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ABSTRACT

The Potomac River Generating Station is mandated by state and federal regulations to

reduce NOx emissions to 0.38 Ib./MBtu, at all power output levels. This thesis addresses

optimizing the unit heat rate ofa pulverized coal boiler while maintaining this NOx emissions limit.

The modeling ofthe boiler was achieved throu~ neural networks, a form ofartificial intelligence,

while the optimization was accomplished through mathematical optimization algorithms. This

process was applied to boiler operation at full load (l08 MW) and at the 45 MW load level.

Parametric data, gathered from previous boiler testing, were used to train several different

neural networks for NOx and unit heat rate. Numerous computer experiments were conducted to

determine the best means ofmaximizing the neural network's ability to predict boiler output

responses when given different input data. Work on the numerical optimization process consisted

oftesting different pre-packaged and self-written computer algorithms to determine which provided

the necessary accuracy, flexibility, and dependability this particular application.

The NOx and heat rate neural networks produced accurate results in predicting boiler

response values at full load conditions. The average difference between the model predicted values

and the actual values were 0.01 Ib/MBtu and 26.5 BtulkWh, respectively. The optimization

algorithm produced results that were within ±2.5% ofthe optimal values that had been calculated

using statistical and curve fitting methods. The 45 MW neural network models produced results of

the same quality as the full load models. The average difference for these models was 0.016

Ib/MBtu for NOx and 19.4 Btu/kWh for unit heat rate. However, when the equations comprising

the 45 MW models were numerically optimized and graphed to show operational trends, they failed

to coincide with either observed physical behavior or to previous statistical results.

The fundamental parameter that caused the full load models to succeed and the 45 MW

models to fail was the quality of the data used to train the neural networks. The influence ofthis

parameter pervades throughout this thesis and its effects on the experiments conducted provided
_ .. . .._ :,. ... _-' .. ;~._-....... ;",:.t,...- .,-"'.!::;;"-'.

sigIiificant in~ight'~future utilization ofthis modeling arid optiIiiiZatton-meiliOdCl!ogy.....
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CHAPTER 1

INTRODUCTION

Title IV ofthe 1990 amendments to the Clean Air Act require that, depending on the type

ofboiler, the emission ofoxides ofnitrogen (NOx) be reduced to 0.45 or 0.50 pound per million

Btu offuel input to the boiler. The Potomac River Station in the State of Virginia is required to

achieve further reductions to an emission rate of0.38 Ib./MBtu.

Unfortunately, as a boiler is operated in a low NOx emission mode, main and reheat steam

temperatures often decrease, resulting in lower turbine cycle efficiency. Power plant performance is

measured in terms ofthe unit heat rate, which is the reciprocal of the efficiency, and it has units of

(Btu/kWh). As unit heat rate increases, more coal must be consumed to produce the same power

output. Maintaining reasonable heat rate levels while reducing and controlling NOx emissions via

boiler tuning is the goal of an on-going study at the Potomac Electric Power Company's (PEPCO)

Potomac River Station. Previous work at Potomac River showed that unit heat rate and NOx

production depend strongly upon boiler operating conditions. With numerous dependent and

independent operating parameters and the complex interaction ofthese parameters, formulating

phenomenological model(s) ofpower plant operation is difficult, ifnot impossible.

This study addresses the problem from a mathematical and computational approach.

Working with field data obtained during plant operation, neural networks, a form of artificial

intelligence, were applied to create a model of furnace operation, NOx, and heat rate. The neural

nenvork generates a mapping of operational inputs to the subsequent outputs using objective

numerical values, without requiring a quantitative knowledge ofthe underlying physics. The

resulting equations from the neural nenvork model are analyzed by an optimization algorithm

which determines the operating conditions that minimize heat rate subject to maintaining NOx

regulatory limits. The emphasis of this investigation was to develop a methodology for~si?g neural

networks and optimization algorithms to determine optimal furnace opef<!,ting conditions. An

2



underlying premise ofthis thesis is the development of a series ofcomputer algorithms that derives

the input to output mapping equations, feeds the equations into the optimization algorithm, and

reports the calculated optimal boiler operating conditions back to the plant engineer or operator.

Therefore, the subsequent computational solution methods must be compatible so as to facilitate

the passing ofdata between algorithms, simple to operate and understand, and easy to implement

into a larger boiler controVoptimization software package. Additional considerations included

determining the amount ofdata required to achieve adequate mappings and the degree of

uncertainty present in such a methodology.



CHAPTER 2

POWER PLANT OPERATION-EMISSIONS AND PERFORMANCE

f>-

In order to gain proper perspective of how neural networks were implemented into

modeling boiler operation, the nature of the problem and previous research efforts must be

discussed. The physical problem is described in this chapter along with the goals and objectives of

the study. Finally, an overview ofthe solution procedure is provided, showing how the physical

problem was analyzed, and solved.

BOILER OPERATION AND EMISSIONS MONITORING

The Potomac Electric Power Company (PEPCO) has five units at the Potomac River

Station, each equipped with a Combustion Engineering, tangentially fired, drum design boiler. The

nominal generating capacity for each unit is 108 MW, while the minimum load is 35 MW.

Typically, the station operates 46% ofthe time at full load (>90 MW) and 48% ofthe time at

lower loads (35 to 50 MW). The corner-fired unit burns eastern bituminous coal, pulverized in four

Raymond bowl mills. The four mills, A through D, supply four different burner levels within the

boiler, each level having four burners. All four mills must be operated when generating 90 to 108

MW, three mills are needed in the mid-load range (60 to 90 MW), and only the center two mills

operate in the low load range (35 to 60 MW).

Air for combustion is provided by auxiliary air and fuel-air nozzles. At each ofthe 16
~~

burners a fuel-air nozzle is located. These burners and nozzles cah be vertically tilted up and down

with a range of -30° to +30°, from the horizontal. The unit's steam cycle is sub-eritical and the

main and single reheat steam temperatures are controlled by the degree of burner tilt. In addition to

the fuel-air nozzles located at each of the burners, an auxiliaiy air nozzle is located between each

---burner;-above'the toprow, and-beltrwtlfdjotfomr6w 6fbufucts~l1ie toW airUitroduccdiiito the

boiler is quantified by the economizer oxygen level while the air flow rate to each ofthe 36 nozzles

4



is controlled by dampers. All of the dampers can be adjusted from fully open (position 5) to fully

closed (position I). Windboxes, located at the four corners of the boiler, supply air to all of the air

nozzles. The amount of economizer oxygen supplied by the fans and the damper settings controls

the pressure differential between the windbox and furnace r1,2,3,4]. The location ofthe described

boiler hardware is detailed in Figure 2.1.

AU~i1ia~ Air 1

Mill A -7 Fuel-Air 2~~~ - Burner Row A
~--30

Auxiliary Air 3

Mill B ----:;:. Fuel-Air 4? Burner Row 8

---.------- Auxiliary Air 5 --------- Furnace Centerline

Mill C ----:;:. Fuel-Air 6? Burner Row C

Auxiliary Air 7

Mill D ----:;:. Fuel-Air 6? Burner Row D

Auxiliary Air 9

~--- Windbox

Figure 2.1

Potomac River Unit 4 Boiler Corner Configuration
" .
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Data collection is achieved using the Electric Power Research Institute (EPRl) Plant

Monitoring Workstation (PMW). The recorded data includes main and hot reheat steam

temperatures, economizer 02, unit load, burner tilt angle, mill feeder speeds, windbox pressure, air

damper positions, air preheater inlet gas temperature, and flue gas temperature at the economizer

exit. Data are downloaded from the PMW as two-minute average values and stored as archived

data. These data can be manipulated and analyzed in several different ways to fine-tune operation.

Additional software produced by Lehigh University for EPRI allows the calculation of unit heat

rate, boiler efficiency, coal, gas and air flow rates, and other performance parameters associated

with coal-fired boilers.

Environmental Protection Agency (EPA) regulations require the Potomac River Station to

perform Continuous Emissions Monitoring (CEM) for NOx, S02, and opacity [5]. NOx emissions

were measured in the stack using a Monitor Labs Inc. Model 8840 Analyzer, while the wet 02

present in the stack was determined with a Teledyne meter. The NOx emissions rate (lb./MBtu)

was calculated using EPA Method 19 for dry NOx and wet 02 measurements. To convert the NOx

rate from parts per million (ppm.) to Ib./MBtu, Equation 2.1 was used (2):

NOx(lb/MBtu) = (1.194x10-
7

) *9780 *20.9 *NOx(ppm)

20.9- °Z,stack

(1.0 - O. 027)

In adapting Eq. 2.1 to this boiler, the following parameter values were used:

F-factor = 9780 dscfIMBtu

moisture fraction = 0.027

02,stack = economizer 02+1.8%

(2.1)



MINIMIZATION GOALS

This study focused on optimizing boiler operation for two fundamental output parameters,

NOx and heat rate. Although several other important considerations exist, these two are the most

important due to EPA regulations and PEPCO's desire to maximize overall power production

efficiency. The consummate goal is to minimize heat rate, which is synonymous with maximizing

efficiency, while maintaining NOx emission rates below the levels required by federal and state

regulations. Knowing what comprises the two optimization goals is prerequisite for undertaking the

task of optimizing these outputs.

NOx Formation

During the combustion of pulverized coal, NOx is formed from the nitrogen contained in

both the coal particles and the excess air. The majority of the oxides formed is nitric oxide, NO,

and controlling its formation during combustion is imperative in maintaining compliance with the

Clean Air Act Amendments. NO formed from fuel-bound nitrogen (fuel NO) accounts for 60% to

80% ofthe total NO emissions from pulverized coal boilers [6]. NO formation occurs during both

the coal devolatilization and char bum out phases of coal combustion. The fuel NO generated

during devolatilization proceeds primarily from the formation of hydrogen cyanide, HCN and its

subsequent decomposition 16]. The amount of fuel NO formed via this mechanism is extremely

sensitive to burner aerodynamics and local air to fuel ratios in the near-burner region. NO

increases with increasing local air-fuel ratio, which is dependent upon the fuel and secondary air

distribution. This property is generally considered the most significant of those relevant to

pulverized coal combustion.

The nitric oxide formed from molecular nitrogen in the combustion air is termed "thermal

NO". The rate of thermal NO formation is primarily a function of gas temperature with

temperatures beneath I600-18000 K yielding relatively small concentrations of thermal NO.

Another factor in thermal NO production is the amount ofoxygen present in the furnace.

1berefore, economiZer oxygen levels, especia.iiy~i high temperatures found -at-full load, become
7



critical to controlling thermal NO formation. Overall, the amount of oxygen present in the furnace,

the manner it is distributed, and the near burner mixing patterns during combustion dictate the

amount of fuel and thermal NO created, as well as other NOx species. For these reasons, the

manner in which boiler parameters such as coal flow, air flow, and burner tilt angle are set has a

significant effect on the combustion reaction process and the rate of NOx formation. These

parameters regulate the combustion process and when properly balanced, can be used to reduce

NOx emissions.

Unit Heat Rate

Unit heat rate is a limiting factor on the amount ofNOx emissions that it is practical to

achieve. This is a "cost" function for power production with the units (Btu/kWh). The higher the

heat rate value, the more fuel is required to produce a given amount ofpower. As with the creation

ofNOx, heat rate is a function ofhow the boiler is operated. The fuel flow, air flow and

distribution and mixing patterns control how effectively the fireball heats the steam within the

boiler waterwalls. The higher the steam temperature, the more efficient the turbine cycle is in

producing power. At Potomac River Unit 4 the governing control for steam temperatures is the

burner tilt angle. The greater the tilt above the horizontal, the higher the steam temperatures. In

addition, at Unit 4, as the power output decreases, steam temperatures decrease, despite any efforts

and changes made to the boiler operating conditions. The main steam temperature stays relatively

constant from full load at 108 MW to 75 MW, then decreases to an average of28°F lower at 45

MW [7].

The net unit heat rate was obtained using EPRI's HEATRT Code [8] and the following

assumptions were made to run the code [2]:

• Baseline values of turbine cycle heat rate vary with main steam flow rate and were obtained

from the heat balances in the unit's thermal kit.

• Economizer 02, economizer exit gas temperature, and"steam temperatures vary as functions of

load.

8



• Convective pass leakage and mill exit temperature were constant.

• Unburned carbon varied as a function ofeconomizer 02.

• Forced draft fan air inlet temperature was constant and the air inlet relative humidity was 50%.

• Exhauster back pressure was constant at its design value of I" Hg.

The fourth assumption entails unburned carbon which requires a briefdescription. The

amount ofunburned carbon, also referred to as Loss On Ignition (LOI), accounts for the fuel

efficiency during boiler operation. As the amount ofeconomizer 02 is decreased, less air is

available for the combustion process, resulting in incomplete burning of fuel. The percent of

unburned carbon increases which, in turn, increases the amount of fuel required to produce a given

power output.

BOILER OPERATION AND NOx MINIMIZATION

As described in the previous section, there are several operating parameters that can be

adjusted and tuned to achieve lower NOx emissions without sacrificing unit efficiency. After

several months of parametric testing and analysis by D'Agostini et al. [2,3,4], boiler output

responses and trends to different combinations ofoperating conditions were established. This study

focused on the two load levels, (105 and 45 MW), at which Unit 4 operates most of the time; but

the entire database and analysis were important for the neural network and optimization program

development as well as for checking the validity of results.

Operating Parameters

As was mentioned in the boiler configuration section, four types ofoperator controllable

parameters were varied during the testing. Economizer 02 and burner tilt angle can be varied

directly and act as independent control parameters. However, numerous possible variations ofcoal

and air flow distributions exist and a complete coverage ofthese would require an unrealistic

amount of testing. Instead, three bias parameters were formulated to capture the effects of these

. different distributions. These discrete quantities are mill bias, P, fuel-air bias, $, ~d auxiliary air

bias, n. These represent the vertical distribution ofcoal flow, fueHur flow, and auxiliary air flow,
9



respectfully. The following derivations of these bias parameters are based on the boiler

configuration shown in Figure 2.1, and were developed by D'Agostini, et a1. [4].

Mill Bias. The vertical distribution of coal to the four elevations ofburners is specified based

on the distance to the burner above or below the point midway between the B and C burner rows

(see Figure 2.1). Coal streams entering above this centerline are deemed positive while those below

are negative. This expression is symbolically expressed as:

where

Il1c = coal mass flow rate

x = distance from injection point to furnace centerline

L = distance between furnace centerline and the top burner row

i =index denoting each mill

tot = sum ofall mills

The coal flow rate to each mill is :

me =kf·n

with

kr = feeder constant (assumed to be the same for all feeders)

n = feeder motor soeed

The ratio ofxi/L for each burner row is:

(2.2)

(2.3)

t-

Burner Row
A
B
C
D

Ratio xjIL
+1

+.1/3
-113
-I
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Substituting this infonnation and Eq. 2.3 into Eq. 2.2, the final result is:

Mill Bias: (2.4)

where: Oi = motor speed ofthe ith mill feeder (rpm)

Auxiliary Air Bias. The same methodology for the formulation of mill bias applies to the

auxiliary air bias parameter. The secondary air flows entering the furnace from each ofthe five

rows ofauxiliary air nozzles are multiplied by the distances from the nozzle locations to the burner

row centerline, which occurs at auxiliary air nozzle #5. Unfortunately, Potomac River Unit 4 has

no quantifiable measure of the air flow rate through these nozzles. The flow rate is determined by

the degree ofopenness that the damper is set at (l~ly closed, 5~ly open). The assumption was

made that the air flow rate is proportional to the degree ofopenness so that a damper set at #4 has

twice as much air flow than a damper set at #2. The distances between nozzles is normalized using:

L
x.

N= Aux.·---.!.
. I L
I

where

N = parameter given by equation 2.5

Aux = auxiliary air damper setting

i = index for each row ofauxiliary air dampers (i=1,3,5,7,9)

x = distance between the air nozzle level and furnace centerline

L = distance between the nozzle rows (not the same as for mill bias parameter)

The xjIL ratio for each nozzle row is:

II

(2.5)



Nozzle Row
1
3
5
7
9

Ratioxi/L
+2
+1
o

-1
-2

The maximum possible value for N occurs by setting nozzle rows I and 3 at position #5 and rows

7 and 9 at position #1. This results in N equal to 12 and therefore a normalization factor of 1/12.

From this, Eq. 2.5 becomes:

Expanding this summation results in the final form of the auxiliary air bias parameter:

(2.6)

Auxiliary Air Bias:
2· (Aux1 - Auxg ) +(Aux3 - Auxg )

a=
12

(2.7)

where Auxj == damper position for the ith row of auxiliary air nozzles.

Fuel Air Bias. This parameter represents the vertical distribution ofair through the fuel-air

nozzles. At different unit loads, either two, three, or four burner rows will be operational. This

value of the fuel-air to fuel flow ratio averaged over each active burner row equates to:

where

w == weighting factor

mfa == fuel air flow rate

Il1c == coal flow rate

i == index for fuel air damper rows (i==2,4,6,8)

12
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The weighting factor, Wi , is given as:

me)
Wi =-.--

me,lol

The coal flow rate is the same as for mill bias:

This reduces Eq. 2.9 to

n. n.W.=_I_= I

I Qtol n· Q avg

where:

avg = average motor speed among all operating feeders

n =the number ofoperating mills

(2.9)

(2.10)

(2.11)

The problem of direct measurement ofair flow through the fuel air nozzles exists as it also

does for the auxiliary air nozzles. The assumption was thus made that air flow through the fuel air

damper is proportional to the damper setting (degree ofopenness) multiplied by the square root of

the windbox to furnace pressure differential. This is required because the fuel air damper openings

are smaller than the auxiliary air dampers and so the air flow through the fuel air dampers is more

restricted. This makes the fuel air dampers more sensitive to the furnace back pressure, or windbox

pressure, and this effect is analagous to flow through a channel. This is symbolically stated as:

(2.12)

where: kfa = damper constant

FAi = fuel air damper position

LlPwb =windbox to furnace pressure differelltlaC("H20 )

13



Substituting Eqs. 2.9, 2.10,2.11, and 2.12 into Eq. 2.8 the expression becomes:

(2.13)

It was assumed that the ratio of the fuel air damper constant, kfa, and coal flow constant, kf, equals

a constant, K, when the fuel air bias, (~), equals unity at a reference condition. This assumption

simplifies the equation to:

To satisfy the ~= 1at a reference condition, K is:

K= Q,ef

FA ref •~dPwb,'ef

where:

Oref = 700 rpm

FAref= #3

M'wb,ref= 2.5 ("H20)

Substituting Eq. 2.15 into 2.14 and rewriting, the final form is:

(2.14)

(2.15)

Fuel Air Bias: (2.16)

where:

n = number of mills operating

M'wb = windbox to furnace differential pressure ("H20 )

FAi = position (amount dampers are open) for ith row of fuel air dampers

Qavg = the average of all mill feeder speeds in operation (rpm)

14



Note that Eq. 2.16 requires only the mill speeds and fuel air damper positions corresponding to

active burner rows.

Trends and Effects at 105 Megawatts

With the furnace operating parameters defined, the effects these parameters have on boiler

operation, NOx emission, and heat rate are now examined at the rated maximum output for

Potomac River Unit 4. At the 105 MW load, 50 parametric tests were conducted and all of the

analysis and results were summarized in [4]. The following sections highlight the key parameters

and their causal relationshios with NOx and heat rate.

Economizer Oxygen (02). The previous discussion on NOx fonnation indicated the

sensitivity ofNOx to the amount ofeconomizer, or excess, oxygen present for combustion,

especially at high temperatures. A strong linearly increasing dependence of NOx on economizer

oxygen is seen in Figure 2.2. It is readily apparent that to maintain a NOx emission level ofOAO

(lb./MBtu), economizer oxygen cannot be greater than two percent. However, a reduced level of

oxygen for combustion results in more incomplete burning ofcoal particles, higher CO emissions,

and waterwall tube wastage. The effect ofeconomizer oxygen on unit heat rate, as determined by

the HEATRT code, is shown in Figure 2.3. The scatter in the heat rate data is relatively large, thus

making it difficult to establish any trends within the data.

Burner Tilt Angle The burner tilt angle directly affects the air/fuel mixing pattern and

fireball location within the furnace. Poor mixing results in incomplete burning and the fireball

location dictates steam temperatures (and thus heat rate), residence time, and the creation of

thermal NOx. Figure 2.4 demonstrates this tradeoff by the parabolic shape ofthe NOx vs. tilt

angle relation. A minimum NOx occurs around the +5 0 to +100 burner tilt range. Figures 2.5 and

2.6 show that economizer 02 and burner tilt are relatively independent ofeach other in their effects

on NOx. A negative burner tilt angle lowers the fireball within the furnace, but it does not cause a

15
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on NOx. A negative burner tilt angle lowers the fireball within the furnace, but it does not cause a

significant change in NOx. But as seen in Figure 2.7, negative tilts cause the main steam

temperature (and also hot reheat) to drop below the temperature set points for the drum boiler

design. This causes heat rate to increase, and therefore, the best operating region for burner tilt

angle is between +5 and +10 degrees above the horizontal.

Mill Biasing. At Potomac River Unit 4, full load operation requires all four mills to be

running near or at their maximum coal loading capacity. The quality ofthe coal strongly influences

whether any mill biasing can occur. High moisture or ash content along with a low higher heating

value reduces the possibility of biasing the mills. However, ifthese factors do not apply, then NOx

reductions up to 0.03 (lb./MBtu) can be achieved. Mill biasing entails reducing coal flow to burner

row A, located at the top ofthe furnace, while the other mills remain fully loaded. One caveat of

this technique is that more stringent fuel requirements would be needed which could negatively

affect the utility's fuel costs.

Auxiliary Air Biasing. An effect called overfire air is lmown to decrease NOx emission during

normal boiler operation. Overfire air is achieved by keeping the upper rows ofauxiliary air

dampers (#'s 1,3, and 5) more open than the #7 and #9 dampers. The greater the bias value, the

more air enters the furnace around the upper burner rows which creates a staged combustion effect.

Only two test sequences were conducted at 105 MW that isolated the air bias effect and they are

plotted in Figure 2.8. The majority of the tests were conducted at auxiliary air biases greater than

0.5 where no change was readily seen. More data on auxiliary air biasing are needed at full load to

firmly establish the relationship between this parameter and NOx.

Fuel Air Biasing. Fuel air damper biasing was tested only in a limited way at full load. In all

tests, all four dampers were changed uniformly betvv'een the #5 position and the #3 position.
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Closing the dampers any further was deemed too dangerous by the plant engineers. In addition, no

tests were run in which the damper positions were varied with respect to the others. No observable

impact on NOx due to the systematic changes in the fuel-air damper settings was observed during

testing. As with auxiliary air biasing, more testing is required to fully understand the causal

relationship between fuel-air biasing and the formation of NOx.

Trends and Effects at 45 Megawatts

The second most important load range for Potomac River Unit 4 operation is 35 MW to 50

MW. Testing at 45 MW was the most extensively conducted at this lower range and it provided

valuable insight for low NOx operation and heat rate. Only two mills are needed at 45 MW, thus

much greater flexibility in mill biasing occurs at this load level. The main challenge was to

determine the combination ofmills which provided low NOx emissions and sufficiently high levels

ofmain and hot reheat steam temperatures. A total of60 test points was gathered during testing at

45 MW, but heat rate was calculated for only 17 ofthese tests.

Economizer 02. As seen previously at the maximum load range, economizer oxygen has a

strong, linear effect on NOx production at 45 MW. Figure 2.9 details this trend, although with a

large amount of scatter within the data. These data incorporate two different mill loading

strategies, and when segregated the effect of mill loading on NOx becomes obvious. Figure 2.10

shows that using the two middle burner rows and the B and C coal feeders causes lower NOx

emissions. Unlike full load operation, economizer oxygen cannot be less than four percent due to

poor flame stability.

Burner Tilt Angle. Figure 2.11 shows the effect ofbumer tilt angle on NOx for two different

combinations ofmills. The results show that burner tilt angle has an effect upon NOx emissions at

45 MW that is similar to the full load behavior. The overall optimal tilt angle range is from 0° to
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+I0° above the horizontal. Additional factors that affect NOx formation which are not specified in

this graph are the degree of boiler cleanliness and secondary air distribution.

Mill Biasing. The three different mill loading schemes that were tested incorporated two

and three mill operation. The two mill operation had the B and C mills feeding the center two

burner rows. Mills A, B, and C or mills B, C, and D comprised three mill operation at 45 MW.

The third ofthese mill biasing schemes resulted in extremely low steam temperatures on the first

test and further testing/operation at this mill configuration was eliminated. Almost 72% ofthe

testing was conducted with two mills in operation with the remainder using the A, B, and C mill

loading configuration. No other two-mill combinations were tested, although this type oftesting is

needed to account for situations where either of the two middle mills becomes unserviceable.

Although two mill operation does not allow for much biasing between the two mills due to the fuel

demand required by the furnace, Figure 2.12 demonstrates that the lowest NOx levels were

achieved when using only the two center burner rows.

Auxiliary Air Biasing. The role of the auxiliary air damper bias at 45 MW is slightly different

than at higher loads. An increase in the damper bias causes more air to enter the upper levels of the

windbox, thus increasing the separation offuel and air in the furnace. As more air was introduced

around the top row of burners (increasing a.), the NOx level decreased regardless of the other

operating conditions. This trend is detailed in Figure 2.13.

Fuel Air Biasing. At lower loads, the fireball intensity is much less than at higher load

levels. This allows for more local effects around the burners to impact upon the creation ofNOx.

