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Abstract

This thesis deals with the uSe of Atomic Force Microscopy (AFM) to study nanotopog­

raphy of scaled SONOS [poly-silicon - blocking oxide - nitride - tunnel oxide - silicon],

nonvolatile semiconductor memory (NVSM) devices. The SONOS device consists of

the ONO dielectric where the ultrathin tunnel oxide is 1-2 nm, the memory nitride

is 5-7 nm and the blocking oxide is 3-5 nm. The tunnel oxide is thermally grown

and thus is fairly uniform across the surface. The silicon nitride layer is deposited by

LPCVD and contributes to the maximum surface roughness of the ONO dielectric.

The blocking oxide is deposited by LPCVD, over the nitride, and densified.

In the process of scaling the SONOS devices, the variations in the vertical' di­

mension of the multidielectric film gain prominence. The surface roughness of silicon

nitride was varied by using different depositions and flow rates. The temperature .

range used in this thesis was 6500 C to 7250 C and the flow rates correspond to

NHa:SiCI2H2 ratios of 5:1 and 10:1. To study the nanotopography of the nitride

layer, the instrument used in this thesis was the Atomic Force Microscope. The

theory of the Scanning Probe Microscope is described with emphasis on the Atomic

Force Microscope (AFM). Experimentally, the intermittent contact mode of the AFM

works best on the deposited SiaN4 films. Silicon nitride samples deposited at 6500

C with a flow rate of 10:1 had the least root mean square (rms) roughness of 0.33

nm as compared with other samples measured in the intermittent contact or tapping

mode. On the other hand, contact mode operation of the AFM yields the least rms

surface roughness of 0.17 nm at the temperature of 6800 C with a flow rate of 10:1 as

compared to other samples measured in the contact mode.

To study the effect of varying surface roughness on the electrical characteristics of

a device, gridded and ungridded capacitors have been fabricated both with 12 Aand

18 A tunnel oxide with SiaN4 deposited at different temperatures. Linear Voltage

Ramp measurements of SONOS devices have been performed to correlate surface

roughness, and device programming voltage and flatband voltage shift.
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Chapter 1

Introduction

SONOS (silicon-oxide-nitride-oxide-polysilicon) devices are non volatile memories i.e.

they do not lose memory when the power is turned off. SONOS capacitors ar.e fabri­

cated by forming tunnel oxide, storage nitride and blocking oxide as gate dielectric.

Metal is then deposited on the above gate dielectric for contact. Extra fabrication

steps are required for SONOS transistors due to the formation of source and drain.

A SONOS device fabricated on a p type substrate turns on when a certain positive

voltage is applied to it. This voltage is termed as threshold voltage. The device is

said to turn on when an inversion layer forms at the surface of the semiconductor.

The inversion layer forms a channel in the SONOS transistor and drain current can

be measured. The source and drain help supply the electrons in the inversion layer.

Some of these electrons tunnel across the thin tunnel oxide and trap in the nitride

when a positive gate voltage is applied. This is termed as WRITING of the device.

The stored charge changes the threshold voltage of the device. When a negative

voltage is applied to the gate of the device, the surface of silicon is accumulated with

holes. Some of these holes tunnel to the storage nitride and neutralize the electrons.

This is termed as ERASING of the device. RepeC!-ted WRITING and ERASING of

the device can degrade the characteristics of the device and this is used as a measure

of ENDURANCE of the device. The long term ability of the nitride layer to store

charge is termed as RETENTION. Fig. 1.1 displays the cross section of a SONOS

device [1].

For a SONOS device to be used in semiconductor disk application as EEPROM,

more than 1,000,000 cycles of ERASE/WRITE and ten years of retention are required

[2]. In DRAM application, due to regular refresh, long term retention is not required.

The gate dielectric of the SONOS device consists of tunnel oxide (~ 20 A), storage

nitride (~ 50 A) and blocking oxide (~ 40 A). The tunnel oxide is thermally grown'

3
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by wet or dry oxidation. At Lehigh University the tunnel oxide Can be grown in

either a single wall furnace or in the t;iple wall furnace. The triple wall furnace yields

less interface trap density (Dit) to begin with and the increase in Dit due to repeated

ERASE/WRITE cycling is less compared to the single wall furnace [2]. The storage

nitride is deposited by Low Pressure Chemical Vapor Deposition (LPCVD). It is a

trap rich layer which traps charge in the ERASE/WRITE mode. The blocking oxide

is LPCVD deposited and densified in the wet oxidation furnace. This thesis mainly

deals with the nitride layer of the gate dielectric.

The nitride layer is important since it traps charge. The WRITE, ERASE, RE­

TENTION operations of the device depend upon trapping of charge in the' nitride

layer. ENDUR~Jj,(JE of the device depends on the interface layer between silicon

and silicon dioxide and the interface between silicon dioxide and silicon nitride. The

degradation of tunnel oxide and storage nitride interface lead to problems in reten­

tion and endurance of the device. The storage nitride and blocking oxide interface

degradation cause a problem in retention due to leakage of charge to the blocking

oxide [2].

Previous studies on silicon and silicon dioxide interface show better time depen­

dent dielectric breakdown characteristics if the silicon surface is atomically flat or has

lesser surface roughness [3]. With decreasing polished-silicon-surface micro-roughness,

the cutrent density decreases. The microscopic uniformity of the top surface (not the

silicon silicon dioxide interface) of the oxide grown on this silicon surface is affected

by the roughness of the underlying silicon surface. Although this micro roughness is

dependent on the roughness of the starting silicon surface, it is also strongly depen­

dent on parameters like oxidation temperature. Gate oxide integrity was also found

to be dependent on treatment of silicon surface with DI water and HF [4].

According to Ohmi et al. [5], channel mobility, along with charge to breakdown

characteristics and electric field intensity, decrease with increasing silicon micro rough­

ness. The paper found RCA clean ratio of NH40H:H20 2:H20 to be 0.05:1:5 followed

by rinsing in DI water improved surface roughness characteristics.

