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ABSTRACT

Micron-sized particles inhaled into the respiratory system can traverse the airway tree and deposit

on the walls of the pulmonary alveoli. The fate of these particles can be measured by their

propagation depth, wall deposition rate. and time to impaction. These three quantities will

depend on various physical parameters including particle size. breathing frequency, and

viscoelastic tissue properties. This study develops a fluid-structure computational model of

alveolar dynamics to quantify how these parameters influence particle transport in the deep lung

and to identify the relative importance of convection and diffusion at the alveolar scale. The

computational model simulates negative pressure breathing conditions in which applied tissue

forces deform the lung parenchyma and produce oscillatory flow within the alveoli. The transient

flow fields from the fluid-structure models are used to calculate the trajectories of micron-sized

particles (i.e. 0.1 to 5 ,"un). Particle motion is governed by the Langevin equation. which contains

a stochastic Brownian force term. The results indicate that Brownian diffusion dominates the

transport and deposition of particles with a diameter less than I pm. Convection forces become

increasingly dominant for larger particles and faster breathing rates and stiffer. more viscous

tissues generate less wall motion and lower convection forces. Gravitational sedimentation is

also a significant deposition mechanism for larger particles. This information may be useful in

designing more effective inhaled pharmaceuticals or drug delivery strategies and in treating

patients with compromised lung function due to disease or occupational injury.

KEYWORDS

BrO\\'Ilian diffusion. deep lung defonnation. fluid-structure interactions. alveolar mechanics.

tissue mechanics. biolluid dynamics



I. INTRODUCTION

The subject of particle transport in the human lungs has received much attention due to

the wide range of pathogens, pharmaceuticals, and occupational hazards a person may inhale.

Although several previous investigations have focused on transport phenomena in the conducting

airways [1-3 j, micron-sized particles may traverse the larger airways and become deposited in the

alveolar region of the lungs. Common pathogenic examples include the Respiratory Syncytial

Virus (RSV) and Human Parainfluenza Viruses (HPIVs). RSV and HPIV are the two leading

causes of lower respiratory tract disease in young children [4,5]. The highly-vascularized

alveolar region is also an important target location for the deposition of various pharmaceutical

agents including aI-antitrypsin for emphysema [6] and aerosolized insulin or immunoglobulin

[7]. In the workplace, inhalation of fine carbon and silica particles can lead to Coal Workers'

Pneumoconiosis (black lung disease) and Silicosis [8,9]. These examples indicate that a better

understanding of particle transport dynamics in the deep lungs has broad clinical significance.

The complex anatomy and biophysics of the alveolar system presents several modeling

challenges including alveolar interconnectivity, tissue-driven wall motion, and Brownian

diffusive particle dynamics. The lung parenchyma is sponge-like network of interconnected

alveolated ducts and sacs. Neighboring alveoli share thin. flat walls and a common flow source.

In addition. the alveolar honeycomb is not a static structure; it stretches and recoils with each

breath. Fine particulates that migrate to the alveolar region are subject to convection, gravity. and

random Brownian diffusion. However. Brownian diffusion operates on a much shorter time scale

than the tidal breathing cycle. so including its effect can be a computationally expensi\'e

procedure. These potential modeling difficulties suggest that a tractable model of this system

requires se\wal simplifying assumptions.

Several recent studies of airflow and particle dynamics in the alveolar region of the lung

approximate the ah'eoli as rigid structures. Tsuda [IOJ and colleagues used a series of
...,



axisymmetric tori to simulate airflow and diffusive particle transport through an alveolated duct.

They reported that particle deposition percentages in alveolated ducts were lower than the

percentages observed in smooth ducts and that deposition rates were higher near the alveolar

entrance ring. Darquenne [11] used computational techniques to track particle motion in a static

six-generation tree of flat-walled alveolated ducts. Although this study neglected Brownian

diffusion. Darquenne's models did document significant local particle deposition inhomogeneity

after forced inspiration and expiration. While these models provide interesting insights, they

ignore the alveolar wall motions that generate airflow and drive particle transport in the lungs.

Some investigators have addressed this problem by prescribing pre-defined alveolar wall

motions. For example. Henry [12] and colleagues applied sinusoidal oscillations to semi-circular

alveolar tori in a duct. Although they neglected Brownian diffusion. they concluded that alveolar

wall motion induces chaotic mixing. which may be a mechanism of aerosol deposition. Haber

and colleagues [13] studied gravitational deposition of aerosols in a rhythmically expanding and

contracting 3-D alveolus and determined that wall motion is a critical factor in particle

deposition. These studies underscore the need to consider domain deformation when simulating

the kinetics and fluid mechanics of aerosol transport in the deep lung.

The current study presents a model for the transport of micron-sized particles in the

alveolus that addresses the challenges discussed above. i.e. alveolar interconnectivity. tissue

dri\'cn wall motion. and Brownian-diffusive particle dynamics. The models represent the alveolar

sac as a cluster of flat-walled subunits sharing structural and fluid dynamic connectivity with their

neighbors. These structures mimic the hexagonal morphology of tenninal alveoli more closely

than traditional semi-eircular "grape cluster" representations [14. 15]. To simulate the

deformation of the lung parenchyma tissue and the resulting oscillatory flow fields. the model

implements a fluid-structure interaction (FSI) tcchnique. In contrast to othcr modcls that usc

prcscril)ed \'clocities and wall motions [10-13. 16-18]. thc current FSI techniquc uscs tissuc



motion to generate airflow within the alveolus and therefore provides a more accurate

representation of negative pressure breathing dynamics. The FSI flow results are exported to a

particle-tracking algorithm that calculates particle motion over time steps that are shorter than the

time step used in the FSI simulation to capture rapid Brownian diffusion dynamics. Finally. the

model reveals how several physical properties influence particle motion and it explores the

relative importance of convection and diffusion at the alveolar scale



II. METHODOLOGY

A. Fluid-Structure Interactions (FSI)
A thoughtful approach to modeling alveolar dynamics starts with an understanding of

breathing mechanics. At the beginning of each breath, the inspiratory muscles contract and the

ribcage moves up and out while the diaphragm moves down. Tissue stresses transferred through

the lung parenchyma expand the alveoli. The increase in alveolar volume establishes a sub-

ambient pressure within the alveoli that drives air flow into the lungs. At the end of inspiration,

airflow into the lung has equalized the internal and external pressures and flow ceases. As the

inspiratory muscles relax, elastic recoil decreases alveolar volume and increases the alveolar air

pressure. Air flows out of the lungs until the internal and external pressures are again equal.