The fuel-air bias becomes more important at lower loads because ofthese local effects. Figure 2.14

shows that as the fuel air bias parameter, ~, decreases, NOx decreases.
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OBSTACLES TO OPTIMIZATION

A primary obstacle in reducing NOx emissions while maintaining acceptable heat rate

values is that these two parameters are inversely related. Simply stated, a low heat rate operating

mode results in higher NOx emissions and as boiler parameters are adjusted to lower NOx, heat

rate increases. The causes and effects of this behavior are reviewed in this section. "

NOx and Unit Heat Rate Interaction

Full load, low NOx furnace operation impacts unit performance through its effects on

unburned carbon (also referred to as loss-on-ignition, or LOI), sensible enthalpy loss out ofthe

stack, and steam temperatures. LOI and enthalpy loss are directly affected by the amount of

oxygen present in the boiler. Data collected during testing indicated that a minimum heat rate

occurs at 2.6% cconomizer 02 but it is not very scnsitive to changcs in oxygen levels bctwecn 2%

and 3%. Howevcr, sharp increascs in LOI and stack losses occur at oxygcn lcvels below 2%, along

with decreased steam temperatures resulting in higher hcat rate values. Increascd LOI reflects poor

combustion which can cause high rates ofwaterwall tube wastage, an increased risk of fires in ash

hoppers, and poor electrostatic precipitator performance [41. As the unit heat rate increased at

lower 02 levels, the NOx emission levels decreased. This decrease in NOx is linear with respcct to

economizer oxygen, as described earlier, therefore, the lower the 02, the easier it is to comply with

NOx emission regulations. Steam temperatures are the controlling factor with unit hcat rate at

Potomac River, with the burner tilt angle and mill loading patterns having thc largest impact on

steam temperatures. Higher steam temperaturcs are achieved by raising the tilt angle high above

the horizontal, but NOx levels rise as well when the tilt goes above +10° and below0°.

At 45 MW operation,. the economizcr oxygen level is sufficiently high so LOI was never

greater than six percent during testing. Steam temperatures again dictated the unit's heat rate

performance and therefore, the burner tilt angle played a greater role in the heat rate values

generated. The distribution ofsccondary air became important at the lower load levels and two
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modes of low NOx operation were identified. The first was relatively low burner tilt angle with a

small degree ofoverfire air (a). The second mode involved raising the burner tilt angle and

increasing the overfire air (increasing a). Both methods achieved low NOx compliance but the

latter method resulted in better unit thermal performance [4].

Boiler Cleanliness

One parameter that was present in all tests but is not adequately accounted for is boiler

cleanliness. As combustion continues over a period oftime, residual particulate matter adheres to

the waterwall tubes ofthe boiler, causing deposits of slag. The amount and distribution of slag is

dependent upon the type ofcoal, boiler design, and the operating conditions during the combustion

process. The boiler is cleaned of slag by blowing high pressure air or steam through certain

sections ofthe boiler (soot blowing) at various times during operation.

As slagging occurs, NOx emissions increases due to the reduced radiative heat transfer

from the fireball to the waterwall tubes, causing the flame temperature to rise which creates more

thermal NOx. This makes NOx compliance difficult to achieve and maintain at higher loads where

furnace gas temperatures are already in the 1600-l800oK range. For this reason, slagging is an

important consideration for long term operation. The effect of slagging on unit heat rate is more

complex. Boiler type is a critical factor, such as whether the boiler is a drum or supercritical

design.

Observations made at Potomac River Unit 4 indicate that as slagging increases, steam

temperatures rise along with NOx. Scatter that appeared in the data for certain parameters is

attributed to the amount of slag present in the boiler and its effect on steam temperatures rather

than to any systematic variation in controllable parameters. This is illustrated in Figure 2.15 where

at low NOx conditions, heat rate has a high degree ofscatter with little or no change in controllable

parameters. Slagging effects were not incorporated into this study and research on quantifying and

modeling the buildup of slag within utility boilers is currently being conducted. Once slagging and
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its effects are properly understood, its properties will greatly clarifY the NOx/heat rate optimization

process resulting in a much improved predictive models.

The NOx vs. Heat Rate Optimization Problem

As mentioned previously, at Potomac River Unit 4, it is easier to achieve compliance with

Title IV ofthe Clean Air Act at lower loads because of the greater flexibility in operation. The full

load case is the most difficult to achieve the regulatory 0.38 (lb./MBtu) NOx emissions rate

without substantial heat rate penalties. In order to meet the regulations, unit operations will need to

be optimized over the entire load range and during load transitions.

As the data in this section show, finding the best set ofoperating conditions is not easily

accomplished. The methods used by D'Agostini et al. [4] included parametric tests, data collection,

and statistical analysis to find the best operating conditions. The statistical analysis is very time

consuming as different non-linear functions must be tested to find a mathematical model that

predicts NOx emissions at different load levels. Table 2.1 details the results of the work done by

D'Agostini et al. for the 105 MW and 45 MW load levels. Table 2.2 lists the resulting correlations

for NOx for both load levels. This analysis did not consider heat rate and therefore additional

testing would be required to improve heat rate within the low NOx operating spectnun.

Additionally, if any substantial changes are made to the boiler hardware, the entire process must be

repeated.

Table 2.1

Low-NOx Operating Parameters for 105 MWand 45 MW

Parameter
Economizer 02 (%)
Burner Tilt Angle (degrees)
Mills in Operation
Coal Loading to Mills
Auxiliary Air Dampers (#1-9)
Fuel-Air Dampers (#2-8)
Ex ected NOx (lb./MBtu)

LowN0x45 MW
5.0
19.0

BandC
Even Loading

4, 3, 2, 1, I (Bias = 0.667)
1,2,2, 1

0.35

35

Low-NOx 105 MW
1.6
7.0

A, B, C, andD
Even Loading

4, 4, 2, 2, 2 (Bias = 0.50)
4,4,4,4

0.39



Potomac River needs to reach NOx compliance by the CAAA Phase I deadline of January

1995. Their options are either to install costly low NOx burners or to use boiler tuning and

advanced control methods to achieve their goals. They have opted for the boiler tuning method and

the Energy Research Center is advancing this approach by designing, testing, and implementing a

boiler tuning and optimization software package. The software will use a combination ofexpert

system and neural network artificial intelligence methods. This thesis details the development of the

neural network and optimization portion ofthis study. An outline of the solution process follows,

and subsequent chapters detail the fundamental parts of the study. Finally, the actual design,

testing, and analysis of this neural network optimization approach is discussed along with

recommendations for future use and improvements.

Table 2.2

Summary of NOx Correlations for 105 MW and 45 MW

Parameter Symbol Units

Economizer Oxygen Level 02 %
Burner Tilt Angle 8 degrees
Mill Bias p None
Auxiliary Air Bias a. None
Fuel Air Bias None

Unit Load

45MW

105MW

NOx Correlation (Ib./MBtu)

NOx = 0.416+(0.00732*022)+(0.679*a.*P)-(0 .0642*02)
(0.000104*82)+(0.870*p2)_(0.236*a.)+(0.1403*~)+

(0.001920*8*07.)

NOx = 0.182+(0.128*02)+(3.44x 10-4*82)-(0.00653*8)+

(0.00192*°2*8)

36

Std. Error

0.027

0.015



OVERVIEW OF THE SOFTWARE SOLUTION

The need for a fast and accurate method to achieve CAAA compliance during on line

operation is obvious. The correlations in Table 2.2, however, require many hours of statistical trial

and error curve fitting to find a model with a reasonable standard error. A solution to this dilemma

involves the use of artificial intelligence in the form of neural networks to learn the boiler operating

characteristics. Once the boiler model is derived, mathematical optimization can be applied to the

resulting equations from the neural network model. This method is much faster than statistical

~ys\s and the entire operation can occur without user interaction. This approach is one part of

an oveJill NOx and performance software program being designed by the Lehigh University

Energy Research Center (ERe). The other main component was an expert system. A brief

overview ofthe software follows, along with a description of how the expert system and the neural

network/optimization algorithms interact.

Two situations are of concern to the power plant engineer. The first arises when something

within the boiler causes the NOx emissions to increase substantially. Such an event might be

caused by a mechanical malfunction, a drift in instrument calibration, a change in coal quality, or a

change in the control settings. When this occurs, someone at the plant will need to determine the

reason for the increase in NOx so that corrective measures can be undertaken. The second occurs

when substantial operating or boiler hardware changes occur and the boiler must be retuned back

to a low NOx operating region. This thesis deals primarily with the second scenario although some

references to the first are inferred.

With the approach developed by the ERC, when a boiler must be retuned, the plant

engineers and operators follow a test plan dictated by the expert system. Similar to a doctor asking

a patient questions about certain symptoms in determining an illness, the expert system algorithm

steps through the details of how a system is operating and what the system responses are to certain

changes in operating conditions. For Potomac River, each change in operating parameters and the

system response is stored as input for the neural network. After all tests are complete, the neural
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network learns the inter-relations of the input parameters to the system response. After sufficient

time, the neural network can predict the system response to arbitrary inputs within a very small

standard error tolerance. How the neural network accomplishes this task is detailed in Chapter 3.

After learning and deducing a final model for the new boiler operation, the equations

generated by the neural networks are passed into a computerized optimization routine. Here the

equations undergo a minimization technique (covered in Chapter 4) to find the best heat rate that

the boiler can attain while stilI in compliance with NOx emissions. These results are passed back to

the user as guidance for how the boiler parameters can be set for 10w-NOx operation. What it is

the user wants to optimize and how many parameters are to be varied dictate the amount oftime

required to gather the data for training and optimizing the neural network. Data requirements and

expert system interaction are described in Chapter 3. The simplified flow chart in Figure 2.16

shows the progression of how this method achieves its goal ofNOx compliance without substantial

losses in unit heat rate.
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Expert System guides user through
aseries of tests to determine
boiler response to operating
conditions.

\ 11
Each test with operating conditions
and subsequent NOx and heat rate
response is archived in adata file.

\V
Data are used to train and optimize
the performance of aneural
network to create amodel of boiler
operation.

\1/
Equations derived by the neural
network during training are passed
to amathematical optimization
routine which minimizes heat rate
subject to low NOx emissions levels.

\11
Final boiler settings and resulting
NOx and unit heat rate values are
passed back to user.

Figure (2.16)

Flowchart of NOx Control Software Operation
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CHAPTER 3

NEURAL NETWORKS AND BACKPROPAGATION

Neural networks are a form of artificial intelligence that attempt to model the functional

capabilities ofthe human brain. The ability to process and respond to millions ofdifferent types of

data simultaneously makes the brain a benchmark for computational sciences. When broken down

to its simplest form, the human brain and nervous system are merely a mass of cellular units called

neurons. Each neuron is a microprocessor which receives and combines input signals from other

neurons through its dendrites. If the combined signal is strong enough, the neuron will activate and

fire an output response signal to other neurons via the axon. The response signal is a measurable

small electrical impulse generated by chemical reactions within the neuron and its strength depends

upon the input signals. If the same combination of input signals is received over a period oftime,

the same response will occur and this comprises learning and memory. By combining the actions of

several neurons together, exponential gains in processing and learning input data can occur, even

without prior knowledge ofwhat the data are or represent. This is the inherent power ofmodeling

the human brain, composed of millions ofdensely packed neurons, into a computer processing

methodology.

DEVELOPMENT AND ApPLICATIONS OF NEURAL NETWORKS

Warren McCullough and Walter Pitts initiated the rcalm ofartificial intelligence with the

watershed paper "A Logical Calculus ofideas Imminent in Nervous Activity" in 1943. This

sp.awned the development ofexpert systems and neural networks. Several attempts to recreate the

function of the human brain evolved through the 1950s and 1960s, each achieved notoriety but still

had some form ofcomputational shortcoming. Research centered around the artificial neuron's

structure, learning process, and ability to deal with noisy input data. In 1982, after a lengthy lull in

research funding and efforts, John Hopfield designed amodel comprised of several interconnected
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processing clements (artificial neurons) that sought an energy minimum in response to input data.

The model represented neuron function as a thresholding operation and neuron memory as

infonnation stored in the interconnections between the artificial neurons. The model's success

spurred new efforts in neural network research. Currently there are dozens ofderivatives of

Hopfield's model and as many learning paradigms, each with particular real world applications.

Some ofthe applications are: language processing, data compression, image and character

recognition, combinatorial problems, pattern recognition, financial and economic modeling,

functional synthesis, and signal processing. The last item is of interest to the boiler tuning problem

as prediction, system modeling, and noise filtering are subsets of this group.

The foremost difference between neural networks and traditional computing is the neural

network's ability to learn by example. Rather than search for a mathematical function that fits the

underlying relations within a set of data, neural networks generate their own functions by

processing data samples. No physical characteristics of the data are required, just objective

numerical or visual data. Neural networks require little human expertise; the same'type of neural

network algorithm will work for many different systems. The network, comprised of processing

clements that are interconnected, similar to biological neurons intercolmected by axons, is shown a

set of inputs and the known output response to those inputs. The importance, or "weight", of these

connections are changed as the network is presented more data samples. The amount of change to

the connection weight is governed by the difference between the network-predicted response and the

known output response. This difference is processed by a "learning rule" which makes an

adjustment to all of the connection weights within the network. The change in the weight values is

such that the next time that particular set of data is shown to the network, the predicted response is

closer to the known response. As the network is continually shown these examples, it configures

itself to achieve a desired input to output mapping that incorporates all of the data samples

presented to it.
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Neural networks also outperfonn traditional computing methods in the way they store

information about the network model's response to inputs and outputs. Neural networks use

distributed associative memory found in the processing element connection wcights. The value of

the weights quantifY the network's current state of knowledge. An item ofknowledge, represented

by a learning example, is shared across all connection weights along with the knowledge acquired

from previous learning. This method of knowledge retention allows the network to respond to an

example it has nevcr seen through generalizing the knowledge it has accumulated previously. Once

a network has been trained, it can be used to simulate the actual system; that is, for any set of

inputs, it can produce a set of outputs similar to those that the actual system would have produced.

Neural networks do not require outside rules or expertise as in a rule-based expert system.

Under certain output conditions, expert systems may have an overwhelming number of underlying

rules to distinguish system behavior. Furthennore, where an expert can be diverted from proper

analysis by noise in the data being analyzed, a neural network is less subject to such behavior.

Finally, whereas traditional computing systems are rendered useless by any type of memory loss,

neural networks are fault tolerant. For example, if an input signal fails or is registering noisy data,

the neural network can continue operation, albeit not as effectively. This is because not all of that

input's data response is stored in one location but rather across several in lesser magnitude. Such

graceful degradation ofperfonnance is optimal for on-line, real world applications where input

signals can malfunction and sudden shutdown of the model is cataclysmic /20].

BACKPROPAGATION: FUNDAMENTAL EQUATIONS AND OPERATION

A backpropagation network is named for the means by which it accounts for errors

betwcen thc network's prcdicted output valuc(s) and thc actual known output valuc(s). It is within

the family offeed-fonvard networks which..havc_the following operating charactcristics: I) data is

read into an input layer; 2) these data are proccssed,through a single or a series (up to three) of

middle layers called hidden layers; 3) an output layer uses the inforination passed into it to predict
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what the output response to the inputs should be. A backpropagation network assumes that all

processing elements are somewhat to blame for an erroneous response and this error is spread

evenly, or propagated, back through the network from the output layer to the input layer.

The type ofbackpropagation model used in this study, and the most typical, consists of

three fully interconnected layers. These layers are composed of processing elements, called nodes,

which perform the mathematical functions that result in an output prediction. The input layer is

primarily for feeding the data into the hidden layer and has one node for each input into the

network. The hidden layer can be comprised ofany number of nodes and therefore computational

experiments must be conducted to find the optimal number of nodes for the hidden layer. It is the

hidden layer that provides the network with the capability to analyze non-linear function mappings.

If the input layer were connected directly to the output layer then only linear relationships between

input values and subsequent output values would be determined. In some instances this is all that a

problem requires. Figure 3.1 details a typical backpropagation network similar to the ones used in

this study.

Output Layer

Hidden Layer

Input Layer • • • •
Figure 3.1

Typical Backpropagation Network Architecture
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To understand how the neural network learns the relationships between a system's inputs

and corresponding outputs, the transfer ofnumerical infonnation between the network processing

elements (PEs) must be understOod. A backpropagation network PE transfers its input as:

(3.1)

and

(3.2)

where: Xj[s] = the current output value ofthe jth neuron in the current layer [s]

Ij[s1= the summation ofweighted inputs to the jth neuron in layer [s]

wjj[sl = the connection weight to the jth neuron in layer [s] from the ith neuron in the
previous [s- I] layer

f = the transfer function which scales the value of Ij[s] to keep it proportional to the
other PE output values

To fully understand these equations, a closer look at a typical processing element (PE) is required

and Figure 3.2 provides this detail.

X1 X2 X3

Figure 3.2

[5-1]

Xn

Typical Processing Element (PE)
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Referencing Figure 3.1, an input data vector, !. is introduced at the input layer of the

network and the desired (actual) output vector,!! is supplied by the user. These vectors are

composed of input and k output data components which represent a single data point from a set of

parametric data. Let!! denote the predicted output vector produced by the network with its current

set of weights. For each output layer processing element (PE), there is a difference between the

predicted output value (0) and the known, actual output value (d). This difference for each output

PE is called a local error. The sum of all of these output PE local errors represents the total error

present within the output layer. This total error ofthe neural network is termed the global error, E.

This global error for the output layer is mathematically defined by different differentiable functions

which are discussed later in this chapter. For now, the global errorfunction is assumed to be:

E =1/2*L: ((dk- Ok)2)
k

where: dk = the desired, or actual, output value for the kth output PE

Oic = the observed, or predicted, output value for the kth output PE

This is the standard error function and is quite common to backpropagation neural

(3.3)

networks. Therefore, the local errors of the output PEs must be minimized to minimize the global

error. The fastest means to accomplish this is by applying a negative gradient to the global error:

[s] 8Ee. =---
I 81 [s)

J

(3.4)

where: epl = the current local error at jth PE within the current [s] layer

aIpl =!he partial derivative ofthe sum ofthe product of the inputs and connection
weights entering the current [s] layer (Eq. 3.2 and Fig. 3.2»

By minimizing the local error at each of the output PEs, the global error for the output

layer, and thus the network, is minimized. To minimize the local error of the output PEs, the local
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error of all preceding PEs within the hidden layer(s) must be minimized as well. The only way to

minimize all of these loeal errors is to change, or update, the variable connection weights between

these PEs. This is a fundamental concept ofbackpropagation.

A network has a global error comprised of local errors within the output layer. To

minimize the output local errors, the preceding hidden PE local errors must be minimized. Thus,

the global error is split among the output PEs which, in turn, is split among the PEs of the hidden

layer(s), each in succession from the output layer to the input layer. This is how the current global

error is propagated back through the network in discrete values oflocal errors. These local errors

are reduced only by the updating (changing) ofthe connection weights, so backpropagation simply

stands for connection weight updating. Over the course oftraining, these weights are changed such

that the local errors decrease for all PEs which causes the global error to decrease. This

exemplifies the neural network learning process.

The question of how the local error is minimized at the hidden layer PEs still remains. The

network layer notation in Figure 3. I shows that the current layer being examined is defined as [s].

The layers above and below this layer are denoted as Is+1] and [s-1I, respectively. The input layer

is always the bottom layer and therefore it can have no Is-I] layer beneath it. Conversely, the

output layer is always the final layer and cannot have an [s+ I] layer above it. If a network has two

hidden layers and the first of those layers is being examined, it is the [sJ layer. The input layer

would be the [s-I] layer and the second hidden layer would be the [s+ I] layer. The same logic

applies to using the second hidden layer as the Is] layer. The output layer is the [s+ I] layer and the

first hidden layer is the [s-I] layer.

The first step to minimizing the network global error is to calculate the output layer PE

local errors. Starting with Eq. 3.4, each output PE's local error is found by:
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(3.5)

where: k = the output layer PE index

dk = the desired (actual) output valuc

~ = the observed (predicted) output value

Ik = the summed products of inputs and connection weights (Eq. 3.2)

The f is the derivative of the transfer function which scales the local error at the kth PE in

the output layer so that all local errors within the output layer stay proportional to one another.

These transfer functions are detailed later in this chapter.

Next, the hidden layer PE local errors must be calculated. Substituting Egs. 3.2 and 3.3

into Eq. 3.4 and applying the chain rule twice, the general mathematical form for calculating local

errors at any ofthe hidden layer PEs is:

e/5
] = f'(1/5])*L (ek[5+1] *W k/

5
+
1
])

k
(3.6)

where: ep] = the local error of the jth PE in layer [s]

IpJ = the sum ofthe weighted inputs into the jth PE in layer [s] (Eq, 3.2)

~[s+ 1] = the local error values of the PEs in the above [s+1] layer

Wkj [s+ IJ= the connection weights to the kth PE in layer [s+ I] from the jth PE in layer [s]

The reader is reminded that this equation is applied from the output layer down towards

the input layer. The hidden layer irnnlediately below the output layer has its PE local errors

calculated next, using the output layer local errors and connection weights. This continues until the

hidden layer immediately above the input layer has its PE local errors calculated last. In this

instance, the f is the derivative of the transfer function which scales the local error at the jth PE in

the current [s] layer so that all local errors within the [s] layer stay proportional to one another.
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With the local errors for all of the PEs above the input layer calculated, the next step is to

change the connection weights entering each PE so as to reduce the amount of local error for that

PE. The input data components are constant and since each subsequent layer's input is dependent

upon the previous layer's output, the only variable to adjust is the connection weight. Given a

current set of network weights, WiP), the network training algorithm must know whether to

increase or decrease the weight values in order to decrease the local error. This is accomplished by

using:

[5] [ O'E )!!,.w ji = -Icoef* [5]
O'W ji

(3.7)

where: Wji = the connection weight to the jth PE in layer [s1from the ith PE in layer [s-11

lcoef= a user-defined, scalar learning coefficient which is detailed later in this chapter

Basically, the backpropagation algorithm changes each weight according to the magnitude

and direction ofthe negative gradient on the global error surface. The partial derivative of the

global error with respect to any connection weight within the network is found by:

O'E [O'E ) [ 0'1 [5] )

O'w ..[S] = 0'1.[5] * O'~ .. [S]
JI J JI

(3.8)

This is merely the product of the local error equation, Eq. 3.4, and partial change to the ith PE

input (Eq. 3.2) to the jth PE in layer [sIwith respect to the connection weight. Rewriting this in

simpler notation:

0'E [5] [5-1]

O'w ..[S) = -e j *Xi
JI

where Xj[s-IJ = the input from the ith PE in the [s-I] layer below the current [s] layer

Combining Eqs. 3.7 and 3.9, the weight update is mathematically defined as:
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(3.10)

Therefore, the amount of change for any connection weight entering the jth PE in layer [s]

is simply the product ofthat PE's local error, the input value from the ith PE in the [s-lJlayer

below it, and a constant learning coefficient that scales the magnitude ofchange so as to keep all

connection weight changes proportional. Each time a new data vector is presented to the network,

the backpropagation algorithm calculates the change in each of the connection weights. This

change is added to the current weight value to reduce each PE's local error in an effort to minimize

the network global error. This is how the neural network learns the numerical relationships between

a system's causal inputs and corresponding outputs.

Before discussing the various user-dctermined components of the backpropagation neural

network, a short summary ofthe algorithm is provided. Given an input vector, 1, and a desired

output vector, g, the following steps occur:

1. Present 1to the input layer of the network and propagate it through to the output layer to

obtain an output vector, Q. As this infonnation propagates through the network it will also

set all of the summed inputs, Ij and output states Xj for each processing element in the

network.

2. For each processing element in the output layer, calculate the scaled local error as given

in (3.5) and calculate the change in weight using (3.10).

3. For each layer, [s], starting at the layer below the output layer and ending above the

input layer (or simply the hidden layer ifonly one hidden layer is used), and for each node

within the layer, Is], calculate the scaled local error as given in (3.6) and then calculate the

change in weight as determined by (3.10).

4. Update all weights in the network by adding the current weight changes to the

corrcspo~ding previous weights.
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This process is repeated for every input/output data vector supplied by the user and this is

how the neural network learns the interrelationships between the input and the output values. This

methodology is tailored to any specific problem or system being modeled by using the following

neural network operational considerations.

OPERATIONAL CONSIDERATIONS FOR THE BACKPROPAGATION NETWORK

As described in Chapter 2, a neural network software package, NeuralWare Explorer, was

used in this study. There are several parameters that can be selected within the software that

control the learning process for the backpropagation network. Although the complete list is rather

extensive, only the fundamental parameters that were central to the development of the current

boiler model will be discussed. A briefdescription of what each parameter does within the network

and under what conditions it would be used is provided along with its mathematical definition.

Learning Coefficient (Rates)

Used earlier in the error backpropagation equations (lcoef), this value controls the step size

for changing the connection weights after processing the data vector. If this value is too large, the

network error may diverge and increase. If too small, the network error will take too long to

converge to within the set tolera.nce:-A "rule-of-thumb" is that the learning rate should be between

zero and one, and the hidden layer should have a learning rate twice that of the output layer 1141.

Optirnallearning rates, which result in maximum network performance, cause the network to have

a smoothly decaying output error function. Furthermore, the connection weights for each layer

must change from their initial values to optimal values in an even and orderly fashion. If the

weights for one layer increase faster than another layer, the network assumes a fixed state and will

not achieve its optimal condition from the learning process. Either problem can be alleviated by

proportionally decreasing the learning coefficient values for all layers, obtaining data that are more

random for the training set, or checking the scaling of the input values. This remedy was based on

thousands oftests conducted by the creators of the neural network software used in this study [141.
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Momentum Term

When using a gradient descent algorithm, the learning coefficient controls how fast

learning will occur. To prevent excessive learning time due to a small learning coefficient, a

momentum term, n, is introduced to decrease learning time without the risk ofdivergence.

Equation (3.10) is modified so that a portion of the previous weight change is fed through to the

current weight change via:

(3.11)

This momentum term causes general trends to be reinforced and oscillatory behavior to be

dampened out. This allows for faster learning with a low learning coefficient by forcing the

network out oflocal minima, without causing extreme changes in the weight updates. The

momentum term is usually larger than the respective layer learning rate, but the proportionality

rules regarding increasing and decreasing their values are the same as the learning coefficients.

