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Abstract

This thesis details the translation of Task-Method-Knowledge Language (TMKL)

Models to Hierarchical-Task-Network (HTN) representations. It will be shown that TMKL

models are as expressive as HTNs, but have a more convenient syntax, and an equivalence

theorem between the two is provided. From the results of the theorem it is clear that a

translation from an arbitrary TMKL model to an equivalent HTN always exists, and the

particulars of a working translator constructed for this thesis by the author are explained. A

synopsis of this translation schema has been accepted for publication at the upcoming

Artificial Intelligence and Interactive Digital Entertainment conference.



1. Introduction

What is a process?
Loosely speaking, a process is the means by which something is accomplished via a

series of actions or operations. Artificial inteIligence, when seen as the attempt to make

computers behave like humans, must naturaIly concern itself with the modeling and

execution of processes. The modeling of processes is important for reasoning through

concept reuse and modification; without such a model, reasoning takes place at the level of

primitive actions, such as STRIPS operators (Fikes & Nilsson, 1971), and knowledge

transfer to new problems is very difficult. Process models ease knowledge transfer by not

only capturing the "how" of achieving a goal, but some notion of "what" is being

accomplished. By reasoning at the level of "what" a more flexible overall artificial

inteIligence is created. One means of capturing process models is the Task-Method-

Knowledge language (TMKL) process model formalism.

A simple example of these concepts involves the process of changing a light bulb

(Murdock, 2001). It is a relatively simple matter to code manually a program that explicitly

encodes the process in two routines, caIled sequentiaIly: I) insert the bulb, and 2) rotate the

bulb. While simple and fast, this program is not flexible; there is no way for this program to

respond to a request to remove the bulb since there is no model upon which the software

agent can reason. An alternate approach is to abstractly represent the tasks bcing

accomplished, thc mcthod by which tasks can bc achicyed. and the knowledge of what to do

undcr situations involying dccisions. Thc resulting cncoding captures not only a plan that

achicn:s the change bulb goal. but also models a process that is applicablc to other situations.



Software agents using such a model would be able to reason by adapting these models of

themselves in order to achieve new goals.

Why are processes important?
As illustrated by the light bulb example the representation of knowledge, including

that of processes through TMKL models, yields more flexible artificial intelligence through

abstraction, meta-reasoning on that abstraction, and reflection (Murdock, 200 I). The gains

yielded by agent modeling through TMKL models allows agents to automatically self-adapt

to perform new tasks. This self-adaptation of the agent's reasoning processes is a transfer of

knowledge from a known solution to a new problem called analogical reasoning. TMKL

models allow for a different kind of information transfer between problems that goes beyond

traditional analogical reasoning, which directly uses the results of the reasoning process.

Instead, by reasoning on the level of processes, it is possible to adapt an agent in situations

where the resulting plans are too different for transfer by traditional analogical reasoning

(Veloso, 1994).

Many of these advantages are tightly intertwined with machine learning, since model-

based adaptation is really a subfield of machine learning. New ways of reasoning for novel

problems are produced by TMKL models since traditional machine learning techniques such

as classification tasks typically restrict thc problem space to selection from a fixed set of

options (Diettcrich, 1997). The ability to use ncw typcs of reasoning via a modcl is a

significant contribution the machinc learning community. Further, planning benefits from

the models through their increased reuse (because of the abstraction and adaptation

mechanisms prcviously described) and localization (on account of the TMKL models'

hierarchical structuring producing natural subrasks which allow the segmentation of complex
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tasks into smaller, localized subtasks/plans that can be analyzed individually by failure

analysis).

The many benefits of representing an agent's capabilities through TMKL models,

including what it does and how it is accomplished, can be summarized into three points: 1)

Support for explanation and justification, giving an agent the means to understand its actions

and justify claims on the correctness of its results, 2) Easier interoperation with other agents

because a TMKL modeled agent understands its function and can inform other agents of this,

and 3) Augmented learning capabilities through self understanding and modification of self-

design to correct flaws and/or adapt to changes in the environment. (Murdock & Goel, 1998).

What is an HTN?
Hierarchical Task-Networks are another, older formalism used for reasoning on the

abstract level of high level tasks instead of actions (Erol et. al., 1994). High level tasks are

successively decomposed into smaller ones until a concrete action is reached. Thus, as one

moves down the decomposition hierarchy, more details of the how to achieve the task above

become increasingly defined. The leaves of the fully expanded tree constitute the plan to be

executed.

The Benefits of HTNs
Just as in TMK models, HTNs provide increased flexibility through abstraction.

Unlike Hv1K models. howcvcr, HTNs havc clear semallfics with well defined properties and

complexity analyses. Onc of the most important properties of HTNs is that they arc provcn

morc cxpressivc than STRIPS-stylc operators (Erol et. al.. 1994). which is to say that all

problems cxpressible by STRIPS are expressible by HTNs. and further therc arc some

problems expressible in HTNs that are inexpressible in STRIPS. Another advantag.e of
4



HTNs is that they allow the encoding of strategic knowledge more naturally than other

approaches (Nau et al., 2000). Finally, there are a host of implemented HTN planning

systems such as.SHOP and JSHOP.

Purpose of this thesis
The purpose of this thesis is to present an equivalence proof between HTNs and

TMKL models, and to describe a translation scheme between the two. To this end, a

translator has been constructed. Such an equivalence shows that TMKL models have similar

complexity properties as HTNs, and lends TMKL models a clear semantics which was

lacking until now.



2. Task-Method-Knowledge Language (TMKL) Process
Models

A Brief history of TMKL models
Before explaining what TMKL models are and how they work it is helpful to first

make clear where they come from and their purpose. The main body of work presented in

this thesis is based upon William Murdock's 2001 dissertation; what follows is a brief

discussion on the technology's background.

The term "TMK" as a acronym for describing tasks, methods and knowledge was

most notably used when explaining Interactive Kritik (Goel et. 01., 1996, Goel & Murdock,

1996). Interactive Kritik is an extension of Kritik2 which adds a graphical user interface as a

means of explaining and presenting the reasoning process of the system. The ancestor of

those two systems was Kritik (Goel, 1989), a physical device design system which used

Structure-Behavior-Function (SBF) models of devices. SBFs themselves were influenced by

earlier approaches and largely added to the relationship between functions and behaviors.