Thus, at the alveolar level, tissue deformation drives the flow field.

The direct relationship between tissue motion and airflow in the alveoli naturally suggests

a fluid-structure interaction simulation technique. Although this approach is computationally

intensive, it has several desirable features. Instead of arbitrarily imposing the wall motion, the

model transmits loads through the tissues to the alveolar wall. In this model, tissue properties

such as elasticity or viscosity influence wall motion. alveolar flow patterns, and particle

pathways. Therefore. this coupled fluid-structure interaction (FSI) computational model

represents an important step toward the realistic simulation of alveolar breathing mechanics.

The simulations employ the ADINA 8.2 (19) finite clement (FE) package for the time-

dependent FSI models. Each ADINA model has a fluid domain and a solid domain. Fluid flo\\' is

governed by the incompressible continuity and Navier-Stokes equations.

(I)
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Where p is the fluid density, J1 is the fluid viscosity, Vj is the velocity vector, Xj is the position

vector, t is time, and p is the fluid pressure. Tissue deformation in the solid domain is governed

by a standard stress balance relationship and a Kelvin-Voigt viscoelastic constitutive relationship

[19-21].

(3)

(4)

Here a,) is the stress tensor, E is the Young's modulus, e,) is the strain matrix, 'I is the viscosity,

and d, is the solid displacement in a given direction. In ADINA, the viscoelastic material is

formulated with a Prony-Dirichlet series with user-supplied coefficients [19]. (See Appendix A

for additional details on modeling viscoelastic materials in ADINA.)

In the FSI models, the fluid and solid domains are coupled by satisfying the following

three boundary conditions at the interface between the two domains.

d f = d'I ,

(av av)
11 a f =11 a' where a f =-pJ +Ii -'+-)

) I) ) I)' 11 I) a a. x) x,

ad·'
IIV =11--'

" I at

(5)

(6)

(7)

Where d/ and d,' are the fluid and solid nodal displacements. II) is the interface normal vector. 8ij

is the Kronecker delta function. and a,/ and a,,' are the fluid and solid stress tensors. The

kincmatic condition in Eg. (5) rcquircs cqual displaccmcnts of thc fluid and solid nodcs at thc

fluid-structurc interfaces. The dynamic condition in Eg. (6) specifies strcss continuity bctwcen

thc fluid and solid domains. Finally. the fluid velocity condition in Eg. (7) is a no-slip boundary

condition at fluid-solid interface.
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An iterative solution scheme accounts for two-way coupling between the fluid and solid

domain and solves Eqns. (1-4). For the first time step, Eqns. (1) and (2) are solved with the no

slip boundary condition in Eq. (7) for the flow velocities in the fluid domain and the fluid

tractions, a,f, at the fluid-structure boundary. The calculated values of a,f are then used as

boundary conditions in Egn. (6) to solve Egns. (3) and (4) for deformations in the solid domain.

These deformations result in a new shape for the fluid domain and the ADINA solution routine

checks whether the kinematic and dynamic conditions, Egns. (5) and (6), are satisfied. If these

conditions are not satisfied, the solver repeats the fluid and solid computations with the updated

traction and displacement information. To maintain stability and to speed the approach to

convergence, the solver employs displacement and stress relaxation factors when passing

boundary information between the fluid and solid domains. When the solver reaches a converged

solution, it stores the information and moves to the next time step. ADINA uses an Euler

backward time stepping algorithm, which is first order accurate and implicit.

B. Model Definition
Meaningful FSI simulations arise from physiologically-motivated computational

domains. Although typical artists' rcnditions of the dccp lung morphology show littlc alveolar

interconncctivity [22]. ncighboring alvcoli actually sharc thin. flat walls and usually havc fluid

dynamic and structural conncctivity [23. 24J. Based on this observation. thc alvcolar sacs in this

study arc modificd 2-D hexagonal honcycombs (sec Fig. I). Thc final modcl. which was

gcncratcd in thc Rhinoccros 3.0 CAD packagc. has thrcc neighboring alvcolar sacs that deform

whcn an oscillatory load is applied to thc surrounding tissue as shown in Fig. I. When the modcl

is not loaded. it has an inlet duct diametcr of 200 tUll. and an alvcolar cntrancc length of 100 JUll.

Thcsc dimensions arc consistent with typical alvcolar ducts and sacs in adult human lungs 123.

25. 26J. Thc comers of each ah'eolus arc filleted to mimic the rounded concave comers produced

by the liquid lining layer present in the lungs [27] and to reduce stress concentrations in the solid

7



domain. Although this geometry accounts for the shape seen by the air, the current models do not

directly simulate surface tension dynamics within the liquid layer.

Fixed Boundary
L

Applied
Load

Solid

Honeycomb Model

~
Fillet Corners:

R = 25 11m

Fig. 1 Modcl schcmatic showing applicd loads and charactcristic dimcnsions.

The next step in the modeling process is to discretize the fluid and solid model domains.