Recently, the surface roughness of the nitride layer in stacked gate dielectric has

gained prominence. In the SONOS device, as stated earlier, the ERASE, WRITE,

5



CHAPTER 1. INTRODUCTION

RETENTION and ENDURANCE operations of the device are centered around the

nitride layer. Due to scaling of SONOS device and DRAM's, the small variations

in the vertical dimensions gain prominence. According to Roy and White [6], the

electron tunneling from polysilicon asperities increases with increasing radius of the

asperity. Similarly, nitride asperities could affect charge tunneling from the tunnel

oxide and charge leakage to blocking oxide. Due to asperities at the silicon dioxide

and silicon nitride interface, there could be degradation in retention characteristics

due to back tunneling of charge through the oxide. The breakdown characteristics of

the dielectric degrade with an increase in surface roughness of the nitride [7].

According to Tanaka et al., the surface roughness of the nitride layer increased

due to increasing the deposition temperature. This increase in surface roughness

intensified the electric field at certain points in the dielectric. This caused degradation

in dielectric breakdown characteristics. Nitride layers deposited at three different

temperatures were investigated - 6800 C, 7000 C, 780 0 C. Other deposition parameters

like pressure and flow rates were also varied slightly while varying the temperature.

The nitride layer deposited at 6800 resulted in the least surface roughness when

measured with the AFM and best electrical characteristics as compared to devices

with other two deposition temperatures.

The composite ONO film was used to obtain dielectric constant and to suppress

the leakage current. The blocking' oxide film was important to eliminate electron

trapping and to provide improved suppression of interface state generation under

electrical stress for high reliability DRAM's [8, 9] and SONOS devices. The blocking

oxide was deposited by LPCVD and later densified in the wet oxidation furnace. The

strongest contributor to the surface micro roughness of the diele~tric was the growth

conditions of the nitride.

. Currently, in any analysis of SONOS devices, a uniform dielectric thickness is

assumed which provides a uniform electric field. The validity of this assumption rests

on the surface roughness of the layers that compose the ONO dielectric. The tunnel

oxide is thermally grown and the blocking oxide is deposited and densified. The silicon

nitride layer is deposited by low pressure chemical vapor deposition (LPCVD). The

rms surface roughness of ultra thin tunnel oxide is 0.46 A and the SbN4 is typically

3.3 A in the contact mode of the AFM. Furthermore, as the SONOS devices are

6



1.1. SCOPE OF THIS THESIS

scaled down, the small vertical surface variations have a more prominent role in the

analysis and brings into question the uniform thickness assumption. Erase, 'Read,

Write and Retention models for the SONOS device all employ the uniform thickness

assumption. Hence, any deviations from this assumption would affect the extracted

device parameters and consequently, the validity of the models- that describe the

operation of the device.

1.1 Scope of this Thesis

The goal of this thesis was to study the effect of surface roughness of nitride layer on

SONOS device performance with the help of the Atomic Force Microscope [AFM].

The goals for a scaled SONOS device are to obtain [10]

• Low programming voltage.

• Improved retention.

• Higher endurance.

• Faster programming time tp •

An increase in the silicon nitride surface roughness causes

• Enhanced electron injection in MOS and SONOS devices

• Erase, Read, Write of the _SONOS device may be affected [uniform injection

may make a difference].

• Retention may be affected.

Table 1.1 describes the parameters affected by surface roughness. The most significant

roughness to the ONO triple dielectric is contributed by the nitride, the parameters-,
that affect the surface roughness of the nitride are studied. The LPCVD reaction

that deposits the nitride is

7



CHAPTER 1. INTRODUCTION

Par~meters/Surface Roughness HIGH LOW

~ow programming voltage Good Good/Bad

High Retention Bad Good

High Endurance Bad[Slow ramping] Good

Good[Cycles]

Fast tp . Good Good/Bad

Table 1.1: Effect of Surface Roughness on SONOS parameters

The parameters that can be varied during deposition are:

1. Temperature

2. Flow Rate

3. Pressure

4. Thickness of the Nitride layer (or time of deposition)

The thickness of the nitride layer is usually fixed at ~ 60 A[10], as devices are

scaled. Therefore, variations in the thickness are not studied. In this thesis variations

in surface roughness due to the first two parameters are studied.

The organization of this thesis is as follows:

In Chapter 2, the theory of Scanning Probe Microscopes (SPM) is described in­

cluding the Atomic Force Microscope [AFM] in the contact, non contact and tapping

mode (or intermittent-contact mode); Lateral Force Microscope [LFM]j Magnetic

Force Microscope [MFM] and Scanning Tunneling Microscope [STM]. In Chapter 3,

the fabrication sequence of SONOS capacitor for both gridded and ungridded capac­

itors is presented. The formation of the nitride layer and steps taken to measure

the nitride thickness have been discussed. Next, Chapter 4 contains information con­

cerning measurement techniques and experimental data gathered by these techniques.

8



1.1. SCOPE OF THIS THESIS

Chapter 5 presents the conclusion of the work done and makes recommendation for

future work. Appendix A describes taking images from the AFM [Park scientific

Instrument] and sample preparation for the AFM surface topography measurements.

Appendix B compares the contact and intermittent contact mode on silicon nitride

samples sent out to Digital Instruments.

9
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Chapter 2

Scanning Probe Microscopy

Scanning Probe Microscopes (SPM's) constitute of a number of instruments [11]

i.e. Scanning Tunneling Microscope (STM) for studying the electronic density of

states of conducting or semi conducting materials, Atomic Force Microscope (AFM) .

for studying the surface roughness of materials, Magnetic Force Microscope (MFM)

for studying the magnetic properties of materials, and Lateral Force Microscope

(LFM) for studying surface friction. Now STM's and AFM's are also being used

for nanolithography of devices [12], [13]. Fig. 2.1 illustrates the basic operation of a

Scanning Probe Microscope (SPM).

The sample is placed over a piezoelectric scanner which moves the sample under

the tip in a raster fashion. A coarse positioning system brings the tip close to the

sample. Data are gathered by sensing the deflections of the tip as the sample is

rastered under it. A computer converts the data into an image [11].

2.1 Scanning Tunneling Microscopy

The Scanning Tunneling Microscope uses the tunneling mechanism for imaging. A

bi~s is applied between the tip and the sample. The tip is kept about 10 A from the

sample surface. The electrons from the sample tunnel into the tip or electrons from

the tip tunnel into the sample depending on the bias applied. A bias voltage around

5-10 V is generally applied. The sample and the tip have to be either conducting

or semi conducting. Insulators cannot be imaged with the STM. The current flow

between the tip and sample is used to generate the topography of the sample [11].

