. Sealing the system against water leakage has gained more

importance in thermally enhanced experiments because increased temperature speeded up
.-'

evaporation of water and thus, monitroing possible water losses through leakage and taking

precautions against them became more difficult.

2)- After the electrokinetic cell assembly and the installation of thermocouples, the sample

was wrapped with heating tape and also insulating tape to lessen heat 1055 to the environment

once the desired temperature was maintained.,...

3)- In-order to prevent overheating the soil chamber, sample was heated up to the desired

temperature gradually. Adjusting the temperature controller to the target temperature in the

first place would cause the controlle.r keep the circuit closed providing continuous power to

the heating tape until the elevated temperature is reached within the soil. The heating tape

would in this case exceed the desired soil temperature before the temperature was reached in

the soil. Therefore temperature of the sample was elevated gradually to prevent damaging

the acrylic sample. tube due to heat.

4)- Temperature data was monitored and recorded continuously on a thermal-sensitive chart

paper. All the other data was collected in the same way as described in section 3.4.3.

-----------~-

'--~--. 4.3 Enhancement with Shear Wave Application

The experiment set-up is based on the phenomenon of seismic waves causing

temporary instability condition in the ground by increasing pore water pressures progressively.
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Shear waves vibrate particles perPendicular to the direction of the wave propagation. Since

fhe soil is confined with no deformation allowed, the vibratory or cyclic strains cause a

progressive increase in the pore water pressure in the soil. This is phenomenon most

observed in saturated, loose soil deposits (Seed, 1986). When loose, saturated soils are

subject to str~l1§ and_shocks,thereisa-tendency-for1he-solrtoaecreas·eln volume. This

tendency causes a positive increase in pore pressure which result in a decrease in effective

stress within the soil mass.

In this study, it is anticipated that the progressive increase in the pore water pressures

(the level of which is dependent on frequency, amplitUde, and duration of vibration,and also

soil physical properties) would cause an increased tendency for the water to flow out of the

soil pores. Thus, simultaneous application of the electrical potential is expected to cause

enhanced flow rate, and therefore, increase the flushing of the contaminants. Another result

of shear wave propagation is expected to be the release of loosely held contaminants on clay

surfaces and also the promotion of emulsification of same organic contaminants, such as

hydrocarbons. It is anticipated that the physical vibration might promote the migration of

some organic molecules into the free water in the soil pores. Similarly the vibration may

cause emulsification of some relatively large droplets of hydrocarbon fluids in the pore water.

Subsequently, these particles may be f1USh,ed out of the soil with increased flow under the

effect of the induced pore water pressures and the applied electrical potential.

4.3.1 Facilities a'nd Equipment

A sChemat~gram of the experimental set-up to investigate this simultaneous

application of electric potential and shear waves is given in Figure 4.2. The set-up employed:

a-modified electrokinetic cell for shear wave application, b-A computer with a data acqUisition

board connected to the set-up via a voltage attenuation box, c-Wave ge.nerating and

monitoring units, and d-the same power unit and control panel used in background

. electrokinetic testing.

a-The modified electrokinetic cell has the following components:

Piezoelectric Bender Elements: The application of shear waves through the soil is facilitated

with piezoceramic bender elements placed at each end of the soil sample tube(Dyvik and

Madshus, 1986). The idea of using piezoceramic bender elements is developed from the use

of such elements in a variety of standard geotechnical laboratory testing equipment (e.g.,

triaxial, direct simple shear and oedometer devices).. Equipment for generating compression
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waves especially through rock cores by piezoelectric elements or similar has ~Iso existed for

a number of years.
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Figure 4.2. A Schematic Diagram of Electrokinetic Experiment Setup with Shear Wave
/J

Application

, The piezoelectric bender element is an electro-mechanical transducer which is capable

of converting mechanical energy (movement) either to-n-t from electrical energy. The

element itself consists of two thin piezoceramic plates which are rigidly bonded together with
._-~-~ --- -- .-

conducting surfaces between them and on the outsides (sandwich-type arrangement): The

polarization of ceramic metarial in each plate and the electrical connections are such that

when a drivingvoftage is applied to the element, one plate elongates and the other shortens.