The solid mesh consists of 7-node triangular plane-strain clements. To maintain structural

rigidity in the inlet duct. the model uses 3-node plane-strain isobeam clements along the walls of

the inlet channel. There are 9.068 total clements and 27.231 nodes in the solid model. The fluid

mesh contains 9.643 3-node triangular clements and 5.163 nodes. (See Appendix B for mesh

pictures and element size information.) Although the solid clements have more nodes than the

adjoining fluid clements. the FSI sol\'er interpolates the fluid's nodal displacements from the

solid mesh and the interface tractions for the solid nodes from the fluid mesh.

The parameter \'allles for the tissue stiffness. E. and the magnitude of the applied load are

selected to generate physiological flow rates. To estimate these flo\\' rates. assume that the

s



change in lung volume during breathing occurs primarily in the alveolar sacs. As a result, the

alveolar expansion can be calculated based on the tidal breathing volume, VTn. As described in

the Appendix C, a VTB=500 ml yields an 8% change in alveolar radius during each breath. To

match these 8% displacements, the models specify baseline values for the tissue parameters:

E=lO,OOO dyn/cm2 and 11=0 glcm-s. Varying the applied tissue load until the calculated wall

displacements match the 8% alveolar expansion ratio isolates the appropriate load/stiffness ratio.

Note that the final value for the applied load is 500 dyn/cm2
. This baseline case produces inlet

flow rates that correspond with the values reported by Darquenne [II] for the equivalent Weibel

generation.

From the baseline case discussed above, the simulations include a range of system

properties to account for local tissue variations, disease states, breathing patterns, and particle

types. Table I shows the baseline values and the parameter ranges used in this st·Jdy. In all cases,

tissue density was set at 0.28 glcm3 [28]. Variations in E correspond to a range of disease states

in which the lung parenchyma is more or less stiff than normal tissue [29]. The chosen range of 11

makes the ratio of stress relaxation time to breathing period vary from approximately 0.15 to I.

This range is sufficient to assess the influence of viscoelasticity by varying the time delay of the

tissue response. The range of J'TB includes the spectrum of typical breathing rates. Finally. the

distribution of particle sizes represents aerosol exposure conditions ranging from bacteria and

viruses to pharmaceuticals and dust.

Parameter Baseline Range

Tissue Elasticity E =10.000 dyn/cm2 7.500 < E < 12.500

Tissue Viscosity '1 =0 glCI11-S 5,000 < '1 < 15.000

Breathing Period )'TIJ = 5 sec 5<),m< 15

Particle Diameter dp =111m 0.1 < dp < 5

Tnhlc I Ynluc mngcs for solution pammctcrs uscd in thc finitc clcmcnt modcl.

9



C. Particle Tracking
This study investigates the behavior of a dilute suspension of micron-sized particles with

no particle-particle interactions. In addition, this work assumes that the motion of these small

particles does not influence the fluid flow calculation. Based on these assumptions, the first step

is to perform the full FSI simulation and calculate fluid velocities at all time steps. Next, the fluid

solution variables must be extracted from the FSI simulation in time increments of Lit =0.9375

sec. Note that this corresponds to 16 time steps per breathing period when }'TIl = 15 sec. Finally,

a MATLAB (30) post-processing routine integrates the following differential equation of particle

motion in two dimensions.

dv," F ( ,,) g,(p" - p) F. B--=. V -v + +dO' , ,
t P"

(8)

Here. 1'," and 1', represent particle and fluid velocities, p" and p represent particle and fluid

densities. F0 is the drag force on the particle and g, is the gravity vector. Equation (8) is known

as the Langevin equation and represents a balance of inertia, drag. gravity, and Brownian forces

(31). The tracking algorithm uses a Crank-Nicolson integration scheme that is second-order

accurate and implicit (see Appendix D for detailed formulation).

In these simulations, intermolecular slip may be significant due to the small size of the

particles. A modified Stokes' formulation for the drag term. FD• accounts for this effect.

(9)

(10)

Here p is the lluid viscosity. Cc is the Cunningham slip correction factor [31. 32J. and I. is the

molecular mean free path of air. The Brownian term. F,Il (Eq. II) is a stochastic random vector

defined in terms of the particle and fluid properties and the solution time step [32J.

10



Fa ~ c~11S0
I :;, I !:1t (11)

(12)

Here, G. is a zero-mean, unit-variance Gaussian random vector, So is the amplitude of the white

noise process, u is the kinematic viscosity of the air, k =1.38x 10. 16 is the Boltzman constant, and

T is the temperature of the air. In this study, all gas properties are at body temperature, T =37°C.

As a validation for the particle motion algorithm, the root mean squared (RMS)

displacement of a Brownian particle in an infinite quiescent medium can be compared to the

theoretical diffusion predicted by Einstein [33].

RMS = Kf = ·hDt

Here, the diffusion constant, D, includes the Cunningham slip correction factor [34].

kTC
D= c

3rq.ldl'

For a particle with diameter dp =0.1 11m, Fig. 2 shows the simulated Brownian RMS

(13)

(14)

displacement approaching the theoretical value as the time step. L1t. decreases. This convergence

study indicates minimal differences between the solutions for L1t =0.001 and 0.0001 sec.

Therefore. this study specifics L1t =0.00 I for all simulations.

11
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5 12..----------'-------,
I;J
'-'

Fig. 2 As time step size decreases, the simulated RMS particle displacement approaches the
theoretical result of Equation 13.

