
Lehigh University
Lehigh Preserve

Theses and Dissertations

1992

Optimizing query performance in relational
database systems
Anthony Casamassa
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Casamassa, Anthony, "Optimizing query performance in relational database systems" (1992). Theses and Dissertations. Paper 70.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228647478?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/70?utm_source=preserve.lehigh.edu%2Fetd%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

AUTHOR:

Casamassa, Anthony

TITLE:

Optimizing Query

Performance in Relational

Database Systems

,

DATE: May 31,1992

\

OPTIMIZING QUERY PERFORMANCE IN RELATIONAL DATABASE SYSTEMS

by

Anthony Casamassa

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of
I

Master of Science

in

Computer Science

Lehigh University

March 1992

TABLE OF CONTENTS

ABSTRACT

. page 01

Section One

QUERY OPTIMIZATIQN THROUGH DATABASE DESIGN

Page 02

section Two

UTILIZING INDEXES TO ENHANCE QUERY PERFORMANCE

Page 19

section Three

CONTROLLING THE OPTIMIZER TO ENHANCE QUERY PERFORMANCE

Page 33

REFERENCES

Page 53

VITA

Page 55

iii

ABSTRACT

The issue of query performance is important as relational

database management systems become larger. Query optimization

of relational database systems will be discussed. Three

aspects of query optimization will be examined. The first

will be query optimization through database design. Query

performance should be considered when designing relational

database systems. Normalized and denormalized design will be

'-examined as they relate to query performance. The second

aspect of query optimization that will be explored is

utilizing indexes to enhance query performance. The proper

use of indexes can greatly enhance the performance of a query.

Under certain circumstances the use of indexes can reduce the

performance of queries. General rules about indexing will be

examined. The effect of indexing on the overall database

performance will be explored. The third aspect of query

performance that will be examined is controlling the optimizer

of the database system to improve query performance. The

optimizer determines how a query will be executed based on

heuristic rules. It is important to understand how the

optimizer functions in order to achieve optimal query

performance.

QUERY OPTIMIZATION THROUGH DATABASE DESIGN

INTRODUCTION:

The relational data model is based on mathematical

principles which include set theory, the theory of relations,

and first order predicate logic. It was introduced by E.F.

Codd in 1970. The main goals of the re,lational data model are

data independence and data integrity. [1] Data independence is

achieved by separating the physical format of the data from

the view that the user has of that data. Simplification

through design avoids data inconsistencies and anomalies which

leads to data integrity. Data objects and the relationships

that exist between them are defined conceptually by the

relational model. A relation is the basic structure of a

relational system and can be defined as a two dimensional

matrix consisting of a time varying set of tuples where each

tuple consists ofa set of attributes.[l] A table can be

-------~-----~

A table consists of rows and columns of data elements.

Relations possess the following properties: there are no

duplicate tuples, tuples are unordered, and attributes are

unordered. A normalized relation has the additional property

that all attribute values are atomic. Such a relation is said

to be in first normal form. A table is in first normal form

if at every row and column positioh within the table, there

exists 'exactly one value, never a list of values or repeating

groups. [1] A relation is in second normal form if it is in

first normal form and every nonkey attribute is fully
"

depe~dent on the primary key. [1] A nonkey attribute is fully

dependent on a primary key when the nonkey attribute can only

be identified by the primary key.
'-.

A relation is in third

normal form if it is in second normal form and each tuple

consists of a primary key together with a set of mutually

independent attribute values; no non-primary key column can be

functionally dependent on another non-primary-key column. [1]

Normalization is the technique by which the correct location

for each attribute and correct structure for the relation is

identified. [1] Normalization eliminates insert, delete, and

update anomalies and reduces redundancy. Normalization also

reduces query performance under most circumstances by

requiring join operations on tables in order to retrieve data.

The join operations increase I/O time and cpu time which

reduces the performance of the query. Performance can be

enhanced through the placement of duplicated data in tables or

the combination of many small tables into larger ones. This

process is called denormalization.

DENORMALIZATION:

Tables which are joined frequently are prime candidates

for denormalization. The join process increases I/O time,

which is the most expensive computer resource because it

operates at mechanical rather than electrical speed.[2] It

should be noted that although denormalization can increase

performance, a tradeoff exists between performance and the

negative effects of denormalization. Redundant data can

increase the time required for update, delete, or insert

procedures. Redundant data can also lead to update, insert,

and delete anomalies and an increase in memory and disk

storage requirements. During the design phase all tradeoffs

should be considered before denormalizing.

The foliowing examples illustrate how query performance

can be enhanced through denormalization. In the first example

STUDENT INFO AND TEST INFO are normalized tables which will be

joined in a select statement to retrieve student and test

information about a particular student.· The STUDENT INFO

table consists of a student id, first name, and last name

field. The TEST INFO table consists of a student id, score

date, and score result field. There are two test scores for

each student so that the TEST INFO table contains two rows for

each corresponding row in the STUDENT INFO table. The

STUDENT INFO table contains 8791 rows. The TEST INFO table

contains 17582 rows. The tables are structured as follows:

4

STUDENT_INFO TABLE STRUCTURE

Name Null? Type

~------------------------------- --------

ID NOT NULL NUMBER(8)

FNAME CHAR(15)

LNAME NOT NULL CHAR (60)

TEST INFO TABLE STRUCTURE

Name Null? Type

ID NOT NULL NUMBER(8)

SCORE DATE NOT NULL DATE

SCORE NOT NULL CHAR(5)

The query is structured as follows:

select student_info. id,-

student_info.fname,

student_info.lname,

test_info. score,

test info. score date

from student_info,test_info

where student info.lname = 'JOHNSON'

and student info.id = test info.id

The results of the query yields two rows:

ID FNAME LNAME

5

SCORE SCORE DAT

99999

99999

JOHN

JOHN

JOHNSON

JOHNSON

920

,990

12-JAN-91

25-MAY-91

The performance information for the query is as follows:

=====~==

count

Parse: 1

Execute: 1

Fetch: 1

Execution plan:

cpu

o

341

372

e1ap

o

378

389

phys

o

168

123

cr

o

306

185

cur

o

372

213

rows

o

o

2

MERGE JOIN

SORT (JOIN)

TABLE ACCESS (FULt) OF 'TEST INFO'

SORT (JOIN)

TABLE ACCESS (FULL) OF 'STUDENT INFO' ..