Later, Kritik2 (Goel et. 01., 1997) extended and formalized the representation of SBF models.

This extension of SBF models would later be paired with another project called Router (Goel

et. 01., 1994), which was a task-based problem solving navigational planning system that

allowcd tasks to bc addrcssed by multiple methods which had sclection criteria to choose

amongst them. (Murdock, 2001).

Thc theory bchind Kritik and Routcr was combincd in Autognostic (Stroulia 1994,.

Stoulia & Gocl. 1995. Stroulia & Goel 1997). which takes as input a problcm sohu cncodcd

in a Ianguagc that would latcr bc rcfcrrcd to as SBF-Ti\1K modcls (Stroulia & Sorcnson.

1998). and a problcm to bc soh·cd. Autognostic rcdcsigned Router and othcr kindrcd task
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based problem solvers by using a similar representation to that used for reasoning in Kritik2.

In this representation, tasks are analogous to SBF functions and methods are analogous to

SBF behaviors. Behind the SBF-TMK models was an approach that encoded reasoning in

terms of tasks that represented often complex subsystems. This approach is different from

traditional means which focus on small, atomic pieces of computation such as production

rules and planning operators. The focus on tasks means that analysis of models occurs at the

level of intended effects, and sequences of behaviors that achieve them adding a layer of

abstraction to the reasoning process. (Murdock, 2001).

TMKL model advantages and purposes
For his dissertation Murdock developed a new, more powerful and flexible formalism

for TMK models called TMKL. It is used to enable reflection in agents, which in this

context means self analysis of an agent's own reasoning process and goals, by modeling the

agent's composition and function through explicitly representing tasks addressed, methods

applied and knowledge used. These models represent the tasks, methods and knowledge in a

hierarchy, providing multiple levels of abstraction. The implementation of the TMKL

modeling approach presented in Murdock's dissertation is actually an extension to a well

known knowledge representation system called Loom (Brill, 1993). Knowledge in Loom is

represented by concepts, instances and relations much like how knowledge is represented in

semantic networks. Notable knowledge manipulation features of Loom are classification,

assertion (tell), expression truth evaluation (ask), and retrieval of abstractly characterized

values (retrieve). (Murdock. 2001).

TMKL models are used in the REi\1 (Retlectiw Evolutionary i\lind) reasoning shell

dcvcl0ped bv i\lurdock and Gael. The theoretical basis of REM emerges from the

7



observation that problems which are large and complex are often addressable by reasonably

simple, specialized software. Sometimes, those specialized software systems can be

modified by general-purpose mechanisms, such as reinforcement learning and generative

planning, to address similar problems. When this form of adaptation is not possible, there are

situations where specialized model-based adaptation strategies can accomplish parts of the

adaptation process. By combining both model-based and general purpose adaptation

strategies it is possible to solve problems which each method would have been unable or

overwhelmingly expensive to solve individually; it is on this principle that REM operates,

and TMKL derives its original purpose. It should be noted that the evolution of SBF into

TMK was part of the evolution of Autognostic into the SIRRINE (Self-Improving Reflective

Redesigner Including Noteworthy Experience) reasoning shell, another system developed for

Murdock's dissertation research. Together, REM and SHRINE were used to implement and

experiment the theories presented in his dissertation.

Among the most signi ficant contributions of Murdock's work, also stated in chapter I

of this thesis, are agent modeling, analogical reasoning, machine learning, planning, and

meta-reasoning and reflection. The contributions to agent modeling are centered around the

use of agent models for automated self-adaptation to perform new tasks. Analogical

reasoning, which deals with the transfer of knowledge from old to new cases, is extended by

Murdock by adapting the reasoning process themselves instead of the results of the reasoning

process. i\1achine learning also benefits from the work since the capabilities of agents is

augmented by the adaptation process and is therefore a fonn of machine learning. Planning

benefits from TMKL models through increased reuse. since plans are abstracted into methods

which are stored as models which can be used for similar problems. and localization. since
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the hierarchical nature of TMKL models naturally produce sub-tasks which solve a piece of

the overall process. Meta-reasoning and reflection, which is the ability for an agent to reflect

on its own reasoning, are improved by TMKL models' explicit representation and separation

of what is being accomplished by a process, how the process is accomplished and the

knowledge used in the process. The additional knowledge about reasoning processes and its

results supports additional inferences specific to model-based reasoning. The overall result

of these contributions is more flexible, cost-effective reasoning systems.

TMKL Model Overview
TMKL models capture tasks (what an agent does), methods (how the agent works)

and knowledge (the information used and processed by the agent). Tasks are accomplished

by methods, which are in tum further decomposed into lower level tasks that are a part of the

methods. A hierarchy is consequentially created where the leaves of the resulting task-

method tree are primitive (not further decomposed) tasks that explicitly specify their effects,

and the non-primitive tasks are the internal nodes of the tree.

TMKL Model: Task definition
Tasks encode what a piece of computation is intended to do. Table 1 depicts the

components of a task (Murdock, 2001), and what kind of information required per

component. The inpul and oulpul components are zero or more parameters identifying the

kinds of knowledge used and produced, respectively; these parameters refer to the abstract

concepts instantiated by them and are defined separately (see the knowledge section). The

gil·cn and makcs components contain logical expressions that must be true before and after,

respectively, the task is completed in order for successful execution; these expressions in

Murdock's dissertation are \\Titten using Loom's formal ism for queries which uses basic
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logical operators, universal and existential quantification, numerical companson, or the

invocation of LISP code to combine concepts, relations, and values. Further, there are three

types of tasks allowed by TMKL, broken down by the type of implementation:

1. Non primitive tasks: use the by-mmethod component to invoke any number ofTMKL

methods to accomplish the task. Note that the spelling convention of "by-mmethod"

is an intentional naming convention adopted by Murdock.

2. Primitive tasks: use at least one of the by-procedure, assert, and binds components

and have a direct representation of the effects of the task. The optional by-procedure

component refers to a LISP procedure accomplishing the desired effect, possibly by

invoking code from other programming languages. The optional asserts component

has a logical assertion, which is a nested list of symbols in Loom's syntax for the tell

operation. Finally, the optional binds component uses those parameters involved in

the task by setting them to the values defined in the associated binds expression.