D. Statistical Analysis
This study is concerned with the effect of particle diameter, tidal breathing period, and

tissue elasticity/viscosity on alveolar particle transport. However. the stochastic Brownian force

term in the particle equation of motion can produce significant variations between particle paths

emanating from the same initial location. Thus. it is not possible to draw conclusions about the

general behavior of particles under a certain set of conditions without a statistical analysis based

on repeated measurements. Therefore. the analysis requires a series of FSI simulations over a

range of tissue models and breathing rates. Specifically, there are 7 tissue models (i.e. different

values for E and 11) and 4 breathing periods for a total of 28 different cases or treatment groups.

The time-dependent flow data is extracted from the FSI simulation for each treatment group and

the data goes to the t\tATLAB particle tracking routing. The MATLAB routine defines an array

of 21 particlc injectors whcre thc airway dividcs into thc thrcc ah'colar sacs (scc Fig. 2). For all

28 treatmcnt groups. thc MATLAB routinc computcs 10 particlc paths from each of the 21

injectors. Finally. this calculation must be rcpcatcd for thc scvcn different particlc diametcrs. As

a result. the total numher of particle pathways computed in this study is 41.160.

12



For the statistical analysis, three outcome parameters measure how far the particles travel,

how many particles land on the walls, and how long they take to land on the walls. A two-factor

analysis of variance (ANOYA) identifies any statistically significant variations in the outcome

parameters within the 28 treatment groups. A least significant difference (LSD) post hoc test

identifies any statistically significant differences between specific treatment groups. Significance

for these tests is set at P < 0.05.



III. RESULTS
The particle tracking results fall into two categories: Non-Brownian (part A) and

Brownian (part B). Particle behavior after injection has three characteristic measurements:

displacement from the injection location, ~p, impaction rate, Rimp, and time to impaction, timp' In

the case of Non-Brownian particles, there is no random force component, so there are no repeated

measurements for Rimp, timp, and ~p' The Brownian particle results include statistics based on

1,470 particle paths in each of the 28 treatment groups.

A. Non-Brownian Particles

A.1-Symmetric Tissue Properties
The behavior of micron-sized particles without the influence of Brownian diffusion or

gravity provides a convenient visualization tool for understanding the transient flow patterns in

the alveolar structure. Figure 3 shows the paths traversed by I-flm particles over the course of 10

breathing cycles. Due to the orientation of the three alveolar sacs within the tissue, the central sac

generates slightly higher flow rates, as evidenced by particle drift toward the system centerline.

Except for particles injected within I ~1I11 of the moving walls, the panicles remain entrained in

the fluid and do not impact the walls.

Non-Brownian particles have limited wall impaction. so the only useful metric for

quantifying particle behavior is displacement from the injection location. ~r' At every point

along the particle's path. the tracking routine computes the particle's straight-line distance from

the injector. Note that only the maximum distance a particle travels from its injector while it

remains entrained in the airflow is used to calculate ~r' Figure 4 shows ~r profiles for the three

models with different tissue clastic moduli. Note that only purely clastic tissue models (i.e.

\·iscosity. 11=0) are shown in Fig. 4 and that each curve represents the a\'erage of four treatment

groups with different hreathing periods. Clearly. particles injected ncar the high-\'elocity

centerline travel farther into the system. Particle paths that pass ncar a carina (shown in Figure 3)

14



have reduced displacements. These results suggest that decreasing E increases particle

propagation depth.

Carinae~~_

~o Number of
8 Breathing
~ Cycles
5
4
3
:2
1

I I I
-0.05 0 0.05

Y (em)
Fig.3 Non-Brownian particle paths for d p = 1 Jim. Shaded areas show the region traversed
by each particle and the shading indicates particle position after each inspiration-expiration

c)'c1e.

E = 12,500
--I::r-

E =7,500
-0-

-0.005

E = 10,000
~

0.000 0.005 0.010

Injection Location. x (em)

Fig. .t For nOll·Brownian particles. propagation depth depends on the local velocit~· at the
injection location and the downstream airwa~' configuration. Particles that pass ncar a

carina do not travel as far into the s~·stem.

15



Another measurement of the influence of tissue properties on particle propagation is the

maximum particle displacement, (~p)mm as a function of breathing period for various values of E

and TJ (see Fig. 5). Note that the data in Fig. 5a uses a constant TJ=O glcm-s while the data in Fig.

5b uses a constant E=lO,OOO dyn/cm2
. An ANOYA with LSD post hoc analysis confirms that E,

TJ, and Am all have a statistically significant effect on particle propagation depth (P < 0.001

between all treatment groups). Specifically, increasing the elastic modulus, E, or the viscosity, 11,

reduces particle displacements (~p)rmx. These results are for non-Brownian particles, so the

trends represent the contribution of convection forces only.

(b) Viscoelastic Tissues
--0- 11 = 5,000
-D- 11 = 7,500
~ 11 = 10,000
--0- 11 = 15,000

(a) Elastic Tissues

--0- E=7:500
-D- E =10,000
~ E= 12,500

0.06
~.

~~0.05 - ~.
jE j 11

0.04

0 5 10 15 20 0 5 10 15 20

0.07

Breathing Period, J"fR (sec)

Fig. 5 For non-Brownian particles, increasing E and '1 reduces particle propagation into
the s)·stem. Symbols denote statistically significant differences due to tissue model.

A.2-Asymmetric Tissue Properties
The computational mesh for the solid domain has three distinct zones. as show.1 in Fig. 6.

Each zone can ha\"e different solid properties and this feature illustrates the effects of asymmetric

tissue stiffness on particle transport. Zones I and 2 ha\"e the baseline stiffness. E= 10.000

dyn/cm~. and zone 3 is twice as stiff. so that E,=2E1• Figure 7 shows non-Brownian particlc paths

through the rcsulting asymmctric /low field. Particles that pass into the lowcr-\"elocity /lows in

thc stiffer zonc do not propagatc as dceply into thc system.