There are two ways of generating the topography with the STM :

• Constant Current

11



OHAPTER 2. SOANNING PROBE MIOROSCOPY

.Acoarse positioning
system to bring the
tip into the general
vicinity of the sa!"pl-----

Away of sensing
the vertical
position of the tip

+Apiezoelectric scanner
which moves the tip over
the sample(or the sample
under the tip) in araster
pattern

Acomputer system that
drives the scanner)

Y-------..... '----..~ measures data and
converts into an image

Afeedback
system to
control the
vertical position
of the tip

Figure 2.1: Schematics of generalized Scanning Probe Microscope [11]
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2.2. ATOMIC FORCE MICROSCOPY

• Constant Height

In the constant current mode, the current between the tip and the sample is kept

constant. A feedback loop to the scanner moves the scanner up and down so that

the current remains constant. The current has an exponential dependence on the

sample-tip separation. For every 1 A of sample-tip separation the current changes

by an order of magnitude. The movement of the scanner constitutes the data set for

generating the topography of the sample.

In the constant height mode, the height of the scanner is kept constant. The

current changes value as it scans over the sample and that constitutes the data set.

Fig. 2.2 illustrates the difference between constant current mode and constant height

mode [11].

Tersoff and Hamann [14] developed the STM theory and found the tunneling

current to be proportional to the surface local density of states. Their theory provides

expression for intrinsic spatial resolution and dependence of the tunneling current on

the tip size and shape.

2.2 Atomic Force Microscopy

The repulsive or attractive force between two atoms is used as the imaging mech­

anism. The Atomic Force Microscope (AFM) introduced in 1986, gives insights in

fields of surface science, electro-chemistry, biology and technology [15].

The Atomic Force Microscope (AFM) is characterized by [11]

• Sharp tip: The tip measures couple of microns long and often less than 100 A
in diameter. The tip is located at the free end of a cantilever 100-200JLm.

• Forces between the tip and sample cause the cantilever to bend or deflect. A

detector measures the cantilever deflections as the tip is scanned over the sample

or the sample is scanned under the tip.

13



CHAPTER 2. SCANNING PROBE MICROSCOPY

tunneling current
-

..' ~~.'. . e~!~p!.tie .

1
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-' IU
sample

u
Constant Current

Figure 2.2: Constant height and constant current mode for STM [11]
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2.2. ATOMIC FORCE MICROSCOPY

• The deflections allow a computer to generate a sudace topography map.

• Inter-atomic force called the van der Waals force.

The van der Waal forces play an important part in atomic interaction. Two atoms

brought closer, initially attract and as the distance between them decreases they start

repelling each other. When the forces of repulsion exceed that of attraction the atoms

are said to be in contact.

Van der Waal forces are of three kinds:

• polarization i.e. permanent multi-pole moments

• induction

• dispersion

The attractive regime is the non-contact mode of operation and the repulsive

regime is the contact mode of operation. Fig. 2.3 illustrates the contact and noncon­

tact mode of operation.

2.2.1 Contact Mode

The tip and the sample are said to be in contact [11] if the attractive and repulsive

forces balance each other. This distance is about 1-2 Abetween the sample and the

tip. A force is applied on the cantilever to keep it in contact with the sample. Due

to the topography of the sample the cantilever experiences different repulsive forces

at different points of the sample. These forces cause the cantilever to deflect. The

deflection of the cantilever can be detected by various schemes [15].

• Tunneling

• Beam deflection

• Optical Intederometry.
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CHAPTER 2. SCANNING PROBE MICROSCOPY

Force

Repulsive Force

4
Contact

1-----iIlP'---------'-----.... distance

,
Attractive Force

Figure 2.3: Van der Waals force versus atomic separation. Atomic Force microscopes

can be designed to operate in either of the two regimes indicated by heavy lines [11]
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2.2. ATOMIC FORCE MICROSCOPY

The most popular is the beam deflection scheme. Light from a laser diode is

reflected onto a mirror and on the cantilever. The light bounces from the cantilever

to a photo sensitive photo detector (PSPD). The PSPD is sensitive to position changes

of up to loA. Due to the mechanical amplification of the ratio of distance between

the PSPD and the cantilever, and the length of the cantilever, the PSPD can measure

deflections up to 1A [11]. The beam deflection technique is illustrated in Fig. 2.4

The contact mode also has two modes of operation.

• Constant Height

• Constant Force

The constant-force mode is similar to the constant-current mode in the STM. The

forces between the sample and the tip are kept constant i.e. the cantilever deflections

are kept constant. This is achieved by means of a feedback loop to the piezoelectric

scanner. The scanner is moved in the positive or negative z direction to keep the

cantilever deflections constant. The scanner movement constitutes the dataset to

generate the topography of the sample.

In the constant.:height mode the scanner height is kept constant i.e. no feedback

circuit is used. The deflections of the cantilever are detected by the beam deflection

technique and constitutes the data set for topography generation. The constant­

height mode of operation is faster as there is no response time of the of the feedback

circuit to account for and therefore can be used for real time imaging.

2.2.2 Non-Contact Mode

In this !Uode, the tip and the sample are kept around 100 A away from each other.

Since this mode lies in the attractive domain of the van der Waals force there is a

danger of the cantilever falling on top of the sample due to large attractive forces.

Thus a stiffer cantilever is required. Plus the slope of the van der Waals curve is

much shallower i.e. there is less change in force with change in distance between the

sample and the tip. The stiffer cantilever and the shallow slope make the cantilever

17



OHAPTER 2. SOANNING PROBE MIOROSOOPY

sample

PSPD
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PZT
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mirr~ .
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cantilever" /
~ 'I

\

Figure 2.4: Schematics of optical-deflection technique for detecting cantilever deflec­

tion(Beam bounce detection) [11]
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2.3. LATERAL FORCE MICROSCOPY

deflect less with changes in topography. Therefore a more sensitive detection scheme

is required. The cantilever is oscillated with its resonant frequency( 200-300 kHz)

above the sample surface. Due to sample tip force interaction, the cantilever has one

frequency at the top of its oscillation cycle and a different frequency at the bottom

of its oscillation cycle. The oscillation frequency changes at the bottom with respect

to the sample topography. The oscillation frequency is kept constant by means of a

feedback loop. The scanner moves up and down to keep the frequency constant. The

movement of the scanner is used as the data set for generating the sample topography.