Cumulative Weight Updates

Another method employed to decrease learning time is to update the connection weights

only after a set number of data vector presentations. This is referred to as cumulative

backpropagation since the weight changes are accumulated until a certain number ofdata vectors

is presented. This given number of presentations is referred to as the epoch size and can correspond

to either one vector (incrcmentallearning), all vcetors within the data set (batch learning), or any

number in between. In general, the epoch size should be set to accommodate a batch of training

examples large enough to represent the input data population 116]. Ultimately, once the best epoch

size is determined, it represents the fundamental "frequency" of certain dominant components ofthe

underlying noise. The epoch size can also be considered as a composite error function rather than

individual pattern dependent error functions. A composite error funetion is the sum of individual

error functions; consequently its partial derivative with respect to any connection weight is the sum
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of the partial derivatives of the corresponding individual error functions. The weight changes are

dictated by this partial derivative so accumulating the delta weights over the entire sct of data

pattem~ is the same as using baekpropagation with a composite error function.

If the epoch size is not too large, cumulative weight updates lead to faster convergence

than individual updates which reduce the error function only for a particular data vector. The

incremental update method may increase other component error functions whereas a global update

will always work towards reducing the overall error function. Unfortunately, when using a

cumulative approach to weight updates, many more calculations are required to achieve a single

update and the benefit of using an overall error function may bc lost if the epoch is too large.

Error Functions

The error function used in (3.3) is proportional to the square of the Euclidean distance

between the desired output and the actual predicted output for a particular set of inputs. Any error

function whose derivatives can be calculated at the output layer can be substituted for this standard

error function. The two other common error functions for baekpropagation are:

Cubic Error:

and

Quadratie Error:

(3.12)

(3.13)

These reduce to local errors of:
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Transfer Functions

The transfer function perfonns a given mathematical operation on the summed products of

connection weights and input values entering the processing element as scen in Figure (3.2). Any

smooth and differentiable function can be used as a transfer function. The best functions provide a

filtering effect on the data being passed through it by limiting the range of possible output

.responses. The choice of the transfer function is determined by the nature of the data and what the

network is trying to learn. A transfer function is applied at each hidden layer and at the output

layer. All nodes within any given layer have the same transfer function. The most common transfer

functions of backpropagation are:

Sigmoid:

Hyperbolic Tangent:

Sine:

Linear:

f(Z)=_1_
1+e-z

f( z) =sin( z)

f(z) =z

(3.16)

(3.17)

(3.18)

(3.19)

The reader is reminded that: Z = (It]), as depicted in Figure 3.2 and Eq. 3.2.

The sigmoid generates a smooth version of a step function betwccn zero and one while the

hyperbolic tangent is a bipolar version of the sigmoid with a range of(-I,+I). If the problem at

hand is learning "average" system behavior, the sigmoid transfer is best. If finding system

deviations from average behavior is desired, then the Tanh is the better choice. The sine function

gives a smooth oscillation between -1 and +1 instead of a step function but its use requires

knowledge about underlying relationships within the data. The derivatives ofthese functions are

easily calculated and the resulting error propagation equations that result are:
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Sigmoid:

Tanh:

Sine:

Linear:

e.rS1 =x[SJ*(1 O_X[SI)*~(e [S+1]*W .rS'1])
J J • J L"k kJ

k

et1= (1.0 +xt1)*(1.0 - X/S1 )*I(ek
lS'1] *W~t+11)

k

etl =COS(ltJ)*I(ek[S,11*Wk/S+1])
k

(3.20)

(3.21)

(3.22)

(3.23)

The linear transfer is used primarily for the scaling of output layer PEs. Ifthe neural

network being used contains hidden layers, the linear transfer function is rarely used to scale the

output ofthe hidden PEs. This is because the use ofa linear transfer annuls the non-linear benefits

of using a hidden layer. Unless the network has no hidden layers and a purely linear relation

between inputs and outputs exists, then the linear transfer function is applied outside of the output

PE layer.

The learning procedure which uses Sigmoid or Tanh transfer functions can be thought of

as synthesizing a continuous function y = g(x), by showing it a discrete set of C!, y) pairs. After

being trained on data vectors in this form, when the network is presented a previously unseen

pattern it will perform a non-linear interpolation and produce a reasonable function value. In the

case of using a sine function, the learning procedure seems to perform a mode decomposition such

that it finds the important frequency components of the function described by the inputs and

outputs. This underlying mode decomposition has been termed a "Generalized Fourier Analysis"

[10]. The best first choice, for backpropagation, is the Tanh transfer function. 114].
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Learning Rule

Learning is the process of changing the connection weights to achieve desired responses to

input data. The learning rule for each layer in the network applies to all nodes within that layer.

The learning rules available for backpropagation networks are as follows:

Delta Rule. The error between the actual and predicted output is transfonned by the derivative

of the transfer function. The actual weight update equations for this rule are:

I

Wij =Wjj+C1*ej*xij+C2*mjj and

where: C1= learning coefficient

C2 = momentum coefficient

w'= the updated weight vector fromjth input to the ith node in the layer

x = inputs to the connection of the jth input to the ith node in the layer

m = the memory ofthe last change in weight value

m'= the difference between the old weight and the updated weight

(3.24)

The weights are changed in proportion to the error (e), and the input to that connection (x)

while the momentum tenn is used to smooth out the weight changes to prevent large oscillations. If

the training data arc very ordered or structured, then the delta rule is not a good choice as it will

lead to difficulties in achieving convergence.

Cumulative Delta Rule. Working with epoch sizes greater than one requires accumulated

weight changes which are applied all at once. This learning rule accumulates weight changes over

several examples and works well when the data are very structured and/or ordered. However, this

technique has difficulty linking the learning coefficient which is caiculated by dividing the learning

coefficient by the square root of the epoch size. Ifdata are noisy, then the epoch size must be

tuned, but for a first guess, an epoch of 16 is suggested [14].
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Summation Functions

Two general summations are prevalent in neural networks, the sum and the cumulative

sum. A normalized cumulative sum exists but there are very few applications that require its usc.

Sum. This is the standard summation of the products ofconnection weights and

processing clement input values represented as:

Ij=LWjj*X j (3.25)
j

Cumulative Sum. The cumulative sum ofthe effective inputs is added to the prior sum of

these inputs. This is symbolically written as:

Ij = Ijo1d +LWjj*X j
j

SUMMARY

(3.26)

The parameters reviewed above are the ones typically used. There are many additional

techniques that can be applied to the backpropagation paradigm to fine-tunc the network operation.

However, as the study was conducted the functions described above were found to have the most

impact on nctwork performance.

Before discussing the subjective considerations ofthc neural network approach, a bricf

overview ofthe software used in this study is necessary. The neural network computing software

was provided through Lehigh University under educational contract with Neural Ware,

Incorporated, located in Pittsburgh, Pennsylvania. The software, NeuralWare Explorer. is a

student oriented introduction to the capabilities of neural network computing. All facets of this

study dealing with the neural network model were explored using this software. Although limited in

capabilities compared to the advanced package, the parameters reviewed above, along \vith several

others, were examined and tested for their effects on the boiler model. The results of these tests are
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covered in Chapter 5, Solution Methodology and Results. The information provided about the

neural network parameters was taken in part from the reference guides that accompany the

software [9, II].

PROBLEM SPECIFIC CONSIDERATIONS FOR NEURAL NETWORK MODELING

Beyond the standard backpropagation functional components are several subjective issues

which must be accounted for when implementing a neural network. The purpose of this section is

to describe these issues, discuss the different approaches to each issue, and detail how the boiler

optimization problem warranted the solution decisions that were made. There are several schools of

thought regarding these different areas. A great deal of research by the originators ofthe neural

network paradigm and their initial applications fl 0, 18,21 ,241 has gone into validating the methods

described within. However, for the sake of brevity, only the most pertinent approaches to these

subjeetive considerations will be detailed.

Neural Network Architecture and Size.

When modeling a real world application with a neural network, a great deal of thought and

experimentation are required to determine the pertinent input parameters needed to calculate

appropriate output response. This can be accomplished either by having done past research on the

system in question such that one knows what inputs comprise the necessary responses, or by an

experimental method. This experimental method requires grouping different system inputs together,

optimizing a network based on these inputs, and comparing the prediction performance of each

network against each other. This was the methodology used in this study since boiler operation was

such a complex system to understand and required more than basic knowledge of operating

parameter interaction. One caveat which is addressed in the next section is the data requirements

for different sized networks. One can easily be lured into trying to use all possible inputs to a

system to get the most precise model. However, data requirements for training and testing networks

increase quite rapidly with every input added to the model. This was demonstrated in this study
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since quality data were very limited and caused the network with all input parameters to perform

much worse than the network with fewer, more well chosen input parameters.

Another architectural consideration is the number of processing elements to use in each

hidden layer. The hidden layer docs not correspond to any part of the actual system operation and

therefore has no physical link or significance between inputs and outputs. This intermediate layer

only permits the backpropagation algorithm to model non-linear functions ofgreater complexity,

and choosing the number of nodes within the hidden layer(s) almost always involves

experimentation [12]. As with the number of inputs, the number ofhidden nodes affects the amount

ofdata required to achieve an acceptable level ofmodel performance. The governing factor in

determining data requirements is the total number of connection weights that are within the

network. The more weights in the network, the more data are required. Three procedures exist for

determining the number of hidden units. If one does not have adequate time for experimentation,

then a moderate degree of complexity can be introduced by setting the number of hidden units

equal to the geometric mean ofthe inputs and outputs [13]:

(3.27)

The remaining two methods involve experimentation and these are the constructive and

destructive approaches. The constructive approach starts with a network containing no hidden

units. The network is trained and tested until optimal performance is achieved, which is

subsequently recorded. One processing element (node) is then added to the hidden layer and the

process is repeated. Once there is no change in performance between the N node network and the

N+I node network, the network with N nodes is the best choice for the network architecture. The

reason is that the N+1network is starting to "memorize" the data instead of creating a generalized

model. In statistical terms, this memorization action is synonymous to overfitting a curve to a set of

data.

58



The destructive approach starts with a network containing many hidden nodes. The hidden

nodes are pruned out of the architecture in one of three ways. The first way is the most complicated

and consists of many experiments. The network is trained for a given duration and then tested

using both the training and testing data. Then for each unit in the hidden layer: I) disable the unit,

setting its output to zero; 2) retest the network on both the training and test sets; 3) record the

results. Ifdisabling the unit improves both the performance on the training and test sets, then leave

it disabled. Use the new results for the standard to measure the effect of each succeeding unit and

then continue the training process [14].

The second method is simpler but can result in reduced accuracy from the final network

performance [14]. If, after training, a connection weight value is below a designated threshold then

the connection is suspended but the processing element remains. This way the network complexity

remains while improving the speed of learning by eliminating insignificant connections. One must

be cautious as to what the tolerance should be to prevent eliminating subtle, yet significant,

network interactions. Finally, a basic troubleshooting methodology can be used when evaluating

network performance by using the training and testing data sets. If the test data prediction response

error is much greater than the training prediction response error, then decrease the number of

hidden units, diversify the training data set, or decrease the training time [15].

The object of creating a mathematical model is to balance the tradeoff between accuracy

and the ability to generalize and extract reasonable responses to new data. The complexity ofthe

neural network in relating inputs to outputs determines this. A neural network maps inputs to

outputs via a sequence of weighted summations and transfer functions. This mapping is

parameterized by the weights of the connections among processing elements. The learning process

finds the best values for these weights. Reducing the number of connections reduces the number of

parameters in the mapping, which, in turn, limits the number of relationships between input and

output data. The network will then attempt to learn only the most consistent relationships, not the

spurious ones (which won't carry over from training to testing). The number of hidden nodes and
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inputs detcnnine the number of connections, but assuming a set number of inputs, an empirical

method for selecting the optimal number of nodes in the hidden layer is applied. This method is

very time and data intensive, although quite easy to use. This empirical method uses the R-Square

statistic that scales network prediction accuracy from zero (worst) to one (best). This and other

perfonnance statistics are detailed in the following section ofthis chapter.

For a hypothetical neural network, the following results from a series ofcomputational

experiments were obtained:

Table 3.1

Sample Network Results for Optimal Perfonnancc Selection [161

Number of Hidden
Processing Elements

9
5
4
3
2
I

Training Set R-Square
(0 = worst, 1 = best)

0.9381
0.9135
0.9037
0.9107
0.8821
0.8500

Test Set R-Square
(0 =worst, 1=best)

0.7248
0.7291
0.7204
0.7695
0.7588
0.6656

The neural network that used three processing nodes in the hidden layer gave the best

perfonnance combination for both the training data set and the testing data set. This result implies

that the connection weights are such that the network has learned enough about the input/output

relationships that an accurate prediction can be made for data it has already seen. Furthcnnore, the

network gives a very reasonable prediction on data it has not been trained on (the test set data) and

thus the network can generalize system operation. One does not want to select the architecture that

performs the best in either category because that may imply that either network is overtrained (best

training set perfonnance) or may lack accuracy (best test set perfonnance). As detailed in a

following section, the difference in data requirements for each ofthese architectures is significant

60



and so finding the optimal architecture is imperative, especially when vast quantities ofdata are not

available.

Measuring Neural Network Performance

Measuring how well a system is performing is relatively straightforward. One simply

calculates the percentage of correct answers obtained in a testing or operational situation and

compares them to specifications determined beforehand or against a tolerance value. Neural

networks require more than this simple technique and, in some instances, several performance

measures are required to accurately judge and compare network accuracy. Unfortunately, the

majority of literature on neural network usage does not adequately describe the methods used to

determine the optimal network performance. Therefore, in this study, no straight guidelines are

given, only descriptions of the best measures for this problem and why they were chosen.

The backpropagation network was the method chosen to map the boiler operating

conditions to the heat rate and NOx. Like any mathematical model being compared to actual

observable data, certain statistical parameters are used to gauge performance. The ones used in this

study were the average difference, the average percent error, the R-Squared, and Adjusted R-

Squared values.

The average difference and average percent error are two commonly used performance

measures for any mathematical mapping. The average difference is also called the average error

between the actual and predicted values. In equation form, this value is:

E =x-xx

where x =the actual PE output value
x = the predicted PE output value

(3.28)

The average error is simply the sum ofthese differences divided by the total number of

data vectors used within the test data set. The average percent error (or average relative error) over

n test cases is:
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n (x x)l: - *100
R = 1 X

x n
(3.29)

The difference between using Ex and Rx depends upon the magnitude of the actual and

predicted values. As the absolute value of the actual value moves away from unity, the average

relative error is a better indicator of accuracy ofthe approximation [171. Since NOx values are

generally between zero and one, equation (3.26) was used primarily for measuring NOx network

performance and (3.27) was used for the heat rate network since heat rate magnitude is in the range

of 103. For the overall analysis, both parameters were calculated for all networks so as to provide

a fina1 "bottom line" evaluation and to equate the predicted outputs with actual output response

values.

The R-Squared and Adjusted R-Squared parameters are the most commonly used

measures for comparing network performance during the process of finding the optimal settings for

the best prediction capabilities. They are combinations of the average sum-squared error, the

normalized sum-squared error, and the least mean squared error. Recall that the goal of training a

backpropagation network is to minimize the average sum-squared error between the predicted and

actual output values. The different error functions were given as squared, cubic, and quadratic and

are equations (3.3), (3.12), and (3.13), respectively. Focusing on networks using the squared error

function, there are different opinions on the best means ofdetermining performance. The least

mean squared approach outlined by Widrow [18J is:

N

l:(X-X)2
E=.;:..k~~1 _

N

whereas Rumelhart and McClellan's method, as described in [19] is:

62

(3.30)



N

h~)X-X)2
E= k=1

N
(3.31 )

The use of the 1/2 multiplier is heavily debated but most references submit to the fact that

using the multiplier is dependent upon the neural network tool being used and how the error term is

implemented in the backpropagation scheme. Experiments conducted for this thesis revealed that

the 112 term had little or no effect on the training ofdifferent networks, therefore, equation (3.28)

was used throughout this study. An important caveat is that (3.30) and (3.31) are for single output

networks only. When comparing different networks with two or more outputs, these performance

parameters will give skewed results. One inherent problem with either error value is that it is

dependent upon the variances in the desired (actual) output values. An error parameters that is

independent of these variances is the normalized error. Variance is defined as the average of the

squared deviations from the mean. It is also called the mean square and can be either a population

variance or a sample variance. In neural network terms, there is little difference in which version is

used, so the population variance is the choice for this derivation [19]. The population (target)

variance for a single output network is represented as (52, the mean ofthe actual output values is 11,

and the actual output value is a.. For a test set ofN vectors, the variance is:

~)a-,u)2
if =-'.N-'--__

N
(3.32)

The standard deviation is simply the square root of the variance, also known as the root

mean square. An error measure that removes the effects of the target value variance and yields an

error value between zero and one for all networks regardless of configuration is the R-Square

Coefficient [19]:
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where: a = the actual output value

p = the predicted output value

J.l = the mean output value ofall test patterns

N = the total number patterns in the test set

(3.33)

This parameter is particularly useful for backpropagation because it is indcpendent of the

network topology and application. It concentrates solely upon the ability ofthc network to learn the

average relationship between the input values and the corresponding outputs. When the error

approaches zero, the network is more or less "guessing" the output and has not even determined the

average behavior of the system. As the error approaches one, not only has the average system

behavior been found, the higher order of intricacies between inputs and outputs has been

determined. This normalized error reflects the proportion of the output variance that is due to error

rathcr than the network architecture (including the initial random weight values) of the network

itself. Overall, it is the most useful performance measure for backpropagation 1191.

During this project, different combinations of boiler operating inputs were used to

determine either a NOx or heat rate output. Some networks performed quite well with high values

ofR-Square coefficients. The Adjusted R-Square coefficient is used to compare thc networks. This

Adjusted R-Square coefficient equation is found by modifYing the R-Square coefficient:

(3.34)

where p = thc total number of parameters used to predict the output, which is the sanle as tile total

number ofconnection weights within the network.
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Therefore, a network using economizer oxygen, burner tilt, and auxiliary air damper

settings (7 inputs) can be compared to one with economizer oxygen, burner tilt, and auxiliary air

bias, and fuel-air bias (4 inputs). With these two error parameters, the optimal backpropagation

network can be devised for any system. The comparison of different networks from this study is

covered in Chapter 5.

Neural Network Data: Quantity vs. Quality

The consideration that is paramount to successful system modeling using the

backpropagation network is the quality of the data and how the data are used to train and test the

network. lbis area of neural network use is one of the most important but receives very little

emphasis in most literature. The type ofdata, amount of data, and how the data are used usually

determines whether the network will properly map the system inputs to the outputs. Several

experiments were conducted to determine the data requirements and the results are in Chapter 5.

The common rules-of-thumb regarding data requirements are reviewed in this section with respect

to how they applied to this study.

Referring back to the section on network architecture, the size of the network directly

affects the amount ofdata needed for training to achieve an accurate mapping of inputs to outputs.

The number of connection weights dictated by the architecture and the internal noise within the

data can drastically increase or decrease the amount of data required to achieve a successful

mapping. The prevalent rule in determining data quantity is outlined by Klimasauskas r14], where

at least five and up to ten data vectors are required for each connection weight. The number of

adjustable parameters in the backpropagation model is equal to the number of weights (nw):

(3.35)

with subscripts i, h, and 0 referring to the number of input, hidden, and output nodes, respectively.

Therefore, the number ofdata vectors for effective training is in the range of:
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(3.36)

This method is adequate when the user has vast quantities ofdata available, provided the

data are not excessively noisy or repetitive. The question ofdata quality comes to light under these

conditions. Experiments by Chitra r15Jdetermined that one should avoid data with little variation

in the input values but drastic variations in the output response. He continued to emphasize

avoiding repetitious data since this causes the network to memorize certain pattern relationships

instead ofgeneralizing system interaction. Memorization is signified by only certain processing

elements responding to inputs while others remain dormant. The computer science adage "garbage

in = garbage out" applies to the neural network data paradigm. Ifone has vast quantities of bad

data, training a neural network with that data will not provide the user with either accuracy or good

generalization.

One approach to decreasing network architecture size and data requirements involves

grouping input parameters into single input values. The parameters used must reflect physical

process changes accurately so that the neural network results have qualitative meaning. This

approach reduces the number of required inputs, the amount ofdata required, and the computation

time for network optimization. The bias parameters derived in Chapter 2 are ofthis type and

proved extremely useful in the solution procedure.

Another approach is to use well defined and organized data obtained from special tests

instead ofdata obtained from normal, continuous operation ofthe system. This method supplies the

neural network with quality data that meets the requirements for optimal training and testing data

sets. The data in the training set are chosen so that the likelihood ofeach possible outcome is

represented and the test set is chosen to represent the entire population of possible outcomes r14).

Data from these parametric tests meet these constraints much better than normal operating data

which can contain gaps in the overall operating ranges for the system. Furthermore, if the amount

of available data is limited due to time or operating constraints, it is imperative that parametric
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data be used to train and test the network. This was the situation for this study. Parametric testing

at Potomac River is costly and time intensive. Data collection was limited with only 50 data points

collected at full load and 41 data points for 45 MW operation. The data collected had certain

advantages and disadvantages which affected the quality of the backpropagation network mapping.

These causal relationships are detailed in Chapter 5.

When high quality data are accessible, a different methodology is used to determine the

amount ofdata required for a successful mapping. The DANA model approach, termed as such by

Owens and Mocella [13), dictates the network architecture and hence the number ofconnection

weights. The number of hidden units is dictated by equation (3.27) and the number ofconnection

weights is found using equation (3.35). If the number ofexperimental samples is ne, then the

number ofobserved output response values (nt) is:

(3.37)

Since this study used a one output network, the amount of output response values is equal

to the number of experimental samples (data vectors). In order to have a DANA modeled system,

more observations than connection weights are required so that nt > nw. As a design criterion, the

author suggests that, for the boiler problem, the number of experimental data points exceeds the

number of weights by 15%, or a minimum of 10 data vectors. For example, there are 50

experimental data points (ne) available to train a four input (ni), one output (no) network. By

applying the governing equations:

(3.27)

(3.35)

(3.38)
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(3.39)

Therefore, this meets the DANA model criteria since the number of data points exceeds the

number ofconnection weights. Even if subsequent network experimentation incrcases the number

ofhidden processing nodes, the model remains within DANA design criteria untilllh = 5.

Compared to equation (3.36), this method greatly reduces the amount ofdata required to train and

test a network and emphasizes the benefits of using well defmed and organized data. However, for

cases where the amount of data available is extremely limited, Weigend f21] experimented with

two methods to obtain a mapping. The first method involves providing a large number of

parameters for the network, but stopping training before the network has made use ofits many

degrees of freedom (the oversized network). This results in a network with good generalizing

properties but lower accuracy than ifallowed to train longer. The second method involves a

learning procedure seeking a minimal network capable ofaccounting for the input data. The user

starts with a nominal network configuration. As training continues, connection weights that drop

below a certain threshold are deleted. This reduces the network to a minimal configuration and

increases accuracy but also reduces the network's generalizing capabilities. In either case, the user

must balance the desired network prediction accuracy and the network's ability to generalize

system response to new data.

Training and Testing the Backpropagation Neural Network

The final subjective topic in deriving the optimal neural network for modeling the physical

system is training and testing the network. With the requirements for data quantity and quality met,

one must decide on how to divide the data into training and testing sets as well as which training

paradigm will result in optimal network perfonnance. Again, there are a variety ofopinions

regarding how to best train and test a network and this paper will only highlight the ones

considered for this project.
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As mentioned earlier, the training set should equally represent the likelihood of all possible

outcomes from system operation while the test set should represent the entire population of the

operating data. Authors usually agree that between 10% and 20% of all available data should be

reserved for testing purposes only. Thus, the network is trained (repetitive processing of the data)

on 80% to 90% ofall available data. The training data are then passed through the trained network

once to determine the level of accuracy achieved from training. The test data are also passed

through the network once to see how well the network generalizes system response to unseen data.

The tradeoff between accuracy and generalizing ability is of concern. If the network accurately

predicts the training data responses but cannot generalize and predict the output response for the

test set data, then the network has been overtrained. Overtraining is a function of the number of

hidden nodes, the number ofconnection weights, and the duration oftraining. A case of the number

of hidden nodes (and therefore connection weights) was described earlier in determining the optimal

architecture. The training process is analogous to solving for the coefficients in a polynomial

regression problem. Too much training can cause the network to become an over-eonstrained

polynomial curve fit for the data which, in turn, prevents acceptable generalization for data the

network has not seen.

One of the challenges in using polynomials for fitting experimental data is that they are

intrinsically unbounded and they oscillate. In contrast, the effective complexity of polynomial

approximation is related to the number of terms in the polynomial. This infers that stable,

believable solutions can be achieved without critical concern for the effects of too few or too many

parameters. If one has a large and diverse set of training patterns compared to the number of

weights, overtraining is not too probable. However, if there are too few weights, the network

function will not map well onto the data points presented during training. If the network contains a

large number ofconnection weights, the consensus is not to train the network for a long duration

[22,23]. This opinion, however, is quite subjective and the best rule-of-thumb is to cease training

when the test set performance starts to decrease or the accuracy of predicted responses plateaus.
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The remaining question is which training and testing paradigm will provide optimal input

to output mapping of the available data. Two methods govern this decision and they are the single

and double test set approaches. The single test set is fairly standard [24,25J. Initially the network is

trained using only the training data set (80% ofall available data) and checked with the test set

until the optimal number of hidden nodes is determined. Then the training and testing set are

combined (all available data) and the backpropagation network is trained using all data to finalize

the optimal values for the connection weights. Owens and Mocella [13], found this method to be

the fastest and most reliable training approach, as well as easy to implement. Therefore, this study

used the single test set paradigm.