The net result is a bending displacement which is greater in magnitude than the length

change in either of the two layers (plates). On the other hand, when an element is forced to
,(

bend, one layer will go into tension and the other into compression. This will result in an

electrical signal which can be measured through the wire leads to the element. Figure 4.3

shows the shape of an element before and after a driving voltage is applied. There are two

different types of bender elements: series connected and parallel connected. Standard
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eleGt~ode configurations and electrical connections of bender elements are given in Figure

4.4. A series connected element is twice as effective as a parallel connected element when

used as a generator (mechanical to electrical energy). On the other hand, a parallel

connected element is twIce as effective.as a series connected elemenfwhen used as a motor
. ----_ ..--~------

~(electricaIJomechanicalenergy);-For·these·reasons,-a·parallel-connectecnHemenfis-iised-lQ-

generate a shear wave pulse which propagates along the length of the specimen and a series

connected one is used to determine the arrival time and traces of the shear waves at the

other end of the specimen. The bender element is a high Impedance element and can not be

exposed to moisture as this will short the transducer. It must therefore be cased in a

waterproof material.

Elf:Clr::;c .

sur to( C!.

RELAXED ElEMENT

EXCITED ElEMENT
Itop layer expan'ds and
bottom layer contracts).

Figure 4.3 Shape of piezoelectric bender elements with and without applied excitation voltage

The modified electrokinetic cell has also two bender elements on either side of the

sample tube, placed in porous stones. These elements are mounted normal to the surface of

each stone so that they would be imbedded into the soil when assembled. ·For toughness

and durability, a two-component epoxy is the best alternative. Figure 4.5 shows the

electrokinetic cell modified with bender elements and the waterproof casing for the bender

elements. The shear wave pulses are sent from the anode end in the same direction as

electroosmosis to enhance the electroosmotic flow by the help of increased temporary pore

water pressure gradients.
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Figure4-:-4 Series and parallel connected piezocerainic bender element

The Porewater Pressure Transducer: An Entran EPX-10W-50 Model Miniature Threaded

Pressure Transducer is used to monitor the pressure va_nations within the specimen during

the shear wave applicaton, and also during the electrokinetic flow. The transducer is

activated by an Entran MM45P-HL-10 Model Power Supply/Digital Meter and the output

voltage signals are collected in the computer via a data acquisition board and converted to

pressure pressure data by a computer program. This measurement is important because the

rate of pore water pressure increase and the rate of SUbsequent dissipation upon application

of electricity helps to estimate the success of the method of increasing electroosmotic flow

via increased pore water pressures.

b-The Data Acquisition System has the following components:

The Data Acquisition Board: A Metrabyte DAS-8PGA analog input board which has a

Programmable Gain Amplifier is installed in a Gateway 386/Sx Model computer and used for

data acquisition via a voltage attenuation box. Five channels are in charge of collecting the
f

the data. A computer program was written in GW Basic Programming Language to operate

the analog input board and convert the voltage inputs from the channels into their real

values. A copy of the program is given in AppendixC.
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The Voltage Attenuation Box: Because the voltage gradients through the soil are at levels too

high to be acceptable to an analog input board, they needed to be attenuated first. Therefore,

a voltage conditioning apparatus is designed to take a voltage in the range of 10 to 120 volts

and attenuate it so that it is at a level acceptable to the analog input board. The attenuated­

voltage can then be input to a computer for data storage and analysis. Two levels of

attenuation can be selected, 10:t,and 100:1. The channels carrying the pore water pressure

and ampherage data, however, are directly connected to the computer, because the levels of

their voltage inputs are low enough to be managable by the board.

c-Units used to generate and monitor the shear waves are:

The Function Generator: The transmitter bender element is connected to an external function

generator to provide continuous frequency output. A Model 3011 B 2MHz Digital Display

Function General is used. Square wave driving signals of differenl frequency and amplitude

are applied to the bender element via the function generator.