16



Normal Tissue:
E1=E2

(10,000 dynlcm2)

1

2

Stiffer Tissue:
E3 =2E1

3

Fig. 6 Three separate tissue zones can have independently-defined solid properties. For the
asymmetric stud)', the zone 3 on the right is twice as stiff as zones 1 and 2.

10 Number of
~ Breathing
~ Cycles

- 5
4
3
2
1
o

Fig. 7 The alYeolar sac on the right is surrounded by stiffer tissues than the other two sacs.
Particles do not traYeI as deeply into regions surrounded by stiffer tissues.
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B. Brownian Particles

B.1-lmpaction Rate and Time to Impaction
In this study, when a particle's computed trajectory causes it to pass out of the fluid

domain, the tracking routine assumes it impacts the wall at that location. Particle impaction rate,

Rimp, is the percentage of particles injected into the flow that impact the walls within ten breathing

cycles. The time to impaction, timp, measures how much time a particle spends in the fluid before

passing out of the domain. These measurements illustrate effect of breathing period, I'm, and

particle diameter, dp, on Rimp and timp for all 28 treatment groups.

Figures 8 and 9 show how Rimp and timp vary as a function of particle size at different

breathing frequencies. Each curve represents the average values obtained in seven treatment

groups where each group has a unique combination of tissue mechanical properties (i.e. different

E and 11) and the same breathing period. The standard deviation bars reflect the range of results

obtained in the different treatment groups and therefore include elastic and viscoelastic

formulations. When dp:s 1 ~lIn, all particles impact the walls, so there is no dependence on tissue

type or breathing period. As particle size increases, the impaction rate, Rimp, decreases and the

time to impaction. timp' increases. For larger particles. Rimp and timp increase during slower

breathing (higher I'Tll)' Figures 10 (Rimp) and II (timp) visualize these trends for dp=2.5 and 5

11m. Each curve represents the average of all elastic and viscoelastic treatment groups. A

between-groups ANOVA including the 28 clastic and viscoelastic treatment groups indicates that

breathing period has a significant effect on both Rimp and timp'
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Fig. 8 Average particle impaction rates for all tissue models. Rimp drops sharply above dp=l
Jim; faster breathing cycles magnify this effect. Error bars denote standard deviation.
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Fig. 9 Average particle time to impaction for all tissue models. Impaction time is
proportional to the length of the breathing cycle. Error bars denote standard deviation.
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Fig. 10 Impaction rate increases during slower breathing (higher I'Tn) for all tissue models.
Error bars denote standard deviation. The effect of breathing period is statistically

significant between all treatment levels.

- 60 -I;J
Q,l

dp = 2.5 11m ~ )~:
til- 50 -Co
E..:r /r/~ 40 -

5
E= 30 /~/c
0 20 ~
~

~ dp = 5 11m
I;J
~

10c.
5- o-..2:!
I;J.• 0 5 10 15 20~

"'"~
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Fig. 11 Time to impaction increases during slower brcathing (higher I'Tn) for all tissue
models. Error bars denote standard deviation. The effcct of brcathing pcriod is

statistically significant bctwccn all trcatmcnt Icnls.

The simulations also contain information on the relatiye importance of tissue mechanical

properties on particle impaction rate, Separate ANOVA calculations for the 12 clastic and 16

\'iscoelastic treatment groups yield the results in Table II.
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E 11

dp P Significant? P Significant?

c. 2.5 0.001 -/ 0.137 Xe
~ 5 0.027 -/ 0.462 X

Table II Tissue elasticity, E, has a statistically significant effect on particle impaction rate,
but viscosity, '1, does not.

Tissue elasticity. E, has a statistically significant effect on Rimp• while tissue viscosity. 11. does not.

Figure 12 shows how Rimp varies as a function of E where each curve represents the average of all

breathing periods. In this case. stiffer tissues have higher Rimp ' The LSD post-hoc analysis

reveals which treatment groups are significantly different (see Fig. 12).

c. 100% -_._-------~--~----~---~--~---.

c
~- 90% -

~p0
dp =2.5 flm

Q).... 80% -
"=0::: 70% -c
0
:.: 60%

tr1--1i~ dp =5 flm"=Q., 50%E-
~

40%
.::! 30% -....
I.

"= 10000 15000Q.. 5000

Tissue Elasticit)', E (dyn/cm2)

Fig. 12 Increasing tissue elasticity increases the particle impaction rate. Error bars denote
standard error. Symbols denote significantly different treatment lenls.

B.2-Particle Displacement
Figure 13 shows how particle displaccmcnt. ~r' \'arics as a function of the injection

location for Brownian particlcs in diffcrcnt tissuc Illcchanicalmodcls (similar infonllation is

shown in Fig. 4 for non-Brownian particlcs). For hoth clastic and \'iscoclastic tissues. thcre is a

strong paraholic corrclation bctwccn thc injcction location and thc particlc's propagation depth.
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Specifically, particles injected into the high-velocity flow near the centerline propagate much

deeper into the alveolar sac than particles injected in the low-velocity regions near the walls.

(a) Elastic Tissues

-0- E=7,500
--D- E = 10,000
---t:r-- E = 12,500---E 0.05 ,-------------,

CJ
'-"

(b) Viscoelastic Tissues
-0- 11 = 5,000
-0- 11 = 7,500
--t:r- 11 = 10,000
---¢- 11 = 15,000

0.01

0.02

0,04
c ElO

o~~~ij6&Q~2~oo
~6 &6~e

c ij Z~

~ ~
0.00 ' .00 ~_-,--_---r-_-----,-_---=11

-0.010 -0.005 0.000 0.005 0.010 -0.010 -0.005 0.000 0.005 0.010

Injection Location, x (cm)
Fig. 13 Decreasing elasticity, E, increases particle displacement from the injector location,

AI" Changing viscosity, 1], has no significant effect.