The double test set paradigm is based on the belief that using a test set to select a best

architecture for the network invalidates its use as a test set. Therefore an additional test set is

reserved until after the network architecture has been determined. This approach is called cross

validation ofwhich several types were examined [26]. Ultimately these methods were discarded in

this thesis due to a small amount ofdata, computational time constraints, and the need to develop

software that would be totally automated. The single test set approach outlined above was the one

implemented into the final solution procedure for determining the optimal backpropagation

network.

Even with the numerous choices available to the user, optimizing neural network

performance for a particular application is not overly difficult or time consuming. Experimentation

is required, but a few initial trials will reduce the number ofviable network operational choices

significantly, after examining how the data interact with the network topology. Each system that is

modeled is unique and therefore only a few network variables will influence the network's ability to

accurately generalize system operation. However, until these trials are conducted, no neural

network functional or operational assumptions can be made in regards to the system being

modeled.
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CHAPTER 4

NUMERICAL OPTIMIZATION OF NEURAL NETWORK EQUATIONS

The method of computing the governing neural network equations for a given system with

operating inputs and subsequent outputs was described in the previous chapter. The second

fundamental objective ofthis study was to optimize the equations such that a minimum heat rate

and NOx could be determined along with the corresponding input values that achieve these minima.

Several optimization methods and their algorithms were examined to determine which provided the

required accuracy, computation time, and ease of incorporating it into a control software package.

This chapter provides the basic concepts ofoptimization and a description of the different

approaches that were examined. The equations generated by the neural network training process

are described and the criteria for choosing the optimization algorithm is reviewed. The method

selected is then discussed in detail along with how the network equations were programmed into the

optimization algorithm.

FUNDAMENTAL CONCEPTS OF OPTIMIZATION

The ultimate goal ofoptimization is to take a single function, f(x), which depends on one

or more independent variables, and find the values of those variables such that f(x) is a minimum

or a maximum. Numerical methods and thus computer computation for locating these extrema can

be adapted for this situation. The computational effort lies in the evaluation of f(x) and its partial

derivatives with respect to every variable (depending on the algorithm chosen). An extremum can

be either global, the absolute highest or lowest function value, or local where the extremum is

withiIJ. a finite range, not including the range boundaries. Virtually nothing is kno~ about finding

the global extrema in general. There are two approaches that are standard for this field of research.

The first is to find local extrema starting from widely varying initial values of the independent

variables and pick the most extreme ofthe lot. The second is to perturb a local extremum by taking
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a finite amplitude step away from it and observe whether the algorithm returns to a better point or

"always" to the same point [27].

The goal of multivariable unconstrained optimization is:

Minimize f(x) x ERN (4.1)

where x is an element (E) within the range (R) ofa N-dimensional vector composed of independent

variables (Xi with i=I,2,3, ...N). The function, f(x), is a scalar objective function and we assume

that Xi can take any value, even though the value is usually from a discrete set. It is also convenient

to assume that f(x) and its derivatives exist and are continuous everywhere, although optima may

occur at discontinuous points of f(x), or its gradient:

(4.2)

which appears here as a transposed (T) Nxl matrix. One must remember that f(x) may have a

minimum at a point where f(x) and V'f(x) are discontinuous or do not exist, but for now we assume

that they exist and are continuous.

If the initial input vector, x(O), does not produce the optimal solution, the next step is to

determine the subsequent vector, x(l), that is required to reach that solution. This is how the

different algorithms distinguish themselves. The following from Ragsdell, et al. [28], develops

conditions that allow one to characterize and classify parameter points in the N-dimensional

function solution space (design space). Optimality criteria are examined so solutions can be

recognized and the most useful method for finding the optimum is identified. Consider the Taylor

expansion ofa function ofseveral variables:

(4.3)
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where x = the current or expansion point in RN

~ = x-x, the change in x

V'f{x) = the N-eomponent column vector of the first derivatives off{x) evaluated at x

V'2f{x) =H{(x) = the NxN symmetric matrix of second partial derivatives off{x) evaluated

at x, often caIled the Hessian matrix. The element in the ith and the jth

column is (flflfJxi mj .

03(~) = all terms oforder greater than 2 in~

Ignoring the higher order terms and examining the change in the magnitude of the objective

f{x) corresponding to arbitrary changes in x.

(4.4)

By definition, a minimum is a point such that all other points in the "neighborhood" surrounding

the point produce a greater function value, or:

M=f(x)-f(x)~O (4.5)

The point x is a global minimum if (4.5) holds true throughout the N-dimensional solution space

equated by (4.1) and this global minimum is designated by x**. Equation (4.5) yields a local

minimum when, for some neighborhood 8 where 8>0, II x-x II ~; whereas removing the equality

sign in (4.5) gives a strict minimum point. When M(x) is either positive, negative, or zero

depending on the choice ofneighboring points in the area 8, then x is a saddle point.

Assume that f{x) and its first and second order gradients exist and are continuous. In order

to determine the sign ofM(x) from (4.3), the arbitrary values of~ and V'f{x) must be zero in

(4.4). This means x must be a stationary point. Otherwise, M(x) could be positive or negative

depending on the signs of~ and Vf{x). Therefore, x must satisfy the stationary conditions:

Vf(x) =0
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so equation (4.4) becomes

and thus the sign of llf(x) depends on the nature of the quadratic form;

rewritten as:

Q(z) =ZTAz

Basic calculus dictates the following rules:

(4.7)

(4.8)

(4.9)

A is a relative minimum if

A is an absolute minimum if

A is a relative maximum if

A is an absolute maximum if

A is a critical point if

and

Q(z»O for all z

Q(z)~O for all z

Q(z)<O for all z

Q(z)~O for all z

Q(z»O for some z

Q(z)<O for other z

With these rules, the stationary point x is a:

minimum, if V'2f(x) is concave upward

maximum, if V'2f(x) is concave downward

saddle point, ifV2f(x) ~O or ~O (an inflection point)

If a descent direction cannot be found, x is determined to be a local (x*) minimum and

corresponds to the case where V'2f(x) is concave upward. This allows the necessary and sufficient

conditions to be identified for declaring x*a local minimum.

Necessary Conditions:

If Vf(x") =0 and V2f(x") is an absolute minimum
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Sufficient Conditions:

If Vf(x') =a and V2f(x*) is a relative minimum (4.11 )

then x* is an isolated local minimum off(x). Usually one must be satisfied with finding a local

minimum, but if it can be proven that

(4.12)

for all x, then f(x) is a convex function and a local minimum is a global minimum.

OPTIMIZATION ALGORITHMS

With the mathematical objective defined, the question ofhow to best achieve this goal

comes to the forefront. Geometrically, an objective function constitutes an N-dimensional surface

withinN+l dimensional space consisting ofthe independent variables xI> Xl, ",xn and the

dependent variable, z. Direct multivariable optimization techniques are depicted as a progression of

test points on each of the planes defined by the independent parameters. At each point, a function

evaluation is performed and a decision is made whether to continue or terminate the search for the

optimum.

The simplest progression of test points occurs when only one variable is changed at a time

while the remaining N-I variables are held constant. This results in a one dimensional search

routine known as sectioning [29]. Once a minimum value is found using this single parameter

value, a new independent variable is selected to start searching while the old parameter retains the

value that provided the smallest function response. This method is repeated for all N parameters

until no further decreases in the objective function are observed. The major drawback ofthis

method is that it can be inefficient and even ineffective when the objective function becomes

complex and the independent parameters interact with each other either as products or quotients.
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To alleviate this drawback, algorithms were developed around the sectioning method to

improve flexibility and robustness without introducing significant complications. These algorithms

are called direct search methods and each has similar traits but distinct characteristics for the type

ofapplication they are used for. These methods require only the function values at each iteration

and they do not require any partial derivatives to be calculated. The function f(x) is assumed

continuous and since gradients are not required, this method can be applied to functions with

complex, undefined, non-continuous, or non-existent derivatives. Since the functions being

evaluated are multivariable and different combinations ofthe independent parameters can result in

the same minimum value (multi-modal), the user must be satisfied with local minima results only.

Direct Search Algorithms

Muitivariable methods that employ only function values to guide the search for the

optimum fall under two categories, heuristic techniques and theoretical techniques. Heuristic

techniques are search methods constructed from geometric intuition for which no performance

guarantees other than empirical results can be stated. Theoretically based techniques are

mathematically founded and allow for performance guarantees, such as convergence, to be

established, at least under restricted conditions [28]. Three direct search techniques were examined

in this study: the S2, or simplex search, the Hooke-Jeeves pattern search, and Powell's conjugate

direction method. The first two are heuristic techniques with fundamentally different strategies.

The S2 method employs a regular pattern of sequential points in the design space, whereas Hookes

Jeeves uses a fixed set ofdirections (the coordinate directions) in a recursive manner. Powell's

conjugate method is theoretically based and it was devised assuming a quadratic objective, which

means functions will converge in a finite number of iterations. All three are computationally

uncomplicated. However, they are slower than derivative based methods in terms ofthe speed of

moving to the next iteration. Since the amount ofcalculations is small compared to those required

for the gradient descent techniques, these time requirements are, for the most part, balanced across
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the spectrum of these optimization techniques [29]. A brief description of each optimization

method examined is now given, along with the benefits and drawbacks ofeach method as it applied

to this problem.

~2 or Simplex Search Method. A regular simplex is a geometric shape composed ofN

plus one vertices, where N is the number of independent variables in the function. These vertices

are equidistant and create an N+ I geometric polyhedron. For example, an equilateral triangle is a

simplex in two dimensions, a tetrahedron is a simplex in three dimensions, and so on. The main

property ofa simplex as it is used in optimization routines is that a new simplex can be generated

on any face ofthe old one. This is accomplished by projecting any chosen vertex a suitable

distance through the centroid defined by the remaining vertices ofthe old simplex. A new simplex

is thus formed by replacing the old vertex by this newly projected point. In this way, a new simplex

is generated (re-dimensioned) with a single evaluation ofthe objective function.

The method begins by setting up a regular simplex in the space bounded by the

independent variables and evaluating f(x) at each vertex. The vertex with the highest functional

value is identified as the "worst" vertex and that point is stretched outward or shrunk inward

through the centroid of the simplex (a reflection). This creates a new point which is now used to re

dimension the simplex and recalculate the function values at each vertex. This process continues as

long as the function response decreases smoothly and stops when either the minimum is straddled

or the iterations begin to cycle between two or more simplexes. This algorithm was examined using

the Neider and Meade Downhill Simplex Method in Multidimensions which appeared in [27]. It

was programmed on a personal computer and tested using the resulting equations from the neural

network analysis described in Chapter 3.

The Complex Method. This method is a derivative of the Simplex method to account for

the generation ofthe initial simplex points. A parameter within the simplex algorit:hrn, a, governs

how much the worst point is retracted or expanded through the centroid ofthe simplex during an

77



iteration's re-dimensioning phase. This parameter can cause some points of the simplex to be

infeasible once the move is completed. Each point of the simplex must be tested for feasibility and,

ifdeemed infeasible, suitably adjusted. This adjustment can cause an undesired twisting of the

simplex which inaccurately defines the solution space ofthe function. Therefore, the new vertices

must be defined sequentially rather than simultaneously but are still calculated using the regular

simplex algorithm. These considerations led to the modifications to the simplex method and

resulted in the complex method proposed by Box [30].

Box proposed that the set ofP initial trial points be generated randomly and sequentially.

Given the upper and lower bounds for the parameter vector ~ the pseudo-random variables,

uniformly distributed on the interval (0,1), are sampled. From this sampling, the point coordinates

in N+ I dimensional space are determined. N samples are required for an N-dimensional point.

Each newly generated point is tested for feasibility, and ifdeemed infeasible, it is moved inwards to

the centroid of the previously calculated points until it becomes feasible. The total number of

points to be used, P, should be no less than N+ I, but it can be larger. The algorithm now follows

the simplex method outlined above. The search is terminated when the pattern ofpoints has shrunk

so that the points are sufficiently close together and/or when the differences between the function

values at the points becomes smaller than a preset tolerance limit.

Box conducted several experiments with his method [30] and recommended using P = 2N

points to define any given simplex. The justification for this many additional points is to prevent

the complex from reducing one of its dimensions too far and causing a vertex ofthe polyhedron to

become aligned with another dimension. Ifa relatively large number of points is used to initially

dimension the complex. then a sufficient amount of them should remain after the feasibility criteria

is met.

This method was tested by the author using the same neural network eqUations as for the

simplex method and utilizing the IMSL mathematical computer routine, BCPOL [31]. The

algorithm uses P = 2N points but othenvise conducts itselflike the simplex method in P = N+ I
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dimensions. The results from this method were the same as the simplex method, but IMSL routines

appear courtesy of Lehigh University's computer network and the actual coding is not available due

to copyright laws.

The Hooke-Jeeves Pattern Search Method. The two previous search routines were based on

the systematic disposition and manipulation ofa pattern oftrial points. Despite the emphasis

placed upon the geometric configuration in which the trial points are located, the main role of the

set of points is to generate a direction of search. The point locations influence how sensitive the

generated search direction is to the local variations in function topology. The entire set of points is

condensed into a single vector difference that defines a direction. The remaining search logic is

concerned primarily with adjusting the step sizes so that reasonable improvement is attained after

each iteration. Since determining a direction to search in is the major concern, a reasonable

improvement to the search technique would be to provide a set ofdirection vectors in which to

guide the search. In a simple sense, a fixed set ofdirections could be selected and searched

recursively for improvement. The search speed could be increased if one or more ofthe search

directions were modified after each iteration so as to better align these directions with the overall

function topology. To ensure that the entire solution space is examined, one must insist that the

search directions be independent and span the entire domain off(x). Furthermore, at least one

direction must be provided for each parameter resulting in N independent directions for N

parameters within the objective function.

The simplest version ofthis technique is the sectioning approach discussed earlier. Hooke

and Jeeves improved upon this method by periodically searching in a direction dictated by the past

sequence of iterations and by using the history ofthe search to determine a new point. Although a

simple concept, this decreased convergence time significantly. Basically, the Hooke-Jeeves

procedure is a combination ofexploratory moves ofthe single variable (sectioning) search with a

change in the current pattern (vector) of the N points or an acceleration move regulated by some
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basic rules. The exploratory moves examine the local behavior of the function and seek the

direction ofany sloping valleys that may be present. The pattern moves utilize the information

generated during exploration to step rapidly through these valleys. Exploratory moves can have a

specified step size for each coordinate direction and can change during the search. For each

iteration, a temporary minimum point (base point) is established after all N coordinates have been

investigated. A downward gradient (pattern) move, consisting ofa single step from the present base

point along the line joining the previous base point to the current base point, is then made. If

continued exploration were to reveal similar success in moving the base point, each succeeding

pattern move would be larger than its predecessor which accounts for the acceleration through

valleys [29]. The search is terminated when the step size between base points becomes sufficiently

small.

The numerous variations in exploratory moves to establish base points and pattern moves

along the gradient make this algorithm difficult to experiment with and accurately compare it to the

previously discussed methods. The increased flexibility of the Hooke-Jeeves method also makes it

difficult to implement into a software package requiring little or no user interaction. Therefore,

after only a few experiments, this method was abandoned for this study. If suitable generalized

rules could be implemented such that using the method is simplified without losing efficiency or

robustness, then this method has potential for future use.

Powell's Conjugate Direction Method. This algorithm uses the history ofthe iterations

to build up directions for acceleration and at the same time avoids degenerating to a sequence of

coordinate searches. A quadratic model is used since it is the simplest nonlinear function having an

optimum (linear functions have no interior minima) and, near the optimum, all nonlinear functions

can be approximated by a quadratic. Hence, the behavior of the algorithm along the quadratic

function will give some indication ofhow the algorithm will converge for general functions. If a

quadratic function in N variables can be transformed so that it is just the sum ofperfect squares,
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then the optimum can be found after exactly N single-variable searches, one with respect to each of

the variables [28]. Powell's method focuses on minimizing the line connecting each iteration's

minimum function value, or base point, instead ofcalculating gradients.

A fundamental flaw with Powell's method is that its usefulness is extremely function

dependent. Iftrapped in a long valley with several bends in it, a quadratically convergent method

will try to extrapolate to the minimum of a parabola that is not present [27]. Since gradients are not

calculated, this decreases the method's efficiency. However, a method with quadratic convergence

can save several times N2 extra line minimizations because quadratic convergence doubles the

number ofsignificant figures at each iteration. This quadratic convergence also accounts for the

much improved accuracy over traditional search methods without having to calculate any

gradients.

The algorithm for Powell's method appears in [27] and requires a start point P which is a

vector of length N and an initial direction matrix. The algorithm also requires the function to be

implemented within two different programs. One program calculates the move and the other

minimizes the line connecting successive moves. The nature of the power plant data which creates

the function mapping ofboiler operating conditions to NOx and heat rate provides evidence that

the objective function contained several long, shallow valleys. Furthermore, it was difficult to

determine how or why this method would provide the best performance~ and since extreme

accuracy was not necessary for this study, the benefits of using this algorithm were few. These

reasons led to the decision to not select Powell's Method for further examination.

Gradient Based Algorithms

The direct methods described above are capable ofhandling many practical engineering

problems and are the best choice when reliable information about the governing equation is limited.

Although these methods will almost always find a solution, they can require an excessive number

of function evaluations to find that solution. This, combined with a desire to find stationary points
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and fulfill the first necessary condition of optimization in equation (4. 10), warrants the use of

gradient infonnation.

Only two gradient based algorithms were investigated for this study and neither provided

enough improvement in optimizing the equations to warrant the additional effort to program them.

The first was the mathematical library algorithm, BCONF (31], that minimized a function ofN

variables, with bounds, using a quasi-Newton method and a finite difference gradient. The second

was the Fletcher-Reevcs-Polak-Ribiere (FRPR) method [27], which calculates gradients and line

minimizations in route to the optimum. The routine required parameter start points, parameter

boundaries, a variable scaling matrix, a function scaling matrix, and 14 additional pieces of data

that detailed step sizes and tolerances. Fortunately, all of these had default values which were used

in testing this routine. Programming the FRPR routine required the same types of infonnation but

with no guidance on selecting the best values or how to determine them for a particular application.

Therefore, implementing this algorithm into a stand alone, non-interaction program was not

possible. No earnest attempt was made at this method since the quasi-Newton method validated the

results achieved using the much simpler direct search algorithms without any significant

improvements in speed.

SAMPLE NEURAL NETWORK EQUATIONS

The above discussion made several references to the dependence ofselecting an

optimization routine upon the type of equation being optimized. Before revealing the algorithm

chosen for this study, a briefoverview ofthe type ofequations a backpropagation network is

composed of is necessary. Because a backpropagation network is a feed-forward type of neural

network, successive layers are dependent upon the output of the previous layers. These interactions

provide the neural network with its ability to model a non-linear system but they also make the

optimization process more complicated.
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After a neural network has been trained to satisfaction and has achieved the desired

perfonnance, training ceases and the network becomes purely feed-forward. As outlined in Chapter

3, the summation of weighted inputs and the transfer functions can be varied. Although these

summations and transfer functions are individually differentiable, optimization can be done only on

one non-linear, multivariable equation at a time. If all of the neural network functions were linear,

then one could simultaneously solve this set of equations through matrix manipulation. This

function for a backpropagation network consists of a series ofnested non-linear functions in which

taking any derivative becomes infeasible. A sample network, similar to the ones designed in this

study, is used in this section to show the intricacies of this equation.

Using a neural network with 4 inputs, 3 hidden processing units, and one output, the

following trained network characteristics are given:

• the weighted inputs are simply summed as they enter the hidden processing nodes

• the 3 hidden nodes each use a Tanh transfer function to scale its output between -1 and I

• the outputs from the hidden nodes are weighted and simply summed as they enter the output

• the output node uses a simple, linear output transfer function

The first statement is represented as:

4

H1jn =:LBias1 +(w1,i*inputj )

k1

4

H2,in =:LBias 2 +(W2,i*inputi )
j~1

4

H3,'n =:LBias3 +(w3j *inpuU
i=1

where Wj,i = connection weight value into node j from input i

These three hidden unit values undergo the transfer function process of:
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eHI.1n _ e -H).In

Hjout = Tanh(Hj,in) = H -H, e 1.ln + e 1.ln

Now, these three values are weighted and summed as they enter the output node:

3

Ojn = IBiasj + (W outJ *Hj,out )
j~1

Finally, this value is linearly transferred as the output value such that:

(4.14)

(4.15)

(4.16)

Evaluating this series of functions in the logical progression is quite simple. However,

taking a partial derivative with respect to Xi requires partial derivatives within the Tanh functions

as well as within the swnmations resulting in several chain rule derivative calculations. This

process is even more complicated ifa Tanh or Sigmoid function is incorporated as the output

transfer function or ifa cumulative sum or normalized cumulative summation is used. As more

hidden units or inputs are introduced, the complexity ofthe partial derivatives would increase

substantially thus reducing the chances ofachieving a fast and accurate solution to the optimization

process.

One last consideration must be made concerning the optimization process as it applies to

this study before discussing the algorithm chosen to accomplish the task at hand. The boiler

optimization problem deals with minimizing heat rate while keeping NOx emissions below

regulatory limits. However, all optimization algorithms allow for only one dependent variable and

so simultaneously optimizing both parameters is not possible. For this reason, individual networks

were designed for NOx and heat rate response to boiler operating inputs. Their resulting equations

were integrated into the optimization process by using the concept of the penalty function.
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Penalty function methods can be applied to the independent parameters, the dependent

variable, or both during the optimization process. This approach is another form of constrained

optimization and can be implemented in various ways. Since the neural network equations are

generated using input values scaled between -1 and I, the independent parameters have their

boundaries automatically built into the equations. Therefore, only a comparison of the iteration's

current minimum to the allowable limit need be done. The goal ofminimizing heat rate subject to

the NOx limit dictates that as each iteration to minimize the heat rate equations is performed, the

NOx value is calculated under the current iteration conditions. If the NOx limit is exceeded, then

that point for the heat rate minimization process must be sufficiently penalized such that the

optimization algorithm will not get trapped out in a solution space of infeasible points.

Penalties are mathematical functions applied in one of several forms dependent upon the

nature ofthe equation being optimized. Parabolic, logarithmic, linear inequality, and step functions

are the most prevalent in engineering applications [28]. Since the backpropagation equations are

nested and difficult to describe as a single geometric form, the step function was applied in this

study with positive results. After each iteration of optimizing the heat rate equations, the NOx level

was calculated using its own network equations at the current iteration conditions. If the NOx was

above 0.38Ib./MBtu, a significant penalty of 1000 Btu/kWh was added to the current value ofheat

rate at that iteration. When the algorithm searched for the "worst" point at the beginning of the next

iteration, the penalized value was picked and the algorithm would try to minimize heat rate again

starting from that point. Although simple in concept, this method proved to be quite successful

without complicating the optimization process or increasing computation time.

CONSIDERATIONS FOR ALGORITHM IMPLEMENTATION

Because the neural network equations are a model ofboiler operation with each parameter

being restricted to a specific operating range, attempting global optimization ofall possible boiler

configurations is not feasible. Therefore, constrained optimization was required so as to keep the

85



algorithm functioning with certain physical and safety operating constraints. Ultimately, there is no

ideal algorithm for any application, only some that are better suited for a particular application

than others. Since our model is multidimensional, the following guidelines were taken into

consideration for selecting the optimization algorithm:

• Computer memory requirements for optimization algorithms require memory storage of order

N or N2, where N is the number of parameters (dimensions) in the model. Moderate values of

N and reasonable memory size allow this factor to be overlooked. However, if the complexity

ofthe function increases, this can become an important factor.

• The algorithm should make no special assumptions about the function being optimized; such as

gradients, continuity, smoothness, or solution surface topography.

• The ease of implementation is important such that the algorithm is concise, self contained, and

relatively straightforward and easy to understand.

• The ability to calculate and evaluate the partial derivatives of the function dictate complexity

and the amount of required calculations and run-time. Conjugate gradient methods and Quasi

Newton (variable metric) methods require derivative calculations and sub-minimization

algorithms.

• Accuracy in the final solution does not have to be to within an ell.iremely tight tolerance. The

data collection methods and the process ofoptimizing a function equated to a generalized

mapping of boiler operating conditions to subsequent outputs has a moderate degree of

uncertainty. This inherent system uncertainty does not allow for highly accurate results, only

results with the same degree of uncertainty.

• Ifgradient-based techniques are employed, difference approximations must be done at each

iteration. This requires considerable experimentation to determine step sizes that strike a

proper balance between roundoff and truncation errors. Such lengthy analysis consumes too

much time and would be difficult to automate into the stand alone "black-box" approach which

is an objective for this study.

The considerations above reduce down to the concept of keeping the method simple, as

long as it's successful. After the algorithms detailed previously were tested and compared to each

other, they were all found to produce very similar results, well within the uncertainty tolerances for
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this problem. Therefore, the simplest method, the downhill simplex, was chosen. A detailed

description of this algorithm follows along with how the neural network equations were

programmed into a function subroutine.

THE SIMPLEX METHOD REVISITED

This method originated as a means to optimize the performance ofexisting, operating

plants, when there was error present in the measured response ofthe plant to imposed process-

variable changes. The simplex search method is based upon the observation that the first-order

experimental design requiring the fewest number ofpoints is the regular simplex. The evaluation

and selection ofthe worst vertex point has been discussed. Now the means of reducing that worst

point through expansions(reflections) and contractions are discussed to provide greater

understanding ofthe algorithm. Earlier forms ofthe simplex method did not alter the regularity of

the initial simplex shape. Only inward reflections (hence reductions in size) were performed which

was laborious and time consuming in producing a solution. NeIder and Meade allowed for

expansion and contraction during the course of moving the current "worst" point to a better point.