The Oscilloscope: Due to the very short travel time of the shear waves from one end of the

soil sample to the the other, an oscilloscope of high resolution and accuracy is needed to

record and monitor the resulting wave motion through the soil. A Nicolet NIC-310 Digital

Oscilloscope was used in this study. The oscilloscope is connected to both the transmitter

and the receiver elements with co-axial cables to monitor the shear wave before and after its

travel through the soil sample.

d-The electric potential is applied by the same power unit as in the background

electrokinetic testing. The inflow and outflow readings are also done by the same original

control panel.

4.3.2 About The Experimental Procedures

The new enhanced set-up with shear wave application provided the ease of data

gathering via data acquisition system. Yet, electrokinetic data was also collected manually in

order to double check the consistancy and reliability of the system. Compari~on of the data

collected in either one of the two methods showed the weaknesses of the set-up and also the

ways to get rid of these weaknesses.

The following differences in the methodology of enhanced electrokinetic testing should

also be noted in addition to section 3.4:

- Since the pressure transducer is designed to measure the water pressures applied on its

diaphragm, it needed to be kept away from the touch of soil particles. This was achieved by

securing the transducer behind a glass porous stone in a special housing machined from
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acrylic. Therefore, another hole was drilled through the sample tube for the insertion of the

transducer and its casing.

-Special care is taken while porous stones with bender elements mounted at each side are

assE;lmblecLExtra.holes.are.drilled.on-electrode-compartments·on-each-side-and·wiring-ortne

bender elements are connected to the oscilloscope and the function generator.

-Five channels are used fordata acquisition; three for the voltage drops through the soil, one

~for the current which is connected to the power unit, and one channel gathering pore water

pressure data.

. I/O
- ...... 1 1/2-- 1 1/2 -l I/O~

pressure
o-ring tnnacer .

porous '. _ __'

.w,~ 11
/' -,,-:

beIIder / !
elBDelll ' I

alllil1ary
probe

PIEZD (ERAMI(
JENDER ELEMENT

CLEAR
EPOXY ---i
(ASING

..
WIRE
LEADS

Figure 4.5 General Layout of the E-K Cell with Shear Wave Enhancement and Details of

piezoelectric chip placement
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Chapter 5

Results and Discussions

5.1 Introduction

The experimental results and discussion on the phenomena are presented in this

chapter. The experimental work performed may be divided into two categories according to the

aplliedenhancement methods which are enhancement with increased temperature and

enhancement with shear wave application. Thermal enhancement results will be given in the

following section. Results and discussion for enhancement with shear wave appication will be

presented afterwards.

5.2 Experiments with Thermal Enhancement

Thermally enhanced electrokinetic tests were conducted on blank and TCE-contaminated

samples. Blank samples were run to understand the effects of temperature on electrokinetic

phenomena for pure clays. TCE contaminated samples Were also run to further investigate the

temperature effects on contaminant removal with the simultaneous application of electric

potential. The flow and current, and the inflow and current efficiency graphs for both enhanced

and unhanced blank samples are presented in Appendix A. The same· information for TCE­

contaminated samples are presented in Appendix B.

Both enhanced and unenhanced electrokinetic flow data of all experiments was plotted and

curve fit. The best seemed to be a straight line fit to the data. Comparison was made to the

data of the cases with no enhancement. Plots are given in Figures 5.1 and 5.2.