==

The above performance information indicates that the number of

data blocks read from disk during the execute and fetch steps

total 291. The elapsed time in hundredths of seconds for all

,~,::":,-",,c,:,,<::<:··:.;c:.,:,::steps~totals_<,7c9,7.• _..,'J;'hg~-"p§XJ9r1Il9J1Ge9J_j:,hi~ query-can be-
• . '_eO '~:..:.', .• ' • .;:,_ .•-~,., .• :. ~." __';"~".~., _ •.. " ... ···e· _ ""_~ 4 • - ~ •• :. ,-:,-',"-;l,',.~._,. • _, .•. ,:; .. ~:-•. -,

6.

enhanced· by denormalizing the STUDENT INFO and TEST INFO

tables by adding repeating groups of score results and score

date information to the STUDENT INFO table. This eliminates

the need for the join to .the TEST INFO table. The new

structure of the STUDENT INFO table violates first normal form

because of the repeating groups of score information.

STUDENT INF02 TABLE STRUCTURE

Name Null? Type

------------------------------- -------- ----

ID NOT NULL NUMBER (8) 'l.,'

FNAME CHAR(15)

LNAME NOT NULL CHAR (60)

SCOREl DATE NOT NULL DATE

SCOREl NOT NULL CHAR(5)

SCORE2 DATE NOT NULL DATE

SCORE2 NOT NULL CHAR(5)

The query is structured as follows:

select id,

fname,

lname,

scorel,

score2, ..

score2 date

,. -
.- .. _- ~.,.~.. . - .. :~.::., ..:.- '~. ,:.

from student info2

where lname= 'JOHNSON';

The result of the query yields one row:

1D FNAME LNAME SCORE1 SCORE1 DATE SCORE2 SCORE2 DATE

99999 JOHN JOHNSON 920 12-JAN-91 990 25-MAY-91

The performance information for the query is as follows:

===

count'

Parse: 1

Execute: 1

Fetch: 1

cpu

1

o

53

elap

1

o

54

phys

o

1

142

cr

o

o

142

cur

o

2

o

rows

o

1

Execution plan:

TABLE ACCESS (FULL) OF 'STUDENT 1NF02'

===

The above performance information indicates that the number of

data blocks read from disk during the execute and fetch steps

totals 143. The elapsed time in hundredths of seconds for all

steps totals 55. Performance was enhanced by eliminating the

join in the first query. This required adding test

information in repeating groups to the STUDENT INFO table.

This violated first normal form but increased performance.

The negative side effect of denormalization of this type is

that the addition of other test information! would require

modification to the structure the table.

The next example begins with two normalized tables which

will be joined in order to retrieve query information. The

student info table is the same table used in the previous

example, the ID column is the key attribute. The class info

table contains a key ID column and a class_name column. The

class info table contains the current classes that students

are attending. The tables are structured as follows:

STUDENT INFO TABLE

Name Null? Type

ID

FNAME

LNAME

CLASS INFO TABLE

NOT NULL NUMBER(8)

CHAR(15)

NOT NULL CHAR(60)

Name Null? Type

ID

CLASS NAME

NOT NULL NUMBER(8)

NOT NULL CHAR(30)

The query will retrieve the student id, first name, last name,

and- classes a student is attending.

query is:

select student_info.id,

student_info.fname,

student_info.lname,

class info. class name

from student_info, class_info

where student info.lname = 'DOE' and

The structure of the

student info.id = class_info.id;

The results of the query are:

ID FNAME

88888 JOHN

88888- JOHN

88888 JOHN

LNAME

DOE

DOE

DOE

CLASS NAME

INTRO TO ACCOUNTING

CALCULUS I

ECONOMICS II

The performance information for the query is as follows:

==

count cpu elap phys cr cur rows

Parse: 1 1 1 o o o

" ;...... ,' ..- •.•.• c•• , ,,.;":. ,.~... __ 10

Execute: 1

Fetch: 1

Execution plan:

MERGE JOIN

SORT (JOIN)

656

697

687

717

219

162

388

184

496

277

o

3

TABLE ACCESS (FULL) OF 'CLASS INFO'

SORT (JOIN)

TABLE ACCESS (FULL) OF 'STUDENT INFO'

==

The above performance information indicates that the number of

data blocks read from disk during the execute and fetch steps

totals 381. The elapsed time in hundredths of seconds for all

steps totals 1405. The performance of this query can be

enhanced by denormalizing the STUDENT_INFO table. Adding

class name to the STUDENT INFO table will enhance the query by

eliminating the join required to retrieve the data. This

denormalization violates second normal form because class name

will contain multiple values for each student ide Class name

is not functionaly dependent on the primary key student id

attribute. The STUDENT INFO table pefore denormalization

contained 8792 rows but after denormalization it contains

35167 rows. The structure of the new STUDENT INFO table is:

11
,.' ~-..;.--.-~, -: .,

STUDENT INF03 STRUCTURE

Name Null? Type

ID

FNAME

LNAME

CLASS NAME

The structure of the query is:

select ID,

FNAME,

LNAME,

CLASS NAME

from student info3

where lname='DOE'i

NOT NULL NUMBER(8)

CHAR (15)

NOT NULL CHAR(60)

NOT NULL CHAR(30)

The query yields the same results but the performance is

enhanced.

ID

88888

88888

88888

FNAME

JOHN
\

JOHN

JOHN

LNAME

DOE

DOE

DOE

CLASS NAME

INTRO TO ACCOUNTING

CALCULUS I

ECONOMICS II

==

\ .

count cpu elap phys cr cur rows

Parse: 1 o o o o o

Execute: 1

Fetch: 1

Execution plan:

o

154'

o

156

o

101

o

256

2

o

o

3

TABLE ACCESS (FULL) OF 'STUDENT INF03'

==

Note the physical reads have been reduced to 101 and the

elapsed time is reduced to 156. The query was enhanced by

adding the class name to the STUDENT INFO table but this

caused redundant data to occur for the fname and lname

columns. This redundancy could lead to insert, update, and

delete anomalies. One example of an update anomaly could

occur when the last name of a student changes. All rows would

have to be updated for each class attended. If just one row

was missed in the update 'process, inconsistencies in the

database would occur.