3. Unimplemented tasks: contain neither methods nor primitive information (the by-

mmethod, by-procedure, asserts, and binds components are all empty) and as such

must be adapted into non-primitive or primitive tasks.

Table 1: T:-'lKL :-'lodc1 Task SpccllIcallOn

Component Type Quantity
Input Parameter 0+
Output Parameter 0+
Given Logical-expression 0-1
Makes Logical-expression 0-1
Bv-mmethod Method 0+
Bv-procedure Procedure 0-1
Asserts Logical assertion 0-1
Binds Parameter value binding 0+

. -
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TMKL Model: Method definition
Methods are behavioral elements that encode how a piece of computation works; the

overall function of the method is encoded in the task addressed by the method. Methods

essentially specify the means of accomplishing a task, and the applicability of applying a

selected method of a particular task is based upon the method's provided component and the

current situation. Table 2 depicts the components of a method (Murdock, 200 I), and what

kind of information required per component. The provided component is like the given

component of tasks in that it specifies those facts that must be true in order to perform the

method. The additional-results component is like the makes component of tasks in that it

logically specifies the consequences of performing the method.

The start component of a method contains the first transition in a state-transition

machine implementing the method's operation. While knowledge of the exact transition

machine described by Murdock is not necessary for understanding the work presented in this

thesis, an explanation is provided for completeness. It is important to note that a method can

be viewed as a state machine; this becomes important when describing the translation of

statements (e.g., while, for, if, etc.). These statements are elaborated in a later section of this

chapter.

Each transition in the machine has a provided component like that found in a method,

meaning only some of the potentially multiple outgoing transitions may be invoked in a

given situation. Also. transitions link zero or more pairs of parameters used by the method to

accomplish the task; an example of this type of link would be a those parameters used by a

method that randomly picks a number and then displays it by calling two tasks. each with one

parameter: I) a task with an output parameter of a random number and 2) a task with an input

1I



parameter of what to display. Finally, transitions may point to a next state in the transition

machine. If no transition exists then the method is finished. (Murdock, 2001).

Component Type Quantity
Provided Logical expression 0-1
Additional-result Logical expression 0-1
Start Transition 1

Table 2: TMKL Model Method SpecIficatIOn

TMKL Model: knowledge definition
Knowledge in TMKL is an explicit representation of the concepts and relations

employed by an agent. Since TMKL is used by REM which in tum uses Loom for its

knowledge representation, most aspects of knowledge in TMKL are from Loom. As

aforementioned, knowledge in Loom is represented by concepts, instances and relations

much like how knowledge is represented in semantic networks. Notable knowledge

manipulation features of Loom are classification, assertion (tell), expression truth evaluation

(ask), and retrieval of abstractly characterized values (retrieve) (Murdock, 200 I). A

complete description of Loom and its knowledge representation is outside the scope of this

thesis. Further, for the purpose of understanding the translation scheme presented herein, an

understanding of the knowledge component isn't strictly necessary. TMKL does add new

knowledge representation constructs to Loom in order to aid in adaptive reasoning but, like

the details of Looms knowledge features, an explanation of these features is not vital for

understanding the translation from TMKL models to HTNs.

TMKL Model: Expression definitions

While, For, If-Then-Else, Return values, etc.
For clarity. states in the transition machine described in the "methods" section of this

chapter will be termed expressions. Expressions are the same as what would be expected

12



from a turning computable (Turing-compete) programming language. Modem computer

science theory dictates that a given programming language is Turing-complete if it is

computationally equivalent to a Turing machine. That is to say that if one can provide a

translation scheme from a language proven Turing-complete to the language in question then

the language in question is Turing-complete. The language in question in the case of this

thesis is TMKL, and the language proven Turing-complete is those implementing the HTN

formalism, specifically JSHOP. JSHOP is the java implementation of SHOP (Simple

Hierarchical Ordered Planner), a domain independent automated planning system.

Constructs like "for," "while," "do" and "if' are all possible from the state machine, since the

TMKL specification is encoded in the programming language Common Lisp and run on a

modem computer. This is the underpinning idea that enables the translation from TKML to

HTNs. Specifically, the three vital programming constructs exist in both TMKL and HTN:

concatenation of states (sequential execution), selection between states (if/case statement),

and repetition (looping via do/while/for statements). The main difference between the two

formalisms reduces to "syntactic sugar," or a more convenient/alternate way of representing

the same idea.

Given the existence of implemented TMKL and HTN interpreters, it seems redundant

to include in this thesis a presentation of Turing machines, which typically would involve an

explanation of a read-write head over an arbitrarily long length of tape recording symbols

written. and capable of later reading. It suflices to say that state machines, which have

preconditions on transitions and arbitrary connections between states, giYC rise to traditional

programming language constructs and therefore those constructs fundamentally exist in both

the T~IKL and HTN formalisms. What is interesting is the way in which these ditTcrent

13



representations express these constructs. Since pseudo-code has become the standard means

of expression for these state machine interconnections and conditions, this thesis later

presents them in that fashion.

Examples

Pseudo-code is a way of writing a program that is syntactically agnostic, or

equivalently, independent of any chosen language. An example of a program written in

pseudo-code is depicted in Figure I. It should be noted that pseudo-code cannot be compiled

or run on an actual Turing machine, and there are no universally accepted syntax rules. An

example of what might be encoded in an arbitrary TMKL model is provided in Figure 2.

while further tasks remain
select next task
if next task has all preconditions as true

process task
get next task

return result
Figure 1: Example Pseudo-code Program

TMK Method Task: boolean enemyOwnsDOM( )
If

totaIDominationPoints(td)
totalDominationPointsOwnedbyTeam(tdTeam)

Then
return ( td > tdTeam )

Figure 2: Example TMKL Model

Concrete application: Tielt

Background on TIELT
TIELT (http://nrlsat.ittid.com), the Testbed for Integrating and Evaluating Leaming

Techniques. is a free software tool created to ease the evaluation of decision systems in

simulators (Aha & Molineaux, 2004). The simulators can be of several ditTerent types of

game genres such as real time strategy. first-person shooter. team sports games. or even a

14



simulator not related to gaming. One key way that TIELT makes the evaluation of decision

systems easier is by reducing the number of integrations between simulators and decision

systems from (m * n) to (m + n), where m is the number of investigated simulators and n is

the number of decision systems being evaluated.