Their modifications require consideration ofthe following points:

x(h) = the point with the highest current function value

x(g) = the next highest point

x(l) = the lowest current point

ftM, f\g), f\l) = the corresponding function values at these points

A reflection step is described by the line:

(4.17)

or

(4.17a)

If 8=1, a normal simplex reflection results such that Xnew is located a distance II Xc - xCi) II from Xc.

When -1~ e<+1, a shortened reflection, or contraction, is produced while the choice ofe>+1 will
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generate a lengthened reflection step, or expansion, of the simplex. These conditions are depicted in

Figure 4.1.
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Figure 4.1

Expansion and Contraction ofa Simplex

The three values ofeused for nonnal reflection, contraction, and expansion are denoted

respectively a., p, and y. The method proceeds from the initial simplex by determination ofx(h),

x(g), x(1), and Xc. The function values for each vertex ofthe simplex are checked to see if

termination is appropriate. If not, a normal reflection, expansion, or contraction is taken, using the

tests outlined in Figure (4.1). The iterations continue until the simplex function values do not vary

significantly. NeIder and Meade suggest the values of 0.= 1.0, P=0.5, and y =2.0 for the best

results.

Some limited numerical comparisons indicate that this method is very reliable in the

presence of noise or error in the objective function and is reasonably efficient. Additional

experimentation with the a., p, and y parameters along with the construction of the initial simplex

was done by Parkinson, et al" in 1972 [32]. It was determined that the shape ofthe initial simplex
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was not important but its orientation was. They suggested a. = 2.0,13 = 0.25, and y = 2.5 which

worked well if successive repeated expansions were allowed. Ultimately, the method expands the

simplex in these different directions until it rcaches a "valley floor" and it continues along the

valley as long as the function value keeps decreasing. If there is a situation where the simplex must

try to collapse in on itself too tightly, it will contract itself around the current lowest (best) vertex

point.

Termination of the algorithm occurs when the vector distance moved in that step is

fractionally smaller in magnitude than some preset tolerance (TOL in the computer coding).

Alternatively, the decrease in the function value can be used to terminate the algorithm if the

decrease between iterations is fractionally smaller than a preset tolerance (FTOL in the coding).

Press [27] suggests that TOL should not be smaller than the square root of the machine precision

but FTOL may be equal to the machine precision. For this study, the uncertainty in the data and

neural network models allow these tolerances be less binding without a loss in accuracy. It is

imperative that the results from this optimization be examined carefully to ensure that these

tolerances were not fooled by a step that failed to move the simplex in any direction. If the user

suspects that the best local minimum has not yet been reached, the multidimensional minimization

should be restarted from the point that has been determined to be the minimum. At this restart

point, the user should reinitialize any ancillary input quantities such that N ofthe N+ I vertices of

the simplex are reinitialized using any scaled value added to the current point while the N+ I vertex

assumes the point of the claimed minimum.
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CHAPTERS

SOLUTION METHODOLOGY AND RESULT8

NEURAL NETWORK QPTIMIZATION

The methodology ultimately selected for optimizing the neural networks used in this study

was the result of many computational experiments. These experiments consisted of parametric

testing of the NeuralWare software with boiler data, where all of the boiler operating conditions (as

outlined in Chapter 3) were held constant while one parameter was changed and the subsequent

results recorded. Analysis of these results determined which of the neural network operating

characteristics had the greatest effect upon the training ofthe networks used in this study. After

these characteristi.cs were identified, a suitable approach for applying these parameters was

determined. This approach became the primary training methodology for all of the networks

examined in this thesis. The approach was never altered and this made it possible to compare

networks without having to account for any bias created by different training techniques.

Data Preparation

Prior to constructing, training, and optimizing a neural network, one must ensure that the

data to be used in this process are adequate enough to achieve the best results. Several different

networks, using the boiler operating parameters as inputs, were examined. Each network required a

specific arrangement of the parameter values within the data vectors. A data vector consists ofall

of the input parameter values for a single parametric test. These values are the data vector

components and a series oftests (vectors) comprise a data set. The primary concerns for handling

the data vector components Wl~re:

1. taking the raw data (actual operating conditions) and computing the bias parameters

2. arranging the required input and output parameters so they corresponded to the neural

network architecture in question

3. scaling the input and output values
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4. splitting the available data into training and testing sets.

These four steps are required for any neural network except for the first step. This step is

eliminated when the use of input bias parameters are not warranted. This occurs when only a small

number of inputs is required to sufficiently describe the output(s). During the earlier stages ofthis

study, this preparation process was carried out by using a spreadsheet software package [33]. As

development ofthe NOx control software package for PEPCO continued, this process was

automated and linked to the expert system program. The following passage describes how this

automated process works and how it fits into the overall NOx control software package.

After a substantial change in boiler hardware or operating conditions occurs, the user will

desire to get the boiler back into an efficient, low NOx operating mode. He will execute the expert

system parametric testing routine to guide him through different steps to bring NOx back into

regulatory limits. As the expert system guides the user through a series of tests, the data for each

test point is recorded in a data base (as a data vector) for later use. The parameters (vector

components) are stored in the following order for each test data vector:

Economizer OxygenlBumer Tilt!Auxiliary Air Damper Positions (1,3,5,7,9)/Fuel Air Damper
Positions (2,4,6,8)/Coal Mill Feeder Speeds (A,B,C,D)/Windbox Pressure/Unit Heat Rate/NOx.

The first fifteen parameters are control variables for boiler operation (outlined in Chapter

2) while the last three are the boiler responses to these control variables. Using the formulas for the

mill feeder speed, auxiliary air, and fuel air bias parameters (Eqs. 2.4, 2.7, and 2.16), these biases

are calculated for each test point and this information is stored in the same data file as the original

raw data values. The user then decides which inputs (either raw or bias data values) he wants to

utilize to describe a particular boiler output. Once selected, these components of the individual test

point data vectors are extracted, formatted, and written to a temporary file. This file is designated

as the "available data" file and consists of all parametric data collectoo during the expert system

testing procedure. Two other types of files are used throughout the neural network optimization

process, the training data file and testing data file. The available data file is divided into these two
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files, as described below, and each has a specific purpose in the neural network optimization

process. The data file terminology is important for understanding the neural network optimization

process and the terms arc not interchangeable.

The third section of the data preparation program is the scaling of the neural network input

and output values. Neural networks require all input and output data to be scaled within user-

defined upper and lower bounds. The bounds for baekpropagation networks arc usually -I and + I

for inputs and -0.8 and +0.8 for outputs. The NeuralWare software uses these bounds as default

values with an option to be externally defined. Furthermore, if NeuralWare software is used, this

data scaling process is done automatically for the user. However, if this particular neural network

software package is not incorporated into the NOx control package, then the scaling of data must

be done internally. In either situation, the data scaling process is the same. The scaling algorithm

finds the maximum and minimum value of each boiler input and output parameter within all of the

available data. Using these values and the scaling bounds (default or user defined), the algorithm

calculates a scaling coefficient and an offset value using the following equations:

S I
Hi-Low

cae=---
Max-Min

and

(Max*Low) - (Min*Hi)Offset =~__~~~ -
(Max-Min)

where: Max = the parameter's maximum value within all of the available data

Min = the parameter's minimum value within all of the available data

Hi = the upper scaling bound (commonly +I for inputs and +0.8 for outputs)

Low = the lower scaling bound (commonly -I for inputs and -0.8 foroutputs)
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and the final scaled parameter value is calculated by:

Scaled Data Value = (ScaIe*Actuai Data Value) +Offset (5.3)

The desired inputs and output have now been selected, scaled, and they are written to

another temporary data file. The next step is to select and extract a set of data (~IO%) from the

available data set. These extracted data are the neural network testing data and they are written to

a separate file while the remaining data are the network training data. As reviewed in Chapter 3,

the training data should equally represent the likelihood ofeach possible outcome while the testing

data are chosen to represent the entire population ofthe available data. This is accomplished in

part by the expert system and this data preparation algorithm. It was determined, and proven later

in this chapter, that, for this study, a minimum of six to eight data points are required for each

input that is used in any neural network. Therefore, if five inputs are used to model an output, then

30 to 40 data vectors will be required from the expert system program to generate a decent

mapping of inputs to outputs. One important condition is that the components of the data vectors

are spread apart in each component's range of data. This prevents the data vectors from being

clumped together in certain regions ofthe data distribution. The expert system accomplishes this

task by making the user conduct tests at conditions such that subsequent test points are a finite,

pre-determined distance apart from each other within their operating range. This ensures an equal

distribution of data within the range ofeach parameter as well as between different parameters.

The automated selection of particular data vectors for the testing data set required the

calculation of a pseudo-random number based on the computer's internal clock. The time value of

the clock is assigned as an initial value within an algorithm that calculates a number between one

and the total number ofdata points available. This number is used to designate which data vector

will be selected as a neural network testing data vector. This vector is extracted from the available
!

data and written to a separate testing data file. Since the internal clock will have changed during

this process, a different random variable wiII be generated each time. This process is repeated until
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ten percent of the available data has been selected as testing data. The remaining data that were not

selected for testing are written to a different data file to be used for training the neural networks.

Neural Network Optimization

Once the data have been pre-processed, they are ready for use in training and testing the

neural network en route to optimizing the network performance. The method used to optimize

network operation was a compendium ofdifferent existing approaches [13, 14, 23] along with

experimental results. The resulting network optimization method is a fast and reliable means of

achieving an accurate mapping of boiler inputs to outputs without loss ofgeneralization and

prediction capability.

As discussed in Chapter 3, there are numerous user-eontrolled variables for fine-tuning

neural network operation and thus improving network performance. The following discussion

outlines, in order, the neural network performance optimization process used in this study. To

simplify this explanation, it is assumed that a neural network, consisting offour inputs, is used to

model and predict the response of a single output. There is only one hidden layer between the input

layer and the output for this network. The reader is reminded that the following approach yielded

the best results for this study, but it may not work as well in different applications that utilize

neural networks to model other physical problems.

I. Optimize the Hidden Layer. With the basic network architecture of four inputs and one output

already known, the number of processing elements (PEs) in the hidden layer must be determined

before any other tuning techniques are applied. The hidden layer size is critical for providing non

linearity to the mapping so therefore it is the priority issue in network optimization. This step

requires the use of both the training and the test data sets to find the optimal number of PEs in the

hidden layer. As described by Owens and Mocclla [13], an initial guess at the number of hidden

PEs is calculated by Eq. 3.25 which, for this example, results in three hidden PEls. The network is

then trained for a user-defincd number ofcycles through the training data (learn count), which, for
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this study, was 10,000 [14]. This learn count value is used for each network optimization process

until the learn count parameter was optimized. This allows for unbiased network configuration

comparison, by having all networks trained for the same amount of time and letting the network

parameters dictate performance.

After the training session is complete, the training data are passed through the network

once in a test mode. The test mode means that no changes in the connection weights will occur as

these data pass through and the network functions only in a prediction capacity. This checks the

network's accuracy by showing how well it learned the relationships between inputs and outputs.

The test set data are then passed through the network to check how well the network can generalize

and predict an output for input data it has not yet seen. The results from these two tests are written

to output files so that they can be analyzed using the R-Square and Adjusted R-Square

performance measures described by Eqs. 3.31 and 3.32, respectively. The test that uses the training

data is analyzed with the Adjusted R-Square parameter and the test data set results are checked

with the R-Square parameter. These values are recorded for later comparison to networks with

greater and fewer hidden PEs.

The user now increments the number ofhidden PEs by one and this process is repeated.

The author determined that architectures with up to five additional hidden PEs above the initial

guess should be trained and analyzed using this method. Also, network architectures with two

fewer hidden PEs than the initial guess should be examined. Therefore, if the initial number of

hidden PEs is three, architectures with 1,2,4,5,6, 7, and 8 hidden PEs should be analyzed. Each

ofthese networks will have both the Adjusted R-Square and R-Square parameters calculated for

them and these values are tabulated and compared, as in Table 3.2. The network architecture that

has the best combined performance in accuracy and generalization is chosen.

Occasionally the situation arises where t4e best architecture may have several more hidden

PEs than the initial guess. This calls for a check on whether the network satisfies the criterion that

the network be overdetermined. This entails comparing the number of connection weights to the
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nwnber of available data vectors by applying Eqs. 3.33, 3.35, and 3.36. If the best network.

architecture results in a model with too many connection weights and an insufficient mapping is

more likely to occur, the next best architecture is chosen.

Once the optimal nwnber ofhiddcn PEs is determined, that network architecture is used

for the remaining optimization steps. The training data and the test data arc then re-eombined into

one data set which contains all available data. Training and testing the network with this single

data set is so that this network model secs all of the data and can generate a better mapping than by

holding back data for testing only [131. The total data set is used until the final optimization step,

finding the optimal learn count, is reached. At that point the data are again separated into the

original training and testing data sets.

2. Optimize the Transfer Functions. Backpropagation networks perform best when

using combinations of the Sigmoid, Tanh, Sine, and Linear functions (Eqs. 3.14 - 3.17). Since

most backpropagation network applications require only one hidden layer, optimizing these transfer

functions is not difficult. The author determined that throughout the study, the following

combinations oftransfer functions yielded the best results:

Table 5.1

Optimal Network Layer Transfer Function Combinations

Transfer Function Hidden Layer Output Layer
Combination # Transfer Function Transfer Function

I Tanh Tanh
2 Tanh Linear
3 Sigmoid Linear
4 Sine Sine
5 Sine Linear
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The most common combinations throughout this study were the Tanh-Tanh (combination

#1) and Tanh-Linear (combination #2) transfer functions. This is expected since the nature of the

backpropagation network, in this study, is to find deviations from average behavior and the

hyperbolic tangent function is the most suited for this purpose [14]. As before, the network is

configured individually with each ofthese combinations, trained for 10,000 cycles, tested using the

same data, and the R-Square parameter is calculated and recorded. The best R-Square value out of

all combinations determines which transfer function combination will be used.

3. Optimize the Epoch Size. With the network architecture and layer transfer functions

determined, the smaller refinements are now optimized. Recalling that the epoch size determines

how often the network connection weights are updated, this parameter finds the underlying

frequencies within the data. By optimizing this parameter, the network is allowed to learn the data

at an optimal pace, analogous to a student being able to comprehend a certain quantity of

information in a given time period.

Optimizing the epoch size is a two part operation. First the epoch size is set equal to two,

the lowest value without causing incremental updates (epoch=l). Using all of the available data to

train and test the network, the same procedure is conducted as before. Each subsequent trial has the

epoch size increased by two so that even values of epoch size are used. It was determined by the

author that increments ofone did not yield significant enough differences in network performance

to base optimization decisions upon so the value of two was picked to simplify the process. This

approach continues up to an epoch equal to 20, the author's upper limit for this parameter. This

limit was determined by adding 25% to the NeuralWare default value for epoch size (16). No

significant improvement in network performance was ever observed with epoch sizes grCflter than

""this limit.
»

After all ten epoch sizes, from two to twenty, have been examined, the three epoch sizes

that yield the best R-Square performance are selected for a second round ofanalysis. To ensure
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that the epoch sizes would repeatedly result in the best learning capability, each ofthe three epoch

sizes are trained and tested three more times apiece, using the same method, and their R-Square

values recorded. The epoch size that yields the highest average R-Square value is chosen for

continuing the network optimization.

4. Optimize the Learning Rate and Momentum Coefficient. While the above parameters are

optimized, the user can observe the network's error curve being generated as training continues.

This NeuralWare graphic is the root mean square (RMS) error curve and it scales, between 0 and

1, the error between actual and predicted output values. Ifthis curve does not smoothly decrease

but instead has large fluctuations, then changes to the learning rate and momentum coefficient must

be made. The rule of thumb is to proportionally lower both values while maintaining the output

layer's values at 1/2 the hidden layer's values. This approach appears in the literature [9, II, 15]

and it worked well for the author while experimenting with the neural network parameters. No

cases ofextreme error fluctuation were observed during this study and the majority of the networks

functioned nicely using the NeuralWare default values for learning rate and momentum [11].

5. Optimize the Learn Count. Up to this point, the number of network data presentation

cycles has been set at 10,000. In this last phase of network optimization, this parameter is varied

so that the best combination ofaccuracy and generalizing capabilities are acquired. Neural network

learning is similar to calculating the coefficients ofa non-linear, higher order polynomial that can

trend the interaction of independent variables to a dependent variable. One does not wish to fit a

curve that passes through each data point (overtraining) because if the function is given input

values that were not used in determining its coefficients, it will fail to predict an output with

reasonable accuracy. Therefore, a balance must be struck between accuracy and prediction

capability which is the reason for optimizing this parameter.

The data are again split into the same training and testing sets used previously to optimize

the number ofhidden layer PEs. Using all of the previously optimized network parameters, the
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network is allowed to learn for any number of cycles. The training and testing set are passed

through in a prcdiction-only mode and the same performance statistics are calculated and recorded.

The user then selects a different learn count and the process is repeated. Any increment in the learn

count can be used but the author determined that a minimum of 500 is required to achieve

significant changes in performance. Again, the learn count that yields the best combination of R-

Square and Adjusted R-Square values for the testing and training set, respectively, is the optimal

learning count.

Once the optimal learn count is identified, the training and testing sets are again combined

and the network is trained using all of the available data for the optimal number oflearning cycles.

The data are then passed through the network in a testing mode to get a final evaluation on the

network's accuracy. The results from this final test run are used in evaluating the overall network

performance, using the methods described in Chapter 3. Also, the final connection weights between

processing elements are recorded for determining the percent contribution of each input on the

network output response. These two topics are examined later in this chapter.

6. Optimize Other Parameters. There are many other parameters that the user can adjust

to more finely tune the network operation. However, after many experiments, only the parameters

described above had enough impact on the network optimization process to be worth incorporating

into the NOx control software package. The standard default functions that are most common to

backpropagation networks were used during the optimization process. These functions are:

Standard Error Function (Eq. 3.7)

Norm Cumulative Delta Learning Rule

Normal Summation Function (Eq. 3.23)

These complete the variable parameters that govern backpropagation network operation as

described in Chapter 3. If time is ofthe essence, all default values within the NeuralWare software

package usually provide an acceptable "rough" mapping ofthe selected inputs to outputs.

99



Otherwise, the above steps will get an accurate network operating to its best potential in a minimal

amount of time.

NEURAL NETWORK PERFORMANCE ANALYSIS

The neural network has now been configured such that it gives the best mapping of inputs

to outputs based upon the R-Square performance parameter. However, this does not provide much

quantifiable information about what this mapping means in physical process terms. The user

requires means to identify just what the optimized network represents and what it can tell him

about the system being modeled. Several different methods were used in this study to accomplish

these goals, and each ofthe neural networks created were subjected to this analysis. The analysis

methods are described below and the individual network results are detailed later in this chapter.

Performance Parameters

The performance parameters used in this study were chosen for their ability to capture the

essence ofthe physical meaning of the optimized neural network. The R-Square and Adjusted R

Square were used to evaluate the network during different stages of network optimization. With the

optimization complete, two additional parameters were used so that different optimal network

configurations could be compared to one another. These parameters are the ·average difference and

the average percent error, mathematically defined in Eqs. 3.26 and 3.27. For the NOx networks,

where the actual and predicted output values were less than one, the author used the average

percent error for network comparisons. For heat rate networks, with output values in the

thousands, the author relied more upon the average difference.

When a network is optimized and tested, the actual output value and the network-predicted

value (for each vector within the data set) are written to an output file. These output files were then

evaluated through use ofMicrosoft Excel 4.0, a spreadsheet software package [33]. This software

allowed for many different analyses ofthe network which are subsequently covered in this chapter.

In the network results sections that follow, the R-Square, Adjusted R-Square, average difference,
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and average percent error are all presented for the full load and 45 MW load levels. These

performance parameters are also used to measure the changes in network performance when less

data and clustered data were used to train and optimize networks.

Neural Network Connection Weight Analysis

As described earlier, once a network is optimized, it performs only in a predictive mode

and no further changes to the PE connection weights occur. The following analysis, taken from

Garson [34] and Chitra [15], allows the user to determine the amount that each input contributes to

the network output. It is important to note that only the absolute values of the weights are used and

that the network bias connection weights are not included. The reader is reminded that the network

bias PE is connected to the hidden layer PEs and the output PE. The bias simply provides input

values into these PEs in case the actual input values to these PEs are equal to zero. If the PE inputs

are equal to zero for several cycles, learning does not progress. Therefore the bias PE acts as an

"electrical ground" for the network so that numerical information continues to flow through the

network and learning is never suspended by bad or missing data vector components.

The connection weights (CWs) between the input layer and the hidden layer are extracted

from the optimized network and arranged in a matrix. Setting NV = the number of input PEs and

NH =the number ofhidden PEs, the matrix has NH rows and NV columns. The weights are

assigned positions based upon the notation in Table 3.1, where the first subscript G) is the

destination PE and the second subscript (i) is the origin PE. Table 5.2 displays this matrix

configuration.
Table 5.2

Input Layer to Hidden Layer Connection Weight Matrix

Input #1 Input #2 • • Input#NV
Hidden PE #1 Wll W12 WINY
HiddenPE #2 W2I W22

• Wii

•
Hidden PE #NH WNHI WNHNV
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The indicial notation indicates that i = the row index andj =the column index Taking the

sum of all weights in each ofthe hidden PE (i) rows, across all of the input PE (j) columns, or::

(5.4)

each weight value within each hidden PE row is divided by this sum of the weights within the row.

This calculates the weight fraction ofthe ith hidden PE from the jth input PE, or:

W.F.= __'J_

I) "W..
LJ IJ

j

(5.5)

Now, instead ofPE connection weights, the weight fractions are the components of the matrix.

At this point, the connection weights between the hidden layer and the output layer are

introduced. Since this study used only single output networks, this connection weight matrix is an

NH x I column matrix. The notation OJ represents the connection weight from the ith hidden PE to

the output PE. The input to hidden layer weight fraction matrix and the hidden layer to output

connection weight matrix are thus written as:

Table 5.3

Hidden Layer to Output PE Weight Fraction Matrix

FlI FI2 • • F1NV 01
F21 F22 F2NV' 02
• Fjj • •
• • •

FNH1 • • • ~NV ONH

C1 C2 • • CNV
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The bottom row is a I x NV row matrix which quantifies the contribution of the jth input to the

output. Each ofthese elements is calculated by:

Cj =LFjj*Oj
i

(5.6)

With the input contributions calculated, the percent contribution ofeach input is found by:

C.
p. =-1-*100

J LC j
j

and the sum ofthese contributions should equal 100 percent.

(5.7)

Analyzing the connection weights is extremely useful when various inputs are being

combined differently to determine which have a significant effect upon the output response. If the

user has background knowledge of the physical system, this analysis serves as a check to see if the

network is operating in a similar capacity. For example, in this study, the creation ofNOx at full

load is extremely dependent upon the level ofeconomizer oxygen, as seen in Figure 2.2. If the

connection weight analysis resulted in the economizer oxygen percent contribution being

significantly smaller than parameters known to be less important, than the neural network has not

correctly learned the underlying input interactions.

Graphing Neural Network Trends

If the connection weight analysis yields results that are compatible to actual system

operation and response, the next check is to graph the various trends that the neural network has

learned through the training process. This requires programming the network equations within a

spreadsheet [33]. The final optimal network settings for data scaling, transfer functions,

summation and connection weights are incorporated into a spreadsheet, similar to the way the

equations appear in Chapter 4 (Eqs. 4.13 - 4.16). Once the functions are embedded in the
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spreadsheet, all of the available data is copied into these equations. If the output responses from the

spreadsheet equations are the same as the predicted output values from the neural network test nul,

the network equations were successfully transferred. Although this seems trivial, the equation

transposing process from the NeuralWare software to the spreadsheet software was very

susceptible to error.

Once the equations are programmed, incremental changes to the input parameters are made

in the spreadsheet and the subsequent network output response is calculated. These responses are

graphed under various constant parameter conditions and then they are compared to the boiler

operating graphs which appeared in Chapter 2. The same trends should appear within the neural

network equations as in the observed physical trends, with the exception of slight offsets in the

curves to account for the relative error within the network equations. This error, although present,

should not be significant to the point of exceeding the amount of scatter in the original physical

data.

This is the final check on the neural network to ensure that the physical characteristics of

boiler operation at the Potomac River Station were modeled accurately but not too rigidly.

Although these different network checks are time consuming and involved, they are extremely

important to the overall success of the entire optimization process. Ifa poor mathematical model is

passed to the numerical optimization routine, then the user will be supplied with unreliable an~ Of,

unfeasible results.

Reduced and Clustered Data Tests

Once the full load and 45 MW load level neural networks for NOx and unit heat rate were

optimized and functioning properly, experiments regarding data quantity and quality were

examined. This was important for future boiler optimization problems since the amount of

available data for training and testing neural networks is limited by time and cost constraints at the
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plant. If an accurate and reliable network could be generated with fewer data vectors, then the

lower limit of this data requirement had to be detennined.

The full load and part load data bases were analyzed first to observe the distribution of

data for each input. Then, the data available for training was reduced by 25%, 50%, and 75%. A

neural network was trained, optimized, and tested for each ofthese reduced data cases. Each

perfonnance statistic was calculated and graphed with each statistic being a function ofthe amount

ofavailable data. A "break-even" point is observed in each instance. where accuracy drops below

an acceptable level. These graphs appear in each ofthe network's results section.

The effect of using data that was clustered within a small range of a single parameter was

the second experiment. This was done to check the effects ofpoorly distributed data. The clustering

ofdata resulted in training data set size equivalent to the 50% data reduction case, but now the

data were unevenly distributed. Guidelines developed from this study were incorporated into the

expert system algorithm so that as the user retunes boiler operation to achieve efficient, 10w-NOx

perfonnance, the data points have the necessary distance between them. Having adequate distance

between data points prevents the effects ofclustered data. The results for each load level will be

discussed after the NOx and unit heat rate neural network results sections.