The non-contact mode is useful as it doesn't contaminate the- sunace. But if there

is a water particle on the surface, it will be imaged as part of surface topography. In

the contact mode this water particle will not be imaged as the tip will penetrate this

particle and image the surface accurately [11]

2.2.3 Tapping Mode

This mode is similar to the non contact mode. In this case the tip is oscillated with

a high amplitude and it touches the sample in each oscillation. For SiaN4 layer in

the SONOS device, this mode is optimum. It doesn't cause damage of the surface

as is causeq in the contact mode due to frictional or drag force!. on the surface. It

images the sample topography accurately as compared to non contact AFM where

the sample topography could be imaged wrong due to a drop of water on the sample

surface [11].

2.3 Lateral Force Microscopy

LFM is similar to contact mode AFM except the photo-sensitive photo-detector has

a four quadrant measurement scheme rather than two quadrant measurement scheme

as in the contact mode AFM. In the contact mode AFM, the deflections of the can­

tilever are measured by light reflecting off the cantilever on to the position sensitive
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CHAPTER 2. SCANNING PROBE MICROSCOPY

photo detector. Light beam positioned at exact center corresponds to zero deflection.

Any deviation from the center to the upper and lower quadrant yields the value of

cantilever deflection. In the four quadrant scheme the difference between the sum

of the upper two quadrants and the sum between the lower two quadrants gives the

vertical deflection of the cantilever. Due to the frictional forces between the surface

and the tip, the cantilever deflects vertically as well as twists laterally. This lateral

twisting is measured by the difference between the sum of the left quadrants and the

sum of the right quadrants [11].

2.4 Magnetic Force Microscopy

The magnetic force microscope operates similar to non-contact mode of operation.

The tips in this case are coated with ferromagnetic material. The magnetic forces

are detected with spatial variation and imaged. The question-arises that since MFM

and non-contact AFM are similar how do we differentiate between the topographical

information and magnetic information. This is done by noting the distance of the tip

from the sample surface. Magnetic forces persist longer than van del' Waal forces.

Therefore for MFM the tip can be further away from the sample. The nearer it is to

the sample, the image represents topography rather than magnetic information [11]'.

2.5 Scanning Capacitance Microscopy

The STM or the AFM can be used to take capacitance measurements. When using

the STM, the tip is used as the capacitance probe. For avoiding low frequency drifts

in the capacitance caused by stray capacitance variations, the capacitance between

the tip and the sample is modulated at high frequencies ~ 30 kHz. A d.c. bias

superimposed with a small a.c. voltage is applied to a semiconductor sample. The

sample goes through accumulation, depletion and inversion of charge depending on

the voltage applied. This varies the capacitance which is measured by sensors applied
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2.5. SCANNING CAPACITANCE'MICROSCOPY

to the probe tip [?].

With the AFM, the cantilever with the probe tip is metalized. The metalized

cantilevers are fabricated either by etching tungsten wires or by coating silicon-dioxide

cantilevers with metal. The capacitance is measured by applying bias to the sample

and attaching sensors to the probe. Both the topography and the capacitance can be

measured simultaneously or independently.
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Chapter 3

Processing Technology

In this chapter, fabrication sequence of gridded and ungridded SONOS capacitors

is described. Gridded capacitors have an n+ grid ion implanted in the substrate:

Field Oxide

Grid-,L-I__"_+__--11
pSi

Field Oxide

'-----"-+----f-- Grid

Figure 3.1: Gridded base before ONO Deposition

The n+ grid supplies the minority carriers during inversion. Thus a lesser voltage

is required at the gate to invert the Si surface and charge injection to the nitride takes

place at a lower voltage decreasing the programming voltage of the device. The same

effect can be achieved on the ungridded wafers by shining light on them.

These capacitors were fabricated to study their electrical characteristics. The

nitride deposition temperatures were varied to vary the surface roughness of the
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CHAPTER 3. PROCESSING TECHNOLOGY

nitride layers.

3.1 Capacitors

SONOS Capacitors were fabricated using the aNa dielectric with the nitride

layer deposited at three different temperatures. The deposition temperatures used

were 6500 C, 6800 C and 7250 C. Two types of capacitors were fabricated, gridded

and ungridded. In both the types, two sets of _wafers were fabricated,. one with tunnel

oxide thickness of 12 A and the other with tunnel oxide thickness of 18 A.

3.1.1 Ungridded Capacitors

1. Starting Material: p substrate < 100 >, 20-30 O-cm., 3 inch diameter

2. Active Area

(a) Furnace Clean

5:1:1 DI Water:Ammonium Hydroxide:Hydrogen Peroxide, 750 C, 5 min.

5:1:1 DI Water:Hydrochloric Acid:Hydrogen Peroxide, 650 C, 5 min.

(b) Hioo A Oxide

Wet Oxide, 9000 C, 40 min.

(c) Etch (1000 A oxide)

BHF, 3 min.

3. Triple Dielectric

At this point six sets of wafers with two wafers in each set were prepared.

The first set of three wafers were processed as follows :

(a) Furnace Clean

(b) Tunnel Oxide: 18 A
Dry oxide, 7000 C, 11 min., Ar anneal, 7000 C, 30 min.

(c) Memory nitride : 50 A
LPCVD:O.3 torr, 100 sccm NHa, 10 sccm SiCbH2, 6500 C, 38 min
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3.1. CAPACITORS

OR

LPCVD:0.3 torr, 100 seem NH3 , 10 seem SiC12H2 , 6800 C, 19 min

OR

LPCVD:0.3 torr, 100 seem NH3 , 10 seem SiC12H2 , 7250 C, 7 min

(d) Blocking Oxide: 35 A
LPCVD:0.8 torr, 100 seem N20, 10 seem SiCbH2, 7250 C, 14 min

Wet Oxide, 9000 C, 30 min.