Figure 5.1 shows the comparison of all thermally enhanced electrokinetic runs of blank kaolinite ­

distilled water samples to that of the blank samples with no enhancement. Figure 5.2 gives the

comparison of all thermally enhanced electrokinetic runs of kaolinite - distilled water - TCE

contaminated samples to the same, but unenhanced samples. In all cases of heat

enhancement, the current efficiency increased significantly over that of the runs without

enhancement, all other conditions being the same.
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The' electroosmotic flow was seen to increase ,as high as up to five times' in some cases when. .

compared to the ones with no enhancement. The chemical analysis data showed no TeE

contaminant left in tlie soil samples at the end of thermally enhanced electrokinetic runs.
~-~ --------------~ ~~ ~--- -~ ~

=------------,~--------------

o
o

o
o

Temp.= 115 of

o
o

oo

o
o

100 150 200 250 300 350 400 450 500
C.umulative Electricity (Coulombs)

50

1OO-,--r--C~O~N~l~AM~I~N~AN~T...:~N~O~N~E--,-------------------,

90 OUNITE·DISTlLLED WATER

80

70

-. 60
CJ
CJ
'-' 50
~
S 40

E 30

20

10

o
-1 O-j----,-----,----r--.---~-.,_-__r""'-_.__.,___r_-__1

o

I 0 Inflow-At 1150F * Inflow-Room Temp]

Figure 5.1 : Thermally Enhanced E-K Test Current Effiency Compared to Unenhanced E-K Test

Current Efficiency for Blank Kaolinite Soil

5.3 Discussion of The Th~rmally Enhanced Experiment Results

)

The interpretatoin of the data shows that temperature increase had a significant positive ,

effect oli electrokinetic decontamination. The influence of temperature variations on the

engineering properties of soils has been established by a number of studies. Finn (June,1951)

and Paaswell (May, 1967), among others, have investigated the effect of temperature on

consolidation. Temperature effects on int~article forces, pore water pressures have been

'"
30



considered by Lambe (1953; 1960; 1961), Ladd (1961), Mitchell (January, 1963), Duncan and

Campanella (November, 1965), and others investigated the effects of temperature variations on

CONTAMINANT: TCE
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'*'**
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Figure 5.2 : Thermally Enhanced E-K Test Current Effiency Compared to Unenhanced E-K Test

Current Efficiency for TCE-Contaminated Kaolinite Soil

soil strength. Pore pressure variations and volume changes associated with temperature

changes have been analyzed in several publications (Duncan and Campanella, November 1965;

Henkel and Sowa, September 1963; Mitchell and Campanella, September 1963). A study

performed by Campanella and Mitchell (1968) seemed to explain the changes due to

temperature increase best in our case. T

hey have presented some analyses for the interpretjltion of volume changes due to the thermal

expansion of the soil, compressibility of the, soil, and also physico-chemical effects. It was

surprisingly found that their saturated specimen were subjected to SUbsequent temperature

increases ranging from 660F to 1400F. Our samples are also assumed to be saturated and they
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are heated up to a constant temperature of 1150F to 1200F which would fall in the range the¥

applied. The dimensions of their cylindrical test specimens (1.4-in. wide by 3.5-in. long) almost

matched. with ours. The only difference was that they used illite as the clay type istead of

kaolinite as in our samples. They have studied the temperature effects on saturated clays for

both drained and undrained conditions.

5.3.1 Theoretical Analysis of Temperature Effects on Volume Changes and

Pore Pressures in Saturated in Saturated Soils

Volume changes du~to temperature variations under conditions of constant effective

stress result from the thermal expansion of the. mineral solid and the pore water, and any

changes in the soil structure resulting from temperature change. The effective stresses are

assumed to be constant due to drained conditions. The following explanations is offered for the

volume change behavior.