The last example, once again, first demonstrates the

joining of two tables in a query. The STU INFO table contains

attributes id, fname, lname, and school_code. The school code

attribute represents a six character code which corresponds to

the school desc field in the SCHOOL INFO table. The

SCHOOL INFO table contains a school code and description for

most high schools and colleges in the country. The

SCHOOL INFO table contains 31512 rows. The tables are

structured as follows:

STU INFO STRUCTURE

Name Null? Type

ID

FNAME

LNAME

SCHOOL CODE

NOT·NULL NUMBER(8)

CHAR(15)

NOT NULL CHAR(60)

NOT NULL CHAR(6)

SCHOOL INFO STRUCTURE

Name Null? Type

SCHOOL CODE

SCHOOL DESC

NOT NULL CHAR(6)

NOT NULL CHAR(30)

The query will retrieve school description from the

SCHOOL INFO table based on the school code in the STU INFO

table. This requires the joining of the two tables. The

query is structured as follows:

select stu_info.id,

stu_info.fname,

14

stu_info.lname,

school info. school desc- -

.._---- -----

where stu info.id = '77777'

and stu info. school code = school info. school code

The result of the query is:

ID

77777

FNAME

JAMES

LNAME

JONES

SCHOOL DESC

HOLT HIGH SCHOOL

The performance information for the query is as follows:

==

Parse:

count

1

cpu

1

elap

1

phys

o

cr

o

cur

o

rows

Execute:

Fetch:

1

1

~ 563

448

1009

534

760

540

887

202

1049

645

o

1

Execution plan:

MERGE JOIN

SORT (JOIN)

TABLE ACCESS (FULL) OF 'SCHOOL INFO'

SORT (JOIN)

15

TABLE ACCESS (FULL) OF 'STU INFO'

==

The performance information indicates that the number of

blocks read from disk total 1300. The total elapsed time in

hundredths of seconds is 1544. The query will be enhanced by

adding school description to the STU INFO table. This

violates third normal form because school_desc depends on

school code which is a non prime attribute. The new structure

of the table is:

STU INF02 TABLE STRUCTURE:

Name Null? Type

ID NOT NULL NUMBER(8)

FNAME CHAR(15)

LNAME NOT NULL CHAR (60)

SCHOOL CODE NOT NULL CHAR(6)

SCHOOL DESC NOT NULL CHAR(30)

The query is structured as follows:

select id,

fname,

lname,

16

school desc

from stu info2
j-

where id = '77777'

The performance information for the query is as follows:

==

count

Parse: 1

cpu

o

elap

o

phys

o

cr

o

cur

o

rows

Execute: ·1

Fetch: 1

Execution plan:

o

50

o

so

1

132

o

132

2

o

o

1

TABLE ACCESS (FULL) OF 'STU INF02'

==.

Note that the number of physical blocks read from disk and

elapsed time for the query has been reduced. Performance was

enhanced by eliminating the join to the SCHOOL_INFO table

which was large. The disadvantage of this type of

denormalization is~evident when a school description changes.

If a school description changes all rows in the STU INF02

table which reference the old school description must change.

17

When the tables were normalized, only one row' in the

SCHOOL INFO table would have to be changed.

CONCLUSION:

Query performance should be considered when designing

relational database systems. [9] The types of queries which

will be used should be evaluated during the design phase to

insure optimal query performance.
"

Query performance is

reduced when tables must be joined to satisfy a query request.

The denormalization of tables will enhance query performance

by reducing the number of joins needed for query processing.

Denormalization can cause update, delete, or insert anomalies

to occur. Normalized database design helps insure database

integrity. The tradeoff between denormalized and normalized

design must be evaluated during the design phase .

............

18

UTILIZING INDEXES TO ENHANCE QUERY PERFORMANCE

INTRODUCTION:

The following section will examine how indexes can be

used to enhance query performance. The relational database

management system which will be used for this examination is

Oracle version 6.0. Although Oracle is being used in this

instance, - the-general--concepts discussed in the following

section can be applied to most of the other popular relational

database management systems.

ADVANTAGES:

Indexes are the simplest way to enhance query

performance. [5] The performance of a SQL query can be

enhanced by simply creating an index on a column or columns

which are referenced in the WHERE clause of the SQL statement.
----~- ~~-~---_._--._-------

If an index is created with more than one column the index is

called a concatenated index. [6] Concatenated indexes can

enhance the query performance of SQL statements in which the

"where" clause references all or the leading portion of the

columns in the concatenated index.

The introduction of indexes does not require any changes

to the wording of the SQL statements.
/

19

The index is then

maintained by the relational database management system. Any

change to the indexed column is automatically maintained

during additions, 'deletions and modifications to the column.

Indexes are fUlly independent of the table data. An index can

be dropped without effecting the table which the index was

created for or any other indexes on that table. [6]

.In addition to enhanced performance, another advantage of

indexes is their ability to enforce uniqueness. Indexes can

be used to enforce uniqueness by creating the index with the

UNIQUE option.[?] This will guarantee that all rows in a NOT

NULL column or columns are unique and subsequent entries into

this column will be unique. If uniqueness is needed across

more than one column a concatenated index can be created with

the UNIQUE option.

DISADVANTAGES:

Additional overhead results from the use of indexes.

Many indexes can be created for a given table but overhead

increases for each additional index that is added. The over

use of indexes will cause slow system performance during

insert, delete, and modify operations. [5] All indexes on a

table must be updated when a row is inserted or deleted. A

Index will also be updated when its associated ipdexed column

is modified. Thus a tradeoff exists between query performance

and the performance of insertions, deletions, and

20

(

m.odifications.

Disk drive contention is also increased through the use

of indexes when table and index data reside on the same

disk. [5] Index and table information must be read from disk

when a indexed column or columns are selected in a query.

Insertions, deletions, and modifications cause index and table

information to be written to disk. The reading and writing of

index and table data on the same disk causes contention. If

mUltiple disk drives exist, contention can be reduced by

placing indexes and tables on separate devices.

INDEX STRUCTURE:

Oracle uses B-tree indexes. [6] B-tree indexes equalize

access to any row in a indexed table by balancing tree

information. [4] Every leaf node is the same distance from the

root node of the tree. All searches require traversing an

equal number of nodes from the root down to the leaves.[4]

This results in consistent and fast access time for both exact

and range searches.