An ANOYA analysis between the 12 elastic treatment groups and between the 16

viscoelastic treatment groups reveals the significance of changing tissue models. Elasticity, E,

has a statistically significant effect on Ap (P =0.014), where increasing E decreases Ap (see Figure

13a). However, viscosity does not significantly influence Ap (P =0.548) as shown in Figure l3b.

C. Brownian Particles with Gravitational Sedimentation
The Langevin equation (Eq. 8) contains terms for convection, Brownian diffusion, and

gravitational sedimentation. Gravitational settling can be a significant particle deposition

mechanism, especially for the larger. more massi,'e particles in the study. However. including

gravity introduces orientation dependency in the results. Figure 14 compares sample particle

paths for a range of particle sizes. The smaller particles (on the left in Fig. 14) experience more

Brownian diffusion. while the larger particles (on the right in Fig, 14) experience more

gravitational sedimentation.
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Fig. 14 Brownian diffusion is the dominant deposition mechanism for smaller, lighter microparticles.
Gravitational sedimentation dominates for larger, heavier particles.
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The particle impaction time can quantify the dominance of gravitational sedimentation.

Figure 15 compares the average timp results for all treatment groups with and without gravity. As

expected. gravitational sedimentation becomes increasingly dominant for larger particles.

100.0 -,-----------,

Particle Diameter, loge dp ) (Jim)

10.0

o

1.0

[J. With Gravity
[J.1.0

No Gravity

0.1

0.1

10.0

-

Fig. 15 Gravitational scdimcntation produccs low impaction timcs for largc particlcs that
cxpcricncc littlc Brownian diffusion. Error bars dcnotc standard dcviation.



IV. DISCUSSION
Prior to this study, other investigators studied various aspects of alveolar dynamics, but

none of them simultaneously treated all of the modeling challenges outlined in this study: alveolar

interconnectivity, tissue-driven wall motion, and Brownian-diffusive particle dynamics. The

unique contribution of this study is the successful coupling of fluid-structure interactions in a

physiologically-motivated alveolar geometry with an efficient particle tracking algorithm. This

synthesis of tools allows for an analysis of how geometry, tissue mechanical properties. and

convection/diffusion transport mechanisms influence microparticle transport in the deep lung.

A. Geometry Effects
The shape and orientation of the alveolar sacs within the tissue can determine how deeply

particles propagate into the system. Non-Brownian particles that pass near a carina have reduced

displacements because they become trapped in the slower flow near the walls (see Fig. 4).

However, the displacements calculated for particles with Brownian motion do not reflect the

presence of the carinae. For the Brownian particles, the carinae do not influence particle

propagation depth because particles randomly cross streamlines and do not necessarily become

entrained in the slow flow ncar these geometry features. This result suggests that diffusional

transport overwhelms any potential geometry effects at these small scales.

B. Tissue Effects
Tissue properties influcncc particlc behavior by altcring thc systcm's rcsponsc to loading.

In thc casc of clastic tissucs. incrcasing thc stiffncss (highcr E) rcstricts wall displaccment and

gcncratcs lower-\'clocity flows. Lowcr-\'clocity flo\\' pattcrns decrease thc COI1\'cctivc forces that

pull pal1icks farther into the alveolar sacs. As a result. increasing the clastic modulus. E. reduces

particle displaccments. ~r (sec Figs. 4. Sa. and 13a). Incrcasing E also results in a higher particle

impaction ratc. R,"1i' (sec Fig. 12). This relationship betwccn E and R"1i' is due to thc magnitude

of connxtivc forccs decrcascs with incrcasing E. As a rcsult. the influence of Brownian
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diffusion, which is responsible for particles crossing streamlines and impacting on the walls, is

magnified at large E. This relationship between convection and diffusion is further analyzed

below.

C. Convection vs. Diffusion Dominance
Although several authors have investigated the transport of micron-sized particles in the

deep lungs, the relative importance of convection and diffusion forces is not well established. For

example, Tsuda et al. [10] included Brownian forces when tracking particles ranging from 0.05 to

5 flm in alveolated ducts, while Darquenne' s investigations [17] neglected Brownian diffusion for

particles larger than 0.5 flm in diameter. Haber et al. [13] also neglected Brownian dynamics but

acknowledged that it may be important for alveolar flows. One possible source of confusion

regarding the importance of Brownian diffusion arises from the fact that Brownian-scale motions

seem irrelevant for particles travcling through relatively largc structures. However. these small

motions bccome increasingly significant as the characteristic size of the domain approachcs the

displacemcnts generated by diffusion alonc.

The impaction rate data obtaincd from these simulations supports thc inclusion of

Brownian dynamics for microparticlc transport in pulmonary alvcoli. From Fig. 8, it is evidcnt

that dp = I flm is a critical sizc that dividcs the results into two regimcs. Spccifically, for dp < I

~ml, Brownian di ffusion alonc carries particles out of thc domain and thcrcfore 10OC/(l of injected

particles impact thc walls, regardlcss of convcctivc forces in thc systcm. This rcsult can be

explained by considcring Einstein's theoretical diffusion relationship (Eq. 13), which is plotted in

Fig. 16 for different particle diamctcrs. Thc inlet duct diamcter is system's characteristic length,

I" and it has been plotted as a horizontal reference scale on Fig. 16. Comparing the I.: to the R~tS

displaccments indicatcs that that Brownian diffusion alone will carry smaller particles (dr < I ~Im)

beyond the physical limits of the system. As a result. 100<7(' of the particles with dr < 111m

become impacted on the wall.
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Fig. 16 Einstein's diffusion relationship (Eq. 13) for a range of particle diameters. The
characteristic length, In delineates the alveolar boundary. During one slow breathing cycle,

diffusion alone will carry the smaller particles out of the domain.