During initial consolidation at constant temperature, the void ratio decreases until

sufficient shearing resistance is developed through interparticle bonds to resist the interparticle

shear forces resulting from applied boundary normal stresses. When the temperature of a

normally consolidated specimen is increased two effects occur. If the increase in temperature is

rapid a significant positive pore water pressure may develop, even though the sample is

maintained under fully drained conditions. This excess pore pressu~e results primarily from a

greater volumetric expansion of the pore water than of the mineral solids. The lower the

permeability of the soil, the longer the period required for this pressure to dissipate. The second

effect relates to the influence of increased temperature on the strength of the soil structure. An

increase in temperature causes a decrease in the shearing strength of individual interparticle

contacts. This decrease in the interparticle bond strength may be considered to

result from the increase in thermal energy which acts in conjunction with the shear force at

interparticle contacts to increase the probability of bond slippage or failure. As a consequence,
! .

there is a partial collapse of the soil structure, and a decrease in void ratio until a sufficient

number of bonds are formed to enable the soil to carry the stress at the higher temperature. This

effect depends only on properties of soil structure, and its rate is independent of pore watter

pressure considerations. It is analogous to secondary compression under a stress increase.

5.3.2 Amount of Volume Changes

The increased flow results presented here also agree with their findings. It is apparent

that the amount of water transported under the electric potential was increased with the
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simultaneous application of heat. However, comparison of the volumes of the water drained in

the experiments performed by Campanella and Mitchell (1968) with that in our experiments

showed that the excess water transported during the thermally enhanced electrokinetic tests over

the ones with no enhancement amounted more than an elevated temperature of 1150F would

solely cause. Therefore, simultaneous application of the electric potential and heat resulted in

higher water flow rates than it could be expected by considering the electrokinetic and .

temperature effects on soils independent of each other.

The increase in the current efficiency can be explained by the decrease in the stability of

the molecules in the double layer resulting in less frictional forces against the plug flow of

electroosmosis. In addition larger pore volumes would favor electroosmotic flow.

The increased t~ansport of TCE is also attributed to heating which probably promoted the

migration of the contaminant into the pore fluid environment away from the clay surfaces by way

of: 1) dissolution and 2) increased flow rate due to thtincreased ~ater pressures.

5.4 Experiments Enhanced with Shear Wave Application and Discussion of Results

0.240" X .240" x .023" piezoelectric bender elements were soldered to electrical wiring in

series placed in an approximate area of .25" x .50" at the center of the porous stones. Therefore

the flow area on the porous stone was decreased by 15 percent. This difference was evidenced

by a slight decrease in water inflow during the electrokinetic runs with the bender element

mounted-porous stones at the ends of th~ soil sample, but with no shear wave application yet.

The blank and contaminated (TCE) kaolinite soil samples were 'subjected to E-K treatment with

shear wave enhancement at two different frequencies, 1500 Hz and 4000 Hz. The duration of

these tests were again 24 hours or less.

The results of these tests showed no appreciable improvement over current efficiency or

contaminant removal over the duration and frequenci_es 0Lshear wave enhancement applied.

Since thelevel of increased pore water pressures is dependent on frequency, amplitude, and

duration of vibration, it may be necessary to run more electrokinetic tests with shear wave

enhancement for longer terms to find the most effective shear wave frequency and amplitude.

Futher observations also showed that the set-up needs changes in the configuration for more

reliable results. These possible changes will be mentioned in the next section.

5.5 Recommendations1'or Future Studies

5.5.1 About Thermal Enhancements
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In this study, the experiments were conducted only at one elevated temperature. In

order to understand the temperature effects on electrokinetic soil decontamination -better,

temperature can be chosen as the variable keeping all the other conditions constant, .and E-K

tests can be run with simultane0l;Js applicatio,:J of heat at diffe(ent elevated temperatures.

Conductivity of soil may also be an important parameter. Therefore, at different elevated

temperatures the conductivity measurements can also be done and the temperature {jependency

of conductivity can be investigated.

The thermally enhanced E-K tests showed significantly increased water flow rates over

that of the runs with no enhancement. A better explanation to this phenomenon can be brought'

by studying further the temperature effects on the double diffuse layer and electroosmosis.