TSXML
TIELT decomposes the problem of decision system evaluation on performance tasks

in simulators into various components, tied together via a GUI. One of these components is

the Agent Description. This component provides the ability to richly define complex actions

by describing them using a slightly modified TMKL model formalism. The language used to

represent TIELT's TMKL model is based on XML and is called the TIELT Script Extended

Markup Language (TSXML). TSXML provides a clear and uniform syntax that

straightforwardly captures the TMKL model created via TIELT's interface. Because this

XML based syntax might be unclear for some readers, a pseudo-code style format is used in

the upcoming examples. An abbreviated example of this XML syntax is in Figure 3.

15



Example

<Method>
<Name> pickUpStuff </Name>
<Provided>

<Equation>
<FunctionReference>

<Name> existsVisiblePickup </Name>
<Variable>

<Name> </Name>
<Type> Boolean </Type>
<Constant> false </Constant>

</Variable><VariableSet Name="Parameters"/>
<IsMethod> false </IsMethod>

</FunctionReference>
</Equation>

</Provided>
<Instructions />

</Method>
Figure 3: Example of TIELT's TSXML Syntax

16



3. Hierarchical Task Networks (HTNs)

HTN overview
Before going into the specifics of Hierarchical Task-Network (HTN) planning, it is

instructive to first get a general feel for it; this section contains just such a description. HTN

planning is a form of planning that reasons on the level of high-level tasks instead of on the

lower-level of actions (Erol et al., 1994). In HTN planning, high-level tasks are repeatedly

decomposed into simpler ones until all tasks have been reduced into actions. This planning

process is different from classic STRIPS-style planning in which planning works on the level

of operators that consist of three lists of atoms: a precondition list, an add list, and a delete

list (Fikes & Nilsson, 197 I).

HTNs decompose high-level tasks into simpler tasks. There are three kinds of tasks:

goal, primitive and compound (Erol et al., 1994). Goal tasks are like goals in STRIPS in that

they are properties desired to become true in the world. Primitive tasks require no

decomposition in that they are directly achievable by executing the corresponding concrete

action. Compound tasks, in contrast, can be further decomposed into subtasks. Goal tasks

and compound tasks are often referred to singly as non-primitive or high-level tasks. Each

level in an HTN brings more details on how to achieve the high-level tasks. The sequencing

of the leaves in a fuIly expanded HTN indicate the plan achieving the high-Icvel tasks. In the

contcxt of gamc AI thc dccompositions can bc uscd to cncodc gamc strategies and the Icavcs

to actual in-gamc actions such as patrol. attack. ctc.

Thc main knowlcdge artifacts in HTN planning arc caIlcd /IIethods. A method

encodes how to achieve a compound task. Methods consists of 3 clements: (I) The task being

17



achieved, called the head of the method, (2) the set of preconditions indicating the conditions

that must be fulfilled for the method to be applicable, and (3) the subtasks needed to achieve

the head, The second knowledge artifacts are the operators. Operators in HTN planning have

the same purpose as in STRIPS planning, namely, they represent action schemes. However,

operators in HTN planning consist of the primitive tasks to achieve, and the effects,

indicating how the world changes when the operator is applied. They have no preconditions

because applicability conditions are determined in the methods.

HTN planning has two crucial advantages over STRIPS planning. Most

impressively, HTN planning is provably more expressive than STRIPS planning, which is to

say that there are problems that can be expressed as an HTN planning problem that cannot be

expressed as a STRIPS planning problem, Further, it has been noted by several authors that

encoding strategic knowledge is more natural in HTNs than in STRIPS, Even though it is

generally possible to encode strategies in STRIPS representations, HTNs capture strategies

naturally because of the explicit representation of stratified interrelations between tasks,

Furthermore, representing HTNs in STRIPS operators is very cumbersome in general (Lotem

& Nau, 2000) and sometimes even impossible (Erol el al., 1994).

Formal presentation of HTN planning
Having presented the basics of HTN planning, it is now appropriate to give a fonnal

definition, An arbitrary language L used for HTN planning represents the world and actions

similarly to STRIPS-style planning, The vocabulary of language L is a tuple <V. C. P, F. T,

N>. defined as foIlO\\'s:

• r= {"J. ";•. ,.}. an infinite set of\'ariable symbols
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• C = a finite set of constant symbols representing objects

• P = a finite set of predicate symbols representing relations among the objects

• F = a finite set of primitive task symbols representing actions

• T = a finite set of compound task symbols

• N = {111, 112, ... }, an infinite set of symbols used for labeling tasks

The three types of tasks enumerated in the previous section can be explicitly defined

using the above vocabulary. Specifically, if XI, ... , Xk are terms, then a primitive task has the

form do(j{x(, ... , Xk)), where/is an element of F. A goal task has the form achieve(l), where

I is a literal. Finally, a compound task has the form pelform[/(xj, ... , Xk)], where I is an

element of T (Erol el al., 1994). HTN planning connects tasks and constraints on those tasks

together into a task network. These task networks abstractly take the form ((11( : al), ... , (11m :

am), ¢), where ai is a task labeled with l1i, and ¢ is a boolean formula which optionally

contains negation and disjunction and consists of variable binding constraints (e.g., v = v', v

= c), temporal ordering constraints (e.g., 11 < 11 '), and truth constraints (e.g., (11,1), (/,11), and

(11,1,11')) (Erol ef al., 1994). An example task network and its associated graphical

representation is shown in Figure 4, from (Erol ef al., 1994). Depicted are three tasks and

associated constraints. The constraints include that V1 should be moved last, v\ and \'2 are to

remain clear until \'1 is moved, and that V3 is bound to the location of VI before \'1 is moved.
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((n} : achieve [cltar(v} )])(112 : achieve [c1ea1"(v2}))
( 71 3 : do[move(vl, l'3, V2)])
(n} -< 113) /\ (112 -< 713) /\ (711, clear(vd, 113)