The upper nonleaf nodes of B-tree indexes contain

navigational information which points to the lower level

nodes. [4] The nonleaf nodes of the tree do not contain key

value data. The navigational information consists of

separator pair values which are sorted in ascending order and

pointers to lower level nodes. Leaf nodes at the bottom of

21

the tree contain all indexed data values and their associated

ROWID in a double linked list. [6] The ROWID is the logical

address of a row in a table and it is the fastest method of

accessing a particular row in a table. [6] There is one ROWID

per data value for unique indexes. [6] The ROWID is appended

to the end of the index key for non-unique indexes and sorted

by key and ROWID.[6] Searching for a key value in a B-tree

index starts at the root node and continues until a separator

that is less than or equal to the key is found. The pointer

to the right of the separator is followed to the leaf node

where a compare is done to see if the values match. The main

disadvantage 0 f B-tree indexes is storage overhead. [5] B-tree

indexes consume more storage than conventual indexes because

of the space required by the interior nodes. Another

disadvantage is the system overhead incurred in managing the

balanced data structure. [5] Figure 1 and figure 2 illustrate

the B-tree index structure. [5]

22

ROOT NODE

NAVGATIONAL
NODE

NAVGATIONAL
NODE

NAVGATIONAL
NODE

LEAF NODE ~ LEAF NODE ~ LEAF NQDE ~ LEAF NODE
(DATA) (DATA) (DATA) (DATA)

L----1-7 -7L---.....L.T---'

FIGURE 1

ROOT NODE

A -H---t---l-E-F- - -------~---- --_ ..

ADAMS-ID

ALLEN - I D -7 BROWN- I D

FIGURE 2' 23

INDEX PERFORMANCE

The use of indexes will enhance SQLquery performance

under most circumstances. There are exceptions to this rule

which will be discussed later. The following examples

illustrate the effectiveness of indexes in increasing query

performance.

The first example will demonstrate a simple que:r:y without

a index and then with a index. The performance of the queries

will then be compared. The structure of the table to be

queried is presented below.

NAME INFO TABLE STRUCTURE

Name. Null? Type

NAME PIDM

NAME SSN

NAME LAST

NAME FIRST

NAME MI

NOT NULL NUMBER(8)

NOT NULL CHAR(9)

NOT NULL CHAR(60)

CHAR(15)

CHAR(15)

In this example the NAME_LAST column w~ll be queried for a

particular value and one row will be returned. The NAME INFO

table contains 25,000 rows. The structure of the query and

its performance information is presented below.

24

select name_ssn,

name_last,

name_first,

~allle m~i~ .~~ _

from name info

where name last = 'Selnick';

==

count cpu elap phys cr cur rows

Parse: 1 0 0 0 0 0

Execute: 1 0 0 0 0 2 0

Fetch: 1 156 156 466 513 1 1

'v

Execution plan:

TABLE ACCESS (FULL) OF 'NAME INFO'

==

The performance information execution plan indicates that a

full table scan was performed. No index was used by the

query. The query elapsed time was 156 hundredths of seconds

and the number of data blocks read from disk was 466. The

query's performance can be enhanced by creating a non-unique

index named I_NAME_INFO$LAST on the name_last column. The

index will be used in the execution plan because the name last

25

column is referenced in the WHERE clause of the SQL statement.

The performance information for the query after the index was

created is presented below.

--

select name_ssn,

name mi

from name info

where name last = 'Selnick'

Parse:

count

1

cpu

o

elap

o

phys

o

cr

o

cur

o

rows

Execute:

Fetch:

1

1

o

o

o

4

o

6

o

5

o

o

o

1

Execution plan:

TABLE ACCESS (BY ROWID) OF 'NAME INFO'

INDEX (RANGE SCAN) OF 'I_NAME_INFO$LAST' (NON-UNIQUE)

==

The performance information indicates that the

I_NAME_INFO$LAST index was utilized for this query. The

26

elapsed time and physical reads where reduced through the use

of this index. The execution plan shows that the table data

was accessed by ROWID after the index information was found so

that a full table scan was avoided.

The next example will compare the performance of a join

with and without the use of an index. The name information

table (name_info) will be joined with an address information

table (addr_info). Both tables contain approximately 25,000

rows. A unique identification number (PIDM) will be used to

join the two tables. The structure of the name info table

will remain the same and the structure of the addr info table

is presented below.

ADDR INFO TABLE STRUCTURE

Name Null? Type

ADDR PIDM NOT NULL NUMBER(8)

ADDR STREETl CHAR(30)

ADDR STREET2 CHAR(30)

ADDR CITY CHAR (3 0)

ADDR ST CHAR(2)

ADDR ZIP CHAR(5)

The query will join the addr info table in order to retrieve

the city for a selected name. The structure of the query and

performance information is presented below.

27

==

select name_ssn,

name_last,

addr_city

from name_info, addr info

where name last = 'Selnick' and name-pidm = addr-pidm

count

Parse: 1

Execute: 1

Fetch: 1

cpu

1

1

4987

elap

1

1

5215

phys

o

o

738

cr

o

o

170615

cur

o

2

1

rows

o

1

Execution plan:

NESTED LOOPS

TABLE ACCESS (FULL) OF 'ADDR_INFO'

TABLE ACCESS (BY ROWID) OF 'NAME INFO'

INDEX (RANGE SCAN) OF 'I_NAME~INFO$LAST' (NON-UNIQUE)

==

The performance information indicates that the addr_info table

was accessed by a full table scan for the join. The

I_NAME_INFO$LAST was used for access to the name info table as

in the previous example. The full tanle scan of the addr info

table caused the poor performance of this query. The cr

28

statistic pertains to the number of buffers retrieved in

consistent mode. [5] A buffer is retrieved inconsistent mode

when a read-consistent version of the buffer is needed. [5]
"

The number of c?nsistent mode buffers is high since much of
-,

the table information is buffered in memory for this query.

In order to enhance the performance of this join, a unique

index named I_ADDR_INFO$PIDM will be created on the addr-pidm

in the addr info table. The performance information for the

query after the index was created is presented below.

==

select name_ssn,

from name_info, addr info

where name last = 'Selnick' and name-pidm = addr-pidm

count cpu elap phys or cur rows

l'arse: 1 1 1 0 0 0
----~

-------~ -----

Execute: 1 0 0 0 0 0 --0-----------

Fetch: 1 1 1 7 10 0 1

Execution plan:

NESTED LOOPS

TABLE ACCESS (BY ROWID) OF 'NAME INFO'

29

INDEX (RANGE SCAN) OF 'I_NAME~INFO$LAST' (NON-UNIQUE),

TABLE ACCESS (BY ROWID) OF 'ADDR INFO'

INDEX (RANGE SCAN) OF 'I_ADDR_INFO$PIDM' (UNIQUE)

==

The execution plan indicates that the addr info table was

accessed by ROWID through the I_ADDR_INFO$PIDM index. This

caused the performance of the join to increase. The total
\

elapsea-t:itne .wentfrom-~S2~7 to-2-.-The tO,tal physical- reads

went from 738 to 7 and the total number of consistent mode

buffers went from 170615 to 10. This dramatic increase in

performance proves the importance of indexes in enhancing

query performance especially, when joins are involved.