Some organics other than TCE should also be tested and results should be interpreted

by taking the partioning. coefficients and other pertinent characteristics of organics into

consideration.

5.5.2 Abolit Shear Wave Application Enhancement·

Since the idea is based on the phenomenon of seismic waves causing temporary

instability condition in the soil by increasing pore water pressures progressively, monitoring of

pore water pressures could be done during an electrokinetic testing in the absence of seismic

wave application to provide a base information for pore water pressure development in the soil

due to electroosmosis.

The use of 0.240" x 0.240" x 0.023" piezoelectric bender elements showed the n~ed for

bigger rectangular elements. Installation of the bender elements could be made better by,.
keeping the end protruding into--the soil longer. In addition, special care should be taken while

casing the bender elements with the epoxy glue. The epoxy glue should be relatively thin over

the vibrating end in the soil, otherwise the glue after hardening may hinder the vibration of the

element considerably.

In this stUdy, wave amplitudes of up to +/- 2 volts were applied. It is suggested that

amplitudes of up to +/- 10 volts could give better results. Since the level of increased pore:

water pressures is dependent on frequency, amplitUde, and duration of vibration, it may be

necessary to run more electrokinetic tests with shear wave enhancement for longer terms to find

the most effective shear wave frequency and amplitude.
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."-./'

--~ ~---~-------~--------~ ~

100 DELAY1%=1000 : DELAY2%=300
105 SAVEIT%=l
110 INPUT "Enter the Name of the~data file:"iDFNAME$
115 IF LEN(DFNAME$) ~ 0 THEN SAVEIT% = 0
120 IF SAVEIT% < 1 THEN 150
125 INPUT "Enter comments:",COMMENT$
130 REM open a fiie to put the data
135 OPEN "0", #l,DFNAME$
140 PRINT#l,"Starting "iDATE$,TIME$
145 PRINT#l,COMMENT$
150 TIME$="OO:OO:OO"
160 BASADR%=&H300
170 PRINT TIME$
180 ATTEN%= 10
1000 REM program and input from channel 1
1010 REM Channel 1 reads the voltage drop b/w Probe3-Cathode.
1050 ~%=1

1100 OUT BASADR%+2,MA%
1150 REM program for +/- 500mV (10)
1200 GAINVAL%=10
1250 OUT BASADR%+3,GAINVAL% !
1300 REM start conversion for the channel
1350 OUT BASADR%+l,O
1400 REM keep checking the status register until end of conversion
1450 IF INP(BASADR% + 2) >= 128 GOTO 1450
1500 REM conversion complete, read the registers
1550 XL%=INP(BASADR%)
1600 XH%=INP(BASADR%+l)
1650 D%=16*XH% + XL%/16
1700 NVOLTS=«D% * 1000)/4096) -500
1750 VOLTS1=NVOLTS * (ATTEN% /1000 )
1800 REM PRINT "read:",D%," Normal:",NVOLTS,"," VOLTS: ",VOLTS1
1850 PRINT "Value read-in from channell is:"iVOLTS1i" volts","d%="iD%
2000 REM program and input from channel 2
2010 REM Channel 2 reads the Amphere through the soil.
2050 MA%=2
2100 OUT BASADR%+2,MA%
2150 REM program for +/-500 mV (10)
2200 GAINVAL%=10
2250 OQT BASADR%+3,GAINVAL%
2300 REM start conversion for the channel
2350 OUT BASADR%+l,O ,
2400 REM keep checking the status register until end of conversion
2450 IF INP(BASADR% + 2) >= 128 GOTO 2450
2500 REM conversion complete, read the registers
2550 XL%=INP(BASADR%) ~
2600 XH%=INP(BASADR%+l)
2650 D%=16*XH%+ XL%/16.
2700 NVOLTS=«D% * 1000)/4096) -500
2750 VOLTS2=NVOLTS / 88
2800 REM NO ATTENUATION •.. this channel bypasses conditioning board
2825 REM The current value needs to be measured and normalized to real ampherage
2830 REM for each step of the amphere knob on the power unit.
2830 REM " 88 " is calculated to be the normalization constant for this test.
2835 REM " 88 " is calculated to be the normalization constant for-this test.
2850 REM PRINT "read:",D%," Normal:",NVOLTS,"," VOLTS: ",VOLTS2
2900 PRINT "Value read-in from channel 2 is:"iVOLTS2i" milliamps","d%="iD%
3000 REM program and input from channel 3 ~