1\( 71 21 clta7"( v2), 113) /\ (071(V} , 1.13), 713)

1\ '(Vl = V2) 1\ '(V} = V3) /\ '(V2 = V3»)

achicve[clear{ VI)] 1----.

achicvc[clcar{V2)] f----"

Figure 4: Example Task Network from (Ero1 el al., 1994)

Operators, as described in the last section, associate effects to primitive task symbols

and specify how actions change the world. They are of the form (/{V(, ... , Vk), II, ... , 1m )

where f is a primitive task symbol, VI, ... , Vk are variable symbols, and II, ... , 1m are

postconditions, which are literals denoting the primitive task's effects. Operators have no

preconditions, and are achieved by executing the corresponding action. A plan is therefore a

sequence of ground primitive tasks, and is appropriate for a given initial state of the world

which is also a list of ground atoms. Primitive tasks are those that can be performed directly,

whereas non-primitive are those requiring further planning or reasoning to determine how to

perform them.

Aletfwds are pairs of the form (a, d), where a is a non-primitive task and d is a task

network like that shown in Figure 4. The pair encodes the knowledge that one way the task

a can be achieved is by achieving the task network d. A task network is achieYCd when all

its subtasks are performed without violating the constraint formula 9.
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Finally, a planning domain is expressed as a pair D = (Op, Me) where Op is a set of

operators and Me is a set of methods. A planning problem is expressed as a triple P = (d, 1,

D), where D is a planning domain, 1 is the initial state, and d is the task network in which a

plan is desired; P is termed primitive if d contains only primitive tasks, termed propositional

if no variables are allowed, and termed totally ordered if all the tasks in any task network are

totally ordered. HTN planning starts with an initial task network d and performs the

following steps:

1) find a non-primitive task II in d and a method m = (t, d') in M such that t unifies

with II.

2) modify d by replacing II with the tasks in d' and incorporate the constraints of d'

into d

3) repeat steps I and 2 until no non-primitive tasks are left in d

4) find a totally-ordered ground instantiation a of d that satisfies all constraints in ¢.

1f such a totally-ordered ground instantiation satisfying ¢ is found then a is a

successful plan for the original problem.

Soundness and Completeness of the HTN planning algorithm
Two properties of a planning algorithm arc particularly important to AI rcsearchcrs.

Thc first propcrty is soundncss, which asks whcthcr evcry plan returncd from thc algorithm

rcally works (thc plans arc valid solutions to the original problcm); the sccond property is

complctcncss. which says that giYcn a solvablc problcm. the planncr finds a solution. which

is not thc samc as saying that CYCI')' plan will be found (Wcld. 1994). In (Erol ct al.. 1994b)

it is proycn that thc HTN planning algorithm is both sound and completc.
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Expressiveness of HTNs
Expressiveness, which is a property concerning the types and complexity of problems

that can be encoded by a particular formalism, is another property explored by Erol et al.

(1994). It is shown that the HTN formalism presented in that paper can express situations

impossible to express using traditional STRIPS operators. Further, any problem that can be

expressed by STRIPS operators can be expressed as an equivalent HTN by transforming

every STRIPS operator into a HTN primitive task symbol and transforming every

precondition and effect of STRIPS operators into an HTN method whose preconditions are

the same and which calls the appropriately transformed primitive task symbol. Such a

transformation means that STRIPS planning is actually a special case of HTN planning. This

relationship is likened to the relationship between context-free languages and regular

languages in that compound tasks represent sets of primitive task networks just as non-

terminal symbols represent sets of sets of terminal symbols.

HTN planning is NP-complete
Recall the definitions of primitive, totally ordered, and propositional plans from the

section in this thesis on the formal representation of HTN planning. It is shown in Erol et al.

(1994) that if a planning problem is primitive and either/neither propositional or/nor totally

ordered then the plan existence problem is NP-complete. This arises from the fact that under

these assumptions it is simple to nondeterministically guess a total ordering and variable

binding on thc task nctwork's constraint fonnula 9, and verify that 9 is satisfied in

polynomial timc. Under thc samc assumptions. thc constraint Ianguagc cxpressing 9 can

rcprcscnt thc satisfiability problcm. thus creating NP-hardncss.



4. The Translator

TMKL models at first appear to be more expressive than HTNs since the language of

the former explicitly provides constructs for looping, conditional execution, assignment,

functions with return values, and other features not found in HTNs. However the research

supporting this thesis shows that HTNs implicitly provide support for the same features,

albeit in a less obvious fashion, and a translation from TMKL models to HTNs is always

possible. For the sake of clarity, pseudo-code is used for describing the HTNs instead of the

LISP-based syntax used in HTN planners like JSHOP.

Summary table
The following table illustrates in plain language the mapping between those TMK

Model constructs that do not exist in HTNs and the original HTN formalism. Later sections

will further elaborate upon the specifics of each translation. The intent of Table 3 is to give

an intuitive feel for the equivalency.

TMK Models HTNs
Tasks have preconditions Add preconditions to methods
If-then-else Use HTN method syntax
Call Subtask
Set (Assignment) Split into new method and pass in

evaluated value
Return (values from functions) Use unbound variable as parameter in

caller's invocation; set same variable in
callee's preconditions

For (iteration) Change to while. recursion
While (iteration) Recursion

Table 3: Plam Language Mappmg from TMK ~Iodcls to HTNs
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Brief Description

The formal proof: generic TMKL model into HTN
The equivalence begins with the top level definition of the translation function,

TRANS, which takes as input aTMKL model file and outputs an equivalent HTN (Figure 5):

TRANS( TMKL Model ) => HTN. Then, for each language element in of TMKL

(represented in pseudo-code), a semantically equivalent HTN statement or series of

statements is provided using a recursive definition of the TRANS function. Following each

pseudo-code translation is a brief commentary on interesting aspects of the depicted

translation. Note I) that the purpose of the translations is to show equivalence as clearly as

possible, and as such the efficiency of the pseudo-code is sometimes sacrificed, and 2) the

pseudo-code presented fully defines all valid TMKL inputs to the TRANS function, therefore

producing a complete HTN translation.