INDEX RULE OF THUMB:

The use of indexes under certain circumstances can reduce
I

the performance of queries. These circumstances pertain to

the reading of index and table information. Table information

is not read when only the index key or a portion of the index

key is requested in the query. Table data, in addition to

inde~ data, must be read when information is requested other

than or in addition to the index key.[5] The performance of

the query will decrease when the total number of index and

table block reads exceeds the amount of table blocks read

30

during a full table scan.

Determining the number of index and table blocks read for

a -query is difficult; therefore the number of rows returned by

~ne query canbe~u-se-dto determine--if--tne use of-a--rna-ex i8

beneficial. The rule of thumb suggested in the Oracle

Database Administrators's Guide is to create an index if you

will frequently want to retrieve less than 10-15 percent of

the rows in a large table. [6] If more than 10-15 percent of

the table's rows are returned than a full table scan is

suggested. [6] Small tables of eight data blocks or less

should always be accessed by a full table scan.

The index rule of thumb is a general guide for

determining whether to retrieve rows by index or full table

scan. Under certain circumstances, indexes can yield better

results when more than 10-15 percent of the rows are "returned.

The size of the indexed column or columns effects the optimal

percentage. The percentage increases when the length of the

indexed column or columns is smaller and decreases when the

length of the column or columns is larger. This is because

the number of index blocks that must be read to retrieve a

given number of rows increases when the length of the index

column increases. Therefore less rows can be retrieved

efficiently using the index because more index information

must be read. Conversely, more rows can be retrieved

efficiently when the index column or columns are smaller

because less index blocks need to be read for each row

31

retrieved... Therefore the length of the index column or

columns directly effects the index rule of thumb.

CONCLUSION:

The use of indexes can greatly enhance query performance

in most circumstances. The columns that are used to join

tables should be indexed to enhance the performance of the

join operation. Indexes should not be used when a query

returns a large amount of rows. In general a index should not

be used when a query returns more than 10-15% of the rows in

a table. The use of indexes causes additional overhead on the

RDBMS. Indexes must be updated during insert, delete, and

modify operations on indexed columns therefore the use of many

indexes can cause slow performance during these operations.

32

CONTROLLING ~HE OPTIMIZER TO ENHANCE QUERY PERFORMANCE

INTRODUCTION

The role of the optimizer is to enhance the performance

of the ~atabase system by determining how SQL statements can

be executed efficiently. [5] The optimizer tries to determine

the best access path to the data. optimizers are used by all

major vendors of relational database management systems.

Their method of implementation distinguishes one product from

another. The performance of the database relates directly to

the implementation of the optimizer. Most optimizers are

based on heuristics, therefore they are not always effective

in finding the best access path to the data. It is important

to understand how the. optimizer is implemented in order to

structure SQL statements for optimal performance. The Oracle

optimizer will be examined in this section to show how

knowledge of the optimizer can be useful in enhancing the

performance of SQL query statements.

ORACLE OPTIMIZER:

The Oracle optimizer is part of the RDBMS kernel. [6] It

tries to choose the best access path by evaluating all

possible strategies. The optimizer will try to choose the

33

best strategy based on heuristic rules about what is best in

which situation and a ranking scheme for WHERE clause

predicates. The optimizer examines the syntax of the SQL

statement, the predicates of the where clause, the database

objects used, and any indexes that exist on the database

objects to choose the execution plan. [6] The optimizer does

not use any information about the relative size of the tables,
.....~

key distribution within indexes, or other statistical methods

in order to pick a particular access path. The optimizer can

be influenced by creating indexes on columns referenced in the

WHERE clause, by creating clusters, and by formUlating SQL

statements differently. [5]

RANKING RULES:

The following list represents query paths ranked in order

of speed for Oracle version 6.0. [10] The lower rankings

represent the faster paths with ROWID equals constant being

the fastest path.

1.) ROWID = constant

2.) entire unique concatenated index = constant

3.) unique indexed column = constant

4.) entire cluster key = corresponding cluster key in another

table in same cluster

5.) entire cluster key = constant

34

v

6.) entire non-unique concatenated index = constant

7.)- non-unique single column index merge

8.) most leading concatenated index' = constant

9.) indexed column BETWEEN low value AND high value, or

indexed column LIKE 'C%'(bounded range)

10.) sort/merge (joins only)

11.) MAX or MIN of single indexed column

12.) ORDER BY entire index

13.) full table scans

14.) un indexed column = constant, or column is NULL, or column

LIKE '%C%' (full table scan)

Selecting a row by ROWID is the fastest access method

available; no table scans or indexes are used in the selection

process. [5] ROWID is the hexadecimal representation of the

address of the row. It contains the logical block number, row

sequence number and file identification number of the row. [6]

ROWID is a pseudo-column name that can be used as a column

name, except it cannot be updated or inserted. [7] Therefore

the--fol~l-ow-i-ng--sekec-t----statement------can--bellS.ed--±o access

information by ROWID.

select * from dept where ROWID = '0000034B.0002.0001'

The second ranking is: entire unique concatenated index

= constant. A concatenated index is created on two or more

35

columns in a table. Concatenated indexes are single indexes

that reference more than one column in a table. [6] If all

columns in the concatenated index are referenced in the WHERE

clause as.equal to constants, then the conditions for ranking

two will be meet.

The third ranking is: unique indexed column = constant.

A index created with the unique option ensures that no

duplicate data exist in the column that the index was created

on.[7] When a unique indexed column and non-unique indexed

column are named in the WHERE clause, the ORACLE optimizer

will use the unique index and disregard the non-unique index

to avoid the merging of the two indexes. [10]

The fourth and fifth rankings refer to cluster keys which

are used to cluster tables. The purpose of clustering is to

read one block with data from all tables being joined, instead

of reading one block per table. [5] Clustered tables pre-join

rows from different tables so they are all in the same

physical block. The information is accessed in the various

tables by the cluster key.

The sixth ranking is: entire non-unique concatenated

index = constant. The only difference between this and the

second ranking is that the concatenated index is non-unique,

which means duplicate data is allowed in the indexed columns.