Blocking Oxide

Nitride
Tunnel Oxide

p-SI

Blocking Oxide 35 AO
/---------"'-----..,

Nitride 50 AO
F==~=T=u=n=ne~I=O=xl~de~~~=9 12 AO

p-Si

Figure 3.2: Ungridded capacitors with 18 A and 12 A tunnel oxide

The remaining three sets of wafers were processed as follows

(a) Furnace Clean

(b) Tunnel Oxide: Native Oxide(12 A )
Dry oxide, 7000 C, 11 min., Ar anneal, 7000 C, 30 min.

(c) Memory nitride : 50 A
LPCVD:0.3 torr, 100 seem NH3 , 10 seem SiC12H2 , 6500 C, 38 min
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OR

LPCVD:0.3 torr, 100 sccm NH3 , 10 sccm SiCI2H2 , 6800 C, 19 min

OR

LPCVD:0.3 torr, 100 sccm NH3 , 10 sccm SiChH2 , 7250 C, 7 min

(d) Blocking Oxide: 35 A
LPCVD:0.8 torr, 100 sccm N20, 10 sccm SiCI2H2 , 7250 C, 14 min

./

Wet Oxide, 9000 C, 3p min.

All six sets of wafers went 'through the following processing steps :

4. Metal

(a) 6 KA Metal

Al 99.9999 %, Evaporation

(b) Photo 1 - Metal

(c) Etch ( 6 KA metal)

PAN Etch, 450 C, 2 min

(d) Photo resist Strip

(e) Plasma Etch backside(ONO)

CF4 , 0.3 torr, 300 W, 5 min.

(f) Q-tip Etch Backside

A Q tip dipped in acetone is used to remove any remaining ONO layer and

contamination from the back side of the wafer. 10:1 BHF, 10 min.

(g) 6 K A Metal backside

Al 99.9999 %, Evaporation

(h) Organic Clean Methanol 5 min.

Acetone 5 min.

5 times rinse

(i) Anneal

H2 : N2, 4500 C, 30 min.
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3.1. CAPACITORS

Metal

Metal---"

p-SI

..- Metal

Figure 3.3: Ungridded capacitors after metalization

3.1.2 Gridded Capacitors

These following processing steps are performed on the gridded wafers before they

follow the same processing sequence from step 3 onwards of the ungridded wafers.

1. Starting Material: p substrate < 100 >, 20-30 n-cm., 3 inch diameter

2. Active Area

(a) Furnace Clean

5:1:1 Dr Water:Ammonium Hydroxide:Hydrogen Peroxide, 750 C, 5 min.

5:1:1 Dr Water:Hydrochloric Acid:Hydrogen Peroxide, 650 C, 5 min.

(b) 1000 A Oxide

Wet Oxide, 9000 C, 40 min.

(c) 1000 A Nitride

LPCVD 0.3 torr, 100 sccm NHa, 30 sccm SiCl2H2, 7250 C, 60 min.
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(d) Photo-1

(e) Plasma Etch (1000 A nitride)

CF4 , 0.23 torr, 125 W, 8 min., both front and back sides

(f) Implant

Phosphorus

(g) Photo resist Strip

(h) Furnace Clean

(i) Anneal

N2, 9500 C, 60 min.

(j) 7000 A oxide

Wet Oxide, 9000 C, 60 min.

(k) Etch (thin oxynitride)

BHF, 1 min.

(1) Etch (1000 A nitride)

H3P04, 1500 C, 60 min.

(m) Etch (1000 A oxide)

BHF, 3 min.

Processing was completed by following sequence step 3 of the ungridded wafers.

3.2 Nitride Layer

The nitride layer of the aND dielectric stores charge. To vary the surface rough­

ness of the nitride layer it was deposited at three different temperatures 6500 C, 6800

C, 7250 C. These three temperatures were selected because 7250 C is the temperature

currently being used in depositing the nitride during device fabrication at Lehigh,

6800 C was reported[7] to be the temperature with the least surface roughness, 6500

C was chosen to check temperatures below 6800 C. Below 6000 C a reaction between

NH3 and SiCl2H2 does not take place. There is a vast difference in the deposition

times of nitride at these three temperatures. The reaction taking place is
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3.2. NITRIDE LAYER

At 6500 C, it took 37 min. to deposit a 50 A nitride, at 6800 C it took 19 min.

and finally at 7250 C it took 7 min.

While fabricating ONO devices, the tunnel oxide was thermally grown, the nitride

was deposited by LPCVD and the blocking oxide was first deposited in the LPCVD

and then densified in the wet oxidation furnace. During the formation of the blocking

oxide some underlying silicon nitride was consumed. To measure the nitride thickness

accurately [10], control wafers with known nitride thickness were used. After furnace

clean, the thickness of one control wafer was measured by ellipsometer at five points

to measure the thickness of the nitride lost during furnace clean. The same amount

of nitride was lost by other control wafers. After required nitride deposition on device

and control wafers, the control wafers were measured at five different points for the

initial nitride thickness. Control wafers with known initial nitride thickness were used

as controls in the blocking- oxide deposition and densification. After densification,

the blocking oxide is etched away in buffered HF solution. After every 5 seconds, the

thickness of the wafer was measured. The point where the etch rate changes, signals

the complete removal of the blocking oxide. Ellipsometer measurements at this point

yields the final nitride thickness.

In this chapter, the processing technology of gridded and ungridded SONOS ca­

pacitors was discussed. Both sets of capacitors have the nitride layer deposited at

different temperatures.
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Chapter 4

Measurements

4.1 AFM Measurements

The atomic force microscope yields a three dimensional image of the topography of

the sample. After the required sample area is scanned, an image is generated by

the software. The image can be processed i.e. the noise level could be reduced or a

dust particle from the surface can be removed before information is extracte<4from

it. Since the image is of atomic scale, the sensitive measurement may be affected by

very low noise floors of the electronic circuit and the noise of the environment. The

process of flattening removes this noise. It fits a smooth curve to the data points on

the scan line. This curve can be a 1st order derivative curve to an 8th order derivative

curve where the 1st order curve gives a straight line at the center of data points and

the eight order curve tries to fit the points on the scan line exactly. While extracting

data from the image, if there is a noticeable dust particle on the surface it can be

removed ,from the image. The data extracted then consists of points without the dust

particle.