The following are conventions used in presenting the pseudo-code in this section:

• An HTN method has both an imperative and declarative form. The declarative

form is the fully defined HTN method whereas the imperative form is the form

used when calling the method as a sub-task (and is therefore just the method head

with appropriatc parameters).

• Thc Backus-Naur "<fJpe>" notation IS looscly used, but thc cxplanations

following cach translation disambiguatc what is mcant.

• Thc pscudo-code at timcs refers to objects before they are declared (c.g.. using thc

impcratiyc form of mcthod m bcforc it is creatcd). 111is is for clarity of
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presentation, and in every case the object in question IS created within the

"behavior" section of the containing TRANS function.

• A TMKL model statement O'j is of the form "while <expression> do <body>".

Sets of statements, as found in elements like <body>, are treated recursively; this

means that statement numbering, which effects that which is referred to as the

next TMKL statement, has a scope relative to the encapsulating body. Thus, the

statement following O'j is still naturally referred to as statement O'j+1 and the

translation of the <body> has its own localized sequential order. Further, every

set of TMKL model statements creates a scope that has a set of variables used;

this set is passed to statement sets nested within the original statement set.

• HTNMethodSet has a ".imperativeForm" which is the imperative form \jI of an

HTN task or HTN method. A HTNMethodSet is an ordered set of HTN methods

created via "Create HTN method 111" in the "behavior" section of a TRANS

function.

• HTNMethodSet has a ".variables" which is an ordered set of all HTN variables

used in the top-level scope of the originating sct ofTMKL modcl statemcnts
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Top level recursive function

function: TRANS
input:

Ordered set ofTMKL statements l'

(optional) the imperative form \II of an HTN task or HTN method
output: Equivalent HTN 11, returned as a set ofHTN tasks and HTN methods
behavior:

Declare result set 0

For eaeh top-level TMKL statement ai, in l' do
Declare HTNMethodSet p

Ifnot last nor terminal (return) statement in 1'then
Set p = TRANS(ai, TRANS(ai+i, null).imperativeForm)

Else
Set p =TRANS(ai, \II)

End If

add each element of p to result set 0
End For

If first element of l' (TMKL statement al) is not empty then
Set o.imperativeForm = TRANS(al, null).imperativeForm

Else
Set o.imperativeForm = \II

End if

Return 0
lITo print, iterate through set and print declarative form!
Ilinvoke l1.imperativeForm from top level task to start HTN planning

Figure 5: Top Lcvel Rccursivc Function

The above is the top level recursive translation function. All further definitions

overload this function until a complete language mapping is created (all statements have

translations). The most interesting part of this function is the part dealing with the

last/tcrminal statcmcnt in T. By checking this condition and acting upon it as depicted, the

interconnection of Tt-.tKL model statement sequences is created. Often, the translation of a

Ti\tKL model statcment aj results in multiple HTN methods. One (or many) of the resultant
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HTN methods must invoke the imperative form of the translated TMKL model statement

O"i+(. Recall that TMKL statement sets maintain their own ordering relative the scope they

create. To this end, the input parameter \j/ allows for the next imperative HTN method

invocation to come from a statement or series of statements belonging to a larger scope.



If-Then-Else
function: TRANS
input:

TMKL statement CJi = if <cond> then <bodyl> else <body2>
<cond> is a TMKL expression
<bodyl> is an ordered set ofTMKL statements
<body2> is an ordered set ofTMKL statements

the imperative form \jI of the translated TMKL statement CJi+1

output: Equivalent HTN 11, returned as a set ofHTN tasks and HTN methods
behavior:

Declare result set 8
Declare HTNMethodSet p'
Declare HTNMethodSet p"

Set p' = TRANS( <bodyl>, \jI )

Set p" = TRANS( <body2>, \jI )

Create HTN method m:
name = m
parameters = all parameters of samefhigher scope in TMKL model
precondition set 1 = TRANS( <cond> )
sub-task set I = m'.imperativeForm
precondition set 2 =true
sub-task set 2 =m".imperativeForm

add m to result set 8

Create HTN method m':
name = m'
parameters = all parameters of same/higher scope in TMKL model
precondition set I = true
sub-task set 1 = p'.imperativeFonn

add m' to result set 8

Create HTN method m":
name = m"
parameters = all parameters of same/higher scope in TMKL model
precondition set 1 = true
sub-task set 1 = p".imperativeFonn

add m" to result set 8

Set 8.imperativeForm = m.imperativeFonn

Return 8
Figure 6: If..n1cn·El~c Tran~13tion Function

28



The If-Then-Else behavior is implemented in HTN method m, where the HTN syntax

is directly exploited. The HTN precondition/sub-task set pairs have their preconditions

evaluated sequentially (1..n) until the first positive evaluation in pair i, at which point the

sub-task set i is expanded into the further translated methods. Thus, a translation of <cond>,

defined in a later section, is used as the preconditions on the precondition/sub-task set 1 pair

of HTN method m; if this translated condition is evaluated as true when performing HTN

planning, then the associated HTN method m' is invoked. Otherwise, the precondition/sub

task set 2 is used to create the else, and since its preconditions are always met, the HTN

method m" is invoked. Note that the recursive calls to the top-level TRANS function for p'

and p" ensures that:

1. The HTN methods referred to in m' and m" are implemented as the translated TMKL

statements of <body 1> and <body2>

2. The last/temlinal (e.g. "retum") statement in <body 1> and <body2> is the imperative

form \jJ of the translated TMKL statement 0';+1 that follows the 'If-then-else' (thereby

creating sequential execution of statements).