FULL LOAD NETWORK RESUL1S

Achieving NOx compliance at the full load level without sacrificing unit heat rate is a

major objective at Potomac River. Although the lower loads are important, NOx compliance is

easier to achieve at lower loads. For this reason, the full load networks received the greatest

amount of scrutiny in this investigation.

NOx Neural Network

This network was the forerunner of all subsequent networks and its available data set

consisted of 50 vectors. The final decisions on many ofthe neural network designs and

optimization considerations were made using this network. The comparison between which inputs
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were finally selected to model boiler operation is reviewed first; followed by the optimal network

settings and the connection weight analysis. The network performance results are compared to

parametric test data obtained by D'Agostini, et al. [4]. Finally, a comparison between the neural

network boiler trends and the observed boiler physical trends is included as a finaI perfonnance

analysis.

Input Selection. Fifteen independent control variables for boiler operation were identified

atPotomac River by Energy Research Center (ERC) engineers. Since it was not practical to

perform field testing for each variable, the bias parameters derived in Chapter 2 were used to

characterize the mills and air damper settings. The full load NOx network had several different

input configurations combining physical boiler settings and bias parameters. A statistical

performance comparison ofthese networks follows, along with the finaI network configuration that

was used throughout the remainder ofthis study.

Nine different networks were investigated to determine which combination of inputs gave

accurate results and were reliable for numerical optimization. The following list details the

different combinations of inputs used to predict NOx:

Net #I =NOx = f(02)

Net #2 =NOx =f(Tilt)

Net #3 = NOx = f(02, Tilt)

Net #4 =NOx =f(02, Tilt, Alpha, Phi)

Net #5 = NOx = f(02, Tilt, FA2, FA4, FA6, FA8, Alpha)

Net #6 = NOx = f(02, Tilt, AAI, AA3, AA5, AA7, AA9, Phi)

Net #7 = NOx = f(02, Tilt, Mill A, Mill B, Mill C, Mill D, AAI, AA3, AA5, AA7, AA9, Phi)

Net #8 = NOx = f(02, Tilt, Mill A, Mill B, Mill C, Mill D, FA2, FA4, FA6, FA8, Wind, Alpha)

Net #9 = NOx = f(02, Tilt, Mill A, Mill B, Mill C, Mill D, FA2, FA4, FA6, FA8, AAI - AA9)

where: 02 = economizer oxygen (%)

Tilt = degree ofburner tilt from the horizontal

Alpha = auxiliary air bias, Eq. 2.7
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Phi = fuel air bias, Eq. 2.16

FAi = fuel air damper position (degree of openness)

AAi = auxiliary air damper position (degree of openness)

Mill i = mill feeder speed (rpms)

Wind = windbox pressure

The following table reflects the performance ofeach of these networks. The reader is

reminded that the closer the R-Square and Adjusted R-Square values are to one, the more accurate

the network prediction. The R-Square parameter reflects the network prediction accuracy while the

Adjusted R-Square accounts for how well the different network architectures predict output,

subject to the number of inputs used in, the network. The Adjusted R-Square is the parameter to use

for comparing the different network architectures.

Table 5.4

Comparison of Experimental Full Load NOx Networks

R-SQuare Adiusted R-SQuare Average % Error
Net#1 (1 input) 0.7515 0.7464 3.47
Net#2 (1 input) 0.3690 0.3558 5.21
Net#3 (2 inputs) 0.9094 0.9060 2.79
Net#4 (4 inputs) 0.9187 0.9081 2.59
Net#5 (7 inputs) 0.9270 0.9094 1.89
Net#6 (8 inputs) 0.9484 0.9104 1.61
Net#7 (12 inputs) 0.9502 0.9211 1.43
Net#8 (12 inputs) 0.9573 0.9402 1.31
Net#9 (15 inputs) 0.9695 0.9507 1.26

Several factors had to be considered to decide which network was the best choice for the

NOx prediction model. First, for every independent variable (or input), there must be a sufficient

range of values that variable can have and during parametric testing that range must be adequately

covered. One group ofvariables, the fuel air damper positions, were identically set and were

always evenly adjusted. This lack ofdiversity within the fuel air damper setting data makes these

damper settings a poor choice for input parameters. Furthermore, with every additional input, the
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amount of connection weights increases based upon Eqs. 3.25 and 3.33. This requires substantially

more data vectors, which must be obtained by testing, which may not be feasible. Finally, when the

networks with more than seven inputs were optimized using IMSL subroutines [31], the

optimization algorithm tended to extrapolate to unreasonable answers. This was due to the paucity

ofavailable data to train these larger networks. Overall, if there is no significant improvement in

the network performance, then additional inputs are not worth the added requirements to provide

data for them.

In light of these factors, the best choice of inputs is Net #4, which has NOx as a function

ofeconomizer 02, burner tilt, auxiliary air bias, and fuel air bias. At full load, all of the mills are

running at near maximum rpm, with very little difference between their speeds. Therefore,

networks with mill feeder speeds have too many parameters with too little variation among and

between each variable. Similarly, the individual damper positions are not varied enough throughout

the data set. By using bias values instead ofthe actual settings, the network has discrete data

values for learning.

By using a four input network, up to six hidden PEs can be incorporated into the network

and it would still be an over determined model [13]. This allows for a wider selection of network

optimization choices. Networks with more inputs would either have too few hidden PEs or too few

data points to adequately train the network. Finally, the success achieved using the four input NOx

network made it the architecture of choice for all other networks investigated in this study.

Network Settings and Performance Results. After performing the network optimization steps

outlined previously in this chapter, the final settings and performance results for the full load NOx

network are as follows:
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Table 5.5

Full Load NOx. Neural Network Optimal Settings

Number of Hidden Layer PEs:
Transfer Function: Hidden Layer/ Output Layer
Epoch Size:
Learn Count:
Learn Rate: Hidden Laycr/ Output Layer
Momentum: Hidden Layer/ Output Layer
Error Function:
Learning Rule:
Summation Function:

Table 5.6

3
Tanh / Lincar

2
35,000

0.3 /0.1
0.4 /0.4
Standard

Norm-Cum-Delta
Normal Sum

Full Load NOx Neural Network Performance Results

Performance Measure

R-Square = 0.9187
Adj. R-Square = 0.9081
Avg. % Error = 2.59 %
Avg. Difference = 0.01 (Ib/MBtu)

Input Percent Contribution

Economizer 02 = 23.4%
Burner Tilt Angle = 45.2%
Auxiliary Air Bias = 22.7%
Fuel Air Bias = 8.7%

NOx Neural Network Trends vs. Observed Physical Trends. The following series of figures is

presented for comparison to the physical boiler trends shown in Chapter 2. These figures detail the

prediction accuracy of the NOx neural network model using the training data, as well as network

model trends using hypothetical inputs. The trend graphs show how well the neural network

leamed the underlying interactions of the boiler input data instead ofonly learning the training

data.

In order to understand any discrepancies between the actual boiler behavior and the neural

network model, the distribution ofthe training data must be discussed. If a network is trained on

incomplete or inconsistent data, the network's ability to accurately generalize boiler behavior will

be limited. Figures 5.1 through 5.4 show the number ofUata points within specified ranges for each

input parameter. One can see that there arc data available throughout the data ranges for each
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parameter, although some of the distributions are one-tailed. Economizer oxygen (Fig 5.1) and

auxiliary air bias (Fig 5.3) are more skewed than the other parameters and the burner tilt data (Fig

5.2) has the best distribution ofall parameters. The distribution of these data dictated the values

that were assigned to the fixed parameters for the trended data graphs that follow. If the

distribution was spread across a certain discrete range, then the average value within that range

was used for fixed parameter values. If the data was skewed, then the mode ofall data for that

parameter was used for the fixed parameter value. For example, Figure 5.3 shows that auxiliary air

bias values of 0.50 and 0.83 were most common throughout the full load data. Therefore, these

values were used as the fixed values (constants) for network trend plots such as NOx versus

economizer oxygen at constant auxiliary air bias (Figure 5.7).

The distribution ofdata for each parameter acts as a check for the network reliability. If

the network equations give poor correlations and trends, examining the data distribution usually

reveals the reason for these results. If the network equations show trends and relationships where

there were little or no data to support such results, then the trend is suspect.

Figure 5.5 depicts a scatter plot of the network predicted NOx and the actual NOx values

versus economizer oxygen at full load. Included are the linear curve fits for each set ofdata. Not

only is the accuracy ofthe predicted NOx very good, the trend for each set ofdata, depicted by the

linear curve fits, is identical. This linear correlation plays a significant part in the optimization

process as the minimum economizer oxygen level produces the lowest attainable NOx.

The effect of burner tilt angle on the predicted NOx is similar to that of the actual NOx

and is shown in Figure 5.6. A parabolic curve fit through the predicted NOx seatter plot has the

same shape and intercept as the actual NOx plot in Figure 2.4. It is readily observable that the

minimum NOx occurs within the burner tilt range oHive to ten degrees above the horizontal. As

Table 5.6 shows, economizer oxygen and burner tilt contributed the most towards the production of

NOx. Auxiliary air bas is also a contributor, but more in the aspect of being coupled with the

oxygen level and burner tilt position.
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The following graphs use the neural network equations to trend data other than the actual

parametric data used to train the network. The data for these trends were generated by

incrementing through the different independent parameter data ranges. These data were then

combined with fixed values for certain independent parameters, as described earlier, and plotted.

The plots depict how NOx varies with changes in the independent parameters to show how well the

neural network learned boiler operation. These trends are compared to observed boiler operation

detailed in D'Agostini's work [4].

Figures 5.7, 5.8 and 5.9 show the interaction ofeconomizer oxygen and burner tilt angle.

Each of these figures was created with a constant auxiliary air bias of 0.5 (moderate overfire air)

and a fuel air bias = 1.2. These values were used because they appeared often in the available data

(Figures 5.3 and 5.4) for training the network and they were the values selected for full load

operation by D'Agostini, et ai. [4]. The predicted NOx versus economizer oxygcn with all other

parameters held constant reveals the same linear relationship as when all of the other parameters

were allowed to vary. This is consistent with Figure 5.5, although in that figure the auxiliary air

bias and fuel air bias parameters are varied and more scattcr is within the trend. Similarly, Figure

5.8 has the same parabolic curve trends as seen earlier in Figures 5.6. The tails of the curve do not

steepen as much in the constant parameter graphs, but the minimum NOx for each curve is in the

same burner tilt range of five to ten degrees above the horizontal.

Figure 5.9 depicts the economizer oxygen and tilt interaction in the NOx prediction model

at fuIlload. It has the combined trends of the two previous plots with a parabolic curve that

linearly shifts upward in NOx as the economizer oxygen level increases. The minimum NOx still

occurs where it did previously, at the minimum oxygen level and betwccn the positive five to tcn

degree burner tilt angle. This three dimensional solution surmce reinforces the important effects of

oxygen and burner tilt angle on NOx production at full load.

The third most important input parameter was auxiliary air bias and thcrcfore its effect

upon the oxygen and burner tilt interaction needed to be explored. Figure 5.10 shows this effect at
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different constant parameter values along with a fuel air bias of 1.2. The minimum NOx is still

dictated by the lowest oxygen level and the ten degree burner tilt angle. When the tilt is held

constant and the oxygen level is raised, the curve shifts upward, denoting an increase in NOx.

Furthermore, at constant tilt, the two curves have identical parabolic shapes. Overall, it is apparent

that a moderate degree ofoverfire air at these different conditions produces the lowest NOx. The

minimum NOx occurs at an auxiliary air bias of 0.583, which corresponds to auxiliary air damper

positions listed in Appendix D.

The final figure in this series, Figure 5.11, shows a three dimensional plot of the burner tilt

and auxiliary air bias interaction in producing NOx. This surface shows the two dimensional

parabolic curves of burner tilt and auxiliary air bias forming a three dimensional, concave,

parabolic solution surface. The minimum NOx occurs at a burner tilt of approximately +7 degrees

and an auxiliary air bias between 0.5 and 0.6. Ifa fourth dimension could be viewed, one would

sec that this parabolic surface would linearly shift up or down depending upon the economizer

oxygen level. Therefore, the optimal conditions for full load boiler operation, based upon these

plots, are the above settings for tilt and auxiliary air bias at the minimum safe economizer oxygen

level possible. This corresponds exactly with the findings ofD'Agostini, et al. [4]. The fuel air bias

did not playa significant role at this load level in neither the neural network model nor in

D'Agostini's findings.

Heat Rate Neural Network

Modeling the boiler heat rate with neural networks was not as successful, in terms of

accuracy, as modeling the creation ofNOx. However, enough training data was available for the

netv,rork to create a fairly well-generalized mapping of boiler settings to unit heat rate. The same

inputs were used in the full load heat rate net\vork as in the full load NOx net\vork. This was done

so the two networks could be compared more accurately when using all available training data and

under reduced and clustered data conditions. The biggest obstacle to achieving a more accurate
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mapping is the lack of a boiler cleanliness factor. As discussed in Chapter 2, the heat transfer

within the boiler is affected by slag deposits upon the waterwall tubes. This, in tum, affects the

steam temperatures and thus unit heat rate. Since no cleanliness factor was available, the training

data contained cases of similar boiler input values which resulted in very different unit heat rate

values. This confused the neural network during training and therefore the model's accuracy is not

as good as it could be ifthere were a distinguishing input parameter to characterize boiler

cleanliness.

The reader may wonder why a network using both NOx and heat rate as outputs was not

attempted. This option was attempted, but a few factors dictated the use of separate networks. The

first was the lack oftraining data. A combined output network resulted in significantly more

connection weights and thus required more data to properly adjust these weights to optimal

operating conditions. Second, the lack ofa boiler cleanliness factor would confuse the network and

decrease its mapping potential, as just described. It was deemed better to have only one output

affected by this missing parameter instead of two. Finally, the numerical optimization algorithm

only allows for one function to be optimized at a time. For this reason, the heat rate neural network

output equation was optimized while the NOx network equation was used as a penalty function, as

discussed in Chapter 4.

Network Settings and Performance Results.

Table 5.7

Full Load Unit Heat Rate Neural Network Optimal Settings

Nwnber ofHidden PEs:
Transfer Function: Hidden Layer / ,Output Layer
Epoch Size:
Learn Count:
Learn Rate: Hidden Layer / Output Layer
Momentum: Hidden Layer / Output Layer
Error Function:
Learning Rule:
Swnmation Function:
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Table 5.8

Full Load Unit Heat Rate Neural Network Performance Results

Performance Measure Input Percent Contribution

R-Square = 0.5890 Economizer 02 = 16.5%
Adj. R-Square = 0.5524 Burner Tilt Angle = 33.9%
Avg. % Error = 0.2941 Auxiliary Air Bias = 27.9%
Avg. Difference =26.5 (MBtuJkWh) Fuel Air Bias = 21.7%

Table 5.8 highlights the decreased accuracy ofthe heat rate neural network compared to

the NOx network, at full load. However, considering the amount of scatter in the training data and

the lack of a boiler cleanliness factor, an average difference of~27 BtulkWh is surprisingly low.

The unit heat rate also has lesser dependence on economizer oxygen levels than the NOx network

but a greater dependence upon the auxiliary and fuel-air biases. The parameter that links the NOx

and heat rate networks together is the burner tilt angle, which is detailed in the following section.

Unit Heat Rate Neural Network Trends vs. Observed Physical Trends. The same approach as

in the NOx network case was taken to graph the trends within the heat rate network equations. The

first, Figure 5.12, shows the predicted heat rate as a function ofeconomizer oxygen for all ofthe

test conditions used in training the neural network. These results show that while heat rate depends

on economizer oxygen, it is also strongly affected by other operating parameters. Indeed, Figure

5.13, shows a strong dependency ofheat rate on burner tilt angle. The curve fit applied is parabolic

but the plot could also be represented by a straight line. In either case, the unit heat rate shows

improvement with increasing tilt.

Physical trends at constant parameter conditions were graphed starting with economizer

oxygen mFigure 5.14. This graph shows that as the burner tilt increases, the dependency ofheat

rate on economizer oxygen decreases. lbis is indicated by the lessening degree of slope in the linear

fits as the tilt increases. As with NOx, the unit heat rate increases with increasing levels of

economizer oxygen and the minimum heat rate occurs at the minimum safe oxygen level. lbis
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graph was plotted using the same constant auxiliary air bias value of 0.50 and fuel-air bias

parameter of 1.2.

Figure 5.15 and 5.16 depict the interaction ofauxiliary air bias and burner tilt angle. At

constant levels ofeconomizer oxygen, the trend ofdecreasing heat rate with increasing burner tilt is

reinforced. Figure 5.15 shows this relation at a moderate degree ofoverfire air. Figure 5.16 shows

the same conditions except that the auxiliary air bias is increased to 0.83, a higher degree of

overfire air. At an economizer oxygen level of 1.6%, this increase in overfire shifts the curve down

~90 BtulkWh, a significant decrease. However, at an economizer oxygen level of2.0%, this

increase in the amount ofoverfire air results in a maximum heat rate increase of~50 BtulkWh.

These results suggest that if the minimum safe economizer oxygen level is below 2.0%, then

increasing the amount ofoverfire air should decrease the unit heat rate. The more oxygen present in

the system, the less overfire air should be applied to the boiler operating conditions.

The dependency of unit heat rate on economizer oxygen and tilt is shown in Figure 5.17. It

combines the linear dependency of heat rate on oxygen and the parabolic dependency on burner tilt

angle. The flattened portion ofthe surface in the upper right comer is due to the upper limit of the

dependent axis scaling value (set at 9100 Btu/kWh for graphical presentation purposes), not

because ofthe neural network model. Again, it is surmised that a minimum economizer oxygen

gives a minimum heat rate. Burner tilt angle, however, can be anywhere within the range ofzero to

twenty degrees above the horizontal without substantial increases in unit heat rate. This is

important for the numerical optimization process since the degree of burner tilt impacts strongly on

the amount ofNOx produced.

Figure 5.18 shows the unit heat rate dependency on auxiliary air bias in better detail. At

lower oxygen levels and higher burner tilt angle, one expects the heat rate to be lower. In both

curves it is also seen that the amount ofoverfire air has a point where adding more overfire air to

the boiler increases the unit heat rate. This point occurs within the auxiliary air bias range of 0.583
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to 0.667. The damper positions for these biases are listed in Appendix A and correspond to a

moderate amount of overfire air.

The combined effects of burner tilt angle and auxiliary air bias are plotted in Figure 5.19.

As with NOx, this solution surface would shift up and down the heat rate (z) axis depending upon

the amount ofeconomizer oxygen. Furthermore, as more oxygen is introduced, the auxiliary air

bias curve would steepen, as seen in the previous figure, thus causing an increase in unit heat rate.

Finally, in Figure 5.20, the predicted unit heat rate and NOx are plotted against each other

as in Figure 2.15. The scatter plots are similar and the basic trend inferred from both plots is that

as the NOx level increases, the unit heat rate decreases. This final check was done to see how well

the output of both neural network models compared to observed data, since each network was

generated independently ofthe other.

It is evident that the boiler optimization problem has been successfully transposed. The full

load neural networks have created a multivarible curve fit consisting offour independent

parameters. Now, instead ofoptimizing actual boiler operation, the user now optimizes a

mathematical model of the boiler. The correlations derived by D'Agostini [4] in Table 2.2 used

multivariable regression techniques which required a great deal ofuser knowledge, interaction, and

time to formulate them.

Full Load Reduced and Clustered Data Experiment Results

The last topic, in the full load neural network study, was to examine the effects of smaller

training data sets and clustered training data on neural network performance. This was done to

verify the sensitivity ofneural network training on data quantity and quality. Originally, fifty data

vectors comprised all of the available full load data. These fifty points were reduced to training

data sets of37, 25, and I3 data vectors reflecting a 25%,50%, and 75% reduction in the amount

of data, respectively. For each reduced data set, a NOx and unit heat rate neural network, with the

"
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same architectures used previously, were trained and optimized. This was accomplished using the

same strategy described earlier in this chapter.

After the networks were optimized, they were tested using 10 out of the 13 data vectors

that were not included in any ofthe reduced training data sets. These ten vectors were selected such

that all data vector components were within the same ranges as the training data vector

components. This prevented any of the networks from being tested with data that were not within

the training data boundaries, a situation that would skew the network performance. After

optimizing the network's operation and conducting the performance test runs for the training and

testing data sets, the usual performance parameters were calculated. Each parameter was plotted

against the percent ofavailable data used to train the network. This showed the effects of reducing

the training data set size on the networks' performance capability.

The clustered data experiment was done to examine the effects of using data clustered

around a small range ofone input parameter. Due to the small amount ofavailable data, this could

only be done with the economizer oxygen input parameter. This data vector component was the

only one which had a sufficient amount ofvalues within a reduced range. This range consisted of

24 data vectors which had an economizer oxygen value between 1.75% and 2.0%. This clustered

data set was used to train a NOx and heat rate neural network using the same network architecture

and optimization process as in previous computational experiments. The final performance

parameters were calculated for the training and testing data sets and these values were tabulated to

show the differences in network performance.

Figure 5.21 shows the effects of reduced and clustered data on the NOx neural network's

R-Square performance statistic. The R-Square is the statistic that ranks the network's accuracy,

between zero and one, to predict output responses to input data it has seen (training data) and has

not seen (testing data). If a network is trained on a smaller data set, it more easily learns the fewer

number ofnumerical relationships between the inputs and their corresponding outputs. Thus, the

R-Square for the training data improved as fewer data were used for training. However, the
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network learns less about the overall system behavior since the training data do not sufficiently

represent the "big picture" and overtraining commonly occurs. Overtraining is quickly identified by

the network's performance in predicting outputs for the test set inputs. As the amount of training

data is reduced, the network's ability to learn the general relations and interactions of the inputs and

output decreases. This explains why the network performs well on predicting outputs for the

training data but poorly on the test data.

Figure 5.22 and 5.23 depict the average difference and the average percent error versus the

amount oftraining data, respectively. The average difference and average error of the training set

decrease with smaller data set sizes while the test set results show an increase in the prediction

error. These are caused by the same reasons just described. In each instance, the NOx network has

a performance "breakpoint" around 75% ofthe available data for the R-Square and 50% for the

average difference and average percent error. This means that, out of 50 available data vectors

from Potomac River testing, between 50% and 75%, or 25 to 35 data vectors, are necessary for

achieving an acceptable neural network mapping of boiler inputs to NOx output. The author

concluded that six to eight data vectors are thus required for each input for the full load NOx

network.

Training a network on clustered data gave a similar response to that of the reduced data

experiment. The full load data were not conducive to training a network with data vectors clustered

within a small range. Only economizer oxygen had a sufficient amount ofdata points (24) that

were within a small range (1.75% to 2.0%) for examining the effects ofclustered data on neural

network training. Since economizer oxygen was the only parameter that could be investigated, the

author believes that the clustered data experiment was skewed due to the inability to cluster the

data about other input parameters. Furthermore, because the NOx network equations were strongly

linked to economizer oxygen, the final performance results for the training and testing data may be

bettcrthan the results of trials conducted using different data clusters. This may lcad one to suspect

that the full load clustered data results are better than should be expected. The results ofclustering
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•

closely match those of the 50% reduced training data experiment because the clustered data set had

24 data points while the 50% reduced training set had 25 data points.

The same analysis was done for the unit heat rate network using reduced training data set

sizes. These results are depicted in Figures 5.24,5.25, and 5.26. In these cases, the "breakpoint"

occurs closer to 75% ofall training data available to achieve an accurate yet generalized mapping

of inputs to outputs. This translates to a range of32 to 40 data vectors, or 9 to 10 per input

parameter. The same clustered data results for the NOx network were observed in the heat rate

network, even though the effect ofeconomizer oxygen was not as important to heat rate as it was

for NOx. More experiments of this nature are required in the future when more parametric data

become available from tests conducted at Potomac River. The clustered data network results are

detailed in the following table:

Table 5.9

Comparison of Full Load NOx and Heat Rate
Reduced Data and Clustered Data Networks

NOx 50% Data Clustered Heat Rate 50% Data Clustered
R-Square Train: 0.945 0.965 R-Square Train: 0.756 0.781
R-Square Test: 0.819 0.807 R-Square Test: 0.450 0.384
Avg. DiffTrain: 0.007 0.006 Avg. DiffTrain: 15.8 13.47
Avg. DiffTest: 0.018 0.020 Avg. DiffTest: 45.0 49.63
Avg.%Err Test: 1.424 1.242 Avg.%Err Test: 0.20 0.150
Avg.%Err Test: 4.190 4.381 Avg.%Err Test: 1.00 1.1 12

The author determined that, as a minimum, an available data set with 30 to 40 vectors, is

sufficient to train and optimize both the NOx and unit heat rate networks at full load operation.

This translates to having 7 to 10 data points for every input used in a neural network for this load

level. This data set size can be reduced if the data quality for each input improves. This is

accomplished by equal data distribution and more and/or better quantifying input variables, such as

boiler cleanliness, for modeling boiler operation.
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45 MW NEURAL NETWORKS

At Potomac River the NOx emission level of 0.38 lb./MBtu is not difficult to achieve at

the 45 MW load level. The main goal of testing at this load level was to maintain this Jow NOx

mode and find the operating conditions that resulted in a minimum unit heat rate. Although the

training, optimization, and analysis ofthe 45 MW neural networks was identical to the full load

case, several differences had to be accounted for.