The data can be extracted in two modes - line analysis mode and region analysis

mode. The line analysis is done on a line drawn across the image of the scanned

region. Region analysis is done on the whole region scanned. This thesis used region

analysis of the surface.

4.1.1 Surface Region Measurements

The following information can be extracted from the image by the software [11]
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4.1. AFM MEASUREMENTS

1. Average Roughness: The average of all the data points in the scanned surface

is calculated. It is calculated using the standard definition:

(4.1)

where z = average z height

n is the number of data points taken over the scanned area.

2. RMS Roughness: The RMS roughness is root-mean-squared roughness of all

the data points taken over the scanned area.

Rrma =
E;:=l (zn - Z)2

n-1
(4.2)

where z = average z height

3. !4-II: !4-11 gives the maximum peak to valley separation within the scanned

areas. !4-11 is given by the difference highest data point and the lowest data

point:

where n is the number of data points within the height profile.

4. Median height: The median height is defined as the median of all data points.

A median is a point which has half the data points above it and the other half

below it.

5. Mean height: Mean height is the mean of all data points. z = E Zn / n

where z = average z height

6. Surface area: The surface area of the scanned area is measured by adding the

surface area below each point. The surface area below each point is measured

by doubling the triangle of adjacent data points and adding the two.

7. Volume: This is the volume under the scanned area. Here the zero reference is

the minimum data point.
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4.1.2 Height Histograms and Bearing Ratios

It is a bar graph of the heights of data points of the sample. The number of data

points of the same height are counted and put on the bar graph as one bar. Usually

height histograms have a Gaussian curve with the number of data points having the

median height are the maximum.

The bearing ratio is the integral of the height histogram. It gives a plot of data

points that lie above a certain height [11].

In this thesis the surface measurements have been done with the AFM. STM could

not be used as it images conducting or semi-conducting surfaces and silicon nitride is

an insulator. But silicon surfaces with no native oxide have been imaged under ultra

high vacuum with the STM [16]. In ambient atmosphere, a native oxide grows over

the silicon surface making the imaging of the silicon surface difficult. To overcome the

problem the silicon surface is hydrogen terminated. One way of hydrogen passivating

the surface is .[17] by eliminating hydrocarbons from the surface by exposure to UV

light in an atmosphere of oxygen. The silicon sample after going through clean

procedures is heated in oxygen to about 2000 C. It is then exposed to low pressure

mercury lamp for 10 minutes. The sample is then dipped in 1%HF and rinsed in DI

water. This sample is now stable in air for several hours though with some oxygen

and fluorine contamination

4.1.3 Temperature Comparison

Four samples were selected. Three, each with a nitride deposited at a different tem­

perature and one with no nitride. The sample with no nitride was chosen to provide

a basis for initial surface measurement (fig. 4.1). The three different temperatures

were 6500 C, 6800 C, and 7250 C. As seen from figs. 4.1 and 4.2, the nitride layer

deposited at 6800 C has peak to valley roughness of 18 A. The nitride layer deposited

at 7250 C has a larger peak to valley roughness of 28 A and the one at 6500 C has

the largest peak to valley roughness of 37 A.
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4.1.4 Area Comparison

Area comparison was done using two modes with two different samples. For contact

mode a SiaN4 layer of 43 A w~s deposited at 6500 C with a NHa:SiCI2H2 flow rate

ratio of 5:1. Areas of 4000 Ax 4000 A and 1.47 /lm x 1.47 /lm were chosen. Surface

roughness values remained the same over different areas of the same sample (fig. 4.3).

The values may change if there was a dust particle in one and not in the other area.

For non-contact mode, a SiaN4 layer of 67 A was deposited at 6800 C with a

NHa:SiCI2H2 flow rate ratio of 10:1. Ar~ of 4000 Ax 4000 A and l/lm x l/lm were

chosen. Here too, surface roughness values remaip.ed the same (fig. 4.4).

4.1.5 Intermittent mode and Non-contact mode

A 67A nitride sample deposited at 650 0 C was chosen to study the different modes

of the AFM. As seen from fig. 4.5, the intermittent- contact mode works the best

for SiaN4 samples. The non-contact mode is likely to image dust particles on the

surface thus giving unexpected surface roughness values. Intermittent-contact mode,

on the other hand, touches the sample surface periodically removing the possibility

of imaging dust. Intermittent-contact mode works better than contact mode as it

eliminates drag on the sample surface and wearing of the tip.

4.1.6 Flow Rate Comparison

Two samples, both deposited at 650 0 C with NHa:SiCI2H2 ratio of 5:1 and 10:1 were

selected. From data we conclude that increasing the amount of NHa increases the

surface roughness (fig. 4.6).
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CHAPTER 4. MEASUREMENTS

4.2 Electrical Measurements

4.2.1 Linear Voltage Ramp(LVR) Technique

The linear voltage ramp [18] was used to study programming of SONOS devices with

charge storage in the nitride layer. The measurement was taken- via National In­

struments Lab-view virtual instrument; The software controls the function generator

which supplies a linear voltage ramp to the bulk of the device. The linear voltage

ramp was also fed to an AID converter which supplied values of Vgb to the computer.

The gate of the device was connected to an electro-meter which measures the

current from the device. The electro-meter was connected to the computer bus.

The current Ig, is given by

(4.3)

where a is the ramp rate and Ceff is the effective capacitance.

For a device on a p type wafer, inversion occurs when the device is biased positively

and accumulation when the device is biased negatively at the gate. As the voltage is

swept from a negative voltage to a positive voltage the device undergoes accumulation,

depletion and inversion of charge at the surface of the semiconductor. The capacitance

changes accordingly and information about the stored charge can be extracted. The

flatband voltage of the SONOS device changes as the device is first ramped in one

direction and then in the other. The flatband voltage shift yields the memory window

of the device at that particular voltage range.

The effective dielectric thickness can be calculated from from the effective capac­

itance. [10]

19
Cell =­
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4.2. ELECTRICAL MEASUREMENTS

(4.5)

where Ag : Area of the gate

EO:l: : Oxide dielectric permittivity

(4.6)

where Xot : tunnel oxide thickness

Xob : blocking oxide thickness

XN : storage nitride thickness

EN : nitride dielectric permittivity

The effective thickness values obtained from ellipsometry can be verified from LVR

measurements.