3. The interconnection ofTMKL model statement sequences is created is maintained

within the recursive translation of <body 1> and <body2> by a "local" \jJ being

created in the recursive TRANS. For the sake of simplicity, hereafter these

interconnected sequences are not highlighted, but they are an integral part of the

translation.
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Call

function: TRANS
input:

TMKL statement (Ji = call <functionCall>
<functionCall> is a call to a TMKL function

the imperative form \jJ of the translated TMKL statement (Ji+\

output: Equivalent HTN 11, returned as a set ofHTN tasks and HTN methods
behavior:

Declare result set 8

Create HTN method m:
name=m
parameters = all parameters of same/higher scope in TMKL model
precondition set I =
sub-task set I = m' .imperativeForm

add m to result set 8

Create HTN method m':
name = m'
parameters = all parameters of same/higher scope in TMKL model
precondition set I = TRANS( <functionCall> )
sub-task set I = \jJ

add m' to result set 8

Set 8.imperativeForrn = m.imperativeForm

Return 8
Figure 7: Call Translation Function

The call is csscntially a pass-through translation from a TMKL function to an

equivalently named HTN mcthod. Rccall that both the TMKL described in this thcsis and

the HTN planner JSHOP allow invocation of external LISP functions. Translation is

thercfore naturally cquivalcnt, and is complctcd by including as thc next sub-task a HTN

mcthod call to the ncxt translated statcment or body. Two HTN mcthods must bc crcatcd in

this casc so that the translation of <functionName> can modify variables, and havc these

changcs reflectcd in the next sub task. For further discussion rcgarding how variablcs arc

handled. scc thc scction on thc "scC and "function calls" statcmcnts.
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Set (assignment)

function: TRANS
input:

TMKL statement (J; = set <variable> to <expression>
<variable> is a TMKL variable
<expression> is a TMKL expression

the imperative form 'l' of the translated TMKL statement (J;+1

output: Equivalent HTN 11, returned as a set ofHTN tasks and HTN methods
behavior:

Declare result set 8

Create HTN method m:
name = m
parameters = all parameters of samelhigher scope in TMKL model
precondition set 1 =

sub-task set 1= m' .imperativeForm
add m to result set 0

Create HTN method m':
name = m'
parameters = all parameters of samelhigher scope in TMKL model
precondition set 1 =

TRANS( <variable> ) = TRANS( <expression> )
sub-task set 1= 'l'

add m to result set 0

Set 8.imperativeForm = m.imperativeFonn

Return 0
Figure 8: Set Translation Function

The set statement is essentially a two part TRANS call that assigns the translated

expression to the translated variable in the precondition of an HTN method. In order to

enable the updating of variable values, JSHOP requires that changes be made in thc

preconditions section of a mcthod. Note that in thc imperativc foml of 'l' the updated

variable name must be used. and that the <expression> can also be a <function> (see the

section on translating function calls). If the <expression> is of non-boolean type then a

direct assignmcnt cannot be used; instead a paramcter is added to the <expression>
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translation and it is set in the precondition of the final HTN method implementing the

translation.

Return values from functions

function: TRANS
input:

TMKL statement (Jj = <expression>( <parameters> )
<expression> is a TMKL expression
<parameters> is a set ofTMKL variables

the imperative form \jI of the translated TMKL statement (Ji+1

output: Equivalent HTN 11. returned as a set ofHTN tasks and HTN methods
behavior:

Declare result set 0

Create HTN method m:
name = m
parameters = all parameters of same/higher scope in TMKL model
precondition set I =

TRANS( <expression> )
sub-task set I = \jI

add m to result set 0

Set o.imperativeForm = m.imperativeForm

Return 0
Figure 9: Return Translation Function

Return values from functions are handled like "set" statements in that an additional

parameter is added to the <expression> translation; the additional parameter is used to return

the result. This result parameter is set in the precondition of the final HTN method

implementing the translation.



For (iteration)

function: TRANS
input: TMKL statement CJj = for( <init>; <cond>; <incr> ) <body>

<init> is a TMKL expression "set <variable> to <expression>"
<eond> is a TMKL expression
<iner> is a TMKL expression "set <variable> to <expression>"
<body> is an ordered set ofTMKL statements

the imperative form 'l' of the translated TMKL statement CJj+l

output: Equivalent HTN 11, returned as a set ofHTN tasks and HTN methods
behavior:

Declare result set ()
Declare HTNMethodSet p
Set p =TRANS( <body>, null )
add each element of p to result set ()

Create HTN method m:
name = m
parameters = all parameters of samelhigher scope in TMKL model
precondition set I = TRANS( <init> )
sub-task set 1 = m' .imperativeForm

add m to result set ()
Create HTN method m':

name = m'
parameters = all parameters of same/higher scope in TMKL model
precondition set I = TRANS( <cond> )
sub-task set 1 = m". imperativeFonn
precondition set 2 = true
sub-task set 2 = 'l'

add m' to result set ()
Create HTN method m":

name = m"
parameters = all parameters of same/higher scope in TMKL model
precondition set I = p.imperativeForm
sub-task set 1 = m"'.imperativeFornl

add m" to resu It set ()
Create HTN method m"':

name = m'"
parameters = all parameters of same/higher scope in TMKL model
precondition set 1 = TRANS( <incr> )
sub-task sct 1 = m' .impcratiyeFonn

add m'" to result set <5
Set <5.impcratiycFonn = m.impcratiycForm
Rcturn 8

Figure 10: Ft1 r TrallS13tion Function
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The HTN method m ensures that the iterating variable is appropriately initialized

before calling method m', which evaluates the translated condition and invokes the

translation of the "for" body when true, and invokes \jI otherwise. An interesting feature to

note is that method m" creates the HTN translation of the body of the for by invoking the

body's imperative form in the precondition (allowing variables to be updated). Since the

preconditions ofm" always evaluate to true, method m" always calls m"'.imperativeForm.

Method m'" handles the incrementation of the iterated variable, and is actually equivalent to

a "set" translation. It should be noted that since m'" will already have as a parameter the

incremented variable, a uniquely named variable must be used for the assignment of the

result of the incrementation calculation. This unique variable will then be used in

m'.imperativeForm by m"', thereby creating the loop effect with an updated variable (recall

that variables in JSHOP can only take on a value once, and this essentially un-defines and re

defines the incrementing variable).
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While (iteration)
function: TRANS
input:

TMKL statement (Jj = while <cond> do <body>
<cond> is a TMKL expression
<body> is an ordered set ofTMKL statements

the imperative form \jI of the translated TMKL statement (Jj+1

output: Equivalent HTN 11, returned as a set ofHTN tasks and HTN methods
behavior:

Declare result set 8
Declare HTNMethodSet p

Set p = TRANS( <body>, null)
add each element of p to result set 8

Create HTN method m:
name = m
parameters = all parameters of same/higher scope in TMKL model
precondition set I = TRANS( <cond> )
sub-task set I = m'.imperativeForm
precondition set 2 = true
sub-task set 2 = \jI

add m to result set 8

Create HTN method m':
name = m'
parameters = all parameters of same/higher scope in TMKL model
precondition set I = p.imperativeFonn
sub-task set I = m.imperativeForm

add m' to result set 8

Set 8.imperativeForm = m.imperativeFonn

Return 8
Figure 11: While Translation Function

The while is a much simpler implementation of the samc logic used in translating thc

"for" statcmcnt. iv1cthod m cvaluates thc translated condition and invokes the translation of

the while body when true. and invokes '1' otherwise. An intcresting fcaturc to note is that. as

donc in the "for" translation. mcthod m' creates the HTN translation of the body of the whilc
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by invoking the body's imperative form in the precondition (once again, allowing variables

to be updated). Since the preconditions of m' always evaluate to true, method m' always

makes the recursive invocation m.imperativeForm.