The major shortcoming at this load level was the lack ofheat rate data. A total of 60 data

vectors was available for training and testing neural networks at this load. However, the quality of

the data was not nearly as good as in the full load case and, in addition, there were only 17

calculated heat rate values. This required the author to match the operating conditions of data

vectors without heat rate values to those with heat rate values. The main and hot reheat steam

temperatures were then compared and rough estimates for the missing unit heat rates were made. If

the data vector that was missing a heat rate value had higher steam temperatures than its

counterpart, then a lower heat rate value was assumed for it; otherwise, a higher heat rate value

was assumed. Although this approach made it possible to complete the data set and train a heat

rate neural network, the network performance was tainted by the lack ofquality output data. This

is seen in the results section for the 45 MW neural networks.

A significant difference in boiler operating conditions at 45 MW from full load is the mill

loading pattern. At full load, all four mills must operate near or at capacity, whereas at 45 MW,

the operator has a variety of mill loading options. The primary loading pattern is to use the two

middle burner rows, B and C, for combustion. This mode ofoperation comprised 72% of the

available data. The available data contained 16 data vectors, or 27%, where mill loading consisted

of the A, B, and C burner rows. Only one test was conducted using the B, C, and D burner rows

for combustion. Because of very low steam temperatures, this mode ofoperation ,vas deemed

unsafe by plant operators and engineers and therefore no further tests in this mode ofoperation

were allowed.
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One benefit of the 45 MW data was that several tests were conducted with all but one of

the operating parameters held constant and with that one parameter changing incrementally. This

occurred primarily for the auxiliary and fuel air damper positions. Unfortunately, with the different

mill loading strategies being applied throughout the parametric testing, it is difficult to determine

which parameter change, mill loading or air distribution, made the biggest impact upon the

resulting NOx and heat rate networks.

NOx Neural Network

As in the full load case, the NOx network was used to make decisions governing the

training and optimizing of subsequent networks. The majority of the decisions concerning the

network optimization procedure were previously established during the full load NOx network

portion of the study. The remaining decisions at the 45 MW load dealt primarily with input data

selection and dividing the data into training and testing sets. The analysis for the 45 MW neural

networks was the same as for full load networks and these results follow this section.

Input Selection. With the option ofdifferent mill loading strategies, the initial input

selection consisted ofeconomizer oxygen, burner tilt angle, auxiliary air bias (Eq. 2.7), fuel air

bias (Eq. 2.16), and mill loading bias (Eq. 2.4). Separate neural networks were created and

optimized for NOx and unit heat rate using these inputs. The performance results for both

networks were very similar to their counterparts at full load, which was encouraging. However, the

optimization ofthese networks proved much more difficult at 45 MW than at full load.. Using the

IMSL optimization routine BCONF [3 I], the two networks yielded far different optimal conditions

to achieve their individual minimums. These results were checked using spreadsheet calculations a

different IMSL optimization routine, BCONG [31]. Both checks resulted in similar optimal

conditions so further analysis was required. The processing element (PE) connection weights were

used to calculate the input parameter contribution to the output values as described earlier in this

chapter. The following table details the results of this analysis:
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Table 5.10

45 MW NOx and Unit Heat Rate Network Comparison

NOx Heat Rate
Neural Network Neural Network

Input Optimal Settings Input Optimal Settings
Contribution Contribution

02 8% 3.9% 20% 4.81 %
Tilt 12 % 4.4 degrees 15 % 9.2 degrees
AA Bias 12 % 0.667 24% 0.000
FA Bias 12% 0.013 26% 2.060
Mill Bias 56% 0.25 15 % 0.333
NOx 0.28 (lbfMBtu) 0.79 (lb/MBtu)
Heat Rate 9811 (BtulkWh) 9662 (Btu/kWh)

TIlls reveals that mill bias is the controlling factor in the NOx network while heat rate

depends nearly equally on all five independent parameters. A closer look at the available training

data revealed that when the mill loading pattern was A, B, and C, changes in operating conditions

had a more significant impact on NOx compared to the same changes made at the B and C mill

loading pattern. Also, the mill bias parameter (Eq. 2.4) assigns a value with a small range to

describe the physical impact of a change in mill loading which has a much greater physical range.

This difference has a vital effect on the training of the neural networks and thus the resulting

network equations. It is easily seen in the above table that the two networks' optimal conditions are

quite different.

After using the three different methods (BCONF, BCONG, and spreadsheet caleulations)

to calculate the optimal conditions for each network separately, the equations were optimized

together using the Simplex method [27]. The heat rate network equations could not be optimized to

within the specified NOx limit ofO.38Ib./MBtu without unrealistic results caused by function

extrapolation.

The testing conducted by D'Agostini, ct al. [4], showed that the minimum NOx attained

during parametric testing at 45 MW occurred when only the B and C mills were used (Figure

2. 12). Furtherrnore, the fuel-air bias parameter (Eq. 2.16) already accounts for the mill feeder
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speeds and loading pattern. Finally, the heat rate values used were, for most data vectors, rough

approximations which incurred substantial uncertainty to the network operation. Based upon this

information, the author decided to forego using the mill bias parameter as an input for the 45 MW

neural networks. The only way to eliminate the need for a mill bias parameter was to only use data

vectors that had a mill bias equal to zero (P = 0). This was accomplished by discarding data

vectors that contained fceder speeds for A or D mill. This action reduced the number of available

data vectors for training and testing the 45 MW networks from 60 to 43. With an adequate amount

ofdata vectors and each vector having a mill bias ofzero, the need for a mill bias parameter for

training and testing the 45 MW networks was removed. Thus, the independent variables for the 45

MW load networks would consist of the same parameters used at full load. An advantage to this

approach is that the networks from both load levels could be compared on equal terms. Although

not used in this study, the mill bias parameter is an important parameter for modeling NOx and

heat rate at the lower load levels. Future testing and analysis is needed to improve the use of this

parameter or develop a new parameter that better captures the effect of changing the mill loading

scheme.

The choice of using data vectors which had only the B and C mill loading patterns reduced

the amount of available training data vectors to 41. Of these 41 vectors, I3 had unit heat rate

values calculated from the HEATRT code [8] with the remaining values being approximated. The

available data was separated into a 6 data vector test set and a 35 data vector training set.

As done for the full load case, the data distribution for the 45 MW networks must be

reviewed. This provides insight as to what data trends of boiler operation the neural networks

learned. Compared to the full load case, the 45 MW data is poorly distributed. Figures 5.27

through 5.30 detail this and the only parameter with a £lir data distribution is the fuel air bias

parameter (Figure 5.30). This poor data distribution affects the heat rate neural network

performance, especially when combined with the uncertainty in the unit heat rate values.
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Network Settings and Performance Results.

Table 5.11

45 MW NOx Neural Network Optimal Settings

Number of Hidden PEs:
Transfer Function: Hidden Layer / Output Layer
Epoch Size:
Learn Count:
Learn Rate: Hidden Layer / Output Layer
Momentum: Hidden Layer / Output Layer
Error Function:
Learning Rule:
Summation Function:

Table 5.12

3
Tanh / Tanh

20
35,000

0.3/0.1
0.4 / 0.4
Standard

Norn1-Cum-Delta
Normal Sum

45 MW NOx Neural Network Perfonnance Results

Performance Measure Input Percent Contribution

R-Square = 0.9146 Economizer 02 = 13.7%
Adj. R-Square = 0.9051 Burner Tilt Angle = 21.1 %
Avg % Error = 4.21 % Auxiliary Air Bias = 28.7%
Avg. Difference = 0.016 (Ib/MBtu) Fuel - Air Bias = 36.5%

NOx Neural Network Trends vs. Observed Physical Trends.

Figure 5.31 and 5.32 depict the predicted NOx versus the economizer oxygen and burner

tilt angle, respectively, for all available data vectors. NOx is linearly related to economizer oxygen,

the same behavior as seen at full load. However, NOx is now linearly related to burner tilt angle at

45 MW whereas at full load it was parabolic. There is a high degree of scatter within Figure 5.32

and so this linear relationship may not necessarily hold true throughout all combinations of

operating conditions.

The linear relationship of NOx and economizer oxygen is reinforced in Figure 5.33 when

plotted at constant tilt, auxiliary air bias, and fuel air bias. The two different burner tilt angles have
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different trend slopes but each similar tilt angle has the same slope regardless of auxiliary air bias.

Also, the NOx level increases with an increase in burner tilt angle, as shown by the upward vertical

shift in the data plots. This coincides with observed data and therefore this neural network

relationship appears valid.

Similar to Figure 5.33, Figure 5.34 shows that under constant parameter conditions, the

linear relationship of NOx to burner tilt angle remains. In this instance, an increase in economizer

oxygen causes a vertical shift upwards, denoting an increase in NOx. Meanwhile, a higher

auxiliary air bias causes a decrease in NOx at a constant economizer oxygen level.

With only two different auxiliary air bias parameters being used during parametric testing

at Potomac River, NOx could not be plotted against this parameter without a large uncertainty

being present in the results. Figure 5.35 shows the affect that fuel air bias has upon predicted NOx

emissions. Similar to the previous burner tilt angle figure, the trend plots with identical auxiliary

air bias values have the same slope and an increase in burner tilt results in an increase in NOx.

This behavior was seen in the work ofD'Agostini et al. [4], and is consistent with observed boiler

behavior.

Heat Rate Neural Network

Network Settings and Performance Results.

Table 5.13

45 MW Load Unit Heat Rate Neural Network Optimal Settings

Number ofHidden PEs:
Transfer Function: Hidden Layer / Output Layer
Epoch Size:
Learn Count:
Learn Rate: Hidden Layer / Output Layer
Momentum: Hidden Layer / Output Layer
Error Function:
Learning Rule:
Summation Function:
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4
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Table 5.14

45 MW Load Unit Heat Rate Neural Network Perfonnance Results

Perfonnance Measure Input Percent Contribution

R-Square = 0.7066 Economizer 02 = 30.0%
Adj. R-Square = 0.6740 Burner Tilt Angle = 11.3%
Avg % Error = 0.198% Auxiliary Air Bias = 16.9%
Avg. Difference =19.4 (MBtulkWh) Fuel Air Bias = 41.8%

Unit Heat Rate Neural Network Trends vs. Observed Physical Trends.

With the previous discussion ofthe poor distribution within the 45 MW available data and

the uncertainty in the heat rate values used, this network had the worst perfonnance of all used in

this study. There is a lack ofavailable knowledge about the cause and effects of boiler operating

conditions on the resulting heat rate at this load level. Furthennore, some plotted trends resulted in

obvious disparities betwccn network model operation and observed boiler characteristics.

Figures 5.36 and 5.37 show the large degrcc of scatter within the economizer oxygen and

burner tilt angle, respectively, and the subsequent predicted unit heat rate. This scatter and poor

heat rate values were carried through to the plots using constant input parameter values. However,

Figure 5.38 shows that heat rate improves when the burner tilt angle is raised and it has already

bccn proven in this thesis that such a relationship is true. Figure 5.39 also shows heat rate

improving with increasing burner tilt angle and decreasing amount of overfire air. The change in

overfire air is shown to be more significant than a change in economizer oxygen which causes only

a vertical shift in the data trend. Thus, even without quality data to train with, the heat rate neural

network still learned some of the basic boiler operation at 45 MW.

Overall, the heat rate neural network had somewhat acceptable perfonnance measure

results for predicting the unit heat rate (Table 5.14). Ultimately, however, the network did not

completely learn the underlying interactions betwccn independent parameters and heat rate. This is

due to the deficiencies within the data that were discussed earlier. When the 45 MW unit heat rate
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and NOx network equations were used in the numerical optimization process, this "lack of

understanding" within the equations affected the validity of the optimization output.

Finally, Figure 5.40 plots predicted unit heat rate versus predicted NOx for the 45 MW

load level. The scatter within the data docs not allow for any definite trend to be idcntified which is

the same result D'Agostini ct al. [4] achieved. However, D'Agostini did conclude that two modes of

boiler operation will achieve acceptable heat rate values at low NOx conditions. The first is

specified as a low tilt, low air bias configuration while the second calls for a high tilt, high air bias

configuration. The NOx neural network is in agreement with these configurations (Figure 5.34) but

the heat rate network is not (Figure 5.39). The heat rate neural network leads one to believe that a

more moderate degree ofauxiliary air distribution would result in better thermal performance while

maintaining NOx levcls. An additional problem with the heat rate network may be the boiler's

identified ability to achieve minimum heat rate values at these two very different operating modes.

The data that represent these conditions, along with the poor data distribution, may have further

confused the network during training. A future possibility is to split the lower load operations into

different boiler operating modes so that only one minimum exists for each mode.

With the reasons already discussed and the continued lack of a boiler cleanliness

parameter, the results obtained at 45 MW are not a reason for disregarding the neural network

approach. Ifanything, the 45 MW neural networks only reinforced what this author had already

stated - the effectiveness of neural networks is directly correlated to the quality and quantity of the

available data to train it.

45 MW Reduced and Clustered Data Experiment Results

The same procedure used at full load for analyzing the effects of reduced and clustered

data was used at 45 MW. However, due to the uncertainty in the heat rate data and the poor data

distribution, only the NOx neural network was used for the reduced data net\vork experiments.

Clustering was not possible and, judging by the prior discussion, would not yield reliable results.

162



9880
• ••

A

A •A

9840 • •

A II•
- • .-..s::: A •~ 9800 Art.

11::J....
!B..
(I)

,
~
0::
~ .. ...
(I) •:I: 9760 A....·c

A
~

A A

I •
• Actual Unit Heat Rate

9720 ... Predicted Unit Heat Rate I A•I
I •

A

• •
...

9680

3.5 4.0 4.5 5.0 5.5 6.0 6.5
Economizer Oxygen (%)

Figure 5.36

45 MW Actual and Predicted Unit Heat Rate ys. Economizer Oxygen

163



9880
• •

• Actual Unit Heat Rate •
...

• ... Predicted Unit Heat Rate
... ...

9840 • ••
B ... •- •.c I a~ • •3 9800 ... ....... ... •.... ... •!E. ... ...

CI)..ns
0:::.. AM>.ns •CI)

::I: 9760 .....
"2 ...::::>

A'"

• •
• ......

I • •A • •9720 •
... ,
• •

...

•9680

5 10 15 20 25 30
Burner Tilt Angle (degrees)

Figure 5.37

45 MW Actual and Predicted Unit Heat Rate vs. Burner Tilt Angle

164



9800 -~

\
\

\

9700 -

........

-

--Tilt=20 deg, AA Bias=0.417

-Tilt=20 deg, AA Bias=O.667

/ ,...-----------,

/
,.

,/

....... -
------- - - --

- -

----
\
"

9500

---Tilt=30 deg, AA Bias=0.417

---Tilt=30 OOg, AA Bias=O.667

5.25 5.75 6.25

Economizer Oxygen (%)

Figure 5.38

45 MW Predicted Unit Heat Rate Ys. Economizer Oxygen at
Constant Burner Tilt Angle, Auxiliary Air Bias, and Fuel Air Bias=O.60

165



9900
-- 02=5.0%, AA Bias=0.417

-02=5.0%, AA Bias=0.667

, ---02=5.8%, AA Bias=0.417

"" ---02=5.8%, AA Bias=0.667
9800 "-

\ "-- '".c
.........

~ \ .........- \ "'-.am

""
"'-- "'-

~ 9700 " "'- ......

""
......0::

" "'-n; , "'- ....IV .... .....:J: ,
"" -:t::=

c

""
"::>

"
" "'"9600

"'"
"- ....

... ...............
............... .... .........

...............--- --
9500

5 10 15 20 25 30
Burner Tilt Angle (degrees)

Figure 5.39

45 MW Predicted Unit Heat Rate YS. Burner Tilt Angle at Constant
Economizer Oxygen, Auxiliary Air Bias, and Fuel Air Bias=O.60

166



9880

•
• •

9840
•

•
:c • •~ 9800 • B'· •- •tIl- •CI) •1;;
0:::
1;; • •CI)

~ 9760 •
'2 B:::l

• •

••
9720 •

•• • •
•

9680

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

NOx (lbJMBtu)

Figure 5.40

45 MW Predicted Unit Heat Rate VS. Predicted NOx

167



The 45 MW reduced data networks for NOx had similar outcomes as the full load cases. The

graphs of R-Squared, average difference, and average percent error are presented in Figures 5.41,

5.42, and 5.43, respectively.

It can be inferred from these graphs that the performance "breakpoint" occurs at ~75% of

available data. This translates into ~ 31 training data vectors are required to maintain sufficient

levels of accuracy and generalizing ability. This means that between seven and eight data vectors

are req~ired for each input used in a neural network at this load, which is similar to what was

found for the full load case. This number is based upon poorly distributed data and could most

likely be reduced by improving the available data quality.

RESULTS OF NEURAL NETWORK OPTIMIZATION

With the optimal neural networks for each load established, the final objective was to use

the neural networks to determine the optimal boiler operating conditions. The Neider and Meade

Simplex Algorithm was described in Chapter 4; and this optimization methodology was applied to

the neural network equations to find the conditions for optimal boiler operation. The final

optimization procedure used for the combined unit heat rate and NOx network equations was the

result of developing smaller optimization programs and combining their operation. Once this

combined network equation optimization program was working, tests were conducted to determine

the best way to initialize and execute the algorithm. After these initial values were decided upon,

their implementation into the overall NOx control software package was researched.

After the full load case was completed, the 45 MW load was examined for the purpose of

feasibility rather than actual implementation. As discussed previously, the 45 MW data quality and

neural network behavior made these networks difficult to accurately analyze and compare to field

results. A working solution was discovered but testing of the 45 MW optimization algorithm to

find the best operating conditions was not conducted. However, the ability to calculate a physically
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feasible solution leads the author to believe that once better data and networks are generated,

optimization at the 45 MW load level will follow in the success of the full load case.

The final topic in this chapter is the post-processing of the optimization algorithm results.

The Simplex Algorithm returns the optimal operating conditions as a set of final simplex vertex

positions, each containing boiler bias parameters. These biases must be transformed back to their

equivalent physical settings so that the user can adjust the boiler operating mode. Several

approaches have been attempted to best accomplish this task, keeping in mind that no user

interaction is desired in the final version of this software package. Although research cbntinues as

this thesis is written, the current version ofthe post-processing algorithm will be reviewed.

Full Load Neural Network Equation Optimization

The first step was to get the optimization program running properly for the full load NOx

neural network equations. Once successful, the full load heat rate equations were optimized with

the full load NOx network equations being implemented as a penalty function which was detailed

in Chapter 4. This makes the Simplex algorithm act as a constrained optimization routine and the

unit heat rate is optimized while maintaining the desired NOx emissions limit.

Full Load NOx Network Equation Optimization. The full load case was the cornerstone

for developing future neural network equation optimization programs. Until this point, the author

had used the IMSL [31) optimization routines to cheek the feasibility of optimizing neural network

equations. The availability ofa reliable, stand-alone optimization program that required no user

interaction was paramount to the success of the NOx control software package.

The full load NOx neural network equations were programmed into the function

subroutine of the Neider and Meade Simplex algorithm [27). As mentioned in Chapter 4, for four

independent parameters, the simplex wiII have five vertices. When the optimization is complete, the

algorithm output consists of the final location ofthese five vertices, which are in terms of the

scaled neural network values. These outputs were then scaled from the neural network values into
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the real world values for economizer oxygen, burner tilt angle, and the auxiliary air and fuel air

biases. For comparing these results to the work of D'Agostini, these 5 closely grouped output

values for each parameter are averaged for a final answer.

The following table depicts the results from optimizing the full load NOx neural network

equations only, compared to the results ofD'Agostini et al. [4]:

Table 5.15

Comparison of Full Load NOx Neural Network Equation
Optimization Results to Parametric Testing Analysis Results

Simplex Optimization Potomac River Test
Results Results

Economizer 02 (%) 1.53 1.60
Burner Tilt (degrces) 5.6 7.0
Auxiliary Air Bias 0.50 0.50
Fuel Air Bias 1.41 lAO
NOx (Ib/MBtu) 0.37 0.38

The simplex optimization results were checked using spreadsheet calculations and two

IMSL optimization routines, BCPOL and BCONF [31]. These revealed very similar results, with

the maximum relative error among all routines being under 2%, for all parameters. Therefore, it

was believed that the simplex optimization was effective for this application and the heat rate

network equations were introduced.

Full Load Unit Heat Rate Network Equation Optimization. Several alterations to the

optimization algorithm had to be made to accommodate the heat rate and NOx neural network

equations. After the simplex was initialized with the starting vertices, each subsequent iteration

required a calculation of the heat rate and NOx at the new vertex locations. After NOx was

calculated at each vertex, it was compared to the user-defined allowable NOx linlit. If the current

vertex NOx exceeded the NOx limit, a user-defined value was added to that vertex's heat rate value

as a "penalty" for exceeding the NOx limit. By adding this penalty to the current heat rate value, it
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made that specific vertex the "worst" out of all the simplex vertices because it had the highcst heat

rate value. This forced the algorithm to choose this particular vertex as the worst point and

therefore this vertex was the first one to undergo a change in its location during the next iteration.

This change is such that the new heat rate value was less than the previous value and the vertex's

NOx value was closer to the compliance level. This process continued until the minimum heat rate

for each vertex was found and each vertex had a NOx value equal to or lower than the NOx limit.

This approach proved successful from its inception. However, the algorithm now had four

function constants to contend with during the optimization process. These function constants are

described below along with the tests that were conducted to determine the interaction between these

and other algorithm parameters.

Initial Simplex Orientation. As previously described in Chapter 4, the simplex for this 4

independent parameter optimization has five vertices. The dimensions of the simplex are

not critical to the optimization process, but the initial orientation of the simplex within the

solution space is critical to the success of the algorithm. This was examined by

incrementally changing the start point of a single vertex for a single parameter. The

amount of change was incremented as was the number of parameter changes and vertex

start points. One of three results always occurred. The algorithm either successfully

converged to a feasible answer, extrapolated to an unfeasible answer, or never converged.

The author and ERC engineers devised a method to ensure that the lowest sensible heat

rate conditions (that meet NOx limitations) is found during the optimization portion of the .

NOx control package.

The physical trends for the full load case showed a strong dependence on

economizer oxygen and burner tilt. If either of these were combined incorrectly or had a

slightly offset initial orientation, the algorithm failed. However, the auxiliary air bias and

fuel air bias parameters were varied quite drastically and still had a successful

convergence rate ofover 70%.
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Function Tolerance. The function tolerance acts as a limit within the optimization

algorithm. If the values of heat rate at each of the simplex vertices differ by an amount

equal to or less than the function tolerance, then convergence is assumed and the

optimization process stops. The function tolerance is a sealed value for unit heat rate and,

since the typical error, for the full load heat rate neural network, was approximately 27

Btu/kWh, the function tolerance was set at 0.10, or 13.5 Btu/kWh. If the function

tolerance is set lower, than the user is attempting to calculate an optimal heat rate with less

uncertainty than the data used to generate the equations. If the function tolerance is raised,

then the final location of the vertices within the solution space will be further apart. This

results in too broad ofa range of optimal operating conditions and the user may be misled

as to what the actual best conditions for boiler operation are.

NOx Function Limit. Similar to the function tolerance, the NOx function limit is the scaled

value of the allowable NOx limit for heat rate optimization. When the algorithm checks the

simplex's heat rate and NOx values at its vertices, this limit dictates whether the penalty

value will be assigned to the vertex heat rate value. Following the inverse trends between

heat rate and NOx, as the NOx limit is allowed to rise, the optimal achievable heat rate

decreases. Conversely, if the NOx limit is lowered, then the minimum attainable unit heat

rate will rise.

To test this, all simplex initial conditions were kept constant except for the NOx
.'

limit. Starting with a NOx limit of 0,36 Ib/MBtu, the algorithm was run and the resulting

heat rate and optimal operating parameters were recorded. The NOx limit was then

incremented by O.Ollb/MBtu and the process repeated. The results of this test are shown

graphically in Figures 5.44-5.47. The NOx/heat rate interaction within the neural4letwork

equations coincides with observed boiler behavior and the independent operating

parameters support this interaction which is discussed later in this section.
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Heat Rate Penalty Value. This is the quantity that is added to a vertex's heat rate value at

the current iteration if the NOx level at that vertex exccedsthe NOx limit. This parameter

is simple in concept and the only precaution is making it too big or too small. For example,

suppose that the scaled heat rate at a vertex is equal to -0.15 and the current NOx value at
.

that vertex exceeds the specified NOx limit. The penalty value must be substantial enough

so that when it is added to the current scaled heat rate value, it forces the algorithm to

select that vertex as the current "worst point". This will, in turn, force the algorithm to

move that vertex towards a smaller heat rate value that is closer to the NOx limit. If the

penalty value exceeds the range of actual (unsealed) heat rate data used to train the neural

network, the algorithm may not converge, although this situation never occurred during

this study.

Conversely, a penalty value that is too small, especially if within the order of the

function tolerance, will not be significant enough to influence the algorithm's next move

when added to the current vertex heat rate. If the vertex'~ NOx exceeds the NOx limit but

the penalty value is not sufficient enough to make that vertex the current "worst point", the

benefit of the penalty function has been negated. Overall, this parameter only requires a

reasonable balance between having the desired effect without jeopardizing the algorithm

operation. The author has determined that the most dependable method for determining the

heat rate penalty value is obtained by taking the difference between the minimum and

maximum heat rate values (unsealed) within the training data and dividing by four. This

quantity must then be scaled using Eqs. 5.1 -5.3 so as to maintain numerical compatibility

within the algorithm.

These parameters affect the neural network equation optimization algorithm for

heat rate using NOx as a constraint. Whenever a significant change to the neural network

equations occur, these parameters should be checked to ensure optimal algorithm

operation.
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Results of the FuJI Load Heat Rate Equation Optimization.

Using a NOx limit of0.38 Ib./MBtu and several random initial simplex orientations, the

following table details the best optimization result:

Table 5.16

Optimal Operating Conditions for Full Load
Unit Heat Rate and NOx Neural Network Equations

Parameter Averaged Simplex Output
Economizer Oxygen: 1.53 %
Burner Tilt Angle: 5.1 degrees
Auxiliary Air Bias: 0.417
Fuel Air Bias: 1.l2
Unit Heat Rate: 8935 BtulkWh
NOx: 0.38 Ib./MBtu

These operating conditions are very sinlilar to the NOx neural network optimization results

in Table 5.14. The main differences are the auxiliary air and fuel air distribution into the boiler.