For particles larger than 111m, impaction rates decrease significantly with increasing

particle size (see Fig. 8). Larger particles have more mass, experience larger drag forces and are

therefore easier to carry with the bulk convective flow. As a result, diffusion is less significant

for these larger particles. Since diffusion is required for particles to cross streamlines and impact

on the walls. impaction rates decrease for large particles. Fig. 8 also demonstrates that high

breathing frequencies. i.e. low breathing periods (J-m). result in lower impaction rates. At high

breathing frequencies. convective forces are elevated. diffusion is less significant and therefore

particle impaction rates decrease.

The data in Figs. 8 and 9 suggests that the ratio of convection to diffusion strongly

influences particle bchavior in this systcm. so a dimcnsionless analysis is a useful tool for

invcstigating thc rclativc importancc of convcction and diffusion. For thc data obtaincd in cach

particlc path. t,mi' can bc dividcd by t-m to calculatc thc number of brcathing cycles to impaction.

NC,mi" Next. thc particle diamctcrs in each simulation can bc cOIl\'cI1cd to thcir cqui\'alent Peclet

number. or dimcnsionlcss CO!1\'cction-diffusion ratio.



(15)

Equation (15) gives the Peclet number in terms of the maximum alveolar wall displacement,

(d,,)man duct diameter, In and diffusion constant, D, as given in Eq. (14). Figure 17 shows NCimp

as a function of Pe for all elastic and viscoelastic treatment groups. In this format, the data

collapses to a single relationship.
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Fig. 17 After dimensional analysis, the data from Fig. 7 collapses to a single curve. The
number of breathing C)'c1es to impaction, NCimp, does not depend on tissue type or

breathing period.

An ANOVA analysis confirms that NCimp docs not have a statistically significant dependence on

the tissue type (P =0.247) or on breathing period (P =1.000). Thus. the number of breathing

cycles before impaction is only a function of the Peclet number, or the convection/diffusion ratio.

This result indicates that Brownian motions playa major role in the transport of sub-micron

particles inside small structures such as pulmonary alveoli. In addition. convection becomes

increasingly dominant as particle size and bulk fluid velocity increase. Finally. the relative

importance of con\'ection and diffusion can be accurately ascertained with the dimensionless

Peclct number.
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The convection/diffusion ratio result helps explain why larger particles have higher

standard deviations for timp in Figs. 9 and 15. Larger particles experience more convective forces,

so their time to impaction is more dependent upon the initial velocity at the injection location.

Some particles are injected into slow flow near the walls and some are injected into fast flow near

the centerline. Less Brownian diffusion also means that particles cross fewer streamlines, so

impaction times for the large particles show a stronger correlation with injection location, and

hence, a wider standard deviation than for smal1 particles.

D. Model Limitations
As with any computational model, this study does not include all of the physical

phenomena that may affect particle transport in the pulmonary alveoli. Although this study

briefly examines the effect of gravity on particle transport in this system. most of the results

neglect sedimentation effects. This assumption isolates the effects of convection and diffusion in

an orientation-independent domain. Particles in real alveoli do experience gravitational settling,

but this study leaves a thorough comparison of gravitational, diffusive. and convective effects for

a future investigation. This study also recognizes the limitations involved in approximating

alveolated sacs as 2D structures. During breathing, these tortuous pathways experience cyclical

out-of-plane collapsing and unfolding. In addition. a thin liquid layer covers the alveolar

capillary boundary and surface tension forces within that layer may be important for

understanding breathing mechanics at the alveolar level 135). Finally. true breathing patterns may

not be purely sinusoidal as described here. Irregular breathing. including breath-holding. may be

of particular interest for deep lung aerosol applications.
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v. CONCLUSIONS
In summary, this study developed a fluid-structure interaction model for alveolar

breathing mechanics and a particle tracking routine to simulate particle motion in small alveolar

sacs. The models simulated ten inspiration-expiration cycles for a range of particle sizes,

breathing rates, and tissue mechanical properties. The results compared 28 treatment groups

defined by breathing rate and the elastic and viscoelastic properties of lung parenchyma tissue.

For non-Brownian particles, particle impaction on the walls was negligible. Particle

displacement from the injection location depended on the local fluid and downstream flow

conditions. Particles injected into the high-velocity flow near the centerline traveled deep into the

system. Particles that passed near the carinae, or airway division points, did not travel as far

because of slow near-wall flow patterns (Fig. 4). Increasing the tissue elasticity decreased

particle displacement because smaller wall displacements generate slower flows and less

convection-driven particle motion (Fig. 5a). Increasing the viscosity also increased particle

displacement because higher-viscosity tissues experience smaller wall displacements (Fig. 5b).

For the Brownian particles, an ensemble average of 1.470 particles paths in each of the

28 treatment groups provided three metrics for evaluating particle behavior.

I. Particlc Displacemcnt: Increasing tissue elasticity decreased particle displacement

because thc stiffcr tissues produced Icss wall motion. lower flow vclocities. and smaller

convection forccs (Fig. 13a). This trend can also bc obscrvcd when tissue properties arc

asymmctric (Fig. 7). Tissuc viscosity had no statistically significant effect on particle

displaccmcnt (Fig. 13b).

') Particle impaction rate: Impaction ratc increased during slowcr brcathing (Figs. Sand

10). Stiffer tissues had higher impaction rates (Fig. 12) because convection forces

decreased and Brownian diffusion dominated.
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3. Time to impaction: Although the time to impaction increased during slower breathing

(Fig. 11), the number of breathing cycles to impaction depended only on the Peclet

number and was consistent for all breathing rates and tissue types (Fig. 17).