Function Calls
function: TRANS
input:

TMKL function callJune = <functionCall>
output: An equivalent HTN function call June '
behavior:

Iffimc is a standard LISP function call then
Return <functionCall + returnVariable>

End if
Figure 12: Translation of Function Calls

This form of the TRANS function is directly used by the "call" statement. As

aforementioned, return values from functions are handled like "set" statements in that an

additional parameter is added to the June translation; the additional parameter is used to

return the result in the case that the function is also implemented as a TMKL process model.

Otherwise, if fime is a LISP function then the TMKL models and HTNs are literally

equivalent (use the same invocation).

Variables

function: TRANS
input:

TMKL variable va,. = <variable>
output: An equivalent HTN variable va,.'
behavior:

Return <variable>
Figure 13: Variable Translation Case 1

36



function: TRANS
input:

Set ofTMKL variables varSet = <variables>
output: An equivalent set of HTN variables varSet'
behavior:

Declare ordered result set res

For each TMKL model variable var in varSet do
Add TRANS( var ) to res

End for

Return res
Figure 14: Variable Translation Case 2

These TRANS functions, Figure 13 and Figure 14, ensure that the variable names

used in the HTN are valid, since it is possible that a certain TMKL model will allow variable

names that a particular HTN will not. The particulars of how variables are handled for a

given TRANS are detailed in the other subsections in this chapter.

Expressions
function: TRANS
input:

TMKL expression exp = <expression>
output: An equivalent HTN expression
behavior:

Declare HTN expression ans

If expression exp is a TMKL function call
Declare TMKL function callfimcCall
SetfimcCall = exp
Set ans = TRANS(fimcCall )

Else
Set ans = exp

End If

Return ans
Figu rc 15: Translation of Expressions

If cxp is a Ti\IKL function call then the transformation invokes the "function calls"

TRANs function. Otherwise cxp is taken to mean a standard constraint formula containing
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conjunctions, disjunctions and negations. Both TMKL models and HTNs use the same

formalism for constraint formulas and as such the translation is literally equivalent (use the

same invocation).

Equivalence Theorem
To date it has been unclear in the literature whether TMKL model planning is more

expressive than HTN planning. According to Erol et. al. (1994b) there is not a well

established definition of expressivity for planning languages; expressivity has been defined

based on model-theoretic semantics, operational semantics, and on the computational

complexity of problems representable by the planning language (Erol et al., 1995).

A presentation of equivalence based upon the definition of model-theoretic

expressivity described in (Erol, 1994b) would explicitly make clear the equivalence of

TMKL models and HTNs. However, doing so requires introducing and explaining new

concepts; thankfully there is a simpler way to set about this proof. The equivalence

presented in this thesis is based upon Erol et. al. (1995) in which it states that the expressivity

of two languages can be compared by demonstrating that a polynomial or Turing computable

transformation exists. It is precisely this demonstration that has been provided in the section

titled "The formal proof: generic TMKL model into HTN". Thus:

Theorem: TIlere exists a Turing-computable function 'V from the set ofTMKL model
planning problem instances to the set of HTN planning problem instances such that for
any TKML model planning problem instance P, and any plan cr, cr solves P iff'V(cr)
solves 'i1(P).

Both P and cr as used in the theorcm arc defined in Chapter 3 for HTNs; given the

existcnce of a computable transformation (as shown by the function TRANS in this scction
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and in the existence of a working translator built for this thesis), both P and cr can apply to

TMKL models and therefore lend their well defined semantics to TMKL models.
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5. Conclusion

Summary
This thesis has presented an equivalence proof between HTNs and TMKL models by

presenting a Turing-computable function that maps the set of TMKL model constructs to

equivalent HTN constructs. This function was illustrated via a set of translation functions,

implemented in pseudo-code. Further, a working translator has been constructed to translate

TSXML to JSHOP's HTN planning language formalism. Such an equivalency shows that

TMKL models have similar complexity properties as HTNs, lends TMKL models a clear

semantics that the literature has lacked, shows that a translation from an arbitrary TMKL

model to an equivalent HTN always exists, and has the implications detailed in the next

section. A synopsis of this translation schema has been accepted for publication at the

upcoming Artificial Intelligence and Interactive Digital Entertainment conference.

Implications

TMKL Model Plans are Sound and Complete

Chapter 2 described that the HTN planning algorithm is sound and complete. Since

TMKL models are equivalent to HTNs, TMKL model planning is also sound and complete.

TMKL Models are more expressive than STRIPS

Chapter 2 described that HTNs are strictly more expressive than STRIPS. Since

TMKL models are equivalent to HTNs. T~1KL models are also strictly morc expressivc than

STRIPS.
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TMKL Model planning is NP-Complete
Chapter 2 described that HTN planning is NP-Complete under certain restrictions.

Under these same restrictions, and given that TMKL models are equivalent to HTNs, TMKL

models planning is also NP-Complete.

Future Work
One next step to take in extending the work presented in this thesis would be to test

the translator by first translating a TIELT agent description, then creating a plan from

JSHOP, and finally executing the plan in an experiment running in TIELT. Further, the

translator could be extended to handle objects/structures instead of just the basic types (i.e.,

Boolean, Real, etc.). Another next step is to prove equivalence via other methods such as

model-theoretic semantics, operational semantics.
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