Unfortunately, there was no additional analysis involving heat rate within D'Agostini's report [4]

and therefore checking the validity of these results is more difficult than the NOx-only scenario.

However, ERC engineers reviewed these results and are in general agreement that they are feasible.

Tests are nceded in which the boiler at Potomac River Unit #4 is set at these conditions to see how

close these results are to observed data. With the addition of a boiler cleanliness parameter and

more parametric test data, the neural networks and thus the optimization results should be more

closely aligned with actual boiler operation.

The optin1ization experiments with the full load networks answered several questions with

regard to the best method of initializing the simplex algorithm without user interadion. The

optimization algorithm is cxtremely sensitive to thc initial simplex orientation. Also, the results

from different initial simplex orientations can vary by as much as 10 to 20 BtulkWh. These

conditions dictated the need to try several different initial simplex orientations without user

interaction.
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It was decided among the ERC engineers and the author that the simplex will be initialized

using the same random number generating routine, described earlier in this chapter ,and then the

equations will be optimized. After the optimization routine has converged to an answer, two

validity tests must be performed. First, the results must be checked to ensure that the optimal

parameter values are within the range of the network training data. The output will be passed

through a data filter that will compare the final results with the minimum and maximum values for

each independent and dependent parameter. If the output contains values that are outside ofthe

training data range, that answer will be discarded.

The second check compares the optimal parameter values, that have cleared the data filter,

to any safety restrictions placed on independent parameters. If the algorithm determines the optimal

economizer oxygen to be 1.7% but the user-defined safe O2 operating limit is 1.8%, this algorithm

result will be discarded. If the algorithm results pass the validity cheeks, the results are stored as

the temporary "best solution". The simplex is re-initialized and this optimization process is

repeated. It was determined by the ERC engineers and the author that once ten sets of acceptable

results have been obtained, the best result from these ten will be outputted to the user.

The overall performance of the optimization algorithm parallels observed boiler behavior.

Figures 5.44 to 5.47 show that as NOx is allowed to increase, the unit heat rate can decrease. This

decrease in heat rate is caused by an increase in burner tilt angle (Figure 5.45). Subsequently, as
-i)

NOx is allowed to rise, less overfire air is required and therefore the auxiliary air bias decreases

(Figure 5.46) which improves heat rate. The fuel air bias (Figure 5.47) is shown to decrease when

the NOx limit is raised. ERC engineers have not analyzed the impact of this bias parameter on

overall boiler behavior~d therefore any definite conclusions cannot be made. The algorithm

always resulted in the minimum economizer oxygen possible. This is probably due to NOx having

a large dependency upon 02 but heat rate having a lesser dependence. Thus, to achieve the NOx

limit, tlle 02 should be minimized which doesn't affect the resulting heat rate very much.
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45 MW Load Neural Network Equation Optimization

The 45 MW neural network equations failed to accurately model boiler operation and this

subsequently affected the optimization routine's ability to provide correct results. The 45 MW

network equations proved to be unstable and therefore the experimental analysis done for the full

load case could,bot be repeated at this load. Furthermore, the 45 MW load received less emphasis

in D'Agostini's report [4] than full load so verifying different results was not possible. However, a

few sets of results were generated and are higWighted in the following table:

Table 5.17

Optimal Operating Conditions for 45 MW Load
Unit Heat Rate and NOx Neural Network Equations

Parameter Averaged Simplex Output
Economizer Oxygen: 3.90%
Burner Tilt Angle: 17.7 degrees
Auxiliary Air Bias: 0.000
Fuel Air Bias 0.321
Unit Heat Rate : 967 I BtulkWh
NOx: 0.36 Ib./MBtu

The heat rate value is rather high but the reader is reminded again that approximately 70%

ofthe unit heat rate values used in the training data were estimated and were not calculated using

the HEATRT code [81. A significant difference in these results from the parametric field data is

that the measured optimal heat rate occurred at high levels of auxiliary air bias whereas the

optimization algorithm dictates an auxiliary air bias ofzero. Such results reinforce the hypothesis

that a controlling factor of this entire approach to heat rate and NOx optimization lies in the quality

of the data.

Post-Processing of the Optimization Output Data

When the simplex algorithm has completed the optimization process, the result is the final

position ofthe simplex vertices and the values for unit heat rate and NOx at those locations. These
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simplex vertices are simply combinations of the different independent parameters which for this

study were economizer oxygen, burner tilt, auxiliary air and fuel air bias. The scaling of these

parameters from neural network ranges to real world values is done within the optimization

routine. The next stcp is to take these different combinations of parameters and calculate a final set

of boiler operating conditions that the operator can identifY. This is the purpose of the post-

processor.

The underlying logic of the post-processor is to successively take each parameter and

transform it back to a final, suceinct answer. The first two, economizer oxygen and burner tilt

angle, arc straightforward. The algorithm averages the optimization routine results for each

parameter and stores them in memory. These are used later for translating the air bias parameters

back to damper settings and windbox pressure.

Translating the auxiliary air bias parameter back to damper settings requires the use of

rules devised by ERe engineers. These rules were applied to all of the auxiliary air damper

combinations possible at Potomac River Unit #4. There are five auxiliary air nozzles at each

comer of the boiler (Figure 2.1), each with 5 degrees ofopenness. this results in 55 or 3125

different combinations. The rules applied are:

• the sum of all ofthe damper positions must be between 14 and 18 (full load) and

between 8 and 11 for 45 MW

• the damper positions must be such that AA 1~ AA3 ~ AA5 ~ AA7 ~ AA9

• no more than one damper may be set at a #1 position

These rules reduced the number of possible auxiliary air damper position combinations to

54 for full load and 20 for the 45 MW load. These different combinations and the auxiliary air bias

value for each combination appears in Appendix A, along with the calculated auxiliary air bias

values and the sum ofthe damper positions. These damper combinations aridthelrrespeciive bias. ,

parameter values are used to select the optimal auxiliary air bias values, determined by the

optimization algorithm.
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The optimal auxiliary air bias values, calculated by the simplex algorithm, are averaged

together. This averaged value is compared to the set ofauxiliary air bias parameters that are within

Appendix A, whieh are termed the "allowable" bias parameters and damper combinations.

Whichever of the "allowable" auxiliary air bias values that the averaged simplex value is closest to,

that "allowable" bias value becomes the optimal auxiliary air bias parameter. Each "allowable"

auxiliary air bias parameter has a specific set of "allowable" damper combinations, as dictated by

the rules above. The post-processor routine goes baek into the available training data set to find a

data vector that has the same, or is closest to, combination of auxiliary air damper settings as those

in the "allowable" damper settings. This forces the user to implement a combination ofdamper

settings that was used to train the neural network which more closely links the neural network

model to the observed boiler operation.

Thc fuel air bias is the most complicated parameter to translate back into real world

operating conditions due to the complexity of the bias equation:

Fuel Air Bias: (5.8)

where:

n = number of mills operating

L1Pwb = windbox to fumacc differential pressure ("H20)

FAi = position (amount dampers are open) for ith row of fuel air dampers

Q = mill feeder motor speed (rpm)
avg = average of all mill feeder speeds in operation (rpm)
ref = reference conditions: Qrcf= 700 rpm

L1Pwb = 2.5 "H20
FArcf= 3

For full load operation, all fourmills are in usc and n = 4. The available data are again accessed by

the routine and the average mill feeder motor speed is calculated, using all data vectors. ll1ereforc,

185



with the parameters n, n avg , n ref, M wb, ref, and FArcf known, these parameter values can be

combined and mathematically reduced to a constant or:

(5.9)

The main difficulty lies in the relationship between the windbox pressure and sum of the

fuel air damper positions. Since the degree ofopenness of these dampers affects the windbox

pressure, one must be solved in terms of the other, or:

¢ -I FA =----'---==
i I Cons tan t* ~L\Pwb

(5.10)

This equation requires an iterative solution, but first a few rules devised by the ERC

engineers must be reviewed for the fuel air dampers:

• all four dampers must be set on positions between 3 and 5

• all dampers in a combination cannot differ by more than one position

• the sum ofall dampers must be between 12 and 20

These rules force this variable to have a discrete set of solution possibilities (Appendix A),

but the question that remains is, how does one calculate the windbox pressure value, LlPwb? ERC

engineers determined that windbox pressure is a function ofeconomizer oxygen and the degree of

openness ofall air dampers. However, the exact interactions of the 02 and damper positions at

different operating conditions are unknown. Finding these interactions required a small, separate

neural network. The data used for training this network came from the same parametric data used

for the full load NOx and heat rate network. However, instead of using the damper positions to
------------ --~~

ealculate bias parameters, individual damper positions were combined for both the auxiliary air

and fuel air registers. The auxiliary air dampers were summed together, as were the fuel air damper

positions, for each data vector within the training data set. This added two new data components to
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every training data vector, the sum of auxiliary air damper positions and the swn of fuel air

damper positions.

The windbox pressure network consisted of threc inputs (economizer oxygen, sum of the

auxiliary air damper positions, swn of the fuel air damper positions) and one output (windbox

pressure). The resulting equations were substituted into Eq. 5.10 as the windbox pressure variable,

,1pwb. Equation 5.10 is then incorporated into an iterative solution procedure and the two variables

arc incrementally changed until convergence is reached. Once converged, the windbox pressure and

its corresponding sum of fuel air dampers is now known.

Using the swn of the fuel air dampers found in Eq. 5.10, this value is used in the same

manner as the designated auxiliary air bias value described above. Only certain combinations of

fuel air danlpers will result in the sum found in Eq. 5.10. Therefore, the fuel air damper sum from

Eq. 5. lOis matched to the fuel air damper sums and combinations dictated by the ERe rules

described above (Appendix A). Once the fuel air damper sum is known, the corresponding damper

position combinations that comprise that sum arc used to search the training data base for an exact

or similar match of fuel air damper settings. This search procedure is identical to the auxiliary air

damper position search described above. The final combination of fuel air damper positions is then

outputted to the user for implementation.

All of the operator controlled boiler parameters are now known for the optimal conditions

found through the neural net\vorks and simplex optimization algorithm. These values are relayed to

the user so that the boiler parameters can be adjusted so as to achieve better heat rate performance

while maintaining the desired NOx emissions level.

SUMMARY
~--- ---

---~- ---
This chapter concludes with a listing of the best selections for the neural network

modeling and optimization process for the Potomac River Unit #4 boiler.
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Table 5.18

Recommended Settings for Full Load and 45 MW Neural Networks
and the Optimization Algorithm for the Potomac River Unit #4 Boiler Study

Number of Inputs: 4
Number of Hidden Layer PEs: 3
Hidden Laver Transfer Function: Tanh
Output Layer Transfer Function: Tanh or Linear
Epoch Size (NOx networks): 8
Epoch Size (Heat Rate networks): 16
Learn Count (NOx ndworks): 30,000
Learn Count (Heat Rate networks): 65,000
Hidden Layer/Output Layer Learning Rate: 0.3 /0.1
Hidden Layer/Output Layer Momentum: 0.4 / 0.4
Error Function: Standard Error
Learning Rule: Norm-Cum-Delta
Summation Function: Normal Summation
Optimization Algorithm Function Tolerance: 0.10 (13.5 Btu/kWh)
Optimization Algorithm NOx Limit: -0.70 (0.38 Ib./MBtu)
Optimization Algorithm Penalty Value: 1.00 (9157 Btu/kWh)

The suggested values in the above table arc based upon the research conducted during this

study and apply to this particular problem. These values are guidelines for continued research in

this area and provide the user with a good starting point. Jftime or computational limits exist, a

backpropagation network for any application can be optimized using the approach below. The

order of parameter optimization is based upon network sensitivity to these parameters and if no

limits for optimization exist, then the user should follow the outline given earlier in this chapter.

Ultimately, only the first three topics in tlle following list must be examined to get a neural network

close to optimal operating conditions while the latter considerations arc for fine-tuning the network.

I. The crucial element is the learn count. TI1C learn count must be optimized experimentally or by

using a "save best" execution scheme. This entails setting an upper limit on the learn count,

1-----------sUlc:fhr.arss:-:lttlO6;fttJtT,<md then caJculatrng the R-Square paranlcter at pre-determined intervals,

such as 10,000. The best combination ofR-Squares for the training and testing data sets

detennincs the optimal learn count, similar to the previous discussion on optimizing the

numbcr of hidden layer PEs. This technique can be automated into the NOx control package

and, therefore, it is currently being pursued.
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2. The epoch size finds underlying frequencies within the training data and therefore must be

optimized. The user may use a default value of 16 initially, but this study found that epoch

values of 4, 8, and 12 should be examined as well for optimal network operation. lfthese

values cannot be checked, then the default epoch size of 16 suffices without too great a

decrease in accuracy.

3. The number of hidden layer PEs is important for adding the correct degree ofnon-linearity to

the network mapping. The user may start with the initial value found from Eq. 3.27, but a

network with one less PE must be tested along with networks containing up to three additional

PEs greater than this initial value. As with epoch size, if the default value is used, some

accuracy will be lost and the actual system behavior may not be mapped correctly.

4. The transfer functions for the hidden and output layers are not as critical since

backpropagation usually works best with the hidden layer having a Tanh transfer function and

the output layer having either a linear or Tanh transfer function. Both situations provide very

similar results and no additional experiments are necessary. Therefore, these functions can be

set as default values for any backpropagation network application.

5. The backpropagation network performs best with the normal summation function (Eq. 3.25),

the standard error function (Eq. 3J), and the Norm-Cum-Delta learning method [111. Each of

these are within the NeuralWare software.

6. The learning rate and momentum coefficient are the final considerations. The default values for

the hidden layer (learning rate = OJ and momentum = 0.4), and the output layer (learning rate

= 0.1 and momentum =0.4), are usually sufficient. However, if the root-mean-square error

curve for the difference between predicted and actual output values does not deerease

smoothly, then these values must be adjusted as described earlier in this chapter.

The optimization algorithm is most sensitive to the initial simplex orientation and

resolution ofthis sensitivity was discussed earlier. The algorithm is further controlled by the

function tolerance, NOx limit, and penalty value, in this order. Selecting these values was

discussed earlier in this chapter and programming them into the software package is not difficult.

Overall, the parameters in the above table are easy to implement into any automated process.

Further work is needed to determine whether these are specific only to the Potomac River Unit #4

boiler or whether these values can be substituted into models for other, completely different, boiler

configurations.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

Results presented in this thesis indicate that boiler operation and NOx emissions at

Potomac River Unit 4 can be mathematically modeled and optimized using neural networks. The

feasibility of developing an on-line boiler control software for this unit has been proven. However,

many practical issues concerning implementation and interaction of the recommended solutions

remain to be addressed. Many ofthese issues arc currently being researched as this NOx control

software package matures towards its final form.

NEURAL NETWORKS

The use of neural networks for simulation and control ofpower plant operation was

established well before this thesis [35]. Many applications have used only the predictive modeling

capabilities of neural networks whereas this thesis took this process one step further and

mathematically optimized the resulting network equations. The following discussion highlights the

benefits and weaknesses of using neural networks for boiler modeling along with recommendations

for continued research.

Strengths

Neural networks were proven valuable on several counts. First, they are adaptive. Because

they learn by using observed behavior, they don't require a theoretical understanding of boiler

operation. They infer solutions from the data presented to them and capture subtle relationships

that exist within the operational data. A neural network can use the relationships learned from the

training data to predict boiler responses to data it has never seen before. If sufficient amounts of

data exist, imperfect and incomplete data may be used for training which provides a degree of fault

tolerancc.
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The non-linearity provided by the hidden layer captures complex interactions among the

input variables. To express these interactions in mathematical form, it would nonnally require

extensive statistical analysis and mathematical function fitting of the data. Neural networks are

highly parallel and their numerous identical, independent operations can be executed

simultaneously. This increase in speed and power allows for more experimentation and

hypothetical modeling of boiler operation whereas statistical analysis takes more time and effort to

achieve the same results.

Weaknesses

The primary weakness of neural networks is their dependence upon the quantity and

quality ofdata. The success of the full load networks and the failure of the 45 MW networks

proved this point quite well. As physical or operational characteristics of the boiler change, new

data must be collected so as to obtain the most accurate and reliable neural network models. The

expert system portion of the NOx control software package accomplishes this, resulting in a

sufficient number of well dispersed data components within their operating ranges.

Neural network results arc often difficult to interpret unless an understanding ofthe

physical process exists, or the data used to train the network are such that these relationships are

readily seen. Human knowledge, as well as statistics, are very useful clements in analyzing network

perfonnance. This study had the benefit of comparing its results to those of D'Agostini et al. [41

and other ERe research findings. If the research had based decisions solely upon the neural

network performance statistics, the probability for failure would have increased dramatically.

Therefore, the need for understanding the physical process in this application was paramount to its

success.

The absence ofdefinite rules for training and optimizing a neural network cOinplicates the

implementation of this control package. The fundamental parameters, within the NeuralWare

software, that affected network operation were identified. Several rules of thumb were used
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throughol\t this thesis to simplifY the network optimization process. However, if different software

packages or neural networks other than backpropagation are used, this process of identifYing key

operating parameters must be repeated.

Recommendations

Improving the methods of configuring, training, and optimizing the neural networks

without user interaction is a fundamental concern for future success of this research.

Unfortunately, any process will still require some form ofmat,ual fine tuning but minimizing that

quantity is a necessity. Determining how to implement these rules and determining when they

should be applied will be dependent upon how the neural network training process is programmed

into the overall software package.

Further studies on the effects ofdata quality upon network operation are required. These

include using fixed values for certain data components throughout training, training a network

using filtered and unfiltered on-line data, and improving the descriptive capabilities of the bias

parameters. Each ofthese areas will affect network operation and thus the numerical optimization

process. Deciding when to use the neural network for optimization purposes is a concern as is the

need to determine whether to update an existing network or initiate an entirely new model.

Additionally, the decision as to what data to use to update or retrain a network must be addressed.

Finally, simpler and more dynamic neural network types should be explored. An alternate

form ofartificial intelligence, fuzzy logic, is another possibility fot controlled process operation

that has already been used elsewhere [36]. Other types ofneural networks that are available are

radial basis function networks and counter propagation networks [9, II]. While these approaches

may not replace the existing backpropagation model, perhaps they can be applied to enhance its

performance.
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NUMERICAL QPTIMIZATION

The ultimate goal for the optimization process was to minimize unit heat rate subject to

NOx staying at or under 0.38 Ib./MBtu. This was achieved at full load but, for reasons discussed

previously, not at the 45 MW load level. The underlying goal of the optimization process is to

evaluate the function being optimized as few times as possible and achieve a valid solution. The

Neider and Meade Simplex Algorithm f27] proved to be accurate and robust enough for this study,

considering it was very subject to the effects of the quality of network training data.

Strengths

The alterations made to the original algorithm, (randomized starting points and penalty

function), added more complexity to the optimization process but enhanced its reliability. These

additions gave the algorithm characteristics of the next higher order ofoptimization processes, the

conjugate direction methods, detailed in Chapter 4. These alterations provided the required power

to optinli.ze the function quickly as well as provide insight as to the best way to implement and

operate the optimization routine.

The simplicity of the algorithm allows for easy implementation and experimentation of the

optimization process. Parametric changes in the algorithm operating constants and the subsequent

effects on the solution allowed for guidelines to be established for future usc. This would be more

difficult if algorithms ofgreater complexity were used; and the small increase in accuracy or speed

from such algorithms did not justifY introducing such complexity.

Weaknesses

The algorithm's sensitivity to the initial simplex orientation causes difficulty in calculating

a reliable result. This problem was overcome by the reinitialization process described in Chapter 5.

However, if network models ofgreater complexity are uscd., tills sensitivitymay become difficult to.

circumvent. Furthennore, finding the best algorithm initial conditions may prove to be more

difficult, cven with the rules of thumb developed in this study.
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The algorithm's ability to find the optimal operating condition is entirely dependent on the

network equations it is optimizing. These equations are, in tum, dependent primarily upon the data

used for training the network. If bad data are used from the outset, then the entire neural network

and optimization process must be repeated. Also, the optimization algorithm cannot be updated

with the addition of new data. If the network connection weights change, then the optimization

process must be entirely redone. Fortunately, the computation time for this algorithm is not very

great and so repeating the optimization process does not pose a burden upon the NOx control

software package.

Recommendations

Further research on other optimization algorithms may rcsult in a combination of diffcrent

approaches resulting in a hybrid optimization process. This could negate the dependency of the

simplex on its initial orientation and possibly provide greter accuracy and stability to the

optimization process. Additionally, this could improve the speed ofthe optimization process as well

as the reliability of its solutions. However, the difficulty in automating a hybrid algorithm may

outweigh its usefulness. Regardless, there is potential for improvement and so alternate

optimization methods should be examined in greatcr detail.

A better method ofensuring that the optimization process will result in outputs that are

deemed safe by plant operating personnel is required. Currently, the optimal operating conditions

are calculated and then checked against the safe operating limits which arc defined by the user

prior to performing the optimization. If the optimal solution includes unsafe operating conditions,

then the results are discarded and the optimization is rcpeated. A potentially better method is to

filter the training data and remove (or simply do not collect data) within the defined unsafe

operating regions. This results in thc neural network being trained with data that are within safe

operating zones and prcvents the optimal solution from containing unsafc conditions. This

approach is currently being researched for incorporation into the NOx control software packagc.
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ApPENDIX A

Full Load and 45 MW Load Auxiliary Air and Fuel Air Damper Position
Combinations and Corresponding Bias Parameter Values
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45 MW Auxiliary Air Damper Combinations and Corresponding Bias Parameter Values

Aux Air Aux Air Aux Air Aux Air Aux Air Auxiliary SUM
Damper 1 Damper 3 Damper 5 Damper 7 Damper 9 Air Bias

2 2 2 2 2 0.000 10

2 2 2 2 1 0.167 9
3 2 2 2 2 0.167 11

2 2 2 1 1 0.250 8

3 2 2 2 1 0.333 10

3 2 1 1 1 0.417 8
3 2 2 1 1 0.417 9
3 3 2 2 1 0.417 11

3 3 1 1 1 0.500 9
3 3 2 1 1 0.500 10
3 3 3 1 1 0.500 11
4 2 2 2 1 0.500 11

4 2 1 1 1 0.583 9
4 2 2 1 1 0.583 10

4 3 1 1 1 0.667 10
4 3 2 1 1 0.667 11

4 4 1 1 1 0.750 11
5 2 1 1 1 0.750 10
5 2 2 1 1 0.750 11

5 3 1 1 1 0.833 11

- . ... -l"
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Full Load Auxiliary Air Damper Combinations and Corresponding Bias Parameter Values

AuxAir Aux Air Aux Air Aux Air AuxAir Auxiliary SUM
Damper 1 Damper 3 Damper 5 Damper 7 Damper 9 Air Bias

3 3 3 3 3 0.000 15
3 3 3 3 2 0.167 14
4 3 3 3 3 0.167 16
4 4 3 3 3 0.250 17
4 4 4 3 3 0.250 18
4 3 3 3 2 0.333 15
4 4 4 4 2 0.333 18
5 3 3 3 3 0.333 17
4 3 3 2 2 0.417 14
4 4 3 3 2 0.417 16
4 4 4 3 2 0.417 17
5 4 3 3 3 0.417 18
4 3 3 3 1 0.500 14
4 4 2 2 2 0.500 14
4 4 3 2 2 0.500 15
4 4 4 2 2 0.500 16
5 3 3 3 2 0.500 16
4 4 4 4 1 0.500 17
4 4 3 3 1 0.583 15
4 4 4 3 1 0.583 16
5 3 2 2 2 0.583 14
5 3 3 2 2 0.583 15
5 4 3 3 2 0.583 17
5 4 4 3 2 0.583 18
4 4 3 2 1 0.667 14
4 4 4 2 1 0.667 15
5 3 3 3 1 0.667 15
5 4 2 2 2 0.667 15
5 4 4 2 2 0.667 17
5 4 4 4 1 0.667 18
5 5 3 3 2 0.667 18
5 4 3 2 2 0.667 16
5 3 3 2 1 0.750 14
5 4 3 3 1 0.750 16
5 4 4 3 1 0.750 17
5 5 2 2 2 0.750 16
5 5 3 2 2 0.750 17
5 5 4 2 2 0.750 18
5 4 2 2 1 0.833 14
5 4 3 2 1 0.833 15
5 4 4 2 1 0.833 16
5 5 3 3 1 0.833 17
5 5 4 3 1 0.833 18
5 5 2 2 1 0.917 15
5 5 3 2 1 0.917 16
5 5 4 2 1 0.917 17,
5 5 5 2 1 0.917 18
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Full Load and 45 MW Fuel Air Damper Combinations
and Corresponding Bias Parameter Values

Fuel Air Fuel Air Fuel Air Fuel Air SUM
Damper2 Damper4 Damper6 Damper8

3 3 3 3 12

3 3 3 4 13
3 3 4 3 13
3 4 3 3 13
4 3 3 3 13

3 3 4 4 14
3 4 3 4 14
3 4 4 3 14
4 3 3 4 14
4 3 4 3 14
4 4 3 3 14

3 4 4 4 15
4 3 4 4 15
4 4 3 4 15
4 4 4 3 15

4 4 4 4 16

4 4 4 5 17
4 4 5 4 17
4 5 4 4 17
5 4 4 4 17

4 4 5 5 18
4 5 4 5 18
4 5 5 4 18
5 4 4 5 18
5 4 5 4 18
5 5 4 4 18

4 5 5 5 19
5 4 5 5 19
5 5 4 5 19
5 5 5 4 19

5 5 5 5 20
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