Twelve wafers with SONOS capacitors were measured. Fig. 4.7 illustrates the

sample set. Six gridded capacitors and six ungridded capacitors are shown. Out

of six gridded capacitors, three have tunnel oxide thickness of 12A. The other three

have tunnel oxide thickness of 18 A. On each set of three, the nitride was deposited at

different temperatures. Similarly for the ungridded devices, three wafers have tunnel

oxide thickness of 12 Aand the other three 18 A. Each set of three again has nitride

deposited at different temperatures.

Table 4.1 illustrates the nitride deposition conditions in these devices on different

wafers. The temperature of deposition has been varied. The temperature of deposi­

tion changes the deposition rate. Thus nitride deposited at lower temperatures has a

longer deposition time. The pressure (300 m torr) and flow rate (NH3 :SiCl2H2 ratio

of 10:1) during all depositions has been kept constant.
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Figure 4.7: Capacitor Sample Set
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4.2. ELECTRICAL MEASUREMENTS

Sample Flow rate Dep. Pressure XN Dep. Time Dep. Temp.

NH3:SiCbH2

A,D, G,J 10:1 300 m torr 47 A 38 min. 6500 C

B,E,H,K 10:1 300 m torr 45 A 19 min. 6800 C

C, F, I, L 10:1 300 m torr 49 A 7 min. 7250 C

Table 4.1: Nitride Deposition Parameters

4.2.2 Gridded Devices

After checking numerous devices on each wafer, a representative LVR curve of each is

presented. Comparing sample A, Band C which have the same tunnel oxide [18 A]

and the same blocking oxide [30 A] thickness we see that the flat band voltage shift

of A is the largest of 1.8 V with a programming voltage of 5 V.The flatband voltage

of B is 1.5 V and C has no programming shift.
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28-09

1.5<>-09

'iii 18-09
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E

5&-10.!2.-=.,;-
c
l!!.. -50-10:s
0
.ll: -18-09'3
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-1.5<>-09

-28-09

-2.5<>-09
-6

I
I
I----r------------
I

VFS

·2 -1 0 1
Gste Voltage, ~S (volts)

Figure 4.8: A Flat band Voltage shift of 1.8 V with nitride layer deposited at 6500

C and area of 0.01 cm2(Fig. 4.7 Sample A)

These measurements were taken on devices of area 0.1~ x 0.1 cm. Looking

at the smaller devices of area 0.0625mm2 of the above wafers similar results were

obtained 4.2.2, 4.2.2, 4.2.2.
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area of 0.01 cm2 (Fig. 4.7 Sample C)
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C and area of 0.0625 mm2 (Fig. 4.7 Sample B)

45



CHAPTER 4. MEASUREMENTS

2&-10 r---r---r--......,r--......,r-----,----r----r----r-~-_,

1.5&-10

.rc
~ 0

=0
~ -5&-11

=m
·1&-10

I
I
I
I--1---------------
I
I
I

543
-1.5&-1 0 L..:=:::::.:::::=;::---'L..-.---'"----J"-----I--=:::::;:=:5~::::::;:=:....J

~ ~ 4 4 ~ 0 2

Gate Voltage, 'b (volts)

Figure 4.13: No Flatband Voltage shift with nitride layer deposited at 7250 C and

area of 0.0625 mm2 (Fig. 4.7 Sample C)

Next D, E and F, samples which have an ultra thin tunnel oxide[12Aj, nitride of

similar thickness and blocking oxide[30Aj were compared. Here also sample D, where

the nitride was deposited at 6500 C, shows the greatest flat band voltage shift of 2V.

Samples E and F had a flat band voltage shift of 1.9 V and 1.8 V respectively.

Wafers A and C were different only in their tunnel-oxide thickness. The flat band

voltage shift in C was 0.2 V higher than A illustrating the fact that programming

characteristics of devices can be directly related to the decrease in tunnel oxide thick-

ness.

4.2.3 Ungridded Capacitors

Ungridded capacitors G, and H have the same tunnel oxide and blocking oxide thick­

ness. The LVR curves, shown in Fig. 4.17 and 4.18, illustrate that sample G has the

largest flat band voltage shift of 1.8 V followed by sample H with flat band shift of

1.5 V. They follow the same trend as the gridded wafers.
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Chapter 5

Conclusions

5.1 Conclusions of this Thesis

.~

The following conclusions can be made for this thesis

5.1.1 AFM Measurements

• For thick Si02 or SiaN4 samples, Atomic Force Microscopy is the best among all

Scanning Probe Microscopes for studying the surface topography. The Scanning

Tunneling Microscope can be used for bare Si samples with no native oxide or

for samples with very thin oxide so that current can tunnel to the tip. Thus,

for samples of SiaN4 of ~ 60 A thickness, an insulating surface, Atomic Force

Microscopy works the best.

• The intermittent-contact mode of the AFM is better than the contact and non­

contact mode for SiaN4 samples. In contact mode, the SiaN4 tip touches the

SiaN4 sample resulting in wear of the tip and yielding poor surface topography

measurements. The non-contact mode may leave dust particles on the surface

resulting in surface roughness values higher than expected. The intermittent­

contact mode does not drag the tip on the surface, preventing wearing of the

tip. It also touches the surface periodically thus imaging the actual surface and

not dust particles on the surface.

• Due to scaling of devices, surface roughness of the dielectric layers is important.

The differences in electric field in the dielectric effects charge storage and leakage

from the nitride layer.

• Deposition temperature of nitride affects the surface roughness of the nitride,
layer. In contact mode, at 6800 C, the RMS surface roughness of nitride layer
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was found to be minimum as compared to RMS surface roughness of nitride

deposited at 6500 0 and 725 0 O. In intermittent-contact mode, the RMS surface

roughness of nitride deposited at 6500 0 was minimum (Appendix B).

• Smaller ratio of NH3 :SiOI2H2 flow during nitride deposition resulted in a rougher

surface of the Si3N4 layer.

• Different areas of the sample had the same surface roughness unless one area had

a dust particle, which when imaged gave a different value of surface -roughness.

5.1.2 Processing Technology

• Nitride deposition rate varies with different deposition temperatures. At 6000

0, there was no reaction between SiObH2 and NH3 at a pressure of 300 m torr.