The seventh ranking is: non-unique single column iridex

merge. Multiple indexes will be used by the optimizer when

two or more predicates on the same table are referenced in the

36

WHERE clause of the SQL statement. The indexes must be non-

unique and the predicates must be equalities. Index

information from each index search is merged together to

obtain the query results. [10]

The eighth ranking is: most leading concatenated index =

constant. This refers to the referencing of the leading

column or columns of a concatenated index in a WHERE clause.

A concatenated index can be u~ed if all or the leading column

or columns are referenced. [5] If only the trailing portion of

the concatenated index is referenced the index will be

ignored.

The ninth ranking is: indexed column BETWEEN low value

AND high value, or indexed column LIK.E 'C%'. Any indexed

columns which are referenced in WHERE clauses using the

BETWEEN or LIKE statements pertain to· this rule. For example

"WHERE deptno BETWEEN 10 AND 20" or "WHERE lastname LIKE

'JON%'. The percentage sign in the LIKE statement is used as

a wildcard character and must trail a constant in order for

the conditions of the rule to be meet.

The tenth ranking is: sort/merge for join operations.

This rule applies to join operations which use the sort/merge

routine to order data. The sort/merge routine increases the

performance of certain operations such as joins.[5] Incoming

data which must be ordered is first internally sorted into

several sets of ordered runs, and these runs are merged into

a final sorted result.

37

The eleventh ranking is: MAX or MIN of single indexed

column. This rule refers to the use of the MIN or MAX

function on a single indexed column. For example the SQL

statement "select MAX(SAL) from emp" will make use of a index

created on the SAL column. This is the one exception to the

indexed column cannot be modified rule. [6] If any other

function was used on the SAL column besides MAX or MIN, the

index would not be used~

The twelfth ranking is: ORDER BY entire index. This

ranking refers to using the ORDER BY statement on a indexed

column or columns. For example "select * from emp ORDER BY

ename" will use a indexed created on the ename column.

The thirteenth and fourteenth rankings refer to full

table scans. A full table scan is performed if a select

statement contains no WHERE clause or the WHERE clause

references a un-indexed column. [5] Full table scans are also

performed if the WHERE condition tests for the NULL condition

or the LIKE statement tests for %constant%.[6] For example

the following WHERE conditions will force full table scans.

The clauses "WHERE deptno is NULL" or "WHERE lastname LIKE

%ONES%" will force a full table scan.

OPTIMIZER INDEX R~LES:

A index on a '-column can be used

38

if the column is

,

referenced in the WHERE clause of the SQL statement although

other conditions could exist to cause the index to be

. di~regarde<!. A i!'1.<!ex c~an be used for equality, bounded range,

and unbounded range searches. [10] The following SQL

statements would use a index created on the DEPTNO column for

the DEPT table. The .index could be unique or non-unique.

select * from DEPT where DEPTNO = 9000;

select * from DEPT where DEPTNO between 2000 and 3000;

select * from DEPT where DEPTNO > 5000;

A index will not be used if the column is modified by a

function or an expression, unless the function used is the MAX

or MIN functions. [5] The index on the DEPTNO column will be

disr~garded on the following SQL statements due to the

modification to DEPTNO.

select * from DEPT where DEPTNO + 1 > 1000;

select * from DEPT where DEPTNO * 2 = 2000i

-----orheIooex ~ofi- the DNAME column will be disregarded on the

following SQL statements because of function modification to

the DNAME column.

select * from DEPT where UPPER(DNAME) ='ACCOUNTING'i

39

select * from DEPT where SUBSTR(DNAME,l,l) ='A';

The index on the DEPTNO column will be used for the following

SQL ·statements. In the first SQL statement the DEPTNO column

is not modified therefore the index can be used. The second

and third SQL statements use the MIN and MAX functions which

are the only functions which can modify a column and still use

the index on that column.

select * from DEPT where DEPTNO > 5000/2;

select MAX(DEPTNO) from DEPT;

select MIN(DEPTNO) from DEPT;

Modification to a column can be used intentionally to

disable index use.[6] Under certain circumstances, disabling

index use can speed performance of the SQL statement. [5] The

index rules of thumb which are mentioned in section two must

be considered when determining whether to intentionally

disable an index. A index on a character column can be

disabled by concatenating the column with a null value. [6] A

index on a number or date column can be disabled by adding a

zero to the column value. [6] The following SQL statements

disable the use of indexes without effecting the result of the

queries.

select * from DEPT where DNAMEi 1" = 'ACCOUNTING';

40

select * from DEPT where DEPTNO + 0 = 1000;

select * from DEPT where DEPT~DATE + 0 = TO_DATE (' 01-DEC-91');

A concatenated index can be used if all columns or the

leading columns of the concatenated index are referenced in

the WHERE clause of the SQL statement. [6] The order of the

columns in the WHERE clause is un-important but at least the

first column of the concatenated index must be referenced in
~

order for the index to be used. The following SQL statements

will use the concatenated index created on the DEPTNO, DNAME,

and DEPT DATE columns for the DEPT table. DEPTNO is the first

column of the concatenated index.

select * from DEPT where DEPTNO = 2000 and DEPT DATE >

select * from DEPT where DEPTNO > 1000 and DNAME

index because the first column of the index is not referenced.

andDNAME='ACCOUNTING'whereDEPTfrom*

41

DEPT_DATE=TO_DATE('01~DEC-91');

select

select * from DEPT where DEPTNO > 9000;

TO_DATE('01-DEC-91') ;

The following SQL statement will not use the concatenated

='ACCOUNTING';

create index dept$cat on DEPT (DEPTNO,DNAME,DEPT_DATE);

A index can be used for the LIKE clause if the column is

a character column and the comparison string starts with a

character. [10] If the column is a- number or date column than

Oracle internally has to ~odify the column w~nction to

convert it to character and therefore an index on the column

cannot be used. The following SQL statement will make use of

the index created on the DNAME column.

select * from DEPT where DNAME LIKE 'ACC%'i

The following SQL statements will not use any indexes because

the comparison string does not start with a character or the

column type in not character.

select * from DEPT where DNAME LIKE '%ACC%'i
.J

select * from DEPT where DEPTNO LIKE '20%'i

select * from DEPT where DEPT DATE LIKE '01%';

Indexes are not used if the IS NULL or IS NOT NULL

conditions are used in the WHERE clause of the SQL

statement. [6] There is no index entry if the column values in

a index have a null value therefore a index cannot be used for

this test condition. The following SQL statements will not

use indexes because of the use of IS NULL or IS NOT NULL "

conditions.