3010 REM Channel 3 reads the voltage drop b/w Anode-Probe1.
3050 MA%=3



3100 OUT BASADR%+2,MA%
3150 REM program for +/- 5V (0)
3200 GAINVAL%=O
3250 OUT BASAD~%+3;GAINVAL%
3300 REM start conversion for the qhannel
3350 OUT BASADR%+l,O .
3400 REM keep checking the status register until end of conversion
3450 IF INP(BASADR% + 2) >= 128 GOTO 3450
3500 REM conversion complete, read the registers
3550 XL%=INP(BASADR%)
3600.XH%=INP(BASADR%+1)
3650 D%=16*XH% + XL%/16
3700 NVOLTS=«D% * 10)/4096) -5
3750 VOLTS3=NVOLTS * ~TTEN%

3800 PRINT "Value read";in from channel 3 is:''iVOLTS3i'' volts","d%="iD%
4000 REM program and input from channel 4 .
4010· REM Channel 4 reads the voltage drop b/w Probe1-Probe3 •
.4050 MA%=4 '
4100 OUT BASADR%+2,MA%
4150 REM program for +/- 500mV (10)
4200 GAINVAL%~10

42500UT-BASADR%+3,GAINVAL%
4300 REM start conversion for the channel
4350 OUT BASADR%+l,O
4400 REM keep checking the status register until end of conversion
4450 IF INP(BASADR% + 2) >= 128 GOTO 4450

_4500 REM conversion complete, read the registers
4550 XL%=IN~(BASADR%)

4600 XH%=INP(BASADR%+l)
4650 D%=16*XH% + XL%/16
4700 NVOLTS=«D% * 1000)/4096) -500
4750 VOLTS4=NVOLTS * ( ATTEN% /1000 ) --
4800 PRINT "Value read-in from channel 4 is:"iVOLTS4i" volts","d%="iD%
5000 REM program and input from channel 5
5050 REM Channel 5 reads the pore water pressure in the soil(in mV's) .
5100 MA%=5
5150 OUT BASADR%+2,MA%
5200 REM program for +/- 500mV (10)
5250 GAINVAL%=10
5300 OUT BASADR%+3,GAINVAL%
5350 REM start-conversion for the channel
5400 OUT BASADR%+l,O
5450 REM keep checking the status register until end of conversion
5500 IF INP (BASADR% + 2) >= 128 GOTa' 5500
5550 REM conversion complete, read the registers
5600 XL%=INP(BASADR%)
5650 XH%=INP(BASADR%+l)
5700 D%=16*XH% + XL%/16
5750 NVOLTS=«D% * 1000)/4096) -500
5800 VOLTS5=NVOLTS
5850 REM NO ATTENUATION •• this channel is directly connected.
5900 REM PRINT "read:",D%," Normal:",NVOLTS,"," VOLTS: ",VOLTS5
5950 PRINT "Value read-in from channel 5 is:''iVOLTS5i'' millivolts","d%="iD%
6000 IF SAVEIT% = O'THEN 6100
6050 PRINT#1,TIME$,VOLTS1,VOLTS2,VOLTS3,VOLTS4,VOLTS5
6100 PRINT" "
6150 REM delay for a while
6200 FOR 1%=1 TO DELAY1% : FOR 11%=1 TO DELAY2% NEXT 11% NEXT 1%
6250 GOTO 160
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