Einstein's theoretical diffusion relationship was employed to assess the importance of Brownian

diffusion in alveolar-scale geometries. When the characteristic size of the structure was the same

order of magnitude as the diffusion-driven displacement, Brownian diffusion became a critical

deposition mechanism (Fig. 16). Also, as particle size increased, gravitational sedimentation

became increasingly significant (Fig. 14). These results suggest that Brownian diffusion and

gravitational sedimentation playa significant role in the dispersion and deposition of fine aerosols

in pulmonary alveoli and should be included in the simulations of microparticle transport at the

alveolar scale.
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NOMENCLATURE

Cc =Cunningham slip correction factor

D =Brownian diffusion constant

d, =displacement vector

dp =particle diameter

(d".)nllu =maximum alveolar wall displacement

E = Young's modulus

F,B =stochastic Brownian term

F0 =drag force on a particle

g, =gravity vector

k =Boltzman constant = J.38x 10,16

It =characteristic length (inlet duct diameter)

NCmp =number of breathing cycles to impaction

IlJ =FSI interface normal vector

p =fluid pressure

Pc =Peclet number

R,mp =particle impaction rate

RMS =root mean squared displacement

S" = ampl itude of the white noise process

T =temperature of the air

= time

t,mi' =time to impaction

", =wlocity \'ector

VT11 =tidal breathing \'olume
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Xi =position vector

~p =particle displacement from injection location

~t =time step in FSI simulation

8ij =Kronecker delta function

e'l =strain matrix

(, =zero-mean, unit-variance Gaussian random vector

'I =tissue viscosity

I, =molecular mean free path of air

I'TIl =breathing period

J1 =fluid viscosity

u =kinematic viscosity of the air

p =fluid density

PI' =particle density

a'l =stress tensor
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APPENDIX A: Viscoelastic Tissue Modeling in ADINA

This model uses a spring in series with a Kelvin unit (a spring and a dashpot in parallel). Figure

BI shows the equivalent circuit where E1 and E2 are elastic moduli and 11 is the viscosity.

Fig. Bl Equivalent circuit for the standard viscoelastic material model.

The transient stress-strain solution for this system yields two new material properties-the shear and bulk

moduli. These moduli depend on the elastic modulus, E(t), and the Poisson's ratio, u, as shown in Eg.

(A.la) and (A.lb),

(a) C(1) = E(1 )
2(1 + v)

(b) K(1) = E(1 )
3(1- 2v)

(A.I)

The elastic modulus in Eq. (7) depends on E1, E2, and the stress relaxation time, p, as given in Eq. (8),

2E E E
E(1) = 1 2 + 1 exp(- fJ .1)

E1 + E2 E1 + E2

or E(1) =E~ + EA exp(- fJ· 1)

Where the decay coefficient is:

(A.1)

(A.3)

This study assumes that E I =25 E;. E: = 10.000 dyn/cm2
, and u =0.49. The \'iscosity. '1. \'aries in the

range gl\en m Table I. In ADINA. the modulI take the following form. where the subSCript c-r mdlcates the

h~ng term modulus.

E~ E\ /\ E~ /\ _ E\
G~ =2(1 + v)'G\ =2(1+ v) and =3(1- 2v)'\ - 3(1- 2v)
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APPENDIX B: Grid Pictures

Mesh Detail

Fig. A1 Fluid domain mesh with alveolar sac detail. Element edge length is
approximately 15 Jlm throughout the domain.

Fig. A2 Solid domain mesh. Node spacing is approximately 43 Jlm along the outer
boundary. Mesh densa~' differences between zones 1 and 3 and zone 2 are artifacts

of the element growth algorithm: the boundary node spacing is the same.

38



APPENDIX C: Alveolar Expansion Ratio

To calculate the alveolar expansion ratio needed for physiologically-appropriate flow

rates, start with the assumption that most of the change in lung volume during breathing occurs

in the deformable alveoli. An average single alveolus at rest has a volume, Valv =4.2 X 106 Ilm3
,

regardless of total lung size [25]. The average number of alveoli in adult human lungs. Nah • is

480 million [25]. use this information to estimate Vmin, the total alveolar lung volume when the

lungs are at rest.

V V N xV =7_016 CII1
3

min = alv, lotal = ai,' all' eCI)

Adding the tidal breathing volume, Vm, to the resting volume gives the maximum lung volume at

the end of inspiration.

eC2)

define the specific volumc cxcursion, C, to mcasure alveolar expansion [121. If assume

spherical alveoli for the purpose of volumc calculation, can use the specific volumc excursion to

calculate the ratio of the maximum and minimum alvcolar radii.

eC.3)

eC4)

For a normal tidal breathing volume. Vm=500 ml. the specific volumc cxcursion C = 24.817r. The

associated alvcolar cxpansion ratio. (rm,,,lrmlO ) is approximately 80'c.
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APPENDIX D: Crank-Nicolson Integration Scheme

The Crank-Nicolson method integrates a differential equation of the form:

dx
- + a( t )x =b( t )
dt

in the following formulation

(D.I)

(D.2)

Where ~t is the integration time step and /l is the current time step number. The Langevin

equation (Eq. 8) can be recast in Crank-Nicolson form as follows.

dv." , g,(p" - p) R
-- + F v' = F v + + F =RHS
d

O' 0 , I

r PI'
(D.3)

Where all quantities on the right hand side are either known or interpolated from the FSI flow

field data. Thus. the Crank-Nicolson form of the Langevin equation reads:

Knowing the particle velocity from Eq. DA allows the solution of the position equation.

tit"
-'-=v P

dt '

which can be solved in simplified Crank-Nicolson form for the new particle position.

(\'" ) = !1r [(\." ) + (\' 1') ]+ (\,1' )
., n·l 2 I n.. l In· f n
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