42

select * from DEPT where DNAME IS NULL;
"-

select * from DEPT whereDEPTNO IS NOT NULL;

records will be retrieved for a NOT EQUAL to condition

therefore the optimizer will not use indexes for this test

condition. [10] The optimizer will transform other NOT

conditions so indexes can be used. The optimizer will

evaluate a NOT > expression to a <= e~ression, a NOT <

expression to a >= expression, a NOT >= expression to a <

expression, and a NOT <= expression to a > expression. [5] The

following SQL statement will not use a index due to the

presence of the NOT equal condition.

select * from DEPT where DEPTNO != 0;

The following SQL ?tatements can use indexes because of the

transformation of the condition.

select * from DEPT where NOT DEPTNO > 2000; is transformed to

select * from DEPT where DEPTNO <= 2000;

select * from DEPT where NOT DEPTNO < 2000; is transformed to

select * from DEPT where DEPTNO >= 2000; I

/select * from DEPT where NOT DEPTNO >= 2000; is transformed to

where DEPTNO < 2000;

select * from DEPT where NOT DEPTNO <= 2000; is'transformed to

43

select;* from DEPT where DEPTNO > 2000;

The DISTINCT, UNION, MINUS, INTERSECT, and GROUP BY

operators will not use indexes when referenced in a SQL

statement. [5] -The DISTINCT and GROUP BY operators require a

sort operation when referenced. [10] The UNION, MINUS, and

INTERSECT operators require two sort operations when

referenced. [10]

indexes.

The following SQL statements will not use

select DISTINCT DEPTNO from EMP;
-- ~-_._.-

select DEPTNO from DEPT MINUS select DEPTNO from EMP;

select DEPTNO from DEPT UNION select DEPTNO from EMP;

select DEPTNO from DEPT INTERSECT select DEPTNO from EMP;

select DEPTNO from DEPT GROUP BY DEPTNO;

INDEX SELECTION RULES:

-------- ----- -~~--

The optimizer will select which indexes to use based on

heuristic rules which are incorporated in the design of the

optimizer. [10] The optimizer will select a unique index

before a non-unique index. [6] The following SQL statements

create a unique index dept$deptno on the DEPTNO column and a

non-unique index dept$dname on the DNAME column. Both columns

are referenced in the SELECT statement but only the

44

dept$deptno index will be used by the optimizer. The unique

index is viewed to be more selective and the optimizer

disregards the non-unique index to avoid the merging of the

two indexes.

create unique index dept$deptno on DEPT (DEPTNO);

create index dept$dname on DEPT (DNAME);

select * from DEPT where DEPTNO = 2000 and DNAME =

'ACCOUNTING';

Tf -1t\ultip-le-unique -indexes--a-re- -. referenced-i-n--t-he- SQL

statement then the optimizer will use the first column

specified in the WHERE clause. [10] In the following SELECT

statement the dept$dept_date index will be used because the

DEPT DATE column is specified first in the WHERE clause.

create unique index dept$dept date on DEPT (DEPT_DATE);

create unique index dept$deptno on .DEPT(DEPTNO) ;

select * from DEPT where DEPT DATE = TO_DATE('01-JAN-90') and

DEPTNO = 1000;

When mUltiple non-unique indexes are referenced as

equalities in the WHERE clause of the SQL statement, the

optimizer will merge up to five of the indexes. [10] . If more

than five non-unique indexes are referenced as equalities, the

optimizer will use the first five mentioned in the WHERE

45

clause. If five indexes are being merged for a given SQL

statement then performance may improve by disabling some of
\

the indexes. The dept$deptno and dept$dname indexes will be

merged for the following SELECT statement.

create index dept$deptno on DEPT (DEPTNO);

create index dept$dname on DEPT (DNAME)';

select * from DEPT where DEPTNO = 2000 and DNAME =

'ACCOUNTING';

.~nJI1?ex~E3r<Je is not performed on non-unique indexes
---~---------

~---

when a corldition includes a unbounded range test. [10] If an

unbounded range condition and an equality condition exist,

then the index for the equality condition will be used. If

two or more unbounded range conditions exist, then the index

on the first unbounded range condition in the WHERE clause

will be used. In the following SQL statements the dept$deptno

index will be used and a merge will not take place.

create index dept$deptno on DEPT (DEPTNO);

create index dept$dept_date on DEPT (DEPT DATE) ;

select * from DEPT where DEPTNO=lOOO and DEPT DATE >

TO_DATE('01-JAN-90') ;

select * from DEPT where DEPTNO > 1000 and DEPT DATE >

TO_DATE('01-JAN-90') ;

46

A concatenated index can be used for unbounded range

conditions. [10] The following SQL statements will use the

concatenated index dept$cat for the following SELECT

statements.

create index dept$cat on DEPT (DEPTNO, DEPT_DATE);

select * from DEPT where DEPTNO=1000 and DEPT DATE >

TO_DATE('01-JAN-90') ;

select * from DEPT where DEPTNO > 1000 and DEPT DATE >

TO_DATE('01-JAN-90') ;

OPTIMIZER JOIN RULES:

When tables are joined, the optimizer will decide how to

join the tables, which table will be the driving table, the'

join chain, and the best access path to the tables. The

joining of tables can occur through a full table scan join, a

sort/merge join, or a index join. The table to start the join

with is the driving table. The order in which the tables are

joined is the join chain.

A full table scan join occurs when a non-indexed and a

non-equal join predicate are used to join the tables. [10]

When the columns of the join predicate are not indexed and a

non-equal condition is used in the join predicate, a full

47

table scan join is used. The driving table of ~hefull table

scan join will be the last table referenced in the FROM

clause. [10] For every row of the driving table, a full table

. sc~nofj:l1.k non-driviI}g table is needed therefore this type of

join is the most time consuming. The following SQL statement

will join the DEPT and EMP tables by a full table scan join.