At 6500 0 67 A of Si3N4 w~s deposited in 38 minutes, at 6800 0, 67 A of

Si3N4 was deposited in 19 minutes and at 7250 0 the nitride was deposited in

7 minutes.

5.1.3 Electrical Measurements

• The flat band voltage shift of capacitors varied with nitride deposited at differ­

ent temperatures. 6500 0 deposited nitride capacitors exhibited the maximum

programming shift followed by capacitors with nitride deposited at 6800 0 and

then capacitors with nitride deposited at 7250 O.

• The contact mode surface roughness data does not correlate with the flat band

voltage shift. But, the intermittent contact mode surface roughness correlates

well with the LVR measurements. Smaller value of RMS surface roughness gave

larger flat band shift in the LVR measurements.

5.2 Recommendations for Future Work

• For future work, the surface roughness of the tunnel oxide and blocking oxide

could be studied.
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• A correlation between deposition temperature, surface roughness and flat band

voltage shift could be established.

• The physical mechanisms correlating the surface roughness of the nitride layer

and its effect on electrical characteristics of the device need to be understood.

An analytical model for the study presented in this thesis could be formulated.

• The effect of surface roughness of the ONO dielectric on the electrical charac­

teristics of SONOS transistors could he studied.
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Appendix A

AFM Measurement and Sample

Preparation

~

The AFM used for surface roughness measurements is the Park Scientific Instru-

ments' Scanning Force Microscope SFM-BD2. Few specifications about the instru­

ment.

Here are steps on how to take measurements with the AFM.

A.I Taking images from the AFM

1. Switch on computer and monitor.

2. Switch on color video monitor and printer.

3. Double click on PSI Data Acquisition (PSI-acq) icon to open the application.

• By default Change Sample Mode.

• Click on it.(Probe head is raised by Z stage. XY sample stage moves

forward.)

Mode Z Resolution Y Resolution X Resolution

Contact 0.2 A 1-2 A 1-2 A
Non Contact 10 A 50 A 50 A
Intermittent

Contact 10 A 50 A 50 A

Table A.l: AFM (Park Scientific Instrument) Resolutions
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Figure A.I: Analysis of image to obtain surface measurements and statistics

56



A.l. TAKING IMAGES FROM THE AFM

Figure A.2: Processing of data for a 3D image
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Figure A.3: AFM setup: Head, Sample Stage and Microscope
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A.l. TAKING IMAGES FROM THE AFM

Figure A.4: AFM peripherals: Cartridge, Cassette and Tip
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• Secure sample to one of the sample mounting disks supplied with the in­

strument.(Double sided scotch tape can be used).

• Slide the sample mounting disk into sample holder.Sample holder is mag­

netic. Scanner is beneath it.

4. Loading Probe

• Probe comes pre-mounted on a ceramic cassette(50 disposable cassettes).

• Mount cassette on a cartridge.

• Raise probe head before loading or removing a cartridge.

• Put the cartridge in by hand.

5. Auto Approach

• In change sample mode click and hold Auto Approach button.

• Deflection sensor alignments are checked.

• Adjust laser intensity by laser beam steering screws.(3 to 4 red lights-laser

intensity indicator should be on)

• Adjust PSPD (position sensitive photo detector) adjustment screws to get

green light in laser position indicator.

6. After auto approach move to take data and scan.

A.2 Sample Preparation

1. Starting Material: p substrate < 100 >, 20-30 O-cm.,3 inch diameter

2. Active Area

. (a) Furnace Clean

5:1:1 DI Water:Ammonium Hydroxide:Hydrogen Peroxide, 75° C, 5 min.

5:1:1 DI Water:Hydrochloric Acid:Hydrogen Peroxide, 65° C, 5 min.
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(b) The following three steps are performed on different wafers.

• 50 Anitride

LPOVD:0.3 torr,lOOseem NH31 10 seem SiObH2,650° 0,38 min

• 50 Anitride

LPOVD:O.3 torr,100seem NH3 , 10 seem SiObH21680° 0,19 min

• 50 Anitride

LPOVD:O.3 torr,100seem NH31 10 seem SiCl2H2 ,725° 0,7 min

3. Photo and hard baking of wafers.

4. Dicing of wafers into squares of area 1 em2•

5. Photo stripping

54 AO --1 Silicon Nitride I D
Native Oxidell-----p-_S-j---~1.1cmlcm

Cross section of sample Top view of sample

Figure A.5: A typical sample with 54 A of Silicon Nitride on it
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Appendix B

Digital Instruments AFM Data

Three samples were sent out to Digital Instruments for surface roughness mea~

surements in the contact and intermittent contact mode. The samples are as f~llows:

1. Sample I

(a) Starting Material: p substrate < 100 >,20-30 O-cm.,3 inch diameter

(b) 18 ASi02

(c) 47 ASiaN4

NHa: SiCl2H2 10:1, 6500 C

2. Sample II

(a) Starting Material: p substrate < 100 >, 20-30 O-cm.,3 inch diameter

(b) 18 ASi02

(c) 45 ASiaN4

NHa: SiCl2H2 10:1, 6800 C

3. Sample III

(a) Starting Material: p substrate < 100 >, 20-30 O-cm.,3 inch diameter

(b) 18 ASi02

(c) 49 ASiaN4

NHa: SiCl2H2 10:1, 7250 C
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R,,-v Rms Roughness Avg. Roughness

6500 C 31.98 A 3.29 A 2.61 A
6800 C 31.35 A 3.41 A 2.71 A
7250 C 51.58 A 3.92 A 3.04 A

Table B.1: Tapping or Intermittent Contact mode (500 nm x 500 nm)

R,,-v Rms Roughness Avg. Roughness

6500 C 28.6 A 3.26 A 2.59 A
6800 C 31.58 A 3.31 A 2.63 A
7250 C 90.54 A 4.10 A 3.08 A

Table B.2: Tapping or Intermittent Contact mode (1000 nm x 1000 nm)

R,,-v Rms Roughness Avg. Roughness

6500 C 21.26 A- 1.9 A 1.49 A
6800 C 23.54 A 1.73 A 1.36 A
7250 C 29.27 A 3.01 A 2.40 A

Table B.3: Contact mode (500 nm x 500 nm)
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