The driving table will be the EMP table. The DEPT.DEPTNO and

EMP.DEPTNO columns are not indexed.

select DEPTNO, ENAME from DEPT, EMP where DEPT. DEPTNO >

~_.__~..__ .EMP. J;>EPTNO . __~ _

The sort/merge join is used when the join predicate

condition is an equality and the columns referenced in the

join predicate are not indexed. [lOl The sort/merge executes

the join by performing two separate queries and then merging

the results of the queries. [6] The following SQL statement

will use the sort/merge join. The DEPT.DEPTNO and EMP.DEPTNO

columns are not indexed. since two separate queries are

executed, there is no driving table.

select DNAME, ENAME from DEPT, EMP where DEPT. DEPTNO =

EMP.DEPTNO;

The optimizer will execute this query as two separate queries

and then merge the results. The optimizer breaks the query
~ /

48

into the following queries and then merges the results.

select DEPTNO,DNAME from DEPT order by DEPTNO;

---------se-l-ect--DEPTNO-;-ENAME-from-EMP-ord-er--by--DEPTNO-;-----

An indexed join is used for a join or non-join predicate

which has indexed columns. [10] When both columns of the join

predicate are indexed, the optimizer will choose the access

path based on the query path rules introduced earlier in this

section. If the ranks are equal the optimizer will use the

last table in the FROM clause as the driving table. Thus it

is advantageous to list the table with the smallest number of

qualified rows last in the FROM list. The following SQL

statement will use a indexed join to join the DEPT and EMP

tables. Both columns in the join predicates are indexed with

non-unique indexes so the last table in the FROM list, which

is the EMP table, will be the driving table.

select * from DEPT, EMP where DEPT.DEPTNO = EMP.DEPTNO;

When only one of the columns of the join predicate is indexed,

then the driving table is the one without the indexed

column. [10] In the following SQL statement the DEPT.DEPTNO

column is indexed and the EMP.DEPTNO is not. The EMP table

will be the driving table. A full table scan will be used to

access the EMP table and the index on DEPT.DEPTNO will be used

49

to access the DEPT table.

select * from EMP, DEPT where DEPT.DEPTNO = EMP.DEPTNO;

When a inpex exists only in a non-join predicate then that

index is used for the index join.[lO] In the following SQL

statement a index exists on the DNAME column which is

referenced in a non-join predicate. The DNAME column is the

only column which is indexed therefore the index on DNAME will

be used for the indexed join. The EMP table will be the
"-,-,

driving table since it has no usable indexes.

select * from DEPT, EMP where EMP.DEPTNO = DEPT.DEPTNO and

DNAME = 'ACCOUNTING';

The outer join is used to join two or more tables and

return rows from one table which have no direct match in the

other table. [7] The outer join is applied by placing a (+)

after the outer join table in the join predicate. [7] When a

outer join occurs, the non-outer join table is the driving

table. In the following SQL statement the driving table is

the DEPT table.

select * from DEPT, EMP where DEPT.DEPTNO = EMP.DEPTNO (+)

\..,

A index will be used for non-join predicates on the non-outer

50

join tabli because they are applied before the join.[10] The

following SQL statement will use a index created on the DNAME

column which is referenced in the non-outer join table DEPT.

select * from DEPT, EMP where DEPT.DEPTNO = EMP.DEPTNO(+) and

DNAME = 'ACCOUNTING';

Indexes will also be ~sed for non-join predicates on the outer

join table with a (+) appended to the column name. [10] If a

(+) is not appended to the column name the index will not be

used. In the following SQL statements, the first SELECT

statement will use the index on the SAL column and the second

SELECT statement will not use the index on the SAL column.

select * from DEPT, EMPwhere DEPT.DEPTNO = EMP.DEPTNO(+) and

EMP.SAL(+) = 1000;

select * from DEPT, EMP where DEPT.DEPTNO = EMP.DEPTNO(+) and

EMP.SAL = 1000;

If both columns in the join predicate are indexed, the index

on outer join column will be used to access the table and a

full table scan will be used for the non-outer join table. [10]

In the following SQL SELECT statement, the index on

DEPT. DEPTNO will be ignored and the DEPT table will be

accessed by a full table scan. The EMP table will use the

index on EMP.DEPT.

51

select * from DEPT, EMP where DEPT.DEPTNO = EMP.DEPTNO(+);

~ CO~CLUS ION: --- ---- -------

It is important to understand how the optimizer works in

order to write efficient SQL statements or to tune existing

SQL statements. This section examined the rules of the

optimizer and how it uses those rules to determine the access

paths for the SQL statement. The optimizer uses heuristic

rules to determine how a SQL statement should be executed.

These rules will not always produce the best access path. It

is therefore very important to understand the workings of the

optimizer and manipulate it when it does not choose the best

strategy for executing the SQL statement.

REFERENCES

1. Date, C. J., A:n-Il1troduct-ion-'t0--Data-base-s¥stems_a

Reading,Mass:Addiseft-Wesley,1990.

2. Date, C. J., Relational database writings, 1985-1989.

Reading,Mass:Addison-Wesley,1990.

3. Hursch, Carolyn J., SQL, structured query language. Blue

RidgeSummit,Pa:Windcrest,1991.

4. Johnson, Ted and Shasha, Dennis, "Reexamining B-Trees", Dr.

Dobb's Journal, Vol.184, 01/92, pp.44-48.

5. Oracle RDBMS Performance Tuning Guide Version 6.0.

Redwood,Ca:Oracle Corporation,1990.

6. Oracle RDBMS Database Administrator's Guide Version 6.0.

Redwood,Ca:Oracle Corporation,1990.

7. Oracle SQL Language Reference Manual Version 6.0.

Redwood,Ca:Oracle Corporation, 1990.

8. Oracle Unix Technical Reference Guide Version 6.0.

Redwood,Ca:Oracle corporation,1990.

53

9. Reiner, David S., Kim, Won and Batory, Don" S., Query

Processing in database systems .. New York: Springer-Verlag, 1985.

10. Supplied by Oracle Corporation, Redw~ Ca.

\I

54

VITA

The author was born on September 5, 1958. The author received

a Bachelor of Science Degree in Business Management from the

Pennsylvania State University in 1980 and an Associates Degree

in Computer Science from Northampton County Area Community
,

College in 1987. The author is currently employed by Lehigh

University as a Senior Technical Services Consultant for the

Administrative Systems department.

,

55

-------~-'--------------------------'-------------- -------- -

	Lehigh University
	Lehigh Preserve
	1992

	Optimizing query performance in relational database systems
	Anthony Casamassa
	Recommended Citation

	00124
	00125
	00127
	00128
	00129
	00130
	00131
	00132
	00133
	00134
	00135
	00136
	00137
	00138
	00139
	00140
	00141
	00142
	00143
	00144
	00145
	00146
	00147
	00148
	00149
	00150
	00151
	00152
	00153
	00154
	00155
	00156
	00157
	00158
	00159
	00160
	00161
	00162
	00163
	00164
	00165
	00166
	00167
	00168
	00169
	00170
	00171
	00172
	00173
	00174
	00175
	00176
	00177
	00178
	00179
	00180
	00181
	00182
	00183

